repo
stringclasses
32 values
instance_id
stringlengths
13
37
base_commit
stringlengths
40
40
patch
stringlengths
1
1.89M
test_patch
stringclasses
1 value
problem_statement
stringlengths
304
69k
hints_text
stringlengths
0
246k
created_at
stringlengths
20
20
version
stringclasses
1 value
FAIL_TO_PASS
stringclasses
1 value
PASS_TO_PASS
stringclasses
1 value
environment_setup_commit
stringclasses
1 value
traceback
stringlengths
64
23.4k
__index_level_0__
int64
29
19k
DataDog/integrations-core
DataDog__integrations-core-446
0b9be7366a08b2fa1b83c036d823d8848762770f
diff --git a/postgres/check.py b/postgres/check.py --- a/postgres/check.py +++ b/postgres/check.py @@ -651,14 +651,17 @@ def _get_custom_metrics(self, custom_metrics, key): self.log.debug("Metric: {0}".format(m)) - for ref, (_, mtype) in m['metrics'].iteritems(): - cap_mtype = mtype.upper() - if cap_mtype not in ('RATE', 'GAUGE', 'MONOTONIC'): - raise CheckException("Collector method {0} is not known." - " Known methods are RATE, GAUGE, MONOTONIC".format(cap_mtype)) - - m['metrics'][ref][1] = getattr(PostgreSql, cap_mtype) - self.log.debug("Method: %s" % (str(mtype))) + try: + for ref, (_, mtype) in m['metrics'].iteritems(): + cap_mtype = mtype.upper() + if cap_mtype not in ('RATE', 'GAUGE', 'MONOTONIC'): + raise CheckException("Collector method {0} is not known." + " Known methods are RATE, GAUGE, MONOTONIC".format(cap_mtype)) + + m['metrics'][ref][1] = getattr(PostgreSql, cap_mtype) + self.log.debug("Method: %s" % (str(mtype))) + except Exception as e: + raise CheckException("Error processing custom metric '{}': {}".format(m, e)) self.custom_metrics[key] = custom_metrics return custom_metrics
[postgres] Improve config reading errors I had this `postgres.yaml`: ``` init_config: instances: - host: pepepe ... custom_metrics: - query: SELECT %s FROM pg_locks WHERE granted = false; metrics: count(distinct pid): [postgresql.connections_locked] descriptors: [] relation: false ``` with a few other hosts and custom metrics. When deploying this I got the following error: ``` 2017-02-13 15:33:14 UTC | ERROR | dd.collector | checks.postgres(__init__.py:762) | Check 'postgres' instance #0 failed Traceback (most recent call last): File "/opt/datadog-agent/agent/checks/__init__.py", line 745, in run self.check(copy.deepcopy(instance)) File "/opt/datadog-agent/agent/checks.d/postgres.py", line 606, in check custom_metrics = self._get_custom_metrics(instance.get('custom_metrics', []), key) File "/opt/datadog-agent/agent/checks.d/postgres.py", line 576, in _get_custom_metrics for ref, (_, mtype) in m['metrics'].iteritems(): ValueError: need more than 1 value to unpack ``` This was caused by a missing metric type in the yaml above i.e. it should have been `[postgresql.connections_locked, GAUGE]`. Because the error message is unclear and also doesn't point to the offending metric (remember I have other hosts and custom metrics), it took me a couple of hours to figure out the cause of this error. Please consider improving the error messages around config reading.
Thanks a lot for this report @mausch! We can't validate the config in a consistent manner, which makes something like this tricky to make the error better. We will work on making this a lot better in the future. However, what we can do in the very near future is make the documentation both online and in the config yaml itself a lot better. The documentation for the postgres check does not make it clear how to use the custom metrics very well, so better documentation will definitely help to assuage this issue! Thanks again for your report, we really appreciate this and I will add this to our issue board. > We can't validate the config in a consistent manner Not sure what this means exactly, but generally speaking a good error message should give the user enough context so that they can readily fix it. Better docs are great, but ultimately people will always make mistakes when defining complex config so you need good error messages. In this particular case, it could be as easy as wrapping the iteration in `_get_custom_metrics` with a `try..except` and in the exception handler wrap the exception with another one that displays the metric being processed (e.g. `raise CheckException("Error processing custom metric: " + str(m)) from e`) More generally, avoiding partial functions (like tuple unpacking in Python) makes it much easier to validate input and report errors correctly. Adding to our queue, this would make the life of support engineers much easier, thanks for reporting and for the suggestions.
2017-05-29T13:10:25Z
[]
[]
Traceback (most recent call last): File "/opt/datadog-agent/agent/checks/__init__.py", line 745, in run self.check(copy.deepcopy(instance)) File "/opt/datadog-agent/agent/checks.d/postgres.py", line 606, in check custom_metrics = self._get_custom_metrics(instance.get('custom_metrics', []), key) File "/opt/datadog-agent/agent/checks.d/postgres.py", line 576, in _get_custom_metrics for ref, (_, mtype) in m['metrics'].iteritems(): ValueError: need more than 1 value to unpack
29
DataDog/integrations-core
DataDog__integrations-core-5659
3b850d826a2f245e9dcc8a1d87d5e2343123882e
diff --git a/datadog_checks_base/datadog_checks/base/checks/win/wmi/__init__.py b/datadog_checks_base/datadog_checks/base/checks/win/wmi/__init__.py --- a/datadog_checks_base/datadog_checks/base/checks/win/wmi/__init__.py +++ b/datadog_checks_base/datadog_checks/base/checks/win/wmi/__init__.py @@ -114,14 +114,15 @@ def _get_tag_query_tag(self, sampler, wmi_obj, tag_query): target_class, target_property, filters = self._format_tag_query(sampler, wmi_obj, tag_query) # Create a specific sampler - tag_query_sampler = WMISampler(self.log, target_class, [target_property], filters=filters, **sampler.connection) + with WMISampler( + self.log, target_class, [target_property], filters=filters, **sampler.connection + ) as tag_query_sampler: + tag_query_sampler.sample() - tag_query_sampler.sample() + # Extract tag + self._raise_on_invalid_tag_query_result(tag_query_sampler, wmi_obj, tag_query) - # Extract tag - self._raise_on_invalid_tag_query_result(tag_query_sampler, wmi_obj, tag_query) - - link_value = str(tag_query_sampler[0][target_property]).lower() + link_value = str(tag_query_sampler[0][target_property]).lower() tag = "{tag_name}:{tag_value}".format(tag_name=target_property.lower(), tag_value="_".join(link_value.split())) @@ -235,14 +236,17 @@ def _get_instance_key(self, host, namespace, wmi_class, other=None): return "{host}:{namespace}:{wmi_class}".format(host=host, namespace=namespace, wmi_class=wmi_class) - def _get_wmi_sampler(self, instance_key, wmi_class, properties, tag_by="", **kwargs): + def _get_running_wmi_sampler(self, instance_key, wmi_class, properties, tag_by="", **kwargs): """ - Create and cache a WMISampler for the given (class, properties) + Return a running WMISampler for the given (class, properties). + + If no matching WMISampler is running yet, start one and cache it. """ properties = list(properties) + [tag_by] if tag_by else list(properties) if instance_key not in self.wmi_samplers: wmi_sampler = WMISampler(self.log, wmi_class, properties, **kwargs) + wmi_sampler.start() self.wmi_samplers[instance_key] = wmi_sampler return self.wmi_samplers[instance_key] diff --git a/datadog_checks_base/datadog_checks/base/checks/win/wmi/sampler.py b/datadog_checks_base/datadog_checks/base/checks/win/wmi/sampler.py --- a/datadog_checks_base/datadog_checks/base/checks/win/wmi/sampler.py +++ b/datadog_checks_base/datadog_checks/base/checks/win/wmi/sampler.py @@ -105,6 +105,7 @@ def __init__( # Sampling state self._sampling = False + self._stopping = False self.logger = logger @@ -146,12 +147,35 @@ def __init__( self._runSampleEvent = Event() self._sampleCompleteEvent = Event() - thread = Thread(target=self._query_sample_loop, name=class_name) - thread.daemon = True + def start(self): + """ + Start internal thread for sampling + """ + thread = Thread(target=self._query_sample_loop, name=self.class_name) + thread.daemon = True # Python 2 does not support daemon as Thread constructor parameter thread.start() + def stop(self): + """ + Dispose of the internal thread + """ + self._stopping = True + self._runSampleEvent.set() + self._sampleCompleteEvent.wait() + + def __enter__(self): + self.start() + return self + + def __exit__(self, type, value, traceback): + self.stop() + def _query_sample_loop(self): try: + # Initialize COM for the current (dedicated) thread + # WARNING: any python COM object (locator, connection, etc) created in a thread + # shouldn't be used in other threads (can lead to memory/handle leaks if done + # without a deep knowledge of COM's threading model). pythoncom.CoInitialize() except Exception as e: self.logger.info("exception in CoInitialize: %s", e) @@ -159,6 +183,11 @@ def _query_sample_loop(self): while True: self._runSampleEvent.wait() + if self._stopping: + self.logger.debug("_query_sample_loop stopping") + self._sampleCompleteEvent.set() + return + self._runSampleEvent.clear() if self.is_raw_perf_class and not self._previous_sample: self._current_sample = self._query() @@ -335,11 +364,6 @@ def get_connection(self): self.username, ) - # Initialize COM for the current thread - # WARNING: any python COM object (locator, connection, etc) created in a thread - # shouldn't be used in other threads (can lead to memory/handle leaks if done - # without a deep knowledge of COM's threading model). Because of this and given - # that we run each query in its own thread, we don't cache connections additional_args = [] if self.provider != ProviderArchitecture.DEFAULT: diff --git a/win32_event_log/datadog_checks/win32_event_log/win32_event_log.py b/win32_event_log/datadog_checks/win32_event_log/win32_event_log.py --- a/win32_event_log/datadog_checks/win32_event_log/win32_event_log.py +++ b/win32_event_log/datadog_checks/win32_event_log/win32_event_log.py @@ -115,7 +115,7 @@ def check(self, instance): filters.append(query) - wmi_sampler = self._get_wmi_sampler( + wmi_sampler = self._get_running_wmi_sampler( instance_key, self.EVENT_CLASS, event_properties, diff --git a/wmi_check/datadog_checks/wmi_check/wmi_check.py b/wmi_check/datadog_checks/wmi_check/wmi_check.py --- a/wmi_check/datadog_checks/wmi_check/wmi_check.py +++ b/wmi_check/datadog_checks/wmi_check/wmi_check.py @@ -52,7 +52,7 @@ def check(self, instance): metric_name_and_type_by_property, properties = self._get_wmi_properties(instance_key, metrics, tag_queries) - wmi_sampler = self._get_wmi_sampler( + wmi_sampler = self._get_running_wmi_sampler( instance_key, wmi_class, properties,
WMI integration throws Exception: SWbemLocator Not enough storage is available to process this command ```text =============== Agent (v7.16.0) =============== Status date: 2020-02-05 15:56:45.740020 GMT Agent start: 2020-02-05 15:03:08.601503 GMT Pid: 25188 Go Version: go1.12.9 Python Version: 3.7.4 Build arch: amd64 Host Info ========= bootTime: 2020-01-30 09:06:55.000000 GMT os: windows platform: Windows Server 2016 Datacenter platformFamily: Windows Server 2016 Datacenter platformVersion: 10.0 Build 14393 procs: 255 uptime: 149h56m12s wmi_check (1.6.0) ``` **Steps to reproduce the issue:** The WMI Check integration is configured to capture metrics for multiple instances of a specific process and tag them using the command line, as below ```yaml - class: Win32_PerfFormattedData_PerfProc_Process metrics: - - ThreadCount - proc.threads.count - gauge - - VirtualBytes - proc.mem.virtual - gauge - - PrivateBytes - proc.mem.private - gauge - - WorkingSet - proc.mem.workingset - gauge - - PageFaultsPerSec - proc.mem.page_faults_per_sec - gauge - - PercentProcessorTime - proc.cpu_pct - gauge - - IOReadBytesPerSec - proc.io.bytes_read - gauge - - IOWriteBytesPerSec - proc.io.bytes_written - gauge filters: - Name: Calastone.Core.MessageAdapter.Console% tag_by: Name tag_queries: - [IDProcess, Win32_Process, Handle, CommandLine] ``` There are 17 instances of the process running. **Describe the results you received:** - After a period of time (can be 40+ minutes) the following error starts to be logged ``` 2020-02-04 16:31:29 GMT | CORE | WARN | (pkg/collector/python/datadog_agent.go:118 in LogMessage) | wmi_check:a7174f61bd7a5360 | (sampler.py:469) | Failed to execute WMI query (Select CommandLine from Win32_Process WHERE ( Handle = '8408' )) Traceback (most recent call last): File "C:\Program Files\Datadog\Datadog Agent\embedded3\lib\site-packages\datadog_checks\base\checks\win\wmi\sampler.py", line 464, in _query raw_results = self.get_connection().ExecQuery(wql, "WQL", query_flags) File "C:\Program Files\Datadog\Datadog Agent\embedded3\lib\site-packages\datadog_checks\base\checks\win\wmi\sampler.py", line 351, in get_connection connection = locator.ConnectServer(self.host, self.namespace, self.username, self.password, *additional_args) File "<COMObject WbemScripting.SWbemLocator>", line 5, in ConnectServer File "C:\Program Files\Datadog\Datadog Agent\embedded3\lib\site-packages\win32com\client\dynamic.py", line 287, in _ApplyTypes_ result = self._oleobj_.InvokeTypes(*(dispid, LCID, wFlags, retType, argTypes) + args) pywintypes.com_error: (-2147352567, 'Exception occurred.', (0, 'SWbemLocator', 'Not enough storage is available to process this command. ', None, 0, -2147024888), None) 2020-02-04 16:31:29 GMT | CORE | WARN | (pkg/collector/python/datadog_agent.go:118 in LogMessage) | wmi_check:a7174f61bd7a5360 | (__init__.py:88) | Failed to extract a tag from `tag_queries` parameter: no result was returned. wmi_object={'threadcount': 27.0, 'virtualbytes': 823386112.0, 'privatebytes': 304635904.0, 'workingset': 367628288.0, 'pagefaultspersec': 0.0, 'percentprocessortime': 0.0, 'ioreadbytespersec': 0.0, 'iowritebytespersec': 0.0, 'idprocess': 8408.0, 'name': 'Calastone.Core.MessageAdapter.Console#3'} - query=['IDProcess', 'Win32_Process', 'Handle', 'CommandLine'] 2020-02-04 16:31:29 GMT | CORE | WARN | (pkg/collector/python/datadog_agent.go:118 in LogMessage) | wmi_check:a7174f61bd7a5360 | (sampler.py:469) | Failed to execute WMI query (Select CommandLine from Win32_Process WHERE ( Handle = '14836' )) ``` - The number of threads used by the agent process is observed to be rocketing (> 1700) - The server becomes unresponsive **Diagnosis:** This issue didn't occur on the previous version of the agent we were using (6.7.0). Looking at the source code suggests the problem was introduced as part of #3987 https://github.com/DataDog/integrations-core/blob/010ed622d62c9dd7de28d76f1191a4be5960a965/datadog_checks_base/datadog_checks/base/checks/win/wmi/__init__.py#L117 creates a WMISampler for EVERY tag query that needs to be run. With the new logic that creates a thread for each query that is never released! **Solution:** The follow hack fixes the problem. I'll put it into a PR. Change `sampler.py` ```python def _query_sample_loop(self): ... while True: self._runSampleEvent.wait() if self._stopping: return def dispose(self): """ Dispose of the internal thread """ self._stopping = True self._runSampleEvent.set() ``` Change `__init__.py` ```python def _get_tag_query_tag(self, sampler, wmi_obj, tag_query): ... tag = "{tag_name}:{tag_value}".format(tag_name=target_property.lower(), tag_value="_".join(link_value.split())) tag_query_sampler.dispose() ``` There also looks to be scope to cache these WMISampler classes like the main metric samplers. Also the connection created in `get_connection` could be created in the sampler thread method since it is now bound to that thread
2020-02-06T12:16:14Z
[]
[]
Traceback (most recent call last): File "C:\Program Files\Datadog\Datadog Agent\embedded3\lib\site-packages\datadog_checks\base\checks\win\wmi\sampler.py", line 464, in _query raw_results = self.get_connection().ExecQuery(wql, "WQL", query_flags) File "C:\Program Files\Datadog\Datadog Agent\embedded3\lib\site-packages\datadog_checks\base\checks\win\wmi\sampler.py", line 351, in get_connection connection = locator.ConnectServer(self.host, self.namespace, self.username, self.password, *additional_args) File "<COMObject WbemScripting.SWbemLocator>", line 5, in ConnectServer File "C:\Program Files\Datadog\Datadog Agent\embedded3\lib\site-packages\win32com\client\dynamic.py", line 287, in _ApplyTypes_ result = self._oleobj_.InvokeTypes(*(dispid, LCID, wFlags, retType, argTypes) + args) pywintypes.com_error: (-2147352567, 'Exception occurred.', (0, 'SWbemLocator', 'Not enough storage is available to process this command. ', None, 0, -2147024888), None)
36
DataDog/integrations-core
DataDog__integrations-core-9857
8006a053c108af2cf1988efe23db8f58df8262dc
