dmusingu's picture
End of training
ad8f731 verified
metadata
language:
  - sw
license: apache-2.0
base_model: openai/whisper-large
tags:
  - hf-asr-leaderboard
  - generated_from_trainer
datasets:
  - mozilla-foundation/common_voice_14_0
metrics:
  - wer
model-index:
  - name: Whisper Large  - Denis Musinguzi
    results:
      - task:
          name: Automatic Speech Recognition
          type: automatic-speech-recognition
        dataset:
          name: Common Voice 14.0
          type: mozilla-foundation/common_voice_14_0
          config: lg
          split: None
          args: 'config: sw, split: test'
        metrics:
          - name: Wer
            type: wer
            value: 0.24669449134992194

Whisper Large - Denis Musinguzi

This model is a fine-tuned version of openai/whisper-large on the Common Voice 14.0 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.2966
  • Wer: 0.2467
  • Cer: 0.0700

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • gradient_accumulation_steps: 2
  • total_train_batch_size: 32
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_steps: 500
  • training_steps: 10000
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Cer Validation Loss Wer
0.6329 0.61 1600 0.0878 0.3515 0.3385
0.2241 1.22 3200 0.0589 0.3045 0.2517
0.1618 1.82 4800 0.0707 0.2801 0.2645
0.1109 2.43 6400 0.0774 0.2870 0.2580
0.0837 3.04 8000 0.0597 0.2900 0.2333
0.045 3.65 9600 0.2966 0.2467 0.0700

Framework versions

  • Transformers 4.38.1
  • Pytorch 2.2.1
  • Datasets 2.17.0
  • Tokenizers 0.15.2