ernlavr's picture
End of training
23baba2
|
raw
history blame
2.15 kB
metadata
base_model: meta-llama/Llama-2-7b-hf
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: Llama-2-7b-hf-IDMGSP
    results: []

Llama-2-7b-hf-IDMGSP

This model is a fine-tuned version of meta-llama/Llama-2-7b-hf on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1450
  • Accuracy: {'accuracy': 0.9759036144578314}
  • F1: {'f1': 0.9758125472411187}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0001
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • lr_scheduler_warmup_steps: 500
  • num_epochs: 5
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
0.0766 1.0 498 0.1165 {'accuracy': 0.9614708835341366} {'f1': 0.9612813721780804}
0.182 2.0 996 0.0934 {'accuracy': 0.9657379518072289} {'f1': 0.9648059816939539}
0.037 3.0 1494 0.1190 {'accuracy': 0.9716365461847389} {'f1': 0.9710182097973841}
0.0349 4.0 1992 0.1884 {'accuracy': 0.96875} {'f1': 0.9692326702088224}
0.0046 5.0 2490 0.1450 {'accuracy': 0.9759036144578314} {'f1': 0.9758125472411187}

Framework versions

  • Transformers 4.35.0
  • Pytorch 2.0.1
  • Datasets 2.14.6
  • Tokenizers 0.14.1