BLOOM
Overview
BLOOM モデルは、BigScience Workshop を通じてさまざまなバージョンで提案されています。 BigScience は、研究者が時間とリソースをプールして共同でより高い効果を達成する他のオープン サイエンス イニシアチブからインスピレーションを得ています。 BLOOM のアーキテクチャは基本的に GPT3 (次のトークン予測のための自己回帰モデル) に似ていますが、46 の異なる言語と 13 のプログラミング言語でトレーニングされています。 モデルのいくつかの小さいバージョンが同じデータセットでトレーニングされています。 BLOOM は次のバージョンで利用できます。
Resources
BLOOM を使い始めるのに役立つ公式 Hugging Face およびコミュニティ (🌎 で示されている) リソースのリスト。ここに含めるリソースの送信に興味がある場合は、お気軽にプル リクエストを開いてください。審査させていただきます。リソースは、既存のリソースを複製するのではなく、何か新しいものを示すことが理想的です。
- BloomForCausalLM これによってサポートされています causal language modeling example script and notebook.
以下も参照してください。
⚡️ 推論
- に関するブログ 最適化の話: ブルーム推論。
- に関するブログ DeepSpeed と Accelerate を使用した信じられないほど高速な BLOOM 推論。
⚙️トレーニング
- に関するブログ BLOOM トレーニングの背後にあるテクノロジー。
BloomConfig
class transformers.BloomConfig
< source >( vocab_size = 250880 hidden_size = 64 n_layer = 2 n_head = 8 layer_norm_epsilon = 1e-05 initializer_range = 0.02 use_cache = True bos_token_id = 1 eos_token_id = 2 apply_residual_connection_post_layernorm = False hidden_dropout = 0.0 attention_dropout = 0.0 pretraining_tp = 1 slow_but_exact = False **kwargs )
Parameters
- vocab_size (
int
, optional, defaults to 250880) — Vocabulary size of the Bloom model. Defines the maximum number of different tokens that can be represented by theinputs_ids
passed when calling BloomModel. Check this discussion on how thevocab_size
has been defined. - hidden_size (
int
, optional, defaults to 64) — Dimensionality of the embeddings and hidden states. - n_layer (
int
, optional, defaults to 2) — Number of hidden layers in the Transformer encoder. - n_head (
int
, optional, defaults to 8) — Number of attention heads for each attention layer in the Transformer encoder. - layer_norm_epsilon (
float
, optional, defaults to 1e-5) — The epsilon to use in the layer normalization layers. - initializer_range (
float
, optional, defaults to 0.02) — The standard deviation of the truncated_normal_initializer for initializing all weight matrices. - apply_residual_connection_post_layernorm (
bool
, optional, defaults toFalse
) — If enabled, use the layer norm of the hidden states as the residual in the transformer blocks - hidden_dropout (
float
, optional, defaults to 0.1) — Dropout rate of the dropout function on the bias dropout. - attention_dropout (
float
, optional, defaults to 0.1) — Dropout rate applied to the attention probs - use_cache (
bool
, optional, defaults toTrue
) — Whether or not the model should return the last key/values attentions (not used by all models). - pretraining_tp (
int
, optional, defaults to1
) — Experimental feature. Tensor parallelism rank used during pretraining with Megatron. Please refer to this document to understand more about it. This value is necessary to ensure exact reproducibility of the pretraining results. Please refer to this issue. Note also that this is enabled only whenslow_but_exact=True
. - slow_but_exact (
bool
, optional, defaults toFalse
) — Experimental feature. Whether to use slow but exact implementation of the attention mechanism. While merging the TP rank tensors, due to slicing operations the results may be slightly different between the model trained on Megatron and our model. Please refer to this issue. A solution to obtain more accurate results is to enable this feature. Enabling this will hurt the computational time of the inference. Will be probably resolved in the future once the main model has been fine-tuned with TP_rank=1.
This is the configuration class to store the configuration of a BloomModel. It is used to instantiate a Bloom model according to the specified arguments, defining the model architecture. Instantiating a configuration with the defaults will yield a similar configuration to the Bloom architecture bigscience/bloom.
Configuration objects inherit from PretrainedConfig and can be used to control the model outputs. Read the documentation from PretrainedConfig for more information.
