seed
stringlengths
25
2.89k
seed_api
stringlengths
14
102
index
int64
0
14.8k
import tensorflow as tf mask = tf.equal(mask, tf.ones_like(mask)) hidden_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer input_size = query.get_shape().as_list()[-1] # Trainable parameters w1 = tf.Variable(tf.random_normal([hidden_size, attention_size], stddev=0.1)) w2 = tf.Variable(tf.random_normal([input_size, attention_size], stddev=0.1)) b = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) v = tf.Variable(tf.random_normal([attention_size], stddev=0.1)) with tf.name_scope('v'): # Applying fully connected layer with non-linear activation to each of the B*T timestamps; # the shape of `tmp` is (B,T,D)*(D,A)=(B,T,A), where A=attention_size tmp1 = tf.tensordot(facts, w1, axes=1) tmp2 = tf.tensordot(query, w2, axes=1) tmp2 = tf.reshape(tmp2, [-1, 1, tf.shape(tmp2)[-1]]) tmp = tf.tanh((tmp1 + tmp2) + b) # For each of the timestamps its vector of size A from `tmp` is reduced with `v` vector v_dot_tmp = tf.tensordot(tmp, v, axes=1, name='v_dot_tmp') # (B,T) shape key_masks = mask # [B, 1, T] # key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(v_dot_tmp) * (-2 ** 32 + 1) v_dot_tmp = tf.where(key_masks, v_dot_tmp, paddings) # [B, 1, T] alphas = tf.nn.softmax(v_dot_tmp, name='alphas') # (B,T) shape # Output of (Bi-)RNN is reduced with attention vector; the result has (B,D) shape #output = tf.reduce_sum(facts * tf.expand_dims(alphas, -1), 1)
tensorflow.tensordot
200
import tensorflow as tf input_files, max_seq_length, max_predictions_per_seq, is_training, num_cpu_threads=4 ): """Creates an `input_fn` closure to be passed to TPUEstimator.""" def input_fn(params): """The actual input function.""" batch_size = params["batch_size"] name_to_features = { "input_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "input_mask": tf.FixedLenFeature([max_seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([max_seq_length], tf.int64), "masked_lm_positions": tf.FixedLenFeature( [max_predictions_per_seq], tf.int64 ), "masked_lm_ids": tf.FixedLenFeature([max_predictions_per_seq], tf.int64), "masked_lm_weights": tf.FixedLenFeature( [max_predictions_per_seq], tf.float32 ), "next_sentence_labels": tf.FixedLenFeature([1], tf.int64),
tensorflow.FixedLenFeature
201
import tensorflow as tf # TODO(koz4k): Translate it to T2TModel or remove. def feed_forward_gaussian_fun(action_space, config, observations): """Feed-forward Gaussian.""" if not isinstance(action_space, gym.spaces.box.Box): raise ValueError("Expecting continuous action space.") mean_weights_initializer = tf.initializers.variance_scaling( scale=config.init_mean_factor) logstd_initializer = tf.random_normal_initializer(config.init_logstd, 1e-10) flat_observations = tf.reshape(observations, [ tf.shape(observations)[0], tf.shape(observations)[1], functools.reduce(operator.mul, observations.shape.as_list()[2:], 1)]) with tf.variable_scope("network_parameters"): with tf.variable_scope("policy"): x = flat_observations for size in config.policy_layers: x = tf.layers.dense(x, size, activation=tf.nn.relu) mean = tf.layers.dense( x, action_space.shape[0], activation=tf.tanh, kernel_initializer=mean_weights_initializer) logstd = tf.get_variable( "logstd", mean.shape[2:], tf.float32, logstd_initializer) logstd = tf.tile( logstd[None, None], [tf.shape(mean)[0], tf.shape(mean)[1]] + [1] * (mean.shape.ndims - 2)) with tf.variable_scope("value"): x = flat_observations
tensorflow.variable_scope
202
import tensorflow as tf zs = tf.map_fn(loop_hyper_encoder, ys, dtype=tf.float32, parallel_iterations=1, back_prop=False) print("Hyper Encoder") z_hats, _ = entropy_bottleneck(zs, False) print("Quantize hyperprior") def loop_hyper_deocder(z): z = tf.expand_dims(z, 0) loc, scale = hyper_decoder(z) return tf.squeeze(loc, [0]), tf.squeeze(scale, [0]) locs, scales = tf.map_fn(loop_hyper_deocder, z_hats, dtype=(tf.float32, tf.float32), parallel_iterations=1, back_prop=False) lower_bound = 1e-9# TODO scales = tf.maximum(scales, lower_bound) print("Hyper Decoder") z_strings, z_min_v, z_max_v = entropy_bottleneck.compress(zs) z_shape = tf.shape(zs)[:] print("Entropy Encode (Hyper)") y_strings, y_min_v, y_max_v = conditional_entropy_model.compress(ys, locs, scales) y_shape = tf.shape(ys)[:]
tensorflow.map_fn
203
import tensorflow as tf a0 = logits - tf.reduce_max(logits, 1, keepdims=True) ea0 = tf.exp(a0)
tensorflow.exp
204
from tensorflow.python.framework import ops ValueError: if either `batch_ndims` or `event_ndims` are: `None`, negative, not `int32`. """ if batch_ndims is None: raise ValueError("batch_ndims cannot be None") if event_ndims is None: raise ValueError("event_ndims cannot be None") self._batch_ndims = batch_ndims self._event_ndims = event_ndims self._validate_args = validate_args with ops.name_scope(name) as ns: self._name = ns with ops.name_scope("init"): self._batch_ndims = self._assert_non_negative_int32_scalar( ops.convert_to_tensor( batch_ndims, name="batch_ndims")) self._batch_ndims_static, self._batch_ndims_is_0 = ( self._introspect_ndims(self._batch_ndims)) self._event_ndims = self._assert_non_negative_int32_scalar( ops.convert_to_tensor( event_ndims, name="event_ndims")) self._event_ndims_static, self._event_ndims_is_0 = (
tensorflow.python.framework.ops.name_scope
205
import tensorflow as tf from __future__ import division from __future__ import print_function import tensorflow as tf from tensorflow.python.ops import array_ops from tensorflow.python.ops import control_flow_ops def conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0): with tf.variable_scope(name): l2_regularizer = lambda t: l2_loss(t, weight=weight_decay) kernel = tf.get_variable("weights", [kH, kW, nIn, nOut], initializer=tf.truncated_normal_initializer(stddev=1e-1), regularizer=l2_regularizer, dtype=inpOp.dtype) cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType) if use_batch_norm: conv_bn = batch_norm(cnv, phase_train) else: conv_bn = cnv biases = tf.get_variable("biases", [nOut], initializer=tf.constant_initializer(), dtype=inpOp.dtype) bias = tf.nn.bias_add(conv_bn, biases) conv1 = tf.nn.relu(bias) return conv1 def convLinear(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0): with tf.variable_scope(name): l2_regularizer = lambda t: l2_loss(t, weight=weight_decay)
tensorflow.nn.conv2d
206
import tensorflow as tf gradvar = self._optimizer.compute_gradients(loss, replaced_list, *args, **kwargs) final_gradvar = [] for orig_var, (grad, var) in zip(var_list, gradvar): if var is not orig_var: grad = tf.cast(grad, orig_var.dtype) if self._scale != 1.0: grad = tf.scalar_mul(1. / self._scale, grad) final_gradvar.append((grad, orig_var))
tensorflow.cast
207
from tensorflow.contrib.learn.python.learn.summary_writer_cache import SummaryWriterCache super(StepCounter, self).__init__(every_n_steps=every_n_steps) self._summary_tag = "global_step/sec" self._last_reported_step = None self._last_reported_time = None self._summary_writer = summary_writer if summary_writer is None and output_dir: self._summary_writer = SummaryWriterCache.get(output_dir) def set_estimator(self, estimator): super(StepCounter, self).set_estimator(estimator) if self._summary_writer is None: self._summary_writer = SummaryWriterCache.get(estimator.model_dir)
tensorflow.contrib.learn.python.learn.summary_writer_cache.SummaryWriterCache.get
208
