Edit model card

Task: Summarization

Usage


from transformers import PegasusForConditionalGeneration,BertTokenizer
class PegasusTokenizer(BertTokenizer):
    model_input_names = ["input_ids", "attention_mask"]
    def __init__(self, **kwargs):
        super().__init__(**kwargs)
        # super().__init__(**kwargs)
        self.add_special_tokens({'additional_special_tokens':["<mask_1>"]})

    def build_inputs_with_special_tokens(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None) -> List[int]:

        if token_ids_1 is None:
            return token_ids_0 + [self.eos_token_id]
        return token_ids_0 + token_ids_1 + [self.eos_token_id]

    def _special_token_mask(self, seq):
        all_special_ids = set(
            self.all_special_ids)  # call it once instead of inside list comp
        # all_special_ids.remove(self.unk_token_id)  # <unk> is only sometimes special
        return [1 if x in all_special_ids else 0 for x in seq]

    def get_special_tokens_mask(
            self,
            token_ids_0: List[int],
            token_ids_1: Optional[List[int]] = None,
            already_has_special_tokens: bool = False) -> List[int]:
        if already_has_special_tokens:
            return self._special_token_mask(token_ids_0)
        elif token_ids_1 is None:
            return self._special_token_mask(token_ids_0) + [self.eos_token_id]
        else:
            return self._special_token_mask(token_ids_0 +
                                            token_ids_1) + [self.eos_token_id]                              
model = PegasusForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese')
tokenizer = PegasusTokenizer.from_pretrained('IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese')

text = "在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!"
inputs = tokenizer(text, max_length=512, return_tensors="pt")

# Generate Summary
summary_ids = model.generate(inputs["input_ids"])
tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]

Citation

If you find the resource is useful, please cite the following website in your paper.

@misc{Fengshenbang-LM,
  title={Fengshenbang-LM},
  author={IDEA-CCNL},
  year={2022},
  howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
Downloads last month
15
Inference Examples
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social visibility and check back later, or deploy to Inference Endpoints (dedicated) instead.