api-inference documentation

Text Generation

Hugging Face's logo
Join the Hugging Face community

and get access to the augmented documentation experience

to get started

Text Generation

Generate text based on a prompt.

If you are interested in a Chat Completion task, which generates a response based on a list of messages, check out the chat-completion task.

For more details about the text-generation task, check out its dedicated page! You will find examples and related materials.

Recommended models

Explore all available models and find the one that suits you best here.

Using the API

Python
JavaScript
cURL
import requests

API_URL = "https://api-inference.huggingface.co/models/google/gemma-2-2b-it"
headers = {"Authorization": "Bearer hf_***"}

def query(payload):
	response = requests.post(API_URL, headers=headers, json=payload)
	return response.json()
	
output = query({
	"inputs": "Can you please let us know more details about your ",
})

To use the Python client, see huggingface_hub’s package reference.

API specification

Request

Payload
inputs* string
parameters object
        adapter_id string Lora adapter id
        best_of integer Generate best_of sequences and return the one if the highest token logprobs.
        decoder_input_details boolean Whether to return decoder input token logprobs and ids.
        details boolean Whether to return generation details.
        do_sample boolean Activate logits sampling.
        frequency_penalty number The parameter for frequency penalty. 1.0 means no penalty Penalize new tokens based on their existing frequency in the text so far, decreasing the model’s likelihood to repeat the same line verbatim.
        grammar unknown One of the following:
                 (#1) object
                        type* enum Possible values: json.
                        value* unknown A string that represents a JSON Schema. JSON Schema is a declarative language that allows to annotate JSON documents with types and descriptions.
                 (#2) object
                        type* enum Possible values: regex.
                        value* string
        max_new_tokens integer Maximum number of tokens to generate.
        repetition_penalty number The parameter for repetition penalty. 1.0 means no penalty. See this paper for more details.
        return_full_text boolean Whether to prepend the prompt to the generated text
        seed integer Random sampling seed.
        stop string[] Stop generating tokens if a member of stop is generated.
        temperature number The value used to module the logits distribution.
        top_k integer The number of highest probability vocabulary tokens to keep for top-k-filtering.
        top_n_tokens integer The number of highest probability vocabulary tokens to keep for top-n-filtering.
        top_p number Top-p value for nucleus sampling.
        truncate integer Truncate inputs tokens to the given size.
        typical_p number Typical Decoding mass See Typical Decoding for Natural Language Generation for more information.
        watermark boolean Watermarking with A Watermark for Large Language Models.
stream boolean

Some options can be configured by passing headers to the Inference API. Here are the available headers:

Headers
authorization string Authentication header in the form 'Bearer: hf_****' when hf_**** is a personal user access token with Inference API permission. You can generate one from your settings page.
x-use-cache boolean, default to true There is a cache layer on the inference API to speed up requests we have already seen. Most models can use those results as they are deterministic (meaning the outputs will be the same anyway). However, if you use a nondeterministic model, you can set this parameter to prevent the caching mechanism from being used, resulting in a real new query. Read more about caching here.
x-wait-for-model boolean, default to false If the model is not ready, wait for it instead of receiving 503. It limits the number of requests required to get your inference done. It is advised to only set this flag to true after receiving a 503 error, as it will limit hanging in your application to known places. Read more about model availability here.

For more information about Inference API headers, check out the parameters guide.

Response

Output type depends on the stream input parameter. If stream is false (default), the response will be a JSON object with the following fields:

Body
details object
        best_of_sequences object[]
                finish_reason enum Possible values: length, eos_token, stop_sequence.
                generated_text string
                generated_tokens integer
                prefill object[]
                        id integer
                        logprob number
                        text string
                seed integer
                tokens object[]
                        id integer
                        logprob number
                        special boolean
                        text string
                top_tokens array[]
                        id integer
                        logprob number
                        special boolean
                        text string
        finish_reason enum Possible values: length, eos_token, stop_sequence.
        generated_tokens integer
        prefill object[]
                id integer
                logprob number
                text string
        seed integer
        tokens object[]
                id integer
                logprob number
                special boolean
                text string
        top_tokens array[]
                id integer
                logprob number
                special boolean
                text string
generated_text string

If stream is true, generated tokens are returned as a stream, using Server-Sent Events (SSE). For more information about streaming, check out this guide.

Body
details object
        finish_reason enum Possible values: length, eos_token, stop_sequence.
        generated_tokens integer
        input_length integer
        seed integer
generated_text string
index integer
token object
        id integer
        logprob number
        special boolean
        text string
top_tokens object[]
        id integer
        logprob number
        special boolean
        text string
< > Update on GitHub