import tensorflow as tf ''' Convolution op wrapper, use RELU activation after convolution Args: layer_name: x: input tensor Returns: 4D tensor ''' # x.get_shape()[-1] : Dimension(3) # x.get_shape()[-1].value : 3 in_channels = x.get_shape()[-1].value with tf.variable_scope(layer_name): w = tf.get_variable(name='weights', trainable=is_pretrain, shape=[kernel_size[0],kernel_size[1],in_channels,out_channels], initializer=tf.contrib.layers.xavier_initializer()) b = tf.get_variable(name='bias', trainable=is_pretrain, shape=[out_channels], initializer=tf.constant_initializer(0.0)) x = tf.nn.conv2d(x,w,strides,padding='SAME',name='conv') x = tf.nn.bias_add(x,b,name='bias_add') x = tf.nn.relu(x,name='relu') return x def pool(layer_name, x, kernel_size=[1,2,2,1], strides=[1,2,2,1], is_max_pool=True): ''' Pooling op Args:
tensorflow.contrib.layers.xavier_initializer
209
import tensorflow as tf self._add_loss_summary('loss_total', self.loss_total) self.summs_train = tf.summary.merge_all('train') # reconstructions with tf.name_scope('decodings'): self.image_summaries = { 'orig': self._add_decoding_summary('0_original_input', self.input), 'reco': self._add_decoding_summary('1_reconstruction', self.eval_decode), 'pred': self._add_decoding_summary('2_prediction', self.eval_decode), 'midd': self._add_decoding_summary('3_averaged', self.eval_decode), 'nois': self._add_decoding_summary('4_noisy', self.eval_decode) } # visualization fig = vis.get_figure() fig.canvas.draw() self.vis_placeholder = tf.placeholder(tf.uint8, ut.fig2rgb_array(fig).shape) self.vis_summary = tf.summary.image('visualization', self.vis_placeholder) # embedding dists = l2(self.embedding_test[:-1] - self.embedding_test[1:]) self.dist = dists metrics = [] metrics.append(tf.summary.histogram('point_distance', dists)) metrics.append(tf.summary.scalar('training/trajectory_length', tf.reduce_sum(dists))) self.blur_ph = tf.placeholder(dtype=tf.float32) metrics.append(tf.summary.scalar('training/blur_sigma', self.blur_ph)) pred = self.embedding_test[1:-1]*2 - self.embedding_test[0:-2] pred_error = l2(pred - self.embedding_test[2:]) mean_dist, mean_pred_error = tf.reduce_mean(dists), tf.reduce_mean(pred_error)
tensorflow.summary.image
210
import tensorflow as tf patches = tf.random.shuffle(patches) # rand_idx = tf.reshape(tf.random.shuffle(tf.range(0,n_patch)),[n_patch]) # patches = tf.gather(patches, rand_idx, axis=0) rows = tf.split(patches,n_col//self.size,axis=0) rows = [tf.concat(tf.unstack(x),axis=1) for x in rows] x_aug = tf.concat(rows,axis=0) x_aug = tf.convert_to_tensor(x_aug) return tf.concat([x, x_aug],axis=2) def mix_scramble(self,x): # assume square patch # sizes = tf.convert_to_tensor([1,2,4,8]) # idx = tf.random.categorical([tf.ones_like(sizes)], 1) # print(idx) # patch_size = int(sizes[idx[0][0]])
tensorflow.concat
211
import tensorflow as tf ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint) if use_tpu: def tpu_scaffold(): tf.train.init_from_checkpoint(init_checkpoint, assignment_map) return tf.train.Scaffold() scaffold_fn = tpu_scaffold
tensorflow.train.init_from_checkpoint
212
import tensorflow as tf """ def optimizer(self): lr = tf.get_variable('learning_rate', initializer=0.1, trainable=False) tf.summary.scalar('learning_rate-summary', lr) return tf.train.MomentumOptimizer(lr, 0.9, use_nesterov=True) def image_preprocess(self, image): with tf.name_scope('image_preprocess'): if image.dtype.base_dtype != tf.float32:
tensorflow.train.MomentumOptimizer
213
import tensorflow as tf beam_width=beam_width, blank_index=blank_index, top_paths=1, blank_label=0) decoded = tf.sparse.SparseTensor(indices[0], values[0], shape[0]) decoded = tf.cast(tf.sparse.to_dense(decoded), tf.int32) decoded_u = tf.sparse.SparseTensor(indices_u[0], values_u[0], shape_u[0]) decoded_u = tf.cast(tf.sparse.to_dense(decoded_u), tf.int32) # Adjust event vals according to representation decoded = tf.where(tf.not_equal(decoded, 0), decoded+shift, decoded) decoded_u = tf.where(tf.not_equal(decoded_u, 0), decoded_u+shift, decoded_u) # Set default vals
tensorflow.sparse.to_dense
214
import tensorflow as tf encoder_input_length_ = tf.to_int32(tf.ceil(encoder_input_length_ / strides[1])) feature_size = encoder_inputs_.shape[2].value channels = encoder_inputs_.shape[3].value time_steps = tf.shape(encoder_inputs_)[1] encoder_inputs_ = tf.reshape(encoder_inputs_, [batch_size, time_steps, feature_size * channels]) conv_outputs_ = encoder_inputs_
tensorflow.shape
215
import tensorflow as tf gh_w = gh_w.reshape(-1, 1) / np.sqrt(np.pi) shape = tf.shape(Fmu) Fmu, Fvar = [tf.reshape(e, (-1, 1)) for e in (Fmu, Fvar)] X = gh_x * tf.sqrt(2.0 * Fvar) + Fmu logp = phi(X) return tf.reshape(tf.matmul(logp, gh_w), shape)
tensorflow.sqrt
216
import tensorflow as tf per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1) loss = tf.reduce_mean(per_example_loss)
tensorflow.reduce_mean
217
import tensorflow as tf self.assertEqual(networks.min_total_num_images(7, 8, 4), 52) def test_compute_progress(self): current_image_id_ph = tf.placeholder(tf.int32, []) progress = networks.compute_progress( current_image_id_ph,
tensorflow.placeholder
218
import tensorflow as tf print('\ninverse(D)=') print(sess.run(tf.matrix_inverse(D))) print('\ndeterminant(D)={:.1f}'.format(sess.run(tf.matrix_determinant(D)))) print('\ncholesky(D):') print(sess.run(tf.cholesky(identity_matrix))) print('\nselfAdjointEig(D):') print(sess.run(tf.self_adjoint_eig(D))) print(sess.run(tf.div(13, 4))) print(sess.run(tf.truediv(13, 4))) print(sess.run(tf.floordiv(13, 4))) print(sess.run(tf.mod(13.2, 4))) print(sess.run(tf.cross([1, 0, 0], [0, 1, 0]))) print(sess.run(tf.square([1, 2, 3])))
tensorflow.self_adjoint_eig
219
import tensorflow as tf ) self_attn_input = rep_map context_features = tf.add(scatter_attn[:, :-1], scatter_pooling[:, :-1], 'context_features') output_mask = rep_mask else: self_attn_input = rep_head_tensor context_features = attn_result output_mask = rep_head_mask # context fusion gate o_bias = tf.get_variable('o_bias', [ivec], tf.float32, tf.constant_initializer(0.)) fusion_gate = tf.nn.sigmoid( linear(self_attn_input, ivec, True, 0., 'linear_fusion_i', False, wd, keep_prob, is_train) + linear(context_features, ivec, True, 0., 'linear_fusion_a', False, wd, keep_prob, is_train) + o_bias) output = fusion_gate * self_attn_input + (1 - fusion_gate) * context_features return output, output_mask def self_attention_for_selected_head(
tensorflow.constant_initializer
220
import tensorflow as tf FLAGS.enable_check_numerics = False p = self.TestParams() p.input = base_input_generator.BaseSequenceInputGenerator.Params() task = p.cls(p) task.CreateVariable( 'a', py_utils.WeightParams(shape=[], init=py_utils.WeightInit.Constant(0))) var_a = task.theta.a # Infinite gradient. var_grads = py_utils.NestedMap(a=(var_a, tf.log(0.))) has_nan_or_inf, grad_scale, final_var_grads = task.ScaleGradients(var_grads) with self.session(): tf.global_variables_initializer().run() self.assertTrue(has_nan_or_inf.eval()) self.assertEqual(0., grad_scale.eval()) # The final gradient must be finite. self.assertFalse(tf.is_nan(final_var_grads.a[1]).eval())
tensorflow.log
221
import tensorflow as tf if model_str == 'gcn_ae': opt = OptimizerAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), pos_weight=pos_weight, norm=norm) elif model_str == 'gcn_vae': opt = OptimizerVAE(preds=model.reconstructions, labels=tf.reshape(tf.sparse_tensor_to_dense(placeholders['adj_orig'], validate_indices=False), [-1]), model=model, num_nodes=num_nodes, pos_weight=pos_weight, norm=norm) # Initialize session sess = tf.Session()
tensorflow.sparse_tensor_to_dense
222
