|
--- |
|
license: mit |
|
base_model: xlnet-base-cased |
|
tags: |
|
- generated_from_keras_callback |
|
- sentiment analysis |
|
widget: |
|
- text: product quality is good. affordable prices and very fast delivery. |
|
model-index: |
|
- name: dipawidia/xlnet-base-cased-product-review-sentiment-analysis |
|
results: [] |
|
language: |
|
- en |
|
metrics: |
|
- accuracy |
|
library_name: transformers |
|
--- |
|
|
|
<!-- This model card has been generated automatically according to the information Keras had access to. You should |
|
probably proofread and complete it, then remove this comment. --> |
|
|
|
# dipawidia/xlnet-base-cased-product-review-sentiment-analysis |
|
|
|
This model is a fine-tuned version of [xlnet-base-cased](https://huggingface.co/xlnet-base-cased) on any type of product reviews dataset gathered from several e-commerce such as shopee, tokopedia, blibli, lazada, and zalora. |
|
It achieves the following results on the evaluation set: |
|
- Train Loss: 0.1085 |
|
- Train Accuracy: 0.9617 |
|
- Validation Loss: 0.1910 |
|
- Validation Accuracy: 0.9414 |
|
- Epoch: 4 |
|
|
|
## Intended uses & limitations |
|
|
|
This fine-tuned XLNet model is used for sentiment analysis with 2 labels text classification: 0 -> Negative; 1 -> Positive. |
|
|
|
### Example Pipeline |
|
```python |
|
from transformers import pipeline |
|
pipe = pipeline("text-classification", model="dipawidia/xlnet-base-cased-product-review-sentiment-analysis") |
|
pipe("This shoes is awesome") |
|
``` |
|
``` |
|
[{'label': 'Positive', 'score': 0.9995703101158142}] |
|
``` |
|
|
|
### Full classification example |
|
|
|
```python |
|
from transformers import XLNetTokenizer, TFXLNetForSequenceClassification |
|
import tensorflow as tf |
|
import numpy as np |
|
|
|
tokenizer = XLNetTokenizer.from_pretrained("dipawidia/xlnet-base-cased-product-review-sentiment-analysis") |
|
model = TFXLNetForSequenceClassification.from_pretrained("dipawidia/xlnet-base-cased-product-review-sentiment-analysis") |
|
|
|
def get_sentimen(text): |
|
tokenize_text = tokenizer(text, return_tensors = 'tf') |
|
preds = model.predict(dict(tokenize_text))['logits'] |
|
class_preds = np.argmax(tf.keras.layers.Softmax()(preds)) |
|
if class_preds == 1: |
|
label = 'Positive' |
|
else: |
|
label = 'Negative' |
|
return(label) |
|
|
|
get_sentimen('i hate this product') |
|
``` |
|
|
|
Output: |
|
|
|
``` |
|
Negative |
|
``` |
|
|
|
## Training and evaluation data |
|
|
|
More information needed |
|
|
|
## Training procedure |
|
|
|
### Training hyperparameters |
|
|
|
The following hyperparameters were used during training: |
|
- optimizer: {'name': 'AdamW', 'weight_decay': 0.004, 'clipnorm': None, 'global_clipnorm': None, 'clipvalue': None, 'use_ema': False, 'ema_momentum': 0.99, 'ema_overwrite_frequency': None, 'jit_compile': True, 'is_legacy_optimizer': False, 'learning_rate': 3e-05, 'beta_1': 0.9, 'beta_2': 0.999, 'epsilon': 1e-07, 'amsgrad': False} |
|
- training_precision: float32 |
|
|
|
### Training results |
|
|
|
| Train Loss | Train Accuracy | Validation Loss | Validation Accuracy | Epoch | |
|
|:----------:|:--------------:|:---------------:|:-------------------:|:-----:| |
|
| 0.3417 | 0.8491 | 0.1568 | 0.9449 | 0 | |
|
| 0.1943 | 0.9235 | 0.1504 | 0.9466 | 1 | |
|
| 0.1569 | 0.9404 | 0.1612 | 0.9466 | 2 | |
|
| 0.1238 | 0.9572 | 0.1748 | 0.9475 | 3 | |
|
| 0.1085 | 0.9617 | 0.1910 | 0.9414 | 4 | |
|
|
|
|
|
### Framework versions |
|
|
|
- Transformers 4.41.2 |
|
- TensorFlow 2.15.0 |
|
- Tokenizers 0.19.1 |