diff --git a/mongo/datadog_checks/mongo/collectors/custom_queries.py b/mongo/datadog_checks/mongo/collectors/custom_queries.py --- a/mongo/datadog_checks/mongo/collectors/custom_queries.py +++ b/mongo/datadog_checks/mongo/collectors/custom_queries.py @@ -56,8 +56,10 @@ def _collect_custom_metrics_for_query(self, api, raw_query): mongo_query = deepcopy(raw_query.get('query')) if not mongo_query: # no cov raise ValueError("Custom query field `query` is required") + # The mongo command to run (find, aggregate, count...) mongo_command = self._extract_command_from_mongo_query(mongo_query) - collection_name = mongo_query[mongo_command] + # The value of the command, it is usually the collection name on which to run the query. + mongo_command_value = mongo_query[mongo_command] del mongo_query[mongo_command] if mongo_command not in ALLOWED_CUSTOM_QUERIES_COMMANDS: raise ValueError("Custom query command must be of type {}".format(ALLOWED_CUSTOM_QUERIES_COMMANDS)) @@ -90,20 +92,26 @@ def _collect_custom_metrics_for_query(self, api, raw_query): if field_type not in ALLOWED_CUSTOM_METRICS_TYPES + ['tag']: raise ValueError('Field `type` must be one of {}'.format(ALLOWED_CUSTOM_METRICS_TYPES + ['tag'])) - tags = list(tags) - tags.extend(raw_query.get('tags', [])) - tags.append('collection:{}'.format(collection_name)) - try: # This is where it is necessary to extract the command and its argument from the query to pass it as the # first two params. - result = db.command(mongo_command, collection_name, **mongo_query) + result = db.command(mongo_command, mongo_command_value, **mongo_query) if result['ok'] == 0: raise pymongo.errors.PyMongoError(result['errmsg']) except pymongo.errors.PyMongoError: self.log.error("Failed to run custom query for metric %s", metric_prefix) raise + # `1` is Mongo default value for commands that are collection agnostics. + if str(mongo_command_value) == '1': + # https://github.com/mongodb/mongo-python-driver/blob/01e34cebdb9aac96c72ddb649e9b0040a0dfd3a0/pymongo/aggregation.py#L208 + collection_name = '{}.{}'.format(db_name, mongo_command) + else: + collection_name = mongo_command_value + + tags.append('collection:{}'.format(collection_name)) + tags.extend(raw_query.get('tags', [])) + if mongo_command == 'count': # A count query simply returns a number, no need to iterate through it. submit_method(metric_prefix, result['n'], tags)
MongoDB: Collection-agnostic aggregations like $currentOp doesn't work Agent 7.29.1, running on Ubuntu Linux 18.04. **Steps to reproduce the issue:** Add the following configuration to `/etc/datadog-agent/conf.d/mongo.d/conf.yaml` and restart the agent: ``` custom_queries: - metric_prefix: mongodb.custom.queries_slower_than_60sec run_on_secondary: true query: { "aggregate": 1, "maxTimeMS": 1000, "pipeline": [ { "$currentOp": { "allUsers": true }}, { "$match": { "active": true, "secs_running": {"$gt": 60}}} ], "cursor": {}} fields: - field_name: secs_running name: secs_running type: gauge - field_name: appName name: app_name type: tag - field_name: ns name: mongo_op_namespace type: tag ``` **Describe the results you received:** When Datadog attempts to run this command, it produces an error (found via `journalctl`): ``` Traceback (most recent call last): 2021-07-22 06:44:38 UTC | CORE | WARN | (pkg/collector/python/datadog_agent.go:122 in LogMessage) | mongo:375a6f2e54dabf11 | (custom_queries.py:153) | Errors while collecting custom metrics with prefix mongodb.custom.queries_slower_than_60sec TypeError: name must be an instance of str raise TypeError("name must be an instance " File "/opt/datadog-agent/embedded/lib/python3.8/site-packages/pymongo/collection.py", line 160, in __init__ pymongo.collection.Collection(db, collection_name), result['cursor'], None File "/opt/datadog-agent/embedded/lib/python3.8/site-packages/datadog_checks/mongo/collectors/custom_queries.py", line 113, in _collect_custom_metrics_for_query self._collect_custom_metrics_for_query(api, raw_query) File "/opt/datadog-agent/embedded/lib/python3.8/site-packages/datadog_checks/mongo/collectors/custom_queries.py", line 150, in collect ``` **Describe the results you expected:** I would like to be able to send information about slow queries to Datadog. **Additional information you deem important (e.g. issue happens only occasionally):** It seems like the problem here is that when using this syntax to run an admin aggregation like `$currentOp`, you have to specify `"aggregate": 1` in the query to indicate that there is no associated collection. However, the API that Datadog is calling in pymongo expects the collection name to always be a string. Unfortunately, `"aggregate": "1"` is not equivalent and will fail. More details on the syntax: https://docs.mongodb.com/manual/reference/command/aggregate/
Hey @atodd-circleci Acknowledging the limitation, I'm able to reproduce. I'm thinking we should be able to work around that by putting `$cmd.aggregate` instead of "1" as the collection name here: https://github.com/DataDog/integrations-core/blob/master/mongo/datadog_checks/mongo/collectors/custom_queries.py#L113 but I'd have to confirm that @FlorianVeaux Thanks for taking a look so quickly. I manually edited `custom_queries.py` on my installation to replace `collection_name` with the literal `$cmd.aggregate`. It seems to have worked. When I start the agent, I see this in the log: ``` Exception: Custom query returned an empty result set. raise Exception('Custom query returned an empty result set.') File "/opt/datadog-agent/embedded/lib/python3.8/site-packages/datadog_checks/mongo/collectors/custom_queries.py", line 145, in _collect_custom_metrics_for_query self._collect_custom_metrics_for_query(api, raw_query) File "/opt/datadog-agent/embedded/lib/python3.8/site-packages/datadog_checks/mongo/collectors/custom_queries.py", line 150, in collect Traceback (most recent call last): 2021-07-27 05:20:05 UTC | CORE | WARN | (pkg/collector/python/datadog_agent.go:122 in LogMessage) | mongo:<redacted> | (custom_queries.py:153) | Errors while collecting custom metrics with prefix mongodb.custom.queries_slower_than_60sec ``` I'm not expecting any results, so this is good. I can't really go around manually editing our installations this way, though, so I'm looking forward to a more permanent fix. (I am a little concerned about having all of these exceptions in the system log, as well. I'll have to look at using [$count](https://docs.mongodb.com/manual/reference/operator/aggregation/count/) to always output a count instead of what I'm doing now).
2021-08-05T15:17:59Z
[]
[]
Traceback (most recent call last): 2021-07-22 06:44:38 UTC | CORE | WARN | (pkg/collector/python/datadog_agent.go:122 in LogMessage) | mongo:375a6f2e54dabf11 | (custom_queries.py:153) | Errors while collecting custom metrics with prefix mongodb.custom.queries_slower_than_60sec TypeError: name must be an instance of str
58
Lightning-AI/lightning
Lightning-AI__lightning-1360
ebd9fc9530242e1c9b5f3093dc62ceb4185735b0
diff --git a/pytorch_lightning/loggers/wandb.py b/pytorch_lightning/loggers/wandb.py --- a/pytorch_lightning/loggers/wandb.py +++ b/pytorch_lightning/loggers/wandb.py @@ -65,10 +65,11 @@ def __init__(self, name: Optional[str] = None, save_dir: Optional[str] = None, def __getstate__(self): state = self.__dict__.copy() + # args needed to reload correct experiment + state['_id'] = self._experiment.id if self._experiment is not None else None + # cannot be pickled state['_experiment'] = None - # args needed to reload correct experiment - state['_id'] = self.experiment.id return state @property @@ -87,7 +88,7 @@ def experiment(self) -> Run: os.environ['WANDB_MODE'] = 'dryrun' self._experiment = wandb.init( name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous, - id=self._id, resume='allow', tags=self._tags, entity=self._entity) + reinit=True, id=self._id, resume='allow', tags=self._tags, entity=self._entity) # save checkpoints in wandb dir to upload on W&B servers if self._log_model: self.save_dir = self._experiment.dir @@ -109,8 +110,11 @@ def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> @property def name(self) -> str: - return self.experiment.project_name() + # don't create an experiment if we don't have one + name = self._experiment.project_name() if self._experiment else None + return name @property def version(self) -> str: - return self.experiment.id + # don't create an experiment if we don't have one + return self._experiment.id if self._experiment else None
WandbLogger cannot be used with 'ddp' <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug wandb modifies `init` such that a child process calling init returns None if the master process has called init. This seems to cause a bug with ddp, and results in rank zero having experiment = None, which crashes the program. ### To Reproduce Can be reproduced with the basic MNIST gpu template, simply add a WandbLogger and pass 'ddp' as the distributed backend. ``` -- Process 0 terminated with the following error: Traceback (most recent call last): File "/home/rmrao/anaconda3/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap fn(i, *args) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 331, in ddp_train self.run_pretrain_routine(model) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 757, in run_pretrain_routine self.logger.log_hyperparams(ref_model.hparams) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/logging/base.py", line 14, in wrapped_fn fn(self, *args, **kwargs) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/logging/wandb.py", line 79, in log_hyperparams self.experiment.config.update(params) AttributeError: 'NoneType' object has no attribute 'config' ``` This occurs with the latest wandb version and with pytorch-lightning 0.6.
Hi! thanks for your contribution!, great first issue! Some hacky solutions: calling `reinit=True` for wandb, adding or this terrible hack: ```python def init_ddp_connection(self, *args, **kwargs): super().init_ddp_connection(*args, **kwargs) if torch.distributed.get_rank() == 0: import wandb wandb.run = None ``` These both seem to only kind-of work and result in multiple independent calls to wandb.init. I think the ideal solution is that the experiment is only ever initialized on rank zero. *However* doing this means that wandb *cannot* be initialized in the master thread at all. Better than this probably requires some changes to the wandb API. Following up slightly - my hacky solution doesn't really work. It's easy enough though to get the rank zero only solution to work. If this seems like a reasonable solution, let me know and I'll submit a PR. well, have observed some issues with `wandb` earlier #906 could you check it? Hmm, I think this is a slightly different issue (I'm running on Ubuntu so I don't think that's the issue). Pickling also works correctly. This particular problem I think stems from this part of the `wandb.init(...)` code: ```python def init(...): ... # If a thread calls wandb.init() it will get the same Run object as # the parent. If a child process with distinct memory space calls # wandb.init(), it won't get an error, but it will get a result of # None. # This check ensures that a child process can safely call wandb.init() # after a parent has (only the parent will create the Run object). # This doesn't protect against the case where the parent doesn't call # wandb.init but two children do. if run or os.getenv(env.INITED): return run ``` Child processes end up getting `None` for the wandb run object, which causes logging to fail. There are probably two reasonable and complementary solutions: 1. The main thread should avoid creating a wandb experiment unless absolutely necessary. Right now, [this](https://github.com/PyTorchLightning/pytorch-lightning/blob/e586ed47674fd78b158322bb7b14d00aeb912abd/pytorch_lightning/loggers/wandb.py#L63-L69) is the only part of the logging code that the parent thread calls (I assume it's called when pickling): ```python def __getstate__(self): state = self.__dict__.copy() # cannot be pickled state['_experiment'] = None # args needed to reload correct experiment state['_id'] = self.experiment.id return state ``` If this is changed to: ```python def __getstate__(self): state = self.__dict__.copy() # args needed to reload correct experiment if self._experiment is not None: state['_id'] = self._experiment.id else: state['_id'] = None # cannot be pickled state['_experiment'] = None return state ``` That will ensure that unless the user explicitly logs something or creates the wandb experiment first, then the main thread will not try to create an experiment. Since subsequent logging / saving code is wrapped by the `@rank_zero_only` decorator, this will generally solve the issue in the base case. It's also possible that [these properties](https://github.com/PyTorchLightning/pytorch-lightning/blob/e586ed47674fd78b158322bb7b14d00aeb912abd/pytorch_lightning/loggers/wandb.py#L112-L118) are also called by master. Ideally they would be wrapped to not create the experiment unless it had been already created (i.e. experiment should only be created by a function that is wrapped with the `@rank_zero_only` decorator). 2. If the main thread *has* created an experiment, rank zero should be passed the re-init argument. `wandb` does allow you to reinitialize the experiment. I tried to play around with this a little bit and got some errors, but in theory adding this: ```python wandb.init(..., reinit=dist.is_available() and dist.is_initialized() and dist.get_rank() == 0) ``` should force a re-initialization when wandb is already initialzed for rank zero.
2020-04-03T13:32:07Z
[]
[]
Traceback (most recent call last): File "/home/rmrao/anaconda3/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap fn(i, *args) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 331, in ddp_train self.run_pretrain_routine(model) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 757, in run_pretrain_routine self.logger.log_hyperparams(ref_model.hparams) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/logging/base.py", line 14, in wrapped_fn fn(self, *args, **kwargs) File "/home/rmrao/anaconda3/lib/python3.6/site-packages/pytorch_lightning/logging/wandb.py", line 79, in log_hyperparams self.experiment.config.update(params) AttributeError: 'NoneType' object has no attribute 'config'
104
Lightning-AI/lightning
Lightning-AI__lightning-1377
b8ff9bc1d242a18f5e7147f34d63f43fcdd0e50a
diff --git a/pytorch_lightning/loggers/tensorboard.py b/pytorch_lightning/loggers/tensorboard.py --- a/pytorch_lightning/loggers/tensorboard.py +++ b/pytorch_lightning/loggers/tensorboard.py @@ -9,6 +9,7 @@ from torch.utils.tensorboard import SummaryWriter from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only +from pytorch_lightning import _logger as log class TensorBoardLogger(LightningLoggerBase): @@ -163,6 +164,11 @@ def version(self) -> int: def _get_next_version(self): root_dir = os.path.join(self.save_dir, self.name) + + if not os.path.isdir(root_dir): + log.warning('Missing logger folder: %s', root_dir) + return 0 + existing_versions = [] for d in os.listdir(root_dir): if os.path.isdir(os.path.join(root_dir, d)) and d.startswith("version_"):
Tensorboard logger error: lightning_logs directory not exists in multi-node DDP on nodes with rank != 0 ## ๐Ÿ› Bug In multi-node DDP train mode on all nodes except rank 0 errors appears at the start of the training caused by accessing lightning_logs directory in tensorboard logger which is not exist at the moment. ### To Reproduce Steps to reproduce the behavior: 1. setup multi-node cluster (without SLURM) 2. set environment variables on each node: ``` export MASTER_ADDR=<rank 0 node IP> export MASTER_PORT=23456 export RANK=<node id> export SLURM_NODEID=<node id> export WORLD_SIZE=<world-size> ``` 3. install dependencies: ``` pip install torch torchvision hydra-core pytorch-lightning ``` 4. copy app.y and conf.yaml to each node 5. run script on each node ``` python app.py ``` 6. see the error: ``` Exception: -- Process 0 terminated with the following error: Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap fn(i, *args) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 342, in ddp_train self.run_pretrain_routine(model) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 777, in run_pretrain_routine self.configure_checkpoint_callback() File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/trainer/callback_config.py", line 45, in configure_checkpoint_callback f'version_{self.logger.version}', File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/loggers/tensorboard.py", line 161, in version self._version = self._get_next_version() File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/loggers/tensorboard.py", line 167, in _get_next_version for d in os.listdir(root_dir): FileNotFoundError: [Errno 2] No such file or directory: '/home/ubuntu/pytorch-lightning-intro-guide/outputs/2020-04-04/15-53-26/lightning_logs' ``` #### Code sample app.py: ``` import pathlib import hydra import pytorch_lightning as pl import torch from omegaconf import OmegaConf from torch.nn import functional as F from torch.optim import Adam from torch.utils.data import DataLoader, random_split from torchvision import datasets, transforms class LitMNIST(pl.LightningModule): def __init__(self): super().__init__() self.layer_1 = torch.nn.Linear(28 * 28, 128) self.layer_2 = torch.nn.Linear(128, 256) self.layer_3 = torch.nn.Linear(256, 10) self.train_dataset = None self.val_dataset = None self.test_dataset = None def forward(self, x): batch_size, channels, width, height = x.size() x = x.view(batch_size, -1) x = self.layer_1(x) x = F.relu(x) x = self.layer_2(x) x = F.relu(x) x = self.layer_3(x) x = F.log_softmax(x, dim=1) return x def prepare_data(self): # transform transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # download data_dir = pathlib.Path.home() / 'data' mnist_train = datasets.MNIST(data_dir, train=True, download=True, transform=transform) mnist_test = datasets.MNIST(data_dir, train=False, download=True, transform=transform) # train/val split mnist_train, mnist_val = random_split(mnist_train, [55000, 5000]) # assign to use in dataloaders self.train_dataset = mnist_train self.val_dataset = mnist_val self.test_dataset = mnist_test def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=64) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=64) def test_dataloader(self): return DataLoader(self.test_dataset, batch_size=64) def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) # add logging logs = {'loss': loss} return {'loss': loss, 'log': logs} def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) return {'val_loss': loss} def validation_epoch_end(self, outputs): avg_loss = torch.stack( # pylint: disable=no-member [x['val_loss'] for x in outputs]).mean() tensorboard_logs = {'val_loss': avg_loss} return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} def test_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) return {'val_loss': loss} def test_epoch_end(self, outputs): avg_loss = torch.stack( # pylint: disable=no-member [x['val_loss'] for x in outputs]).mean() tensorboard_logs = {'val_loss': avg_loss} return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} def init_ddp_connection(self, proc_rank: int, world_size: int) -> None: torch.distributed.init_process_group( 'nccl', rank=proc_rank, world_size=world_size) @hydra.main(config_path='conf.yaml') def main(conf: OmegaConf): model = LitMNIST() trainer = pl.Trainer(gpus=conf.gpus, num_nodes=conf.num_nodes, distributed_backend=conf.distributed_backend, max_epochs=3) trainer.fit(model) if __name__ == '__main__': main() # pylint: disable=no-value-for-parameter ``` conf.yaml: ``` gpus: 1 num_nodes: 2 distributed_backend: ddp ``` ### Expected behavior Train should go without error ### Environment ``` cuda: GPU: Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 available: True version: 10.1 packages: numpy: 1.18.1 pyTorch_debug: False pyTorch_version: 1.4.0 pytorch-lightning: 0.7.1 tensorboard: 2.2.0 tqdm: 4.45.0 system: OS: Linux architecture: 64bit processor: x86_64 python: 3.6.10 version: #113-Ubuntu SMP Wed Jan 29 14:54:54 UTC 2020 ``` ### Additional context <!-- Add any other context about the problem here. -->