Example:
>>> from transformers import BloomConfig, BloomModel
>>> # Initializing a Bloom configuration
>>> configuration = BloomConfig()
>>> # Initializing a model (with random weights) from the configuration
>>> model = BloomModel(configuration)
>>> # Accessing the model configuration
>>> configuration = model.config
BloomTokenizerFast
class transformers.BloomTokenizerFast
< source >( vocab_file = None merges_file = None tokenizer_file = None unk_token = '<unk>' bos_token = '<s>' eos_token = '</s>' pad_token = '<pad>' add_prefix_space = False clean_up_tokenization_spaces = False **kwargs )
Parameters
- vocab_file (
str
) — Path to the vocabulary file. - merges_file (
str
) — Path to the merges file. - errors (
str
, optional, defaults to"replace"
) — Paradigm to follow when decoding bytes to UTF-8. See bytes.decode for more information. - unk_token (
str
, optional, defaults to<|endoftext|>
) — The unknown token. A token that is not in the vocabulary cannot be converted to an ID and is set to be this token instead. - bos_token (
str
, optional, defaults to<|endoftext|>
) — The beginning of sequence token. - eos_token (
str
, optional, defaults to<|endoftext|>
) — The end of sequence token. - add_prefix_space (
bool
, optional, defaults toFalse
) — Whether or not to add an initial space to the input. This allows to treat the leading word just as any other word. (Bloom tokenizer detect beginning of words by the preceding space). - trim_offsets (
bool
, optional, defaults toTrue
) — Whether or not the post-processing step should trim offsets to avoid including whitespaces.
Construct a “fast” Bloom tokenizer (backed by HuggingFace’s tokenizers library). Based on byte-level Byte-Pair-Encoding.
This tokenizer has been trained to treat spaces like parts of the tokens (a bit like sentencepiece) so a word will
be encoded differently whether it is at the beginning of the sentence (without space) or not:
>>> from transformers import BloomTokenizerFast
>>> tokenizer = BloomTokenizerFast.from_pretrained("bigscience/bloom")
>>> tokenizer("Hello world")["input_ids"]
[59414, 8876]
>>> tokenizer(" Hello world")["input_ids"]
[86153, 8876]
You can get around that behavior by passing add_prefix_space=True
when instantiating this tokenizer, but since
the model was not pretrained this way, it might yield a decrease in performance.
When used with is_split_into_words=True
, this tokenizer needs to be instantiated with add_prefix_space=True
.
This tokenizer inherits from PreTrainedTokenizerFast which contains most of the main methods. Users should refer to this superclass for more information regarding those methods.
BloomModel
class transformers.BloomModel
< source >( config: BloomConfig )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.LongTensor] = None inputs_embeds: typing.Optional[torch.LongTensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **deprecated_arguments ) → transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
ifpast_key_values
isNone
elsepast_key_values[0][0].shape[2]
(sequence_length
of input past key value states). Indices of input sequence tokens in the vocabulary.If
past_key_values
is used, onlyinput_ids
that do not have their past calculated should be passed asinput_ids
.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a
Cache
instance, see our kv cache guide; - Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - a
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
past_key_values
is used, optionally only the lastinputs_embeds
have to be input (seepast_key_values
). - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length.
Returns
transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.BaseModelOutputWithPastAndCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BloomConfig) and inputs.
-
last_hidden_state (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model.If
past_key_values
is used only the last hidden-state of the sequences of shape(batch_size, 1, hidden_size)
is output. -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
) and optionally ifconfig.is_encoder_decoder=True
2 additional tensors of shape(batch_size, num_heads, encoder_sequence_length, embed_size_per_head)
.Contains pre-computed hidden-states (key and values in the self-attention blocks and optionally if
config.is_encoder_decoder=True
in the cross-attention blocks) that can be used (seepast_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
andconfig.add_cross_attention=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights of the decoder’s cross-attention layer, after the attention softmax, used to compute the weighted average in the cross-attention heads.