import tensorflow as tf logits_vec, axis=0)[None] relabel_indices = tf.random.categorical(logits=logits_vec, num_samples=1) ### Metrics global_step = tf.compat.v1.train.get_or_create_global_step() orig_indices = tf.range( self._sample_batch_size, dtype=relabel_indices.dtype) with tf.name_scope("relabelling"): # How often are the originally commanded goals most optimal? opt_indices = tf.argmax(logits_vec, axis=1) orig_is_opt = opt_indices == orig_indices orig_opt_frac = tf.reduce_mean(tf.cast(orig_is_opt, tf.float32)) tf.compat.v2.summary.scalar( name="orig_task_optimal", data=orig_opt_frac, step=global_step) # How often is the relabelled goal optimal? # The relabel_indices are [B, 1], so we need to remove the extra dim. relabel_is_opt = tf.squeeze(relabel_indices) == orig_indices
tensorflow.argmax
223
from tensorflow.python.ops import variable_scope 'PR' for the Precision-Recall-curve. name: An optional variable_scope name. Returns: auc: A scalar tensor representing the current area-under-curve. update_op: An operation that increments the `true_positives`, `true_negatives`, `false_positives` and `false_negatives` variables appropriately and whose value matches `auc`. Raises: ValueError: If `predictions` and `labels` have mismatched shapes, or if `weights` is not `None` and its shape doesn't match `predictions`, or if either `metrics_collections` or `updates_collections` are not a list or tuple. """ with variable_scope.variable_scope(name, 'auc', [predictions, labels]): if curve != 'ROC' and curve != 'PR': raise ValueError('curve must be either ROC or PR, %s unknown' % (curve)) kepsilon = 1e-7 # to account for floating point imprecisions thresholds = [(i + 1) * 1.0 / (num_thresholds - 1) for i in range(num_thresholds-2)] thresholds = [0.0 - kepsilon] + thresholds + [1.0 + kepsilon] (tp, fn, tn, fp, tp_update_op, fn_update_op, tn_update_op, fp_update_op) = _tp_fn_tn_fp(predictions, labels, thresholds, weights) # Add epsilons to avoid dividing by 0. epsilon = 1.0e-6 assert array_ops.squeeze(fp).get_shape().as_list()[0] == num_thresholds
tensorflow.python.ops.variable_scope.variable_scope
224
from tensorflow.python.training import gradient_descent def _setupSparse(self, is_distributed, dtype): with self._maybeWithDevice("/job:ps" if is_distributed else None): var0 = variables.Variable( [[0.0, 1.0], [2.0, 3.0], [4.0, 5.0]], dtype=dtype) var1 = variables.Variable( [[0.0, 1.0], [0.0, 3.0], [0.0, 5.0]], dtype=dtype) with self._maybeWithDevice("/job:worker" if is_distributed else None): grads = ops.IndexedSlices( constant_op.constant( [[0.1, 0.1], [0.1, 0.1]], dtype=dtype), [0, 2], [3, 2]) sgd = gradient_descent.GradientDescentOptimizer(3.0) clip_opt = variable_clipping_optimizer.VariableClippingOptimizer( sgd, {var0: [1], var1: [0]}, 2.0) update_op = clip_opt.apply_gradients( list(zip([grads, grads], [var0, var1]))) variables.global_variables_initializer().run() return var0, var1, update_op def _assertSparseCorrect(self, var0, var1, update_op):
tensorflow.python.training.gradient_descent.GradientDescentOptimizer
225
import tensorflow as tf # rgb.set_shape([h,w,c]) # don't set because going to crop anyway # crop for lsun 96, see realnvp and glow for specifics rgb = tf.image.random_crop(rgb,size=[h,w,c]) # crop for patch training crop_h = h//self.crop_factor crop_w = w//self.crop_factor rgb = tf.image.random_crop(rgb,size=[crop_h,crop_w,c]) # random left-right flops rgb = tf.image.random_flip_left_right(rgb) # cast, bit conversion, compress domain, center rgb = tf.cast(rgb, tf.float32) if n_bits < 8: rgb = tf.floor(rgb/(2**(8-n_bits))) rgb = rgb/(n_bins) - 0.5 return rgb def post_process(self, rgb, add_dequantization_noise=True):
tensorflow.image.random_flip_left_right
226
import tensorflow as tf X = tf.placeholder(name='X', shape=[None,data_x.shape[1], data_x.shape[2], data_x.shape[3]], dtype=tf.float32) # Create the output to the network. This is our one hot encoding of 2 possible values (TODO)! Y = tf.placeholder(name='Y', shape=[None,data_y.shape[1]], dtype=tf.float32)
tensorflow.placeholder
227
import tensorflow as tf # Put everything together. perturbed_deterministic_actions = tf.argmax(perturbable_policy.q_values, axis=1) deterministic_actions = tf.argmax(policy.q_values, axis=1) batch_size = tf.shape(policy.obs_ph)[0] n_actions = ac_space.nvec if isinstance(ac_space, MultiDiscrete) else ac_space.n random_actions = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=n_actions, dtype=tf.int64) chose_random = tf.random_uniform(tf.stack([batch_size]), minval=0, maxval=1, dtype=tf.float32) < eps perturbed_stochastic_actions = tf.where(chose_random, random_actions, perturbed_deterministic_actions) stochastic_actions = tf.where(chose_random, random_actions, deterministic_actions) perturbed_output_actions = tf.cond(stochastic_ph, lambda: perturbed_stochastic_actions, lambda: deterministic_actions) output_actions = tf.cond(stochastic_ph, lambda: stochastic_actions, lambda: deterministic_actions) update_eps_expr = eps.assign(tf.cond(update_eps_ph >= 0, lambda: update_eps_ph, lambda: eps))
tensorflow.where
228
import tensorflow as tf If `x` is integral, the output is cast to [u]int64. If `x` is sparse and reduce_inst_dims is False will return 0 in place where column has no values across batches. Raises: TypeError: If the type of `x` is not supported. """ with tf.compat.v1.name_scope(name, 'sum'): if reduce_instance_dims: x = tf.reduce_sum(input_tensor=tf_utils.get_values(x)) elif isinstance(x, tf.SparseTensor): if x.dtype == tf.uint8 or x.dtype == tf.uint16: x = tf.cast(x, tf.int64) elif x.dtype == tf.uint32 or x.dtype == tf.uint64: TypeError('Data type %r is not supported' % x.dtype) x = tf.sparse.reduce_sum(x, axis=0) elif isinstance(x, tf.RaggedTensor): raise NotImplementedError( 'Elementwise sum does not support RaggedTensors.') else: x = tf.reduce_sum(input_tensor=x, axis=0) output_dtype, sum_fn = _sum_combine_fn_and_dtype(x.dtype) return _numeric_combine( inputs=[x], fn=sum_fn, default_accumulator_value=0, reduce_instance_dims=reduce_instance_dims, output_dtypes=[output_dtype])[0]
tensorflow.sparse.reduce_sum
229
import tensorflow as tf def _get_next_checkpoint(): return tf.contrib.training.checkpoints_iterator(
tensorflow.contrib.training.checkpoints_iterator
230
import tensorflow as tf def decode(roi, deltas, variances=None): with tf.name_scope('BoundingBoxTransform/decode'): (roi_width, roi_height, roi_urx, roi_ury) = get_width_upright(roi) dx, dy, dw, dh = tf.split(deltas, 4, axis=1) if variances is None: variances = [1., 1.]
tensorflow.split
231
import tensorflow as tf # protanope self.color_matrix = tf.convert_to_tensor([[0, 2.02344, -2.52581], [0, 1, 0], [0, 0, 1]])
tensorflow.convert_to_tensor
232
import tensorflow as tf loss = tf.maximum(0., tgt_posi_dif - pred_posi_dif) cstr_pct = tf.math.count_nonzero(loss, dtype=tf.float32) / tf.cast(tf.reduce_prod(tf.shape(loss)), tf.float32) final_loss = tf.reduce_mean(loss)
tensorflow.math.count_nonzero
233
from tensorflow.python.framework import tensor_shape returned_shape = [] for i, dim in enumerate(input_shape.dims): if i != dimension: returned_shape.append(dim) return [tensor_shape.TensorShape(returned_shape)] else: raise ValueError( "dimension (%d) must be in the range [0, %d), where %d is the number "
tensorflow.python.framework.tensor_shape.TensorShape
234
import tensorflow as tf with tf.variable_scope('Critic'):
tensorflow.variable_scope
235
import tensorflow as tf # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t return example def input_fn(params):
tensorflow.to_int32
236
