licenses
sequencelengths
1
3
version
stringclasses
677 values
tree_hash
stringlengths
40
40
path
stringclasses
1 value
type
stringclasses
2 values
size
stringlengths
2
8
text
stringlengths
25
67.1M
package_name
stringlengths
2
41
repo
stringlengths
33
86
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
10044
--- title: ODE Solver Multi-Language Wrapper Package Work-Precision Benchmarks (MATLAB, SciPy, Julia, deSolve (R)) author: Chris Rackauckas --- The following benchmarks demonstrate the performance differences due to using similar algorithms from wrapper packages in the main scripting languages across a range of stiff and non-stiff ODEs. It takes into account solver time and error in order to ensure correctness of interpretations. These were ran with Julia 1.7, MATLAB 2019B, deSolve 1.3.0, and SciPy 1.6.1. These benchmarks are generated using the following bindings: - [MATLABDiffEq.jl](https://github.com/JuliaDiffEq/MATLABDiffEq.jl) (MATLAB) - [SciPyDiffEq.jl](https://github.com/JuliaDiffEq/SciPyDiffEq.jl) (SciPy) - [deSolveDiffEq.jl](https://github.com/JuliaDiffEq/deSolveDiffEq.jl) (deSolve) - [OrdinaryDiffEq.jl](https://github.com/JuliaDiffEq/OrdinaryDiffEq.jl) (OrdinaryDiffEq.jl) - [Sundials.jl](https://github.com/JuliaDiffEq/Sundials.jl) (Sundials) - [ODEInterfaceDiffEq.jl](https://github.com/JuliaDiffEq/ODEInterfaceDiffEq.jl) (Hairer and Netlib) The respective repos verify negligible overhead on interop (MATLAB, ODEInterface, and Sundials overhead are negligable, SciPy is accelerated 3x over SciPy+Numba setups due to the Julia JIT on the ODE function, deSolve sees a 3x overhead over the pure-R version). Error and timing is compared together to ensure the methods are solving to the same accuracy when compared. More wrappers will continue to be added as necessary. ## Setup ```julia using ParameterizedFunctions, MATLABDiffEq, OrdinaryDiffEq, ODEInterfaceDiffEq, Plots, Sundials, SciPyDiffEq, deSolveDiffEq using DiffEqDevTools using LinearAlgebra, StaticArrays ``` #### Non-Stiff Problem 1: Lotka-Volterra ```julia f = @ode_def_bare LotkaVolterra begin dx = a*x - b*x*y dy = -c*y + d*x*y end a b c d p = [1.5,1,3,1] tspan = (0.0,10.0) u0 = [1.0,1.0] prob = ODEProblem(f,u0,tspan,p) staticprob = ODEProblem{false}(f,SVector{2}(u0),tspan,SVector{4}(p)) sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14) test_sol = TestSolution(sol) setups = [ Dict(:alg=>DP5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern7()) Dict(:prob_choice => 2, :alg=>DP5()) Dict(:prob_choice => 2, :alg=>Tsit5()) Dict(:prob_choice => 2, :alg=>Vern7()) Dict(:alg=>dopri5()) Dict(:alg=>MATLABDiffEq.ode45()) Dict(:alg=>MATLABDiffEq.ode113()) Dict(:alg=>SciPyDiffEq.RK45()) Dict(:alg=>SciPyDiffEq.LSODA()) Dict(:alg=>SciPyDiffEq.odeint()) Dict(:alg=>deSolveDiffEq.lsoda()) Dict(:alg=>deSolveDiffEq.ode45()) Dict(:alg=>CVODE_Adams()) ] labels = [ "Julia: DP5" "Julia: Tsit5" "Julia: Vern7" "Julia: DP5 Static" "Julia: Tsit5 Static" "Julia: Vern7 Static" "Hairer: dopri5" "MATLAB: ode45" "MATLAB: ode113" "SciPy: RK45" "SciPy: LSODA" "SciPy: odeint" "deSolve: lsoda" "deSolve: ode45" "Sundials: Adams" ] abstols = 1.0 ./ 10.0 .^ (6:13) reltols = 1.0 ./ 10.0 .^ (3:10) wp = WorkPrecisionSet([prob,staticprob],abstols,reltols,setups; names = labels,print_names = true, appxsol=[test_sol,test_sol],dense=false, save_everystep=false,numruns=100,maxiters=10000000, timeseries_errors=false,verbose=false) plot(wp,title="Non-stiff 1: Lotka-Volterra",legend=:outertopleft, color=permutedims([repeat([:LightGreen],3)...,repeat([:DarkGreen],3)..., :Red,repeat([:Orange],2)...,repeat([:Yellow],3)..., repeat([:Blue],2)...,:Purple]),size = (800,350), xticks = 10.0 .^ (-12:1:5), yticks = 10.0 .^ (-6:0.5:5), bottom_margin=5Plots.mm) ``` #### Non-Stiff Problem 2: Rigid Body ```julia f = @ode_def_bare RigidBodyBench begin dy1 = -2*y2*y3 dy2 = 1.25*y1*y3 dy3 = -0.5*y1*y2 + 0.25*sin(t)^2 end u0 = [1.0;0.0;0.9] prob = ODEProblem(f,u0,(0.0,100.0)) staticprob = ODEProblem{false}(f,SVector{3}(u0),(0.0,100.0)) sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14) test_sol = TestSolution(sol) setups = [Dict(:alg=>DP5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern7()) Dict(:prob_choice => 2, :alg=>DP5()) Dict(:prob_choice => 2, :alg=>Tsit5()) Dict(:prob_choice => 2, :alg=>Vern7()) Dict(:alg=>dopri5()) Dict(:alg=>MATLABDiffEq.ode45()) Dict(:alg=>MATLABDiffEq.ode113()) Dict(:alg=>SciPyDiffEq.RK45()) Dict(:alg=>SciPyDiffEq.LSODA()) Dict(:alg=>SciPyDiffEq.odeint()) Dict(:alg=>deSolveDiffEq.lsoda()) Dict(:alg=>deSolveDiffEq.ode45()) Dict(:alg=>CVODE_Adams()) ] labels = [ "Julia: DP5" "Julia: Tsit5" "Julia: Vern7" "Julia: DP5 Static" "Julia: Tsit5 Static" "Julia: Vern7 Static" "Hairer: dopri5" "MATLAB: ode45" "MATLAB: ode113" "SciPy: RK45" "SciPy: LSODA" "SciPy: odeint" "deSolve: lsoda" "deSolve: ode45" "Sundials: Adams" ] abstols = 1.0 ./ 10.0 .^ (6:13) reltols = 1.0 ./ 10.0 .^ (3:10) wp = WorkPrecisionSet([prob,staticprob],abstols,reltols,setups; names = labels,print_names = true, appxsol=[test_sol,test_sol],dense=false, save_everystep=false,numruns=100,maxiters=10000000, timeseries_errors=false,verbose=false) plot(wp,title="Non-stiff 2: Rigid-Body",legend=:outertopleft, color=permutedims([repeat([:LightGreen],3)...,repeat([:DarkGreen],3)..., :Red,repeat([:Orange],2)...,repeat([:Yellow],3)..., repeat([:Blue],2)...,:Purple]),size = (800,350), xticks = 10.0 .^ (-12:1:5), yticks = 10.0 .^ (-6:0.5:5), bottom_margin=5Plots.mm) ``` #### Stiff Problem 1: ROBER ```julia rober = @ode_def begin dy₁ = -k₁*y₁+k₃*y₂*y₃ dy₂ = k₁*y₁-k₂*y₂^2-k₃*y₂*y₃ dy₃ = k₂*y₂^2 end k₁ k₂ k₃ u0 = [1.0,0.0,0.0] p = [0.04,3e7,1e4] prob = ODEProblem(rober,u0,(0.0,1e5),p) staticprob = ODEProblem{false}(rober,SVector{3}(u0),(0.0,1e5),SVector{3}(p)) sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14) test_sol = TestSolution(sol) abstols = 1.0 ./ 10.0 .^ (7:12) reltols = 1.0 ./ 10.0 .^ (3:8); setups = [Dict(:alg=>Rosenbrock23()) Dict(:alg=>Rodas4()) Dict(:alg=>Rodas5()) Dict(:prob_choice => 2, :alg=>Rosenbrock23()) Dict(:prob_choice => 2, :alg=>Rodas4()) Dict(:prob_choice => 2, :alg=>Rodas5()) Dict(:alg=>rodas()) Dict(:alg=>radau()) Dict(:alg=>MATLABDiffEq.ode23s()) Dict(:alg=>MATLABDiffEq.ode15s()) Dict(:alg=>SciPyDiffEq.LSODA()) Dict(:alg=>SciPyDiffEq.BDF()) Dict(:alg=>SciPyDiffEq.odeint()) Dict(:alg=>deSolveDiffEq.lsoda()) Dict(:alg=>CVODE_BDF()) ] labels = [ "Julia: Rosenbrock23" "Julia: Rodas4" "Julia: Rodas5" "Julia: Rosenbrock23 Static" "Julia: Rodas4 Static" "Julia: Rodas5 Static" "Hairer: rodas" "Hairer: radau" "MATLAB: ode23s" "MATLAB: ode15s" "SciPy: LSODA" "SciPy: BDF" "SciPy: odeint" "deSolve: lsoda" "Sundials: CVODE" ] wp = WorkPrecisionSet([prob,staticprob],abstols,reltols,setups; names = labels,print_names = true, dense=false,verbose = false, save_everystep=false,appxsol=[test_sol,test_sol], maxiters=Int(1e5)) plot(wp,title="Stiff 1: ROBER", legend=:outertopleft, color=permutedims([repeat([:LightGreen],3)...,repeat([:DarkGreen],3)..., :Red,:Red,repeat([:Orange],2)...,repeat([:Yellow],3)..., repeat([:Blue],1)...,:Purple]),size = (800,350), xticks = 10.0 .^ (-12:1:5), yticks = 10.0 .^ (-6:0.5:5), bottom_margin=5Plots.mm) ``` #### Stiff Problem 2: HIRES ```julia f = @ode_def Hires begin dy1 = -1.71*y1 + 0.43*y2 + 8.32*y3 + 0.0007 dy2 = 1.71*y1 - 8.75*y2 dy3 = -10.03*y3 + 0.43*y4 + 0.035*y5 dy4 = 8.32*y2 + 1.71*y3 - 1.12*y4 dy5 = -1.745*y5 + 0.43*y6 + 0.43*y7 dy6 = -280.0*y6*y8 + 0.69*y4 + 1.71*y5 - 0.43*y6 + 0.69*y7 dy7 = 280.0*y6*y8 - 1.81*y7 dy8 = -280.0*y6*y8 + 1.81*y7 end u0 = zeros(8) u0[1] = 1 u0[8] = 0.0057 prob = ODEProblem(f,u0,(0.0,321.8122)) staticprob = ODEProblem{false}(f,SVector{8}(u0),(0.0,321.8122)) sol = solve(prob,Rodas5(),abstol=1/10^14,reltol=1/10^14) test_sol = TestSolution(sol) abstols = 1.0 ./ 10.0 .