arxiv_id
stringlengths
10
10
published
stringlengths
20
20
titles
stringlengths
9
243
authors
sequencelengths
1
389
abstract
stringlengths
96
3.09k
categories
sequencelengths
1
10
selected
bool
2 classes
2305.04658
2023-05-08T12:21:24Z
CSGCL: Community-Strength-Enhanced Graph Contrastive Learning
[ "Han Chen", "Ziwen Zhao", "Yuhua Li", "Yixiong Zou", "Ruixuan Li", "Rui Zhang" ]
Graph Contrastive Learning (GCL) is an effective way to learn generalized graph representations in a self-supervised manner, and has grown rapidly in recent years. However, the underlying community semantics has not been well explored by most previous GCL methods. Research that attempts to leverage communities in GCL regards them as having the same influence on the graph, leading to extra representation errors. To tackle this issue, we define ''community strength'' to measure the difference of influence among communities. Under this premise, we propose a Community-Strength-enhanced Graph Contrastive Learning (CSGCL) framework to preserve community strength throughout the learning process. Firstly, we present two novel graph augmentation methods, Communal Attribute Voting (CAV) and Communal Edge Dropping (CED), where the perturbations of node attributes and edges are guided by community strength. Secondly, we propose a dynamic ''Team-up'' contrastive learning scheme, where community strength is used to progressively fine-tune the contrastive objective. We report extensive experiment results on three downstream tasks: node classification, node clustering, and link prediction. CSGCL achieves state-of-the-art performance compared with other GCL methods, validating that community strength brings effectiveness and generality to graph representations. Our code is available at https://github.com/HanChen-HUST/CSGCL.
[ "cs.SI", "cs.AI", "cs.LG" ]
false
2305.04692
2023-05-08T13:22:16Z
Anticipatory Planning: Improving Long-Lived Planning by Estimating Expected Cost of Future Tasks
[ "Roshan Dhakal", "Md Ridwan Hossain Talukder", "Gregory J. Stein" ]
We consider a service robot in a household environment given a sequence of high-level tasks one at a time. Most existing task planners, lacking knowledge of what they may be asked to do next, solve each task in isolation and so may unwittingly introduce side effects that make subsequent tasks more costly. In order to reduce the overall cost of completing all tasks, we consider that the robot must anticipate the impact its actions could have on future tasks. Thus, we propose anticipatory planning: an approach in which estimates of the expected future cost, from a graph neural network, augment model-based task planning. Our approach guides the robot towards behaviors that encourage preparation and organization, reducing overall costs in long-lived planning scenarios. We evaluate our method on blockworld environments and show that our approach reduces the overall planning costs by 5% as compared to planning without anticipatory planning. Additionally, if given an opportunity to prepare the environment in advance (a special case of anticipatory planning), our planner improves overall cost by 11%.
[ "cs.RO", "cs.AI", "cs.LG" ]
false
2305.04750
2023-05-08T14:49:02Z
Sense, Imagine, Act: Multimodal Perception Improves Model-Based Reinforcement Learning for Head-to-Head Autonomous Racing
[ "Elena Shrestha", "Chetan Reddy", "Hanxi Wan", "Yulun Zhuang", "Ram Vasudevan" ]
Model-based reinforcement learning (MBRL) techniques have recently yielded promising results for real-world autonomous racing using high-dimensional observations. MBRL agents, such as Dreamer, solve long-horizon tasks by building a world model and planning actions by latent imagination. This approach involves explicitly learning a model of the system dynamics and using it to learn the optimal policy for continuous control over multiple timesteps. As a result, MBRL agents may converge to sub-optimal policies if the world model is inaccurate. To improve state estimation for autonomous racing, this paper proposes a self-supervised sensor fusion technique that combines egocentric LiDAR and RGB camera observations collected from the F1TENTH Gym. The zero-shot performance of MBRL agents is empirically evaluated on unseen tracks and against a dynamic obstacle. This paper illustrates that multimodal perception improves robustness of the world model without requiring additional training data. The resulting multimodal Dreamer agent safely avoided collisions and won the most races compared to other tested baselines in zero-shot head-to-head autonomous racing.
[ "cs.RO", "cs.AI", "cs.LG" ]
false
2305.04819
2023-05-08T16:20:03Z
Local Optimization Achieves Global Optimality in Multi-Agent Reinforcement Learning
[ "Yulai Zhao", "Zhuoran Yang", "Zhaoran Wang", "Jason D. Lee" ]
Policy optimization methods with function approximation are widely used in multi-agent reinforcement learning. However, it remains elusive how to design such algorithms with statistical guarantees. Leveraging a multi-agent performance difference lemma that characterizes the landscape of multi-agent policy optimization, we find that the localized action value function serves as an ideal descent direction for each local policy. Motivated by the observation, we present a multi-agent PPO algorithm in which the local policy of each agent is updated similarly to vanilla PPO. We prove that with standard regularity conditions on the Markov game and problem-dependent quantities, our algorithm converges to the globally optimal policy at a sublinear rate. We extend our algorithm to the off-policy setting and introduce pessimism to policy evaluation, which aligns with experiments. To our knowledge, this is the first provably convergent multi-agent PPO algorithm in cooperative Markov games.
[ "cs.LG", "cs.GT", "cs.MA", "stat.ML" ]
false
2305.04979
2023-05-08T18:21:41Z
FedHB: Hierarchical Bayesian Federated Learning
[ "Minyoung Kim", "Timothy Hospedales" ]
We propose a novel hierarchical Bayesian approach to Federated Learning (FL), where our model reasonably describes the generative process of clients' local data via hierarchical Bayesian modeling: constituting random variables of local models for clients that are governed by a higher-level global variate. Interestingly, the variational inference in our Bayesian model leads to an optimisation problem whose block-coordinate descent solution becomes a distributed algorithm that is separable over clients and allows them not to reveal their own private data at all, thus fully compatible with FL. We also highlight that our block-coordinate algorithm has particular forms that subsume the well-known FL algorithms including Fed-Avg and Fed-Prox as special cases. Beyond introducing novel modeling and derivations, we also offer convergence analysis showing that our block-coordinate FL algorithm converges to an (local) optimum of the objective at the rate of $O(1/\sqrt{t})$, the same rate as regular (centralised) SGD, as well as the generalisation error analysis where we prove that the test error of our model on unseen data is guaranteed to vanish as we increase the training data size, thus asymptotically optimal.
[ "cs.LG", "cs.DC", "stat.ML" ]
false
2305.05078
2023-05-08T22:37:16Z
SECRETS: Subject-Efficient Clinical Randomized Controlled Trials using Synthetic Intervention
[ "Sayeri Lala", "Niraj K. Jha" ]
The randomized controlled trial (RCT) is the gold standard for estimating the average treatment effect (ATE) of a medical intervention but requires 100s-1000s of subjects, making it expensive and difficult to implement. While a cross-over trial can reduce sample size requirements by measuring the treatment effect per individual, it is only applicable to chronic conditions and interventions whose effects dissipate rapidly. Another approach is to replace or augment data collected from an RCT with external data from prospective studies or prior RCTs, but it is vulnerable to confounders in the external or augmented data. We propose to simulate the cross-over trial to overcome its practical limitations while exploiting its strengths. We propose a novel framework, SECRETS, which, for the first time, estimates the individual treatment effect (ITE) per patient in the RCT study without using any external data by leveraging a state-of-the-art counterfactual estimation algorithm, called synthetic intervention. It also uses a new hypothesis testing strategy to determine whether the treatment has a clinically significant ATE based on the estimated ITEs. We show that SECRETS can improve the power of an RCT while maintaining comparable significance levels; in particular, on three real-world clinical RCTs (Phase-3 trials), SECRETS increases power over the baseline method by $\boldsymbol{6}$-$\boldsymbol{54\%}$ (average: 21.5%, standard deviation: 15.8%).
[ "eess.SP", "cs.LG", "stat.AP", "stat.ME" ]
false
2305.05090
2023-05-08T23:29:24Z
Performative Federated Learning: A Solution to Model-Dependent and Heterogeneous Distribution Shifts
[ "Kun Jin", "Tongxin Yin", "Zhongzhu Chen", "Zeyu Sun", "Xueru Zhang", "Yang Liu", "Mingyan Liu" ]
We consider a federated learning (FL) system consisting of multiple clients and a server, where the clients aim to collaboratively learn a common decision model from their distributed data. Unlike the conventional FL framework that assumes the client's data is static, we consider scenarios where the clients' data distributions may be reshaped by the deployed decision model. In this work, we leverage the idea of distribution shift mappings in performative prediction to formalize this model-dependent data distribution shift and propose a performative federated learning framework. We first introduce necessary and sufficient conditions for the existence of a unique performative stable solution and characterize its distance to the performative optimal solution. Then we propose the performative FedAvg algorithm and show that it converges to the performative stable solution at a rate of O(1/T) under both full and partial participation schemes. In particular, we use novel proof techniques and show how the clients' heterogeneity influences the convergence. Numerical results validate our analysis and provide valuable insights into real-world applications.
[ "cs.LG", "cs.DC", "math.OC" ]
false
2305.05525
2023-05-08T08:30:05Z
Exploring a Gradient-based Explainable AI Technique for Time-Series Data: A Case Study of Assessing Stroke Rehabilitation Exercises
[ "Min Hun Lee", "Yi Jing Choy" ]
Explainable artificial intelligence (AI) techniques are increasingly being explored to provide insights into why AI and machine learning (ML) models provide a certain outcome in various applications. However, there has been limited exploration of explainable AI techniques on time-series data, especially in the healthcare context. In this paper, we describe a threshold-based method that utilizes a weakly supervised model and a gradient-based explainable AI technique (i.e. saliency map) and explore its feasibility to identify salient frames of time-series data. Using the dataset from 15 post-stroke survivors performing three upper-limb exercises and labels on whether a compensatory motion is observed or not, we implemented a feed-forward neural network model and utilized gradients of each input on model outcomes to identify salient frames that involve compensatory motions. According to the evaluation using frame-level annotations, our approach achieved a recall of 0.96 and an F2-score of 0.91. Our results demonstrated the potential of a gradient-based explainable AI technique (e.g. saliency map) for time-series data, such as highlighting the frames of a video that therapists should focus on reviewing and reducing the efforts on frame-level labeling for model training.
[ "cs.LG", "cs.AI", "cs.HC" ]
false
2305.05531
2023-05-08T17:30:24Z
Modelling Concurrency Bugs Using Machine Learning
[ "Teodor Rares Begu" ]
Artificial Intelligence has gained a lot of traction in the recent years, with machine learning notably starting to see more applications across a varied range of fields. One specific machine learning application that is of interest to us is that of software safety and security, especially in the context of parallel programs. The issue of being able to detect concurrency bugs automatically has intrigued programmers for a long time, as the added layer of complexity makes concurrent programs more prone to failure. The development of such automatic detection tools provides considerable benefits to programmers in terms of saving time while debugging, as well as reducing the number of unexpected bugs. We believe machine learning may help achieve this goal by providing additional advantages over current approaches, in terms of both overall tool accuracy as well as programming language flexibility. However, due to the presence of numerous challenges specific to the machine learning approach (correctly labelling a sufficiently large dataset, finding the best model types/architectures and so forth), we have to approach each issue of developing such a tool separately. Therefore, the focus of this project is on comparing both common and recent machine learning approaches. We abstract away the complexity of procuring a labelled dataset of concurrent programs under the form of a synthetic dataset that we define and generate with the scope of simulating real-life (concurrent) programs. We formulate hypotheses about fundamental limits of various machine learning model types which we then validate by running extensive tests on our synthetic dataset. We hope that our findings provide more insight in the advantages and disadvantages of various model types when modelling programs using machine learning, as well as any other related field (e.g. NLP).
[ "cs.SE", "cs.LG", "cs.PL" ]
false
2305.09673
2023-05-08T22:12:34Z
Vulnerability Detection Using Two-Stage Deep Learning Models
[ "Mohamed Mjd Alhafi", "Mohammad Hammade", "Khloud Al Jallad" ]
Application security is an essential part of developing modern software, as lots of attacks depend on vulnerabilities in software. The number of attacks is increasing globally due to technological advancements. Companies must include security in every stage of developing, testing, and deploying their software in order to prevent data breaches. There are several methods to detect software vulnerability Non-AI-based such as Static Application Security Testing (SAST) and Dynamic Application Security Testing (DAST). However, these approaches have substantial false-positive and false-negative rates. On the other side, researchers have been interested in developing an AI-based vulnerability detection system employing deep learning models like BERT, BLSTM, etc. In this paper, we proposed a two-stage solution, two deep learning models were proposed for vulnerability detection in C/C++ source codes, the first stage is CNN which detects if the source code contains any vulnerability (binary classification model) and the second stage is CNN-LTSM that classifies this vulnerability into a class of 50 different types of vulnerabilities (multiclass classification model). Experiments were done on SySeVR dataset. Results show an accuracy of 99% for the first and 98% for the second stage.
[ "cs.CR", "cs.AI", "cs.LG" ]
false
2305.04630
2023-05-08T11:12:22Z
Federated Learning in Wireless Networks via Over-the-Air Computations
[ "Halil Yigit Oksuz", "Fabio Molinari", "Henning Sprekeler", "Jörg Raisch" ]
In a multi-agent system, agents can cooperatively learn a model from data by exchanging their estimated model parameters, without the need to exchange the locally available data used by the agents. This strategy, often called federated learning, is mainly employed for two reasons: (i) improving resource-efficiency by avoiding to share potentially large datasets and (ii) guaranteeing privacy of local agents' data. Efficiency can be further increased by adopting a beyond-5G communication strategy that goes under the name of Over-the-Air Computation. This strategy exploits the interference property of the wireless channel. Standard communication schemes prevent interference by enabling transmissions of signals from different agents at distinct time or frequency slots, which is not required with Over-the-Air Computation, thus saving resources. In this case, the received signal is a weighted sum of transmitted signals, with unknown weights (fading channel coefficients). State of the art papers in the field aim at reconstructing those unknown coefficients. In contrast, the approach presented here does not require reconstructing channel coefficients by complex encoding-decoding schemes. This improves both efficiency and privacy.
[ "cs.LG", "cs.CR", "cs.IT", "cs.MA", "math.IT" ]
false
2305.06884
2023-05-08T17:34:06Z
Risk-limiting Financial Audits via Weighted Sampling without Replacement
[ "Shubhanshu Shekhar", "Ziyu Xu", "Zachary C. Lipton", "Pierre J. Liang", "Aaditya Ramdas" ]
We introduce the notion of a risk-limiting financial auditing (RLFA): given $N$ transactions, the goal is to estimate the total misstated monetary fraction~($m^*$) to a given accuracy $\epsilon$, with confidence $1-\delta$. We do this by constructing new confidence sequences (CSs) for the weighted average of $N$ unknown values, based on samples drawn without replacement according to a (randomized) weighted sampling scheme. Using the idea of importance weighting to construct test martingales, we first develop a framework to construct CSs for arbitrary sampling strategies. Next, we develop methods to improve the quality of CSs by incorporating side information about the unknown values associated with each item. We show that when the side information is sufficiently predictive, it can directly drive the sampling. Addressing the case where the accuracy is unknown a priori, we introduce a method that incorporates side information via control variates. Crucially, our construction is adaptive: if the side information is highly predictive of the unknown misstated amounts, then the benefits of incorporating it are significant; but if the side information is uncorrelated, our methods learn to ignore it. Our methods recover state-of-the-art bounds for the special case when the weights are equal, which has already found applications in election auditing. The harder weighted case solves our more challenging problem of AI-assisted financial auditing.