2020-04-04T16:35:26Z
[]
[]
Traceback (most recent call last): File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap fn(i, *args) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 342, in ddp_train self.run_pretrain_routine(model) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 777, in run_pretrain_routine self.configure_checkpoint_callback() File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/trainer/callback_config.py", line 45, in configure_checkpoint_callback f'version_{self.logger.version}', File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/loggers/tensorboard.py", line 161, in version self._version = self._get_next_version() File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.6/site-packages/pytorch_lightning/loggers/tensorboard.py", line 167, in _get_next_version for d in os.listdir(root_dir): FileNotFoundError: [Errno 2] No such file or directory: '/home/ubuntu/pytorch-lightning-intro-guide/outputs/2020-04-04/15-53-26/lightning_logs'
105
Lightning-AI/lightning
Lightning-AI__lightning-1385
4ed3027309fe1882554e9b7ffe33f1aa92c88106
diff --git a/pytorch_lightning/trainer/distrib_data_parallel.py b/pytorch_lightning/trainer/distrib_data_parallel.py --- a/pytorch_lightning/trainer/distrib_data_parallel.py +++ b/pytorch_lightning/trainer/distrib_data_parallel.py @@ -363,15 +363,19 @@ def load_spawn_weights(self, original_model): :param model: :return: """ - # load weights saved in ddp - path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt') - loaded_model = original_model.__class__.load_from_checkpoint(path) - # copy loaded weights to old model - original_model.load_state_dict(loaded_model.state_dict()) + loaded_model = original_model - # remove ddp weights - os.remove(path) + if self.proc_rank == 0: + # load weights saved in ddp + path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt') + loaded_model = original_model.__class__.load_from_checkpoint(path) + + # copy loaded weights to old model + original_model.load_state_dict(loaded_model.state_dict()) + + # remove ddp weights + os.remove(path) return loaded_model
Trainer DDP should invoke load_spawn_weights() only in proc_rank == 0 ## ๐Ÿ› Bug Trainer DDP load_spawn_weights should happen only in proc_rank == 0 since only in this process (node) `save_spawn_weights` actually saves checkpoint ### To Reproduce Steps to reproduce the behavior: 1. setup two-node cluster. 1. set SLURM_NODEID on each node: '0' on node 0 and '1' on node 1. 2. run the script `python app.py` on each node. 3. see stdout on the node 1: ``` Traceback (most recent call last): File "app.py", line 166, in <module> main_() # pylint: disable=no-value-for-parameter File "app.py", line 162, in main_ trainer.fit(model) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 593, in fit self.load_spawn_weights(model) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 368, in load_spawn_weights loaded_model = original_model.__class__.load_from_checkpoint(path) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/pytorch_lightning/core/lightning.py", line 1353, in load_from_checkpoint checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/torch/serialization.py", line 525, in load with _open_file_like(f, 'rb') as opened_file: File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/torch/serialization.py", line 212, in _open_file_like return _open_file(name_or_buffer, mode) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/torch/serialization.py", line 193, in __init__ super(_open_file, self).__init__(open(name, mode)) FileNotFoundError: [Errno 2] No such file or directory: '/home/ubuntu/pytorch-lightning-intro-guide/__temp_weight_ddp_end.ckpt' ``` #### Code sample app.py: ``` import pathlib import pytorch_lightning as pl import torch from torch.nn import functional as F from torch.optim import Adam from torch.utils.data import DataLoader, random_split from torchvision import datasets, transforms class LitMNIST(pl.LightningModule): def __init__(self): super().__init__() self.layer_1 = torch.nn.Linear(28 * 28, 128) self.layer_2 = torch.nn.Linear(128, 256) self.layer_3 = torch.nn.Linear(256, 10) self.train_dataset = None self.val_dataset = None self.test_dataset = None def forward(self, x): batch_size, channels, width, height = x.size() x = x.view(batch_size, -1) x = self.layer_1(x) x = F.relu(x) x = self.layer_2(x) x = F.relu(x) x = self.layer_3(x) x = F.log_softmax(x, dim=1) return x def prepare_data(self): # transform transform = transforms.Compose( [transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]) # download data_dir = pathlib.Path.home() / 'data' mnist_train = datasets.MNIST(data_dir, train=True, download=True, transform=transform) mnist_test = datasets.MNIST(data_dir, train=False, download=True, transform=transform) # train/val split mnist_train, mnist_val = random_split(mnist_train, [55000, 5000]) # assign to use in dataloaders self.train_dataset = mnist_train self.val_dataset = mnist_val self.test_dataset = mnist_test def train_dataloader(self): return DataLoader(self.train_dataset, batch_size=64) def val_dataloader(self): return DataLoader(self.val_dataset, batch_size=64) def test_dataloader(self): return DataLoader(self.test_dataset, batch_size=64) def configure_optimizers(self): return Adam(self.parameters(), lr=1e-3) def training_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) # add logging logs = {'loss': loss} return {'loss': loss, 'log': logs} def validation_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) return {'val_loss': loss} def test_step(self, batch, batch_idx): x, y = batch logits = self(x) loss = F.nll_loss(logits, y) return {'val_loss': loss} def test_epoch_end(self, outputs): avg_loss = torch.stack( # pylint: disable=no-member [x['val_loss'] for x in outputs]).mean() tensorboard_logs = {'val_loss': avg_loss} return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} def init_ddp_connection(self, proc_rank: int, world_size: int) -> None: torch.distributed.init_process_group( 'nccl', rank=proc_rank, world_size=world_size) def main(): model = LitMNIST() gpus = 1 num_nodes = 2 trainer = pl.Trainer(gpus=gpus, num_nodes=num_nodes, distributed_backend='ddp', max_epochs=3) trainer.fit(model) if __name__ == '__main__': main() ``` ### Expected behavior All workers on all nodes should finish without errors. ### Environment On each node: ``` cuda: GPU: Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 Tesla K80 available: True version: 10.1 packages: numpy: 1.16.6 pyTorch_debug: False pyTorch_version: 1.4.0 pytorch-lightning: 0.7.1 tensorboard: 2.2.0 tqdm: 4.44.1 system: OS: Linux architecture: 64bit processor: x86_64 python: 3.7.7 version: #113-Ubuntu SMP Wed Jan 29 14:54:54 UTC 2020 ``` ### Additional context <!-- Add any other context about the problem here. -->
2020-04-05T23:51:47Z
[]
[]
Traceback (most recent call last): File "app.py", line 166, in <module> main_() # pylint: disable=no-value-for-parameter File "app.py", line 162, in main_ trainer.fit(model) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 593, in fit self.load_spawn_weights(model) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 368, in load_spawn_weights loaded_model = original_model.__class__.load_from_checkpoint(path) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/pytorch_lightning/core/lightning.py", line 1353, in load_from_checkpoint checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/torch/serialization.py", line 525, in load with _open_file_like(f, 'rb') as opened_file: File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/torch/serialization.py", line 212, in _open_file_like return _open_file(name_or_buffer, mode) File "/home/ubuntu/anaconda3/envs/nightly_pt/lib/python3.7/site-packages/torch/serialization.py", line 193, in __init__ super(_open_file, self).__init__(open(name, mode)) FileNotFoundError: [Errno 2] No such file or directory: '/home/ubuntu/pytorch-lightning-intro-guide/__temp_weight_ddp_end.ckpt'
107
Lightning-AI/lightning
Lightning-AI__lightning-1423
3f1e4b953f84ecdac7dada0c6b57d908efc9c3d3
diff --git a/pytorch_lightning/trainer/distrib_parts.py b/pytorch_lightning/trainer/distrib_parts.py --- a/pytorch_lightning/trainer/distrib_parts.py +++ b/pytorch_lightning/trainer/distrib_parts.py @@ -566,7 +566,7 @@ def check_gpus_data_type(gpus): :return: return unmodified gpus variable """ - if gpus is not None and type(gpus) not in (int, str, list): + if gpus is not None and (not isinstance(gpus, (int, str, list)) or isinstance(gpus, bool)): raise MisconfigurationException("GPUs must be int, string or list of ints or None.")
Use isinstance() instead of type() in trainer.distrib_parts.check_gpus_data_type <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug When instantiating a `Trainer` object, it makes sense to be able to pass a subclass of `list`. Ideally, this would be something even more general like `collections.abc.Sequence`, but I'm not too familiar with Lightning's codebase and that change would have a greater likelihood of breaking things. ### To Reproduce Instantiate a `Trainer` with the `gpus` parameter being a subclass of `list`. #### Code sample ```python >>> from pytorch_lightning import Trainer >>> class MyList(list): ... pass ... >>> gpus = MyList([0]) >>> t = Trainer(gpus=gpus) ``` This produces ``` Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/anaconda/miniconda3/envs/ai/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 366, in __init__ self.data_parallel_device_ids = parse_gpu_ids(self.gpus) File "/opt/anaconda/miniconda3/envs/ai/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 613, in parse_gpu_ids check_gpus_data_type(gpus) File "/opt/anaconda/miniconda3/envs/ai/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 561, in check_gpus_data_type raise MisconfigurationException("GPUs must be int, string or list of ints or None.") pytorch_lightning.utilities.debugging.MisconfigurationException: GPUs must be int, string or list of ints or None. ``` ### Expected behavior `Trainer` is instantiated normally as it would had a list been passed. ### Environment - PyTorch Version: 1.4.0 - PyTorch Lightning Version: 0.7.1 - OS: Ubuntu 19.10 - How you installed PyTorch: `pip` - Python version: 3.7 ### Potential Fix In `pytorch_lightning/trainer/distrib_parts.py` check types using `isinstance()` instead of `type()`: ```python def check_gpus_data_type(gpus): # if gpus is not None and type(gpus) not in (int, str, list): if gpus is not None and not isinstance(gpus, (int, str, list)): raise MisconfigurationException("GPUs must be int, string or list of ints or None.") ``` I'll put in a PR if this change sounds good
Hi! thanks for your contribution!, great first issue! I do like this shift from `type` to an `isinstance` which extend accepted types also to child... as always a good PR is always welcome cc: @PyTorchLightning/core-contributors @jeremyjordan
2020-04-09T09:44:35Z
[]
[]
Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/opt/anaconda/miniconda3/envs/ai/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 366, in __init__ self.data_parallel_device_ids = parse_gpu_ids(self.gpus) File "/opt/anaconda/miniconda3/envs/ai/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 613, in parse_gpu_ids check_gpus_data_type(gpus) File "/opt/anaconda/miniconda3/envs/ai/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 561, in check_gpus_data_type raise MisconfigurationException("GPUs must be int, string or list of ints or None.") pytorch_lightning.utilities.debugging.MisconfigurationException: GPUs must be int, string or list of ints or None.
111
Lightning-AI/lightning
Lightning-AI__lightning-1513
9b31272cf0f3079a244944096b4a81eec20fe555
diff --git a/pytorch_lightning/trainer/data_loading.py b/pytorch_lightning/trainer/data_loading.py --- a/pytorch_lightning/trainer/data_loading.py +++ b/pytorch_lightning/trainer/data_loading.py @@ -61,6 +61,7 @@ class TrainerDataLoadingMixin(ABC): train_percent_check: float val_percent_check: float test_percent_check: float + replace_sampler_ddp: bool @abstractmethod def is_overriden(self, *args): @@ -88,10 +89,8 @@ def auto_add_sampler(self, dataloader: DataLoader, train: bool) -> DataLoader: # don't do anything if it's not a dataloader if not isinstance(dataloader, DataLoader): return dataloader - - need_dist_sampler = self.use_ddp or self.use_ddp2 or self.use_tpu - - if need_dist_sampler: + need_dist_sampler = (self.use_ddp or self.use_ddp2 or self.use_tpu) + if self.replace_sampler_ddp and need_dist_sampler: skip_keys = ['sampler', 'batch_sampler', 'dataset_kind'] diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -127,6 +127,7 @@ def __init__( benchmark: bool = False, reload_dataloaders_every_epoch: bool = False, auto_lr_find: Union[bool, str] = False, + replace_sampler_ddp: bool = True, default_save_path=None, # backward compatible, todo: remove in v0.8.0 gradient_clip=None, # backward compatible, todo: remove in v0.8.0 nb_gpu_nodes=None, # backward compatible, todo: remove in v0.8.0 @@ -282,6 +283,9 @@ def __init__( rate in self.hparams.lr | self.hparams.learning_rate in the lightning module. To use a different key, set a string instead of True with the key name. + replace_sampler_ddp: Explicitly enables or disables sampler replacement. + If not specified this will toggled automatically ddp is used + benchmark: If true enables cudnn.benchmark. terminate_on_nan: If set to True, will terminate training (by raising a `ValueError`) at the @@ -362,6 +366,7 @@ def __init__( self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch self.auto_lr_find = auto_lr_find + self.replace_sampler_ddp = replace_sampler_ddp self.truncated_bptt_steps = truncated_bptt_steps self.resume_from_checkpoint = resume_from_checkpoint
0.7.3 breaks reusable dataloaders in DDP ## ๐Ÿ› Bug 0.7.3 breaks reusable dataloaders in DDP ``` Traceback (most recent call last): File "/opt/conda/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap fn(i, *args) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 345, in ddp_train self.run_pretrain_routine(model) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 864, in run_pretrain_routine self.train() File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 296, in train self.reset_train_dataloader(model) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/data_loading.py", line 128, in reset_train_dataloader self.train_dataloader = self.auto_add_sampler(self.train_dataloader, train=True) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/data_loading.py", line 112, in auto_add_sampler dataloader = type(dataloader)(**dl_args) File "../main/dataset.py", line 15, in __init__ super().__init__(*args, **kwargs) TypeError: __init__() got an unexpected keyword argument 'iterator' ``` #### Code sample ``` class _RepeatSampler(object): def __init__(self, sampler): self.sampler = sampler def __iter__(self): while True: yield from iter(self.sampler) class FastDataLoader(torch.utils.data.dataloader.DataLoader): def __init__(self, *args, **kwargs): super().__init__(*args, **kwargs) object.__setattr__(self, 'batch_sampler', _RepeatSampler(self.batch_sampler)) self.iterator = super().__iter__() def __len__(self): return len(self.batch_sampler.sampler) def __iter__(self): for i in range(len(self)): yield next(self.iterator) ``` replace Dataloader with FastDataLoader in lightning (this snippet is from https://github.com/pytorch/pytorch/issues/15849) ### Expected behavior Dataloaders initialize correctly and are reused between train/val/epochs (works as expected in 0.7.1) ### Probable Cause https://github.com/PyTorchLightning/pytorch-lightning/pull/1425
ummm yeah. we should change the dataloader swap with swapping a dataloader init from the class or not swipe the dataloder at all but set the correct sampler. @justusschock any ideas? This is a mixture of #1425 and #1346 And I don't think we can prevent this when we want to set correct samplers also in subclasses of `DataLoader`. We use all public attributes for reinitialization. The probably easiest fix for you, would be to change `self.iterator` to `self._iterator` to avoid passing this argument in reinit. If we just change the sampler, this might yield unexpected behaviour.