^ (5:10) reltols = 1.0 ./ 10.0 .^ (1:6); setups = [Dict(:alg=>Rosenbrock23()) Dict(:alg=>Rodas4()) Dict(:alg=>RadauIIA5()) Dict(:prob_choice => 2, :alg=>Rosenbrock23()) Dict(:prob_choice => 2, :alg=>Rodas4()) Dict(:prob_choice => 2, :alg=>RadauIIA5()) Dict(:alg=>rodas()) Dict(:alg=>radau()) Dict(:alg=>MATLABDiffEq.ode23s()) Dict(:alg=>MATLABDiffEq.ode15s()) Dict(:alg=>SciPyDiffEq.LSODA()) Dict(:alg=>SciPyDiffEq.BDF()) Dict(:alg=>SciPyDiffEq.odeint()) Dict(:alg=>deSolveDiffEq.lsoda()) Dict(:alg=>CVODE_BDF()) ] labels = [ "Julia: Rosenbrock23" "Julia: Rodas4" "Julia: radau" "Julia: Rosenbrock23 Static" "Julia: Rodas4 Static" "Julia: radau Static" "Hairer: rodas" "Hairer: radau" "MATLAB: ode23s" "MATLAB: ode15s" "SciPy: LSODA" "SciPy: BDF" "SciPy: odeint" "deSolve: lsoda" "Sundials: CVODE" ] wp = WorkPrecisionSet([prob,staticprob],abstols,reltols,setups; names = labels,print_names = true, dense=false,verbose = false, save_everystep=false,appxsol=[test_sol,test_sol], maxiters=Int(1e5),numruns=100) plot(wp,title="Stiff 2: Hires",legend=:outertopleft, color=permutedims([repeat([:LightGreen],3)...,repeat([:DarkGreen],3)..., :Red,:Red,repeat([:Orange],2)...,repeat([:Yellow],3)..., repeat([:Blue],1)...,:Purple]),size = (800,350), xticks = 10.0 .^ (-12:1:5), yticks = 10.0 .^ (-6:0.5:5), bottom_margin=5Plots.mm) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
1647
--- title: Special Multi-Language Differential Equation Solver Comparison Benchmarks author: Chris Rackauckas --- The following are extra multi-language benchmarks which are harder to fit into the standard SciMLBenchmarks format. As such, they are less complete as they generally do not make use of work-precision diagrams but give information about the general status of the performance developments. - [Torchdiffeq vs DifferentialEquations.jl (/ DiffEqFlux.jl) Benchmarks](https://gist.github.com/ChrisRackauckas/cc6ac746e2dfd285c28e0584a2bfd320) - [torchdiffeq vs Julia DiffEqFlux Neural ODE Training Benchmark](https://gist.github.com/ChrisRackauckas/4a4d526c15cc4170ce37da837bfc32c4) - [torchsde vs DifferentialEquations.jl / DiffEqFlux.jl](https://gist.github.com/ChrisRackauckas/6a03e7b151c86b32d74b41af54d495c6) - [JITCODE vs SciPy vs DifferentialEquations.jl on large network dynamics](https://github.com/PIK-ICoN/NetworkDynamicsBenchmarks) - [DifferentialEquations.jl vs Mujuco and DiffTaichi](https://arxiv.org/abs/2012.06684) - [DiffEqFlux.jl / DifferentialEquations.jl vs Jax on an epidemic model](https://gist.github.com/ChrisRackauckas/62a063f23cccf3a55a4ac9f6e497739a) - [DifferentialEquations.jl vs SciPy vs NumbaLSODA on a stiff ODE](https://gist.github.com/ChrisRackauckas/fd62e005c4c86520306338b6bdae6b79) - [DifferentialEquations.jl vs SciPy vs NumbaLSODA](https://github.com/Nicholaswogan/NumbaLSODA/tree/main/benchmark) - [Brusselator Stiff Partial Differential Equation Benchmark: Julia DifferentialEquations.jl vs Python SciPy](https://gist.github.com/ChrisRackauckas/0bdbea0079a8a3ce28522e9bc8473bf0)
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
8002
--- title: Acceleration function benchmarks author: Sebastian Micluța-Câmpeanu, Mikhail Vaganov --- Solving the equations of notions for an N-body problem implies solving a (large) system of differential equations. In `DifferentialEquations.jl` these are represented through ODE or SDE problems. To build the problem we need a function that describe the equations. In the case of N-body problems, this function gives the accelerations for the particles in the system. Here we will test the performance of several acceleration functions used in N-body simulations. The systems that will be used are not necessarily realistic as we are not solving the problem, we just time how fast is an acceleration function call. ```julia using BenchmarkTools, NBodySimulator using NBodySimulator: gather_bodies_initial_coordinates, gather_accelerations_for_potentials, gather_simultaneous_acceleration, gather_group_accelerations using StaticArrays const SUITE = BenchmarkGroup(); function acceleration(simulation) (u0, v0, n) = gather_bodies_initial_coordinates(simulation) acceleration_functions = gather_accelerations_for_potentials(simulation) simultaneous_acceleration = gather_simultaneous_acceleration(simulation) function soode_system!(dv, v, u, p, t) @inbounds for i = 1:n a = MVector(0.0, 0.0, 0.0) for acceleration! in acceleration_functions acceleration!(a, u, v, t, i); end dv[:, i] .= a end for acceleration! in simultaneous_acceleration acceleration!(dv, u, v, t); end end return soode_system! end ``` ## Gravitational potential ```julia let SUITE=SUITE G = 6.67e-11 # m^3/kg/s^2 N = 200 # number of bodies/particles m = 1.0 # mass of each of them v = 10.0 # mean velocity L = 20.0 # size of the cell side bodies = generate_bodies_in_cell_nodes(N, m, v, L) g_parameters = GravitationalParameters(G) system = PotentialNBodySystem(bodies, Dict(:gravitational => g_parameters)) tspan = (0.0, 1.0) simulation = NBodySimulation(system, tspan) f = acceleration(simulation) u0, v0, n = gather_bodies_initial_coordinates(simulation) dv = zero(v0) b = @benchmarkable $f(dv, $v0, $u0, $g_parameters, 0.) setup=(dv=zero($v0)) evals=1 SUITE["gravitational"] = b end ``` ## Coulomb potential ```julia let SUITE=SUITE n = 200 bodies = ChargedParticle[] L = 20.0 m = 1.0 q = 1.0 count = 1 dL = L / (ceil(n^(1 / 3)) + 1) for x = dL / 2:dL:L, y = dL / 2:dL:L, z = dL / 2:dL:L if count > n break end r = SVector(x, y, z) v = SVector(.0, .0, .0) body = ChargedParticle(r, v, m, q) push!(bodies, body) count += 1 end k = 9e9 τ = 0.01 * dL / sqrt(2 * k * q * q / (dL * m)) t1 = 0.0 t2 = 1000 * τ potential = ElectrostaticParameters(k, 0.45 * L) system = PotentialNBodySystem(bodies, Dict(:electrostatic => potential)) pbc = CubicPeriodicBoundaryConditions(L) simulation = NBodySimulation(system, (t1, t2), pbc) f = acceleration(simulation) u0, v0, n = gather_bodies_initial_coordinates(simulation) dv = zero(v0) b = @benchmarkable $f(dv, $v0, $u0, $potential, 0.) setup=(dv=zero($v0)) evals=1 SUITE["coulomb"] = b end ``` ## Magnetic dipole potential ```julia let SUITE=SUITE n = 200 bodies = MagneticParticle[] L = 20.0 m = 1.0 count = 1 dL = L / (ceil(n^(1 / 3)) + 1) for x = dL / 2:dL:L, y = dL / 2:dL:L, z = dL / 2:dL:L if count > n break end r = SVector(x, y, z) v = SVector(.0, .0, .0) mm = rand(SVector{3}) body = MagneticParticle(r, v, m, mm) push!(bodies, body) count += 1 end μ_4π = 1e-7 t1 = 0.0 # s t2 = 1.0 # s τ = (t2 - t1) / 100 parameters = MagnetostaticParameters(μ_4π) system = PotentialNBodySystem(bodies, Dict(:magnetic => parameters)) simulation = NBodySimulation(system, (t1, t2)) f = acceleration(simulation) u0, v0, n = gather_bodies_initial_coordinates(simulation) dv = zero(v0) b = @benchmarkable $f(dv, $v0, $u0, $parameters, 0.) setup=(dv=zero($v0)) evals=1 SUITE["magnetic_dipole"] = b end ``` ## Lennard Jones potential ```julia let SUITE=SUITE T = 120.0 # K T0 = 90.0 # K kb = 8.3144598e-3 # kJ/(K*mol) ϵ = T * kb σ = 0.34 # nm ρ = 1374/1.6747# Da/nm^3 N = 200 m = 39.95# Da = 216 # number of bodies/particles L = (m*N/ρ)^(1/3)#10.229σ R = 0.5*L v_dev = sqrt(kb * T / m) bodies = generate_bodies_in_cell_nodes(N, m, v_dev, L) τ = 0.5e-3 # ps or 1e-12 s t1 = 0.0 t2 = 2000τ lj_parameters = LennardJonesParameters(ϵ, σ, R) lj_system = PotentialNBodySystem(bodies, Dict(:lennard_jones => lj_parameters)); pbc = CubicPeriodicBoundaryConditions(L) simulation = NBodySimulation(lj_system, (t1, t2), pbc, kb) f = acceleration(simulation) u0, v0, n = gather_bodies_initial_coordinates(simulation) dv = zero(v0) b = @benchmarkable $f(dv, $v0, $u0, $lj_parameters, 0.) setup=(dv=zero($v0)) evals=1 SUITE["lennard_jones"] = b end ``` ## WaterSPCFw model ```julia function acceleration(simulation::NBodySimulation{<:WaterSPCFw}) (u0, v0, n) = gather_bodies_initial_coordinates(simulation) (o_acelerations, h_acelerations) = gather_accelerations_for_potentials(simulation) group_accelerations = gather_group_accelerations(simulation) simultaneous_acceleration = gather_simultaneous_acceleration(simulation) function soode_system!