[ "stat.ME", "cs.AI", "cs.LG", "math.ST", "stat.AP", "stat.ML", "stat.TH" ]
false
2305.05146
2023-05-09T03:18:35Z
A Mountain-Shaped Single-Stage Network for Accurate Image Restoration
[ "Hu Gao", "Jing Yang", "Ying Zhang", "Ning Wang", "Jingfan Yang", "Depeng Dang" ]
Image restoration is the task of aiming to obtain a high-quality image from a corrupt input image, such as deblurring and deraining. In image restoration, it is typically necessary to maintain a complex balance between spatial details and contextual information. Although a multi-stage network can optimally balance these competing goals and achieve significant performance, this also increases the system's complexity. In this paper, we propose a mountain-shaped single-stage design base on a simple U-Net architecture, which removes or replaces unnecessary nonlinear activation functions to achieve the above balance with low system complexity. Specifically, we propose a feature fusion middleware (FFM) mechanism as an information exchange component between the encoder-decoder architectural levels. It seamlessly integrates upper-layer information into the adjacent lower layer, sequentially down to the lowest layer. Finally, all information is fused into the original image resolution manipulation level. This preserves spatial details and integrates contextual information, ensuring high-quality image restoration. In addition, we propose a multi-head attention middle block (MHAMB) as a bridge between the encoder and decoder to capture more global information and surpass the limitations of the receptive field of CNNs. Extensive experiments demonstrate that our approach, named as M3SNet, outperforms previous state-of-the-art models while using less than half the computational costs, for several image restoration tasks, such as image deraining and deblurring.
[ "cs.CV" ]
false
2305.05154
2023-05-09T03:33:43Z
Multi-Granularity Denoising and Bidirectional Alignment for Weakly Supervised Semantic Segmentation
[ "Tao Chen", "Yazhou Yao", "Jinhui Tang" ]
Weakly supervised semantic segmentation (WSSS) models relying on class activation maps (CAMs) have achieved desirable performance comparing to the non-CAMs-based counterparts. However, to guarantee WSSS task feasible, we need to generate pseudo labels by expanding the seeds from CAMs which is complex and time-consuming, thus hindering the design of efficient end-to-end (single-stage) WSSS approaches. To tackle the above dilemma, we resort to the off-the-shelf and readily accessible saliency maps for directly obtaining pseudo labels given the image-level class labels. Nevertheless, the salient regions may contain noisy labels and cannot seamlessly fit the target objects, and saliency maps can only be approximated as pseudo labels for simple images containing single-class objects. As such, the achieved segmentation model with these simple images cannot generalize well to the complex images containing multi-class objects. To this end, we propose an end-to-end multi-granularity denoising and bidirectional alignment (MDBA) model, to alleviate the noisy label and multi-class generalization issues. Specifically, we propose the online noise filtering and progressive noise detection modules to tackle image-level and pixel-level noise, respectively. Moreover, a bidirectional alignment mechanism is proposed to reduce the data distribution gap at both input and output space with simple-to-complex image synthesis and complex-to-simple adversarial learning. MDBA can reach the mIoU of 69.5\% and 70.2\% on validation and test sets for the PASCAL VOC 2012 dataset. The source codes and models have been made available at \url{https://github.com/NUST-Machine-Intelligence-Laboratory/MDBA}.
[ "cs.CV" ]
false
2305.05161
2023-05-09T04:08:14Z
Child Palm-ID: Contactless Palmprint Recognition for Children
[ "Akash Godbole", "Steven A. Grosz", "Anil K. Jain" ]
Effective distribution of nutritional and healthcare aid for children, particularly infants and toddlers, in some of the least developed and most impoverished countries of the world, is a major problem due to the lack of reliable identification documents. Biometric authentication technology has been investigated to address child recognition in the absence of reliable ID documents. We present a mobile-based contactless palmprint recognition system, called Child Palm-ID, which meets the requirements of usability, hygiene, cost, and accuracy for child recognition. Using a contactless child palmprint database, Child-PalmDB1, consisting of 19,158 images from 1,020 unique palms (in the age range of 6 mos. to 48 mos.), we report a TAR=94.11% @ FAR=0.1%. The proposed Child Palm-ID system is also able to recognize adults, achieving a TAR=99.4% on the CASIA contactless palmprint database and a TAR=100% on the COEP contactless adult palmprint database, both @ FAR=0.1%. These accuracies are competitive with the SOTA provided by COTS systems. Despite these high accuracies, we show that the TAR for time-separated child-palmprints is only 78.1% @ FAR=0.1%.
[ "cs.CV" ]
false
2305.05175
2023-05-09T05:04:35Z
SRIL: Selective Regularization for Class-Incremental Learning
[ "Jisu Han", "Jaemin Na", "Wonjun Hwang" ]
Human intelligence gradually accepts new information and accumulates knowledge throughout the lifespan. However, deep learning models suffer from a catastrophic forgetting phenomenon, where they forget previous knowledge when acquiring new information. Class-Incremental Learning aims to create an integrated model that balances plasticity and stability to overcome this challenge. In this paper, we propose a selective regularization method that accepts new knowledge while maintaining previous knowledge. We first introduce an asymmetric feature distillation method for old and new classes inspired by cognitive science, using the gradient of classification and knowledge distillation losses to determine whether to perform pattern completion or pattern separation. We also propose a method to selectively interpolate the weight of the previous model for a balance between stability and plasticity, and we adjust whether to transfer through model confidence to ensure the performance of the previous class and enable exploratory learning. We validate the effectiveness of the proposed method, which surpasses the performance of existing methods through extensive experimental protocols using CIFAR-100, ImageNet-Subset, and ImageNet-Full.
[ "cs.CV" ]
false
2305.05177
2023-05-09T05:19:16Z
Hybrid Transformer and CNN Attention Network for Stereo Image Super-resolution
[ "Ming Cheng", "Haoyu Ma", "Qiufang Ma", "Xiaopeng Sun", "Weiqi Li", "Zhenyu Zhang", "Xuhan Sheng", "Shijie Zhao", "Junlin Li", "Li Zhang" ]
Multi-stage strategies are frequently employed in image restoration tasks. While transformer-based methods have exhibited high efficiency in single-image super-resolution tasks, they have not yet shown significant advantages over CNN-based methods in stereo super-resolution tasks. This can be attributed to two key factors: first, current single-image super-resolution transformers are unable to leverage the complementary stereo information during the process; second, the performance of transformers is typically reliant on sufficient data, which is absent in common stereo-image super-resolution algorithms. To address these issues, we propose a Hybrid Transformer and CNN Attention Network (HTCAN), which utilizes a transformer-based network for single-image enhancement and a CNN-based network for stereo information fusion. Furthermore, we employ a multi-patch training strategy and larger window sizes to activate more input pixels for super-resolution. We also revisit other advanced techniques, such as data augmentation, data ensemble, and model ensemble to reduce overfitting and data bias. Finally, our approach achieved a score of 23.90dB and emerged as the winner in Track 1 of the NTIRE 2023 Stereo Image Super-Resolution Challenge.
[ "cs.CV" ]
false
2305.05233
2023-05-09T07:49:21Z
DynamicKD: An Effective Knowledge Distillation via Dynamic Entropy Correction-Based Distillation for Gap Optimizing
[ "Songling Zhu", "Ronghua Shang", "Bo Yuan", "Weitong Zhang", "Yangyang Li", "Licheng Jiao" ]
The knowledge distillation uses a high-performance teacher network to guide the student network. However, the performance gap between the teacher and student networks can affect the student's training. This paper proposes a novel knowledge distillation algorithm based on dynamic entropy correction to reduce the gap by adjusting the student instead of the teacher. Firstly, the effect of changing the output entropy (short for output information entropy) in the student on the distillation loss is analyzed in theory. This paper shows that correcting the output entropy can reduce the gap. Then, a knowledge distillation algorithm based on dynamic entropy correction is created, which can correct the output entropy in real-time with an entropy controller updated dynamically by the distillation loss. The proposed algorithm is validated on the CIFAR100 and ImageNet. The comparison with various state-of-the-art distillation algorithms shows impressive results, especially in the experiment on the CIFAR100 regarding teacher-student pair resnet32x4-resnet8x4. The proposed algorithm raises 2.64 points over the traditional distillation algorithm and 0.87 points over the state-of-the-art algorithm CRD in classification accuracy, demonstrating its effectiveness and efficiency.
[ "cs.CV" ]
false
2305.05256
2023-05-09T08:25:49Z
Patch-DrosoNet: Classifying Image Partitions With Fly-Inspired Models For Lightweight Visual Place Recognition
[ "Bruno Arcanjo", "Bruno Ferrarini", "Michael Milford", "Klaus D. McDonald-Maier", "Shoaib Ehsan" ]
Visual place recognition (VPR) enables autonomous systems to localize themselves within an environment using image information. While Convolution Neural Networks (CNNs) currently dominate state-of-the-art VPR performance, their high computational requirements make them unsuitable for platforms with budget or size constraints. This has spurred the development of lightweight algorithms, such as DrosoNet, which employs a voting system based on multiple bio-inspired units. In this paper, we present a novel training approach for DrosoNet, wherein separate models are trained on distinct regions of a reference image, allowing them to specialize in the visual features of that specific section. Additionally, we introduce a convolutional-like prediction method, in which each DrosoNet unit generates a set of place predictions for each portion of the query image. These predictions are then combined using the previously introduced voting system. Our approach significantly improves upon the VPR performance of previous work while maintaining an extremely compact and lightweight algorithm, making it suitable for resource-constrained platforms.
[ "cs.CV" ]
false
2305.05260
2023-05-09T08:32:06Z
Guided Focal Stack Refinement Network for Light Field Salient Object Detection
[ "Bo Yuan", "Yao Jiang", "Keren Fu", "Qijun Zhao" ]
Light field salient object detection (SOD) is an emerging research direction attributed to the richness of light field data. However, most existing methods lack effective handling of focal stacks, therefore making the latter involved in a lot of interfering information and degrade the performance of SOD. To address this limitation, we propose to utilize multi-modal features to refine focal stacks in a guided manner, resulting in a novel guided focal stack refinement network called GFRNet. To this end, we propose a guided refinement and fusion module (GRFM) to refine focal stacks and aggregate multi-modal features. In GRFM, all-in-focus (AiF) and depth modalities are utilized to refine focal stacks separately, leading to two novel sub-modules for different modalities, namely AiF-based refinement module (ARM) and depth-based refinement module (DRM). Such refinement modules enhance structural and positional information of salient objects in focal stacks, and are able to improve SOD accuracy. Experimental results on four benchmark datasets demonstrate the superiority of our GFRNet model against 12 state-of-the-art models.
[ "cs.CV" ]
false
2305.05322
2023-05-09T10:16:43Z
TPS++: Attention-Enhanced Thin-Plate Spline for Scene Text Recognition
[ "Tianlun Zheng", "Zhineng Chen", "Jinfeng Bai", "Hongtao Xie", "Yu-Gang Jiang" ]
Text irregularities pose significant challenges to scene text recognizers. Thin-Plate Spline (TPS)-based rectification is widely regarded as an effective means to deal with them. Currently, the calculation of TPS transformation parameters purely depends on the quality of regressed text borders. It ignores the text content and often leads to unsatisfactory rectified results for severely distorted text. In this work, we introduce TPS++, an attention-enhanced TPS transformation that incorporates the attention mechanism to text rectification for the first time. TPS++ formulates the parameter calculation as a joint process of foreground control point regression and content-based attention score estimation, which is computed by a dedicated designed gated-attention block. TPS++ builds a more flexible content-aware rectifier, generating a natural text correction that is easier to read by the subsequent recognizer. Moreover, TPS++ shares the feature backbone with the recognizer in part and implements the rectification at feature-level rather than image-level, incurring only a small overhead in terms of parameters and inference time. Experiments on public benchmarks show that TPS++ consistently improves the recognition and achieves state-of-the-art accuracy. Meanwhile, it generalizes well on different backbones and recognizers. Code is at https://github.com/simplify23/TPS_PP.
[ "cs.CV" ]
false
2305.05490
2023-05-09T14:43:38Z
Real-time instance segmentation with polygons using an Intersection-over-Union loss
[ "Katia Jodogne-Del Litto", "Guillaume-Alexandre Bilodeau" ]
Predicting a binary mask for an object is more accurate but also more computationally expensive than a bounding box. Polygonal masks as developed in CenterPoly can be a good compromise. In this paper, we improve over CenterPoly by enhancing the classical regression L1 loss with a novel region-based loss and a novel order loss, as well as with a new training process for the vertices prediction head. Moreover, the previous methods that predict polygonal masks use different coordinate systems, but it is not clear if one is better than another, if we abstract the architecture requirement. We therefore investigate their impact on the prediction. We also use a new evaluation protocol with oracle predictions for the detection head, to further isolate the segmentation process and better compare the polygonal masks with binary masks. Our instance segmentation method is trained and tested with challenging datasets containing urban scenes, with a high density of road users. Experiments show, in particular, that using a combination of a regression loss and a region-based loss allows significant improvements on the Cityscapes and IDD test set compared to CenterPoly. Moreover the inference stage remains fast enough to reach real-time performance with an average of 0.045 s per frame for 2048$\times$1024 images on a single RTX 2070 GPU. The code is available $\href{https://github.com/KatiaJDL/CenterPoly-v2}{\text{here}}$.
[ "cs.CV" ]
false
2305.05523
2023-05-09T15:22:18Z
RMES: Real-Time Micro-Expression Spotting Using Phase From Riesz Pyramid
[ "Yini Fang", "Didan Deng", "Liang Wu", "Frederic Jumelle", "Bertram Shi" ]
Micro-expressions (MEs) are involuntary and subtle facial expressions that are thought to reveal feelings people are trying to hide. ME spotting detects the temporal intervals containing MEs in videos. Detecting such quick and subtle motions from long videos is difficult. Recent works leverage detailed facial motion representations, such as the optical flow, and deep learning models, leading to high computational complexity. To reduce computational complexity and achieve real-time operation, we propose RMES, a real-time ME spotting framework. We represent motion using phase computed by Riesz Pyramid, and feed this motion representation into a three-stream shallow CNN, which predicts the likelihood of each frame belonging to an ME. In comparison to optical flow, phase provides more localized motion estimates, which are essential for ME spotting, resulting in higher performance. Using phase also reduces the required computation of the ME spotting pipeline by 77.8%. Despite its relative simplicity and low computational complexity, our framework achieves state-of-the-art performance on two public datasets: CAS(ME)2 and SAMM Long Videos.