The BloomModel forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, BloomModel
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomModel.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
BloomForCausalLM
class transformers.BloomForCausalLM
< source >( config: BloomConfig )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None cache_position: typing.Optional[torch.LongTensor] = None **deprecated_arguments ) → transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
ifpast_key_values
isNone
elsepast_key_values[0][0].shape[2]
(sequence_length
of input past key value states). Indices of input sequence tokens in the vocabulary.If
past_key_values
is used, onlyinput_ids
that do not have their past calculated should be passed asinput_ids
.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a
Cache
instance, see our kv cache guide; - Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - a
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
past_key_values
is used, optionally only the lastinputs_embeds
have to be input (seepast_key_values
). - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - labels (
torch.LongTensor
of shape(batch_size, sequence_length)
, optional) — Labels for language modeling. Note that the labels are shifted inside the model, i.e. you can setlabels = input_ids
Indices are selected in[-100, 0, ..., config.vocab_size]
All labels set to-100
are ignored (masked), the loss is only computed for labels in[0, ..., config.vocab_size]
Returns
transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or tuple(torch.FloatTensor)
A transformers.modeling_outputs.CausalLMOutputWithCrossAttentions or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BloomConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Language modeling loss (for next-token prediction). -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
-
cross_attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Cross attentions weights after the attention softmax, used to compute the weighted average in the cross-attention heads.
-
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftorch.FloatTensor
tuples of lengthconfig.n_layers
, with each tuple containing the cached key, value states of the self-attention and the cross-attention layers if model is used in encoder-decoder setting. Only relevant ifconfig.is_decoder = True
.Contains pre-computed hidden-states (key and values in the attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding.
The BloomForCausalLM forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> import torch
>>> from transformers import AutoTokenizer, BloomForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForCausalLM.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> outputs = model(**inputs, labels=inputs["input_ids"])
>>> loss = outputs.loss
>>> logits = outputs.logits
BloomForSequenceClassification
class transformers.BloomForSequenceClassification
< source >( config: BloomConfig )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The Bloom Model transformer with a sequence classification head on top (linear layer).
BloomForSequenceClassification uses the last token in order to do the classification, as other causal models (e.g. GPT-1) do.
Since it does classification on the last token, it requires to know the position of the last token. If a
pad_token_id
is defined in the configuration, it finds the last token that is not a padding token in each row. If
no pad_token_id
is defined, it simply takes the last value in each row of the batch. Since it cannot guess the
padding tokens when inputs_embeds
are passed instead of input_ids
, it does the same (take the last value in
each row of the batch).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **deprecated_arguments ) → transformers.modeling_outputs.SequenceClassifierOutputWithPast
or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
ifpast_key_values
isNone
elsepast_key_values[0][0].shape[2]
(sequence_length
of input past key value states). Indices of input sequence tokens in the vocabulary.If
past_key_values
is used, onlyinput_ids
that do not have their past calculated should be passed asinput_ids
.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a
Cache
instance, see our kv cache guide; - Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - a
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
past_key_values
is used, optionally only the lastinputs_embeds
have to be input (seepast_key_values
). - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.SequenceClassifierOutputWithPast
or tuple(torch.FloatTensor)
A transformers.modeling_outputs.SequenceClassifierOutputWithPast
or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BloomConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification (or regression if config.num_labels==1) loss. -
logits (
torch.FloatTensor
of shape(batch_size, config.num_labels)
) — Classification (or regression if config.num_labels==1) scores (before SoftMax). -
past_key_values (
tuple(tuple(torch.FloatTensor))
, optional, returned whenuse_cache=True
is passed or whenconfig.use_cache=True
) — Tuple oftuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
)Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
past_key_values
input) to speed up sequential decoding. -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BloomForSequenceClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example of single-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_id = logits.argmax().item()
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", num_labels=num_labels)
>>> labels = torch.tensor([1])
>>> loss = model(**inputs, labels=labels).loss
Example of multi-label classification:
>>> import torch
>>> from transformers import AutoTokenizer, BloomForSequenceClassification
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForSequenceClassification.from_pretrained("bigscience/bloom-560m", problem_type="multi_label_classification")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_class_ids = torch.arange(0, logits.shape[-1])[torch.sigmoid(logits).squeeze(dim=0) > 0.5]
>>> # To train a model on `num_labels` classes, you can pass `num_labels=num_labels` to `.from_pretrained(...)`
>>> num_labels = len(model.config.id2label)
>>> model = BloomForSequenceClassification.from_pretrained(
... "bigscience/bloom-560m", num_labels=num_labels, problem_type="multi_label_classification"
... )
>>> labels = torch.sum(
... torch.nn.functional.one_hot(predicted_class_ids[None, :].clone(), num_classes=num_labels), dim=1
... ).to(torch.float)
>>> loss = model(**inputs, labels=labels).loss
BloomForTokenClassification
class transformers.BloomForTokenClassification
< source >( config: BloomConfig )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
Bloom Model with a token classification head on top (a linear layer on top of the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks.
