language: en
license: cc-by-4.0
tags:
- deberta
- deberta-v3
- deberta-v3-large
datasets:
- squad_v2
model-index:
- name: deepset/deberta-v3-large-squad2
results:
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_v2
type: squad_v2
config: squad_v2
split: validation
metrics:
- type: exact_match
value: 88.0876
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZmE0MWEwNjBkNTA1MmU0ZDkyYTA1OGEwNzY3NGE4NWU4NGI0NTQzNjRlNjY1NGRmNDU2MjA0NjU1N2JlZmNhYiIsInZlcnNpb24iOjF9.PnBF_vD0HujNBSShGJzsJnjmiBP_qT8xb2E7ORmpKfNspKXEuN_pBk9iV0IHRzdqOSyllcxlCv93XMPblNjWDw
- type: f1
value: 91.1623
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZDBkNDUzZmNkNDQwOGRkMmVlZjkxZWVlMzk3NzFmMGIxMTFmMjZlZDcyOWFiMjljNjM5MThlZDM4OWRmNzMwOCIsInZlcnNpb24iOjF9.bacyetziNI2DxO67GWpTyeRPXqF1POkyv00wEHXlyZu71pZngsNpZyrnuj2aJlCqQwHGnF_lT2ysaXKHprQRBg
- task:
type: question-answering
name: Question Answering
dataset:
name: squad
type: squad
config: plain_text
split: validation
metrics:
- type: exact_match
value: 89.2366
name: Exact Match
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMjQ1Yjk3YTdiYTY1NmYxMTI1ZGZlMjRkNTlhZTkyNjRkNjgxYWJiNDk2NzE3NjAyYmY3YmRjNjg4YmEyNDkyYyIsInZlcnNpb24iOjF9.SEWyqX_FPQJOJt2KjOCNgQ2giyVeLj5bmLI5LT_Pfo33tbWPWD09TySYdsthaVTjUGT5DvDzQLASSwBH05FyBw
- type: f1
value: 95.0569
name: F1
verified: true
verifyToken: >-
eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiY2QyODQ1NWVlYjQxMjA0YTgyNmQ2NmIxOWY3MDRmZjE3ZWI5Yjc4ZDE4NzA2YjE2YTE1YTBlNzNiYmNmNzI3NCIsInZlcnNpb24iOjF9.NcXEc9xoggV76w1bQKxuJDYbOTxFzdny2k-85_b6AIMtfpYV3rGR1Z5YF6tVY2jyp7mgm5Jd5YSgGI3NvNE-CQ
- task:
type: question-answering
name: Question Answering
dataset:
name: adversarial_qa
type: adversarial_qa
config: adversarialQA
split: validation
metrics:
- type: exact_match
value: 42.1
name: Exact Match
- type: f1
value: 56.587
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squad_adversarial
type: squad_adversarial
config: AddOneSent
split: validation
metrics:
- type: exact_match
value: 83.548
name: Exact Match
- type: f1
value: 89.385
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts amazon
type: squadshifts
config: amazon
split: test
metrics:
- type: exact_match
value: 72.979
name: Exact Match
- type: f1
value: 87.254
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts new_wiki
type: squadshifts
config: new_wiki
split: test
metrics:
- type: exact_match
value: 83.938
name: Exact Match
- type: f1
value: 92.695
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts nyt
type: squadshifts
config: nyt
split: test
metrics:
- type: exact_match
value: 85.534
name: Exact Match
- type: f1
value: 93.153
name: F1
- task:
type: question-answering
name: Question Answering
dataset:
name: squadshifts reddit
type: squadshifts
config: reddit
split: test
metrics:
- type: exact_match
value: 73.284
name: Exact Match
- type: f1
value: 85.307
name: F1
deberta-v3-large for Extractive QA
This is the deberta-v3-large model, fine-tuned using the SQuAD2.0 dataset. It's been trained on question-answer pairs, including unanswerable questions, for the task of Extractive Question Answering.
Overview
Language model: deberta-v3-large
Language: English
Downstream-task: Extractive QA
Training data: SQuAD 2.0
Eval data: SQuAD 2.0
Code: See an example extractive QA pipeline built with Haystack
Infrastructure: 1x NVIDIA A10G
Hyperparameters
batch_size = 2
grad_acc_steps = 32
n_epochs = 6
base_LM_model = "microsoft/deberta-v3-large"
max_seq_len = 512
learning_rate = 7e-6
lr_schedule = LinearWarmup
warmup_proportion = 0.2
doc_stride=128
max_query_length=64
Usage
In Haystack
Haystack is an AI orchestration framework to build customizable, production-ready LLM applications. You can use this model in Haystack to do extractive question answering on documents. To load and run the model with Haystack:
# After running pip install haystack-ai "transformers[torch,sentencepiece]"
from haystack import Document
from haystack.components.readers import ExtractiveReader
docs = [
Document(content="Python is a popular programming language"),
Document(content="python ist eine beliebte Programmiersprache"),
]
reader = ExtractiveReader(model="deepset/deberta-v3-large-squad2")
reader.warm_up()
question = "What is a popular programming language?"
result = reader.run(query=question, documents=docs)
# {'answers': [ExtractedAnswer(query='What is a popular programming language?', score=0.5740374326705933, data='python', document=Document(id=..., content: '...'), context=None, document_offset=ExtractedAnswer.Span(start=0, end=6),...)]}
For a complete example with an extractive question answering pipeline that scales over many documents, check out the corresponding Haystack tutorial.
In Transformers
from transformers import AutoModelForQuestionAnswering, AutoTokenizer, pipeline
model_name = "deepset/deberta-v3-large-squad2"
# a) Get predictions
nlp = pipeline('question-answering', model=model_name, tokenizer=model_name)
QA_input = {
'question': 'Why is model conversion important?',
'context': 'The option to convert models between FARM and transformers gives freedom to the user and let people easily switch between frameworks.'
}
res = nlp(QA_input)
# b) Load model & tokenizer
model = AutoModelForQuestionAnswering.from_pretrained(model_name)
tokenizer = AutoTokenizer.from_pretrained(model_name)
Performance
Evaluated on the SQuAD 2.0 dev set with the official eval script.
"exact": 87.6105449338836,
"f1": 90.75307008866517,
"total": 11873,
"HasAns_exact": 84.37921727395411,
"HasAns_f1": 90.6732795483674,
"HasAns_total": 5928,
"NoAns_exact": 90.83263246425568,
"NoAns_f1": 90.83263246425568,
"NoAns_total": 5945
About us
deepset is the company behind the production-ready open-source AI framework Haystack.
Some of our other work:
- Distilled roberta-base-squad2 (aka "tinyroberta-squad2")
- German BERT, GermanQuAD and GermanDPR, German embedding model
- deepset Cloud, deepset Studio
Get in touch and join the Haystack community
For more info on Haystack, visit our GitHub repo and Documentation.
We also have a Discord community open to everyone!
Twitter | LinkedIn | Discord | GitHub Discussions | Website | YouTube
By the way: we're hiring!