[ "cs.CV" ]
false
2305.05526
2023-05-09T15:25:45Z
EFE: End-to-end Frame-to-Gaze Estimation
[ "Haldun Balim", "Seonwook Park", "Xi Wang", "Xucong Zhang", "Otmar Hilliges" ]
Despite the recent development of learning-based gaze estimation methods, most methods require one or more eye or face region crops as inputs and produce a gaze direction vector as output. Cropping results in a higher resolution in the eye regions and having fewer confounding factors (such as clothing and hair) is believed to benefit the final model performance. However, this eye/face patch cropping process is expensive, erroneous, and implementation-specific for different methods. In this paper, we propose a frame-to-gaze network that directly predicts both 3D gaze origin and 3D gaze direction from the raw frame out of the camera without any face or eye cropping. Our method demonstrates that direct gaze regression from the raw downscaled frame, from FHD/HD to VGA/HVGA resolution, is possible despite the challenges of having very few pixels in the eye region. The proposed method achieves comparable results to state-of-the-art methods in Point-of-Gaze (PoG) estimation on three public gaze datasets: GazeCapture, MPIIFaceGaze, and EVE, and generalizes well to extreme camera view changes.
[ "cs.CV" ]
false
2305.05583
2023-05-09T16:18:18Z
Group Activity Recognition via Dynamic Composition and Interaction
[ "Youliang Zhang", "Zhuo Zhou", "Wenxuan Liu", "Danni Xu", "Zheng Wang" ]
Previous group activity recognition approaches were limited to reasoning using human relations or finding important subgroups and tended to ignore indispensable group composition and human-object interactions. This absence makes a partial interpretation of the scene and increases the interference of irrelevant actions on the results. Therefore, we propose our DynamicFormer with Dynamic composition Module (DcM) and Dynamic interaction Module (DiM) to model relations and locations of persons and discriminate the contribution of participants, respectively. Our findings on group composition and human-object interaction inspire our core idea. Group composition tells us the location of people and their relations inside the group, while interaction reflects the relation between humans and objects outside the group. We utilize spatial and temporal encoders in DcM to model our dynamic composition and build DiM to explore interaction with a novel GCN, which has a transformer inside to consider the temporal neighbors of human/object. Also, a Multi-level Dynamic Integration is employed to integrate features from different levels. We conduct extensive experiments on two public datasets and show that our method achieves state-of-the-art.
[ "cs.CV" ]
false
2305.05598
2023-05-09T16:46:33Z
Region-based Contrastive Pretraining for Medical Image Retrieval with Anatomic Query
[ "Ho Hin Lee", "Alberto Santamaria-Pang", "Jameson Merkow", "Ozan Oktay", "Fernando Pérez-García", "Javier Alvarez-Valle", "Ivan Tarapov" ]
We introduce a novel Region-based contrastive pretraining for Medical Image Retrieval (RegionMIR) that demonstrates the feasibility of medical image retrieval with similar anatomical regions. RegionMIR addresses two major challenges for medical image retrieval i) standardization of clinically relevant searching criteria (e.g., anatomical, pathology-based), and ii) localization of anatomical area of interests that are semantically meaningful. In this work, we propose an ROI image retrieval image network that retrieves images with similar anatomy by extracting anatomical features (via bounding boxes) and evaluate similarity between pairwise anatomy-categorized features between the query and the database of images using contrastive learning. ROI queries are encoded using a contrastive-pretrained encoder that was fine-tuned for anatomy classification, which generates an anatomical-specific latent space for region-correlated image retrieval. During retrieval, we compare the anatomically encoded query to find similar features within a feature database generated from training samples, and retrieve images with similar regions from training samples. We evaluate our approach on both anatomy classification and image retrieval tasks using the Chest ImaGenome Dataset. Our proposed strategy yields an improvement over state-of-the-art pretraining and co-training strategies, from 92.24 to 94.12 (2.03%) classification accuracy in anatomies. We qualitatively evaluate the image retrieval performance demonstrating generalizability across multiple anatomies with different morphology.
[ "cs.CV" ]
false
2305.05651
2023-05-09T17:49:27Z
SwinIA: Self-Supervised Blind-Spot Image Denoising with Zero Convolutions
[ "Mikhail Papkov", "Pavel Chizhov" ]
The essence of self-supervised image denoising is to restore the signal from the noisy image alone. State-of-the-art solutions for this task rely on the idea of masking pixels and training a fully-convolutional neural network to impute them. This most often requires multiple forward passes, information about the noise model, and intricate regularization functions. In this paper, we propose a Swin Transformer-based Image Autoencoder (SwinIA), the first convolution-free architecture for self-supervised denoising. It can be trained end-to-end with a simple mean squared error loss without masking and does not require any prior knowledge about clean data or noise distribution. Despite its simplicity, SwinIA establishes state-of-the-art on several common benchmarks.
[ "cs.CV" ]
false
2305.05705
2023-05-09T18:24:33Z
An Evaluation and Ranking of Different Voting Schemes for Improved Visual Place Recognition
[ "Maria Waheed", "Michael Milford", "Xiaojun Zhai", "Klaus McDonald-Maier", "Shoaib Ehsan" ]
Visual Place Recognition has recently seen a surge of endeavours utilizing different ensemble approaches to improve VPR performance. Ideas like multi-process fusion or switching involve combining different VPR techniques together, utilizing different strategies. One major aspect often common to many of these strategies is voting. Voting is widely used in many ensemble methods, so it is potentially a relevant subject to explore in terms of its application and significance for improving VPR performance. This paper attempts to looks into detail and analyze a variety of voting schemes to evaluate which voting technique is optimal for an ensemble VPR set up. We take inspiration from a variety of voting schemes that exist and are widely employed in other research fields such as politics and sociology. The idea is inspired by an observation that different voting methods result in different outcomes for the same type of data and each voting scheme is utilized for specific cases in different academic fields. Some of these voting schemes include Condorcet voting, Broda Count and Plurality voting. Voting employed in any aspect requires that a fair system be established, that outputs the best and most favourable results which in our case would involve improving VPR performance. We evaluate some of these voting techniques in a standardized testing of different VPR techniques, using a variety of VPR data sets. We aim to determine whether a single optimal voting scheme exists or, much like in other fields of research, the selection of a voting technique is relative to its application and environment. We also aim to propose a ranking of these different voting methods from best to worst according to our results as this will allow for better selection of voting schemes.
[ "cs.CV" ]
false
2305.05776
2023-05-09T21:34:38Z
Visual Place Recognition with Low-Resolution Images
[ "Mihnea-Alexandru Tomita", "Bruno Ferrarini", "Michael Milford", "Klaus McDonald-Maier", "Shoaib Ehsan" ]
Images incorporate a wealth of information from a robot's surroundings. With the widespread availability of compact cameras, visual information has become increasingly popular for addressing the localisation problem, which is then termed as Visual Place Recognition (VPR). While many applications use high-resolution cameras and high-end systems to achieve optimal place-matching performance, low-end commercial systems face limitations due to resource constraints and relatively low-resolution and low-quality cameras. In this paper, we analyse the effects of image resolution on the accuracy and robustness of well-established handcrafted VPR pipelines. Handcrafted designs have low computational demands and can adapt to flexible image resolutions, making them a suitable approach to scale to any image source and to operate under resource limitations. This paper aims to help academic researchers and companies in the hardware and software industry co-design VPR solutions and expand the use of VPR algorithms in commercial products.
[ "cs.CV" ]
false
2305.05785
2023-05-09T22:13:04Z
Regular Splitting Graph Network for 3D Human Pose Estimation
[ "Tanvir Hassan", "A. Ben Hamza" ]
In human pose estimation methods based on graph convolutional architectures, the human skeleton is usually modeled as an undirected graph whose nodes are body joints and edges are connections between neighboring joints. However, most of these methods tend to focus on learning relationships between body joints of the skeleton using first-order neighbors, ignoring higher-order neighbors and hence limiting their ability to exploit relationships between distant joints. In this paper, we introduce a higher-order regular splitting graph network (RS-Net) for 2D-to-3D human pose estimation using matrix splitting in conjunction with weight and adjacency modulation. The core idea is to capture long-range dependencies between body joints using multi-hop neighborhoods and also to learn different modulation vectors for different body joints as well as a modulation matrix added to the adjacency matrix associated to the skeleton. This learnable modulation matrix helps adjust the graph structure by adding extra graph edges in an effort to learn additional connections between body joints. Instead of using a shared weight matrix for all neighboring body joints, the proposed RS-Net model applies weight unsharing before aggregating the feature vectors associated to the joints in order to capture the different relations between them. Experiments and ablations studies performed on two benchmark datasets demonstrate the effectiveness of our model, achieving superior performance over recent state-of-the-art methods for 3D human pose estimation.
[ "cs.CV" ]
false
2305.05136
2023-05-09T02:46:13Z
Localisation of Mammographic masses by Greedy Backtracking of Activations in the Stacked Auto-Encoders
[ "Shamna Pootheri", "Govindan V K" ]
Mammographic image analysis requires accurate localisation of salient mammographic masses. In mammographic computer-aided diagnosis, mass or Region of Interest (ROI) is often marked by physicians and features are extracted from the marked ROI. In this paper, we present a novel mammographic mass localisation framework, based on the maximal class activations of the stacked auto-encoders. We hypothesize that the image regions activating abnormal classes in mammographic images will be the breast masses which causes the anomaly. The experiment is conducted using randomly selected 200 mammographic images (100 normal and 100 abnormal) from IRMA mammographic dataset. Abnormal mass regions marked by an expert radiologist are used as the ground truth. The proposed method outperforms existing Deep Convolutional Neural Network (DCNN) based techniques in terms of salient region detection accuracy. The proposed greedy backtracking method is more efficient and does not require a vast number of labelled training images as in DCNN based method. Such automatic localisation method will assist physicians to make accurate decisions on biopsy recommendations and treatment evaluations.
[ "cs.CV", "cs.LG" ]
false
2305.05200
2023-05-09T06:25:59Z
LSAS: Lightweight Sub-attention Strategy for Alleviating Attention Bias Problem
[ "Shanshan Zhong", "Wushao Wen", "Jinghui Qin", "Qiangpu Chen", "Zhongzhan Huang" ]
In computer vision, the performance of deep neural networks (DNNs) is highly related to the feature extraction ability, i.e., the ability to recognize and focus on key pixel regions in an image. However, in this paper, we quantitatively and statistically illustrate that DNNs have a serious attention bias problem on many samples from some popular datasets: (1) Position bias: DNNs fully focus on label-independent regions; (2) Range bias: The focused regions from DNN are not completely contained in the ideal region. Moreover, we find that the existing self-attention modules can alleviate these biases to a certain extent, but the biases are still non-negligible. To further mitigate them, we propose a lightweight sub-attention strategy (LSAS), which utilizes high-order sub-attention modules to improve the original self-attention modules. The effectiveness of LSAS is demonstrated by extensive experiments on widely-used benchmark datasets and popular attention networks. We release our code to help other researchers to reproduce the results of LSAS~\footnote{https://github.com/Qrange-group/LSAS}.
[ "cs.CV", "cs.AI" ]
false
2305.05268
2023-05-09T08:46:05Z
Rotation Synchronization via Deep Matrix Factorization
[ "Gk Tejus", "Giacomo Zara", "Paolo Rota", "Andrea Fusiello", "Elisa Ricci", "Federica Arrigoni" ]
In this paper we address the rotation synchronization problem, where the objective is to recover absolute rotations starting from pairwise ones, where the unknowns and the measures are represented as nodes and edges of a graph, respectively. This problem is an essential task for structure from motion and simultaneous localization and mapping. We focus on the formulation of synchronization via neural networks, which has only recently begun to be explored in the literature. Inspired by deep matrix completion, we express rotation synchronization in terms of matrix factorization with a deep neural network. Our formulation exhibits implicit regularization properties and, more importantly, is unsupervised, whereas previous deep approaches are supervised. Our experiments show that we achieve comparable accuracy to the closest competitors in most scenes, while working under weaker assumptions.
[ "cs.CV", "cs.AI" ]
false
2305.05301
2023-05-09T09:43:27Z
Eiffel Tower: A Deep-Sea Underwater Dataset for Long-Term Visual Localization
[ "Clémentin Boittiaux", "Claire Dune", "Maxime Ferrera", "Aurélien Arnaubec", "Ricard Marxer", "Marjolaine Matabos", "Loïc Van Audenhaege", "Vincent Hugel" ]
Visual localization plays an important role in the positioning and navigation of robotics systems within previously visited environments. When visits occur over long periods of time, changes in the environment related to seasons or day-night cycles present a major challenge. Under water, the sources of variability are due to other factors such as water conditions or growth of marine organisms. Yet it remains a major obstacle and a much less studied one, partly due to the lack of data. This paper presents a new deep-sea dataset to benchmark underwater long-term visual localization. The dataset is composed of images from four visits to the same hydrothermal vent edifice over the course of five years. Camera poses and a common geometry of the scene were estimated using navigation data and Structure-from-Motion. This serves as a reference when evaluating visual localization techniques. An analysis of the data provides insights about the major changes observed throughout the years. Furthermore, several well-established visual localization methods are evaluated on the dataset, showing there is still room for improvement in underwater long-term visual localization. The data is made publicly available at https://www.seanoe.org/data/00810/92226/.
[ "cs.CV", "cs.RO" ]
false
2305.05321
2023-05-09T10:16:02Z
Application of Artificial Intelligence in the Classification of Microscopical Starch Images for Drug Formulation
[ "Marvellous Ajala", "Blessing Oko", "David Oba-Fidelis", "Joycelyn Iyasele", "Joy I. Odimegwu" ]
Starches are important energy sources found in plants with many uses in the pharmaceutical industry such as binders, disintegrants, bulking agents in drugs and thus require very careful physicochemical analysis for proper identification and verification which includes microscopy. In this work, we applied artificial intelligence techniques (using transfer learning and deep convolution neural network CNNs to microscopical images obtained from 9 starch samples of different botanical sources. Our approach obtained an accuracy of 61% when the machine learning model was pretrained on microscopic images from MicroNet dataset. However the accuracy jumped to 81% for model pretrained on random day to day images obtained from Imagenet dataset. The model pretrained on the imagenet dataset also showed a better precision, recall and f1 score than that pretrained on the imagenet dataset.
[ "cs.CV", "cs.AI" ]
false
2305.05349
2023-05-09T11:20:11Z
Towards the Characterization of Representations Learned via Capsule-based Network Architectures
[ "Saja AL-Tawalbeh", "José Oramas" ]
Capsule Networks (CapsNets) have been re-introduced as a more compact and interpretable alternative to standard deep neural networks. While recent efforts have proved their compression capabilities, to date, their interpretability properties have not been fully assessed. Here, we conduct a systematic and principled study towards assessing the interpretability of these types of networks. Moreover, we pay special attention towards analyzing the level to which part-whole relationships are indeed encoded within the learned representation. Our analysis in the MNIST, SVHN, PASCAL-part and CelebA datasets suggest that the representations encoded in CapsNets might not be as disentangled nor strictly related to parts-whole relationships as is commonly stated in the literature.