from tensorflow.python.ops import check_ops `log_prob(x)`. If `validate_args` is `False` and the inputs are invalid, correct behavior is not guaranteed. allow_nan_stats: `Boolean`, default `True`. If `False`, raise an exception if a statistic (e.g. mean/mode/etc...) is undefined for any batch member. If `True`, batch members with valid parameters leading to undefined statistics will return NaN for this statistic. name: The name to prepend to all ops created by this distribution. Raises: TypeError: if `alpha` and `beta` are different dtypes. """ parameters = locals() parameters.pop("self") with ops.name_scope(name, values=[alpha, beta]) as ns: with ops.control_dependencies([ check_ops.assert_positive(alpha), check_ops.assert_positive(beta), ] if validate_args else []): self._alpha = array_ops.identity(alpha, name="alpha") self._beta = array_ops.identity(beta, name="beta") super(InverseGamma, self).__init__( dtype=self._alpha.dtype, validate_args=validate_args, allow_nan_stats=allow_nan_stats, is_continuous=True, is_reparameterized=False, parameters=parameters, graph_parents=[self._alpha, self._beta], name=ns)
tensorflow.python.ops.check_ops.assert_positive
237
import tensorflow as tf # already in the target shape return input_tensor # resize y-z squeeze_b_x = tf.reshape(input_tensor, [-1, y_size, z_size, c_size], name='reshape_bx') resize_b_x = tf.compat.v1.image.resize_bilinear(squeeze_b_x, [y_size_new, z_size_new], align_corners=align) resume_b_x = tf.reshape(resize_b_x, [-1, x_size, y_size_new, z_size_new, c_size], name='resume_bx') # Reorient reoriented = tf.transpose(resume_b_x, [0, 3, 2, 1, 4])
tensorflow.compat.v1.image.resize_bilinear
238
import tensorflow as tf dtype=DTYPE) b = tf.get_variable( "b_cnn_%s" % i, [num], dtype=DTYPE, initializer=tf.constant_initializer(0.0)) conv = tf.nn.conv2d( inp, w, strides=[1, 1, 1, 1], padding="VALID") + b # now max pool
tensorflow.nn.conv2d
239
import tensorflow as tf if ckpt and tf.train.checkpoint_exists(ckpt.model_checkpoint_path): print("loading checkpoint...") saver.restore(sess, ckpt.model_checkpoint_path) else: sess.run(tf.global_variables_initializer()) summary_writer = tf.summary.FileWriter('./logs_pretrain', sess.graph) _x = x[:, :, :, ::-1] tf.summary.image('x', _x, 4) summary_op = tf.summary.merge_all() epoch_learning_rate = init_learning_rate for epoch in range(1, total_epochs + 1): if epoch % 10 == 0 : epoch_learning_rate = epoch_learning_rate / 10
tensorflow.summary.image
240
import tensorflow as tf deconv_shape1 = image_net["pool4"].get_shape() W_t1 = utils.weight_variable([4, 4, deconv_shape1[3].value, NUM_OF_CLASSESS], name="W_t1") b_t1 = utils.bias_variable([deconv_shape1[3].value], name="b_t1") conv_t1 = utils.conv2d_transpose_strided(conv8, W_t1, b_t1, output_shape=tf.shape(image_net["pool4"])) fuse_1 = tf.add(conv_t1, image_net["pool4"], name="fuse_1") deconv_shape2 = image_net["pool3"].get_shape() W_t2 = utils.weight_variable([4, 4, deconv_shape2[3].value, deconv_shape1[3].value], name="W_t2") b_t2 = utils.bias_variable([deconv_shape2[3].value], name="b_t2") conv_t2 = utils.conv2d_transpose_strided(fuse_1, W_t2, b_t2, output_shape=tf.shape(image_net["pool3"])) fuse_2 = tf.add(conv_t2, image_net["pool3"], name="fuse_2") shape = tf.shape(image) deconv_shape3 = tf.stack([shape[0], shape[1], shape[2], NUM_OF_CLASSESS]) W_t3 = utils.weight_variable([16, 16, NUM_OF_CLASSESS, deconv_shape2[3].value], name="W_t3") b_t3 = utils.bias_variable([NUM_OF_CLASSESS], name="b_t3") conv_t3 = utils.conv2d_transpose_strided(fuse_2, W_t3, b_t3, output_shape=deconv_shape3, stride=8) annotation_pred = tf.argmax(conv_t3, dimension=3, name="prediction")
tensorflow.add
241
import tensorflow as tf all_input_mask, shape=[num_examples, seq_length], dtype=tf.int32), "segment_ids": tf.constant( all_segment_ids, shape=[num_examples, seq_length], dtype=tf.int32),
tensorflow.constant
242
import tensorflow as tf q1_in_ph = tf.concat([x, a], axis=-1) q1_in_dim = q1_in_ph.shape.as_list()[1] q1_dropout_mask_generator = DropoutMaskGenerator(q1_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) q1_dropout_mask_phs = q1_dropout_mask_generator.generate_dropout_mask_placeholders() q1, q1_reg = mlp_variational(q1_in_ph, q1_dropout_mask_phs, list(hidden_sizes) + [1], activation, None, dropout_rate) q1 = tf.squeeze(q1, axis=2) with tf.variable_scope('q1', reuse=True): q1_pi, q1_pi_reg = mlp_variational(tf.concat([x, pi[0]], axis=-1), q1_dropout_mask_phs, list(hidden_sizes) + [1], activation, None, dropout_rate) q1_pi = tf.squeeze(q1_pi, axis=2) with tf.variable_scope('q2'): q2_in_ph = tf.concat([x, a], axis=-1) q2_in_dim = q2_in_ph.shape.as_list()[1] q2_dropout_mask_generator = DropoutMaskGenerator(q2_in_dim, hidden_sizes, model_prob=1.0 - dropout_rate) q2_dropout_mask_phs = q2_dropout_mask_generator.generate_dropout_mask_placeholders() q2, q2_reg = mlp_variational(q2_in_ph, q2_dropout_mask_phs, list(hidden_sizes) + [1], activation, None, dropout_rate) q2 = tf.squeeze(q2, axis=2) else: raise ValueError('Please choose a proper nn_type!') return pi, pi_reg, pi_dropout_mask_generator, pi_dropout_mask_phs,\
tensorflow.variable_scope
243
import tensorflow as tf hparams.video_num_input_frames = video_num_input_frames hparams.video_num_target_frames = video_num_target_frames else: return video_num_input_frames, video_num_target_frames @gin.configurable(module='trax.data', denylist=['dataset', 'training']) def bair_robot_pushing_preprocess(dataset, training): """Pre-processing function that concatenates input and target frames.""" del training def concat_and_add_mask(features, targets): """Concatenate input and output frames to form a language modeling setup.""" inp = features['inputs'] concat = tf.concat([inp, targets], axis=0) mask = tf.concat([tf.zeros_like(inp), tf.ones_like(targets)], axis=0) concat = tf.reshape(concat, (-1,)) mask = tf.reshape(mask, (-1,)) concat = tf.cast(concat, tf.int32) mask = tf.cast(mask, tf.float32) features['inputs'] = features['targets'] = concat features['mask'] = mask return features, concat dataset = dataset.map(concat_and_add_mask) return dataset def sentencepiece_tokenize(stream, spm_path=None, extra_ids=0): """Sentencepiece tokenization."""
tensorflow.ones_like
244
import tensorflow as tf return rois, rpn_scores def _crop_pool_layer(self, bottom, rois, name): with tf.variable_scope(name): # tf.squeeze()返回一个张量,这个张量是将原始input中所有维度中为1的那些维都删掉的结果 batch_ids = tf.squeeze(tf.slice(rois, [0, 0], [-1, 1], name="batch_id"), [1]) # Get the normalized coordinates of bboxes bottom_shape = tf.shape(bottom) height = (tf.to_float(bottom_shape[1]) - 1.) * np.float32(self._feat_stride[0]) width = (tf.to_float(bottom_shape[2]) - 1.) * np.float32(self._feat_stride[0]) # rois除以h,w就得到了rois在特征图上的位置 x1 = tf.slice(rois, [0, 1], [-1, 1], name="x1") / width y1 = tf.slice(rois, [0, 2], [-1, 1], name="y1") / height x2 = tf.slice(rois, [0, 3], [-1, 1], name="x2") / width y2 = tf.slice(rois, [0, 4], [-1, 1], name="y2") / height # Won't be backpropagated to rois anyway, but to save time bboxes = tf.stop_gradient(tf.concat([y1, x1, y2, x2], axis=1)) # 'roi_pooling_size', 7 pre_pool_size = cfg.FLAGS.roi_pooling_size * 2 # 把rois对于的特征图上的部分crop出来,然后resize打破14*14的大小 crops = tf.image.crop_and_resize(bottom, bboxes, tf.to_int32(batch_ids), [pre_pool_size, pre_pool_size], name="crops") return slim.max_pool2d(crops, [2, 2], padding='SAME') def _dropout_layer(self, bottom, name, ratio=0.5): return tf.nn.dropout(bottom, ratio, name=name) def _anchor_target_layer(self, rpn_cls_score, name): with tf.variable_scope(name):
tensorflow.slice
245
import tensorflow as tf # Hidden 2 with tf.name_scope("hidden2"): weights = tf.Variable( tf.truncated_normal([128, 32], stddev=1.0 / math.sqrt(float(128))), name="weights") biases = tf.Variable(tf.zeros([32]), name="biases") hidden2 = tf.nn.relu(tf.matmul(hidden1, weights) + biases) # Linear with tf.name_scope("softmax_linear"): weights = tf.Variable( tf.truncated_normal([32, 10], stddev=1.0 / math.sqrt(float(32))), name="weights") biases = tf.Variable(tf.zeros([10]), name="biases") logits = tf.matmul(hidden2, weights) + biases tf.add_to_collection("logits", logits)