(dv, v, u, p, t) @inbounds for i = 1:n a = MVector(0.0, 0.0, 0.0) for acceleration! in o_acelerations acceleration!(a, u, v, t, 3 * (i - 1) + 1); end dv[:, 3 * (i - 1) + 1] .= a end @inbounds for i in 1:n, j in (2, 3) a = MVector(0.0, 0.0, 0.0) for acceleration! in h_acelerations acceleration!(a, u, v, t, 3 * (i - 1) + j); end dv[:, 3 * (i - 1) + j] .= a end @inbounds for i = 1:n for acceleration! in group_accelerations acceleration!(dv, u, v, t, i); end end for acceleration! in simultaneous_acceleration acceleration!(dv, u, v, t); end end return soode_system! end let SUITE=SUITE T = 370 # K T0 = 275 # K kb = 8.3144598e-3 # kJ/(K*mol) ϵOO = 0.1554253*4.184 # kJ σOO = 0.3165492 # nm ρ = 997/1.6747# Da/nm^3 mO = 15.999 # Da mH = 1.00794 # Da mH2O = mO+2*mH N = 200 L = (mH2O*N/ρ)^(1/3) R = 0.9 # ~3*σOO Rel = 0.49*L v_dev = sqrt(kb * T /mH2O) τ = 0.5e-3 # ps t1 = 0τ t2 = 5τ # ps k_bond = 1059.162*4.184*1e2 # kJ/(mol*nm^2) k_angle = 75.90*4.184 # kJ/(mol*rad^2) rOH = 0.1012 # nm ∠HOH = 113.24*pi/180 # rad qH = 0.41 qO = -0.82 k = 138.935458 # bodies = generate_bodies_in_cell_nodes(N, mH2O, v_dev, L) jl_parameters = LennardJonesParameters(ϵOO, σOO, R) e_parameters = ElectrostaticParameters(k, Rel) spc_parameters = SPCFwParameters(rOH, ∠HOH, k_bond, k_angle) pbc = CubicPeriodicBoundaryConditions(L) water = WaterSPCFw(bodies, mH, mO, qH, qO, jl_parameters, e_parameters, spc_parameters); simulation = NBodySimulation(water, (t1, t2), pbc, kb); f = acceleration(simulation) u0, v0, n = gather_bodies_initial_coordinates(simulation) dv = zero(v0) b = @benchmarkable $f(dv, $v0, $u0, $spc_parameters, 0.) setup=(dv=zero($v0)) evals=1 SUITE["water_spcfw"] = b end ``` Here are the results of the benchmarks ```julia r = run(SUITE) minimum(r) ``` and ```julia memory(r) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9598
--- title: Liquid argon benchmarks author: Sebastian Micluța-Câmpeanu, Mikhail Vaganov --- The purpose of these benchmarks is to compare several integrators for use in molecular dynamics simulation. We will use a simulation of liquid argon form the examples of NBodySimulator as test case. ```julia using ProgressLogging using NBodySimulator, OrdinaryDiffEq, StaticArrays using Plots, DataFrames, StatsPlots function setup(t) T = 120.0 # K kb = 1.38e-23 # J/K ϵ = T * kb # J σ = 3.4e-10 # m ρ = 1374 # kg/m^3 m = 39.95 * 1.6747 * 1e-27 # kg N = 350 L = (m*N/ρ)^(1/3) R = 3.5σ v_dev = sqrt(kb * T / m) # m/s _L = L / σ _σ = 1.0 _ϵ = 1.0 _m = 1.0 _v = v_dev / sqrt(ϵ / m) _R = R / σ bodies = generate_bodies_in_cell_nodes(N, _m, _v, _L) lj_parameters = LennardJonesParameters(_ϵ, _σ, _R) pbc = CubicPeriodicBoundaryConditions(_L) lj_system = PotentialNBodySystem(bodies, Dict(:lennard_jones => lj_parameters)); simulation = NBodySimulation(lj_system, (0.0, t), pbc, _ϵ/T) return simulation end ``` In order to compare different integrating methods we will consider a fixed simulation time and change the timestep (or tolerances in the case of adaptive methods). ```julia function benchmark(energyerr, rts, bytes, allocs, nt, nf, t, configs) simulation = setup(t) prob = SecondOrderODEProblem(simulation) for config in configs alg = config.alg sol, rt, b, gc, memalloc = @timed solve(prob, alg(); save_everystep=false, progress=true, progress_name="$alg", config...) result = NBodySimulator.SimulationResult(sol, simulation) ΔE = total_energy(result, t) - total_energy(result, 0) energyerr[alg] = ΔE rts[alg] = rt bytes[alg] = b allocs[alg] = memalloc nt[alg] = sol.destats.naccept nf[alg] = sol.destats.nf + sol.destats.nf2 end end function run_benchmark!(results, t, integrators, tol...; c=ones(length(integrators))) @progress "Benchmark at t=$t" for τ in zip(tol...) runtime = Dict() ΔE = Dict() nt = Dict() nf = Dict() b = Dict() allocs = Dict() cfg = config(integrators, c, τ...) GC.gc() benchmark(ΔE, runtime, b, allocs, nt, nf, t, cfg) get_tol(idx) = haskey(cfg[idx], :dt) ? cfg[idx].dt : (cfg[idx].abstol, cfg[idx].rtol) for (idx,i) in enumerate(integrators) push!(results, [string(i), runtime[i], get_tol(idx)..., abs(ΔE[i]), nt[i], nf[i], c[idx]]) end end return results end ``` We will consider symplectic integrators first ```julia symplectic_integrators = [ VelocityVerlet, VerletLeapfrog, PseudoVerletLeapfrog, McAte2, CalvoSanz4, McAte5, Yoshida6, KahanLi8, SofSpa10 ]; ``` Since for each method there is a different cost for a timestep, we need to take that into account when choosing the tolerances (`dt`s or `abstol`&`reltol`) for the solvers. This cost was estimated using the commented code below and the results were hardcoded in order to prevent fluctuations in the results between runs due to differences in callibration times. The calibration is based on running a simulation with equal tolerances for all solvers and then computing the cost as the runtime / number of timesteps. The absolute value of the cost is not very relevant, so the cost was normalized to the cost of one `VelocityVerlet` step. ```julia config(integrators, c, τ) = [ (alg=a, dt=τ*cₐ) for (a,cₐ) in zip(integrators, c)] t = 35.0 τs = 1e-3 # warmup c_symplectic = ones(length(symplectic_integrators)) benchmark(Dict(), Dict(), Dict(), Dict(), Dict(), Dict(), 10., config(symplectic_integrators, c_symplectic, τs)) # results = DataFrame(:integrator=>String[], :runtime=>Float64[], :τ=>Float64[], # :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); # run_benchmark!(results, t, symplectic_integrators, τs) # c_symplectic .= results[!, :runtime] ./ results[!, :timesteps] # c_Verlet = c_symplectic[1] # c_symplectic /= c_Verlet c_symplectic = [ 1.00, # VelocityVerlet 1.05, # VerletLeapfrog 0.98, # PseudoVerletLeapfrog 1.02, # McAte2 2.38, # CalvoSanz4 2.92, # McAte5 3.74, # Yoshida6 8.44, # KahanLi8 15.76 # SofSpa10 ] ``` Let us now benchmark the solvers for a fixed simulation time and variable timestep ```julia t = 40.0 τs = 10 .^range(-4, -3, length=10) results = DataFrame(:integrator=>String[], :runtime=>Float64[], :τ=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results, t, symplectic_integrators, τs, c=c_symplectic) ``` The energy error as a function of runtime is given by ```julia @df results plot(:EnergyError, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Runtime (s)") ``` Looking at the runtime as a function of timesteps, we can observe that we have a linear dependency for each method, and the slope is the previously computed cost per step. ```julia @df results plot(:timesteps, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Number of timesteps", ylabel="Runtime (s)") ``` We can also look at the energy error history ```julia function benchmark(energyerr, rts, ts, t, configs) simulation = setup(t) prob = SecondOrderODEProblem(simulation) for config in configs alg = config.alg sol, rt = @timed solve(prob, alg(); progress=true, progress_name="$alg", config...) result = NBodySimulator.SimulationResult(sol, simulation) ΔE(t) = total_energy(result, t) - total_energy(result, 0) energyerr[alg] = [ΔE(t) for t in sol.t[2:10^2:end]] rts[alg] = rt ts[alg] = sol.t[2:10^2:end] end end ΔE = Dict() rt = Dict() ts = Dict() configs = config(symplectic_integrators, c_symplectic, 2.3e-4) benchmark(ΔE, rt, ts, 40., configs) plt = plot(xlabel="Rescaled Time", ylabel="Energy error", legend=:bottomleft); for c in configs plot!