[ "cs.LG", "cs.CV", "ACM-class" ]
false
2305.05422
2023-05-09T13:14:40Z
Egocentric Hierarchical Visual Semantics
[ "Luca Erculiani", "Andrea Bontempelli", "Andrea Passerini", "Fausto Giunchiglia" ]
We are interested in aligning how people think about objects and what machines perceive, meaning by this the fact that object recognition, as performed by a machine, should follow a process which resembles that followed by humans when thinking of an object associated with a certain concept. The ultimate goal is to build systems which can meaningfully interact with their users, describing what they perceive in the users' own terms. As from the field of Lexical Semantics, humans organize the meaning of words in hierarchies where the meaning of, e.g., a noun, is defined in terms of the meaning of a more general noun, its genus, and of one or more differentiating properties, its differentia. The main tenet of this paper is that object recognition should implement a hierarchical process which follows the hierarchical semantic structure used to define the meaning of words. We achieve this goal by implementing an algorithm which, for any object, recursively recognizes its visual genus and its visual differentia. In other words, the recognition of an object is decomposed in a sequence of steps where the locally relevant visual features are recognized. This paper presents the algorithm and a first evaluation.
[ "cs.AI", "cs.CV" ]
false
2305.05423
2023-05-09T13:15:19Z
High-throughput Cotton Phenotyping Big Data Pipeline Lambda Architecture Computer Vision Deep Neural Networks
[ "Amanda Issac", "Alireza Ebrahimi", "Javad Mohammadpour Velni", "Glen Rains" ]
In this study, we propose a big data pipeline for cotton bloom detection using a Lambda architecture, which enables real-time and batch processing of data. Our proposed approach leverages Azure resources such as Data Factory, Event Grids, Rest APIs, and Databricks. This work is the first to develop and demonstrate the implementation of such a pipeline for plant phenotyping through Azure's cloud computing service. The proposed pipeline consists of data preprocessing, object detection using a YOLOv5 neural network model trained through Azure AutoML, and visualization of object detection bounding boxes on output images. The trained model achieves a mean Average Precision (mAP) score of 0.96, demonstrating its high performance for cotton bloom classification. We evaluate our Lambda architecture pipeline using 9000 images yielding an optimized runtime of 34 minutes. The results illustrate the scalability of the proposed pipeline as a solution for deep learning object detection, with the potential for further expansion through additional Azure processing cores. This work advances the scientific research field by providing a new method for cotton bloom detection on a large dataset and demonstrates the potential of utilizing cloud computing resources, specifically Azure, for efficient and accurate big data processing in precision agriculture.
[ "cs.CV", "cs.LG" ]
false
2305.05430
2023-05-09T13:18:35Z
Bone Marrow Cytomorphology Cell Detection using InceptionResNetV2
[ "Raisa Fairooz Meem", "Khandaker Tabin Hasan" ]
Critical clinical decision points in haematology are influenced by the requirement of bone marrow cytology for a haematological diagnosis. Bone marrow cytology, however, is restricted to reference facilities with expertise, and linked to inter-observer variability which requires a long time to process that could result in a delayed or inaccurate diagnosis, leaving an unmet need for cutting-edge supporting technologies. This paper presents a novel transfer learning model for Bone Marrow Cell Detection to provide a solution to all the difficulties faced for the task along with considerable accuracy. The proposed model achieved 96.19\% accuracy which can be used in the future for analysis of other medical images in this domain.
[ "eess.IV", "cs.CV" ]
false
2305.05432
2023-05-09T13:20:59Z
WikiWeb2M: A Page-Level Multimodal Wikipedia Dataset
[ "Andrea Burns", "Krishna Srinivasan", "Joshua Ainslie", "Geoff Brown", "Bryan A. Plummer", "Kate Saenko", "Jianmo Ni", "Mandy Guo" ]
Webpages have been a rich resource for language and vision-language tasks. Yet only pieces of webpages are kept: image-caption pairs, long text articles, or raw HTML, never all in one place. Webpage tasks have resultingly received little attention and structured image-text data underused. To study multimodal webpage understanding, we introduce the Wikipedia Webpage 2M (WikiWeb2M) suite; the first to retain the full set of images, text, and structure data available in a page. WikiWeb2M can be used for tasks like page description generation, section summarization, and contextual image captioning.
[ "cs.CL", "cs.CV" ]
true
2305.05464
2023-05-09T14:03:27Z
Style-A-Video: Agile Diffusion for Arbitrary Text-based Video Style Transfer
[ "Nisha Huang", "Yuxin Zhang", "Weiming Dong" ]
Large-scale text-to-video diffusion models have demonstrated an exceptional ability to synthesize diverse videos. However, due to the lack of extensive text-to-video datasets and the necessary computational resources for training, directly applying these models for video stylization remains difficult. Also, given that the noise addition process on the input content is random and destructive, fulfilling the style transfer task's content preservation criteria is challenging. This paper proposes a zero-shot video stylization method named Style-A-Video, which utilizes a generative pre-trained transformer with an image latent diffusion model to achieve a concise text-controlled video stylization. We improve the guidance condition in the denoising process, establishing a balance between artistic expression and structure preservation. Furthermore, to decrease inter-frame flicker and avoid the formation of additional artifacts, we employ a sampling optimization and a temporal consistency module. Extensive experiments show that we can attain superior content preservation and stylistic performance while incurring less consumption than previous solutions. Code will be available at https://github.com/haha-lisa/Style-A-Video.
[ "cs.CV", "cs.MM" ]
false
2305.05534
2023-05-09T15:28:24Z
Integrating Holistic and Local Information to Estimate Emotional Reaction Intensity
[ "Yini Fang", "Liang Wu", "Frederic Jumelle", "Bertram Shi" ]
Video-based Emotional Reaction Intensity (ERI) estimation measures the intensity of subjects' reactions to stimuli along several emotional dimensions from videos of the subject as they view the stimuli. We propose a multi-modal architecture for video-based ERI combining video and audio information. Video input is encoded spatially first, frame-by-frame, combining features encoding holistic aspects of the subjects' facial expressions and features encoding spatially localized aspects of their expressions. Input is then combined across time: from frame-to-frame using gated recurrent units (GRUs), then globally by a transformer. We handle variable video length with a regression token that accumulates information from all frames into a fixed-dimensional vector independent of video length. Audio information is handled similarly: spectral information extracted within each frame is integrated across time by a cascade of GRUs and a transformer with regression token. The video and audio regression tokens' outputs are merged by concatenation, then input to a final fully connected layer producing intensity estimates. Our architecture achieved excellent performance on the Hume-Reaction dataset in the ERI Esimation Challenge of the Fifth Competition on Affective Behavior Analysis in-the-Wild (ABAW5). The Pearson Correlation Coefficients between estimated and subject self-reported scores, averaged across all emotions, were 0.455 on the validation dataset and 0.4547 on the test dataset, well above the baselines. The transformer's self-attention mechanism enables our architecture to focus on the most critical video frames regardless of length. Ablation experiments establish the advantages of combining holistic/local features and of multi-modal integration. Code available at https://github.com/HKUST-NISL/ABAW5.
[ "cs.CV", "cs.LG" ]
false
2305.05580
2023-05-09T16:14:57Z
Fashion CUT: Unsupervised domain adaptation for visual pattern classification in clothes using synthetic data and pseudo-labels
[ "Enric Moreu", "Alex Martinelli", "Martina Naughton", "Philip Kelly", "Noel E. O'Connor" ]
Accurate product information is critical for e-commerce stores to allow customers to browse, filter, and search for products. Product data quality is affected by missing or incorrect information resulting in poor customer experience. While machine learning can be used to correct inaccurate or missing information, achieving high performance on fashion image classification tasks requires large amounts of annotated data, but it is expensive to generate due to labeling costs. One solution can be to generate synthetic data which requires no manual labeling. However, training a model with a dataset of solely synthetic images can lead to poor generalization when performing inference on real-world data because of the domain shift. We introduce a new unsupervised domain adaptation technique that converts images from the synthetic domain into the real-world domain. Our approach combines a generative neural network and a classifier that are jointly trained to produce realistic images while preserving the synthetic label information. We found that using real-world pseudo-labels during training helps the classifier to generalize in the real-world domain, reducing the synthetic bias. We successfully train a visual pattern classification model in the fashion domain without real-world annotations. Experiments show that our method outperforms other unsupervised domain adaptation algorithms.
[ "cs.CV", "cs.LG" ]
false
2305.05766
2023-05-09T20:59:14Z
Instant-NeRF: Instant On-Device Neural Radiance Field Training via Algorithm-Accelerator Co-Designed Near-Memory Processing
[ "Yang Zhao", "Shang Wu", "Jingqun Zhang", "Sixu Li", "Chaojian Li", "Yingyan Lin" ]
Instant on-device Neural Radiance Fields (NeRFs) are in growing demand for unleashing the promise of immersive AR/VR experiences, but are still limited by their prohibitive training time. Our profiling analysis reveals a memory-bound inefficiency in NeRF training. To tackle this inefficiency, near-memory processing (NMP) promises to be an effective solution, but also faces challenges due to the unique workloads of NeRFs, including the random hash table lookup, random point processing sequence, and heterogeneous bottleneck steps. Therefore, we propose the first NMP framework, Instant-NeRF, dedicated to enabling instant on-device NeRF training. Experiments on eight datasets consistently validate the effectiveness of Instant-NeRF.
[ "cs.CV", "cs.AR" ]
false
2305.05768
2023-05-09T21:03:13Z
DifFIQA: Face Image Quality Assessment Using Denoising Diffusion Probabilistic Models
[ "Žiga Babnik", "Peter Peer", "Vitomir Štruc" ]
Modern face recognition (FR) models excel in constrained scenarios, but often suffer from decreased performance when deployed in unconstrained (real-world) environments due to uncertainties surrounding the quality of the captured facial data. Face image quality assessment (FIQA) techniques aim to mitigate these performance degradations by providing FR models with sample-quality predictions that can be used to reject low-quality samples and reduce false match errors. However, despite steady improvements, ensuring reliable quality estimates across facial images with diverse characteristics remains challenging. In this paper, we present a powerful new FIQA approach, named DifFIQA, which relies on denoising diffusion probabilistic models (DDPM) and ensures highly competitive results. The main idea behind the approach is to utilize the forward and backward processes of DDPMs to perturb facial images and quantify the impact of these perturbations on the corresponding image embeddings for quality prediction. Because the diffusion-based perturbations are computationally expensive, we also distill the knowledge encoded in DifFIQA into a regression-based quality predictor, called DifFIQA(R), that balances performance and execution time. We evaluate both models in comprehensive experiments on 7 datasets, with 4 target FR models and against 10 state-of-the-art FIQA techniques with highly encouraging results. The source code will be made publicly available.
[ "cs.CV", "cs.LG" ]
false
2305.05784
2023-05-09T22:09:35Z
Comprehensive Dataset of Synthetic and Manipulated Overhead Imagery for Development and Evaluation of Forensic Tools
[ "Brandon B. May", "Kirill Trapeznikov", "Shengbang Fang", "Matthew C. Stamm" ]
We present a first of its kind dataset of overhead imagery for development and evaluation of forensic tools. Our dataset consists of real, fully synthetic and partially manipulated overhead imagery generated from a custom diffusion model trained on two sets of different zoom levels and on two sources of pristine data. We developed our model to support controllable generation of multiple manipulation categories including fully synthetic imagery conditioned on real and generated base maps, and location. We also support partial in-painted imagery with same conditioning options and with several types of manipulated content. The data consist of raw images and ground truth annotations describing the manipulation parameters. We also report benchmark performance on several tasks supported by our dataset including detection of fully and partially manipulated imagery, manipulation localization and classification.
[ "cs.CV", "cs.CR" ]
false
2305.05100
2023-05-09T00:11:00Z
Adaptive Domain Generalization for Digital Pathology Images
[ "Andrew Walker" ]
In AI-based histopathology, domain shifts are common and well-studied. However, this research focuses on stain and scanner variations, which do not show the full picture -- shifts may be combinations of other shifts, or "invisible" shifts that are not obvious but still damage performance of machine learning models. Furthermore, it is important for models to generalize to these shifts without expensive or scarce annotations, especially in the histopathology space and if wanting to deploy models on a larger scale. Thus, there is a need for "reactive" domain generalization techniques: ones that adapt to domain shifts at test-time rather than requiring predictions of or examples of the shifts at training time. We conduct a literature review and introduce techniques that react to domain shifts rather than requiring a prediction of them in advance. We investigate test time training, a technique for domain generalization that adapts model parameters at test-time through optimization of a secondary self-supervised task.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.05101
2023-05-09T00:11:35Z
Towards unraveling calibration biases in medical image analysis
[ "María Agustina Ricci Lara", "Candelaria Mosquera", "Enzo Ferrante", "Rodrigo Echeveste" ]
In recent years the development of artificial intelligence (AI) systems for automated medical image analysis has gained enormous momentum. At the same time, a large body of work has shown that AI systems can systematically and unfairly discriminate against certain populations in various application scenarios. These two facts have motivated the emergence of algorithmic fairness studies in this field. Most research on healthcare algorithmic fairness to date has focused on the assessment of biases in terms of classical discrimination metrics such as AUC and accuracy. Potential biases in terms of model calibration, however, have only recently begun to be evaluated. This is especially important when working with clinical decision support systems, as predictive uncertainty is key for health professionals to optimally evaluate and combine multiple sources of information. In this work we study discrimination and calibration biases in models trained for automatic detection of malignant dermatological conditions from skin lesions images. Importantly, we show how several typically employed calibration metrics are systematically biased with respect to sample sizes, and how this can lead to erroneous fairness analysis if not taken into consideration. This is of particular relevance to fairness studies, where data imbalance results in drastic sample size differences between demographic sub-groups, which, if not taken into account, can act as confounders.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.05153
2023-05-09T03:33:14Z
DeepTree: Modeling Trees with Situated Latents
[ "Xiaochen Zhou", "Bosheng Li", "Bedrich Benes", "Songlin Fei", "Sören Pirk" ]
In this paper, we propose DeepTree, a novel method for modeling trees based on learning developmental rules for branching structures instead of manually defining them. We call our deep neural model situated latent because its behavior is determined by the intrinsic state -- encoded as a latent space of a deep neural model -- and by the extrinsic (environmental) data that is situated as the location in the 3D space and on the tree structure. We use a neural network pipeline to train a situated latent space that allows us to locally predict branch growth only based on a single node in the branch graph of a tree model. We use this representation to progressively develop new branch nodes, thereby mimicking the growth process of trees. Starting from a root node, a tree is generated by iteratively querying the neural network on the newly added nodes resulting in the branching structure of the whole tree. Our method enables generating a wide variety of tree shapes without the need to define intricate parameters that control their growth and behavior. Furthermore, we show that the situated latents can also be used to encode the environmental response of tree models, e.g., when trees grow next to obstacles. We validate the effectiveness of our method by measuring the similarity of our tree models and by procedurally generated ones based on a number of established metrics for tree form.
