Diffusers fp16 workaround
#10
by
david565
- opened
The example loads the transformer in fp32. You can preload the transformer in fp16 as a workaround.
from diffusers import AuraFlowPipeline, AuraFlowTransformer2DModel
import torch
transformer = AuraFlowTransformer2DModel.from_pretrained(
"fal/AuraFlow-v0.3",
subfolder="transformer",
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
pipeline = AuraFlowPipeline.from_pretrained(
"fal/AuraFlow-v0.3",
transformer=transformer,
torch_dtype=torch.float16,
variant="fp16",
).to("cuda")
image = pipeline(
prompt="rempage of the iguana character riding F1, fast and furious, cinematic movie poster",
width=1536,
height=768,
num_inference_steps=50,
generator=torch.Generator().manual_seed(1),
guidance_scale=3.5,
).images[0]
image.save("output.png")