(plt, ts[c.alg], abs.(ΔE[c.alg]), label="$(c.alg), $(rt[c.alg])s") end plt ``` Now, let us compare some adaptive methods ```julia adaptive_integrators=[ # Non-stiff ODE methods Tsit5, Vern7, Vern9, # DPRKN DPRKN6, DPRKN8, DPRKN12, ]; ``` Similarly to the case of symplectic methods, we will take into account the average cost per timestep in order to have a fair comparison between the solvers. ```julia config(integrators, c, at, rt) = [ (alg=a, abstol=at*2^cₐ, rtol=rt*2^cₐ) for (a,cₐ) in zip(integrators, c)] t = 35.0 ats = 10 .^range(-14, -4, length=10) rts = 10 .^range(-14, -4, length=10) # warmup c_adaptive = ones(length(adaptive_integrators)) benchmark(Dict(), Dict(), Dict(), Dict(), Dict(), Dict(), 10., config(adaptive_integrators, 1, ats[1], rts[1])) # results = DataFrame(:integrator=>String[], :runtime=>Float64[], :abstol=>Float64[], # :reltol=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); # run_benchmark!(results, t, adaptive_integrators, ats[1], rts[1]) # c_adaptive .= results[!, :runtime] ./ results[!, :timesteps] # c_adaptive /= c_Verlet c_adaptive = [ 3.55, # Tsit5, 7.84, # Vern7, 11.38, # Vern9 3.56, # DPRKN6, 5.10, # DPRKN8, 8.85 # DPRKN12, ] ``` Let us now benchmark the solvers for a fixed simulation time and variable timestep ```julia t = 40.0 results = DataFrame(:integrator=>String[], :runtime=>Float64[], :abstol=>Float64[], :reltol=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results, t, adaptive_integrators, ats, rts, c=c_adaptive) ``` The energy error as a function of runtime is given by ```julia @df results plot(:EnergyError, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Runtime (s)") ``` If we consider the number of function evaluations instead, we obtain ```julia @df results plot(:EnergyError, :f_evals, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Number of f evals") ``` We will now compare the best performing solvers ```julia t = 40.0 symplectic_integrators = [ VelocityVerlet, VerletLeapfrog, PseudoVerletLeapfrog, McAte2, CalvoSanz4 ] c_symplectic = [ 1.00, # VelocityVerlet 1.05, # VerletLeapfrog 0.98, # PseudoVerletLeapfrog 1.02, # McAte2 2.38, # CalvoSanz4 ] results1 = DataFrame(:integrator=>String[], :runtime=>Float64[], :τ=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results1, t, symplectic_integrators, τs, c=c_symplectic) adaptive_integrators=[ DPRKN6, DPRKN8, DPRKN12, ] c_adaptive = [ 3.56, # DPRKN6, 5.10, # DPRKN8, 8.85 # DPRKN12, ] results2 = DataFrame(:integrator=>String[], :runtime=>Float64[], :abstol=>Float64[], :reltol=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results2, t, adaptive_integrators, ats, rts, c=c_adaptive) append!(results1, results2, cols=:union) results1 ``` The energy error as a function of runtime is given by ```julia @df results1 plot(:EnergyError, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Runtime (s)") ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
7220
--- title: Liquid argon benchmarks author: Sebastian Micluța-Câmpeanu, Mikhail Vaganov --- The purpose of these benchmarks is to compare several integrators for use in molecular dynamics simulation. We will use a simulation of liquid argon form the examples of NBodySimulator as test case. ```julia using ProgressLogging using NBodySimulator, OrdinaryDiffEq, StaticArrays using Plots, DataFrames, StatsPlots function setup(t) T = 120.0 # K kb = 1.38e-23 # J/K ϵ = T * kb # J σ = 3.4e-10 # m ρ = 1374 # kg/m^3 m = 39.95 * 1.6747 * 1e-27 # kg N = 350 L = (m*N/ρ)^(1/3) R = 3.5σ v_dev = sqrt(kb * T / m) # m/s _L = L / σ _σ = 1.0 _ϵ = 1.0 _m = 1.0 _v = v_dev / sqrt(ϵ / m) _R = R / σ bodies = generate_bodies_in_cell_nodes(N, _m, _v, _L) lj_parameters = LennardJonesParameters(_ϵ, _σ, _R) pbc = CubicPeriodicBoundaryConditions(_L) lj_system = PotentialNBodySystem(bodies, Dict(:lennard_jones => lj_parameters)); simulation = NBodySimulation(lj_system, (0.0, t), pbc, _ϵ/T) return simulation end ``` In order to compare different integrating methods we will consider a fixed simulation time and change the timestep (or tolerances in the case of adaptive methods). ```julia function benchmark(energyerr, rts, bytes, allocs, nt, nf, t, configs) simulation = setup(t) prob = SecondOrderODEProblem(simulation) for config in configs alg = config.alg sol, rt, b, gc, memalloc = @timed solve(prob, alg(); save_everystep=false, progress=true, progress_name="$alg", config...) result = NBodySimulator.SimulationResult(sol, simulation) ΔE = total_energy(result, t) - total_energy(result, 0) energyerr[alg] = ΔE rts[alg] = rt bytes[alg] = b allocs[alg] = memalloc nt[alg] = sol.destats.naccept nf[alg] = sol.destats.nf + sol.destats.nf2 end end function run_benchmark!(results, t, integrators, tol...; c=ones(length(integrators))) @progress "Benchmark at t=$t" for τ in zip(tol...) runtime = Dict() ΔE = Dict() nt = Dict() nf = Dict() b = Dict() allocs = Dict() cfg = config(integrators, c, τ...) GC.gc() benchmark(ΔE, runtime, b, allocs, nt, nf, t, cfg) get_tol(idx) = haskey(cfg[idx], :dt) ? cfg[idx].dt : (cfg[idx].abstol, cfg[idx].rtol) for (idx,i) in enumerate(integrators) push!(results, [string(i), runtime[i], get_tol(idx)..., abs(ΔE[i]), nt[i], nf[i], c[idx]]) end end return results end ``` We will consider symplectic integrators first ```julia symplectic_integrators = [ VelocityVerlet, VerletLeapfrog, PseudoVerletLeapfrog, McAte2, CalvoSanz4, McAte5, Yoshida6, KahanLi8, SofSpa10 ]; ``` ```julia config(integrators, c, τ) = [ (alg=a, dt=τ*cₐ) for (a,cₐ) in zip(integrators, c)] t = 35.0 τs = 1e-3 # warmup c_symplectic = ones(length(symplectic_integrators)) benchmark(Dict(), Dict(), Dict(), Dict(), Dict(), Dict(), 10., config(symplectic_integrators, c_symplectic, τs)) # results = DataFrame(:integrator=>String[], :runtime=>Float64[], :τ=>Float64[], # :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); # run_benchmark!(results, t, symplectic_integrators, τs) # c_symplectic .= results[!, :runtime] ./ results[!, :timesteps] # c_Verlet = c_symplectic[1] # c_symplectic /= c_Verlet c_symplectic = [ 1.00, # VelocityVerlet 1.05, # VerletLeapfrog 0.98, # PseudoVerletLeapfrog 1.02, # McAte2 2.38, # CalvoSanz4 2.92, # McAte5 3.74, # Yoshida6 8.44, # KahanLi8 15.76 # SofSpa10 ] ``` We will consider a longer simulation time ```julia t = 200.0 results = DataFrame(:integrator=>String[], :runtime=>Float64[], :τ=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results, t, symplectic_integrators, τs, c=c_symplectic) ``` The energy error as a function of runtime is given by ```julia @df results plot(:EnergyError, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Runtime (s)") ``` Now, let us compare some adaptive methods ```julia adaptive_integrators=[ # Non-stiff ODE methods Tsit5, Vern7, Vern9, # DPRKN DPRKN6, DPRKN8, DPRKN12, ]; ``` ```julia config(integrators, c, at, rt) = [ (alg=a, abstol=at*2^cₐ, rtol=rt*2^cₐ) for (a,cₐ) in zip(integrators, c)] t = 35.0 ats = 10 .^range(-14, -4, length=10) rts = 10 .^range(-14, -4, length=10) # warmup c_adaptive = ones(length(adaptive_integrators)) benchmark(Dict(), Dict(), Dict(), Dict(), Dict(), Dict(), 10., config(adaptive_integrators, 1, ats[1], rts[1])) # results = DataFrame(:integrator=>String[], :runtime=>Float64[], :abstol=>Float64[], # :reltol=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); # run_benchmark!(results, t, adaptive_integrators, ats[1], rts[1]) # c_adaptive .