Edit model card

ESPnet2 SPK model

espnet/voxcelebs12_ska_wavlm_frozen

This model was trained by Jungjee using voxceleb recipe in espnet.

Demo: How to use in ESPnet2

Follow the ESPnet installation instructions if you haven't done that already.

cd espnet
git checkout ea74d1c7482bf5b3b4f90410d1ca8521fd9a566b
pip install -e .
cd egs2/voxceleb/spk1
./run.sh --skip_data_prep false --skip_train true --download_model espnet/voxcelebs12_ska_wavlm_frozen
import numpy as np
from espnet2.bin.spk_inference import Speech2Embedding

# from uploaded models
speech2spk_embed = Speech2Embedding.from_pretrained(model_tag="espnet/voxcelebs12_ska_wavlm_frozen")
embedding = speech2spk_embed(np.zeros(16500))

# from checkpoints trained by oneself
speech2spk_embed = Speech2Embedding(model_file="model.pth", train_config="config.yaml")
embedding = speech2spk_embed(np.zeros(32000))

RESULTS

Environments

date: 2024-01-01 15:49:24.125685

  • python version: 3.9.16 (main, Mar 8 2023, 14:00:05) [GCC 11.2.0]
  • espnet version: 202310
  • pytorch version: 2.0.1
Mean Std
Target 8.1076 3.4943
Non-target 2.1763 2.1763
Model name EER(%) minDCF
conf/tuning/train_ska_Vox12_emb192_torchmelspec_subcentertopk_wavlm_nodownsample 0.564 0.05488