tensorflow.name_scope
246
import tensorflow as tf if encoder.binary: raise NotImplementedError pad = tf.nn.embedding_lookup(embeddings, utils.BOS_ID) pad = tf.expand_dims(tf.expand_dims(pad, axis=0), axis=1) pad = tf.tile(pad, [batch_size, 1, 1])
tensorflow.nn.embedding_lookup
247
import tensorflow as tf def test_tensor_rearrange(): tensor_rearrange = TensorRearrange(seed=713) in_node_a = tensor_rearrange.get_placeholder("input_0") in_node_b = tensor_rearrange.get_placeholder("input_1") in_node_c = tensor_rearrange.get_placeholder("input_2") stitched = tf.dynamic_stitch([[1, 10], [[0, 7, 9], [5, 8, 3]], [[6], [4], [2]]], [in_node_a, in_node_b, in_node_c]) # should be 11,5,4 list_of_parts = tf.dynamic_partition(tf.transpose(stitched, perm=[1, 2, 0]), [[0, 1, 2, 3], [1, 0, 2, 3], [2, 3, 1, 0], [2, 1, 0, 3], [0, 1, 2, 3]], num_partitions=4) # after permute becomes 5,4,11, return all partitions 5,11 node_a = tf.div(list_of_parts[0], list_of_parts[1]) node_b = tf.divide(list_of_parts[2], list_of_parts[3]) trace_node = tf.trace(node_a) + node_b # there is a broadcast here out_node = tf.cast(tf.count_nonzero(trace_node), dtype=tf.float32) + tf.Variable(tf.random_normal(shape=(2, 3))) placeholders = [in_node_a, in_node_b, in_node_c] predictions = [out_node] # Run and persist tfp = TensorFlowPersistor(save_dir="partition_stitch_misc") tfp.set_placeholders(placeholders) \ .set_output_tensors(predictions) \
tensorflow.divide
248
import tensorflow as tf with tf.name_scope('S'): S = tf.placeholder(tf.float32, shape=[None, STATE_DIM], name='s') with tf.name_scope('R'): R = tf.placeholder(tf.float32, [None, 1], name='r')
tensorflow.name_scope
249
import tensorflow as tf if is_training: d = tf.data.Dataset.from_tensor_slices(tf.constant(input_files))
tensorflow.constant
250
import tensorflow as tf # with tf.variable_scope("conv_context") as scope: def encode(img): img_h0 = lrelu(conv2d(img, nf0, d_h=ns0, d_w=ns0, name='h0_conv')) img_h1 = lrelu(conv2d(img_h0, nf1, d_h=ns1, d_w=ns1, name='h1_conv')) img_h2 = lrelu(conv2d(img_h1, nf2, d_h=ns2, d_w=ns2, name='h2_conv')) img_h3 = lrelu(conv2d(img_h2, nf3, d_h=ns3, d_w=ns3, name='h3_conv')) print(img_h3.get_shape()) img_h4 = lrelu(linear(tf.nn.dropout(tf.reshape(img_h3, [self.batch_size, -1]), keep_prob), featsize, 'h4_lin')) img_z = lrelu(linear(tf.nn.dropout(img_h4, keep_prob), featsize, 'hz_lin')) return img_h0, img_h1, img_h2, img_h3, img_h4, img_z with tf.variable_scope("conv") as scope: srcimg_h0, srcimg_h1, srcimg_h2, srcimg_h3, srcimg_h4, srcimg_z = encode(srcimg) scope.reuse_variables() tgtimg_h0, tgtimg_h1, tgtimg_h2, tgtimg_h3, tgtimg_h4, tgtimg_z = encode(tgtimg) tgtctx_h0, tgtctx_h1, tgtctx_h2, tgtctx_h3, tgtctx_h4, tgtctx_z = encode(tgtctx)
tensorflow.nn.dropout
251
import tensorflow as tf else: x = states shape = [x.get_shape()[-1], attention_states[0].get_shape()[-1]] w = tf.get_variable("map_attns/matrix", shape=shape) b = tf.get_variable("map_attns/bias", shape=shape[-1:]) x = tf.einsum('ijk,kl->ijl', x, w) + b if chaining_non_linearity: x = tf.nn.tanh(x)
tensorflow.get_variable
252
import tensorflow as tf # Load tarnn model OPTION = dh.option(pattern=1) if OPTION == 'B': logger.info("Loading best model...") checkpoint_file = cm.get_best_checkpoint(BEST_CPT_DIR, select_maximum_value=True) else: logger.info("Loading latest model...") checkpoint_file = tf.train.latest_checkpoint(CPT_DIR) logger.info(checkpoint_file) graph = tf.Graph() with graph.as_default(): session_conf = tf.ConfigProto( allow_soft_placement=args.allow_soft_placement, log_device_placement=args.log_device_placement)
tensorflow.train.latest_checkpoint
253
import tensorflow as tf self.input_y = tf.placeholder(tf.float32, [None, num_classes], name="input_y") self.is_training = tf.placeholder(tf.bool) initializer = tf.contrib.layers.variance_scaling_initializer() # Embedding Lookup 16 with tf.device('/cpu:0'), tf.name_scope("embedding"): if use_he_uniform: self.embedding_W = tf.get_variable(name='lookup_W', shape=[num_quantized_chars, embedding_size], initializer=tf.contrib.layers.variance_scaling_initializer()) else: self.embedding_W = tf.Variable(tf.random_uniform([num_quantized_chars, embedding_size], -1.0, 1.0),name="embedding_W")
tensorflow.name_scope
254
import tensorflow as tf "input_ids": tf.FixedLenFeature([seq_length], tf.int64), "input_mask": tf.FixedLenFeature([seq_length], tf.int64), "segment_ids": tf.FixedLenFeature([seq_length], tf.int64), "label_ids": tf.FixedLenFeature([], tf.int64), "is_real_example": tf.FixedLenFeature([], tf.int64), } def _decode_record(record, name_to_features): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, name_to_features) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name in list(example.keys()): t = example[name] if t.dtype == tf.int64: t = tf.to_int32(t) example[name] = t
tensorflow.parse_single_example
255
import tensorflow as tf else: # 创建worker两个网络的具体步骤 with tf.variable_scope(scope): # 这里的scope传入的是worker的名字 self.global_step = globalAC.global_step
tensorflow.variable_scope
256
import tensorflow as tf [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] self.assertListEqual(pre_pool.get_shape().as_list(), [batch_size, 4, 4, 1024]) def testUnknownImageShape(self): tf.reset_default_graph() batch_size = 2 height, width = 224, 224 num_classes = 1000 input_np = np.random.uniform(0, 1, (batch_size, height, width, 3)) with self.test_session() as sess: inputs = tf.placeholder(tf.float32, shape=(batch_size, None, None, 3)) logits, end_points = mobilenet_v1.mobilenet_v1(inputs, num_classes) self.assertTrue(logits.op.name.startswith('MobilenetV1/Logits')) self.assertListEqual(logits.get_shape().as_list(), [batch_size, num_classes]) pre_pool = end_points['Conv2d_13_pointwise'] feed_dict = {inputs: input_np} tf.global_variables_initializer().run() pre_pool_out = sess.run(pre_pool, feed_dict=feed_dict) self.assertListEqual(list(pre_pool_out.shape), [batch_size, 7, 7, 1024]) def testGlobalPoolUnknownImageShape(self):
tensorflow.placeholder
257
import tensorflow as tf logits = tf.nn.bias_add(logits, output_bias) log_probs = tf.nn.log_softmax(logits, axis=-1) label_ids = tf.reshape(label_ids, [-1]) label_weights = tf.reshape(label_weights, [-1])
tensorflow.reshape
258
import tensorflow as tf last = activation[L-1] labels= tf.transpose(Y) if last == 'sigmoid' or last == 'softmax': #use cross entropy loss function logits= tf.transpose(betan*zn[1]) cost = tf.reduce_mean(tf.losses.sigmoid_cross_entropy(logits = logits, multi_class_labels=labels)) elif last == 'esp' or last == 'relu': #use minimum squared error (L2 loss) out = tf.transpose(zn[0]) cost = tf.reduce_mean(tf.squared_difference(out, labels))/2 return cost #------------Hessian------------------- def flatten(tensor):
tensorflow.transpose
259
import tensorflow as tf def clip_tensor(t, length): """Clips the input tensor along the first dimension up to the length. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after clipping, assuming length <= t.shape[0]. Returns: clipped_t: the clipped tensor, whose first dimension is length. If the length is an integer, the first dimension of clipped_t is set to length statically. """ clipped_t = tf.gather(t, tf.range(length)) if not _is_tensor(length): clipped_t = _set_dim_0(clipped_t, length) return clipped_t def pad_or_clip_tensor(t, length): """Pad or clip the input tensor along the first dimension. Args: t: the input tensor, assuming the rank is at least 1. length: a tensor of shape [1] or an integer, indicating the first dimension of the input tensor t after processing.
