Edit model card

Reranker (Cross-Encoder)

Different from embedding model, reranker uses question and document as input and directly output similarity instead of embedding. You can get a relevance score by inputting query and passage to the reranker. And the score can be mapped to a float value in [0,1] by sigmoid function.

Model Details

  • Base model : BAAI/bge-reranker-v2-m3
  • The multilingual model has been optimized for Korean.

Usage with Transformers

from transformers import AutoTokenizer, AutoModelForSequenceClassification
import torch

model = AutoModelForSequenceClassification.from_pretrained('dragonkue/bge-reranker-v2-m3-ko')
tokenizer = AutoTokenizer.from_pretrained('dragonkue/bge-reranker-v2-m3-ko')

features = tokenizer([['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹€λ¬΄κ΅μœ‘μ„ 톡해 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ— λŒ€ν•œ μžμΉ˜λ‹¨μ²΄μ˜ 관심을 μ œκ³ ν•˜κ³  μžμΉ˜λ‹¨μ²΄μ˜ 차질 μ—†λŠ” 업무 좔진을 μ§€μ›ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 쀀비과정을 거쳐 2014λ…„ 8μ›” 7일뢀터 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ΄ μ‹œν–‰λ˜μ—ˆλ‹€.'], 
['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹ν’ˆμ˜μ•½ν’ˆμ•ˆμ „μ²˜λŠ” 21일 κ΅­λ‚΄ μ œμ•½κΈ°μ—… μœ λ°”μ΄μ˜€λ‘œμ§μŠ€κ°€ 개발 쀑인 μ‹ μ’… μ½”λ‘œλ‚˜λ°”μ΄λŸ¬μŠ€ 감염증(μ½”λ‘œλ‚˜19) λ°±μ‹  ν›„λ³΄λ¬Όμ§ˆ β€˜μœ μ½”λ°±-19β€™μ˜ μž„μƒμ‹œν—˜ κ³„νšμ„ μ§€λ‚œ 20일 μŠΉμΈν–ˆλ‹€κ³  λ°ν˜”λ‹€.']],  padding=True, truncation=True, return_tensors="pt")

model.eval()
with torch.no_grad():
    logits = model(**features).logits
    scores = torch.sigmoid(logits)
    print(scores)
# [9.9997962e-01 5.0702977e-07]

Usage with SentenceTransformers

First install the Sentence Transformers library:

pip install -U sentence-transformers
from sentence_transformers import CrossEncoder

model = CrossEncoder('dragonkue/bge-reranker-v2-m3-ko', default_activation_function=torch.nn.Sigmoid())

scores = model.predict([['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹€λ¬΄κ΅μœ‘μ„ 톡해 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ— λŒ€ν•œ μžμΉ˜λ‹¨μ²΄μ˜ 관심을 μ œκ³ ν•˜κ³  μžμΉ˜λ‹¨μ²΄μ˜ 차질 μ—†λŠ” 업무 좔진을 μ§€μ›ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 쀀비과정을 거쳐 2014λ…„ 8μ›” 7일뢀터 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ΄ μ‹œν–‰λ˜μ—ˆλ‹€.'], 
['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹ν’ˆμ˜μ•½ν’ˆμ•ˆμ „μ²˜λŠ” 21일 κ΅­λ‚΄ μ œμ•½κΈ°μ—… μœ λ°”μ΄μ˜€λ‘œμ§μŠ€κ°€ 개발 쀑인 μ‹ μ’… μ½”λ‘œλ‚˜λ°”μ΄λŸ¬μŠ€ 감염증(μ½”λ‘œλ‚˜19) λ°±μ‹  ν›„λ³΄λ¬Όμ§ˆ β€˜μœ μ½”λ°±-19β€™μ˜ μž„μƒμ‹œν—˜ κ³„νšμ„ μ§€λ‚œ 20일 μŠΉμΈν–ˆλ‹€κ³  λ°ν˜”λ‹€.']])
print(scores)
# [9.9997962e-01 5.0702977e-07]

Usage with FlagEmbedding

First install the FlagEmbedding library:

pip install -U FlagEmbedding
from FlagEmbedding import FlagReranker

reranker = FlagReranker('dragonkue/bge-reranker-v2-m3-ko')

scores = reranker.compute_score([['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹€λ¬΄κ΅μœ‘μ„ 톡해 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ— λŒ€ν•œ μžμΉ˜λ‹¨μ²΄μ˜ 관심을 μ œκ³ ν•˜κ³  μžμΉ˜λ‹¨μ²΄μ˜ 차질 μ—†λŠ” 업무 좔진을 μ§€μ›ν•˜μ˜€λ‹€. μ΄λŸ¬ν•œ 쀀비과정을 거쳐 2014λ…„ 8μ›” 7일뢀터 β€˜μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•β€™μ΄ μ‹œν–‰λ˜μ—ˆλ‹€.'], 
['λͺ‡ 년도에 μ§€λ°©μ„Έμ™Έμˆ˜μž…λ²•μ΄ μ‹œν–‰λμ„κΉŒ?', 'μ‹ν’ˆμ˜μ•½ν’ˆμ•ˆμ „μ²˜λŠ” 21일 κ΅­λ‚΄ μ œμ•½κΈ°μ—… μœ λ°”μ΄μ˜€λ‘œμ§μŠ€κ°€ 개발 쀑인 μ‹ μ’… μ½”λ‘œλ‚˜λ°”μ΄λŸ¬μŠ€ 감염증(μ½”λ‘œλ‚˜19) λ°±μ‹  ν›„λ³΄λ¬Όμ§ˆ β€˜μœ μ½”λ°±-19β€™μ˜ μž„μƒμ‹œν—˜ κ³„νšμ„ μ§€λ‚œ 20일 μŠΉμΈν–ˆλ‹€κ³  λ°ν˜”λ‹€.']], normalize=True)
print(scores)
# [9.9997962e-01 5.0702977e-07]

Fine-tune

Refer to https://github.com/FlagOpen/FlagEmbedding

Evaluation

Bi-encoder and Cross-encoder

Bi-Encoders convert texts into fixed-size vectors and efficiently calculate similarities between them. They are fast and ideal for tasks like semantic search and classification, making them suitable for processing large datasets quickly.