2020-04-17T07:59:07Z
[]
[]
Traceback (most recent call last): File "/opt/conda/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 19, in _wrap fn(i, *args) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 345, in ddp_train self.run_pretrain_routine(model) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 864, in run_pretrain_routine self.train() File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 296, in train self.reset_train_dataloader(model) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/data_loading.py", line 128, in reset_train_dataloader self.train_dataloader = self.auto_add_sampler(self.train_dataloader, train=True) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/data_loading.py", line 112, in auto_add_sampler dataloader = type(dataloader)(**dl_args) File "../main/dataset.py", line 15, in __init__ super().__init__(*args, **kwargs) TypeError: __init__() got an unexpected keyword argument 'iterator'
128
Lightning-AI/lightning
Lightning-AI__lightning-1582
5ab5084f7b9e137c1e7769228aaed8da92eaad6e
diff --git a/pytorch_lightning/loggers/base.py b/pytorch_lightning/loggers/base.py --- a/pytorch_lightning/loggers/base.py +++ b/pytorch_lightning/loggers/base.py @@ -280,6 +280,7 @@ class LoggerCollection(LightningLoggerBase): Args: logger_iterable: An iterable collection of loggers """ + def __init__(self, logger_iterable: Iterable[LightningLoggerBase]): super().__init__() self._logger_iterable = logger_iterable @@ -347,20 +348,28 @@ def merge_dicts( Examples: >>> import pprint - >>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1} - >>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1} - >>> d3 = {'a': 1.1, 'v': 2.3} + >>> d1 = {'a': 1.7, 'b': 2.0, 'c': 1, 'd': {'d1': 1, 'd3': 3}} + >>> d2 = {'a': 1.1, 'b': 2.2, 'v': 1, 'd': {'d1': 2, 'd2': 3}} + >>> d3 = {'a': 1.1, 'v': 2.3, 'd': {'d3': 3, 'd4': {'d5': 1}}} >>> dflt_func = min - >>> agg_funcs = {'a': np.mean, 'v': max} + >>> agg_funcs = {'a': np.mean, 'v': max, 'd': {'d1': sum}} >>> pprint.pprint(merge_dicts([d1, d2, d3], agg_funcs, dflt_func)) - {'a': 1.3, 'b': 2.0, 'c': 1, 'v': 2.3} + {'a': 1.3, + 'b': 2.0, + 'c': 1, + 'd': {'d1': 3, 'd2': 3, 'd3': 3, 'd4': {'d5': 1}}, + 'v': 2.3} """ - + agg_key_funcs = agg_key_funcs or dict() keys = list(functools.reduce(operator.or_, [set(d.keys()) for d in dicts])) d_out = {} for k in keys: - fn = agg_key_funcs.get(k, default_func) if agg_key_funcs else default_func - agg_val = fn([v for v in [d_in.get(k) for d_in in dicts] if v is not None]) - d_out[k] = agg_val + fn = agg_key_funcs.get(k) + values_to_agg = [v for v in [d_in.get(k) for d_in in dicts] if v is not None] + + if isinstance(values_to_agg[0], dict): + d_out[k] = merge_dicts(values_to_agg, fn, default_func) + else: + d_out[k] = (fn or default_func)(values_to_agg) return d_out
After update from 0.5.x to 0.7.3 merge_dicts #1278 sometimes breaks training ## ๐Ÿ› Bug After I updated from a quite old lightning version to the newest one, I sometimes get a TypeError from merge_dicts. I guess it's related to this MR #1278 . This Type error is deterministic, meaning it always occurs at the same global step during training. It somehow seems to be related to val_check_interval as well. For some data changing this value leads to no Error. But for other datasets this does not work. Also this only happens during training step, I suspect the training step after validating. ### To Reproduce Steps to reproduce the behavior: I have no Idea. ``` File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 363, in train self.run_training_epoch() File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 470, in run_training_epoch self.log_metrics(batch_step_metrics, grad_norm_dic) File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/trainer/logging.py", line 74, in log_metrics self.logger.agg_and_log_metrics(scalar_metrics, step=step) File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 128, in agg_and_log_metrics agg_step, metrics_to_log = self._aggregate_metrics(metrics=metrics, step=step) File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 101, in _aggregate_metrics agg_step, agg_mets = self._finalize_agg_metrics() File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 116, in _finalize_agg_metrics agg_mets = merge_dicts(self._metrics_to_agg, self._agg_key_funcs, self._agg_default_func) File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 347, in merge_dicts agg_val = fn([v for v in [d_in.get(k) for d_in in dicts] if v is not None]) File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/numpy/core/fromnumeric.py", line 3118, in mean out=out, **kwargs) File "/home/sebastian/.cache/pypoetry/virtualenvs/forgerydetection-iC5ox0X1-py3.7/lib/python3.7/site-packages/numpy/core/_methods.py", line 75, in _mean ret = umr_sum(arr, axis, dtype, out, keepdims) TypeError: unsupported operand type(s) for +: 'dict' and 'dict' ``` Sometimes its also 'dict' and 'int' ### Expected behavior At least should not break training, but maybe a more verbose message what is wrong. Its quite hard for me to debug, as the structure of the logs I'm returning to lightning does not change. ### Environment ``` cuda: GPU: GeForce RTX 2080 Ti GeForce RTX 2080 Ti GeForce RTX 2080 Ti GeForce RTX 2080 Ti GeForce RTX 2080 Ti GeForce RTX 2080 Ti GeForce RTX 2080 Ti GeForce RTX 2080 Ti available: True version: 10.1.243 packages: numpy: 1.16.4 pyTorch_debug: False pyTorch_version: 1.3.0 pytorch-lightning: 0.7.3 tensorboard: 2.2.0 tqdm: 4.45.0 system: OS: Linux architecture: 64bit ELF processor: x86_64 python: 3.7.7 version: #97~16.04.1-Ubuntu SMP Wed Apr 1 03:03:31 UTC 2020 ``` ### Additional context Also for some reason some runs have an issue with multiprocessing, but it does not break the training: ``` Traceback (most recent call last):โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 9/9 [00:00<00:00, 8.76it/s] File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/multiprocessing/util.py", line 277, in _run_finalizers finalizer() File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/multiprocessing/util.py", line 201, in __call__ res = self._callback(*self._args, **self._kwargs) File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/multiprocessing/util.py", line 110, in _remove_temp_dir rmtree(tempdir) File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/shutil.py", line 498, in rmtree onerror(os.rmdir, path, sys.exc_info()) File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/shutil.py", line 496, in rmtree os.rmdir(path) OSError: [Errno 39] Directory not empty: '/tmp/pymp-jcqai2xr' ```
Did you passed any 'agg_key_funcs' to the logger class? If I understand the code correctly, by default np.mean is used to aggregate the dict values returned during training. Maybe numpy tries in the mean function to *add* (+ func) values which can't be summed up? Can you maybe post the code snippets where you return the metrics to log in the lightning module and the initialization of the logger if you use one? If you don't use a logger, you can disable it by passing logger=False to the trainer (don't know if your previous version had logger on by default). Hope I can help :) Thanks for the quick reply! No I'm not using any 'agg_key_funcs' that I know of. > If I understand the code correctly, by default np.mean is used to aggregate the dict values returned during training. This only happens when there is a step in time where two times stuff is logged, right? So my guess is that at some point that is the case that two logs have to be "unified" but this fails, because I'm using "dict in dicts". I need this tho, because I want to have i.e. loss train and val in the same graph. I'm using the TestTubeLogger: ` logger = TestTubeLogger(save_dir=log_dir, name=name, description=description) ` and just pass this to the Trainer. The metric logging to lightning is a bit scattered: 1. train_step in model: ``` x, target = batch pred = self.forward(x) loss = self.loss(pred, target) lightning_log = {"loss": loss} with torch.no_grad(): train_acc = self.calculate_accuracy(pred, target) tensorboard_log = {"loss": loss, "acc": train_acc} return tensorboard_log, lightning_log ``` 2. this is passed to a function that lets me add train and val to same graph: ``` def _construct_lightning_log( self, tensorboard_log: dict, lightning_log: dict = None, suffix: str = "train", prefix: str = "metrics", ): lightning_log = lightning_log or {} fixed_log = {} for metric, value in tensorboard_log.items(): if isinstance(value, dict): fixed_log[f"{prefix}/{metric}"] = value else: fixed_log[f"{prefix}/{metric}"] = {suffix: value} return {"log": fixed_log, **lightning_log} ``` Do you pass it after training_step or training_epoch_end? I think lightning collects your logs and tries to aggregate it to one value. I can't test it now. Maybe tomorrow. But when I quickly type this into python interpreter: ``` >>> d={} >>> np.mean([d,d]) Traceback (most recent call last): File "<stdin>", line 1, in <module> File "<__array_function__ internals>", line 5, in mean File "/usr/lib/python3.8/site-packages/numpy/core/fromnumeric.py", line 3334, in mean return _methods._mean(a, axis=axis, dtype=dtype, File "/usr/lib/python3.8/site-packages/numpy/core/_methods.py", line 151, in _mean ret = umr_sum(arr, axis, dtype, out, keepdims) TypeError: unsupported operand type(s) for +: 'dict' and 'dict' ``` Seems like getting your error. Maybe print what you exactly return and when it crashes. When I have time tomorrow, I will also make some tests. After training_step. I not have a training_epoch_end or training_end method defined. > I think lightning collects your logs and tries to aggregate it to one value. Yes I think so as well. Ok I return something like this: `{'metrics/aud_std': {'test': tensor(1.6337, device='cuda:0')}, 'metrics/class_loss_diff': {'test': tensor(nan)}, 'metrics/class_loss_val': {'0': tensor(nan), '1': tensor(91.5485)}, 'metrics/loss': {'test': tensor(45.7742, device='cuda:0')}, 'metrics/vid_std': {'test': tensor(1.6506, device='cuda:0')}}` What do you mean by when it crashes exactly? I think when it crashes it's always the train step after an validation step (keep in mind I'm validation several times during one epoch). If I change the val_check_interval the error either disappears or happens at a different batch number. Hello. I think the problem is in your metrics type. Metrics must have the `Dict[str, float]` type. But in your case, the `metrics` is a nested dict. So, that's why values are failed to be aggregated. Is it possible for you to flatten the dictionary? @alexeykarnachev Hey! Ah yes that's what I thought. Do you know why the metrics dict is enforced to be of this type? In 0.5.x this was not an issue as far as I know. I mean, yes I can flatten it but I want to have i.e. val/loss and train/loss in the same graph. It's basically this: https://pytorch.org/docs/stable/tensorboard.html#torch.utils.tensorboard.writer.SummaryWriter.add_scalars I know that here https://github.com/PyTorchLightning/pytorch-lightning/issues/1144#issuecomment-599089378 It was said that this should not be done, but for me this is essential. Is there a way that I can overwrite the merge_dicts function? If so how would I do that? @fellnerse Okay, I got your point, let's ask Borda's advice) @Borda, what do you think? Is it possible to combine nested metrics dictionaries with metrics aggregation logic? At first sight, it doesn't look like a big problem. Maybe you can see any side effects of tracking aggregated metrics with nested dictionaries? If no, I can try to fix this issue I ques it can be used, just need to care about the depth and the aggregation will be a bit complicated...
2020-04-23T20:27:40Z
[]
[]
Traceback (most recent call last):โ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆโ–ˆ| 9/9 [00:00<00:00, 8.76it/s] File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/multiprocessing/util.py", line 277, in _run_finalizers finalizer() File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/multiprocessing/util.py", line 201, in __call__ res = self._callback(*self._args, **self._kwargs) File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/multiprocessing/util.py", line 110, in _remove_temp_dir rmtree(tempdir) File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/shutil.py", line 498, in rmtree onerror(os.rmdir, path, sys.exc_info()) File "/home/sebastian/.pyenv/versions/3.7.7/lib/python3.7/shutil.py", line 496, in rmtree os.rmdir(path) OSError: [Errno 39] Directory not empty: '/tmp/pymp-jcqai2xr'
140
Lightning-AI/lightning
Lightning-AI__lightning-1589
79196246cfcc73391de1be71bfb27d4366daf75a
diff --git a/pytorch_lightning/trainer/distrib_parts.py b/pytorch_lightning/trainer/distrib_parts.py --- a/pytorch_lightning/trainer/distrib_parts.py +++ b/pytorch_lightning/trainer/distrib_parts.py @@ -461,10 +461,15 @@ def __transfer_data_to_device(self, batch, device, gpu_id=None): # when tuple if isinstance(batch, tuple): - batch = list(batch) - for i, x in enumerate(batch): - batch[i] = self.__transfer_data_to_device(x, device, gpu_id) - return tuple(batch) + # when namedtuple + if hasattr(batch, '_fields'): + elem_type = type(batch) + return elem_type(*(self.__transfer_data_to_device(x, device, gpu_id) for x in batch)) + else: + batch = list(batch) + for i, x in enumerate(batch): + batch[i] = self.__transfer_data_to_device(x, device, gpu_id) + return tuple(batch) # when dict if isinstance(batch, dict):
Named converted to regular tuples when sent to the gpu. <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug <!-- A clear and concise description of what the bug is. --> Named tuples returned from `Dataset` get converted to regular tuples when sent to the gpu. This happens because `isinstance(instance_of_a_named_tuple, tuple)` evaluates to True in `distrib_parts.py` https://github.com/PyTorchLightning/pytorch-lightning/blob/67d5f4dc392250d23bfeb11aba45e919a99ff1c0/pytorch_lightning/trainer/distrib_parts.py#L463 ### To Reproduce ```python import pytorch_lightning as pl from collections import namedtuple import torch import numpy NamedTupleDemoInput = namedtuple('DemoInput', ['x1', 'x2', 'y']) class NamedTupleDemoDataset: def __len__(self): return 30000 def __getitem__(self, index): x1 = numpy.random.uniform(0, 100) x2 = numpy.random.uniform(0, 100) y = 2*x1 + 3*x2 + numpy.random.normal(0, 0.05) return NamedTupleDemoInput(x1, x2, y) class WeightedSum(torch.nn.Module): def __init__(self): super(WeightedSum, self).__init__() self.a = torch.nn.Parameter(torch.zeros(1)) self.b = torch.nn.Parameter(torch.zeros(1)) def forward(self, x1, x2): return self.a * x1 + self.b * x2 class NamedTupleDemo(pl.LightningModule): def __init__(self): super(NamedTupleDemo, self).__init__() self.model = WeightedSum() def forward(self, x1, x2): return self.model(x1, x2) def train_dataloader(self): return torch.utils.data.DataLoader(NamedTupleDemoDataset(), batch_size=128) def training_step(self, batch, batch_index): yhat = self.forward(batch.x1, batch.x2) return {'loss': torch.nn.functional.mse_loss(batch.y, yhat)} def configure_optimizers(self): return torch.optim.Adam(self.parameters(), lr=1e-2) if __name__ == '__main__': module = NamedTupleDemo() pl.Trainer(max_epochs=20, gpus=1).fit(module) print(f'a={float(module.model.a)} b={float(module.model.b)}') ``` <!-- If you have a code sample, error messages, stack traces, please provide it here as well --> ``` Traceback (most recent call last): File "demo.py", line 48, in <module> pl.Trainer(max_epochs=20, gpus=1).fit(module) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 749, in fit self.single_gpu_train(model) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/distrib_parts.py", line 491, in single_gpu_train self.run_pretrain_routine(model) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 910, in run_pretrain_routine self.train() File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 384, in train self.run_training_epoch() File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 456, in run_training_epoch _outputs = self.run_training_batch(batch, batch_idx) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 633, in run_training_batch loss, batch_output = optimizer_closure() File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 597, in optimizer_closure output_dict = self.training_forward(split_batch, batch_idx, opt_idx, self.hiddens) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 770, in training_forward output = self.model.training_step(*args) File "demo.py", line 40, in training_step yhat = self.forward(batch.x1, batch.x2) AttributeError: 'tuple' object has no attribute 'x1' ``` <!-- Ideally attach a minimal code sample to reproduce the decried issue. Minimal means having the shortest code but still preserving the bug. --> ### Expected behavior Namedtuples returned from the dataset should be keep their original fields. ### Environment * CUDA: - GPU: - GeForce RTX 2080 Ti - available: True - version: 10.2 * Packages: - numpy: 1.18.3 - pyTorch_debug: False - pyTorch_version: 1.5.0 - pytorch-lightning: 0.7.4rc5 - tensorboard: 2.2.1 - tqdm: 4.45.0 * System: - OS: Linux - architecture: - 64bit - ELF - processor: - python: 3.8.2 - version: #1 SMP PREEMPT Sun, 05 Apr 2020 05:13:14 +0000 <!-- Add any other context about the problem here. -->
2020-04-24T03:49:56Z
[]
[]
Traceback (most recent call last): File "demo.py", line 48, in <module> pl.Trainer(max_epochs=20, gpus=1).fit(module) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 749, in fit self.single_gpu_train(model) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/distrib_parts.py", line 491, in single_gpu_train self.run_pretrain_routine(model) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 910, in run_pretrain_routine self.train() File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 384, in train self.run_training_epoch() File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 456, in run_training_epoch _outputs = self.run_training_batch(batch, batch_idx) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 633, in run_training_batch loss, batch_output = optimizer_closure() File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 597, in optimizer_closure output_dict = self.training_forward(split_batch, batch_idx, opt_idx, self.hiddens) File "/home/n/repos/pytorch-lightning/pytorch_lightning/trainer/training_loop.py", line 770, in training_forward output = self.model.training_step(*args) File "demo.py", line 40, in training_step yhat = self.forward(batch.x1, batch.x2) AttributeError: 'tuple' object has no attribute 'x1'