tensorflow.range
260
import tensorflow as tf query, query, ], axis=1) if time_major: # (T,B,D) => (B,T,D) facts = tf.array_ops.transpose(facts, [1, 0, 2]) mask = tf.equal(mask, tf.ones_like(mask)) facts_size = facts.get_shape().as_list()[-1] # D value - hidden size of the RNN layer querry_size = query.get_shape().as_list()[-1] queries = tf.tile(query, [1, tf.shape(facts)[1]]) queries = tf.reshape(queries, tf.shape(facts)) din_all = tf.concat([queries, facts, queries-facts, queries*facts], axis=-1) d_layer_1_all = tf.layers.dense(din_all, 80, activation=tf.nn.sigmoid, name='f1_att' + stag) d_layer_2_all = tf.layers.dense(d_layer_1_all, 40, activation=tf.nn.sigmoid, name='f2_att' + stag) d_layer_3_all = tf.layers.dense(d_layer_2_all, 1, activation=None, name='f3_att' + stag) d_layer_3_all = tf.reshape(d_layer_3_all, [-1, 1, tf.shape(facts)[1]]) scores = d_layer_3_all # Mask # key_masks = tf.sequence_mask(facts_length, tf.shape(facts)[1]) # [B, T] key_masks = tf.expand_dims(mask, 1) # [B, 1, T] paddings = tf.ones_like(scores) * (-2 ** 32 + 1) scores = tf.where(key_masks, scores, paddings) # [B, 1, T] # Scale # scores = scores / (facts.get_shape().as_list()[-1] ** 0.5) # Activation
tensorflow.layers.dense
261
import tensorflow as tf end_input, xlnet_config.d_model, kernel_initializer=initializer, activation=tf.tanh, name="dense_0") end_logits = tf.contrib.layers.layer_norm(end_logits, begin_norm_axis=-1) end_logits = tf.layers.dense( end_logits, 1,
tensorflow.contrib.layers.layer_norm
262
import tensorflow as tf next_sentence_log_probs, axis=-1, output_type=tf.int32) next_sentence_labels = tf.reshape(next_sentence_labels, [-1]) next_sentence_accuracy = tf.metrics.accuracy( labels=next_sentence_labels, predictions=next_sentence_predictions) next_sentence_mean_loss = tf.metrics.mean( values=next_sentence_example_loss) return {
tensorflow.metrics.mean
263
import tensorflow as tf ckpt_name = 'save/model.ckpt' fname = 'model.tf' dst_nodes = ['output/predictions'] saver = tf.train.Saver() # Create a session and init with tf.Session() as sess: sess.run(tf.global_variables_initializer()) print("training started!!") print("******************") # Now iterate over our dataset n_epoch times for epoch_i in range(epoch):
tensorflow.global_variables_initializer
264
import tensorflow as tf def load_graph(model_file): graph = tf.Graph() graph_def = tf.compat.v1.GraphDef() import os file_ext = os.path.splitext(model_file)[1] with open(model_file, "rb") as f: if file_ext == '.pbtxt': text_format.Merge(f.read(), graph_def) else: graph_def.ParseFromString(f.read()) with graph.as_default(): tf.import_graph_def(graph_def, name='') tf.io.write_graph(graph_def, '/tmp/', 'optimized_graph.pb',as_text=False) return graph if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--input_graph", default=None, help="graph/model to be executed") parser.add_argument("--data_location", default=None, help="full path to the validation data") parser.add_argument("--input_height", default=None, type=int, help="input height")
tensorflow.import_graph_def
265
import tensorflow as tf return tf.nn.conv2d(x, w, strides=strides, padding=pad, data_format=data_format) + b def fc(x, scope, nh, *, init_scale=1.0, init_bias=0.0): with tf.variable_scope(scope): nin = x.get_shape()[1].value w = tf.get_variable("w", [nin, nh], initializer=ortho_init(init_scale)) b = tf.get_variable("b", [nh], initializer=tf.constant_initializer(init_bias)) return tf.matmul(x, w)+b def batch_to_seq(h, nbatch, nsteps, flat=False): if flat: h = tf.reshape(h, [nbatch, nsteps]) else: h = tf.reshape(h, [nbatch, nsteps, -1]) return [tf.squeeze(v, [1]) for v in tf.split(axis=1, num_or_size_splits=nsteps, value=h)] def seq_to_batch(h, flat = False): shape = h[0].get_shape().as_list() if not flat: assert(len(shape) > 1) nh = h[0].get_shape()[-1].value return tf.reshape(tf.concat(axis=1, values=h), [-1, nh]) else: return tf.reshape(tf.stack(values=h, axis=1), [-1]) def lstm(xs, ms, s, scope, nh, init_scale=1.0):
tensorflow.reshape
266
import tensorflow as tf activation_fn=tf.nn.relu, weights_initializer=gauss_initializer, trainable=False) out = layers.flatten(out) with tf.variable_scope("action_value"): out = layers.fully_connected(out, num_outputs=num_actions, activation_fn=None) return out def simple_model_w_feat_eng(img_in, num_actions, scope, reuse=False): with tf.variable_scope(scope, reuse=reuse): out = img_in out = layers.flatten(out) # stddev = 1/n, where n = number of inputs gauss_initializer = initializers.xavier_initializer(uniform=False) with tf.variable_scope("action_value"): out = layers.fully_connected( out, num_outputs=num_actions, activation_fn=tf.nn.relu,
tensorflow.variable_scope
267
import tensorflow as tf ], axis=1) nearest_hot = tf.one_hot(nearest_idx, depth=self.hparams.block_v_size) nearest_hot = tf.reduce_mean(nearest_hot, axis=-2) else: if self.hparams.random_top_k > 1: _, top_k_idx = tf.nn.top_k(-dist, k=self.hparams.random_top_k) nearest_idx = tf.gather( top_k_idx, tf.random_uniform( [1], minval=0, maxval=self.hparams.random_top_k - 1, dtype=tf.int32), axis=-1) else: if self.hparams.use_scales: dist /= tf.reshape(self.hparams.scales,
tensorflow.random_uniform
268
import tensorflow as tf any_buf.Pack(queue_runner) tf.add_to_collection("user_defined_any_collection", any_buf)
tensorflow.add_to_collection
269
import tensorflow as tf gtargets = labels['targets'][num_feature_layers : 2 * num_feature_layers][0] gscores = labels['targets'][2 * num_feature_layers : 3 * num_feature_layers][0] with tf.variable_scope(params['model_scope'], default_name = None, values = [features], reuse=tf.AUTO_REUSE): backbone = xdet_body_v3.xdet_resnet_v3(params['resnet_size'], params['data_format']) body_cls_output, body_regress_output = backbone(inputs=features, is_training=(mode == tf.estimator.ModeKeys.TRAIN))
tensorflow.variable_scope
270
import tensorflow as tf combined_idx = use_identity * distances + (1 - use_identity) * logspace_idx return tf.clip_by_value(combined_idx, 0, 9) def get_slow_antecedent_scores(self, top_span_emb, top_antecedents, top_antecedent_emb, top_antecedent_offsets, top_span_speaker_ids, genre_emb): k = util.shape(top_span_emb, 0) c = util.shape(top_antecedents, 1) feature_emb_list = [] if self.config["use_metadata"]: top_antecedent_speaker_ids = tf.gather(top_span_speaker_ids, top_antecedents) # [k, c] same_speaker = tf.equal(tf.expand_dims(top_span_speaker_ids, 1), top_antecedent_speaker_ids) # [k, c] speaker_pair_emb = tf.gather(tf.get_variable("same_speaker_emb", [2, self.config["feature_size"]]), tf.to_int32(same_speaker)) # [k, c, emb] feature_emb_list.append(speaker_pair_emb) tiled_genre_emb = tf.tile(tf.expand_dims(tf.expand_dims(genre_emb, 0), 0), [k, c, 1]) # [k, c, emb] feature_emb_list.append(tiled_genre_emb) if self.config["use_features"]: antecedent_distance_buckets = self.bucket_distance(top_antecedent_offsets) # [k, c] antecedent_distance_emb = tf.gather(tf.get_variable("antecedent_distance_emb", [10, self.config["feature_size"]]), antecedent_distance_buckets) # [k, c] feature_emb_list.append(antecedent_distance_emb)
tensorflow.expand_dims
271
import tensorflow as tf rgb = rgb/(n_bins) - 0.5 return rgb def post_process(self, rgb, add_dequantization_noise=True): n_bits = config.model.data.n_bits n_bins = 2**n_bits rgb_out = rgb # discretization noise if add_dequantization_noise: shape = tf.shape(rgb_out) rgb_out += tf.random_uniform(shape=shape)*(1/n_bins) return rgb_out
tensorflow.shape
272
import tensorflow as tf """ Implementation of parameterize for a half-Gaussian prior. """ def __init__(self, input_shape=None, name='gaussianize', *args, **kwargs): super().__init__(*args, num_parameters=1, input_shape=input_shape, name=name, **kwargs) def _forward(self, x1, x2, **kwargs): log_sigmas = self.parameterizer(x1) z2, fldj = half_gaussianize(x2, log_sigmas) return z2, fldj def _inverse(self, x1, z2, **kwargs): log_sigmas = self.parameterizer(x1) x2, ildj = half_gaussianize(z2, log_sigmas, inverse=tf.constant(True)) return x2, ildj def exponentiate(x, log_lambdas, inverse=tf.constant(False)): if not inverse: z = tf.math.exp(log_lambdas)*x ldj = tf.math.reduce_sum(log_lambdas, axis=[1,2,3]) else: z = x*tf.math.exp(-log_lambdas) ldj = -tf.math.reduce_sum(log_lambdas, axis=[1,2,3]) return z, ldj class Exponentiate(Parameterize):
tensorflow.constant
273
import tensorflow as tf eval_spec = tf.estimator.EvalSpec(read_dataset('valid.csv', tf.estimator.ModeKeys.EVAL, 512), steps = None, exporters = exporter) tf.estimator.train_and_evaluate(estimator, train_spec, eval_spec)
tensorflow.estimator.train_and_evaluate
274
import tensorflow as tf observations = features["inputs_raw"] # Axis 0 - Batch. # Axis 1 - Input Frames, 4 frames. # Axis 2, 3 - Height & Width. # Axis 4 - Channels RGB, 3 colours. x = tf.transpose(observations, [0, 2, 3, 1, 4]) x_shape = common_layers.shape_list(x) x = tf.reshape(x, x_shape[:-2] + [-1]) dropout = getattr(self.hparams, "dropout_ppo", 0.0) with tf.variable_scope("feed_forward_cnn_small"): x = tf.cast(x, tf.float32) / 255.0 x = tf.layers.conv2d(x, 32, (5, 5), strides=(2, 2), activation=tf.nn.relu, padding="same") x = tf.layers.conv2d(x, 32, (5, 5), strides=(2, 2), activation=tf.nn.relu, padding="same") flat_x = tf.layers.flatten(x) if self.use_epochs: epoch = features["epoch"] + tf.zeros([x_shape[0]], dtype=tf.int32) # Randomly set epoch to 0 in some cases as that's the inference value.