= results[!, :runtime] ./ results[!, :timesteps] # c_adaptive /= c_Verlet c_adaptive = [ 3.55, # Tsit5, 7.84, # Vern7, 11.38, # Vern9 3.56, # DPRKN6, 5.10, # DPRKN8, 8.85 # DPRKN12, ] ``` We will consider a longer simulation time ```julia t = 200.0 results = DataFrame(:integrator=>String[], :runtime=>Float64[], :abstol=>Float64[], :reltol=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results, t, integrators, ats, rts, c=c_adaptive) ``` The energy error as a function of runtime is given by ```julia @df results plot(:EnergyError, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Runtime (s)") ``` We will now compare the best performing solvers ```julia t = 200.0 symplectic_integrators = [ VelocityVerlet, VerletLeapfrog, PseudoVerletLeapfrog, McAte2, CalvoSanz4 ] c_symplectic = [ 1.00, # VelocityVerlet 1.05, # VerletLeapfrog 0.98, # PseudoVerletLeapfrog 1.02, # McAte2 2.38, # CalvoSanz4 ] results1 = DataFrame(:integrator=>String[], :runtime=>Float64[], :τ=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results1, t, symplectic_integrators, τs, c=c_symplectic) adaptive_integrators=[ DPRKN6, DPRKN8, DPRKN12, ] c_adaptive = [ 3.56, # DPRKN6, 5.10, # DPRKN8, 8.85 # DPRKN12, ] results2 = DataFrame(:integrator=>String[], :runtime=>Float64[], :abstol=>Float64[], :reltol=>Float64[], :EnergyError=>Float64[], :timesteps=>Int[], :f_evals=>Int[], :cost=>Float64[]); run_benchmark!(results2, t, adaptive_integrators, ats, rts, c=c_adaptive) append!(results1, results2, cols=:union) results1 ``` The energy error as a function of runtime is given by ```julia @df results1 plot(:EnergyError, :runtime, group=:integrator, xscale=:log10, yscale=:log10, xlabel="Energy error", ylabel="Runtime (s)") ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
6056
--- title: Mackey and Glass Work-Precision Diagrams author: David Widmann, Chris Rackauckas --- # Mackey and Glass We study algorithms for solving constant delay differential equations with a test problem from W.H. Enright and H. Hayashi, "The evaluation of numerical software for delay differential equations", 1997. It is a model of blood production that was published by M. C. Mackey and L. Glass in "Oscillation and chaos in physiological control systems", 1977, and is given by ```math \begin{equation} y'(t) = \frac{0.2y(t-14)}{1 + y(t-14)^{10}} - 0.1y(t) \end{equation} ``` ```julia using DelayDiffEq, DiffEqDevTools, Plots using DDEProblemLibrary: prob_dde_DDETST_A1 as prob gr() sol = solve(prob, MethodOfSteps(Vern9(); fpsolve = NLFunctional(; max_iter = 1000)); reltol=1e-14, abstol=1e-14) test_sol = TestSolution(sol) plot(sol) ``` ## Low order RK methods ### High tolerances First we test final error estimates of continuous RK methods of low order at high tolerances. `OwrenZen4`, `OwrenZen5`, and `RK4` yield the best error estimates. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` Next we test average interpolation errors: ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` As before, `OwrenZen4` and `OwrenZen5` perform well over the whole range of investigated tolerances. ### Low tolerances We repeat our tests with low tolerances. ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` And once again we also test the interpolation errors: ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` Apparently `Tsit5` and `DP5` perform quite well at low tolerances, but only `OwrenZen5`, `OwrenZen4` and `RK4` achieve interpolation errors of around 1e-9. ## Lazy interpolants ### High tolerances We repeat our tests with the Verner methods which, in contrast to the methods above, use lazy interpolants. As reference we include `OwrenZen4`. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` And we obtain the following interpolation errors: ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` `Vern6`, `Vern7`, and `Vern9` are outperformed by `OwrenZen4`. ### Low tolerances Again, we repeat our tests at low tolerances. ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` `Vern6`, `Vern7`, and `Vern9` show similar results at low tolerances, and perform even better than `OwrenZen4`. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
6181
--- title: Wheldon, Kirk, and Finlay Work-Precision Diagrams author: David Widmann, Chris Rackauckas --- # Wheldon, Kirk, and Finlay We study algorithms for solving constant delay differential equations with a test problem from W.H. Enright and H. Hayashi, "The evaluation of numerical software for delay differential equations", 1997. It is a model of chronic granulocytic leukemia that was published by T. Wheldon, J. Kirk and H. Finlay in "Cyclical granulopoiesis in chronic granulocytic leukemia: A simulation study", 1974, and is given by ```math \begin{align} y_1'(t) &= \frac{1.1}{1 + \sqrt{10}y_1(t-20)^{5/4}} - \frac{10y_1(t)}{1 + 40y_2(t)} \\ y_2'(t) &= \frac{100y_1(t)}{1 + 40y_2(t)} - 2.43y_2(t) \end{align} ``` ```julia using DelayDiffEq, DiffEqDevTools, Plots using DDEProblemLibrary: prob_dde_DDETST_A2 as prob gr() sol = solve(prob, MethodOfSteps(Vern9(); fpsolve = NLFunctional(; max_iter = 1000)); reltol=1e-14, abstol=1e-14) test_sol = TestSolution(sol) plot(sol) ``` ## Low order RK methods ### High tolerances First we compare final errors of solutions with low order RK methods at high tolerances. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` Next we test interpolation errors: ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` Both interpolation tests and tests of final error show similar results. `BS3` does quite well but only `OwrenZen4`, `OwrenZen5`, and `RK4` achieve interpolation errors of about 1e-5. ### Low tolerances We repeat our tests at low tolerances. ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` Out of the compared methods, `Tsit5`, `DP5`, and `OwrenZen5` seem to be the best methods for this problem at low tolerances, but also `OwrenZen4` performs similarly well. `OwrenZen5` and `OwrenZen4` can even achieve interpolation errors below 1e-9. ## Lazy interpolants ### High tolerances We compare the Verner methods, which use lazy interpolants, at high tolerances. As reference we include `OwrenZen4`. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ### Low tolerances We repeat these tests and compare the Verner methods also at low tolerances. ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(OwrenZen4()))] wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` It seems `Vern6` and `Vern7` are both well suited for the problem at low tolerances and outperform `OwrenZen4`, whereas at high tolerances `OwrenZen4` is more efficient. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
6267
--- title: Fitzhugh-Nagumo Work-Precision Diagrams author: Chris Rackauckas --- # Fitzhugh-Nagumo The purpose of this is to see how the errors scale on a standard nonlinear problem. ```julia using OrdinaryDiffEq, ParameterizedFunctions, ODE, ODEInterface, ODEInterfaceDiffEq, LSODA, Sundials, DiffEqDevTools, StaticArrays using Plots; gr() f = @ode_def FitzhughNagumo begin dv = v - v^3/3 -w + l dw = τinv*(v + a - b*w) end a b τinv l p = SA[0.7,0.8,1/12.5,0.5] prob = ODEProblem{true, SciMLBase.FullSpecialize}(f,[1.0;1.0],(0.0,10.0),p) probstatic = ODEProblem{false}(f,SA[1.0;1.0],(0.0,10.0),p) abstols = 1.0 ./ 10.0 .^ (6:13) reltols = 1.0 ./ 10.0 .