Transformers documentation

Image Processor

You are viewing v4.36.1 version. A newer version v4.46.3 is available.
Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Image Processor

画像プロセッサは、ビジョン モデルの入力特徴の準備とその出力の後処理を担当します。これには、サイズ変更、正規化、PyTorch、TensorFlow、Flax、Numpy テンソルへの変換などの変換が含まれます。ロジットをセグメンテーション マスクに変換するなど、モデル固有の後処理も含まれる場合があります。

ImageProcessingMixin

class transformers.ImageProcessingMixin

< >

( **kwargs )

This is an image processor mixin used to provide saving/loading functionality for sequential and image feature extractors.

from_pretrained

< >

( pretrained_model_name_or_path: typing.Union[str, os.PathLike] cache_dir: typing.Union[str, os.PathLike, NoneType] = None force_download: bool = False local_files_only: bool = False token: typing.Union[bool, str, NoneType] = None revision: str = 'main' **kwargs )

Parameters

  • pretrained_model_name_or_path (str or os.PathLike) — This can be either:

    • a string, the model id of a pretrained image_processor hosted inside a model repo on huggingface.co. Valid model ids can be located at the root-level, like bert-base-uncased, or namespaced under a user or organization name, like dbmdz/bert-base-german-cased.
    • a path to a directory containing a image processor file saved using the save_pretrained() method, e.g., ./my_model_directory/.
    • a path or url to a saved image processor JSON file, e.g., ./my_model_directory/preprocessor_config.json.
  • cache_dir (str or os.PathLike, optional) — Path to a directory in which a downloaded pretrained model image processor should be cached if the standard cache should not be used.
  • force_download (bool, optional, defaults to False) — Whether or not to force to (re-)download the image processor files and override the cached versions if they exist.
  • resume_download (bool, optional, defaults to False) — Whether or not to delete incompletely received file. Attempts to resume the download if such a file exists.
  • proxies (Dict[str, str], optional) — A dictionary of proxy servers to use by protocol or endpoint, e.g., {'http': 'foo.bar:3128', 'http://hostname': 'foo.bar:4012'}. The proxies are used on each request.
  • token (str or bool, optional) — The token to use as HTTP bearer authorization for remote files. If True, or not specified, will use the token generated when running huggingface-cli login (stored in ~/.huggingface).
  • revision (str, optional, defaults to "main") — The specific model version to use. It can be a branch name, a tag name, or a commit id, since we use a git-based system for storing models and other artifacts on huggingface.co, so revision can be any identifier allowed by git.

Instantiate a type of ImageProcessingMixin from an image processor.

Examples:

# We can't instantiate directly the base class *ImageProcessingMixin* so let's show the examples on a
# derived class: *CLIPImageProcessor*
image_processor = CLIPImageProcessor.from_pretrained(
    "openai/clip-vit-base-patch32"
)  # Download image_processing_config from huggingface.co and cache.
image_processor = CLIPImageProcessor.from_pretrained(
    "./test/saved_model/"
)  # E.g. image processor (or model) was saved using *save_pretrained('./test/saved_model/')*
image_processor = CLIPImageProcessor.from_pretrained("./test/saved_model/preprocessor_config.json")
image_processor = CLIPImageProcessor.from_pretrained(
    "openai/clip-vit-base-patch32", do_normalize=False, foo=False
)
assert image_processor.do_normalize is False
image_processor, unused_kwargs = CLIPImageProcessor.from_pretrained(
    "openai/clip-vit-base-patch32", do_normalize=False, foo=False, return_unused_kwargs=True
)
assert image_processor.do_normalize is False
assert unused_kwargs == {"foo": False}

save_pretrained

< >

( save_directory: typing.Union[str, os.PathLike] push_to_hub: bool = False **kwargs )

Parameters

  • save_directory (str or os.PathLike) — Directory where the image processor JSON file will be saved (will be created if it does not exist).
  • push_to_hub (bool, optional, defaults to False) — Whether or not to push your model to the Hugging Face model hub after saving it. You can specify the repository you want to push to with repo_id (will default to the name of save_directory in your namespace).
  • kwargs (Dict[str, Any], optional) — Additional key word arguments passed along to the push_to_hub() method.

Save an image processor object to the directory save_directory, so that it can be re-loaded using the from_pretrained() class method.

BatchFeature

class transformers.BatchFeature

< >

( data: typing.Union[typing.Dict[str, typing.Any], NoneType] = None tensor_type: typing.Union[NoneType, str, transformers.utils.generic.TensorType] = None )

Parameters

  • data (dict, optional) — Dictionary of lists/arrays/tensors returned by the call/pad methods (‘input_values’, ‘attention_mask’, etc.).
  • tensor_type (Union[None, str, TensorType], optional) — You can give a tensor_type here to convert the lists of integers in PyTorch/TensorFlow/Numpy Tensors at initialization.

Holds the output of the pad() and feature extractor specific __call__ methods.

This class is derived from a python dictionary and can be used as a dictionary.

convert_to_tensors

< >

( tensor_type: typing.Union[str, transformers.utils.generic.TensorType, NoneType] = None )

Parameters

  • tensor_type (str or TensorType, optional) — The type of tensors to use. If str, should be one of the values of the enum TensorType. If None, no modification is done.

Convert the inner content to tensors.

to

< >

( *args **kwargs ) BatchFeature

Parameters

  • args (Tuple) — Will be passed to the to(...) function of the tensors.
  • kwargs (Dict, optional) — Will be passed to the to(...) function of the tensors.

Returns

BatchFeature

The same instance after modification.

Send all values to device by calling v.to(*args, **kwargs) (PyTorch only). This should support casting in different dtypes and sending the BatchFeature to a different device.

BaseImageProcessor

class transformers.image_processing_utils.BaseImageProcessor

< >

( **kwargs )

center_crop

< >

( image: ndarray size: typing.Dict[str, int] data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None input_data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None **kwargs )

Parameters

  • image (np.ndarray) — Image to center crop.
  • size (Dict[str, int]) — Size of the output image.
  • data_format (str or ChannelDimension, optional) — The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.

Center crop an image to (size["height"], size["width"]). If the input size is smaller than crop_size along any edge, the image is padded with 0’s and then center cropped.

normalize

< >

( image: ndarray mean: typing.Union[float, typing.Iterable[float]] std: typing.Union[float, typing.Iterable[float]] data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None input_data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None **kwargs ) np.ndarray

Parameters

  • image (np.ndarray) — Image to normalize.
  • mean (float or Iterable[float]) — Image mean to use for normalization.
  • std (float or Iterable[float]) — Image standard deviation to use for normalization.
  • data_format (str or ChannelDimension, optional) — The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.

Returns

np.ndarray

The normalized image.

Normalize an image. image = (image - image_mean) / image_std.

rescale

< >

( image: ndarray scale: float data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None input_data_format: typing.Union[transformers.image_utils.ChannelDimension, str, NoneType] = None **kwargs ) np.ndarray

Parameters

  • image (np.ndarray) — Image to rescale.
  • scale (float) — The scaling factor to rescale pixel values by.
  • data_format (str or ChannelDimension, optional) — The channel dimension format for the output image. If unset, the channel dimension format of the input image is used. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.
  • input_data_format (ChannelDimension or str, optional) — The channel dimension format for the input image. If unset, the channel dimension format is inferred from the input image. Can be one of:
    • "channels_first" or ChannelDimension.FIRST: image in (num_channels, height, width) format.
    • "channels_last" or ChannelDimension.LAST: image in (height, width, num_channels) format.

Returns

np.ndarray

The rescaled image.

Rescale an image by a scale factor. image = image * scale.