tensorflow.cast
275
import tensorflow as tf # Opening with GFile allows to use remotely stored files, e.g. # in a gs bucket. dataset_handle = tf.io.gfile.GFile(dataset_path, 'r') dataset = []
tensorflow.io.gfile.GFile
276
import tensorflow as tf def cnn_bi_lstm_model(x, amp_factor, bil_lstm_win_size, num_classes): logits = cnn_model(x, amp_factor=amp_factor) logits = tf.reshape(logits, [-1, bil_lstm_win_size, 256*amp_factor]) forward_cell = tf.nn.rnn_cell.LSTMCell(128) backward_cell = tf.nn.rnn_cell.LSTMCell(128) encoder_outputs,_ = tf.nn.bidirectional_dynamic_rnn( forward_cell, backward_cell, logits, dtype=tf.float32 ) encoder_outputs = tf.concat(encoder_outputs, axis=2) logits = tf.reshape(tf.layers.dense(encoder_outputs, units=num_classes), [-1, bil_lstm_win_size, num_classes]) return logits def cnn_model(x, amp_factor=1): with tf.variable_scope('model'): conv1 = tf.layers.conv2d(x, filters=32*amp_factor, kernel_size=[5, 3], data_format='channels_last', padding= "same", strides=(2, 1), activation=tf.nn.relu) pool1 = conv1
tensorflow.concat
277
import tensorflow as tf same_span = tf.logical_and(same_start, same_end) # [num_labeled, num_candidates] candidate_labels = tf.matmul(tf.expand_dims(labels, 0), tf.to_int32(same_span)) # [1, num_candidates] candidate_labels = tf.squeeze(candidate_labels, 0) # [num_candidates] return candidate_labels def get_dropout(self, dropout_rate, is_training): return 1 - (tf.to_float(is_training) * dropout_rate) def coarse_to_fine_pruning(self, top_span_emb, top_span_mention_scores, c): k = util.shape(top_span_emb, 0) top_span_range = tf.range(k) # [k] antecedent_offsets = tf.expand_dims(top_span_range, 1) - tf.expand_dims(top_span_range, 0) # [k, k] antecedents_mask = antecedent_offsets >= 1 # [k, k] fast_antecedent_scores = tf.expand_dims(top_span_mention_scores, 1) + tf.expand_dims(top_span_mention_scores, 0) # [k, k] fast_antecedent_scores += tf.log(tf.to_float(antecedents_mask)) # [k, k] fast_antecedent_scores += self.get_fast_antecedent_scores(top_span_emb) # [k, k] _, top_antecedents = tf.nn.top_k(fast_antecedent_scores, c, sorted=False) # [k, c] top_antecedents_mask = util.batch_gather(antecedents_mask, top_antecedents) # [k, c] top_fast_antecedent_scores = util.batch_gather(fast_antecedent_scores, top_antecedents) # [k, c] top_antecedent_offsets = util.batch_gather(antecedent_offsets, top_antecedents) # [k, c] return top_antecedents, top_antecedents_mask, top_fast_antecedent_scores, top_antecedent_offsets
tensorflow.expand_dims
278
import tensorflow as tf else: outputs = activation_function(Wx_plus_b, ) return outputs # 这个就是在tensorboard上可视化的时候的区别: # 使用with tf.name_scope('inputs')可以将xs和ys包含进来 # 形成一个大的图层,图层的名字就是with tf.name_scope()方法里的参数。 with tf.name_scope('inputs'): xs = tf.placeholder(tf.float32, [None, 1], name='x_input') # 这个name的属性,也是为了使用tensorboard,添加上来的 ys = tf.placeholder(tf.float32, [None, 1], name='y_input') # 同上 # add hidden layer l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu,nameScope="layerTest1") # add output layer
tensorflow.name_scope
279
import tensorflow as tf import random import numpy as np import tensorflow as tf class Seq2SeqTest(tf.test.TestCase): def testRNNDecoder(self): with self.test_session() as sess: with tf.variable_scope("root", initializer=tf.constant_initializer(0.5)): inp = [tf.constant(0.5, shape=[2, 2])] * 2 _, enc_state = tf.nn.rnn( tf.nn.rnn_cell.GRUCell(2), inp, dtype=tf.float32) dec_inp = [tf.constant(0.4, shape=[2, 2])] * 3 cell = tf.nn.rnn_cell.OutputProjectionWrapper( tf.nn.rnn_cell.GRUCell(2), 4) dec, mem = tf.nn.seq2seq.rnn_decoder(dec_inp, enc_state, cell) sess.run([tf.global_variables_initializer()]) res = sess.run(dec) self.assertEqual(3, len(res)) self.assertEqual((2, 4), res[0].shape)
tensorflow.constant
280
from tensorflow.python.framework import ops value matches `metric`. """ default_name = _at_k_name('average_precision', k) with ops.name_scope(name, default_name, (predictions, labels)) as scope: # Calculate per-example average precision, and apply weights. average_precision = sparse_average_precision_at_k(
tensorflow.python.framework.ops.name_scope
281
import tensorflow as tf def _compute_loss(self): def focal_loss(logits, labels, weights=None, alpha=0.25, gamma=2): logits = tf.nn.sigmoid(logits) zeros = array_ops.zeros_like(logits, dtype=logits.dtype) pos_p_sub = array_ops.where(labels > zeros, labels - logits, zeros) neg_p_sub = array_ops.where(labels > zeros, zeros, logits) cross_ent = - alpha * (pos_p_sub ** gamma) * tf.log(tf.clip_by_value(logits, 1e-8, 1.0)) \ - (1 - alpha) * (neg_p_sub ** gamma) * tf.log(tf.clip_by_value(1.0 - logits, 1e-8, 1.0)) return tf.reduce_sum(cross_ent, 1) start_label = tf.one_hot(self.start_label, tf.shape(self.logits1)[1], axis=1) end_label = tf.one_hot(self.end_label, tf.shape(self.logits2)[1], axis=1) if self.config.loss_type == 'cross_entropy': start_loss = tf.nn.softmax_cross_entropy_with_logits( logits=self.logits1, labels=start_label)
tensorflow.reduce_sum
282
import tensorflow as tf testnum:1 } with tf.Session(config=config) as sess: sess.run(init) coord = tf.train.Coordinator() threads = tf.train.start_queue_runners(coord=coord) tf.train.Saver().restore(sess,path) total=0.0 for i in range(loop): a = datetime.now()
tensorflow.train.start_queue_runners
283
import tensorflow as tf label_id = label_map[example.label] if ex_index < 5: tf.logging.info("*** Example ***") tf.logging.info("guid: %s" % (example.guid)) tf.logging.info("tokens: %s" % " ".join(
tensorflow.logging.info
284
import tensorflow as tf # self.bc_loss = 0.5 * tf.reduce_mean(tf.contrib.keras.backend.categorical_crossentropy(self.optimal_actions_onehot,self.policy)) # self.next_loc_loss_il = 0.2 * tf.reduce_sum(tf.sqrt(tf.square(self.next_loc_mean[:-1,:] - self.il_nextloc))) # self.imitation_loss = self.bc_loss #+ self.next_loc_loss_il # Get gradients from local network using local losses and # normalize the gradients using clipping local_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, scope+'/qvalues') self.gradients = tf.gradients(self.loss, local_vars) self.var_norms = tf.global_norm(local_vars) grads, self.grad_norms = tf.clip_by_global_norm(self.gradients, GRAD_CLIP) # Apply local gradients to global network global_vars = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES, GLOBAL_NET_SCOPE+'/qvalues')
tensorflow.get_collection
285
import tensorflow as tf alpha = tf.nn.softmax(out_att) context = tf.reduce_sum(features * tf.expand_dims(alpha, 2), 1, name='context') #(N, D) return context, alpha def _selector(self, context, h, reuse=False): with tf.variable_scope('selector', reuse=reuse): w = tf.get_variable('w', [self.H, 1], initializer=self.weight_initializer) b = tf.get_variable('b', [1], initializer=self.const_initializer) beta = tf.nn.sigmoid(tf.matmul(h, w) + b, 'beta') # (N, 1) context = tf.multiply(beta, context, name='selected_context') return context, beta def _decode_lstm(self, x, h, context, dropout=False, reuse=False): with tf.variable_scope('logits', reuse=reuse):
tensorflow.get_variable
286
from tensorflow.python.framework import ops @ops.RegisterShape("Complex") @ops.RegisterShape("Div") @ops.RegisterShape("Equal") @ops.RegisterShape("Greater") @ops.RegisterShape("GreaterEqual") @ops.RegisterShape("Less") @ops.RegisterShape("LessEqual") @ops.RegisterShape("LogicalAnd") @ops.RegisterShape("LogicalOr") @ops.RegisterShape("Maximum") @ops.RegisterShape("Minimum") @ops.RegisterShape("Mod") @ops.RegisterShape("Mul") @ops.RegisterShape("NotEqual") @ops.RegisterShape("Pow") @ops.RegisterShape("Sub") def _BroadcastShape(op): """Common shape function for binary operators that broadcast their inputs.""" shape_x = op.inputs[0].get_shape() shape_y = op.inputs[1].get_shape() if shape_x.ndims is None or shape_y.ndims is None: return [tensor_shape.unknown_shape()] # To compute the broadcasted dimensions, we zip together shape_x and shape_y,
tensorflow.python.framework.ops.RegisterShape
287
import tensorflow as tf dataset = dataset.map(unicode_decode_chars) def target_right_length(_, target): return tf.less(tf.shape(target)[0], max_target_length + 1) if max_target_length > 0:
tensorflow.shape
288
import tensorflow as tf for name, value in zip(self.log_op_names, log_rslt)]) tf.logging.info('iter #%d: %s | speed = %.2f pics / sec' % (idx_iter + 1, log_str, speed))
tensorflow.logging.info
289
from tensorflow.python.ops import math_ops Args: numerator: A real `Tensor`. denominator: A real `Tensor`, with dtype matching `numerator`. name: Name for the returned op. Returns: 0 if `denominator` <= 0, else `numerator` / `denominator` """ return math_ops.select( math_ops.greater(denominator, 0), math_ops.truediv(numerator, denominator), 0, name=name) def _safe_scalar_div(numerator, denominator, name): """Divides two values, returning 0 if the denominator is 0. Args: numerator: A scalar `float64` `Tensor`. denominator: A scalar `float64` `Tensor`.