^ (3:10); sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Vern7(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; ``` ```julia plot(sol) ``` ## Low Order ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) #fails Dict(:alg=>dopri5()) Dict(:alg=>BS5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>Vern6(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) plot(wp) ``` ### Interpolation ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) # fails Dict(:alg=>BS5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>Vern6(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,numruns=100,maxiters=10000,error_estimate=:L2,dense_errors=true) plot(wp) ``` ## Higher Order ```julia setups = [Dict(:alg=>DP8()) Dict(:alg=>dop853()) #Dict(:alg=>ode78()) # fails Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) plot(wp) ``` ```julia setups = [Dict(:alg=>DP8()) Dict(:alg=>Vern7()) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>CVODE_Adams()) Dict(:alg=>ARKODE(Sundials.Explicit(),order=6)) Dict(:alg=>lsoda()) Dict(:alg=>odex()) Dict(:alg=>ddeabm()) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) plot(wp) ``` ### Interpolation ```julia setups = [Dict(:alg=>DP8()) #Dict(:alg=>ode78()) # fails Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,numruns=100,maxiters=1000,error_estimate=:L2,dense_errors=true) plot(wp) ``` ## Comparison with Non-RK methods Now let's test Tsit5 and Vern9 against parallel extrapolation methods and an Adams-Bashforth-Moulton: ```julia setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>VCABM()) Dict(:alg=>Vern9(), :prob_choice => 2) Dict(:alg=>VCABM(), :prob_choice => 2) Dict(:alg=>AitkenNeville(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true))] solnames = ["Tsit5","Vern9","VCABM","Vern9 Static","VCABM Static","AitkenNeville","Midpoint Deuflhard","Midpoint Hairer Wanner"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=9, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :romberg, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :bulirsch, threading=true))] solnames = ["Deuflhard","No threads","standard","Romberg","Bulirsch"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=15, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=7, init_order=6, threading=true))] solnames = ["1","2","3","4","5"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ## Conclusion As expected, the algorithms are all pretty matched on time for this problem. However, you can clearly see the OrdinaryDiffEq.jl algorithms solving to a much higher accuracy and still faster, especially when the interpolations are involved. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
7059
--- title: Lotka-Volterra Work-Precision Diagrams author: Chris Rackauckas --- ## Lotka-Volterra The purpose of this problem is to test the performance on easy problems. Since it's periodic, the error is naturally low, and so most of the difference will come down to startup times and, when measuring the interpolations, the algorithm choices. ```julia using OrdinaryDiffEq, ParameterizedFunctions, ODE, ODEInterfaceDiffEq, LSODA, Sundials, DiffEqDevTools, StaticArrays f = @ode_def LotkaVolterra begin dx = a*x - b*x*y dy = -c*y + d*x*y end a b c d p = SA[1.5,1.0,3.0,1.0] prob = ODEProblem{true, SciMLBase.FullSpecialize}(f,[1.0;1.0],(0.0,10.0),p) probstatic = ODEProblem{false}(f,SA[1.0;1.0],(0.0,10.0),p) abstols = 1.0 ./ 10.0 .^ (6:13) reltols = 1.0 ./ 10.0 .^ (3:10); sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Vern7(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; using Plots; gr() ``` ```julia plot(sol) ``` ### Low Order ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) # fail Dict(:alg=>dopri5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>Vern6(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,maxiters=10000,numruns=100) plot(wp) ``` Here we see the OrdinaryDiffEq.jl algorithms once again far in the lead. ### Interpolation Error Since the problem is periodic, the real measure of error is the error throughout the solution. ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>Vern6(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,maxiters=10000,error_estimate=:L2,dense_errors=true,numruns=100) plot(wp) ``` Here we see the power of algorithm specific interpolations. The ODE.jl algorithm is only able to reach $10^{-7}$ error even at a tolerance of $10^{-13}$, while the DifferentialEquations.jl algorithms are below $10^{-10}$ ## Higher Order ```julia setups = [Dict(:alg=>DP8()) Dict(:alg=>dop853()) #Dict(:alg=>ode78()) # fails Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,maxiters=1000,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>odex()) Dict(:alg=>ddeabm()) Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2) Dict(:alg=>CVODE_Adams()) Dict(:alg=>lsoda()) Dict(:alg=>ARKODE(Sundials.Explicit(),order=6)) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,maxiters=1000,numruns=100) plot(wp) ``` Again we look at interpolations: ```julia setups = [Dict(:alg=>DP8()) #Dict(:alg=>ode78()) Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,dense=true,maxiters=1000,error_estimate=:L2,numruns=100) plot(wp) ``` Again, the ODE.jl algorithms suffer when measuring the interpolations due to relying on an order 3 Hermite polynomial instead of an algorithm-specific order matching interpolation which uses the timesteps. ## Comparison with Non-RK methods Now let's test Tsit5 and Vern9 against parallel extrapolation methods and an Adams-Bashforth-Moulton: ```julia setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>VCABM()) Dict(:alg=>Vern9(), :prob_choice => 2) Dict(:alg=>VCABM(), :prob_choice => 2) Dict(:alg=>AitkenNeville(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true))] solnames = ["Tsit5","Vern9","VCABM","Vern9 Static","VCABM Static","AitkenNeville","Midpoint Deuflhard","Midpoint Hairer Wanner"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=9, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :romberg, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :bulirsch, threading=true))] solnames = ["Deuflhard","No threads","standard","Romberg","Bulirsch"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=15, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=7, init_order=6, threading=true))] solnames = ["1","2","3","4","5"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ## Conclusion The OrdinaryDiffEq.jl are quicker and still solve to a much higher accuracy, especially when the interpolations are involved. ODE.jl errors a lot. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
6141
--- title: Pleiades Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, ODE, ODEInterfaceDiffEq, LSODA, Sundials, DiffEqDevTools f = (du,u,p,t) -> begin @inbounds begin x = view(u,1:7) # x y = view(u,8:14) # y v = view(u,15:21) # x′ w = view(u,22:28) # y′ du[1:7] .= v du[8:14].= w for i in 15:28 du[i] = zero(u[1]) end for i=1:7,j=1:7 if i != j r = ((x[i]-x[j])^2 + (y[i] - y[j])^2)^(3/2) du[14+i] += j*(x[j] - x[i])/r du[21+i] += j*(y[j] - y[i])/r end end end end prob = ODEProblem{true, SciMLBase.FullSpecialize}(f,[3.0,3.0,-1.0,-3.0,2.0,-2.0,2.0,3.0,-3.0,2.0,0,0,-4.0,4.0,0,0,0,0,0,1.75,-1.5,0,0,0,-1.25,1,0,0],(0.0,3.0)) abstols = 1.0 ./ 10.0 .^ (6:9) reltols = 1.0 ./ 10.0 .