Modelo para Reconhecimento de Entidade Nomeadas em português utilizando o modelo spaCy pt_core_news_sm
Link do trabalho no Kaggle: https://www.kaggle.com/datasets/flaviagg/lenerbr .
Criei um Web App que proporciona a comparação dos modelos sm e lg: https://huggingface.co/spaces/flaviaggp/Streamlit_Lener .
Métricas por entidade
Feature | Description |
---|---|
Name | pt_pipeline |
Version | 0.0.0 |
spaCy | >=3.4.4,<3.5.0 |
Default Pipeline | tok2vec , ner |
Components | tok2vec , ner |
Vectors | 0 keys, 0 unique vectors (0 dimensions) |
Sources | n/a |
License | n/a |
Author | n/a |
Label Scheme
View label scheme (6 labels for 1 components)
Component | Labels |
---|---|
ner |
JURISPRUDENCIA , LEGISLACAO , LOCAL , ORGANIZACAO , PESSOA , TEMPO |
Accuracy
Type | Score |
---|---|
ENTS_F |
82.73 |
ENTS_P |
80.14 |
ENTS_R |
81.42 |
TOK2VEC_LOSS |
66943.07 |
NER_LOSS |
124326.31 |
- Downloads last month
- 23
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.
Dataset used to train flaviaggp/pt_pipeline
Space using flaviaggp/pt_pipeline 1
Evaluation results
- NER Precisionself-reported82.730
- NER Recallself-reported80.140
- NER F Scoreself-reported81.420