GGUF와 Transformers의 상호작용
GGUF 파일 형식은 GGML과 그에 의존하는 다른 라이브러리, 예를 들어 매우 인기 있는 llama.cpp이나 whisper.cpp에서 추론을 위한 모델을 저장하는데 사용됩니다.
이 파일 형식은 Hugging Face Hub에서 지원되며, 파일 내의 텐서와 메타데이터를 신속하게 검사할 수 있는 기능을 제공합니다.
이 형식은 “단일 파일 형식(single-file-format)“으로 설계되었으며, 하나의 파일에 설정 속성, 토크나이저 어휘, 기타 속성뿐만 아니라 모델에서 로드되는 모든 텐서가 포함됩니다. 이 파일들은 파일의 양자화 유형에 따라 다른 형식으로 제공됩니다. 다양한 양자화 유형에 대한 간략한 설명은 여기에서 확인할 수 있습니다.
Transformers 내 지원
transformers
내에서 gguf
파일을 로드할 수 있는 기능을 추가하여 GGUF 모델의 추가 학습/미세 조정을 제공한 후 ggml
생태계에서 다시 사용할 수 있도록 gguf
파일로 변환하는 기능을 제공합니다. 모델을 로드할 때 먼저 FP32로 역양자화한 후, PyTorch에서 사용할 수 있도록 가중치를 로드합니다.
[!NOTE] 지원은 아직 초기 단계에 있으며, 다양한 양자화 유형과 모델 아키텍처에 대해 이를 강화하기 위한 기여를 환영합니다.
현재 지원되는 모델 아키텍처와 양자화 유형은 다음과 같습니다:
지원되는 양자화 유형
초기에 지원되는 양자화 유형은 Hub에서 공유된 인기 있는 양자화 파일에 따라 결정되었습니다.
- F32
- F16
- BF16
- Q4_0
- Q4_1
- Q5_0
- Q5_1
- Q8_0
- Q2_K
- Q3_K
- Q4_K
- Q5_K
- Q6_K
- IQ1_S
- IQ1_M
- IQ2_XXS
- IQ2_XS
- IQ2_S
- IQ3_XXS
- IQ3_S
- IQ4_XS
- IQ4_NL
[!NOTE] GGUF 역양자화를 지원하려면
gguf>=0.10.0
설치가 필요합니다.
지원되는 모델 아키텍처
현재 지원되는 모델 아키텍처는 Hub에서 매우 인기가 많은 아키텍처들로 제한되어 있습니다:
- LLaMa
- Mistral
- Qwen2
- Qwen2Moe
- Phi3
- Bloom
사용 예시
transformers
에서 gguf
파일을 로드하려면 from_pretrained
메소드에 gguf_file
인수를 지정해야 합니다. 동일한 파일에서 토크나이저와 모델을 로드하는 방법은 다음과 같습니다:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "TheBloke/TinyLlama-1.1B-Chat-v1.0-GGUF"
filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"
tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename)
이제 PyTorch 생태계에서 모델의 양자화되지 않은 전체 버전에 접근할 수 있으며, 다른 여러 도구들과 결합하여 사용할 수 있습니다.
gguf
파일로 다시 변환하려면 llama.cpp의 convert-hf-to-gguf.py
를 사용하는 것을 권장합니다.
위의 스크립트를 완료하여 모델을 저장하고 다시 gguf
로 내보내는 방법은 다음과 같습니다:
tokenizer.save_pretrained('directory')
model.save_pretrained('directory')
!python ${path_to_llama_cpp}/convert-hf-to-gguf.py ${directory}