|
--- |
|
license: apache-2.0 |
|
tags: |
|
- UNA |
|
- simple-math |
|
- juanako |
|
base_model: abacusai/Smaug-34B-v0.1 |
|
datasets: |
|
- fblgit/simple-math |
|
- jondurbin/bagel-v0.3 |
|
model-index: |
|
- name: UNA-SimpleSmaug-34b-v1beta |
|
results: |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: AI2 Reasoning Challenge (25-Shot) |
|
type: ai2_arc |
|
config: ARC-Challenge |
|
split: test |
|
args: |
|
num_few_shot: 25 |
|
metrics: |
|
- type: acc_norm |
|
value: 74.57 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: HellaSwag (10-Shot) |
|
type: hellaswag |
|
split: validation |
|
args: |
|
num_few_shot: 10 |
|
metrics: |
|
- type: acc_norm |
|
value: 86.74 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU (5-Shot) |
|
type: cais/mmlu |
|
config: all |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 76.68 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: TruthfulQA (0-shot) |
|
type: truthful_qa |
|
config: multiple_choice |
|
split: validation |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: mc2 |
|
value: 70.17 |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: Winogrande (5-shot) |
|
type: winogrande |
|
config: winogrande_xl |
|
split: validation |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 83.82 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GSM8k (5-shot) |
|
type: gsm8k |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 72.48 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: IFEval (0-Shot) |
|
type: HuggingFaceH4/ifeval |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: inst_level_strict_acc and prompt_level_strict_acc |
|
value: 45.56 |
|
name: strict accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: BBH (3-Shot) |
|
type: BBH |
|
args: |
|
num_few_shot: 3 |
|
metrics: |
|
- type: acc_norm |
|
value: 32.78 |
|
name: normalized accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MATH Lvl 5 (4-Shot) |
|
type: hendrycks/competition_math |
|
args: |
|
num_few_shot: 4 |
|
metrics: |
|
- type: exact_match |
|
value: 0.15 |
|
name: exact match |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: GPQA (0-shot) |
|
type: Idavidrein/gpqa |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 8.95 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MuSR (0-shot) |
|
type: TAUR-Lab/MuSR |
|
args: |
|
num_few_shot: 0 |
|
metrics: |
|
- type: acc_norm |
|
value: 11.96 |
|
name: acc_norm |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
- task: |
|
type: text-generation |
|
name: Text Generation |
|
dataset: |
|
name: MMLU-PRO (5-shot) |
|
type: TIGER-Lab/MMLU-Pro |
|
config: main |
|
split: test |
|
args: |
|
num_few_shot: 5 |
|
metrics: |
|
- type: acc |
|
value: 39.33 |
|
name: accuracy |
|
source: |
|
url: https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard?query=fblgit/UNA-SimpleSmaug-34b-v1beta |
|
name: Open LLM Leaderboard |
|
--- |
|
|
|
# UNA-SimpleSmaug-34b-v1beta |
|
|
|
Scoring 04-February-2024 #1 34B model, outperforming its original base model Smaug-34B-v0.1 with `77.41` 😎 |
|
Oh, btw.. this one went thru SFT so the abacus inside Smaug is back to normal.. so you can further train/dpo him .. RESET!.. |
|
|
|
*UPDATES* March : Stills undisputed 34B King |
|
Smaug 70B stills undisputed 70B King |
|
|
|
==== |
|
And people wonders.. why there is no UNA of Hermes or Smaug 70B? << i dont think is worth the time to spend on a model that is widely known for not being too useful, likely UNA can fix some of the internal mess.. |
|
for Hermes, we spoke chitchat quick a couple times but nothing solid, but we would like to make a reborn of excellent models using UNA, just liek we did with UNA-Dolphin where we saw |
|
relevant performance is short time. |
|
=== |
|
|
|
![UNA](https://huggingface.co/fblgit/UNA-SimpleSmaug-34b-v1beta/resolve/main/unasimple.png) |
|
Applied UNA only on the Attention, not on the MLP's |
|
* Is based on Smaug |
|
* SimpleMath dataset |
|
* It was trained on Axolotl |
|
|
|
## Experiment |
|
The thing here is to understand whats the impact of SimpleMath applied at the attention layer during a SFT session and how it impacts on the neural network overall. |
|
|
|
Results: Improving mathematican and reasoning capabilities without degrading and presserving previous training sessions. |
|
|
|
**And enjoy our ModelSimilarities tool detector** https://github.com/fblgit/model-similarity where we confirmed numerically the bloodties of the model. |
|
## Evals |
|
|
|
|
|
| Metric |Value| |
|
|---------------------------------|----:| |
|
|Avg. |77.41| |
|
|AI2 Reasoning Challenge (25-Shot)|74.57| |
|
|HellaSwag (10-Shot) |86.74| |
|
|MMLU (5-Shot) |76.68| |
|
|TruthfulQA (0-shot) |70.17| |
|
|Winogrande (5-shot) |83.82| |
|
|GSM8k (5-shot) |72.48| |
|
|
|
``` |
|
| Task |Version| Metric |Value | |
|
|-------------|------:|--------|----------------:| |
|
|arc_challenge| HF|acc_norm| 0.7457337883959 | |
|
|gsm8k | HF|acc | 0.7247915087187 | |
|
|mmlu | HF|acc | 0.7649553475572 | |
|
|mmlu | HF|acc_norm| 0.7681713551647 | |
|
|hellaswag | HF|acc_norm| 0.8673571001792 | |
|
|truthfulqa | HF|mc2 | 0.7016557407771 | |
|
|winogrande | HF|acc | 0.8382004735595 | |
|
|------------------------------------------------| |
|
``` |
|
|
|
Increasing GSM, MMLU, ARC, WINO. |
|
|
|
## Citations |
|
To abacusai for making Smaug-34B, the Bagel, and all the magic behind the base model. |
|
|
|
**If you use the model, provide citation even for merges or anything.** |
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta) |
|
|
|
|
|
|
|
# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/open-llm-leaderboard/open_llm_leaderboard) |
|
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_fblgit__UNA-SimpleSmaug-34b-v1beta) |
|
|
|
| Metric |Value| |
|
|-------------------|----:| |
|
|Avg. |23.12| |
|
|IFEval (0-Shot) |45.56| |
|
|BBH (3-Shot) |32.78| |
|
|MATH Lvl 5 (4-Shot)| 0.15| |
|
|GPQA (0-shot) | 8.95| |
|
|MuSR (0-shot) |11.96| |
|
|MMLU-PRO (5-shot) |39.33| |
|
|
|
|