LlaMol / model.py
doammii's picture
Add LlaMol codes
55d9b0c verified
raw
history blame
No virus
32.7 kB
from __future__ import annotations
import math
import pickle
import struct
import inspect
from dataclasses import dataclass, field
from typing import Any, Dict, Optional, Tuple, List, Union
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm.auto import tqdm
from tokenizer import SmilesTokenizer
@dataclass
class ModelArgs:
dim: int = 4096
n_layers: int = 32
n_heads: int = 32
n_kv_heads: Optional[int] = None
vocab_size: int = -1 # defined later by tokenizer
multiple_of: int = 256 # make SwiGLU hidden layer size multiple of large power of 2
norm_eps: float = 1e-5
max_seq_len: int = 2048
dropout: float = 0.0
@dataclass
class ContextArgs:
context_keys: List[str] = field(default_factory=list)
context_dims: List[int] = field(default_factory=list)
class RMSNorm(torch.nn.Module):
def __init__(self, dim: int, eps: float):
super().__init__()
self.eps = eps
self.weight = nn.Parameter(torch.ones(dim))
def _norm(self, x):
return x * torch.rsqrt(x.pow(2).mean(-1, keepdim=True) + self.eps)
def forward(self, x):
output = self._norm(x.float()).type_as(x)
return output * self.weight
def precompute_freqs_cis(dim: int, end: int, theta: float = 10000.0):
freqs = 1.0 / (theta ** (torch.arange(0, dim, 2)[: (dim // 2)].float() / dim))
t = torch.arange(end, device=freqs.device) # type: ignore
freqs = torch.outer(t, freqs).float() # type: ignore
freqs_cos = torch.cos(freqs) # real part
freqs_sin = torch.sin(freqs) # imaginary part
return freqs_cos, freqs_sin
def reshape_for_broadcast(freqs_cis: torch.Tensor, x: torch.Tensor):
ndim = x.ndim
assert 0 <= 1 < ndim
assert freqs_cis.shape == (x.shape[1], x.shape[-1])
shape = [d if i == 1 or i == ndim - 1 else 1 for i, d in enumerate(x.shape)]
return freqs_cis.view(shape)
def apply_rotary_emb(
xq: torch.Tensor, xk: torch.Tensor, freqs_cos: torch.Tensor, freqs_sin: torch.Tensor
) -> Tuple[torch.Tensor, torch.Tensor]:
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
freqs_cos = reshape_for_broadcast(freqs_cos, xq_r)
freqs_sin = reshape_for_broadcast(freqs_sin, xq_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos - xq_i * freqs_sin
xq_out_i = xq_r * freqs_sin + xq_i * freqs_cos
xk_out_r = xk_r * freqs_cos - xk_i * freqs_sin
xk_out_i = xk_r * freqs_sin + xk_i * freqs_cos
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
return xq_out.type_as(xq), xk_out.type_as(xk)
def repeat_kv(x: torch.Tensor, n_rep: int) -> torch.Tensor:
"""torch.repeat_interleave(x, dim=2, repeats=n_rep)"""
bs, slen, n_kv_heads, head_dim = x.shape
if n_rep == 1:
return x
return (
x[:, :, :, None, :]
.expand(bs, slen, n_kv_heads, n_rep, head_dim)
.reshape(bs, slen, n_kv_heads * n_rep, head_dim)
)
class Attention(nn.Module):
def __init__(self, args: ModelArgs):
super().__init__()
self.n_kv_heads = args.n_heads if args.n_kv_heads is None else args.n_kv_heads
model_parallel_size = 1
self.n_local_heads = args.n_heads // model_parallel_size
self.n_local_kv_heads = self.n_kv_heads // model_parallel_size
self.n_rep = self.n_local_heads // self.n_local_kv_heads
self.head_dim = args.dim // args.n_heads
self.wq = nn.Linear(args.dim, args.n_heads * self.head_dim, bias=False)
self.wk = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wv = nn.Linear(args.dim, self.n_kv_heads * self.head_dim, bias=False)
self.wo = nn.Linear(args.n_heads * self.head_dim, args.dim, bias=False)
self.attn_dropout = nn.Dropout(args.dropout)
self.resid_dropout = nn.Dropout(args.dropout)
