duyntnet's picture
Upload README.md with huggingface_hub
e3ef207 verified
|
raw
history blame
2.68 kB
---
license: other
language:
- en
pipeline_tag: text-generation
inference: false
tags:
- transformers
- gguf
- imatrix
- SmolLM2-1.7B-Instruct
---
Quantizations of https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B-Instruct
### Inference Clients/UIs
* [llama.cpp](https://github.com/ggerganov/llama.cpp)
* [KoboldCPP](https://github.com/LostRuins/koboldcpp)
* [ollama](https://github.com/ollama/ollama)
* [text-generation-webui](https://github.com/oobabooga/text-generation-webui)
* [GPT4All](https://github.com/nomic-ai/gpt4all)
* [jan](https://github.com/janhq/jan)
---
# From original readme
SmolLM2 is a family of compact language models available in three size: 135M, 360M, and 1.7B parameters. They are capable of solving a wide range of tasks while being lightweight enough to run on-device.
The 1.7B variant demonstrates significant advances over its predecessor SmolLM1-1.7B, particularly in instruction following, knowledge, reasoning, and mathematics. It was trained on 11 trillion tokens using a diverse dataset combination: FineWeb-Edu, DCLM, The Stack, along with new mathematics and coding datasets that we curated and will release soon. We developed the instruct version through supervised fine-tuning (SFT) using a combination of public datasets and our own curated datasets. We then applied Direct Preference Optimization (DPO) using [UltraFeedback](https://huggingface.co/datasets/HuggingFaceH4/ultrafeedback_binarized).
The instruct model additionally supports tasks such as text rewriting, summarization and function calling thanks to datasets developed by [Argilla](https://huggingface.co/argilla) such as [Synth-APIGen-v0.1](https://huggingface.co/datasets/argilla/Synth-APIGen-v0.1).
### How to use
### Transformers
```bash
pip install transformers
```
```python
from transformers import AutoModelForCausalLM, AutoTokenizer
checkpoint = "HuggingFaceTB/SmolLM2-1.7B-Instruct"
device = "cuda" # for GPU usage or "cpu" for CPU usage
tokenizer = AutoTokenizer.from_pretrained(checkpoint)
# for multiple GPUs install accelerate and do `model = AutoModelForCausalLM.from_pretrained(checkpoint, device_map="auto")`
model = AutoModelForCausalLM.from_pretrained(checkpoint).to(device)
messages = [{"role": "user", "content": "What is the capital of France."}]
input_text=tokenizer.apply_chat_template(messages, tokenize=False)
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
outputs = model.generate(inputs, max_new_tokens=50, temperature=0.2, top_p=0.9, do_sample=True)
print(tokenizer.decode(outputs[0]))
```
### Chat in TRL
You can also use the TRL CLI to chat with the model from the terminal:
```bash
pip install trl
trl ch