[ "cs.LG", "cs.CV", "cs.GR" ]
false
2305.05445
2023-05-09T13:38:13Z
StyleSync: High-Fidelity Generalized and Personalized Lip Sync in Style-based Generator
[ "Jiazhi Guan", "Zhanwang Zhang", "Hang Zhou", "Tianshu Hu", "Kaisiyuan Wang", "Dongliang He", "Haocheng Feng", "Jingtuo Liu", "Errui Ding", "Ziwei Liu", "Jingdong Wang" ]
Despite recent advances in syncing lip movements with any audio waves, current methods still struggle to balance generation quality and the model's generalization ability. Previous studies either require long-term data for training or produce a similar movement pattern on all subjects with low quality. In this paper, we propose StyleSync, an effective framework that enables high-fidelity lip synchronization. We identify that a style-based generator would sufficiently enable such a charming property on both one-shot and few-shot scenarios. Specifically, we design a mask-guided spatial information encoding module that preserves the details of the given face. The mouth shapes are accurately modified by audio through modulated convolutions. Moreover, our design also enables personalized lip-sync by introducing style space and generator refinement on only limited frames. Thus the identity and talking style of a target person could be accurately preserved. Extensive experiments demonstrate the effectiveness of our method in producing high-fidelity results on a variety of scenes. Resources can be found at https://hangz-nju-cuhk.github.io/projects/StyleSync.
[ "cs.CV", "cs.GR", "cs.MM" ]
false
2305.05505
2023-05-09T14:54:41Z
Recursions Are All You Need: Towards Efficient Deep Unfolding Networks
[ "Rawwad Alhejaili", "Motaz Alfarraj", "Hamzah Luqman", "Ali Al-Shaikhi" ]
The use of deep unfolding networks in compressive sensing (CS) has seen wide success as they provide both simplicity and interpretability. However, since most deep unfolding networks are iterative, this incurs significant redundancies in the network. In this work, we propose a novel recursion-based framework to enhance the efficiency of deep unfolding models. First, recursions are used to effectively eliminate the redundancies in deep unfolding networks. Secondly, we randomize the number of recursions during training to decrease the overall training time. Finally, to effectively utilize the power of recursions, we introduce a learnable unit to modulate the features of the model based on both the total number of iterations and the current iteration index. To evaluate the proposed framework, we apply it to both ISTA-Net+ and COAST. Extensive testing shows that our proposed framework allows the network to cut down as much as 75% of its learnable parameters while mostly maintaining its performance, and at the same time, it cuts around 21% and 42% from the training time for ISTA-Net+ and COAST respectively. Moreover, when presented with a limited training dataset, the recursive models match or even outperform their respective non-recursive baseline. Codes and pretrained models are available at https://github.com/Rawwad-Alhejaili/Recursions-Are-All-You-Need .
[ "cs.CV", "cs.LG", "eess.IV" ]
false
2305.05591
2023-05-09T16:28:07Z
AudioSlots: A slot-centric generative model for audio separation
[ "Pradyumna Reddy", "Scott Wisdom", "Klaus Greff", "John R. Hershey", "Thomas Kipf" ]
In a range of recent works, object-centric architectures have been shown to be suitable for unsupervised scene decomposition in the vision domain. Inspired by these methods we present AudioSlots, a slot-centric generative model for blind source separation in the audio domain. AudioSlots is built using permutation-equivariant encoder and decoder networks. The encoder network based on the Transformer architecture learns to map a mixed audio spectrogram to an unordered set of independent source embeddings. The spatial broadcast decoder network learns to generate the source spectrograms from the source embeddings. We train the model in an end-to-end manner using a permutation invariant loss function. Our results on Libri2Mix speech separation constitute a proof of concept that this approach shows promise. We discuss the results and limitations of our approach in detail, and further outline potential ways to overcome the limitations and directions for future work.
[ "cs.SD", "cs.CV", "eess.AS" ]
true
2305.05594
2023-05-09T16:35:39Z
PET-NeuS: Positional Encoding Tri-Planes for Neural Surfaces
[ "Yiqun Wang", "Ivan Skorokhodov", "Peter Wonka" ]
A signed distance function (SDF) parametrized by an MLP is a common ingredient of neural surface reconstruction. We build on the successful recent method NeuS to extend it by three new components. The first component is to borrow the tri-plane representation from EG3D and represent signed distance fields as a mixture of tri-planes and MLPs instead of representing it with MLPs only. Using tri-planes leads to a more expressive data structure but will also introduce noise in the reconstructed surface. The second component is to use a new type of positional encoding with learnable weights to combat noise in the reconstruction process. We divide the features in the tri-plane into multiple frequency scales and modulate them with sin and cos functions of different frequencies. The third component is to use learnable convolution operations on the tri-plane features using self-attention convolution to produce features with different frequency bands. The experiments show that PET-NeuS achieves high-fidelity surface reconstruction on standard datasets. Following previous work and using the Chamfer metric as the most important way to measure surface reconstruction quality, we are able to improve upon the NeuS baseline by 57% on Nerf-synthetic (0.84 compared to 1.97) and by 15.5% on DTU (0.71 compared to 0.84). The qualitative evaluation reveals how our method can better control the interference of high-frequency noise. Code available at \url{https://github.com/yiqun-wang/PET-NeuS}.
[ "cs.CV", "cs.AI", "cs.GR" ]
false
2305.05648
2023-05-09T17:46:43Z
Predicting Cardiovascular Disease Risk using Photoplethysmography and Deep Learning
[ "Wei-Hung Weng", "Sebastien Baur", "Mayank Daswani", "Christina Chen", "Lauren Harrell", "Sujay Kakarmath", "Mariam Jabara", "Babak Behsaz", "Cory Y. McLean", "Yossi Matias", "Greg S. Corrado", "Shravya Shetty", "Shruthi Prabhakara", "Yun Liu", "Goodarz Danaei", "Diego Ardila" ]
Cardiovascular diseases (CVDs) are responsible for a large proportion of premature deaths in low- and middle-income countries. Early CVD detection and intervention is critical in these populations, yet many existing CVD risk scores require a physical examination or lab measurements, which can be challenging in such health systems due to limited accessibility. Here we investigated the potential to use photoplethysmography (PPG), a sensing technology available on most smartphones that can potentially enable large-scale screening at low cost, for CVD risk prediction. We developed a deep learning PPG-based CVD risk score (DLS) to predict the probability of having major adverse cardiovascular events (MACE: non-fatal myocardial infarction, stroke, and cardiovascular death) within ten years, given only age, sex, smoking status and PPG as predictors. We compared the DLS with the office-based refit-WHO score, which adopts the shared predictors from WHO and Globorisk scores (age, sex, smoking status, height, weight and systolic blood pressure) but refitted on the UK Biobank (UKB) cohort. In UKB cohort, DLS's C-statistic (71.1%, 95% CI 69.9-72.4) was non-inferior to office-based refit-WHO score (70.9%, 95% CI 69.7-72.2; non-inferiority margin of 2.5%, p<0.01). The calibration of the DLS was satisfactory, with a 1.8% mean absolute calibration error. Adding DLS features to the office-based score increased the C-statistic by 1.0% (95% CI 0.6-1.4). DLS predicts ten-year MACE risk comparable with the office-based refit-WHO score. It provides a proof-of-concept and suggests the potential of a PPG-based approach strategies for community-based primary prevention in resource-limited regions.
[ "cs.CV", "cs.AI", "cs.LG" ]
false
2305.05706
2023-05-09T18:30:58Z
DexArt: Benchmarking Generalizable Dexterous Manipulation with Articulated Objects
[ "Chen Bao", "Helin Xu", "Yuzhe Qin", "Xiaolong Wang" ]
To enable general-purpose robots, we will require the robot to operate daily articulated objects as humans do. Current robot manipulation has heavily relied on using a parallel gripper, which restricts the robot to a limited set of objects. On the other hand, operating with a multi-finger robot hand will allow better approximation to human behavior and enable the robot to operate on diverse articulated objects. To this end, we propose a new benchmark called DexArt, which involves Dexterous manipulation with Articulated objects in a physical simulator. In our benchmark, we define multiple complex manipulation tasks, and the robot hand will need to manipulate diverse articulated objects within each task. Our main focus is to evaluate the generalizability of the learned policy on unseen articulated objects. This is very challenging given the high degrees of freedom of both hands and objects. We use Reinforcement Learning with 3D representation learning to achieve generalization. Through extensive studies, we provide new insights into how 3D representation learning affects decision making in RL with 3D point cloud inputs. More details can be found at https://www.chenbao.tech/dexart/.
[ "cs.RO", "cs.CV", "cs.LG" ]
true
2305.05732
2023-05-09T19:24:09Z
Duke Spleen Data Set: A Publicly Available Spleen MRI and CT dataset for Training Segmentation
[ "Yuqi Wang", "Jacob A. Macdonald", "Katelyn R. Morgan", "Danielle Hom", "Sarah Cubberley", "Kassi Sollace", "Nicole Casasanto", "Islam H. Zaki", "Kyle J. Lafata", "Mustafa R. Bashir" ]
Spleen volumetry is primarily associated with patients suffering from chronic liver disease and portal hypertension, as they often have spleens with abnormal shapes and sizes. However, manually segmenting the spleen to obtain its volume is a time-consuming process. Deep learning algorithms have proven to be effective in automating spleen segmentation, but a suitable dataset is necessary for training such algorithms. To our knowledge, the few publicly available datasets for spleen segmentation lack confounding features such as ascites and abdominal varices. To address this issue, the Duke Spleen Data Set (DSDS) has been developed, which includes 109 CT and MRI volumes from patients with chronic liver disease and portal hypertension. The dataset includes a diverse range of image types, vendors, planes, and contrasts, as well as varying spleen shapes and sizes due to underlying disease states. The DSDS aims to facilitate the creation of robust spleen segmentation models that can take into account these variations and confounding factors.
[ "eess.IV", "cs.CV", "cs.LG" ]
false
2305.05813
2023-05-09T23:52:37Z
Change Detection Methods for Remote Sensing in the Last Decade: A Comprehensive Review
[ "Guangliang Cheng", "Yunmeng Huang", "Xiangtai Li", "Shuchang Lyu", "Zhaoyang Xu", "Qi Zhao", "Shiming Xiang" ]
Change detection is an essential and widely utilized task in remote sensing that aims to detect and analyze changes occurring in the same geographical area over time, which has broad applications in urban development, agricultural surveys, and land cover monitoring. Detecting changes in remote sensing images is a complex challenge due to various factors, including variations in image quality, noise, registration errors, illumination changes, complex landscapes, and spatial heterogeneity. In recent years, deep learning has emerged as a powerful tool for feature extraction and addressing these challenges. Its versatility has resulted in its widespread adoption for numerous image-processing tasks. This paper presents a comprehensive survey of significant advancements in change detection for remote sensing images over the past decade. We first introduce some preliminary knowledge for the change detection task, such as problem definition, datasets, evaluation metrics, and transformer basics, as well as provide a detailed taxonomy of existing algorithms from three different perspectives: algorithm granularity, supervision modes, and learning frameworks in the methodology section. This survey enables readers to gain systematic knowledge of change detection tasks from various angles. We then summarize the state-of-the-art performance on several dominant change detection datasets, providing insights into the strengths and limitations of existing algorithms. Based on our survey, some future research directions for change detection in remote sensing are well identified. This survey paper will shed some light on the community and inspire further research efforts in the change detection task.
[ "cs.CV", "cs.LG", "eess.IV" ]
false
2305.05661
2023-05-09T17:55:48Z
ShapeCoder: Discovering Abstractions for Visual Programs from Unstructured Primitives
[ "R. Kenny Jones", "Paul Guerrero", "Niloy J. Mitra", "Daniel Ritchie" ]
Programs are an increasingly popular representation for visual data, exposing compact, interpretable structure that supports manipulation. Visual programs are usually written in domain-specific languages (DSLs). Finding "good" programs, that only expose meaningful degrees of freedom, requires access to a DSL with a "good" library of functions, both of which are typically authored by domain experts. We present ShapeCoder, the first system capable of taking a dataset of shapes, represented with unstructured primitives, and jointly discovering (i) useful abstraction functions and (ii) programs that use these abstractions to explain the input shapes. The discovered abstractions capture common patterns (both structural and parametric) across the dataset, so that programs rewritten with these abstractions are more compact, and expose fewer degrees of freedom. ShapeCoder improves upon previous abstraction discovery methods, finding better abstractions, for more complex inputs, under less stringent input assumptions. This is principally made possible by two methodological advancements: (a) a shape to program recognition network that learns to solve sub-problems and (b) the use of e-graphs, augmented with a conditional rewrite scheme, to determine when abstractions with complex parametric expressions can be applied, in a tractable manner. We evaluate ShapeCoder on multiple datasets of 3D shapes, where primitive decompositions are either parsed from manual annotations or produced by an unsupervised cuboid abstraction method. In all domains, ShapeCoder discovers a library of abstractions that capture high-level relationships, remove extraneous degrees of freedom, and achieve better dataset compression compared with alternative approaches. Finally, we investigate how programs rewritten to use discovered abstractions prove useful for downstream tasks.
[ "cs.GR", "cs.AI", "cs.CV", "cs.LG", "cs.PL" ]
false
2305.14359
2023-05-09T02:37:29Z
Zero-shot personalized lip-to-speech synthesis with face image based voice control
[ "Zheng-Yan Sheng", "Yang Ai", "Zhen-Hua Ling" ]
Lip-to-Speech (Lip2Speech) synthesis, which predicts corresponding speech from talking face images, has witnessed significant progress with various models and training strategies in a series of independent studies. However, existing studies can not achieve voice control under zero-shot condition, because extra speaker embeddings need to be extracted from natural reference speech and are unavailable when only the silent video of an unseen speaker is given. In this paper, we propose a zero-shot personalized Lip2Speech synthesis method, in which face images control speaker identities. A variational autoencoder is adopted to disentangle the speaker identity and linguistic content representations, which enables speaker embeddings to control the voice characteristics of synthetic speech for unseen speakers. Furthermore, we propose associated cross-modal representation learning to promote the ability of face-based speaker embeddings (FSE) on voice control. Extensive experiments verify the effectiveness of the proposed method whose synthetic utterances are more natural and matching with the personality of input video than the compared methods. To our best knowledge, this paper makes the first attempt on zero-shot personalized Lip2Speech synthesis with a face image rather than reference audio to control voice characteristics.
[ "cs.MM", "cs.AI", "cs.CV", "cs.SD", "eess.AS" ]
false
2305.05138
2023-05-09T02:49:09Z
Read, Diagnose and Chat: Towards Explainable and Interactive LLMs-Augmented Depression Detection in Social Media
[ "Wei Qin", "Zetong Chen", "Lei Wang", "Yunshi Lan", "Weijieying Ren", "Richang Hong" ]
This paper proposes a new depression detection system based on LLMs that is both interpretable and interactive. It not only provides a diagnosis, but also diagnostic evidence and personalized recommendations based on natural language dialogue with the user. We address challenges such as the processing of large amounts of text and integrate professional diagnostic criteria. Our system outperforms traditional methods across various settings and is demonstrated through case studies.