self.dropout = args.dropout
self.cache_hash = None
# use flash attention or a manual implementation?
self.flash = hasattr(torch.nn.functional, "scaled_dot_product_attention")
if not self.flash:
print(
"WARNING: using slow attention. Flash Attention requires PyTorch >= 2.0"
)
mask = torch.full((1, 1, args.max_seq_len, args.max_seq_len), float("-inf"))
mask = torch.triu(mask, diagonal=1)
self.register_buffer("mask", mask)
def forward(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
):
bsz, seqlen, _ = x.shape
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(
xq,
xk,
xv,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
is_causal=True,
)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, "mask")
scores = (
scores + self.mask[:, :, :seqlen, :seqlen]
) # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
def forward_with_kvcache(
self,
x: torch.Tensor,
freqs_cos: torch.Tensor,
freqs_sin: torch.Tensor,
cache_id: int = 1,
):
bsz, seqlen, _ = x.shape
original_x = x
use_cache = self.cache_hash == cache_id
if use_cache:
x = x[:, -1, :].unsqueeze(1) # only need the last new token
# QKV
xq, xk, xv = self.wq(x), self.wk(x), self.wv(x)
if use_cache:
# comp_xq, comp_xk, comp_xv = self.wq(original_x), self.wk(original_x), self.wv(original_x)
# comp_xq = comp_xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
# comp_xk = comp_xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# comp_xv = comp_xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# # RoPE relative positional embeddings
# comp_xq, comp_xk = apply_rotary_emb(comp_xq, comp_xk, freqs_cos, freqs_sin)
self.k_cache = torch.concat([self.k_cache, xk.clone()], dim=1)
self.v_cache = torch.concat([self.v_cache, xv.clone()], dim=1)
# print("Before positional xk:", torch.all(self.k_cache == self.wk(original_x)))
# print("Before positional xv:", torch.all(self.v_cache == self.wv(original_x)))
seqlen = self.k_cache.size(1)
xk = self.k_cache
xv = self.v_cache
self.cache_hash = cache_id
xq = xq.view(bsz, 1, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
# RoPE relative positional embeddings
# xq, xk = apply_rotary_emb(xq, xk[:,-1,:,:].unsqueeze(1), freqs_cos[-1,:].unsqueeze(0), freqs_sin[-1,:].unsqueeze(0))
# reshape xq and xk to match the complex representation
xq_r, xq_i = xq.float().reshape(xq.shape[:-1] + (-1, 2)).unbind(-1)
xk_r, xk_i = xk.float().reshape(xk.shape[:-1] + (-1, 2)).unbind(-1)
# reshape freqs_cos and freqs_sin for broadcasting
q_freq_cos = freqs_cos[-1, :].unsqueeze(0)
q_freq_sin = freqs_sin[-1, :].unsqueeze(0)
freqs_cos_q = reshape_for_broadcast(q_freq_cos, xq_r)
freqs_sin_q = reshape_for_broadcast(q_freq_sin, xq_r)
freqs_cos_k = reshape_for_broadcast(freqs_cos, xk_r)
freqs_sin_k = reshape_for_broadcast(freqs_sin, xk_r)
# apply rotation using real numbers
xq_out_r = xq_r * freqs_cos_q - xq_i * freqs_sin_q
xq_out_i = xq_r * freqs_sin_q + xq_i * freqs_cos_q
xk_out_r = xk_r * freqs_cos_k - xk_i * freqs_sin_k
xk_out_i = xk_r * freqs_sin_k + xk_i * freqs_cos_k
# flatten last two dimensions
xq_out = torch.stack([xq_out_r, xq_out_i], dim=-1).flatten(3)
xk_out = torch.stack([xk_out_r, xk_out_i], dim=-1).flatten(3)
xq, xk = xq_out.type_as(xq), xk_out.type_as(xk)