141
Lightning-AI/lightning
Lightning-AI__lightning-2014
8b9b923ca8ad9fdb0ae22928de0029e7c2e7a782
diff --git a/pl_examples/domain_templates/computer_vision_fine_tuning.py b/pl_examples/domain_templates/computer_vision_fine_tuning.py --- a/pl_examples/domain_templates/computer_vision_fine_tuning.py +++ b/pl_examples/domain_templates/computer_vision_fine_tuning.py @@ -450,5 +450,4 @@ def get_args() -> argparse.Namespace: if __name__ == '__main__': - main(get_args()) diff --git a/pl_examples/domain_templates/generative_adversarial_net.py b/pl_examples/domain_templates/generative_adversarial_net.py --- a/pl_examples/domain_templates/generative_adversarial_net.py +++ b/pl_examples/domain_templates/generative_adversarial_net.py @@ -7,7 +7,7 @@ tensorboard --logdir default """ import os -from argparse import ArgumentParser +from argparse import ArgumentParser, Namespace from collections import OrderedDict import numpy as np @@ -183,7 +183,7 @@ def on_epoch_end(self): self.logger.experiment.add_image('generated_images', grid, self.current_epoch) -def main(args): +def main(args: Namespace) -> None: # ------------------------ # 1 INIT LIGHTNING MODEL # ------------------------ diff --git a/pl_examples/domain_templates/imagenet.py b/pl_examples/domain_templates/imagenet.py --- a/pl_examples/domain_templates/imagenet.py +++ b/pl_examples/domain_templates/imagenet.py @@ -1,7 +1,7 @@ """ This example is largely adapted from https://github.com/pytorch/examples/blob/master/imagenet/main.py """ -import argparse +from argparse import ArgumentParser, Namespace import os import random from collections import OrderedDict @@ -183,7 +183,7 @@ def val_dataloader(self): @staticmethod def add_model_specific_args(parent_parser): # pragma: no-cover - parser = argparse.ArgumentParser(parents=[parent_parser]) + parser = ArgumentParser(parents=[parent_parser]) parser.add_argument('-a', '--arch', metavar='ARCH', default='resnet18', choices=MODEL_NAMES, help='model architecture: ' + ' | '.join(MODEL_NAMES) + @@ -210,7 +210,7 @@ def add_model_specific_args(parent_parser): # pragma: no-cover def get_args(): - parent_parser = argparse.ArgumentParser(add_help=False) + parent_parser = ArgumentParser(add_help=False) parent_parser.add_argument('--data-path', metavar='DIR', type=str, help='path to dataset') parent_parser.add_argument('--save-path', metavar='DIR', default=".", type=str, @@ -228,20 +228,23 @@ def get_args(): return parser.parse_args() -def main(hparams): - model = ImageNetLightningModel(hparams) - if hparams.seed is not None: - random.seed(hparams.seed) - torch.manual_seed(hparams.seed) +def main(args: Namespace) -> None: + model = ImageNetLightningModel(**vars(args)) + + if args.seed is not None: + random.seed(args.seed) + torch.manual_seed(args.seed) cudnn.deterministic = True + trainer = pl.Trainer( - default_root_dir=hparams.save_path, - gpus=hparams.gpus, - max_epochs=hparams.epochs, - distributed_backend=hparams.distributed_backend, - precision=16 if hparams.use_16bit else 32, + default_root_dir=args.save_path, + gpus=args.gpus, + max_epochs=args.epochs, + distributed_backend=args.distributed_backend, + precision=16 if args.use_16bit else 32, ) - if hparams.evaluate: + + if args.evaluate: trainer.run_evaluation() else: trainer.fit(model)
Bug in GAN example Bug in https://github.com/PyTorchLightning/pytorch-lightning/blob/master/pl_examples/domain_templates/generative_adversarial_net.py When I run `python generative_adversarial_net.py ` I get ``` Traceback (most recent call last): File "generative_adversarial_net.py", line 218, in <module> main(hparams) File "generative_adversarial_net.py", line 192, in main model = GAN(hparams) File "generative_adversarial_net.py", line 90, in __init__ self.generator = Generator(latent_dim=self.latent_dim, img_shape=mnist_shape) File "generative_adversarial_net.py", line 39, in __init__ *block(latent_dim, 128, normalize=False), File "generative_adversarial_net.py", line 32, in block layers = [nn.Linear(in_feat, out_feat)] File "/home/vladimir/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 72, in __init__ self.weight = Parameter(torch.Tensor(out_features, in_features)) TypeError: new(): argument 'size' must be tuple of ints, but found element of type Namespace at pos 2 ```
Replace with `model = GAN(**vars(hparams))` [here](https://github.com/PyTorchLightning/pytorch-lightning/blob/fdbbe968256f6c68a5dbb840a2004b77a618ef61/pl_examples/domain_templates/generative_adversarial_net.py#L192). Same bug in [imagenet script](https://github.com/PyTorchLightning/pytorch-lightning/blob/fdbbe968256f6c68a5dbb840a2004b77a618ef61/pl_examples/domain_templates/imagenet.py#L232) also. @ternaus @rohitgr7 mind submitting a PR to fix? :)
2020-05-30T12:26:09Z
[]
[]
Traceback (most recent call last): File "generative_adversarial_net.py", line 218, in <module> main(hparams) File "generative_adversarial_net.py", line 192, in main model = GAN(hparams) File "generative_adversarial_net.py", line 90, in __init__ self.generator = Generator(latent_dim=self.latent_dim, img_shape=mnist_shape) File "generative_adversarial_net.py", line 39, in __init__ *block(latent_dim, 128, normalize=False), File "generative_adversarial_net.py", line 32, in block layers = [nn.Linear(in_feat, out_feat)] File "/home/vladimir/anaconda3/lib/python3.7/site-packages/torch/nn/modules/linear.py", line 72, in __init__ self.weight = Parameter(torch.Tensor(out_features, in_features)) TypeError: new(): argument 'size' must be tuple of ints, but found element of type Namespace at pos 2
177
Lightning-AI/lightning
Lightning-AI__lightning-2115
0bd7780adc4d68007946cf380a6a24e1a08d99d1
diff --git a/pytorch_lightning/trainer/data_loading.py b/pytorch_lightning/trainer/data_loading.py --- a/pytorch_lightning/trainer/data_loading.py +++ b/pytorch_lightning/trainer/data_loading.py @@ -139,6 +139,7 @@ def _get_distributed_sampler(self, dataloader): else: world_size = { 'ddp': self.num_nodes * self.num_processes, + 'ddp_spawn': self.num_nodes * self.num_processes, 'ddp2': self.num_nodes, 'ddp_cpu': self.num_processes * self.num_nodes } diff --git a/pytorch_lightning/trainer/distrib_data_parallel.py b/pytorch_lightning/trainer/distrib_data_parallel.py --- a/pytorch_lightning/trainer/distrib_data_parallel.py +++ b/pytorch_lightning/trainer/distrib_data_parallel.py @@ -221,7 +221,7 @@ def set_distributed_mode(self, distributed_backend): elif self.num_gpus > 1: self.use_dp = True - elif distributed_backend == "ddp": + elif distributed_backend in ['ddp', 'ddp_spawn']: if self.num_gpus == 0: if self.num_nodes > 1 or self.num_processes > 1: self.use_ddp = True # ddp_cpu @@ -378,6 +378,7 @@ def spawn_ddp_children(self, model): self.interactive_ddp_procs = [] for local_rank in range(1, self.num_processes): + print('launching local_rank', local_rank) env_copy = os.environ.copy() env_copy['LOCAL_RANK'] = f'{local_rank}' @@ -394,7 +395,7 @@ def spawn_ddp_children(self, model): local_rank = 0 self.ddp_train(local_rank, model, is_master=True) - def ddp_train(self, process_idx, model, is_master=False): + def ddp_train(self, process_idx, model, is_master=False, proc_offset=0): """ Entry point into a DP thread :param gpu_idx: @@ -402,6 +403,9 @@ def ddp_train(self, process_idx, model, is_master=False): :param cluster_obj: :return: """ + # offset the process id if requested + process_idx = process_idx + proc_offset + # show progressbar only on progress_rank 0 if (self.node_rank != 0 or process_idx != 0) and self.progress_bar_callback is not None: self.progress_bar_callback.disable() @@ -454,7 +458,7 @@ def ddp_train(self, process_idx, model, is_master=False): self.reinit_scheduler_properties(self.optimizers, self.lr_schedulers) # DDP2 uses all GPUs on the machine - if self.distributed_backend == 'ddp': + if self.distributed_backend == 'ddp' or self.distributed_backend == 'ddp_spawn': device_ids = [self.root_gpu] elif self.use_ddp2: device_ids = self.data_parallel_device_ids diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -246,7 +246,7 @@ def __init__( Use `row_log_interval` instead. Will remove 0.9.0. - distributed_backend: The distributed backend to use. + distributed_backend: The distributed backend to use (dp, ddp, ddp2, ddp_spawn) use_amp: .. warning:: .. deprecated:: 0.7.0 @@ -876,9 +876,16 @@ def fit( self.ddp_train(task, model) elif self.distributed_backend == 'cpu_ddp': + self.__set_random_port() self.model = model mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model,)) + elif self.distributed_backend == 'ddp_spawn': + model.share_memory() + + # spin up peers + mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model, )) + elif self.distributed_backend == 'ddp': self.spawn_ddp_children(model)
verify ddp and ddp_spawn implementation CUDA error: an illegal memory access was encountered after updating to the latest stable packages Can anyone help with this CUDA error: an illegal memory access was encountered ?? It runs fine for several iterations... ## ๐Ÿ› Bug ``` Traceback (most recent call last): File "train_gpu.py", line 237, in <module> main_local(hparam_trial) File "train_gpu.py", line 141, in main_local trainer.fit(model) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 859, in fit self.single_gpu_train(model) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 503, in single_gpu_train self.run_pretrain_routine(model) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1015, in run_pretrain_routine self.train() File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 347, in train self.run_training_epoch() File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 419, in run_training_epoch _outputs = self.run_training_batch(batch, batch_idx) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 604, in run_training_batch self.batch_loss_value.append(loss) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/supporters.py", line 44, in append x = x.to(self.memory) RuntimeError: CUDA error: an illegal memory access was encountered ``` ### To Reproduce ### Environment * CUDA: - GPU: - Quadro P6000 - available: True - version: 10.2 * Packages: - numpy: 1.18.1 - pyTorch_debug: False - pyTorch_version: 1.5.0 - pytorch-lightning: 0.7.6 - tensorboard: 2.2.2 - tqdm: 4.46.1 * System: - OS: Linux - architecture: - 64bit - - processor: x86_64 - python: 3.7.0 - version: #47~18.04.1-Ubuntu SMP Thu May 7 13:10:50 UTC 2020
2020-06-08T15:37:16Z
[]
[]
Traceback (most recent call last): File "train_gpu.py", line 237, in <module> main_local(hparam_trial) File "train_gpu.py", line 141, in main_local trainer.fit(model) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 859, in fit self.single_gpu_train(model) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 503, in single_gpu_train self.run_pretrain_routine(model) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1015, in run_pretrain_routine self.train() File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 347, in train self.run_training_epoch() File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 419, in run_training_epoch _outputs = self.run_training_batch(batch, batch_idx) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 604, in run_training_batch self.batch_loss_value.append(loss) File "/shared/storage/cs/staffstore/username/anaconda3/envs/sh1/lib/python3.7/site-packages/pytorch_lightning/trainer/supporters.py", line 44, in append x = x.to(self.memory) RuntimeError: CUDA error: an illegal memory access was encountered
188
Lightning-AI/lightning
Lightning-AI__lightning-2216
e780072961562ab1d89bad871918fcc422ad0ac6
diff --git a/pytorch_lightning/loggers/base.py b/pytorch_lightning/loggers/base.py --- a/pytorch_lightning/loggers/base.py +++ b/pytorch_lightning/loggers/base.py @@ -3,13 +3,11 @@ import operator from abc import ABC, abstractmethod from argparse import Namespace -from typing import Union, Optional, Dict, Iterable, Any, Callable, List, Sequence, Mapping, Tuple +from typing import Union, Optional, Dict, Iterable, Any, Callable, List, Sequence, Mapping, Tuple, MutableMapping import numpy as np import torch -from pytorch_lightning.utilities import rank_zero_only - class LightningLoggerBase(ABC): """ @@ -174,9 +172,9 @@ def _flatten_dict(params: Dict[str, Any], delimiter: str = '/') -> Dict[str, Any def _dict_generator(input_dict, prefixes=None): prefixes = prefixes[:] if prefixes else [] - if isinstance(input_dict, dict): + if isinstance(input_dict, MutableMapping): for key, value in input_dict.items(): - if isinstance(value, (dict, Namespace)): + if isinstance(value, (MutableMapping, Namespace)): value = vars(value) if isinstance(value, Namespace) else value for d in _dict_generator(value, prefixes + [key]): yield d
Hydra MLFlow Clash <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug When using the MLFlow logger with Hydra, because the parameters passed to the LightningModule is a `DictConfig`, the condition in the `logger/base.py` is not met. https://github.com/PyTorchLightning/pytorch-lightning/blob/8211256c46430e43e0c27e4f078c72085bb4ea34/pytorch_lightning/loggers/base.py#L177 ### To Reproduce Use Hydra and MLFlow together. <!-- If you have a code sample, error messages, stack traces, please provide it here as well --> ```python Traceback (most recent call last): File "/home/siavash/KroniKare/kwae2/kwae_ma/models/pl_train_segmentation_model.py", line 115, in <module> main() File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/main.py", line 24, in decorated_main strict=strict, File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/_internal/utils.py", line 174, in run_hydra overrides=args.overrides, File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/_internal/hydra.py", line 86, in run job_subdir_key=None, File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/plugins/common/utils.py", line 109, in run_job ret.return_value = task_function(task_cfg) File "/home/siavash/KroniKare/kwae2/kwae_ma/models/pl_train_segmentation_model.py", line 111, in main trainer.fit(wound_seg_pl) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 765, in fit self.single_gpu_train(model) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 492, in single_gpu_train self.run_pretrain_routine(model) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 843, in run_pretrain_routine self.logger.log_hyperparams(ref_model.hparams) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 275, in log_hyperparams [logger.log_hyperparams(params) for logger in self._logger_iterable] File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 275, in <listcomp> [logger.log_hyperparams(params) for logger in self._logger_iterable] File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py", line 10, in wrapped_fn return fn(*args, **kwargs) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/loggers/mlflow.py", line 105, in log_hyperparams self.experiment.log_param(self.run_id, k, v) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/mlflow/tracking/client.py", line 206, in log_param self._tracking_client.log_param(run_id, key, value) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/mlflow/tracking/_tracking_service/client.py", line 177, in log_param _validate_param_name(key) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/mlflow/utils/validation.py", line 120, in _validate_param_name INVALID_PARAMETER_VALUE) mlflow.exceptions.MlflowException: Invalid parameter name: ''. Names may be treated as files in certain cases, and must not resolve to other names when treated as such. This name would resolve to '.' ``` ### Expected behavior Check whether the instance if `dict` or `DictConfig` in the given line.
Hi! thanks for your contribution!, great first issue! > Check whether the instance if `dict` or `DictConfig` in the given line. @ssakhavi that sounds reasonable solution, mind sending a PR - fix and its test?
2020-06-17T03:24:11Z
[]
[]
Traceback (most recent call last): File "/home/siavash/KroniKare/kwae2/kwae_ma/models/pl_train_segmentation_model.py", line 115, in <module> main() File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/main.py", line 24, in decorated_main strict=strict, File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/_internal/utils.py", line 174, in run_hydra overrides=args.overrides, File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/_internal/hydra.py", line 86, in run job_subdir_key=None, File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/hydra/plugins/common/utils.py", line 109, in run_job ret.return_value = task_function(task_cfg) File "/home/siavash/KroniKare/kwae2/kwae_ma/models/pl_train_segmentation_model.py", line 111, in main trainer.fit(wound_seg_pl) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 765, in fit self.single_gpu_train(model) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_parts.py", line 492, in single_gpu_train self.run_pretrain_routine(model) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 843, in run_pretrain_routine self.logger.log_hyperparams(ref_model.hparams) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 275, in log_hyperparams [logger.log_hyperparams(params) for logger in self._logger_iterable] File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/loggers/base.py", line 275, in <listcomp> [logger.log_hyperparams(params) for logger in self._logger_iterable] File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/utilities/distributed.py", line 10, in wrapped_fn return fn(*args, **kwargs) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/pytorch_lightning/loggers/mlflow.py", line 105, in log_hyperparams self.experiment.log_param(self.run_id, k, v) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/mlflow/tracking/client.py", line 206, in log_param self._tracking_client.log_param(run_id, key, value) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/mlflow/tracking/_tracking_service/client.py", line 177, in log_param _validate_param_name(key) File "/home/siavash/anaconda3/envs/kwae-ma/lib/python3.7/site-packages/mlflow/utils/validation.py", line 120, in _validate_param_name INVALID_PARAMETER_VALUE) mlflow.exceptions.MlflowException: Invalid parameter name: ''. Names may be treated as files in certain cases, and must not resolve to other names when treated as such. This name would resolve to '.'