Cross-Encoders directly compare pairs of texts to compute similarity scores, providing more accurate results. While they are slower due to needing to process each pair, they excel in re-ranking top results and are important in Advanced RAG techniques for enhancing text generation.

Korean Embedding Benchmark with AutoRAG

(https://github.com/Marker-Inc-Korea/AutoRAG-example-korean-embedding-benchmark)

This is a Korean embedding benchmark for the financial sector.

Top-k 1

Bi-Encoder (Sentence Transformer)

Model name F1 Recall Precision
paraphrase-multilingual-mpnet-base-v2 0.3596 0.3596 0.3596
KoSimCSE-roberta 0.4298 0.4298 0.4298
Cohere embed-multilingual-v3.0 0.3596 0.3596 0.3596
openai ada 002 0.4737 0.4737 0.4737
multilingual-e5-large-instruct 0.4649 0.4649 0.4649
Upstage Embedding 0.6579 0.6579 0.6579
paraphrase-multilingual-MiniLM-L12-v2 0.2982 0.2982 0.2982
openai_embed_3_small 0.5439 0.5439 0.5439
ko-sroberta-multitask 0.4211 0.4211 0.4211
openai_embed_3_large 0.6053 0.6053 0.6053
KU-HIAI-ONTHEIT-large-v1 0.7105 0.7105 0.7105
KU-HIAI-ONTHEIT-large-v1.1 0.7193 0.7193 0.7193
kf-deberta-multitask 0.4561 0.4561 0.4561
gte-multilingual-base 0.5877 0.5877 0.5877
KoE5 0.7018 0.7018 0.7018
BGE-m3 0.6578 0.6578 0.6578
bge-m3-korean 0.5351 0.5351 0.5351
BGE-m3-ko 0.7456 0.7456 0.7456

Cross-Encoder (Reranker)

Model name F1 Recall Precision
gte-multilingual-reranker-base 0.7281 0.7281 0.7281
jina-reranker-v2-base-multilingual 0.8070 0.8070 0.8070
bge-reranker-v2-m3 0.8772 0.8772 0.8772
upskyy/ko-reranker-8k 0.8684 0.8684 0.8684
upskyy/ko-reranker 0.8333 0.8333 0.8333
mncai/bge-ko-reranker-560M 0.0088 0.0088 0.0088
Dongjin-kr/ko-reranker 0.8509 0.8509 0.8509
bge-reranker-v2-m3-ko 0.9123 0.9123 0.9123

Top-k 3

Bi-Encoder (Sentence Transformer)

Model name F1 Recall Precision
paraphrase-multilingual-mpnet-base-v2 0.2368 0.4737 0.1579
KoSimCSE-roberta 0.3026 0.6053 0.2018
Cohere embed-multilingual-v3.0 0.2851 0.5702 0.1901
openai ada 002 0.3553 0.7105 0.2368
multilingual-e5-large-instruct 0.3333 0.6667 0.2222
Upstage Embedding 0.4211 0.8421 0.2807
paraphrase-multilingual-MiniLM-L12-v2 0.2061 0.4123 0.1374
openai_embed_3_small 0.3640 0.7281 0.2427
ko-sroberta-multitask 0.2939 0.5877 0.1959
openai_embed_3_large 0.3947 0.7895 0.2632
KU-HIAI-ONTHEIT-large-v1 0.4386 0.8772 0.2924
KU-HIAI-ONTHEIT-large-v1.1 0.4430 0.8860 0.2953
kf-deberta-multitask 0.3158 0.6316 0.2105
gte-multilingual-base 0.4035 0.8070 0.2690
KoE5 0.4254 0.8509 0.2836
BGE-m3 0.4254 0.8508 0.2836
bge-m3-korean 0.3684 0.7368 0.2456
BGE-m3-ko 0.4517 0.9035 0.3011

Cross-Encoder (Reranker)

Model name F1 Recall Precision
gte-multilingual-reranker-base 0.4605 0.9211 0.3070
jina-reranker-v2-base-multilingual 0.4649 0.9298 0.3099
bge-reranker-v2-m3 0.4781 0.9561 0.3187
upskyy/ko-reranker-8k 0.4781 0.9561 0.3187
upskyy/ko-reranker 0.4649 0.9298 0.3099
mncai/bge-ko-reranker-560M 0.0044 0.0088 0.0029
Dongjin-kr/ko-reranker 0.4737 0.9474 0.3158
bge-reranker-v2-m3-ko 0.4825 0.9649 0.3216
Downloads last month
134
Safetensors
Model size
568M params
Tensor type
F32
Β·
Inference Examples
Inference API (serverless) does not yet support sentence-transformers models for this pipeline type.

Model tree for dragonkue/bge-reranker-v2-m3-ko

Finetuned
(5)
this model