# print(f"Seq len {xk.shape[1]} xq:", torch.allclose(xq , comp_xq[:,-1,:].unsqueeze(1), atol=1e-7), torch.mean(xq - comp_xq[:,-1,:].unsqueeze(1)))
# print(f"Seq len {xk.shape[1]} xk:", torch.allclose(xk ,comp_xk, atol=1e-7), torch.mean(xk - comp_xk))
# print(f"Seq len {xk.shape[1]} xv:", torch.allclose(xv , comp_xv, atol=1e-7), torch.mean(xv - comp_xv))
# print("-"*10)
# self.old_x = original_x
else:
self.k_cache = xk
self.v_cache = xv
self.old_x = x
xq = xq.view(bsz, seqlen, self.n_local_heads, self.head_dim)
xk = xk.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
xv = xv.view(bsz, seqlen, self.n_local_kv_heads, self.head_dim)
self.cache_hash = cache_id
# RoPE relative positional embeddings
xq, xk = apply_rotary_emb(xq, xk, freqs_cos, freqs_sin)
# grouped multiquery attention: expand out keys and values
xk = repeat_kv(xk, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
xv = repeat_kv(xv, self.n_rep) # (bs, seqlen, n_local_heads, head_dim)
# make heads into a batch dimension
xq = xq.transpose(1, 2) # (bs, n_local_heads, seqlen, head_dim)
xk = xk.transpose(1, 2)
xv = xv.transpose(1, 2)
# flash implementation
if self.flash:
output = torch.nn.functional.scaled_dot_product_attention(
xq,
xk,
xv,
attn_mask=None,
dropout_p=self.dropout if self.training else 0.0,
# NOTE: VERY IMPORTANT to set is_causal=False, OTHERWISE the KV-Caching just breaks
is_causal=False,
)
else:
# manual implementation
scores = torch.matmul(xq, xk.transpose(2, 3)) / math.sqrt(self.head_dim)
assert hasattr(self, "mask")
scores = (
scores + self.mask[:, :, :seqlen, :seqlen]
) # (bs, n_local_heads, seqlen, cache_len + seqlen)
scores = F.softmax(scores.float(), dim=-1).type_as(xq)
scores = self.attn_dropout(scores)
output = torch.matmul(scores, xv) # (bs, n_local_heads, seqlen, head_dim)
# restore time as batch dimension and concat heads
# if use_cache:
# # original_x[:,-1,:] = output.transpose(1, 2).contiguous().view(bsz,-1)
# # output = original_x
# output = torch.concat( [self.out_cache, output.transpose(1, 2).view(bsz,1,-1)], dim=1).contiguous()
# self.out_cache = output
# else:
# output = output.transpose(1, 2).contiguous().view(bsz, seqlen, -1)
# self.out_cache = output
# NOTE: only work when fed in one token at a time (e.g. seq = 1)
output = output.transpose(1, 2).contiguous().view(bsz, x.size(1), -1)
# final projection into the residual stream
output = self.wo(output)
output = self.resid_dropout(output)
return output
class FeedForward(nn.Module):
def __init__(self, dim: int, hidden_dim: int, multiple_of: int, dropout: float):
super().__init__()
hidden_dim = int(2 * hidden_dim / 3)
hidden_dim = multiple_of * ((hidden_dim + multiple_of - 1) // multiple_of)
self.w1 = nn.Linear(dim, hidden_dim, bias=False)
self.w2 = nn.Linear(hidden_dim, dim, bias=False)
self.w3 = nn.Linear(dim, hidden_dim, bias=False)
self.dropout = nn.Dropout(dropout)
def forward(self, x):
return self.dropout(self.w2(F.silu(self.w1(x)) * self.w3(x)))
class TransformerBlock(nn.Module):
def __init__(self, layer_id: int, args: ModelArgs):
super().__init__()
self.n_heads = args.n_heads
self.dim = args.dim
self.head_dim = args.dim // args.n_heads
self.attention = Attention(args)
self.feed_forward = FeedForward(
dim=args.dim,
hidden_dim=4 * args.dim,
multiple_of=args.multiple_of,
dropout=args.dropout,
)
self.layer_id = layer_id
self.attention_norm = RMSNorm(args.dim, eps=args.norm_eps)
self.ffn_norm = RMSNorm(args.dim, eps=args.norm_eps)
def forward(self, x, freqs_cos, freqs_sin):