201
Lightning-AI/lightning
Lightning-AI__lightning-2255
b5a2f1ec4463064394dc6d977ffd246aa11158af
diff --git a/pl_examples/basic_examples/gpu_template.py b/pl_examples/basic_examples/gpu_template.py --- a/pl_examples/basic_examples/gpu_template.py +++ b/pl_examples/basic_examples/gpu_template.py @@ -23,7 +23,7 @@ def main(hparams): # ------------------------ # 1 INIT LIGHTNING MODEL # ------------------------ - model = LightningTemplateModel(hparams) + model = LightningTemplateModel(**vars(hparams)) # ------------------------ # 2 INIT TRAINER @@ -61,7 +61,7 @@ def main(hparams): '--distributed_backend', type=str, default='dp', - help='supports three options dp, ddp, ddp2' + help='supports four options dp, ddp, ddp2, ddp_spawn' ) parent_parser.add_argument( '--use_16bit',
CPU/GPU Template ## ๐Ÿ› Bug The GPU or CPU template do not run currently on master after changes including the setup hook. ``` python -m pl_examples.basic_examples.gpu_template --gpus 4 --distributed_backend ddp python -m pl_examples.basic_examples.cpu_template ``` CPU Template Error: ``` Traceback (most recent call last): File "/usr/lib/python3.6/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/usr/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/anthony/Downloads/pytorch-lightning/pl_examples/basic_examples/cpu_template.py", line 53, in <module> main(args) File "/home/anthony/Downloads/pytorch-lightning/pl_examples/basic_examples/cpu_template.py", line 34, in main trainer.fit(model) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 952, in fit self.run_pretrain_routine(model) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 1063, in run_pretrain_routine self.reset_val_dataloader(ref_model) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/data_loading.py", line 331, in reset_val_dataloader self._reset_eval_dataloader(model, 'val') File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/data_loading.py", line 253, in _reset_eval_dataloader dataloaders = self.request_dataloader(getattr(model, f'{mode}_dataloader')) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/data_loading.py", line 352, in request_dataloader dataloader = dataloader_fx() File "/home/anthony/Downloads/pytorch-lightning/pl_examples/models/lightning_template.py", line 158, in val_dataloader return DataLoader(self.mnist_test, batch_size=self.batch_size, num_workers=4) File "/home/anthony/.cache/pypoetry/virtualenvs/robotics-zp-60jGk-py3.6/lib/python3.6/site-packages/torch/nn/modules/module.py", line 594, in __getattr__ type(self).__name__, name)) AttributeError: 'LightningTemplateModel' object has no attribute 'mnist_test' ``` GPU Template Error: ``` File "/home/anthony/Downloads/pytorch-lightning/pl_examples/models/lightning_template.py", line 64, in __init__ self.c_d1_drop = nn.Dropout(self.drop_prob) File "/home/anthony/.cache/pypoetry/virtualenvs/robotics-zp-60jGk-py3.6/lib/python3.6/site-packages/torch/nn/modules/dropout.py", line 10, in __init__ if p < 0 or p > 1: TypeError: '<' not supported between instances of 'Namespace' and 'int' ``` ### Environment * CUDA: - GPU: - GeForce RTX 2080 Ti - GeForce RTX 2080 Ti - GeForce RTX 2080 Ti - GeForce RTX 2080 Ti - available: True - version: 10.2 * Packages: - numpy: 1.18.4 - pyTorch_debug: False - pyTorch_version: 1.5.0 - pytorch-lightning: 0.8.0 - tensorboard: 2.2.1 - tqdm: 4.46.0 * System: - OS: Linux - architecture: - 64bit - ELF - processor: x86_64 - python: 3.6.8 - version: #44~18.04.2-Ubuntu SMP Thu Apr 23 14:27:18 UTC 2020
try again? > try again? it is in master now... :(
2020-06-19T02:43:10Z
[]
[]
Traceback (most recent call last): File "/usr/lib/python3.6/runpy.py", line 193, in _run_module_as_main "__main__", mod_spec) File "/usr/lib/python3.6/runpy.py", line 85, in _run_code exec(code, run_globals) File "/home/anthony/Downloads/pytorch-lightning/pl_examples/basic_examples/cpu_template.py", line 53, in <module> main(args) File "/home/anthony/Downloads/pytorch-lightning/pl_examples/basic_examples/cpu_template.py", line 34, in main trainer.fit(model) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 952, in fit self.run_pretrain_routine(model) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 1063, in run_pretrain_routine self.reset_val_dataloader(ref_model) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/data_loading.py", line 331, in reset_val_dataloader self._reset_eval_dataloader(model, 'val') File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/data_loading.py", line 253, in _reset_eval_dataloader dataloaders = self.request_dataloader(getattr(model, f'{mode}_dataloader')) File "/home/anthony/Downloads/pytorch-lightning/pytorch_lightning/trainer/data_loading.py", line 352, in request_dataloader dataloader = dataloader_fx() File "/home/anthony/Downloads/pytorch-lightning/pl_examples/models/lightning_template.py", line 158, in val_dataloader return DataLoader(self.mnist_test, batch_size=self.batch_size, num_workers=4) File "/home/anthony/.cache/pypoetry/virtualenvs/robotics-zp-60jGk-py3.6/lib/python3.6/site-packages/torch/nn/modules/module.py", line 594, in __getattr__ type(self).__name__, name)) AttributeError: 'LightningTemplateModel' object has no attribute 'mnist_test'
209
Lightning-AI/lightning
Lightning-AI__lightning-2293
3256fe4e5a405db1ab00d4cf4d48cbbfc7730959
diff --git a/pytorch_lightning/trainer/data_loading.py b/pytorch_lightning/trainer/data_loading.py --- a/pytorch_lightning/trainer/data_loading.py +++ b/pytorch_lightning/trainer/data_loading.py @@ -52,6 +52,8 @@ def _has_len(dataloader: DataLoader) -> bool: return True except TypeError: return False + except NotImplementedError: # e.g. raised by torchtext if a batch_size_fn is used + return False class TrainerDataLoadingMixin(ABC):
_has_len does not handle NotImplementedError (raised by torchtext) <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug When using torchtext.data.Iterator with a batch_size_fn function the __len__ function raises a NotImplementedError which is not caught by _has_len function. A bug-fix is **very simple** by just returning False if a NotImplementedError is raised. This is unlikely to have any negative side effects since it corresponds with what _hads_len is expected to do. The fix allowed me to train my model using torch text. I plan to submit a pull request with the fix above. There are no additional dependencies required; however this problem occurred when using torchtext. Example stack trace: ``` Traceback (most recent call last): File "/Users/thomas/scm/OakDataPrep/oakSkipThoughtTrainer.py", line 18, in <module> trainer.fit(model) File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 952, in fit self.run_pretrain_routine(model) File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1091, in run_pretrain_routine self.train() File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 334, in train self.reset_train_dataloader(model) File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 201, in reset_train_dataloader if not _has_len(self.train_dataloader): File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 49, in _has_len if len(dataloader) == 0: File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/torchtext/data/iterator.py", line 136, in __len__ raise NotImplementedError NotImplementedError ``` ### To Reproduce Sorry I currently don't have a minimal example. The issue will always occur when torchtext.data.Iterator gets a batch_size_fn passed in. If the fix is not convincing I can take the time and construct a code example. Hope this is not necessary. #### Code sample I created my own Iterator for a Skip-Thought model, that dynamically batches sentences together. This might be unnecessary complex, or even not really useful however it revealed that issue described above when using torchtext. For context here is a code excerpt that creates the issue: ``` import torchtext ... global max_src_in_batch, max_tgt_in_batch def batch_size_fn(new, count, sofar): "Keep augmenting batch and calculate total number of tokens + padding." global max_src_in_batch, max_tgt_in_batch if count == 1: max_src_in_batch = 0 max_tgt_in_batch = 0 max_src_in_batch = max(max_src_in_batch, len(new.current)) max_tgt_in_batch = max(max_tgt_in_batch, len(new.next) + 2) src_elements = count * max_src_in_batch tgt_elements = count * max_tgt_in_batch return max(src_elements, tgt_elements) class MyIterator(torchtext.data.Iterator): def create_batches(self): if self.train: def pool(d, random_shuffler): for p in data.batch(d, self.batch_size * 100): p_batch = data.batch( sorted(p, key=self.sort_key), self.batch_size, self.batch_size_fn) for b in random_shuffler(list(p_batch)): yield b self.batches = pool(self.data(), self.random_shuffler) else: self.batches = [] for b in data.batch(self.data(), self.batch_size, self.batch_size_fn): self.batches.append(sorted(b, key=self.sort_key)) ... class SkipThoughts(pl.LightningModule): ... @pl.data_loader def train_dataloader(self): train_iter = MyIterator(self.my_train_dataloader, batch_size=self.batch_size, repeat=False, sort_key=lambda x: data.interleave_keys(len(x.current), data.interleave_keys(len(x.prev), len(x.next))), batch_size_fn=batch_size_fn, train=True, shuffle=True) return train_iter ``` But this happens whenever a batch_size_fn is used in torchtext. Because it is unknown how many batches the data set will have torchtext __len__ method returns a NotImplementedError. See code snipped below: ``` def __len__(self): if self.batch_size_fn is not None: raise NotImplementedError return math.ceil(len(self.dataset) / self.batch_size) ``` ### Expected behavior The function _has_len tests if len can is available and then returns True, otherwise False. It shoudl return False if NotImplementedError is raised. ### Environment /Users/thomas/virtualenv/Python3/PyTorch/env/bin/python /Users/thomas/scm/OakDataPrep/collect_env_details.py * CUDA: - GPU: - available: False - version: None * Packages: - numpy: 1.18.2 - pyTorch_debug: False - pyTorch_version: 1.5.0 - pytorch-lightning: 0.8.0 - tensorboard: 2.2.0 - tqdm: 4.45.0 * System: - OS: Darwin - architecture: - 64bit - - processor: i386 - python: 3.7.7 - version: Darwin Kernel Version 19.5.0: Tue May 26 20:41:44 PDT 2020; root:xnu-6153.121.2~2/RELEASE_X86_64 Process finished with exit code 0 ### Additional context Issue occur with Pytorch-Lighning 0.8 and Torchtext 0.6 <!-- Add any other context about the problem here. -->
2020-06-19T23:57:59Z
[]
[]
Traceback (most recent call last): File "/Users/thomas/scm/OakDataPrep/oakSkipThoughtTrainer.py", line 18, in <module> trainer.fit(model) File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 952, in fit self.run_pretrain_routine(model) File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1091, in run_pretrain_routine self.train() File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 334, in train self.reset_train_dataloader(model) File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 201, in reset_train_dataloader if not _has_len(self.train_dataloader): File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/pytorch_lightning/trainer/data_loading.py", line 49, in _has_len if len(dataloader) == 0: File "/Users/thomas/virtualenv/Python3/PyTorch/env/lib/python3.7/site-packages/torchtext/data/iterator.py", line 136, in __len__ raise NotImplementedError NotImplementedError
213
Lightning-AI/lightning
Lightning-AI__lightning-2356
220bb6db57e7181e857a128e245ce242b6cf429f
diff --git a/pytorch_lightning/trainer/optimizers.py b/pytorch_lightning/trainer/optimizers.py --- a/pytorch_lightning/trainer/optimizers.py +++ b/pytorch_lightning/trainer/optimizers.py @@ -111,15 +111,25 @@ def configure_schedulers(self, schedulers: list): def reinit_scheduler_properties(self, optimizers: list, schedulers: list): # Reinitialize optimizer.step properties added by schedulers for scheduler in schedulers: + scheduler = scheduler['scheduler'] + for optimizer in optimizers: - scheduler = scheduler['scheduler'] # check that we dont mix users optimizers and schedulers if scheduler.optimizer == optimizer: # Find the mro belonging to the base lr scheduler class for i, mro in enumerate(scheduler.__class__.__mro__): - if mro == optim.lr_scheduler._LRScheduler: + if ( + mro == optim.lr_scheduler._LRScheduler + or mro == optim.lr_scheduler.ReduceLROnPlateau + ): idx = i - scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) + state = scheduler.state_dict() + else: + state = None + + scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) + if state is not None: + scheduler.load_state_dict(state) class _MockOptimizer(Optimizer):
Trainer(precision=16) fails with optim.lr_scheduler.ReduceLROnPlateau <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug <!-- A clear and concise description of what the bug is. --> ### To Reproduce Steps to reproduce the behavior: 1. Create a `pl.LightningModule` that returns your optimizer along with a `optim.lr_scheduler.ReduceLROnPlateau` scheduler from `configure_optimizers` 2. Create a `pl.Trainer` wit `precision=16` 3. Run your training (i.e., `trainer.fit(model)`) 4. See error ```console Traceback (most recent call last): File "main.py", line 65, in <module> main() File "main.py", line 61, in main trainer.fit(model) File "/workspace/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 889, in fit self.dp_train(model) File "/workspace/pytorch-lightning/pytorch_lightning/trainer/distrib_parts.py", line 223, in dp_train self.reinit_scheduler_properties(optimizers, self.lr_schedulers) File "/workspace/pytorch-lightning/pytorch_lightning/trainer/optimizers.py", line 122, in reinit_scheduler_properties scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) UnboundLocalError: local variable 'idx' referenced before assignment ``` <!-- If you have a code sample, error messages, stack traces, please provide it here as well --> <!-- #### Code sample --> <!-- Ideally attach a minimal code sample to reproduce the decried issue. Minimal means having the shortest code but still preserving the bug. --> <!-- ### Expected behavior --> <!-- A clear and concise description of what you expected to happen. --> <!-- ### Environment Please copy and paste the output from our [environment collection script](https://raw.githubusercontent.com/PyTorchLightning/pytorch-lightning/master/tests/collect_env_details.py) (or fill out the checklist below manually). You can get the script and run it with: ``` wget https://raw.githubusercontent.com/PyTorchLightning/pytorch-lightning/master/tests/collect_env_details.py # For security purposes, please check the contents of collect_env_details.py before running it. python collect_env_details.py ``` - PyTorch Version (1.5): - OS (Linux): ### Additional context --> <!-- Add any other context about the problem here. --> The error occurs in `pytorch-lightning/pytorch_lightning/trainer/optimizers.py", line 122`. ```python def reinit_scheduler_properties(self, optimizers: list, schedulers: list): # Reinitialize optimizer.step properties added by schedulers for scheduler in schedulers: for optimizer in optimizers: scheduler = scheduler['scheduler'] # check that we dont mix users optimizers and schedulers if scheduler.optimizer == optimizer: # Find the mro belonging to the base lr scheduler class for i, mro in enumerate(scheduler.__class__.__mro__): if mro == optim.lr_scheduler._LRScheduler: idx = i scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) ``` The `idx` local variable is unassigned because `optim.lr_scheduler.ReduceLROnPlateau` is not a subclass of `optim.lr_scheduler._LRScheduler`. I could work around the error by adding a specific check for `optim.lr_scheduler.ReduceLROnPlateau` but I'm not sure if this is a good solution. ```python def reinit_scheduler_properties(self, optimizers: list, schedulers: list): # Reinitialize optimizer.step properties added by schedulers for scheduler in schedulers: for optimizer in optimizers: scheduler = scheduler['scheduler'] # check that we dont mix users optimizers and schedulers if scheduler.optimizer == optimizer: # Find the mro belonging to the base lr scheduler class for i, mro in enumerate(scheduler.__class__.__mro__): if mro == optim.lr_scheduler._LRScheduler: idx = i elif mro == optim.lr_scheduler.ReduceLROnPlateau: idx = i scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) ``` ### Related issue in PyTorch: ReduceLROnPlateau parent class is not _LRScheduler #21981 https://github.com/pytorch/pytorch/issues/21981
Hi! thanks for your contribution!, great first issue! @naokishibuya good catch. It seems like a problem that should be solved upstream in pytorch, but for now we can solve this locally. Would you be up for a PR? When I tried this fix, it solved the error but unfortunately `ReduceLROnPlateau` stopped working for me (i.e. there was no indication of the LR decreasing with `verbose=True` or on TensorBoard). If I switched back to `precision=32`, it works normally again I think that the fix is actually working, however only calling `__init__(scheduler, optimizer)` will reset all other arguments (patience, mode, ect) to default values for the `ReduceLrOnPlauteau` scheduler. A solution to this is to copy over these properties: ``` __init__(scheduler, optimizer, patience=scheduler.patience,mode=scheduler.mode,...) ``` Again I think this is a bit hacky, and a proper solution upstream in pytorch is better. I think this does the trick for me: ```python def reinit_scheduler_properties(self, optimizers: list, schedulers: list): # Reinitialize optimizer.step properties added by schedulers for scheduler in schedulers: for optimizer in optimizers: scheduler = scheduler["scheduler"] # check that we dont mix users optimizers and schedulers if scheduler.optimizer == optimizer: # Find the mro belonging to the base lr scheduler class for i, mro in enumerate(scheduler.__class__.__mro__): if ( mro == optim.lr_scheduler._LRScheduler or mro == optim.lr_scheduler.ReduceLROnPlateau ): idx = i state = scheduler.state_dict() else: state = None scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) if state is not None: scheduler.load_state_dict(state) ``` Happy to open a PR if it looks ok to you guys
2020-06-25T02:42:06Z
[]
[]
Traceback (most recent call last): File "main.py", line 65, in <module> main() File "main.py", line 61, in main trainer.fit(model) File "/workspace/pytorch-lightning/pytorch_lightning/trainer/trainer.py", line 889, in fit self.dp_train(model) File "/workspace/pytorch-lightning/pytorch_lightning/trainer/distrib_parts.py", line 223, in dp_train self.reinit_scheduler_properties(optimizers, self.lr_schedulers) File "/workspace/pytorch-lightning/pytorch_lightning/trainer/optimizers.py", line 122, in reinit_scheduler_properties scheduler.__class__.__mro__[idx].__init__(scheduler, optimizer) UnboundLocalError: local variable 'idx' referenced before assignment
219
Lightning-AI/lightning
Lightning-AI__lightning-2358
a5f45787eabddfec4559983f8e6ba1c8317f62f1
