Load audio data
You can load an audio dataset using the Audio feature that automatically decodes and resamples the audio files when you access the examples.
Audio decoding is based on the soundfile
python package, which uses the libsndfile
C library under the hood.
Installation
To work with audio datasets, you need to have the audio
dependencies installed.
Check out the installation guide to learn how to install it.
Local files
You can load your own dataset using the paths to your audio files. Use the cast_column() function to take a column of audio file paths, and cast it to the Audio feature:
>>> audio_dataset = Dataset.from_dict({"audio": ["path/to/audio_1", "path/to/audio_2", ..., "path/to/audio_n"]}).cast_column("audio", Audio())
>>> audio_dataset[0]["audio"]
{'array': array([ 0. , 0.00024414, -0.00024414, ..., -0.00024414,
0. , 0. ], dtype=float32),
'path': 'path/to/audio_1',
'sampling_rate': 16000}
AudioFolder
You can also load a dataset with an AudioFolder
dataset builder. It does not require writing a custom dataloader, making it useful for quickly creating and loading audio datasets with several thousand audio files.
AudioFolder with metadata
To link your audio files with metadata information, make sure your dataset has a metadata.csv
file. Your dataset structure might look like:
folder/train/metadata.csv
folder/train/first_audio_file.mp3
folder/train/second_audio_file.mp3
folder/train/third_audio_file.mp3
Your metadata.csv
file must have a file_name
column which links audio files with their metadata. An example metadata.csv
file might look like:
file_name,transcription first_audio_file.mp3,znowu się duch z ciałem zrośnie w młodocianej wstaniesz wiosnie i możesz skutkiem tych leków umierać wstawać wiek wieków dalej tam były przestrogi jak siekać głowę jak nogi second_audio_file.mp3,już u źwierzyńca podwojów król zasiada przy nim książęta i panowie rada a gdzie wzniosły krążył ganek rycerze obok kochanek król skinął palcem zaczęto igrzysko third_audio_file.mp3,pewnie kędyś w obłędzie ubite minęły szlaki zaczekajmy dzień jaki poślemy szukać wszędzie dziś jutro pewnie będzie posłali wszędzie sługi czekali dzień i drugi gdy nic nie doczekali z płaczem chcą jechać dali
AudioFolder
will load audio data and create a transcription
column containing texts from metadata.csv
:
>>> from datasets import load_dataset
>>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder")
>>> # OR by specifying the list of files
>>> dataset = load_dataset("audiofolder", data_files=["path/to/audio_1", "path/to/audio_2", ..., "path/to/audio_n"])
You can load remote datasets from their URLs with the data_files parameter:
>>> dataset = load_dataset("audiofolder", data_files=["https://foo.bar/audio_1", "https://foo.bar/audio_2", ..., "https://foo.bar/audio_n"]
>>> # for example, pass SpeechCommands archive:
>>> dataset = load_dataset("audiofolder", data_files="https://s3.amazonaws.com/datasets.huggingface.co/SpeechCommands/v0.01/v0.01_test.tar.gz")
Metadata can also be specified as JSON Lines, in which case use metadata.jsonl
as the name of the metadata file. This format is helpful in scenarios when one of the columns is complex, e.g. a list of floats, to avoid parsing errors or reading the complex values as strings.
To ignore the information in the metadata file, set drop_metadata=True
in load_dataset():
>>> from datasets import load_dataset
>>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder", drop_metadata=True)
If you don’t have a metadata file, AudioFolder
automatically infers the label name from the directory name.
If you want to drop automatically created labels, set drop_labels=True
.
In this case, your dataset will only contain an audio column:
>>> from datasets import load_dataset
>>> dataset = load_dataset("audiofolder", data_dir="/path/to/folder_without_metadata", drop_labels=True)
For more information about creating your own AudioFolder
dataset, take a look at the Create an audio dataset guide.
For a guide on how to load any type of dataset, take a look at the general loading guide.
< > Update on GitHub