h = x + self.attention.forward(self.attention_norm(x), freqs_cos, freqs_sin)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
def forward_with_kvcache(self, x, freqs_cos, freqs_sin, cache_id=1):
h = x + self.attention.forward_with_kvcache(
self.attention_norm(x), freqs_cos, freqs_sin, cache_id=cache_id
)
out = h + self.feed_forward.forward(self.ffn_norm(h))
return out
class Transformer(nn.Module):
last_loss: Optional[torch.Tensor]
def __init__(self, params: ModelArgs, context_params: ContextArgs):
super().__init__()
self.params = params
self.context_params = context_params
self.vocab_size = params.vocab_size
self.n_layers = params.n_layers
self.tok_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.frag_embeddings = nn.Embedding(params.vocab_size, params.dim)
self.frag_type_embedding = nn.Embedding(1, params.dim)
self.context_lookup = {k: i for i, k in enumerate(context_params.context_keys)}
self.conditions_type_embeddings = nn.Embedding(
len(context_params.context_keys), params.dim
)
self.conditions_embeddings_lookup = nn.ModuleDict(
{
k: nn.Sequential(
nn.Linear(dim, params.dim, bias=True),
)
for k, dim in zip(
context_params.context_keys, context_params.context_dims
)
}
)
self.dropout = nn.Dropout(params.dropout)
self.layers = torch.nn.ModuleList()
for layer_id in range(params.n_layers):
self.layers.append(TransformerBlock(layer_id, params))
self.norm = RMSNorm(params.dim, eps=params.norm_eps)
self.output = nn.Linear(params.dim, params.vocab_size, bias=False)
# share the unembedding parameters with the embedding parameters
self.tok_embeddings.weight = (
self.output.weight
) # https://paperswithcode.com/method/weight-tying
# some useful precompute for the RoPE relative positional embeddings
freqs_cos, freqs_sin = precompute_freqs_cis(
self.params.dim // self.params.n_heads, self.params.max_seq_len
)
self.register_buffer("freqs_cos", freqs_cos, persistent=False)
self.register_buffer("freqs_sin", freqs_sin, persistent=False)
# init all weights
self.apply(self._init_weights)
# apply special scaled init to the residual projections, per GPT-2 paper
for pn, p in self.named_parameters():
if pn.endswith("w3.weight") or pn.endswith("wo.weight"):
torch.nn.init.normal_(
p, mean=0.0, std=0.02 / math.sqrt(2 * params.n_layers)
)
# Initialize attribute for the loss of the last forward call. This will be set if the forward is called with a targets tensor.
self.last_loss = None
def _init_weights(self, module):
if isinstance(module, nn.Linear):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
if module.bias is not None:
torch.nn.init.zeros_(module.bias)
elif isinstance(module, nn.Embedding):
torch.nn.init.normal_(module.weight, mean=0.0, std=0.02)
def forward(
self,
tokens: torch.Tensor,
targets: Optional[torch.Tensor] = None,
context: Optional[Dict[str, torch.Tensor]] = None,
fragment: Optional[torch.Tensor] = None,
) -> torch.Tensor:
bsz, seqlen = tokens.shape
device = tokens.device
h = self._add_context_to_seq(tokens, context, fragment, bsz, device)
context_seq_len = h.shape[1] - seqlen
bsz, seqlen, _ = h.shape
freqs_cos = self.freqs_cos[:seqlen]
freqs_sin = self.freqs_sin[:seqlen]
for layer in self.layers:
h = layer(h, freqs_cos, freqs_sin)
h = self.norm(h)
h = h[:, context_seq_len:]
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
tmp_last_loss = F.cross_entropy(
logits.reshape(-1, logits.size(-1)),
targets.reshape(-1),
ignore_index=0, # Ignore Pad Tokens
)
