metadata
license: apache-2.0
library_name: transformers
base_model:
- nbeerbower/flammen15-mistral-7B
datasets:
- jondurbin/gutenberg-dpo-v0.1
model-index:
- name: flammen15-gutenberg-DPO-v1-7B
results:
- task:
type: text-generation
name: Text Generation
dataset:
name: IFEval (0-Shot)
type: HuggingFaceH4/ifeval
args:
num_few_shot: 0
metrics:
- type: inst_level_strict_acc and prompt_level_strict_acc
value: 47.98
name: strict accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: BBH (3-Shot)
type: BBH
args:
num_few_shot: 3
metrics:
- type: acc_norm
value: 32.67
name: normalized accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MATH Lvl 5 (4-Shot)
type: hendrycks/competition_math
args:
num_few_shot: 4
metrics:
- type: exact_match
value: 6.72
name: exact match
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: GPQA (0-shot)
type: Idavidrein/gpqa
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 4.59
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MuSR (0-shot)
type: TAUR-Lab/MuSR
args:
num_few_shot: 0
metrics:
- type: acc_norm
value: 12.53
name: acc_norm
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B
name: Open LLM Leaderboard
- task:
type: text-generation
name: Text Generation
dataset:
name: MMLU-PRO (5-shot)
type: TIGER-Lab/MMLU-Pro
config: main
split: test
args:
num_few_shot: 5
metrics:
- type: acc
value: 24.29
name: accuracy
source:
url: >-
https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=flammenai/flammen15-gutenberg-DPO-v1-7B
name: Open LLM Leaderboard
flammen15-gutenberg-DPO-v1-7B
A Mistral 7B LLM built from merging pretrained models and finetuning on Jon Durbin's Gutenberg DPO set. Flammen specializes in exceptional character roleplay, creative writing, and general intelligence
Method
Finetuned using an A100 on Google Colab. (plz give more gpu)
Fine-tune a Mistral-7b model with Direct Preference Optimization - Maxime Labonne
Configuration
LoRA, model, and training settings:
# LoRA configuration
peft_config = LoraConfig(
r=16,
lora_alpha=16,
lora_dropout=0.05,
bias="none",
task_type="CAUSAL_LM",
target_modules=['k_proj', 'gate_proj', 'v_proj', 'up_proj', 'q_proj', 'o_proj', 'down_proj']
)
# Model to fine-tune
model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
model.config.use_cache = False
# Reference model
ref_model = AutoModelForCausalLM.from_pretrained(
model_name,
torch_dtype=torch.bfloat16,
load_in_4bit=True
)
# Training arguments
training_args = TrainingArguments(
per_device_train_batch_size=2,
gradient_accumulation_steps=2,
gradient_checkpointing=True,
learning_rate=2e-5,
lr_scheduler_type="cosine",
max_steps=200,
save_strategy="no",
logging_steps=1,
output_dir=new_model,
optim="paged_adamw_32bit",
warmup_steps=100,
bf16=True,
report_to="wandb",
)
# Create DPO trainer
dpo_trainer = DPOTrainer(
model,
ref_model,
args=training_args,
train_dataset=dataset,
tokenizer=tokenizer,
peft_config=peft_config,
beta=0.1,
max_prompt_length=1024,
max_length=1536,
force_use_ref_model=True
)
# Fine-tune model with DPO
dpo_trainer.train()
Open LLM Leaderboard Evaluation Results
Detailed results can be found here
Metric | Value |
---|---|
Avg. | 21.46 |
IFEval (0-Shot) | 47.98 |
BBH (3-Shot) | 32.67 |
MATH Lvl 5 (4-Shot) | 6.72 |
GPQA (0-shot) | 4.59 |
MuSR (0-shot) | 12.53 |
MMLU-PRO (5-shot) | 24.29 |