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None past_key_values: typing.Union[transformers.cache_utils.Cache, typing.Tuple[typing.Tuple[torch.Tensor, torch.Tensor], ...], NoneType] = None attention_mask: typing.Optional[torch.Tensor] = None head_mask: typing.Optional[torch.Tensor] = None inputs_embeds: typing.Optional[torch.Tensor] = None labels: typing.Optional[torch.Tensor] = None use_cache: typing.Optional[bool] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None **deprecated_arguments ) → transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
ifpast_key_values
isNone
elsepast_key_values[0][0].shape[2]
(sequence_length
of input past key value states). Indices of input sequence tokens in the vocabulary.If
past_key_values
is used, onlyinput_ids
that do not have their past calculated should be passed asinput_ids
.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a
Cache
instance, see our kv cache guide; - Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - a
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
past_key_values
is used, optionally only the lastinputs_embeds
have to be input (seepast_key_values
). - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - labels (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for computing the sequence classification/regression loss. Indices should be in[0, ..., config.num_labels - 1]
. Ifconfig.num_labels == 1
a regression loss is computed (Mean-Square loss), Ifconfig.num_labels > 1
a classification loss is computed (Cross-Entropy).
Returns
transformers.modeling_outputs.TokenClassifierOutput or tuple(torch.FloatTensor)
A transformers.modeling_outputs.TokenClassifierOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BloomConfig) and inputs.
-
loss (
torch.FloatTensor
of shape(1,)
, optional, returned whenlabels
is provided) — Classification loss. -
logits (
torch.FloatTensor
of shape(batch_size, sequence_length, config.num_labels)
) — Classification scores (before SoftMax). -
hidden_states (
tuple(torch.FloatTensor)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple oftorch.FloatTensor
(one for the output of the embeddings, if the model has an embedding layer, + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
-
attentions (
tuple(torch.FloatTensor)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple oftorch.FloatTensor
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The BloomForTokenClassification forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, BloomForTokenClassification
>>> import torch
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom-560m")
>>> model = BloomForTokenClassification.from_pretrained("bigscience/bloom-560m")
>>> inputs = tokenizer(
... "HuggingFace is a company based in Paris and New York", add_special_tokens=False, return_tensors="pt"
... )
>>> with torch.no_grad():
... logits = model(**inputs).logits
>>> predicted_token_class_ids = logits.argmax(-1)
>>> # Note that tokens are classified rather then input words which means that
>>> # there might be more predicted token classes than words.
>>> # Multiple token classes might account for the same word
>>> predicted_tokens_classes = [model.config.id2label[t.item()] for t in predicted_token_class_ids[0]]
>>> labels = predicted_token_class_ids
>>> loss = model(**inputs, labels=labels).loss
BloomForQuestionAnswering
class transformers.BloomForQuestionAnswering
< source >( config )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
The BLOOM Model transformer with a span classification head on top for extractive question-answering tasks like
SQuAD (a linear layers on top of the hidden-states output to compute span start logits
and span end logits
).
This model inherits from PreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings etc.)
This model is also a PyTorch torch.nn.Module subclass. Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general usage and behavior.
forward
< source >( input_ids: typing.Optional[torch.LongTensor] = None attention_mask: typing.Optional[torch.FloatTensor] = None position_ids: typing.Optional[torch.LongTensor] = None head_mask: typing.Optional[torch.FloatTensor] = None inputs_embeds: typing.Optional[torch.FloatTensor] = None start_positions: typing.Optional[torch.LongTensor] = None end_positions: typing.Optional[torch.LongTensor] = None output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None )
Parameters
- input_ids (
torch.LongTensor
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
ifpast_key_values
isNone
elsepast_key_values[0][0].shape[2]
(sequence_length
of input past key value states). Indices of input sequence tokens in the vocabulary.If
past_key_values
is used, onlyinput_ids
that do not have their past calculated should be passed asinput_ids
.Indices can be obtained using AutoTokenizer. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details.
