Task: Summarization
Usage
from transformers import PegasusForConditionalGeneration,BertTokenizer
class PegasusTokenizer(BertTokenizer):
model_input_names = ["input_ids", "attention_mask"]
def __init__(self, **kwargs):
super().__init__(**kwargs)
# super().__init__(**kwargs)
self.add_special_tokens({'additional_special_tokens':["<mask_1>"]})
def build_inputs_with_special_tokens(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None) -> List[int]:
if token_ids_1 is None:
return token_ids_0 + [self.eos_token_id]
return token_ids_0 + token_ids_1 + [self.eos_token_id]
def _special_token_mask(self, seq):
all_special_ids = set(
self.all_special_ids) # call it once instead of inside list comp
# all_special_ids.remove(self.unk_token_id) # <unk> is only sometimes special
return [1 if x in all_special_ids else 0 for x in seq]
def get_special_tokens_mask(
self,
token_ids_0: List[int],
token_ids_1: Optional[List[int]] = None,
already_has_special_tokens: bool = False) -> List[int]:
if already_has_special_tokens:
return self._special_token_mask(token_ids_0)
elif token_ids_1 is None:
return self._special_token_mask(token_ids_0) + [self.eos_token_id]
else:
return self._special_token_mask(token_ids_0 +
token_ids_1) + [self.eos_token_id]
model = PegasusForConditionalGeneration.from_pretrained('IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese')
tokenizer = PegasusTokenizer.from_pretrained('IDEA-CCNL/Randeng-Pegasus-238M-Summary-Chinese')
text = "在北京冬奥会自由式滑雪女子坡面障碍技巧决赛中,中国选手谷爱凌夺得银牌。祝贺谷爱凌!今天上午,自由式滑雪女子坡面障碍技巧决赛举行。决赛分三轮进行,取选手最佳成绩排名决出奖牌。第一跳,中国选手谷爱凌获得69.90分。在12位选手中排名第三。完成动作后,谷爱凌又扮了个鬼脸,甚是可爱。第二轮中,谷爱凌在道具区第三个障碍处失误,落地时摔倒。获得16.98分。网友:摔倒了也没关系,继续加油!在第二跳失误摔倒的情况下,谷爱凌顶住压力,第三跳稳稳发挥,流畅落地!获得86.23分!此轮比赛,共12位选手参赛,谷爱凌第10位出场。网友:看比赛时我比谷爱凌紧张,加油!"
inputs = tokenizer(text, max_length=512, return_tensors="pt")
# Generate Summary
summary_ids = model.generate(inputs["input_ids"])
tokenizer.batch_decode(summary_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
Citation
If you find the resource is useful, please cite the following website in your paper.
@misc{Fengshenbang-LM,
title={Fengshenbang-LM},
author={IDEA-CCNL},
year={2022},
howpublished={\url{https://github.com/IDEA-CCNL/Fengshenbang-LM}},
}
- Downloads last month
- 15
This model does not have enough activity to be deployed to Inference API (serverless) yet. Increase its social
visibility and check back later, or deploy to Inference Endpoints (dedicated)
instead.