Edit model card

twitter-roberta-base-dec2021-CoNLL

This model is a fine-tuned version of cardiffnlp/twitter-roberta-base-dec2021 on the conll2003 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0412
  • Precision: 0.9553
  • Recall: 0.9628
  • F1: 0.9590
  • Accuracy: 0.9927

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 64
  • eval_batch_size: 1024
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 0.11 25 0.2126 0.5639 0.6067 0.5845 0.9349
No log 0.23 50 0.0849 0.8259 0.8612 0.8431 0.9765
No log 0.34 75 0.0640 0.8752 0.8957 0.8853 0.9820
No log 0.45 100 0.0572 0.8848 0.9034 0.8940 0.9832
No log 0.57 125 0.0469 0.9071 0.9239 0.9155 0.9866
No log 0.68 150 0.0442 0.9198 0.9278 0.9238 0.9877
No log 0.8 175 0.0424 0.9192 0.9322 0.9256 0.9881
No log 0.91 200 0.0407 0.9170 0.9414 0.9291 0.9891
No log 1.02 225 0.0402 0.9264 0.9403 0.9333 0.9894
No log 1.14 250 0.0399 0.9329 0.9446 0.9387 0.9897
No log 1.25 275 0.0384 0.9278 0.9413 0.9345 0.9897
No log 1.36 300 0.0363 0.9379 0.9477 0.9427 0.9906
No log 1.48 325 0.0362 0.9380 0.9493 0.9436 0.9905
No log 1.59 350 0.0364 0.9397 0.9497 0.9447 0.9905
No log 1.7 375 0.0367 0.9324 0.9475 0.9399 0.9899
No log 1.82 400 0.0372 0.9350 0.9460 0.9404 0.9899
No log 1.93 425 0.0339 0.9411 0.9514 0.9462 0.9909
No log 2.05 450 0.0336 0.9419 0.9529 0.9474 0.9911
No log 2.16 475 0.0336 0.9447 0.9537 0.9492 0.9914
0.079 2.27 500 0.0345 0.9420 0.9566 0.9492 0.9914
0.079 2.39 525 0.0364 0.9436 0.9522 0.9479 0.9913
0.079 2.5 550 0.0340 0.9479 0.9514 0.9496 0.9916
0.079 2.61 575 0.0339 0.9481 0.9559 0.9520 0.9917
0.079 2.73 600 0.0396 0.9326 0.9504 0.9414 0.9902
0.079 2.84 625 0.0348 0.9461 0.9544 0.9502 0.9915
0.079 2.95 650 0.0359 0.9419 0.9527 0.9473 0.9908
0.079 3.07 675 0.0347 0.9434 0.9573 0.9503 0.9916
0.079 3.18 700 0.0351 0.9464 0.9566 0.9515 0.9918
0.079 3.3 725 0.0370 0.9446 0.9536 0.9491 0.9911
0.079 3.41 750 0.0358 0.9462 0.9583 0.9522 0.9917
0.079 3.52 775 0.0353 0.9483 0.9564 0.9523 0.9920
0.079 3.64 800 0.0351 0.9469 0.9564 0.9516 0.9916
0.079 3.75 825 0.0361 0.9479 0.9579 0.9529 0.9919
0.079 3.86 850 0.0370 0.9498 0.9581 0.9539 0.9918
0.079 3.98 875 0.0374 0.9460 0.9574 0.9517 0.9915
0.079 4.09 900 0.0381 0.9506 0.9594 0.9550 0.9922
0.079 4.2 925 0.0415 0.9460 0.9557 0.9509 0.9912
0.079 4.32 950 0.0390 0.9493 0.9556 0.9524 0.9917
0.079 4.43 975 0.0389 0.9483 0.9591 0.9536 0.9919
0.0123 4.55 1000 0.0379 0.9464 0.9569 0.9516 0.9918
0.0123 4.66 1025 0.0376 0.9463 0.9579 0.9521 0.9920
0.0123 4.77 1050 0.0373 0.9499 0.9571 0.9535 0.9917
0.0123 4.89 1075 0.0366 0.9520 0.9584 0.9552 0.9923