[ "cs.CL" ]
false
2305.05171
2023-05-09T04:45:24Z
Summarization with Precise Length Control
[ "Lesly Miculicich", "Yujia Xie", "Song Wang", "Pengcheng He" ]
Many applications of text generation such as summarization benefit from accurately controlling the text length. Existing approaches on length-controlled summarization either result in degraded performance or can only control the length approximately. In this work, we present a framework to generate summaries with precisely the specified number of tokens or sentences, while maintaining or even improving the text quality. In addition, we jointly train the models to predict the lengths, so our model can generate summaries with optimal length. We evaluate the proposed framework on the CNNDM dataset and show improved performance compared to existing methods.
[ "cs.CL" ]
false
2305.05253
2023-05-09T08:21:11Z
Attack Named Entity Recognition by Entity Boundary Interference
[ "Yifei Yang", "Hongqiu Wu", "Hai Zhao" ]
Named Entity Recognition (NER) is a cornerstone NLP task while its robustness has been given little attention. This paper rethinks the principles of NER attacks derived from sentence classification, as they can easily violate the label consistency between the original and adversarial NER examples. This is due to the fine-grained nature of NER, as even minor word changes in the sentence can result in the emergence or mutation of any entities, resulting in invalid adversarial examples. To this end, we propose a novel one-word modification NER attack based on a key insight, NER models are always vulnerable to the boundary position of an entity to make their decision. We thus strategically insert a new boundary into the sentence and trigger the Entity Boundary Interference that the victim model makes the wrong prediction either on this boundary word or on other words in the sentence. We call this attack Virtual Boundary Attack (ViBA), which is shown to be remarkably effective when attacking both English and Chinese models with a 70%-90% attack success rate on state-of-the-art language models (e.g. RoBERTa, DeBERTa) and also significantly faster than previous methods.
[ "cs.CL" ]
false
2305.05302
2023-05-09T09:45:44Z
The Perfect Victim: Computational Analysis of Judicial Attitudes towards Victims of Sexual Violence
[ "Eliya Habba", "Renana Keydar", "Dan Bareket", "Gabriel Stanovsky" ]
We develop computational models to analyze court statements in order to assess judicial attitudes toward victims of sexual violence in the Israeli court system. The study examines the resonance of "rape myths" in the criminal justice system's response to sex crimes, in particular in judicial assessment of victim's credibility. We begin by formulating an ontology for evaluating judicial attitudes toward victim's credibility, with eight ordinal labels and binary categorizations. Second, we curate a manually annotated dataset for judicial assessments of victim's credibility in the Hebrew language, as well as a model that can extract credibility labels from court cases. The dataset consists of 855 verdict decision documents in sexual assault cases from 1990-2021, annotated with the help of legal experts and trained law students. The model uses a combined approach of syntactic and latent structures to find sentences that convey the judge's attitude towards the victim and classify them according to the credibility label set. Our ontology, data, and models will be made available upon request, in the hope they spur future progress in this judicial important task.
[ "cs.CL" ]
false
2305.05334
2023-05-09T10:49:45Z
ArgU: A Controllable Factual Argument Generator
[ "Sougata Saha", "Rohini Srihari" ]
Effective argumentation is essential towards a purposeful conversation with a satisfactory outcome. For example, persuading someone to reconsider smoking might involve empathetic, well founded arguments based on facts and expert opinions about its ill-effects and the consequences on one's family. However, the automatic generation of high-quality factual arguments can be challenging. Addressing existing controllability issues can make the recent advances in computational models for argument generation a potential solution. In this paper, we introduce ArgU: a neural argument generator capable of producing factual arguments from input facts and real-world concepts that can be explicitly controlled for stance and argument structure using Walton's argument scheme-based control codes. Unfortunately, computational argument generation is a relatively new field and lacks datasets conducive to training. Hence, we have compiled and released an annotated corpora of 69,428 arguments spanning six topics and six argument schemes, making it the largest publicly available corpus for identifying argument schemes; the paper details our annotation and dataset creation framework. We further experiment with an argument generation strategy that establishes an inference strategy by generating an ``argument template'' before actual argument generation. Our results demonstrate that it is possible to automatically generate diverse arguments exhibiting different inference patterns for the same set of facts by using control codes based on argument schemes and stance.
[ "cs.CL" ]
false
2305.05335
2023-05-09T10:54:34Z
Rudolf Christoph Eucken at SemEval-2023 Task 4: An Ensemble Approach for Identifying Human Values from Arguments
[ "Sougata Saha", "Rohini Srihari" ]
The subtle human values we acquire through life experiences govern our thoughts and gets reflected in our speech. It plays an integral part in capturing the essence of our individuality and making it imperative to identify such values in computational systems that mimic human actions. Computational argumentation is a field that deals with the argumentation capabilities of humans and can benefit from identifying such values. Motivated by that, we present an ensemble approach for detecting human values from argument text. Our ensemble comprises three models: (i) An entailment-based model for determining the human values based on their descriptions, (ii) A Roberta-based classifier that predicts the set of human values from an argument. (iii) A Roberta-based classifier to predict a reduced set of human values from an argument. We experiment with different ways of combining the models and report our results. Furthermore, our best combination achieves an overall F1 score of 0.48 on the main test set.
[ "cs.CL" ]
false
2305.05378
2023-05-09T12:19:10Z
PLM-GNN: A Webpage Classification Method based on Joint Pre-trained Language Model and Graph Neural Network
[ "Qiwei Lang", "Jingbo Zhou", "Haoyi Wang", "Shiqi Lyu", "Rui Zhang" ]
The number of web pages is growing at an exponential rate, accumulating massive amounts of data on the web. It is one of the key processes to classify webpages in web information mining. Some classical methods are based on manually building features of web pages and training classifiers based on machine learning or deep learning. However, building features manually requires specific domain knowledge and usually takes a long time to validate the validity of features. Considering webpages generated by the combination of text and HTML Document Object Model(DOM) trees, we propose a representation and classification method based on a pre-trained language model and graph neural network, named PLM-GNN. It is based on the joint encoding of text and HTML DOM trees in the web pages. It performs well on the KI-04 and SWDE datasets and on practical dataset AHS for the project of scholar's homepage crawling.
[ "cs.CL" ]
false
2305.05390
2023-05-09T12:36:58Z
COKE: A Cognitive Knowledge Graph for Machine Theory of Mind
[ "Jincenzi Wu", "Zhuang Chen", "Jiawen Deng", "Sahand Sabour", "Minlie Huang" ]
Theory of mind (ToM) refers to humans' ability to understand and infer the desires, beliefs, and intentions of others. The acquisition of ToM plays a key role in humans' social cognition and interpersonal relations. Though indispensable for social intelligence, ToM is still lacking for modern AI and NLP systems since they cannot access the human mental state and cognitive process beneath the training corpus. To empower AI systems with the ToM ability and narrow the gap between them and humans, in this paper, we propose COKE: the first cognitive knowledge graph for machine theory of mind. Specifically, COKE formalizes ToM as a collection of 45k+ manually verified cognitive chains that characterize human mental activities and subsequent behavioral/affective responses when facing specific social circumstances. Beyond that, we further generalize COKE using pre-trained language models and build a powerful cognitive generation model COKE+. Experimental results in both automatic and human evaluation demonstrate the high quality of COKE and the superior ToM ability of COKE+.
[ "cs.CL" ]
false
2305.05420
2023-05-09T13:13:26Z
Estimating related words computationally using language model from the Mahabharata -- an Indian epic
[ "Vrunda Gadesha", "Keyur D Joshi", "Shefali Naik" ]
'Mahabharata' is the most popular among many Indian pieces of literature referred to in many domains for completely different purposes. This text itself is having various dimension and aspects which is useful for the human being in their personal life and professional life. This Indian Epic is originally written in the Sanskrit Language. Now in the era of Natural Language Processing, Artificial Intelligence, Machine Learning, and Human-Computer interaction this text can be processed according to the domain requirement. It is interesting to process this text and get useful insights from Mahabharata. The limitation of the humans while analyzing Mahabharata is that they always have a sentiment aspect towards the story narrated by the author. Apart from that, the human cannot memorize statistical or computational details, like which two words are frequently coming in one sentence? What is the average length of the sentences across the whole literature? Which word is the most popular word across the text, what are the lemmas of the words used across the sentences? Thus, in this paper, we propose an NLP pipeline to get some statistical and computational insights along with the most relevant word searching method from the largest epic 'Mahabharata'. We stacked the different text-processing approaches to articulate the best results which can be further used in the various domain where Mahabharata needs to be referred.
[ "cs.CL" ]
false
2305.05461
2023-05-09T14:00:15Z
What is the best recipe for character-level encoder-only modelling?
[ "Kris Cao" ]
This paper aims to benchmark recent progress in language understanding models that output contextualised representations at the character level. Many such modelling architectures and methods to train those architectures have been proposed, but it is currently unclear what the relative contributions of the architecture vs. the pretraining objective are to final model performance. We explore the design space of such models, comparing architectural innovations and a variety of different pretraining objectives on a suite of evaluation tasks with a fixed training procedure in order to find the currently optimal way to build and train character-level BERT-like models. We find that our best performing character-level model exceeds the performance of a token-based model trained with the same settings on the same data, suggesting that character-level models are ready for more widespread adoption. Unfortunately, the best method to train character-level models still relies on a subword-level tokeniser during pretraining, and final model performance is highly dependent on tokeniser quality. We believe our results demonstrate the readiness of character-level models for multilingual language representation, and encourage NLP practitioners to try them as drop-in replacements for token-based models.
[ "cs.CL" ]
false
2305.05486
2023-05-09T14:36:04Z
MAUPQA: Massive Automatically-created Polish Question Answering Dataset
[ "Piotr Rybak" ]
Recently, open-domain question answering systems have begun to rely heavily on annotated datasets to train neural passage retrievers. However, manually annotating such datasets is both difficult and time-consuming, which limits their availability for less popular languages. In this work, we experiment with several methods for automatically collecting weakly labeled datasets and show how they affect the performance of the neural passage retrieval models. As a result of our work, we publish the MAUPQA dataset, consisting of nearly 400,000 question-passage pairs for Polish, as well as the HerBERT-QA neural retriever.
[ "cs.CL" ]
false
2305.05627
2023-05-09T17:13:53Z
An Exploration of Encoder-Decoder Approaches to Multi-Label Classification for Legal and Biomedical Text
[ "Yova Kementchedjhieva", "Ilias Chalkidis" ]
Standard methods for multi-label text classification largely rely on encoder-only pre-trained language models, whereas encoder-decoder models have proven more effective in other classification tasks. In this study, we compare four methods for multi-label classification, two based on an encoder only, and two based on an encoder-decoder. We carry out experiments on four datasets -- two in the legal domain and two in the biomedical domain, each with two levels of label granularity -- and always depart from the same pre-trained model, T5. Our results show that encoder-decoder methods outperform encoder-only methods, with a growing advantage on more complex datasets and labeling schemes of finer granularity. Using encoder-decoder models in a non-autoregressive fashion, in particular, yields the best performance overall, so we further study this approach through ablations to better understand its strengths.
[ "cs.CL" ]
false
2305.05672
2023-05-09T05:33:32Z
$2 * n$ is better than $n^2$: Decomposing Event Coreference Resolution into Two Tractable Problems
[ "Shafiuddin Rehan Ahmed", "Abhijnan Nath", "James H. Martin", "Nikhil Krishnaswamy" ]
Event Coreference Resolution (ECR) is the task of linking mentions of the same event either within or across documents. Most mention pairs are not coreferent, yet many that are coreferent can be identified through simple techniques such as lemma matching of the event triggers or the sentences in which they appear. Existing methods for training coreference systems sample from a largely skewed distribution, making it difficult for the algorithm to learn coreference beyond surface matching. Additionally, these methods are intractable because of the quadratic operations needed. To address these challenges, we break the problem of ECR into two parts: a) a heuristic to efficiently filter out a large number of non-coreferent pairs, and b) a training approach on a balanced set of coreferent and non-coreferent mention pairs. By following this approach, we show that we get comparable results to the state of the art on two popular ECR datasets while significantly reducing compute requirements. We also analyze the mention pairs that are "hard" to accurately classify as coreferent or non-coreferent. Code at https://github.com/ahmeshaf/lemma_ce_coref
[ "cs.CL" ]
false
2305.05748
2023-05-09T20:02:18Z
Multilevel Sentence Embeddings for Personality Prediction
[ "Paolo Tirotta", "Akira Yuasa", "Masashi Morita" ]
Representing text into a multidimensional space can be done with sentence embedding models such as Sentence-BERT (SBERT). However, training these models when the data has a complex multilevel structure requires individually trained class-specific models, which increases time and computing costs. We propose a two step approach which enables us to map sentences according to their hierarchical memberships and polarity. At first we teach the upper level sentence space through an AdaCos loss function and then finetune with a novel loss function mainly based on the cosine similarity of intra-level pairs. We apply this method to three different datasets: two weakly supervised Big Five personality dataset obtained from English and Japanese Twitter data and the benchmark MNLI dataset. We show that our single model approach performs better than multiple class-specific classification models.
[ "cs.CL" ]
false
2305.06154
2023-05-09T11:00:02Z
Alleviating Over-smoothing for Unsupervised Sentence Representation
[ "Nuo Chen", "Linjun Shou", "Ming Gong", "Jian Pei", "Bowen Cao", "Jianhui Chang", "Daxin Jiang", "Jia Li" ]
Currently, learning better unsupervised sentence representations is the pursuit of many natural language processing communities. Lots of approaches based on pre-trained language models (PLMs) and contrastive learning have achieved promising results on this task. Experimentally, we observe that the over-smoothing problem reduces the capacity of these powerful PLMs, leading to sub-optimal sentence representations. In this paper, we present a Simple method named Self-Contrastive Learning (SSCL) to alleviate this issue, which samples negatives from PLMs intermediate layers, improving the quality of the sentence representation. Our proposed method is quite simple and can be easily extended to various state-of-the-art models for performance boosting, which can be seen as a plug-and-play contrastive framework for learning unsupervised sentence representation. Extensive results prove that SSCL brings the superior performance improvements of different strong baselines (e.g., BERT and SimCSE) on Semantic Textual Similarity and Transfer datasets. Our codes are available at https://github.com/nuochenpku/SSCL.
[ "cs.CL" ]
false
2305.05133
2023-05-09T02:38:05Z
Generating Phishing Attacks using ChatGPT
[ "Sayak Saha Roy", "Krishna Vamsi Naragam", "Shirin Nilizadeh" ]
The ability of ChatGPT to generate human-like responses and understand context has made it a popular tool for conversational agents, content creation, data analysis, and research and innovation. However, its effectiveness and ease of accessibility makes it a prime target for generating malicious content, such as phishing attacks, that can put users at risk. In this work, we identify several malicious prompts that can be provided to ChatGPT to generate functional phishing websites. Through an iterative approach, we find that these phishing websites can be made to imitate popular brands and emulate several evasive tactics that have been known to avoid detection by anti-phishing entities. These attacks can be generated using vanilla ChatGPT without the need of any prior adversarial exploits (jailbreaking).
