Utilities for pipelines
This page lists all the utility functions the library provides for pipelines.
Most of those are only useful if you are studying the code of the models in the library.
Argument handling
Base interface for handling arguments for each Pipeline.
Handles arguments for zero-shot for text classification by turning each possible label into an NLI premise/hypothesis pair.
QuestionAnsweringPipeline requires the user to provide multiple arguments (i.e. question & context) to be mapped to
internal SquadExample
.
QuestionAnsweringArgumentHandler manages all the possible to create a SquadExample
from the
command-line supplied arguments.
Data format
( output_path: typing.Optional[str] input_path: typing.Optional[str] column: typing.Optional[str] overwrite: bool = False )
Base class for all the pipeline supported data format both for reading and writing. Supported data formats currently includes:
- JSON
- CSV
- stdin/stdout (pipe)
PipelineDataFormat
also includes some utilities to work with multi-columns like mapping from datasets
columns to pipelines keyword arguments through the dataset_kwarg_1=dataset_column_1
format.
( format: str output_path: typing.Optional[str] input_path: typing.Optional[str] column: typing.Optional[str] overwrite = False ) β PipelineDataFormat
Parameters
-
output_path (
str
, optional) — Where to save the outgoing data. -
input_path (
str
, optional) — Where to look for the input data. -
column (
str
, optional) — The column to read. -
overwrite (
bool
, optional, defaults toFalse
) — Whether or not to overwrite theoutput_path
.
Returns
The proper data format.
Creates an instance of the right subclass of PipelineDataFormat depending on
format
.
( data: typing.Union[dict, typing.List[dict]] )
Save the provided data object with the representation for the current PipelineDataFormat.
(
data: typing.Union[dict, typing.List[dict]]
)
β
str
Save the provided data object as a pickle-formatted binary data on the disk.
( output_path: typing.Optional[str] input_path: typing.Optional[str] column: typing.Optional[str] overwrite = False )
Support for pipelines using CSV data format.
Save the provided data object with the representation for the current PipelineDataFormat.
( output_path: typing.Optional[str] input_path: typing.Optional[str] column: typing.Optional[str] overwrite = False )
Support for pipelines using JSON file format.
Save the provided data object in a json file.
( output_path: typing.Optional[str] input_path: typing.Optional[str] column: typing.Optional[str] overwrite: bool = False )
Read data from piped input to the python process. For multi columns data, columns should separated by
If columns are provided, then the output will be a dictionary with {column_x: value_x}
Print the data.
Utilities
( task: str model: str reason: str )
Raised by a Pipeline when handling call.