How to use
You can use this model directly with a pipeline for text generation. Since the generation relies on some randomness, we set a seed for reproducibility:
>>> from transformers import pipeline, set_seed
>>> generator = pipeline('text-generation', model='e-tony/gpt2-rnm')
>>> set_seed(42)
>>> generator("Rick: I turned myself into a pickle, Morty!\nMorty: ", max_length=50, num_return_sequences=5)
[{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: I didn't want to have children. It was my fate! I'll pay my mom and dad.\nSnuffles: Well, at least we"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: you know what happened?\n(Steven begins dragging people down the toilet with his hand. As Steven falls) The whole thing starts.\nA man approaches Steven"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Oh wait! And do you remember what I did to you?\nJerry: Uh, it didn't hurt. It should have hurt a lot since I"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Rick!\nKraven: Wait! [wary gasp] What the hell are you doing this time?!\nJerry: Hey, are you"},
{'generated_text': "Rick: I turned myself into a pickle, Morty!\nMorty: Uh.\nJerry: You don't have to put your finger on me today, do you?\nRick: It's just, what do you"}]
Training data
We used the original gpt2
model and fine-tuned it on Rick and Morty transcripts.