[ "cs.CR", "cs.CL" ]
false
2305.05162
2023-05-09T04:14:20Z
Effective Medical Code Prediction via Label Internal Alignment
[ "Guodong Liu" ]
The clinical notes are usually typed into the system by physicians. They are typically required to be marked by standard medical codes, and each code represents a diagnosis or medical treatment procedure. Annotating these notes is time consuming and prone to error. In this paper, we proposed a multi-view attention based Neural network to predict medical codes from clinical texts. Our method incorporates three aspects of information, the semantic context of the clinical text, the relationship among the label (medical codes) space, and the alignment between each pair of a clinical text and medical code. Our method is verified to be effective on the open source dataset. The experimental result shows that our method achieves better performance against the prior state-of-art on multiple metrics.
[ "cs.LG", "cs.CL" ]
false
2305.05183
2023-05-09T05:33:31Z
CSED: A Chinese Semantic Error Diagnosis Corpus
[ "Bo Sun", "Baoxin Wang", "Yixuan Wang", "Wanxiang Che", "Dayong Wu", "Shijin Wang", "Ting Liu" ]
Recently, much Chinese text error correction work has focused on Chinese Spelling Check (CSC) and Chinese Grammatical Error Diagnosis (CGED). In contrast, little attention has been paid to the complicated problem of Chinese Semantic Error Diagnosis (CSED), which lacks relevant datasets. The study of semantic errors is important because they are very common and may lead to syntactic irregularities or even problems of comprehension. To investigate this, we build the CSED corpus, which includes two datasets. The one is for the CSED-Recognition (CSED-R) task. The other is for the CSED-Correction (CSED-C) task. Our annotation guarantees high-quality data through quality assurance mechanisms. Our experiments show that powerful pre-trained models perform poorly on this corpus. We also find that the CSED task is challenging, as evidenced by the fact that even humans receive a low score. This paper proposes syntax-aware models to specifically adapt to the CSED task. The experimental results show that the introduction of the syntax-aware approach is meaningful.
[ "cs.CL", "cs.AI" ]
false
2305.05191
2023-05-09T05:56:58Z
COLA: Contextualized Commonsense Causal Reasoning from the Causal Inference Perspective
[ "Zhaowei Wang", "Quyet V. Do", "Hongming Zhang", "Jiayao Zhang", "Weiqi Wang", "Tianqing Fang", "Yangqiu Song", "Ginny Y. Wong", "Simon See" ]
Detecting commonsense causal relations (causation) between events has long been an essential yet challenging task. Given that events are complicated, an event may have different causes under various contexts. Thus, exploiting context plays an essential role in detecting causal relations. Meanwhile, previous works about commonsense causation only consider two events and ignore their context, simplifying the task formulation. This paper proposes a new task to detect commonsense causation between two events in an event sequence (i.e., context), called contextualized commonsense causal reasoning. We also design a zero-shot framework: COLA (Contextualized Commonsense Causality Reasoner) to solve the task from the causal inference perspective. This framework obtains rich incidental supervision from temporality and balances covariates from multiple timestamps to remove confounding effects. Our extensive experiments show that COLA can detect commonsense causality more accurately than baselines.
[ "cs.CL", "cs.AI" ]
false
2305.05290
2023-05-09T09:28:23Z
Dialogue Planning via Brownian Bridge Stochastic Process for Goal-directed Proactive Dialogue
[ "Jian Wang", "Dongding Lin", "Wenjie Li" ]
Goal-directed dialogue systems aim to proactively reach a pre-determined target through multi-turn conversations. The key to achieving this task lies in planning dialogue paths that smoothly and coherently direct conversations towards the target. However, this is a challenging and under-explored task. In this work, we propose a coherent dialogue planning approach that uses a stochastic process to model the temporal dynamics of dialogue paths. We define a latent space that captures the coherence of goal-directed behavior using a Brownian bridge process, which allows us to incorporate user feedback flexibly in dialogue planning. Based on the derived latent trajectories, we generate dialogue paths explicitly using pre-trained language models. We finally employ these paths as natural language prompts to guide dialogue generation. Our experiments show that our approach generates more coherent utterances and achieves the goal with a higher success rate.
[ "cs.CL", "cs.LG" ]
false
2305.05311
2023-05-09T10:03:34Z
Structured Sentiment Analysis as Transition-based Dependency Parsing
[ "Daniel Fernández-González" ]
Structured sentiment analysis (SSA) aims to automatically extract people's opinions from a text in natural language and adequately represent that information in a graph structure. One of the most accurate methods for performing SSA was recently proposed and consists of approaching it as a dependency parsing task. Although we can find in the literature how transition-based algorithms excel in dependency parsing in terms of accuracy and efficiency, all proposed attempts to tackle SSA following that approach were based on graph-based models. In this article, we present the first transition-based method to address SSA as dependency parsing. Specifically, we design a transition system that processes the input text in a left-to-right pass, incrementally generating the graph structure containing all identified opinions. To effectively implement our final transition-based model, we resort to a Pointer Network architecture as a backbone. From an extensive evaluation, we demonstrate that our model offers the best performance to date in practically all cases among prior dependency-based methods, and surpass recent task-specific techniques on the most challenging datasets. We additionally include an in-depth analysis and empirically prove that the overall time-complexity cost of our approach is quadratic in the sentence length, being more efficient than top-performing graph-based parsers.
[ "cs.CL", "cs.AI", "68T50", "I.2.7" ]
false
2305.05325
2023-05-09T10:21:14Z
Detection of depression on social networks using transformers and ensembles
[ "Ilija Tavchioski", "Marko Robnik-Šikonja", "Senja Pollak" ]
As the impact of technology on our lives is increasing, we witness increased use of social media that became an essential tool not only for communication but also for sharing information with community about our thoughts and feelings. This can be observed also for people with mental health disorders such as depression where they use social media for expressing their thoughts and asking for help. This opens a possibility to automatically process social media posts and detect signs of depression. We build several large pre-trained language model based classifiers for depression detection from social media posts. Besides fine-tuning BERT, RoBERTA, BERTweet, and mentalBERT were also construct two types of ensembles. We analyze the performance of our models on two data sets of posts from social platforms Reddit and Twitter, and investigate also the performance of transfer learning across the two data sets. The results show that transformer ensembles improve over the single transformer-based classifiers.
[ "cs.CL", "cs.AI" ]
false
2305.05393
2023-05-09T12:40:19Z
CaseEncoder: A Knowledge-enhanced Pre-trained Model for Legal Case Encoding
[ "Yixiao Ma", "Yueyue Wu", "Weihang Su", "Qingyao Ai", "Yiqun Liu" ]
Legal case retrieval is a critical process for modern legal information systems. While recent studies have utilized pre-trained language models (PLMs) based on the general domain self-supervised pre-training paradigm to build models for legal case retrieval, there are limitations in using general domain PLMs as backbones. Specifically, these models may not fully capture the underlying legal features in legal case documents. To address this issue, we propose CaseEncoder, a legal document encoder that leverages fine-grained legal knowledge in both the data sampling and pre-training phases. In the data sampling phase, we enhance the quality of the training data by utilizing fine-grained law article information to guide the selection of positive and negative examples. In the pre-training phase, we design legal-specific pre-training tasks that align with the judging criteria of relevant legal cases. Based on these tasks, we introduce an innovative loss function called Biased Circle Loss to enhance the model's ability to recognize case relevance in fine grains. Experimental results on multiple benchmarks demonstrate that CaseEncoder significantly outperforms both existing general pre-training models and legal-specific pre-training models in zero-shot legal case retrieval.
[ "cs.IR", "cs.CL" ]
false
2305.05474
2023-05-09T14:21:29Z
Going beyond research datasets: Novel intent discovery in the industry setting
[ "Aleksandra Chrabrowa", "Tsimur Hadeliya", "Dariusz Kajtoch", "Robert Mroczkowski", "Piotr Rybak" ]
Novel intent discovery automates the process of grouping similar messages (questions) to identify previously unknown intents. However, current research focuses on publicly available datasets which have only the question field and significantly differ from real-life datasets. This paper proposes methods to improve the intent discovery pipeline deployed in a large e-commerce platform. We show the benefit of pre-training language models on in-domain data: both self-supervised and with weak supervision. We also devise the best method to utilize the conversational structure (i.e., question and answer) of real-life datasets during fine-tuning for clustering tasks, which we call Conv. All our methods combined to fully utilize real-life datasets give up to 33pp performance boost over state-of-the-art Constrained Deep Adaptive Clustering (CDAC) model for question only. By comparison CDAC model for the question data only gives only up to 13pp performance boost over the naive baseline.
[ "cs.CL", "cs.LG" ]
false
2305.05576
2023-05-09T16:05:36Z
Large Language Models Humanize Technology
[ "Pratyush Kumar" ]
Large Language Models (LLMs) have made rapid progress in recent months and weeks, garnering significant public attention. This has sparked concerns about aligning these models with human values, their impact on labor markets, and the potential need for regulation in further research and development. However, the discourse often lacks a focus on the imperative to widely diffuse the societal benefits of LLMs. To qualify this societal benefit, we assert that LLMs exhibit emergent abilities to humanize technology more effectively than previous technologies, and for people across language, occupation, and accessibility divides. We argue that they do so by addressing three mechanizing bottlenecks in today's computing technologies: creating diverse and accessible content, learning complex digital tools, and personalizing machine learning algorithms. We adopt a case-based approach and illustrate each bottleneck with two examples where current technology imposes bottlenecks that LLMs demonstrate the ability to address. Given this opportunity to humanize technology widely, we advocate for more widespread understanding of LLMs, tools and methods to simplify use of LLMs, and cross-cutting institutional capacity.
[ "cs.CY", "cs.CL" ]
false
2305.05609
2023-05-09T16:58:32Z
The Case Records of ChatGPT: Language Models and Complex Clinical Questions
[ "Timothy Poterucha", "Pierre Elias", "Christopher M. Haggerty" ]
Background: Artificial intelligence language models have shown promise in various applications, including assisting with clinical decision-making as demonstrated by strong performance of large language models on medical licensure exams. However, their ability to solve complex, open-ended cases, which may be representative of clinical practice, remains unexplored. Methods: In this study, the accuracy of large language AI models GPT4 and GPT3.5 in diagnosing complex clinical cases was investigated using published Case Records of the Massachusetts General Hospital. A total of 50 cases requiring a diagnosis and diagnostic test published from January 1, 2022 to April 16, 2022 were identified. For each case, models were given a prompt requesting the top three specific diagnoses and associated diagnostic tests, followed by case text, labs, and figure legends. Model outputs were assessed in comparison to the final clinical diagnosis and whether the model-predicted test would result in a correct diagnosis. Results: GPT4 and GPT3.5 accurately provided the correct diagnosis in 26% and 22% of cases in one attempt, and 46% and 42% within three attempts, respectively. GPT4 and GPT3.5 provided a correct essential diagnostic test in 28% and 24% of cases in one attempt, and 44% and 50% within three attempts, respectively. No significant differences were found between the two models, and multiple trials with identical prompts using the GPT3.5 model provided similar results. Conclusions: In summary, these models demonstrate potential usefulness in generating differential diagnoses but remain limited in their ability to provide a single unifying diagnosis in complex, open-ended cases. Future research should focus on evaluating model performance in larger datasets of open-ended clinical challenges and exploring potential human-AI collaboration strategies to enhance clinical decision-making.
[ "cs.CL", "stat.AP" ]
false
2305.06159
2023-05-09T17:55:29Z
A Review of Vision-Language Models and their Performance on the Hateful Memes Challenge
[ "Bryan Zhao", "Andrew Zhang", "Blake Watson", "Gillian Kearney", "Isaac Dale" ]
Moderation of social media content is currently a highly manual task, yet there is too much content posted daily to do so effectively. With the advent of a number of multimodal models, there is the potential to reduce the amount of manual labor for this task. In this work, we aim to explore different models and determine what is most effective for the Hateful Memes Challenge, a challenge by Meta designed to further machine learning research in content moderation. Specifically, we explore the differences between early fusion and late fusion models in classifying multimodal memes containing text and images. We first implement a baseline using unimodal models for text and images separately using BERT and ResNet-152, respectively. The outputs from these unimodal models were then concatenated together to create a late fusion model. In terms of early fusion models, we implement ConcatBERT, VisualBERT, ViLT, CLIP, and BridgeTower. It was found that late fusion performed significantly worse than early fusion models, with the best performing model being CLIP which achieved an AUROC of 70.06. The code for this work is available at https://github.com/bzhao18/CS-7643-Project.
[ "cs.CL", "cs.AI" ]
false
2305.05098
2023-05-09T00:01:32Z
Who Needs Decoders? Efficient Estimation of Sequence-level Attributes
[ "Yassir Fathullah", "Puria Radmard", "Adian Liusie", "Mark J. F. Gales" ]
State-of-the-art sequence-to-sequence models often require autoregressive decoding, which can be highly expensive. However, for some downstream tasks such as out-of-distribution (OOD) detection and resource allocation, the actual decoding output is not needed just a scalar attribute of this sequence. In these scenarios, where for example knowing the quality of a system's output to predict poor performance prevails over knowing the output itself, is it possible to bypass the autoregressive decoding? We propose Non-Autoregressive Proxy (NAP) models that can efficiently predict general scalar-valued sequence-level attributes. Importantly, NAPs predict these metrics directly from the encodings, avoiding the expensive autoregressive decoding stage. We consider two sequence-to-sequence task: Machine Translation (MT); and Automatic Speech Recognition (ASR). In OOD for MT, NAPs outperform a deep ensemble while being significantly faster. NAPs are also shown to be able to predict performance metrics such as BERTScore (MT) or word error rate (ASR). For downstream tasks, such as data filtering and resource optimization, NAPs generate performance predictions that outperform predictive uncertainty while being highly inference efficient.
[ "cs.LG", "cs.AI", "cs.CL" ]
false
2305.05176
2023-05-09T05:11:02Z
FrugalGPT: How to Use Large Language Models While Reducing Cost and Improving Performance
[ "Lingjiao Chen", "Matei Zaharia", "James Zou" ]
There is a rapidly growing number of large language models (LLMs) that users can query for a fee. We review the cost associated with querying popular LLM APIs, e.g. GPT-4, ChatGPT, J1-Jumbo, and find that these models have heterogeneous pricing structures, with fees that can differ by two orders of magnitude. In particular, using LLMs on large collections of queries and text can be expensive. Motivated by this, we outline and discuss three types of strategies that users can exploit to reduce the inference cost associated with using LLMs: 1) prompt adaptation, 2) LLM approximation, and 3) LLM cascade. As an example, we propose FrugalGPT, a simple yet flexible instantiation of LLM cascade which learns which combinations of LLMs to use for different queries in order to reduce cost and improve accuracy. Our experiments show that FrugalGPT can match the performance of the best individual LLM (e.g. GPT-4) with up to 98% cost reduction or improve the accuracy over GPT-4 by 4% with the same cost. The ideas and findings presented here lay a foundation for using LLMs sustainably and efficiently.