- past_key_values (
Cache
ortuple(tuple(torch.FloatTensor))
, optional) — Pre-computed hidden-states (key and values in the self-attention blocks and in the cross-attention blocks) that can be used to speed up sequential decoding. This typically consists in thepast_key_values
returned by the model at a previous stage of decoding, whenuse_cache=True
orconfig.use_cache=True
.Two formats are allowed:
- a
Cache
instance, see our kv cache guide; - Tuple of
tuple(torch.FloatTensor)
of lengthconfig.n_layers
, with each tuple having 2 tensors of shape(batch_size, num_heads, sequence_length, embed_size_per_head)
). This is also known as the legacy cache format.
The model will output the same cache format that is fed as input. If no
past_key_values
are passed, the legacy cache format will be returned.If
past_key_values
are used, the user can optionally input only the lastinput_ids
(those that don’t have their past key value states given to this model) of shape(batch_size, 1)
instead of allinput_ids
of shape(batch_size, sequence_length)
. - a
- attention_mask (
torch.FloatTensor
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- head_mask (
torch.FloatTensor
of shape(num_heads,)
or(num_layers, num_heads)
, optional) — Mask to nullify selected heads of the self-attention modules. Mask values selected in[0, 1]
:- 1 indicates the head is not masked,
- 0 indicates the head is masked.
- inputs_embeds (
torch.FloatTensor
of shape(batch_size, sequence_length, hidden_size)
, optional) — Optionally, instead of passinginput_ids
you can choose to directly pass an embedded representation. This is useful if you want more control over how to convertinput_ids
indices into associated vectors than the model’s internal embedding lookup matrix.If
past_key_values
is used, optionally only the lastinputs_embeds
have to be input (seepast_key_values
). - use_cache (
bool
, optional) — If set toTrue
,past_key_values
key value states are returned and can be used to speed up decoding (seepast_key_values
). - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple. - cache_position (
torch.LongTensor
of shape(sequence_length)
, optional) — Indices depicting the position of the input sequence tokens in the sequence. Contrarily toposition_ids
, this tensor is not affected by padding. It is used to update the cache in the correct position and to infer the complete sequence length. - start_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for position (index) of the start of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss. - end_positions (
torch.LongTensor
of shape(batch_size,)
, optional) — Labels for position (index) of the end of the labelled span for computing the token classification loss. Positions are clamped to the length of the sequence (sequence_length
). Position outside of the sequence are not taken into account for computing the loss.
The BloomForQuestionAnswering forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
FlaxBloomModel
class transformers.FlaxBloomModel
< source >( config: BloomConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The bare Bloom Model transformer outputting raw hidden-states without any specific head on top.
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None past_key_values: dict = None params: dict = None dropout_rng: <function PRNGKey at 0x7f87ce6a2b90> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
. Indices of input sequence tokens in the vocabulary.Indices can be obtained using
BloomTokenizer
. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details. - attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- past_key_values (
Dict[str, np.ndarray]
, optional, returned byinit_cache
or when passing previouspast_key_values
) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length]. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxBaseModelOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxBaseModelOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BloomConfig) and inputs.
-
last_hidden_state (
jnp.ndarray
of shape(batch_size, sequence_length, hidden_size)
) — Sequence of hidden-states at the output of the last layer of the model. -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBloomPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxBloomModel
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
>>> model = FlaxBloomModel.from_pretrained("bigscience/bloom")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="jax")
>>> outputs = model(**inputs)
>>> last_hidden_states = outputs.last_hidden_state
FlaxBloomForCausalLM
class transformers.FlaxBloomForCausalLM
< source >( config: BloomConfig input_shape: typing.Tuple = (1, 1) seed: int = 0 dtype: dtype = <class 'jax.numpy.float32'> _do_init: bool = True **kwargs )
Parameters
- config (BloomConfig) — Model configuration class with all the parameters of the model. Initializing with a config file does not load the weights associated with the model, only the configuration. Check out the from_pretrained() method to load the model weights.