tensorflow.python.ops.math_ops.truediv
290
import tensorflow as tf features[spec.name] = feature return tf.train.Example(features=tf.train.Features(feature=features)) def _input_fn_builder(self, input_file, is_training): """Creates an `input_fn` closure to be passed to TPUEstimator.""" def input_fn(params): """The actual input function.""" d = tf.data.TFRecordDataset(input_file) if is_training: d = d.repeat() d = d.shuffle(buffer_size=100) return d.apply( tf.contrib.data.map_and_batch( self._decode_tfrecord, batch_size=params["batch_size"], drop_remainder=True ) ) return input_fn def _decode_tfrecord(self, record): """Decodes a record to a TensorFlow example.""" example = tf.parse_single_example(record, self._name_to_feature_config) # tf.Example only supports tf.int64, but the TPU only supports tf.int32. # So cast all int64 to int32. for name, tensor in example.items():
tensorflow.contrib.data.map_and_batch
291
import tensorflow as tf val_val = sess.run(val) print('\nval=' + str(val_val)) print(f'\nargmax_0={val_val.argmax(0)} argmax_1={val_val.argmax(1)}') print('\ntf.argmax(val, 0)=' + str(sess.run(tf.argmax(val, 0)))) print('tf.argmax(val, 1)=' + str(sess.run(tf.argmax(val, 1))))
tensorflow.argmax
292
import tensorflow as tf from tensorflow.python.ops import control_flow_ops def conv(inpOp, nIn, nOut, kH, kW, dH, dW, padType, name, phase_train=True, use_batch_norm=True, weight_decay=0.0): with tf.variable_scope(name): l2_regularizer = lambda t: l2_loss(t, weight=weight_decay) kernel = tf.get_variable("weights", [kH, kW, nIn, nOut], initializer=tf.truncated_normal_initializer(stddev=1e-1), regularizer=l2_regularizer, dtype=inpOp.dtype) cnv = tf.nn.conv2d(inpOp, kernel, [1, dH, dW, 1], padding=padType) if use_batch_norm: conv_bn = batch_norm(cnv, phase_train) else:
tensorflow.truncated_normal_initializer
293
import tensorflow as tf #TODO: add in an argparse parser = argparse.ArgumentParser(description='Run ablations on models') parser.add_argument('experiment_type', type=str, help='type of ablation') parser.add_argument('ablation_type', type=str, help='type of ablation') parser.add_argument('data_location', type=str, help='data_location') args = parser.parse_args() vdata = np.load(args.data_location) tf.reset_default_graph() idim = (36, 64) keep_prob = tf.placeholder(tf.float32, name='keep_prob') tftrain = tf.placeholder(tf.bool, name='tftrain') batch_size=100 if (args.experiment_type == "reach") or (args.experiment_type == "push"): idim = (48, 48) tfinput = tf.placeholder(tf.float32, (3, batch_size) + idim + (3, ), name='x') if args.experiment_type == "reach": test = ContextAEReach() elif args.experiment_type == "push": test = ContextAEPush() elif args.experiment_type == "pushreal": test = ContextAEPushReal() elif args.experiment_type == "sweep": test = ContextAESweep() test.build(tfinput, args.ablation_type)
tensorflow.placeholder
294
import tensorflow as tf # wrapper to make the optimizer work with TPUs if params['use_tpu']: gen_optimizer = tf.contrib.tpu.CrossShardOptimizer(gen_optimizer) dis_optimizer = tf.contrib.tpu.CrossShardOptimizer(dis_optimizer) gan_train_ops = tf.contrib.gan.gan_train_ops(gan_model, gan_loss, gen_optimizer, dis_optimizer)
tensorflow.contrib.tpu.CrossShardOptimizer
295
import tensorflow as tf x = self._concat(x, x1) for _ in range(2, self._max_diffusion_step + 1): x2 = 2 * tf.sparse_tensor_dense_matmul(support, x1) - x0 x = self._concat(x, x2) x1, x0 = x2, x1 num_matrices = len(self._supports) * self._max_diffusion_step + 1 # Adds for x itself. x = tf.reshape(x, shape=[num_matrices, self._num_nodes, input_size, batch_size]) x = tf.transpose(x, perm=[3, 1, 2, 0]) # (batch_size, num_nodes, input_size, order) x = tf.reshape(x, shape=[batch_size * self._num_nodes, input_size * num_matrices]) weights = tf.get_variable( 'weights', [input_size * num_matrices, output_size], dtype=dtype, initializer=tf.contrib.layers.xavier_initializer()) x = tf.matmul( x, weights) # (batch_size * self._num_nodes, output_size) biases = tf.get_variable("biases", [output_size], dtype=dtype, initializer=tf.constant_initializer( bias_start, dtype=dtype)) x = tf.nn.bias_add(x, biases) # Reshape res back to: (batch_size, num_node, state_dim) return tf.reshape(x, [batch_size, self._num_nodes, output_size])
tensorflow.contrib.layers.xavier_initializer
296
import tensorflow as tf @classmethod def nonlinearity_grad_override(cls, op, grad): output = op.outputs[0] input = op.inputs[0] ref_input = cls._deeplift_ref[op.name] ref_output = activation(op.type)(ref_input) delta_out = output - ref_output delta_in = input - ref_input instant_grad = activation(op.type)(0.5 * (ref_input + input)) return tf.compat.v1.where(tf.abs(delta_in) > 1e-5, grad * delta_out / delta_in, original_grad(instant_grad.op, grad)) def _init_references(self): # print ('DeepLIFT: computing references...') sys.stdout.flush() self._deeplift_ref.clear() ops = [] g = tf.compat.v1.get_default_graph() for op in g.get_operations():
tensorflow.abs
297
import tensorflow as tf n_factor, channels]) res = tf.transpose(res, [0, 1, 3, 5, 2, 4]) res = tf.reshape( res,
tensorflow.reshape
298
import tensorflow as tf update_mean_op = moving_averages.assign_moving_average( variable=self._moving_mean, value=mean, decay=self._decay_rate, name="update_moving_mean").op update_second_moment_op = moving_averages.assign_moving_average( variable=self._moving_second_moment, value=second_moment, decay=self._decay_rate, name="update_moving_second_moment").op return update_mean_op, update_second_moment_op def build_no_ops(): return (tf.no_op(), tf.no_op()) # Only make the ops if we know that `is_training=True`, or the value of # `is_training` is unknown. is_training_const = utils.constant_value(is_training) if is_training_const is None or is_training_const: update_mean_op, update_second_moment_op = utils.smart_cond( is_training, build_update_ops, build_no_ops, ) # Every new connection creates a new op which adds its contribution # to the running average when ran. tf.add_to_collection(tf.GraphKeys.UPDATE_OPS, update_mean_op)
tensorflow.no_op
299