# NOTE: This essentially does nothing for the computation,
# because we are multiplying the weights by zero.
# This *needs* to be done, so that we can train with DDP
# As due to the random training process some of the weights are not used in the forward pass
# That is unacceptable for the for the c10 backend and the training errors out.
# Maybe there is a better fix in the future, see:
# https://github.com/pytorch/pytorch/issues/43259
ddp_fix = sum(p.sum() for p in self.parameters())
zero_sum = ddp_fix * 0.0
self.last_loss = tmp_last_loss + zero_sum
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(
h[:, [-1], :]
) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
def forward_with_kvcache(
self,
tokens: torch.Tensor,
targets: Optional[torch.Tensor] = None,
context: Optional[Dict[str, torch.Tensor]] = None,
fragment: Optional[torch.Tensor] = None,
cache_id: int = 1,
pos_seq_len: Optional[int] = None,
) -> torch.Tensor:
bsz, seqlen = tokens.shape
device = tokens.device
h = self._add_context_to_seq(tokens, context, fragment, bsz, device)
context_seq_len = h.shape[1] - seqlen
bsz, seqlen, _ = h.shape
if pos_seq_len is None:
pos_seq_len = seqlen
else:
pos_seq_len = max(seqlen, pos_seq_len + context_seq_len)
freqs_cos = self.freqs_cos[:pos_seq_len]
freqs_sin = self.freqs_sin[:pos_seq_len]
for layer in self.layers:
h = layer.forward_with_kvcache(h, freqs_cos, freqs_sin, cache_id=cache_id)
h = self.norm(h)
h = h[:, context_seq_len:]
if targets is not None:
# if we are given some desired targets also calculate the loss
logits = self.output(h)
tmp_last_loss = F.cross_entropy(
logits.reshape(-1, logits.size(-1)),
targets.reshape(-1),
ignore_index=0, # Ignore Pad Tokens
)
# NOTE: This essentially does nothing for the computation,
# because we are multiplying the weights by zero.
# This *needs* to be done, so that we can train with DDP
# As due to the random training process some of the weights are not used in the forward pass
# That is unacceptable for the for the c10 backend and the training errors out.
# Maybe there is a better fix in the future, see:
# https://github.com/pytorch/pytorch/issues/43259
ddp_fix = sum(p.sum() for p in self.parameters())
zero_sum = ddp_fix * 0.0
self.last_loss = tmp_last_loss + zero_sum
else:
# inference-time mini-optimization: only forward the output on the very last position
logits = self.output(
h[:, [-1], :]
) # note: using list [-1] to preserve the time dim
self.last_loss = None
return logits
def _add_context_to_seq(self, tokens, context, fragment, bsz, device):
h = self.tok_embeddings(tokens)
h = self.dropout(h)
if fragment is not None:
fragment_type_enc = torch.zeros_like(
fragment, dtype=torch.long, device=device
)
h = torch.concat(
(
self.tok_embeddings(fragment)
+ self.frag_embeddings(fragment)
+ self.frag_type_embedding(fragment_type_enc),
h,
),
dim=1,
)
if context is not None and len(context) != 0:
# context is a dictionary with key : context_tensor of shape (batch_size, context_dim)
type_ids = []
context_vals = []
for emb_key, context_val in context.items():
emb_context_val = self.conditions_embeddings_lookup[emb_key](
context_val.unsqueeze(1).to(device)
).unsqueeze(1)
context_vals.append(emb_context_val)
type_ids_tensor = torch.tensor(
[self.context_lookup[emb_key]], device=device, dtype=torch.long
)
type_ids.append(type_ids_tensor)
context_types = (
torch.concat(type_ids, dim=0).reshape(-1, 1).expand(-1, bsz).T
)
# shape(len(context),batch_size, emb_size)
context_types = self.conditions_type_embeddings(context_types)
context_vals = torch.concat(context_vals, dim=1).to(device)
# SHAPE
h = torch.concat([context_vals + context_types, h], dim=1)
return h
def configure_optimizers(self, weight_decay, learning_rate, betas, device_type):