diff --git a/pl_examples/basic_examples/gpu_template.py b/pl_examples/basic_examples/gpu_template.py --- a/pl_examples/basic_examples/gpu_template.py +++ b/pl_examples/basic_examples/gpu_template.py @@ -61,7 +61,8 @@ def main(hparams): '--distributed_backend', type=str, default='dp', - help='supports four options dp, ddp, ddp2, ddp_spawn' + help='supports four options dp, ddp, ddp2, ddp_spawn, ...', + choices=['dp', 'ddp', 'ddp2', 'ddp_spawn', 'ddp_cpu'], ) parent_parser.add_argument( '--use_16bit', diff --git a/pytorch_lightning/core/saving.py b/pytorch_lightning/core/saving.py --- a/pytorch_lightning/core/saving.py +++ b/pytorch_lightning/core/saving.py @@ -279,7 +279,7 @@ def load_hparams_from_tags_csv(tags_csv: str) -> Dict[str, Any]: """Load hparams from a file. >>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here') - >>> path_csv = './testing-hparams.csv' + >>> path_csv = os.path.join('.', 'testing-hparams.csv') >>> save_hparams_to_tags_csv(path_csv, hparams) >>> hparams_new = load_hparams_from_tags_csv(path_csv) >>> vars(hparams) == hparams_new @@ -304,7 +304,7 @@ def save_hparams_to_tags_csv(tags_csv: str, hparams: Union[dict, Namespace]) -> if isinstance(hparams, Namespace): hparams = vars(hparams) - with open(tags_csv, 'w') as fp: + with open(tags_csv, 'w', newline='') as fp: fieldnames = ['key', 'value'] writer = csv.DictWriter(fp, fieldnames=fieldnames) writer.writerow({'key': 'key', 'value': 'value'}) diff --git a/pytorch_lightning/metrics/converters.py b/pytorch_lightning/metrics/converters.py --- a/pytorch_lightning/metrics/converters.py +++ b/pytorch_lightning/metrics/converters.py @@ -10,8 +10,16 @@ import numpy as np import torch from torch.utils.data._utils.collate import np_str_obj_array_pattern - from pytorch_lightning.utilities.apply_func import apply_to_collection +from pytorch_lightning.utilities import rank_zero_warn + +try: + from torch.distributed import ReduceOp +except ImportError: + class ReduceOp: + SUM = None + + rank_zero_warn('Unsupported `ReduceOp` for distributed computing.') def _apply_to_inputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable: @@ -217,7 +225,7 @@ def _tensor_collection_metric_conversion(func_to_decorate: Callable) -> Callable def _sync_ddp_if_available(result: Union[torch.Tensor], group: Optional[Any] = None, - reduce_op: Optional[torch.distributed.ReduceOp] = None, + reduce_op: Optional[ReduceOp] = None, ) -> torch.Tensor: """ Function to reduce the tensors from several ddp processes to one master process @@ -247,7 +255,7 @@ def _sync_ddp_if_available(result: Union[torch.Tensor], def sync_ddp(group: Optional[Any] = None, - reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: + reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator syncs a functions outputs across different processes for DDP. @@ -269,7 +277,7 @@ def decorator_fn(func_to_decorate): def numpy_metric(group: Optional[Any] = None, - reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: + reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on numpy arrays. It handles the argument conversion and DDP reduction for metrics working on numpy. @@ -292,7 +300,7 @@ def decorator_fn(func_to_decorate): def tensor_metric(group: Optional[Any] = None, - reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: + reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on tensors. It handles the argument conversion and DDP reduction for metrics working on tensors. @@ -314,7 +322,7 @@ def decorator_fn(func_to_decorate): def tensor_collection_metric(group: Optional[Any] = None, - reduce_op: Optional[torch.distributed.ReduceOp] = None) -> Callable: + reduce_op: Optional[ReduceOp] = None) -> Callable: """ This decorator shall be used on all function metrics working on tensors and returning collections that cannot be converted to tensors. diff --git a/pytorch_lightning/metrics/sklearns.py b/pytorch_lightning/metrics/sklearns.py --- a/pytorch_lightning/metrics/sklearns.py +++ b/pytorch_lightning/metrics/sklearns.py @@ -5,6 +5,18 @@ from pytorch_lightning import _logger as lightning_logger from pytorch_lightning.metrics.metric import NumpyMetric +from pytorch_lightning.utilities import rank_zero_warn + +try: + from torch.distributed import ReduceOp, group +except ImportError: + class ReduceOp: + SUM = None + + class group: + WORLD = None + + rank_zero_warn('Unsupported `ReduceOp` for distributed computing.') class SklearnMetric(NumpyMetric): @@ -20,8 +32,8 @@ class SklearnMetric(NumpyMetric): def __init__( self, metric_name: str, - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, **kwargs, ): """ @@ -82,8 +94,8 @@ class Accuracy(SklearnMetric): def __init__( self, normalize: bool = True, - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -136,8 +148,8 @@ class AUC(SklearnMetric): """ def __init__( self, - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -174,8 +186,8 @@ class AveragePrecision(SklearnMetric): def __init__( self, average: Optional[str] = 'macro', - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -240,8 +252,8 @@ class ConfusionMatrix(SklearnMetric): """ def __init__( self, labels: Optional[Sequence] = None, - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -304,8 +316,8 @@ def __init__( self, labels: Optional[Sequence] = None, pos_label: Union[str, int] = 1, average: Optional[str] = 'macro', - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -397,8 +409,8 @@ def __init__( labels: Optional[Sequence] = None, pos_label: Union[str, int] = 1, average: Optional[str] = 'macro', - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -488,8 +500,8 @@ def __init__( labels: Optional[Sequence] = None, pos_label: Union[str, int] = 1, average: Optional[str] = 'macro', - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -576,8 +588,8 @@ def __init__( labels: Optional[Sequence] = None, pos_label: Union[str, int] = 1, average: Optional[str] = 'macro', - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -663,8 +675,8 @@ class PrecisionRecallCurve(SklearnMetric): def __init__( self, pos_label: Union[str, int] = 1, - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -737,8 +749,8 @@ class ROC(SklearnMetric): def __init__( self, pos_label: Union[str, int] = 1, - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: @@ -795,8 +807,8 @@ class AUROC(SklearnMetric): def __init__( self, average: Optional[str] = 'macro', - reduce_group: Any = torch.distributed.group.WORLD, - reduce_op: Any = torch.distributed.ReduceOp.SUM, + reduce_group: Any = group.WORLD, + reduce_op: Any = ReduceOp.SUM, ): """ Args: diff --git a/pytorch_lightning/trainer/data_loading.py b/pytorch_lightning/trainer/data_loading.py --- a/pytorch_lightning/trainer/data_loading.py +++ b/pytorch_lightning/trainer/data_loading.py @@ -35,7 +35,7 @@ try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True diff --git a/pytorch_lightning/trainer/distrib_data_parallel.py b/pytorch_lightning/trainer/distrib_data_parallel.py --- a/pytorch_lightning/trainer/distrib_data_parallel.py +++ b/pytorch_lightning/trainer/distrib_data_parallel.py @@ -139,7 +139,7 @@ def train_fx(trial_hparams, cluster_manager, _): try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True diff --git a/pytorch_lightning/trainer/distrib_parts.py b/pytorch_lightning/trainer/distrib_parts.py --- a/pytorch_lightning/trainer/distrib_parts.py +++ b/pytorch_lightning/trainer/distrib_parts.py @@ -38,7 +38,7 @@ try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True diff --git a/pytorch_lightning/trainer/evaluation_loop.py b/pytorch_lightning/trainer/evaluation_loop.py --- a/pytorch_lightning/trainer/evaluation_loop.py +++ b/pytorch_lightning/trainer/evaluation_loop.py @@ -144,7 +144,7 @@ try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -52,7 +52,7 @@ try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True @@ -255,7 +255,7 @@ def __init__( Use `row_log_interval` instead. Will remove 0.9.0. - distributed_backend: The distributed backend to use (dp, ddp, ddp2, ddp_spawn) + distributed_backend: The distributed backend to use (dp, ddp, ddp2, ddp_spawn, ddp_cpu) use_amp: .. warning:: .. deprecated:: 0.7.0 @@ -885,7 +885,7 @@ def fit( task = int(os.environ['LOCAL_RANK']) self.ddp_train(task, model) - elif self.distributed_backend == 'cpu_ddp': + elif self.distributed_backend == 'ddp_cpu': self.set_random_port() self.model = model mp.spawn(self.ddp_train, nprocs=self.num_processes, args=(model,)) diff --git a/pytorch_lightning/trainer/training_io.py b/pytorch_lightning/trainer/training_io.py --- a/pytorch_lightning/trainer/training_io.py +++ b/pytorch_lightning/trainer/training_io.py @@ -114,7 +114,7 @@ try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -183,7 +183,7 @@ def training_step(self, batch, batch_idx): try: import horovod.torch as hvd -except ImportError: +except (ModuleNotFoundError, ImportError): HOROVOD_AVAILABLE = False else: HOROVOD_AVAILABLE = True diff --git a/pytorch_lightning/utilities/cloud_io.py b/pytorch_lightning/utilities/cloud_io.py --- a/pytorch_lightning/utilities/cloud_io.py +++ b/pytorch_lightning/utilities/cloud_io.py @@ -5,8 +5,7 @@ def load(path_or_url: str, map_location=None): - parsed = urlparse(path_or_url) - if parsed.scheme == '' or Path(path_or_url).is_file(): - # no scheme or local file + if urlparse(path_or_url).scheme == '' or Path(path_or_url).drive: # no scheme or with a drive letter return torch.load(path_or_url, map_location=map_location) - return torch.hub.load_state_dict_from_url(path_or_url, map_location=map_location) + else: + return torch.hub.load_state_dict_from_url(path_or_url, map_location=map_location)
accuracy metric dosen't support windows ## ๐Ÿ› Bug Pytorch Metric.Accuracy uses `ReduceOp` from 'torch.distribution' but torch.distributrion doesn't support `windows` - https://github.com/pytorch/pytorch/blob/cf8a9b50cacb1702f5855859c657a5358976437b/torch/distributed/__init__.py#L10 : `torch.distributed is available on Linux and MacOS.` ### To Reproduce Use Metric.Accuracy in Windows environment <!-- If you have a code sample, error messages, stack traces, please provide it here as well --> #### Code sample - I use code sample from `https://github.com/PyTorchLightning/pytorch-lightning/issues/2355` ### Expected behavior add check OS in `metric.accuracy` and use condition for import different module ``` try: return platform.linux_distribution() except: return "N/A" ``` or warning to windows user, they can't use `metric.accuracy` ### Environment ``` * CUDA: - GPU: - GeForce RTX 2080 Ti - GeForce GTX 1080 Ti - available: True - version: 10.1 * Packages: - numpy: 1.18.1 - pyTorch_debug: False - pyTorch_version: 1.5.1 - pytorch-lightning: 0.8.1 - tensorboard: 2.2.1 - tqdm: 4.46.0 * System: - OS: Windows - architecture: - 64bit - WindowsPE - processor: Intel64 Family 6 Model 158 Stepping 10, GenuineIntel - python: 3.6.10 - version: 10.0.18362 ``` ### Additional context ``` Traceback (most recent call last): File "test.py", line 11, in <module> from pytorch_lightning.metrics.functional import accuracy File "C:\Users\dcho\Anaconda3\envs\torch_py36\lib\site-packages\pytorch_lightning\metrics\__init__.py", line 1, in <module> from pytorch_lightning.metrics.converters import numpy_metric, tensor_metric File "C:\Users\dcho\Anaconda3\envs\torch_py36\lib\site-packages\pytorch_lightning\metrics\converters.py", line 220, in <module> reduce_op: Optional[torch.distributed.ReduceOp] = None, AttributeError: module 'torch.distributed' has no attribute 'ReduceOp' ``` <!-- Add any other context about the problem here. --> Always thanks for developing & maintaining the cool framework
2020-06-25T07:51:08Z
[]
[]
Traceback (most recent call last): File "test.py", line 11, in <module> from pytorch_lightning.metrics.functional import accuracy File "C:\Users\dcho\Anaconda3\envs\torch_py36\lib\site-packages\pytorch_lightning\metrics\__init__.py", line 1, in <module> from pytorch_lightning.metrics.converters import numpy_metric, tensor_metric File "C:\Users\dcho\Anaconda3\envs\torch_py36\lib\site-packages\pytorch_lightning\metrics\converters.py", line 220, in <module> reduce_op: Optional[torch.distributed.ReduceOp] = None, AttributeError: module 'torch.distributed' has no attribute 'ReduceOp'
220
Lightning-AI/lightning
Lightning-AI__lightning-2360
f2710bb500be017d48ccc6cf596bbed6cc9bdad5
diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -1193,7 +1193,8 @@ def test( self.teardown('test') if self.is_function_implemented('teardown'): - self.model.teardown('test') + model_ref = self.get_model() + model_ref.teardown('test') def check_model_configuration(self, model: LightningModule): r"""
AttributeError: 'LightningDataParallel' object has no attribute 'teardown' <!-- ### Common bugs: 1. Tensorboard not showing in Jupyter-notebook see [issue 79](https://github.com/PyTorchLightning/pytorch-lightning/issues/79). 2. PyTorch 1.1.0 vs 1.2.0 support [see FAQ](https://github.com/PyTorchLightning/pytorch-lightning#faq) --> ## ๐Ÿ› Bug <!-- A clear and concise description of what the bug is. --> ### To Reproduce Steps to reproduce the behavior: trainer = pytorch_lightning.Trainer( gpus=2, distributed_backend='dp' ) model = BaseModel.load_from_checkpoint(...) trainer.test(model) Traceback (most recent call last): File "run_kitti.py", line 351, in <module> trainer.test(model) File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1198, in test self.model.teardown('test') File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 594, in __getattr__ type(self).__name__, name)) AttributeError: 'LightningDataParallel' object has no attribute 'teardown' <!-- If you have a code sample, error messages, stack traces, please provide it here as well --> #### Code sample <!-- Ideally attach a minimal code sample to reproduce the decried issue. Minimal means having the shortest code but still preserving the bug. --> ### Expected behavior <!-- A clear and concise description of what you expected to happen. --> ### Environment * CUDA: - GPU: - GeForce GTX 1080 Ti - GeForce GTX 1080 Ti - available: True - version: 10.1 * Packages: - numpy: 1.18.1 - pyTorch_debug: False - pyTorch_version: 1.5.1 - pytorch-lightning: 0.8.1 - tensorboard: 2.2.2 - tqdm: 4.46.0 * System: - OS: Linux - architecture: - 64bit - - processor: x86_64 - python: 3.7.7 - version: #53~18.04.1-Ubuntu SMP Thu Jun 4 14:58:26 UTC 2020 ### Additional context <!-- Add any other context about the problem here. --> If I'm not missing something, this AttributeError is a bug on your side.
Hi! thanks for your contribution!, great first issue! +1 on this issue. Also confirm this issue.
2020-06-25T14:11:42Z
[]
[]
Traceback (most recent call last): File "run_kitti.py", line 351, in <module> trainer.test(model) File "/opt/conda/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1198, in test self.model.teardown('test') File "/opt/conda/lib/python3.7/site-packages/torch/nn/modules/module.py", line 594, in __getattr__ type(self).__name__, name)) AttributeError: 'LightningDataParallel' object has no attribute 'teardown'
221
Lightning-AI/lightning
Lightning-AI__lightning-2428
a75398530c3447ecf13f043a1bc817929b90fd65
diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -776,6 +776,7 @@ def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer, hiddens) # PROCESS THE RESULT # ---------------------------- # format and reduce outputs accordingly + training_step_output_for_epoch_end = training_step_output training_step_output = self.process_output(training_step_output, train=True) # TODO: temporary part of structured results PR @@ -788,7 +789,7 @@ def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer, hiddens) ) # if the user decides to finally reduce things in epoch_end, save raw output without graphs - training_step_output_for_epoch_end = recursive_detach(training_step_output) + training_step_output_for_epoch_end = recursive_detach(training_step_output_for_epoch_end) # accumulate loss # (if accumulate_grad_batches = 1 no effect)
training_epoch_end's outputs doesn't have 'loss' key pytorch-lightning: build from master ``` Traceback (most recent call last): File "main.py", line 140, in <module> main(hparams) File "main.py", line 72, in main trainer.fit(model) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 881, in fit self.ddp_train(task, model) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 539, in ddp_train self.run_pretrain_routine(model) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1091, in run_pretrain_routine self.train() File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 376, in train self.run_training_epoch() File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 510, in run_training_epoch self.run_training_epoch_end(epoch_output) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 535, in run_training_epoch_end epoch_output = model.training_epoch_end(epoch_output) File "/mnt/lustre/maxiao1/PVM/models/baseline.py", line 335, in training_epoch_end avg_loss = torch.stack([x['loss'] for x in outputs]).mean() File "/mnt/lustre/maxiao1/PVM/models/baseline.py", line 335, in <listcomp> avg_loss = torch.stack([x['loss'] for x in outputs]).mean() KeyError: 'loss' ``` This is my code: ``` def training_step(self, batch, batch_idx): ... return {'loss': loss, "train_acc": acc} def training_epoch_end(self, outputs): avg_loss = torch.stack([x['loss'] for x in outputs]).mean() avg_acc = torch.stack([x['train_acc'] for x in outputs]).mean() logs = {'loss': avg_loss, 'train_acc': avg_acc} progress_bar = {'train_loss': avg_loss, 'train_acc': avg_acc} results = { 'log': logs, 'progress_bar': progress_bar } return results ```
Try: `avg_loss = torch.stack([x['batch_loss'] for x in outputs]).mean()` Thanks๏ผŒ it works but 'train_acc' key doesn't exist, neither do `batch_train_acc`. How to access other keys returned in training_step? As of now in lightning you can access them using `x['callback_metrics']['loss']` and `x['callback_metrics']['train_acc']`, but I think it should be handled in a similar way we do this with `validation_epoch_end` and `test_epoch_end`. Hi! One hint: for me it works with "loss" under windows but not under ubuntu. Weird!! Why is this think platform dependent?? :thinking: @Pet222 , are u sure that versions on ubuntu and windows are same? Hey @williamFalcon is this intended behaviour? I was surprised to see this breaking change being introduced with no warning. If it is intended, why not have consistent behaviour over `validation_epoch_end` and `test_epoch_end`. If it is not intended, as it seems due to the "bug fix" tag, are you working on it or should I make a PR for this? what is the behavior? that the "loss" key is not in training_epoch_end? If so, that's a bug because it should be there @williamFalcon , on the latest version, the `loss` key was changed to the `batch_loss`. I think it was changed [here](https://github.com/PyTorchLightning/pytorch-lightning/commit/0f073819d3e0df8db7602eab489b1bad0fc0949c#diff-c45bd21c331565cbe62aaa12fa43aa0aR717) Yes, the fact that you need to access it through 'callback metrics'. Got it! On Tue, 30 Jun 2020 at 12:44, William Falcon <[email protected]> wrote: > what is the behavior? that the "loss" key is not in training_epoch_end? If > so, that's a bug because it should be there > > โ€” > You are receiving this because you commented. > Reply to this email directly, view it on GitHub > <https://github.com/PyTorchLightning/pytorch-lightning/issues/2372#issuecomment-651740702>, > or unsubscribe > <https://github.com/notifications/unsubscribe-auth/ABKWP6XTUJDTEDJ2NZQ3RKTRZHFY5ANCNFSM4OJKX4KQ> > . > -- Best Regards, Miguel Vera +351 915 198 452 [email protected] Github/Captainvera <http://www.github.com/captainvera> @captainvera would love a PR :)
