ekolasky's picture
End of training
e48af90
|
raw
history blame
2.4 kB
metadata
license: apache-2.0
base_model: allenai/longformer-base-4096
tags:
  - generated_from_trainer
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: longformer_result_detection
    results: []

longformer_result_detection

This model is a fine-tuned version of allenai/longformer-base-4096 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.1156
  • Precision: 0.6277
  • Recall: 0.6694
  • F1: 0.6479
  • Accuracy: 0.9802

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
No log 1.0 348 0.0716 0.4966 0.6050 0.5455 0.9740
0.1189 2.0 696 0.0634 0.5302 0.6195 0.5714 0.9770
0.0588 3.0 1044 0.0760 0.5518 0.6424 0.5937 0.9774
0.0588 4.0 1392 0.0760 0.6121 0.6528 0.6318 0.9785
0.0282 5.0 1740 0.0910 0.6107 0.6424 0.6261 0.9792
0.0167 6.0 2088 0.1372 0.6 0.5364 0.5664 0.9745
0.0167 7.0 2436 0.1144 0.6028 0.6216 0.6121 0.9793
0.0087 8.0 2784 0.1011 0.6120 0.6590 0.6346 0.9805
0.0061 9.0 3132 0.1239 0.6315 0.6341 0.6328 0.9802
0.0061 10.0 3480 0.1156 0.6277 0.6694 0.6479 0.9802

Framework versions

  • Transformers 4.34.0
  • Pytorch 2.0.1+cu118
  • Datasets 2.14.5
  • Tokenizers 0.14.1