# start with all of the candidate parameters
param_dict = {pn: p for pn, p in self.named_parameters()}
# filter out those that do not require grad
param_dict = {pn: p for pn, p in param_dict.items() if p.requires_grad}
# create optim groups. Any parameters that is 2D will be weight decayed, otherwise no.
# i.e. all weight tensors in matmuls + embeddings decay, all biases and layernorms don't.
decay_params = [p for n, p in param_dict.items() if p.dim() >= 2]
nodecay_params = [p for n, p in param_dict.items() if p.dim() < 2]
optim_groups = [
{"params": decay_params, "weight_decay": weight_decay},
{"params": nodecay_params, "weight_decay": 0.0},
]
num_decay_params = sum(p.numel() for p in decay_params)
num_nodecay_params = sum(p.numel() for p in nodecay_params)
print(
f"num decayed parameter tensors: {len(decay_params)}, with {num_decay_params:,} parameters"
)
print(
f"num non-decayed parameter tensors: {len(nodecay_params)}, with {num_nodecay_params:,} parameters"
)
# Create AdamW optimizer and use the fused version if it is available
fused_available = "fused" in inspect.signature(torch.optim.AdamW).parameters
use_fused = fused_available and device_type == "cuda"
extra_args = dict(fused=True) if use_fused else dict()
optimizer = torch.optim.AdamW(
optim_groups, lr=learning_rate, betas=betas, **extra_args
)
print(f"using fused AdamW: {use_fused}")
return optimizer
def estimate_mfu(self, fwdbwd_per_iter, dt):
"""estimate model flops utilization (MFU) in units of A100 bfloat16 peak FLOPS"""
# first estimate the number of flops we do per iteration.
# see PaLM paper Appendix B as ref: https://arxiv.org/abs/2204.02311
N = sum(p.numel() for p in self.parameters())
cfg = self.params
L, H, Q, T = cfg.n_layers, cfg.n_heads, cfg.dim // cfg.n_heads, cfg.max_seq_len
flops_per_token = 6 * N + 12 * L * H * Q * T
flops_per_fwdbwd = flops_per_token * T
flops_per_iter = flops_per_fwdbwd * fwdbwd_per_iter
# express our flops throughput as ratio of A100 bfloat16 peak flops
flops_achieved = flops_per_iter * (1.0 / dt) # per second
flops_promised = 312e12 # A100 GPU bfloat16 peak flops is 312 TFLOPS
mfu = flops_achieved / flops_promised
return mfu
@torch.inference_mode()
def generate(
self,
tokenizer: SmilesTokenizer,
context: Union[torch.Tensor, None] = None,
fragments: Union[torch.Tensor, None] = None,
max_length: int = 50,
num_gen: int = 200,
start_smiles: Union[str, None] = None,
temperature: float = 1.0,
top_k: Union[int, None] = None,
device: torch.device = torch.device("cpu"),
cache_kv: bool = False,
) -> List[str]:
batch_size = num_gen
if start_smiles is not None:
tokenized_start_selfie = tokenizer.encode(start_smiles)[
:-1
] # remove <eos> token
tokenized_start_selfie = torch.tensor(
tokenized_start_selfie, device=device, dtype=torch.long
).view(-1, 1)
tokenized_start_selfie = tokenized_start_selfie.repeat(1, batch_size)
outputs = tokenized_start_selfie.T
else:
outputs = (
torch.LongTensor([[tokenizer.cls_token_id] * batch_size]).to(device)
).T # batch_size
self.eval()
start_len = outputs.shape[1]
has_end_idx = np.array([0] * batch_size)
cache_id = np.random.randint(0, int(1e10), 1).item()
with torch.no_grad():
with tqdm(total=max_length, desc="Generation") as pbar:
for i in range(start_len, max_length):
# trg_tensor = #torch.LongTensor(outputs).to(model.device)
if not cache_kv:
logits = self(outputs, context=context, fragment=fragments)
else:
# logits_ = self(outputs, context=context, fragment=fragments)
if i == start_len:
# When starting pass the whole input, so that "start_smiles" works, then only the newly generated token, because of the cache
func_input = outputs
else:
func_input = outputs[:, -1].unsqueeze(-1)
logits = self.forward_with_kvcache(
func_input,
context=context,
fragment=fragments,
cache_id=cache_id,
pos_seq_len=outputs.size(-1),
)
# raise NotImplementedError("Currently not working / right implemented")
# logits = self.forward_with_kvcache(outputs, context=context, fragment=fragments,cache_id = cache_id)
logits = logits[:, -1, :] # crop to just the final time step
if temperature == 0.0:
# "sample" the single most likely index
_, logits = torch.topk(logits, k=1, dim=-1)
else:
# pluck the logits at the final step and scale by desired temperature
logits = logits / temperature
# optionally crop the logits to only the top k options
if top_k is not None:
v, _ = torch.topk(logits, min(top_k, logits.size(-1)))
logits[logits < v[:, [-1]]] = -float("Inf")
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
ended_sentences = idx_next == tokenizer.sep_token_id
if torch.count_nonzero(ended_sentences) != 0:
indicies = torch.nonzero(ended_sentences)
indicies = indicies.cpu().numpy()
for end_idx in indicies[:, 0]:
if has_end_idx[end_idx] == 0:
has_end_idx[end_idx] = i
# print(has_end_idx)
if all([idx != 0 for idx in has_end_idx]):
break
# outputs.append(best_guesses)
# outputs = torch.row_stack((outputs, idx_next))
outputs = torch.cat((outputs, idx_next), dim=1)
pbar.update(1)
out_selfies = []
for output, end_idx in zip(outputs.cpu().numpy(), has_end_idx):
# Incase of limiting the max_len
if end_idx == 0:
selfie = [tokenizer._convert_id_to_token(idx) for idx in output[:]]
else:
selfie = [
tokenizer._convert_id_to_token(idx) for idx in output[:end_idx]
]
selfie = "".join(selfie[1:])
out_selfies.append(selfie)
# for indicies in outputs:
# translated_sentence = [tokenizer.idx_to_tokens[idx] for idx in outputs]
# remove start token
return out_selfies
@staticmethod
def load(path, device: torch.device = torch.device("cpu")) -> Transformer:
data = torch.load(path, map_location=device)
newinstace = Transformer(data["model_params"], data["context_params"])
newinstace.load_state_dict(data["state_dict"])
return newinstace.to(device)
def save(self, filepath):
torch.save(
{
"state_dict": self.state_dict(),
**dict(model_params=self.params, context_params=self.context_params),
},
filepath,
)
def getNumberTrainableParams(self) -> int:
return sum(p.numel() for p in self.parameters() if p.requires_grad)
def getNumberParams(self) -> int:
return sum(p.numel() for p in self.parameters())
if __name__ == "__main__":
m = Transformer(
ModelArgs(dim=128, n_layers=8, n_heads=8, vocab_size=512, max_seq_len=1024),
context_params=ContextArgs(
context_keys=["logp", "sascore", "mol_weight"], context_dims=[1, 1, 1]
),
)
seq = torch.ones((128, 50), dtype=torch.long)
frag = torch.ones((128, 10), dtype=torch.long)
context = {
"logp": torch.ones((128,), dtype=torch.float32),
# "sascore": torch.ones((128,), dtype=torch.float32),
"mol_weight": torch.ones((128,), dtype=torch.float32),
}
print(m.forward(seq, targets=seq, context=context, fragment=frag))