2020-06-30T13:23:18Z
[]
[]
Traceback (most recent call last): File "main.py", line 140, in <module> main(hparams) File "main.py", line 72, in main trainer.fit(model) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 881, in fit self.ddp_train(task, model) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 539, in ddp_train self.run_pretrain_routine(model) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/trainer.py", line 1091, in run_pretrain_routine self.train() File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 376, in train self.run_training_epoch() File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 510, in run_training_epoch self.run_training_epoch_end(epoch_output) File "/mnt/lustre/maxiao1/anaconda3/lib/python3.7/site-packages/pytorch_lightning/trainer/training_loop.py", line 535, in run_training_epoch_end epoch_output = model.training_epoch_end(epoch_output) File "/mnt/lustre/maxiao1/PVM/models/baseline.py", line 335, in training_epoch_end avg_loss = torch.stack([x['loss'] for x in outputs]).mean() File "/mnt/lustre/maxiao1/PVM/models/baseline.py", line 335, in <listcomp> avg_loss = torch.stack([x['loss'] for x in outputs]).mean() KeyError: 'loss'
230
Lightning-AI/lightning
Lightning-AI__lightning-2433
d4a02e3bd8471946c606fef7512ce44d42f07d3a
diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -802,9 +802,22 @@ def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer, hiddens) if self.precision == 16 and not self.on_tpu: closure_loss = model_ref.amp_scale_loss(closure_loss, optimizer, opt_idx) + # enter amp context + if not NATIVE_AMP_AVALAIBLE: + context = closure_loss + closure_loss = closure_loss.__enter__() + # do backward pass model_ref.backward(self, closure_loss, optimizer, opt_idx) + # exit amp context + if self.precision == 16 and not NATIVE_AMP_AVALAIBLE: + a, b, c = None, None, None + error = context.__exit__(a, b, c) + if error: + rank_zero_warn(a, b, c) + raise Exception('apex unscale error') + # once backward has been applied, release graph closure_loss = closure_loss.detach() training_step_output.batch_loss = training_step_output.batch_loss.detach()
0.8.2 calls backward on '_GeneratorContextManager' ## ๐Ÿ› Bug 0.8.2 calls backward on '_GeneratorContextManager' and crashes training. 0.8.1 works correctly. my `training_step` returns `{'loss':loss, 'log':{'learn_rate':self.lr}}` ``` Traceback (most recent call last): File "/opt/conda/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 538, in ddp_train self.run_pretrain_routine(model) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 1100, in run_pretrain_routine self.train() File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 370, in train self.run_training_epoch() File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 452, in run_training_epoch batch_output = self.run_training_batch(batch, batch_idx) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 630, in run_training_batch self.hiddens File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 804, in optimizer_closure model_ref.backward(self, closure_loss, optimizer, opt_idx) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/core/hooks.py", line 189, in backward loss.backward() AttributeError: '_GeneratorContextManager' object has no attribute 'backward' ``` ### Expected behavior backward is called on the loss and training runs correctly
did you override optimizer step? could you try master? we just pushed a fix to a typo we had Can confirm this happens on 0.8.3 ok. Can you post a colab example that replicates this? @Anjum48 @s-rog colab please @williamFalcon my optimizer step was untouched, I can't run more testing atm but I'll get to it as soon as I can @williamFalcon Hi I also encountered this, with normal Adam optimizer. I don't have a colab to replicate this atm but from what I saw earlier, this can be replicated with any setting as long as the Trainer is set to precision=16 when using Apex. Under this condition, the following lines from training_loop.py and hooks.py will run: `if self.precision == 16 and not self.on_tpu closure_loss = model_ref.amp_scale_loss(closure_loss, optimizer, opt_idx) ` `scaled_loss = amp.scale_loss(unscaled_loss, optimizer)` will cause the closure_loss be a _GeneratorContextManager object. Which then cannot have a **backward()** method. It seems under the current design, pytorch lighting's **scale_loss** function can only be used as a context? @williamFalcon Here's a colab example (my first time using colab so let me know if you have issues seeing it) https://colab.research.google.com/drive/1G08jVDpx-T-5HE2c89RLJdq4u67mM2-o?usp=sharing I suspect the issue lies with Apex AMP as suggested above by @aeryen ummm. I think this is an apex issue. I can't replicate it with 16-bit native. ![image](https://user-images.githubusercontent.com/3640001/86135032-4c97ff80-bab8-11ea-942e-ffaae17aff07.png) @aeryen min share a minimal example to reproduce? hi sorry for the delay: https://colab.research.google.com/drive/1rjaRRwgBTm4CKPfe9po_WSxnKqY4jDRv?usp=sharing I agree this is an apex issue, i.e. only occur when NATIVE_AMP_AVALAIBLE is false in the hooks.py
2020-06-30T18:33:09Z
[]
[]
Traceback (most recent call last): File "/opt/conda/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 538, in ddp_train self.run_pretrain_routine(model) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 1100, in run_pretrain_routine self.train() File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 370, in train self.run_training_epoch() File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 452, in run_training_epoch batch_output = self.run_training_batch(batch, batch_idx) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 630, in run_training_batch self.hiddens File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/training_loop.py", line 804, in optimizer_closure model_ref.backward(self, closure_loss, optimizer, opt_idx) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/core/hooks.py", line 189, in backward loss.backward() AttributeError: '_GeneratorContextManager' object has no attribute 'backward'
231
Lightning-AI/lightning
Lightning-AI__lightning-2565
e1bc208f66891e22f0139619a1be5c06235a0f34
diff --git a/pytorch_lightning/trainer/distrib_data_parallel.py b/pytorch_lightning/trainer/distrib_data_parallel.py --- a/pytorch_lightning/trainer/distrib_data_parallel.py +++ b/pytorch_lightning/trainer/distrib_data_parallel.py @@ -189,6 +189,7 @@ class TrainerDDPMixin(ABC): num_nodes: int node_rank: int tpu_cores: int + testing: bool @property @abstractmethod @@ -555,15 +556,35 @@ def ddp_train(self, process_idx, q, model, is_master=False, proc_offset=0): # continue training routine results = self.run_pretrain_routine(model) + # persist info in ddp_spawn + self.__transfer_ddp_spawn_state_on_fit_end(model, q, results) + # clean up memory torch.cuda.empty_cache() + if self.global_rank == 0 and self.distributed_backend not in ['ddp_spawn', 'ddp_cpu']: + return results + + def __transfer_ddp_spawn_state_on_fit_end(self, model, q, results): + if not self.distributed_backend in ['ddp_spawn', 'ddp_cpu']: + return + + # track the best model path + best_model_path = None + if self.checkpoint_callback is not None: + best_model_path = self.checkpoint_callback.best_model_path + if self.global_rank == 0 and q is not None: - q.put(self.checkpoint_callback.best_model_path) + rank_zero_warn('cleaning up ddp environment...') + q.put(best_model_path) q.put(results) - if self.global_rank == 0 and self.distributed_backend != 'ddp_spawn': - return results + # save the last weights + last_path = None + if not self.testing: + last_path = os.path.join(self.default_root_dir, '__temp_weight_ddp_end.ckpt') + torch.save(model.state_dict(), last_path) + q.put(last_path) def save_spawn_weights(self, model): """ @@ -574,6 +595,7 @@ def save_spawn_weights(self, model): if self.is_global_zero: path = os.path.join(self.default_root_dir, '__temp_weight_ddp_end.ckpt') self.save_checkpoint(path) + return path def load_spawn_weights(self, original_model): """ diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -35,7 +35,7 @@ from pytorch_lightning.utilities import rank_zero_warn, parsing, rank_zero_info, rank_zero_only import warnings -# warnings to ignore +# warnings to ignore in trainer warnings.filterwarnings('ignore', message='torch.distributed.reduce_op is deprecated, ' 'please use torch.distributed.ReduceOp instead') @@ -1063,9 +1063,14 @@ def __run_ddp_spawn(self, model, nprocs): # restore main state with best weights best_path = q.get() results = q.get() - if best_path is not None and len(best_path) > 0: - self.checkpoint_callback.best_model_path = best_path - model.load_from_checkpoint(best_path) + last_path = q.get() + + # transfer back the best path to the trainer + self.checkpoint_callback.best_model_path = best_path + + # load last weights + if last_path is not None and not self.testing: + torch.load(last_path, map_location=lambda storage, loc: storage) self.model = model return results
Can't use None (anymore) in checkpoint_callback ## ๐Ÿ› Bug using None in checkpoint_callback now errors out ``` -- Process 0 terminated with the following error: Traceback (most recent call last): File "/opt/conda/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 562, in ddp_train q.put(self.checkpoint_callback.best_model_path) AttributeError: 'NoneType' object has no attribute 'best_model_path' ``` ### To Reproduce `trainer = Trainer(checkpoint_callback=None)` Ran into this issue from upgrading to masters, was using masters from a few commits ago before Edit: `False` casuses the same error as well
2020-07-09T10:46:34Z
[]
[]
Traceback (most recent call last): File "/opt/conda/lib/python3.6/site-packages/torch/multiprocessing/spawn.py", line 20, in _wrap fn(i, *args) File "/opt/conda/lib/python3.6/site-packages/pytorch_lightning/trainer/distrib_data_parallel.py", line 562, in ddp_train q.put(self.checkpoint_callback.best_model_path) AttributeError: 'NoneType' object has no attribute 'best_model_path'
250
Lightning-AI/lightning
Lightning-AI__lightning-2572
c197b74289997fa11cd372b51adb637f3e3846ec
diff --git a/pytorch_lightning/core/memory.py b/pytorch_lightning/core/memory.py --- a/pytorch_lightning/core/memory.py +++ b/pytorch_lightning/core/memory.py @@ -209,7 +209,7 @@ def _forward_example_input(self) -> None: input_ = model.example_input_array input_ = model.transfer_batch_to_device(input_, model.device) - if trainer is not None and trainer.use_amp: + if trainer is not None and trainer.use_amp and not trainer.use_tpu: if NATIVE_AMP_AVALAIBLE: model.forward = torch.cuda.amp.autocast()(model.forward) diff --git a/pytorch_lightning/trainer/distrib_parts.py b/pytorch_lightning/trainer/distrib_parts.py --- a/pytorch_lightning/trainer/distrib_parts.py +++ b/pytorch_lightning/trainer/distrib_parts.py @@ -240,14 +240,14 @@ def dp_train(self, model): # hack forward to do autocast for the user model_autocast_original_forward = model.forward - if self.use_amp and NATIVE_AMP_AVALAIBLE: + if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: # wrap the user's forward in autocast and give it back at the end model.forward = torch.cuda.amp.autocast()(model.forward) # TODO: remove with dropping NVIDIA AMP support # check for this bug (amp + dp + !01 doesn't work) # https://github.com/NVIDIA/apex/issues/227 - if self.use_dp and self.use_amp and not NATIVE_AMP_AVALAIBLE: + if self.use_dp and self.use_amp and not NATIVE_AMP_AVALAIBLE and not self.use_tpu: if self.amp_level == 'O2': raise MisconfigurationException( f'Amp level {self.amp_level} with DataParallel is not supported.' diff --git a/pytorch_lightning/trainer/evaluation_loop.py b/pytorch_lightning/trainer/evaluation_loop.py --- a/pytorch_lightning/trainer/evaluation_loop.py +++ b/pytorch_lightning/trainer/evaluation_loop.py @@ -286,7 +286,7 @@ def _evaluate( # ----------------- # RUN EVALUATION STEP # ----------------- - if self.use_amp and NATIVE_AMP_AVALAIBLE: + if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: with torch.cuda.amp.autocast(): output = self.evaluation_forward(model, batch, batch_idx, dataloader_idx, test_mode) else: diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -1118,7 +1118,7 @@ def run_pretrain_routine(self, model: LightningModule): self.copy_trainer_model_properties(ref_model) # init amp. Must be done here instead of __init__ to allow ddp to work - if NATIVE_AMP_AVALAIBLE and self.precision == 16: + if NATIVE_AMP_AVALAIBLE and self.precision == 16 and not self.use_tpu: self.scaler = torch.cuda.amp.GradScaler() # log hyper-parameters @@ -1300,6 +1300,11 @@ def __test_using_best_weights(self, ckpt_path, test_dataloaders): if ckpt_path == 'best': ckpt_path = self.checkpoint_callback.best_model_path + if len(ckpt_path) == 0: + rank_zero_warn(f'.test() found no path for the best weights, {ckpt_path}. Please ' + f'specify a path for a checkpoint .test(ckpt_path=PATH)') + return {} + ckpt = torch.load(ckpt_path, map_location=lambda storage, loc: storage) model.load_state_dict(ckpt['state_dict']) diff --git a/pytorch_lightning/trainer/training_io.py b/pytorch_lightning/trainer/training_io.py --- a/pytorch_lightning/trainer/training_io.py +++ b/pytorch_lightning/trainer/training_io.py @@ -358,7 +358,7 @@ def dump_checkpoint(self, weights_only: bool = False) -> dict: checkpoint['lr_schedulers'] = lr_schedulers # save native amp scaling - if self.use_amp and NATIVE_AMP_AVALAIBLE: + if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: checkpoint['native_amp_scaling_state'] = self.scaler.state_dict() # add the module_arguments and state_dict from the model diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -702,7 +702,7 @@ def run_batch_backward_pass(self, split_batch, batch_idx, opt_idx, optimizer): # ------------------ # CLIP GRADS # ------------------ - if self.use_amp and NATIVE_AMP_AVALAIBLE: + if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: self.scaler.unscale_(optimizer) self.clip_gradients() @@ -750,7 +750,7 @@ def call_optimizer_step(self, optimizer, opt_idx, batch_idx, split_batch): using_native_amp=native_amp) # in native 16-bit we need to update scaler after optimizer step - if self.use_amp and NATIVE_AMP_AVALAIBLE: + if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: self.scaler.update() # model hook @@ -767,7 +767,7 @@ def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer, hiddens) # FORWARD # --------------------------- with self.profiler.profile('model_forward'): - if self.use_amp and NATIVE_AMP_AVALAIBLE: + if self.use_amp and NATIVE_AMP_AVALAIBLE and not self.use_tpu: with torch.cuda.amp.autocast(): training_step_output = self.training_forward(split_batch, batch_idx, opt_idx, hiddens) @@ -817,7 +817,7 @@ def optimizer_closure(self, split_batch, batch_idx, opt_idx, optimizer, hiddens) model_ref.backward(self, closure_loss, optimizer, opt_idx) # exit amp context - if self.precision == 16 and not NATIVE_AMP_AVALAIBLE: + if self.precision == 16 and not NATIVE_AMP_AVALAIBLE and not self.on_tpu: a, b, c = None, None, None error = context.__exit__(a, b, c) if error:
TPU fp16 requires apex installed <!-- ## ๐Ÿ› Bug <!-- A clear and concise description of what the bug is. --> When I tried to use precision=16 on TPU, pytorch-lightning is trying to find amp, which is unnecessary. The backtrace is ``` GPU available: False, used: False TPU available: True, using: 8 TPU cores Traceback (most recent call last): File "bert_ner/light/fp16_debug.py", line 16, in <module> trainer = pl.Trainer(tpu_cores=8, precision=16) File "/anaconda3/envs/torch-xla-1.5/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 607, in __init__ self.init_amp() File "/anaconda3/envs/torch-xla-1.5/lib/python3.6/site-packages/pytorch_lightning/trainer/auto_mix_precision.py", line 27, in init_amp "You set `use_amp=True` but do not have apex installed." ModuleNotFoundError: You set `use_amp=True` but do not have apex installed.Install apex first using this guide and rerun with use_amp=True:https://github.com/NVIDIA/apex#linux his run will NOT use 16 bit precision ``` ### To Reproduce Steps to reproduce the behavior: build a whatever Trainer in TPU and use fp16 #### Code sample <!-- Ideally attach a minimal code sample to reproduce the decried issue. Minimal means having the shortest code but still preserving the bug. --> ``` import pytorch_lightning as pl trainer = pl.Trainer(tpu_cores=8, precision=16) ``` ### Expected behavior <!-- A clear and concise description of what you expected to happen. --> Should have nothing error. ### Environment - PyTorch Version (e.g., 1.5.0): - OS (e.g., Linux): Linux - How you installed PyTorch (`conda`, `pip`, source): conda - Build command you used (if compiling from source): - Python version: - CUDA/cuDNN version: - GPU models and configuration: - Any other relevant information: actually I directly use pytorch-xla-1.5 docker on Google Cloud ### Additional context <!-- Add any other context about the problem here. -->
Hi! thanks for your contribution!, great first issue! If you want to do 16 bit precision training, you either need to have the nightly version of pytorch install or have apex installed. Based on the traceback I guess that you do not have any of them. I could get this working using nightly version of pytorch: ``` pl.Trainer(precision=16, tpu_cores=8) >>>GPU available: False, used: False >>>TPU available: True, using: 8 TPU cores >>>Using native 16bit precision. ``` > If you want to do 16 bit precision training, you either need to have the nightly version of pytorch install or have apex installed. Based on the traceback I guess that you do not have any of them. > I could get this working using nightly version of pytorch: > > ``` > pl.Trainer(precision=16, tpu_cores=8) > >>>GPU available: False, used: False > >>>TPU available: True, using: 8 TPU cores > >>>Using native 16bit precision. > ``` Thanks for the quick reply. But [the document](https://pytorch-lightning.readthedocs.io/en/latest/apex.html) does not point out that I must have nightly version of pytorch installed or have apex installed when training on TPU with fp16. Maybe it's better to revise that part of document? Yes, I agree that from the documentation it would look like it is only a requirement for gpu training. I guess that the specific requirement for TPU is to have pytorch version 1.6 or higher.
2020-07-10T01:17:22Z
[]
[]
Traceback (most recent call last): File "bert_ner/light/fp16_debug.py", line 16, in <module> trainer = pl.Trainer(tpu_cores=8, precision=16) File "/anaconda3/envs/torch-xla-1.5/lib/python3.6/site-packages/pytorch_lightning/trainer/trainer.py", line 607, in __init__ self.init_amp() File "/anaconda3/envs/torch-xla-1.5/lib/python3.6/site-packages/pytorch_lightning/trainer/auto_mix_precision.py", line 27, in init_amp "You set `use_amp=True` but do not have apex installed." ModuleNotFoundError: You set `use_amp=True` but do not have apex installed.Install apex first using this guide and rerun with use_amp=True:https://github.com/NVIDIA/apex#linux his run will NOT use 16 bit precision
252

Dataset Card for "SWE-bench-traceback"

More Information needed

Downloads last month
48
Edit dataset card