[ "cs.LG", "cs.AI", "cs.CL", "cs.SE" ]
true
2305.05201
2023-05-09T06:28:10Z
Exploration of Language Dependency for Japanese Self-Supervised Speech Representation Models
[ "Takanori Ashihara", "Takafumi Moriya", "Kohei Matsuura", "Tomohiro Tanaka" ]
Self-supervised learning (SSL) has been dramatically successful not only in monolingual but also in cross-lingual settings. However, since the two settings have been studied individually in general, there has been little research focusing on how effective a cross-lingual model is in comparison with a monolingual model. In this paper, we investigate this fundamental question empirically with Japanese automatic speech recognition (ASR) tasks. First, we begin by comparing the ASR performance of cross-lingual and monolingual models for two different language tasks while keeping the acoustic domain as identical as possible. Then, we examine how much unlabeled data collected in Japanese is needed to achieve performance comparable to a cross-lingual model pre-trained with tens of thousands of hours of English and/or multilingual data. Finally, we extensively investigate the effectiveness of SSL in Japanese and demonstrate state-of-the-art performance on multiple ASR tasks. Since there is no comprehensive SSL study for Japanese, we hope this study will guide Japanese SSL research.
[ "cs.CL", "cs.SD", "eess.AS" ]
false
2305.05271
2023-05-09T08:51:44Z
Robust Acoustic and Semantic Contextual Biasing in Neural Transducers for Speech Recognition
[ "Xuandi Fu", "Kanthashree Mysore Sathyendra", "Ankur Gandhe", "Jing Liu", "Grant P. Strimel", "Ross McGowan", "Athanasios Mouchtaris" ]
Attention-based contextual biasing approaches have shown significant improvements in the recognition of generic and/or personal rare-words in End-to-End Automatic Speech Recognition (E2E ASR) systems like neural transducers. These approaches employ cross-attention to bias the model towards specific contextual entities injected as bias-phrases to the model. Prior approaches typically relied on subword encoders for encoding the bias phrases. However, subword tokenizations are coarse and fail to capture granular pronunciation information which is crucial for biasing based on acoustic similarity. In this work, we propose to use lightweight character representations to encode fine-grained pronunciation features to improve contextual biasing guided by acoustic similarity between the audio and the contextual entities (termed acoustic biasing). We further integrate pretrained neural language model (NLM) based encoders to encode the utterance's semantic context along with contextual entities to perform biasing informed by the utterance's semantic context (termed semantic biasing). Experiments using a Conformer Transducer model on the Librispeech dataset show a 4.62% - 9.26% relative WER improvement on different biasing list sizes over the baseline contextual model when incorporating our proposed acoustic and semantic biasing approach. On a large-scale in-house dataset, we observe 7.91% relative WER improvement compared to our baseline model. On tail utterances, the improvements are even more pronounced with 36.80% and 23.40% relative WER improvements on Librispeech rare words and an in-house testset respectively.
[ "cs.CL", "cs.LG", "cs.SD", "eess.AS" ]
false
2305.05364
2023-05-09T11:55:36Z
Large Language Model Programs
[ "Imanol Schlag", "Sainbayar Sukhbaatar", "Asli Celikyilmaz", "Wen-tau Yih", "Jason Weston", "Jürgen Schmidhuber", "Xian Li" ]
In recent years, large pre-trained language models (LLMs) have demonstrated the ability to follow instructions and perform novel tasks from a few examples. The possibility to parameterise an LLM through such in-context examples widens their capability at a much lower cost than finetuning. We extend this line of reasoning and present a method which further expands the capabilities of an LLM by embedding it within an algorithm or program. To demonstrate the benefits of this approach, we present an illustrative example of evidence-supported question-answering. We obtain a 6.4\% improvement over the chain of thought baseline through a more algorithmic approach without any finetuning. Furthermore, we highlight recent work from this perspective and discuss the advantages and disadvantages in comparison to the standard approaches.
[ "cs.LG", "cs.AI", "cs.CL" ]
true
2305.05754
2023-05-09T20:23:17Z
When and What to Ask Through World States and Text Instructions: IGLU NLP Challenge Solution
[ "Zhengxiang Shi", "Jerome Ramos", "To Eun Kim", "Xi Wang", "Hossein A. Rahmani", "Aldo Lipani" ]
In collaborative tasks, effective communication is crucial for achieving joint goals. One such task is collaborative building where builders must communicate with each other to construct desired structures in a simulated environment such as Minecraft. We aim to develop an intelligent builder agent to build structures based on user input through dialogue. However, in collaborative building, builders may encounter situations that are difficult to interpret based on the available information and instructions, leading to ambiguity. In the NeurIPS 2022 Competition NLP Task, we address two key research questions, with the goal of filling this gap: when should the agent ask for clarification, and what clarification questions should it ask? We move towards this target with two sub-tasks, a classification task and a ranking task. For the classification task, the goal is to determine whether the agent should ask for clarification based on the current world state and dialogue history. For the ranking task, the goal is to rank the relevant clarification questions from a pool of candidates. In this report, we briefly introduce our methods for the classification and ranking task. For the classification task, our model achieves an F1 score of 0.757, which placed the 3rd on the leaderboard. For the ranking task, our model achieves about 0.38 for Mean Reciprocal Rank by extending the traditional ranking model. Lastly, we discuss various neural approaches for the ranking task and future direction.
[ "cs.CL", "cs.AI", "cs.LG" ]
false
2305.05759
2023-05-09T20:37:16Z
Ranking & Reweighting Improves Group Distributional Robustness
[ "Yachuan Liu", "Bohan Zhang", "Qiaozhu Mei", "Paramveer Dhillon" ]
Recent work has shown that standard training via empirical risk minimization (ERM) can produce models that achieve high accuracy on average but low accuracy on underrepresented groups due to the prevalence of spurious features. A predominant approach to tackle this group robustness problem minimizes the worst group error (akin to a minimax strategy) on the training data, hoping it will generalize well on the testing data. However, this is often suboptimal, especially when the out-of-distribution (OOD) test data contains previously unseen groups. Inspired by ideas from the information retrieval and learning-to-rank literature, this paper first proposes to use Discounted Cumulative Gain (DCG) as a metric of model quality for facilitating better hyperparameter tuning and model selection. Being a ranking-based metric, DCG weights multiple poorly-performing groups (instead of considering just the group with the worst performance). As a natural next step, we build on our results to propose a ranking-based training method called Discounted Rank Upweighting (DRU), which differentially reweights a ranked list of poorly-performing groups in the training data to learn models that exhibit strong OOD performance on the test data. Results on several synthetic and real-world datasets highlight the superior generalization ability of our group-ranking-based (akin to soft-minimax) approach in selecting and learning models that are robust to group distributional shifts.
[ "cs.LG", "cs.AI", "cs.CL", "stat.ML" ]
false
2305.07445
2023-05-09T07:21:46Z
QVoice: Arabic Speech Pronunciation Learning Application
[ "Yassine El Kheir", "Fouad Khnaisser", "Shammur Absar Chowdhury", "Hamdy Mubarak", "Shazia Afzal", "Ahmed Ali" ]
This paper introduces a novel Arabic pronunciation learning application QVoice, powered with end-to-end mispronunciation detection and feedback generator module. The application is designed to support non-native Arabic speakers in enhancing their pronunciation skills, while also helping native speakers mitigate any potential influence from regional dialects on their Modern Standard Arabic (MSA) pronunciation. QVoice employs various learning cues to aid learners in comprehending meaning, drawing connections with their existing knowledge of English language, and offers detailed feedback for pronunciation correction, along with contextual examples showcasing word usage. The learning cues featured in QVoice encompass a wide range of meaningful information, such as visualizations of phrases/words and their translations, as well as phonetic transcriptions and transliterations. QVoice provides pronunciation feedback at the character level and assesses performance at the word level.
[ "eess.AS", "cs.CL", "cs.SD" ]
false
2305.05116
2023-05-09T01:29:46Z
Communication-Robust Multi-Agent Learning by Adaptable Auxiliary Multi-Agent Adversary Generation
[ "Lei Yuan", "Feng Chen", "Zhongzhang Zhang", "Yang Yu" ]
Communication can promote coordination in cooperative Multi-Agent Reinforcement Learning (MARL). Nowadays, existing works mainly focus on improving the communication efficiency of agents, neglecting that real-world communication is much more challenging as there may exist noise or potential attackers. Thus the robustness of the communication-based policies becomes an emergent and severe issue that needs more exploration. In this paper, we posit that the ego system trained with auxiliary adversaries may handle this limitation and propose an adaptable method of Multi-Agent Auxiliary Adversaries Generation for robust Communication, dubbed MA3C, to obtain a robust communication-based policy. In specific, we introduce a novel message-attacking approach that models the learning of the auxiliary attacker as a cooperative problem under a shared goal to minimize the coordination ability of the ego system, with which every information channel may suffer from distinct message attacks. Furthermore, as naive adversarial training may impede the generalization ability of the ego system, we design an attacker population generation approach based on evolutionary learning. Finally, the ego system is paired with an attacker population and then alternatively trained against the continuously evolving attackers to improve its robustness, meaning that both the ego system and the attackers are adaptable. Extensive experiments on multiple benchmarks indicate that our proposed MA3C provides comparable or better robustness and generalization ability than other baselines.
[ "cs.LG" ]
false
2305.05495
2023-05-09T14:47:16Z
Self-Supervised Anomaly Detection of Rogue Soil Moisture Sensors
[ "Boje Deforce", "Bart Baesens", "Jan Diels", "Estefanía Serral Asensio" ]
IoT data is a central element in the successful digital transformation of agriculture. However, IoT data comes with its own set of challenges. E.g., the risk of data contamination due to rogue sensors. A sensor is considered rogue when it provides incorrect measurements over time. To ensure correct analytical results, an essential preprocessing step when working with IoT data is the detection of such rogue sensors. Existing methods assume that well-behaving sensors are known or that a large majority of the sensors is well-behaving. However, real-world data is often completely unlabeled and voluminous, calling for self-supervised methods that can detect rogue sensors without prior information. We present a self-supervised anomalous sensor detector based on a neural network with a contrastive loss, followed by DBSCAN. A core contribution of our paper is the use of Dynamic Time Warping in the negative sampling for the triplet loss. This novelty makes the use of triplet networks feasible for anomalous sensor detection. Our method shows promising results on a challenging dataset of soil moisture sensors deployed in multiple pear orchards.
[ "cs.LG" ]
false
2305.05518
2023-05-09T15:16:50Z
Minimal Learning Machine for Multi-Label Learning
[ "Joonas Hämäläinen", "Amauri Souza", "César L. C. Mattos", "João P. P. Gomes", "Tommi Kärkkäinen" ]
Distance-based supervised method, the minimal learning machine, constructs a predictive model from data by learning a mapping between input and output distance matrices. In this paper, we propose methods and evaluate how this technique and its core component, the distance mapping, can be adapted to multi-label learning. The proposed approach is based on combining the distance mapping with an inverse distance weighting. Although the proposal is one of the simplest methods in the multi-label learning literature, it achieves state-of-the-art performance for small to moderate-sized multi-label learning problems. Besides its simplicity, the proposed method is fully deterministic and its hyper-parameter can be selected via ranking loss-based statistic which has a closed form, thus avoiding conventional cross-validation-based hyper-parameter tuning. In addition, due to its simple linear distance mapping-based construction, we demonstrate that the proposed method can assess predictions' uncertainty for multi-label classification, which is a valuable capability for data-centric machine learning pipelines.
[ "cs.LG" ]
false
2305.05110
2023-05-09T00:46:12Z
Semi-Supervised Federated Learning for Keyword Spotting
[ "Enmao Diao", "Eric W. Tramel", "Jie Ding", "Tao Zhang" ]
Keyword Spotting (KWS) is a critical aspect of audio-based applications on mobile devices and virtual assistants. Recent developments in Federated Learning (FL) have significantly expanded the ability to train machine learning models by utilizing the computational and private data resources of numerous distributed devices. However, existing FL methods typically require that devices possess accurate ground-truth labels, which can be both expensive and impractical when dealing with local audio data. In this study, we first demonstrate the effectiveness of Semi-Supervised Federated Learning (SSL) and FL for KWS. We then extend our investigation to Semi-Supervised Federated Learning (SSFL) for KWS, where devices possess completely unlabeled data, while the server has access to a small amount of labeled data. We perform numerical analyses using state-of-the-art SSL, FL, and SSFL techniques to demonstrate that the performance of KWS models can be significantly improved by leveraging the abundant unlabeled heterogeneous data available on devices.
[ "cs.LG", "eess.AS" ]
false
2305.05111
2023-05-09T00:55:09Z
When a CBR in Hand is Better than Twins in the Bush
[ "Mobyen Uddin Ahmed", "Shaibal Barua", "Shahina Begum", "Mir Riyanul Islam", "Rosina O Weber" ]
AI methods referred to as interpretable are often discredited as inaccurate by supporters of the existence of a trade-off between interpretability and accuracy. In many problem contexts however this trade-off does not hold. This paper discusses a regression problem context to predict flight take-off delays where the most accurate data regression model was trained via the XGBoost implementation of gradient boosted decision trees. While building an XGB-CBR Twin and converting the XGBoost feature importance into global weights in the CBR model, the resultant CBR model alone provides the most accurate local prediction, maintains the global importance to provide a global explanation of the model, and offers the most interpretable representation for local explanations. This resultant CBR model becomes a benchmark of accuracy and interpretability for this problem context, and hence it is used to evaluate the two additive feature attribute methods SHAP and LIME to explain the XGBoost regression model. The results with respect to local accuracy and feature attribution lead to potentially valuable future work.
[ "cs.LG", "cs.AI" ]
false
2305.05128
2023-05-09T02:16:48Z
A Kriging-Random Forest Hybrid Model for Real-time Ground Property Prediction during Earth Pressure Balance Shield Tunneling
[ "Ziheng Geng", "Chao Zhang", "Yuhao Ren", "Minxiang Zhu", "Renpeng Chen", "Hongzhan Cheng" ]
A kriging-random forest hybrid model is developed for real-time ground property prediction ahead of the earth pressure balanced shield by integrating Kriging extrapolation and random forest, which can guide shield operating parameter selection thereby mitigate construction risks. The proposed KRF algorithm synergizes two types of information: prior information and real-time information. The previously predicted ground properties with EPB operating parameters are extrapolated via the Kriging algorithm to provide prior information for the prediction of currently being excavated ground properties. The real-time information refers to the real-time operating parameters of the EPB shield, which are input into random forest to provide a real-time prediction of ground properties. The integration of these two predictions is achieved by assigning weights to each prediction according to their uncertainties, ensuring the prediction of KRF with minimum uncertainty. The performance of the KRF algorithm is assessed via a case study of the Changsha Metro Line 4 project. It reveals that the proposed KRF algorithm can predict ground properties with an accuracy of 93%, overperforming the existing algorithms of LightGBM, AdaBoost-CART, and DNN by 29%, 8%, and 12%, respectively. Another dataset from Shenzhen Metro Line 13 project is utilized to further evaluate the model generalization performance, revealing that the model can transfer its learned knowledge from one region to another with an accuracy of 89%.
[ "cs.LG", "cs.AI" ]
false