일본어 BERT (BertJapanese)
개요
일본어 문장에 학습된 BERT 모델 입니다.
각각 서로 다른 토큰화 방법을 사용하는 두 모델:
MecabTokenizer를 사용하려면, 의존성을 설치하기 위해 pip install transformers["ja"]
(또는 소스에서 설치하는 경우 pip install -e .["ja"]
) 명령을 실행해야 합니다.
자세한 내용은 cl-tohoku 리포지토리에서 확인하세요.
MeCab과 WordPiece 토큰화를 사용하는 모델 예시:
>>> import torch
>>> from transformers import AutoModel, AutoTokenizer
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾輩 は 猫 で ある 。 [SEP]
>>> outputs = bertjapanese(**inputs)
문자 토큰화를 사용하는 모델 예시:
>>> bertjapanese = AutoModel.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> tokenizer = AutoTokenizer.from_pretrained("cl-tohoku/bert-base-japanese-char")
>>> ## Input Japanese Text
>>> line = "吾輩は猫である。"
>>> inputs = tokenizer(line, return_tensors="pt")
>>> print(tokenizer.decode(inputs["input_ids"][0]))
[CLS] 吾 輩 は 猫 で あ る 。 [SEP]
>>> outputs = bertjapanese(**inputs)
BertJapaneseTokenizer
class transformers.BertJapaneseTokenizer
< source >( vocab_file spm_file = None do_lower_case = False do_word_tokenize = True do_subword_tokenize = True word_tokenizer_type = 'basic' subword_tokenizer_type = 'wordpiece' never_split = None unk_token = '[UNK]' sep_token = '[SEP]' pad_token = '[PAD]' cls_token = '[CLS]' mask_token = '[MASK]' mecab_kwargs = None sudachi_kwargs = None jumanpp_kwargs = None **kwargs )
Parameters
- vocab_file (
str
) — Path to a one-wordpiece-per-line vocabulary file. - spm_file (
str
, optional) — Path to SentencePiece file (generally has a .spm or .model extension) that contains the vocabulary. - do_lower_case (
bool
, optional, defaults toTrue
) — Whether to lower case the input. Only has an effect when do_basic_tokenize=True. - do_word_tokenize (
bool
, optional, defaults toTrue
) — Whether to do word tokenization. - do_subword_tokenize (
bool
, optional, defaults toTrue
) — Whether to do subword tokenization. - word_tokenizer_type (
str
, optional, defaults to"basic"
) — Type of word tokenizer. Choose from [“basic”, “mecab”, “sudachi”, “jumanpp”]. - subword_tokenizer_type (
str
, optional, defaults to"wordpiece"
) — Type of subword tokenizer. Choose from [“wordpiece”, “character”, “sentencepiece”,]. - mecab_kwargs (
dict
, optional) — Dictionary passed to theMecabTokenizer
constructor. - sudachi_kwargs (
dict
, optional) — Dictionary passed to theSudachiTokenizer
constructor. - jumanpp_kwargs (
dict
, optional) — Dictionary passed to theJumanppTokenizer
constructor.
Construct a BERT tokenizer for Japanese text.
This tokenizer inherits from PreTrainedTokenizer
which contains most of the main methods. Users should refer
to: this superclass for more information regarding those methods.
build_inputs_with_special_tokens
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs to which the special tokens will be added. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of input IDs with the appropriate special tokens.
Build model inputs from a sequence or a pair of sequence for sequence classification tasks by concatenating and adding special tokens. A BERT sequence has the following format:
- single sequence:
[CLS] X [SEP]
- pair of sequences:
[CLS] A [SEP] B [SEP]
Converts a sequence of tokens (string) in a single string.
create_token_type_ids_from_sequences
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs.
Returns
List[int]
List of token type IDs according to the given sequence(s).
Create a mask from the two sequences passed to be used in a sequence-pair classification task. A BERT sequence
pair mask has the following format:
0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
| first sequence | second sequence |
If token_ids_1
is None
, this method only returns the first portion of the mask (0s).
get_special_tokens_mask
< source >( token_ids_0: typing.List[int] token_ids_1: typing.Optional[typing.List[int]] = None already_has_special_tokens: bool = False ) → List[int]
Parameters
- token_ids_0 (
List[int]
) — List of IDs. - token_ids_1 (
List[int]
, optional) — Optional second list of IDs for sequence pairs. - already_has_special_tokens (
bool
, optional, defaults toFalse
) — Whether or not the token list is already formatted with special tokens for the model.
Returns
List[int]
A list of integers in the range [0, 1]: 1 for a special token, 0 for a sequence token.
Retrieve sequence ids from a token list that has no special tokens added. This method is called when adding
special tokens using the tokenizer prepare_for_model
method.