- dtype (
jax.numpy.dtype
, optional, defaults tojax.numpy.float32
) — The data type of the computation. Can be one ofjax.numpy.float32
,jax.numpy.float16
(on GPUs) andjax.numpy.bfloat16
(on TPUs).This can be used to enable mixed-precision training or half-precision inference on GPUs or TPUs. If specified all the computation will be performed with the given
dtype
.Note that this only specifies the dtype of the computation and does not influence the dtype of model parameters.
If you wish to change the dtype of the model parameters, see to_fp16() and to_bf16().
The Bloom Model transformer with a language modeling head on top (linear layer with weights tied to the input embeddings).
This model inherits from FlaxPreTrainedModel. Check the superclass documentation for the generic methods the library implements for all its model (such as downloading or saving, resizing the input embeddings, pruning heads etc.)
This model is also a Flax Linen flax.nn.Module subclass. Use it as a regular Flax Module and refer to the Flax documentation for all matter related to general usage and behavior.
Finally, this model supports inherent JAX features such as:
__call__
< source >( input_ids attention_mask = None past_key_values: dict = None params: dict = None dropout_rng: <function PRNGKey at 0x7f87ce6a2b90> = None train: bool = False output_attentions: typing.Optional[bool] = None output_hidden_states: typing.Optional[bool] = None return_dict: typing.Optional[bool] = None ) → transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
Parameters
- input_ids (
numpy.ndarray
of shape(batch_size, input_ids_length)
) —input_ids_length
=sequence_length
. Indices of input sequence tokens in the vocabulary.Indices can be obtained using
BloomTokenizer
. See PreTrainedTokenizer.encode() and PreTrainedTokenizer.call() for details. - attention_mask (
numpy.ndarray
of shape(batch_size, sequence_length)
, optional) — Mask to avoid performing attention on padding token indices. Mask values selected in[0, 1]
:- 1 for tokens that are not masked,
- 0 for tokens that are masked.
- past_key_values (
Dict[str, np.ndarray]
, optional, returned byinit_cache
or when passing previouspast_key_values
) — Dictionary of pre-computed hidden-states (key and values in the attention blocks) that can be used for fast auto-regressive decoding. Pre-computed key and value hidden-states are of shape [batch_size, max_length]. - output_attentions (
bool
, optional) — Whether or not to return the attentions tensors of all attention layers. Seeattentions
under returned tensors for more detail. - output_hidden_states (
bool
, optional) — Whether or not to return the hidden states of all layers. Seehidden_states
under returned tensors for more detail. - return_dict (
bool
, optional) — Whether or not to return a ModelOutput instead of a plain tuple.
Returns
transformers.modeling_flax_outputs.FlaxMaskedLMOutput or tuple(torch.FloatTensor)
A transformers.modeling_flax_outputs.FlaxMaskedLMOutput or a tuple of
torch.FloatTensor
(if return_dict=False
is passed or when config.return_dict=False
) comprising various
elements depending on the configuration (BloomConfig) and inputs.
-
logits (
jnp.ndarray
of shape(batch_size, sequence_length, config.vocab_size)
) — Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax). -
hidden_states (
tuple(jnp.ndarray)
, optional, returned whenoutput_hidden_states=True
is passed or whenconfig.output_hidden_states=True
) — Tuple ofjnp.ndarray
(one for the output of the embeddings + one for the output of each layer) of shape(batch_size, sequence_length, hidden_size)
.Hidden-states of the model at the output of each layer plus the initial embedding outputs.
-
attentions (
tuple(jnp.ndarray)
, optional, returned whenoutput_attentions=True
is passed or whenconfig.output_attentions=True
) — Tuple ofjnp.ndarray
(one for each layer) of shape(batch_size, num_heads, sequence_length, sequence_length)
.Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.
The FlaxBloomPreTrainedModel
forward method, overrides the __call__
special method.
Although the recipe for forward pass needs to be defined within this function, one should call the Module
instance afterwards instead of this since the former takes care of running the pre and post processing steps while
the latter silently ignores them.
Example:
>>> from transformers import AutoTokenizer, FlaxBloomForCausalLM
>>> tokenizer = AutoTokenizer.from_pretrained("bigscience/bloom")
>>> model = FlaxBloomForCausalLM.from_pretrained("bigscience/bloom")
>>> inputs = tokenizer("Hello, my dog is cute", return_tensors="np")
>>> outputs = model(**inputs)
>>> # retrieve logts for next token
>>> next_token_logits = outputs.logits[:, -1]