0.0123 5.0 1100 0.0374 0.9488 0.9606 0.9547 0.9923
0.0123 5.11 1125 0.0393 0.9516 0.9589 0.9552 0.9920
0.0123 5.23 1150 0.0389 0.9539 0.9603 0.9571 0.9925
0.0123 5.34 1175 0.0397 0.9486 0.9576 0.9531 0.9917
0.0123 5.45 1200 0.0397 0.9478 0.9569 0.9523 0.9919
0.0123 5.57 1225 0.0388 0.9483 0.9593 0.9537 0.9920
0.0123 5.68 1250 0.0389 0.9502 0.9606 0.9554 0.9923
0.0123 5.8 1275 0.0380 0.9547 0.9616 0.9582 0.9925
0.0123 5.91 1300 0.0391 0.9496 0.9603 0.9549 0.9924
0.0123 6.02 1325 0.0381 0.9548 0.9603 0.9575 0.9924
0.0123 6.14 1350 0.0400 0.9529 0.9596 0.9562 0.9922
0.0123 6.25 1375 0.0393 0.9544 0.9616 0.9580 0.9927
0.0123 6.36 1400 0.0419 0.9514 0.9621 0.9567 0.9924
0.0123 6.48 1425 0.0415 0.9532 0.9626 0.9579 0.9925
0.0123 6.59 1450 0.0415 0.952 0.9613 0.9566 0.9923
0.0123 6.7 1475 0.0399 0.9542 0.9611 0.9577 0.9925
0.0052 6.82 1500 0.0416 0.9522 0.9591 0.9556 0.9921
0.0052 6.93 1525 0.0410 0.9502 0.9599 0.9550 0.9919
0.0052 7.05 1550 0.0406 0.9507 0.9613 0.9560 0.9921
0.0052 7.16 1575 0.0400 0.9508 0.9603 0.9555 0.9923
0.0052 7.27 1600 0.0402 0.9525 0.9618 0.9571 0.9924
0.0052 7.39 1625 0.0401 0.9550 0.9633 0.9591 0.9925
0.0052 7.5 1650 0.0397 0.9555 0.9647 0.9601 0.9927
0.0052 7.61 1675 0.0412 0.9526 0.9610 0.9568 0.9922
0.0052 7.73 1700 0.0419 0.9531 0.9616 0.9574 0.9923
0.0052 7.84 1725 0.0407 0.9555 0.9621 0.9588 0.9927
0.0052 7.95 1750 0.0409 0.9551 0.9628 0.9589 0.9927
0.0052 8.07 1775 0.0413 0.9520 0.9616 0.9568 0.9924
0.0052 8.18 1800 0.0414 0.9505 0.9605 0.9555 0.9923
0.0052 8.3 1825 0.0410 0.9542 0.9605 0.9573 0.9924
0.0052 8.41 1850 0.0417 0.9553 0.9599 0.9576 0.9924
0.0052 8.52 1875 0.0418 0.9545 0.9606 0.9576 0.9923
0.0052 8.64 1900 0.0414 0.9544 0.9616 0.9580 0.9924
0.0052 8.75 1925 0.0419 0.9555 0.9620 0.9587 0.9925
0.0052 8.86 1950 0.0415 0.9544 0.9611 0.9577 0.9926
0.0052 8.98 1975 0.0413 0.9542 0.9611 0.9577 0.9926
0.0027 9.09 2000 0.0412 0.9553 0.9628 0.9590 0.9927
0.0027 9.2 2025 0.0408 0.9554 0.9630 0.9592 0.9927
0.0027 9.32 2050 0.0404 0.9545 0.9613 0.9579 0.9926
0.0027 9.43 2075 0.0407 0.9557 0.9618 0.9587 0.9926
0.0027 9.55 2100 0.0410 0.9552 0.9618 0.9585 0.9926
0.0027 9.66 2125 0.0412 0.9552 0.9620 0.9586 0.9925
0.0027 9.77 2150 0.0413 0.9557 0.9621 0.9589 0.9925
0.0027 9.89 2175 0.0413 0.9557 0.9621 0.9589 0.9925
0.0027 10.0 2200 0.0413 0.9557 0.9621 0.9589 0.9925

Framework versions

  • Transformers 4.20.1
  • Pytorch 1.12.0
  • Datasets 2.3.2
  • Tokenizers 0.12.1
Downloads last month
18
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.

Dataset used to train emilys/twitter-roberta-base-dec2021-CoNLL

Evaluation results