SPK config

expand
config: conf/tuning/train_ska_Vox12_emb192_torchmelspec_subcentertopk_wavlm_nodownsample.yaml
print_config: false
log_level: INFO
drop_last_iter: true
dry_run: false
iterator_type: category
valid_iterator_type: sequence
output_dir: exp/spk_train_ska_Vox12_emb192_torchmelspec_subcentertopk_wavlm_nodownsample_raw_sp
ngpu: 1
seed: 0
num_workers: 6
num_att_plot: 0
dist_backend: nccl
dist_init_method: env://
dist_world_size: 4
dist_rank: 0
local_rank: 0
dist_master_addr: localhost
dist_master_port: 49631
dist_launcher: null
multiprocessing_distributed: true
unused_parameters: false
sharded_ddp: false
cudnn_enabled: true
cudnn_benchmark: true
cudnn_deterministic: false
collect_stats: false
write_collected_feats: false
max_epoch: 40
patience: null
val_scheduler_criterion:
- valid
- loss
early_stopping_criterion:
- valid
- loss
- min
best_model_criterion:
-   - valid
    - eer
    - min
keep_nbest_models: 3
nbest_averaging_interval: 0
grad_clip: 9999
grad_clip_type: 2.0
grad_noise: false
accum_grad: 8
no_forward_run: false
resume: true
train_dtype: float32
use_amp: true
log_interval: 100
use_matplotlib: true
use_tensorboard: true
create_graph_in_tensorboard: false
use_wandb: false
wandb_project: null
wandb_id: null
wandb_entity: null
wandb_name: null
wandb_model_log_interval: -1
detect_anomaly: false
use_lora: false
save_lora_only: true
lora_conf: {}
pretrain_path: null
init_param: []
ignore_init_mismatch: false
freeze_param:
- frontend.upstream
num_iters_per_epoch: null
batch_size: 64
valid_batch_size: 5
batch_bins: 1000000
valid_batch_bins: null
train_shape_file:
- exp/spk_stats_16k_sp/train/speech_shape
valid_shape_file:
- exp/spk_stats_16k_sp/valid/speech_shape
batch_type: folded
valid_batch_type: null
fold_length:
- 120000
sort_in_batch: descending
shuffle_within_batch: false
sort_batch: descending
multiple_iterator: false
chunk_length: 500
chunk_shift_ratio: 0.5
num_cache_chunks: 1024
chunk_excluded_key_prefixes: []
chunk_default_fs: null
train_data_path_and_name_and_type:
-   - dump/raw/voxceleb12_devs_sp/wav.scp
    - speech
    - sound
-   - dump/raw/voxceleb12_devs_sp/utt2spk
    - spk_labels
    - text
valid_data_path_and_name_and_type:
-   - dump/raw/voxceleb1_test/trial.scp
    - speech
    - sound
-   - dump/raw/voxceleb1_test/trial2.scp
    - speech2
    - sound
-   - dump/raw/voxceleb1_test/trial_label
    - spk_labels
    - text
allow_variable_data_keys: false
max_cache_size: 0.0
max_cache_fd: 32
allow_multi_rates: false
valid_max_cache_size: null
exclude_weight_decay: false
exclude_weight_decay_conf: {}
optim: adam
optim_conf:
    lr: 0.001
    weight_decay: 5.0e-05
    amsgrad: false
scheduler: cosineannealingwarmuprestarts
scheduler_conf:
    first_cycle_steps: 71280
    cycle_mult: 1.0
    max_lr: 0.001
    min_lr: 5.0e-06
    warmup_steps: 1000
    gamma: 0.75
init: null
use_preprocessor: true
input_size: null
target_duration: 3.0
spk2utt: dump/raw/voxceleb12_devs_sp/spk2utt
spk_num: 21615
sample_rate: 16000
num_eval: 10
rir_scp: ''
model_conf:
    extract_feats_in_collect_stats: false
frontend: s3prl
frontend_conf:
    frontend_conf:
        upstream: wavlm_large
    download_dir: ./hub
    multilayer_feature: true
specaug: null
specaug_conf: {}
normalize: utterance_mvn
normalize_conf:
    norm_vars: false
encoder: ska_tdnn
encoder_conf:
    model_scale: 8
    ndim: 1024
    ska_dim: 128
    output_size: 1536
pooling: chn_attn_stat
pooling_conf: {}
projector: ska_tdnn
projector_conf:
    output_size: 192
preprocessor: spk
preprocessor_conf:
    target_duration: 3.0
    sample_rate: 16000
    num_eval: 5
    noise_apply_prob: 0.5
    noise_info:
    -   - 1.0
        - dump/raw/musan_speech.scp
        -   - 4
            - 7
        -   - 13
            - 20
    -   - 1.0
        - dump/raw/musan_noise.scp
        -   - 1
            - 1
        -   - 0
            - 15
    -   - 1.0
        - dump/raw/musan_music.scp
        -   - 1
            - 1
        -   - 5
            - 15
    rir_apply_prob: 0.5
    rir_scp: dump/raw/rirs.scp
loss: aamsoftmax_sc_topk
loss_conf:
    margin: 0.3
    scale: 30
    K: 3
    mp: 0.06
    k_top: 5
required:
- output_dir
version: '202310'
distributed: true

Citing ESPnet

@article{jung2024espnet,
  title={ESPnet-SPK: full pipeline speaker embedding toolkit with reproducible recipes, self-supervised front-ends, and off-the-shelf models},
  author={Jung, Jee-weon and Zhang, Wangyou and Shi, Jiatong and Aldeneh, Zakaria and Higuchi, Takuya and Theobald, Barry-John and Abdelaziz, Ahmed Hussen and Watanabe, Shinji},
  journal={arXiv preprint arXiv:2401.17230},
  year={2024}
}

@inproceedings{watanabe2018espnet,
  author={Shinji Watanabe and Takaaki Hori and Shigeki Karita and Tomoki Hayashi and Jiro Nishitoba and Yuya Unno and Nelson Yalta and Jahn Heymann and Matthew Wiesner and Nanxin Chen and Adithya Renduchintala and Tsubasa Ochiai},
  title={{ESPnet}: End-to-End Speech Processing Toolkit},
  year={2018},
  booktitle={Proc. Interspeech},
  pages={2207--2211},
  doi={10.21437/Interspeech.2018-1456},
  url={http://dx.doi.org/10.21437/Interspeech.2018-1456}
}
Downloads last month
4
Inference API
Unable to determine this model’s pipeline type. Check the docs .