^ (3:6); using Plots; gr() ``` ```julia sol = solve(prob,Vern8(),abstol=1/10^12,reltol=1/10^10,maxiters=1000000) test_sol = TestSolution(sol); plot(sol) ``` ## Low Order ODE.jl had to be discarded. The error estimate is off since it throws errors and aborts and so that artificially lowers the error the the time is serverly diminished. ```julia #setups = [Dict(:alg=>ode45())] #wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=10000) #plot(wp) ``` ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>dopri5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=10000) plot(wp) ``` ### Interpolation ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,numruns=100,maxiters=10000,error_estimate=:L2,dense_errors=true) plot(wp) ``` ## Higher Order Once again ODE.jl had to be discarded since it errors. ```julia #setups = [Dict(:alg=>ode78())] #wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) #plot(wp) ``` ```julia setups = [Dict(:alg=>DP8()) Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>dop853()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) plot(wp) ``` ```julia setups = [Dict(:alg=>odex()) Dict(:alg=>Vern7()) Dict(:alg=>CVODE_Adams()) Dict(:alg=>lsoda()) Dict(:alg=>Vern6()) Dict(:alg=>Tsit5()) Dict(:alg=>ddeabm()) Dict(:alg=>ARKODE(Sundials.Explicit(),order=6)) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=20) plot(wp) ``` ### Interpolations ```julia setups = [Dict(:alg=>DP8()) Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,numruns=100,maxiters=1000,error_estimate=:L2,dense_errors=true) plot(wp) ``` ## Comparison with Non-RK methods Now let's test Tsit5 and Vern9 against parallel extrapolation methods and an Adams-Bashforth-Moulton: ```julia setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>VCABM()) Dict(:alg=>AitkenNeville(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true))] solnames = ["Tsit5","Vern9","VCABM","AitkenNeville","Midpoint Deuflhard","Midpoint Hairer Wanner"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=9, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :romberg, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :bulirsch, threading=true))] solnames = ["Deuflhard","No threads","standard","Romberg","Bulirsch"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=15, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=7, init_order=6, threading=true))] solnames = ["1","2","3","4","5"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ## Conclusion One big conclusion is that, once again, the ODE.jl algorithms fail to run on difficult problems. Its minimum timestep is essentially machine epsilon, and so this shows some fatal flaws in its timestepping algorithm. The OrdinaryDiffEq.jl algorithms come out as faster in each case than the ODEInterface algorithms. Overall, the Verner methods have a really good showing once again. The `CVODE_Adams` method does really well here when the tolerances are higher. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
5448
--- title: Rigid Body Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, ParameterizedFunctions, ODE, ODEInterfaceDiffEq, LSODA, Sundials, DiffEqDevTools, StaticArrays k(t) = 0.25*sin(t)^2 g = @ode_def RigidBody begin dy1 = I₁*y2*y3 dy2 = I₂*y1*y3 dy3 = I₃*y1*y2 + k(t) end I₁ I₂ I₃ p = SA[-2.0,1.25,-0.5] prob = ODEProblem{true, SciMLBase.FullSpecialize}(g,[1.0;0.0;0.9],(0.0,10.0),p) probstatic = ODEProblem{false}(g,SA[1.0;0.0;0.9],(0.0,10.0),p) abstols = 1.0 ./ 10.0 .^ (6:13) reltols = 1.0 ./ 10.0 .^ (3:10); sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Vern7(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; using Plots; gr() ``` ```julia plot(sol) ``` ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) # fails Dict(:alg=>dopri5()) Dict(:alg=>Tsit5()) Dict(:alg=>Vern6()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>Vern6(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=true,numruns=100,maxiters=10000) plot(wp) ``` The DifferentialEquations.jl algorithms once again pull ahead. This is the first benchmark we've ran where `ode45` doesn't fail. However, it still doesn't do as well as `Tsit5`. One reason why it does so well is that the maximum norm that ODE.jl uses (as opposed to the L2 norm of Sundials, DifferentialEquations, and ODEInterface) seems to do really well on this problem. `dopri5` does surprisingly bad in this test. ## Higher Order ```julia setups = [Dict(:alg=>DP8()) Dict(:alg=>dop853()) #Dict(:alg=>ode78()) # fails Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) plot(wp) ``` ```julia setups = [Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>odex()) Dict(:alg=>CVODE_Adams()) Dict(:alg=>lsoda()) Dict(:alg=>ddeabm()) Dict(:alg=>ARKODE(Sundials.Explicit(),order=6)) ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100,maxiters=1000) plot(wp) ``` ## Comparison with Non-RK methods Now let's test Tsit5 and Vern9 against parallel extrapolation methods and an Adams-Bashforth-Moulton: ```julia setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>VCABM()) Dict(:alg=>Vern9(), :prob_choice => 2) Dict(:alg=>VCABM(), :prob_choice => 2) Dict(:alg=>AitkenNeville(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true))] solnames = ["Tsit5","Vern9","VCABM","Vern9 Static","VCABM Static","AitkenNeville","Midpoint Deuflhard","Midpoint Hairer Wanner"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=9, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :romberg, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :bulirsch, threading=true))] solnames = ["Deuflhard","No threads","standard","Romberg","Bulirsch"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=15, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=7, init_order=6, threading=true))] solnames = ["1","2","3","4","5"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ### Conclusion Once again, the OrdinaryDiffEq.jl pull far ahead in terms of speed and accuracy. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
7989
--- title: Three Body Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, ODE, ODEInterfaceDiffEq, LSODA, Sundials, DiffEqDevTools, StaticArrays using Plots; gr() ## Define the ThreeBody Problem const threebody_μ = parse(Float64,"0.012277471") const threebody_μ′ = 1 - threebody_μ function f(du,u,p,t) @inbounds begin # 1 = y₁ # 2 = y₂ # 3 = y₁' # 4 = y₂' D₁ = ((u[1]+threebody_μ)^2 + u[2]^2)^(3/2) D₂ = ((u[1]-threebody_μ′)^2 + u[2]^2)^(3/2) du[1] = u[3] du[2] = u[4] du[3] = u[1] + 2u[4] - threebody_μ′*(u[1]+threebody_μ)/D₁ - threebody_μ*(u[1]-threebody_μ′)/D₂ du[4] = u[2] - 2u[3] - threebody_μ′*u[2]/D₁ - threebody_μ*u[2]/D₂ end end function f(u,p,t) @inbounds begin # 1 = y₁ # 2 = y₂ # 3 = y₁' # 4 = y₂' D₁ = ((u[1]+threebody_μ)^2 + u[2]^2)^(3/2) D₂ = ((u[1]-threebody_μ′)^2 + u[2]^2)^(3/2) du1 = u[3] du2 = u[4] du3 = u[1] + 2u[4] - threebody_μ′*(u[1]+threebody_μ)/D₁ - threebody_μ*(u[1]-threebody_μ′)/D₂ du4 = u[2] - 2u[3] - threebody_μ′*u[2]/D₁ - threebody_μ*u[2]/D₂ end SA[du1,du2,du3,du4] end t₀ = 0.0; T = parse(Float64,"17.0652165601579625588917206249") tspan = (t₀,2T) prob = ODEProblem{true, SciMLBase.FullSpecialize}(f,[0.994, 0.0, 0.0, parse(Float64,"-2.00158510637908252240537862224")],tspan) probstatic = ODEProblem{false}(f,SA[0.994, 0.0, 0.0, parse(Float64,"-2.00158510637908252240537862224")],tspan) sol = solve(prob,Vern7(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Vern7(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; abstols = 1.0 ./ 10.0 .^ (3:13); reltols = 1.0 ./ 10.0 .^ (0:10); ``` See that it's periodic in the chosen timespan: ```julia sol = solve(prob,Vern9(),abstol=1e-14,reltol=1e-14) @show sol[1] - sol[end] @show sol[end] - prob.u0; ``` This three-body problem is known to be a tough problem. Let's see how the algorithms do at standard tolerances. ### 5th Order Runge-Kutta Methods ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) #fails Dict(:alg=>BS5()) Dict(:alg=>Tsit5()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>dopri5())]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100) plot(wp) ``` #### Full save, but no dense ```julia setups = [Dict(:alg=>DP5(),:dense=>false) #Dict(:alg=>ode45()) # Fails Dict(:alg=>BS5(),:dense=>false) Dict(:alg=>Tsit5(),:dense=>false) Dict(:alg=>Tsit5(),:dense=>false, :prob_choice => 2) Dict(:alg=>dopri5())]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,numruns=100) plot(wp) ``` #### Dense ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) #fails Dict(:alg=>BS5()) Dict(:alg=>Tsit5()) Dict(:alg=>Tsit5(), :prob_choice => 2) Dict(:alg=>dopri5())]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,numruns=100) plot(wp) ``` In these tests we see that most of the algorithms are close,with `BS5` and `DP5` showing much better than `Tsit5`. `ode45` errors. ### Higher Order Algorithms ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>TanYam7()) Dict(:alg=>DP8()) Dict(:alg=>dop853()) Dict(:alg=>Vern6()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>Vern9()) Dict(:alg=>Vern6(), :prob_choice => 2) Dict(:alg=>Vern7(), :prob_choice => 2) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>Vern9(), :prob_choice => 2)]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,dense=false,numruns=100,verbose=false) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,numruns=100) plot(wp) ``` In this test we see `Vern7` and `Vern8` shine. ### Other Algorithms Once again we separate ODE.jl because it fails. We also separate Sundials' `CVODE_Adams` since it fails at high tolerances. ```julia #setups = [Dict(:alg=>ode78()) # Dict(:alg=>VCABM()) # Dict(:alg=>CVODE_Adams())]; #wp = WorkPrecisionSet(prob,abstols,reltols,setups;appxsol=test_sol,dense=false,numruns=100) ``` ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>lsoda()) Dict(:alg=>Vern8()) Dict(:alg=>Vern8(), :prob_choice => 2) Dict(:alg=>ddeabm()) Dict(:alg=>odex()) Dict(:alg=>ARKODE(Sundials.Explicit(),order=6)) ]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,save_everystep=false,numruns=100) plot(wp) ``` Again, on cheap function calculations the Adams methods are shown to not be efficient once the error is sufficiently small. Also, as seen in other places, the extrapolation methods do not fare as well as the Runge-Kutta methods. ## Comparison with Non-RK methods Now let's test Tsit5 and Vern9 against parallel extrapolation methods and an Adams-Bashforth-Moulton: ```julia abstols = 1.0 ./ 10.0 .^ (3:13); reltols = 1.0 ./ 10.0 .^ (0:10); setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>Vern9(), :prob_choice => 2) Dict(:alg=>AitkenNeville(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true))] solnames = ["Tsit5","Vern9","Vern9 Static","AitkenNeville","Midpoint Deuflhard","Midpoint Hairer Wanner"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=9, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :romberg, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :bulirsch, threading=true))] solnames = ["Deuflhard","No threads","standard","Romberg","Bulirsch"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=15, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=7, init_order=6, threading=true))] solnames = ["1","2","3","4","5"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;appxsol=test_sol,names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ### Conclusion As in the other tests, the OrdinaryDiffEq.jl algorithms with the Verner Efficient methods are the most efficient solvers at stringent tolerances for most of the tests, while the order 5 methods do well at cruder tolerances. ODE.jl fails to run the test problems without erroring. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
10473
--- title: 100 Independent Linear Work-Precision Diagrams author: Chris Rackauckas --- For these tests we will solve a diagonal 100 independent linear differential equations. This will demonstrate the efficiency of the implementation of the methods for handling large systems, since the system is both large enough that array handling matters, but `f` is cheap enough that it is not simply a game of calculating `f` as few times as possible. We will be mostly looking at the efficiency of the work-horse Dormand-Prince Order 4/5 Pairs: one from DifferentialEquations.jl (`DP5`), one from ODE.jl `rk45`, one from ODEInterface (Hairer's famous `dopri5`, and one from SUNDIALS' ARKODE suite. Also included is `Tsit5`. While all other ODE programs have gone with the traditional choice of using the Dormand-Prince 4/5 pair as the default, DifferentialEquations.jl uses `Tsit5` as one of the default algorithms. It's a very new (2011) and not widely known, but the theory and the implimentation shows it's more efficient than DP5. Thus we include it just to show off how re-designing a library from the ground up in a language for rapid code and rapid development has its advantages. ## Setup ```julia using OrdinaryDiffEq, Sundials, DiffEqDevTools, Plots, ODEInterfaceDiffEq, ODE, LSODA using Random Random.seed!(123) gr() # 2D Linear ODE function f(du,u,p,t) @inbounds for i in eachindex(u) du[i] = 1.01*u[i] end end function f_analytic(u₀,p,t) u₀*exp(1.01*t) end tspan = (0.0,10.0) prob = ODEProblem(ODEFunction{true, SciMLBase.FullSpecialize}(f,analytic=f_analytic),rand(100,100),tspan) abstols = 1.0 ./ 10.0 .^ (3:13) reltols = 1.0 ./ 10.0 .^ (0:10); ``` ### Speed Baseline First a baseline. These are all testing the same Dormand-Prince order 5/4 algorithm of each package. While all the same Runge-Kutta tableau, they exhibit different behavior due to different choices of adaptive timestepping algorithms and tuning. First we will test with all extra saving features are turned off to put DifferentialEquations.jl in "speed mode". ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>ode45()) Dict(:alg=>dopri5()) Dict(:alg=>ARKODE(Sundials.Explicit(),etable=Sundials.DORMAND_PRINCE_7_4_5)) Dict(:alg=>Tsit5())] solnames = ["OrdinaryDiffEq";"ODE";"ODEInterface";"Sundials ARKODE";"OrdinaryDiffEq Tsit5"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames,save_everystep=false,numruns=100) plot(wp) ``` ### Full Saving ```julia setups = [Dict(:alg=>DP5(),:dense=>false) Dict(:alg=>ode45(),:dense=>false) Dict(:alg=>dopri5()) # dense=false by default: no nonlinear interpolation Dict(:alg=>ARKODE(Sundials.Explicit(),etable=Sundials.DORMAND_PRINCE_7_4_5),:dense=>false) Dict(:alg=>Tsit5(),:dense=>false)] solnames = ["OrdinaryDiffEq";"ODE";"ODEInterface";"Sundials ARKODE";"OrdinaryDiffEq Tsit5"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames,numruns=100) plot(wp) ``` ### Continuous Output Now we include continuous output. This has a large overhead because at every timepoint the matrix of rates `k` has to be deep copied. ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>ode45()) Dict(:alg=>dopri5()) Dict(:alg=>ARKODE(Sundials.Explicit(),etable=Sundials.DORMAND_PRINCE_7_4_5)) Dict(:alg=>Tsit5())] solnames = ["OrdinaryDiffEq";"ODE";"ODEInterface";"Sundials ARKODE";"OrdinaryDiffEq Tsit5"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames,numruns=100) plot(wp) ``` ### Other Runge-Kutta Algorithms Now let's test it against a smattering of other Runge-Kutta algorithms. First we will test it with all overheads off. Let's do the Order 5 (and the 2/3 pair) algorithms: ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>BS3()) Dict(:alg=>BS5()) Dict(:alg=>Tsit5())] wp = WorkPrecisionSet(prob,abstols,reltols,setups;save_everystep=false,numruns=100) plot(wp) ``` ## Higher Order Now let's see how OrdinaryDiffEq.jl fairs with some higher order algorithms: ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>Vern6()) Dict(:alg=>TanYam7()) Dict(:alg=>Vern7()) Dict(:alg=>Vern8()) Dict(:alg=>DP8()) Dict(:alg=>Vern9())] wp = WorkPrecisionSet(prob,abstols,reltols,setups;save_everystep=false,numruns=100) plot(wp) ``` ## Higher Order With Many Packages Now we test OrdinaryDiffEq against the high order methods of the other packages: ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>Vern7()) Dict(:alg=>dop853()) Dict(:alg=>ode78()) Dict(:alg=>odex()) Dict(:alg=>lsoda()) Dict(:alg=>ddeabm()) Dict(:alg=>ARKODE(Sundials.Explicit(),order=8)) Dict(:alg=>CVODE_Adams())] wp = WorkPrecisionSet(prob,abstols,reltols,setups;save_everystep=false,numruns=100) plot(wp) ``` ## Interpolation Error Now we will look at the error using an interpolation measurement instead of at the timestepping points. Since the DifferentialEquations.jl algorithms have higher order interpolants than the ODE.jl algorithms, one would expect this would magnify the difference. First the order 4/5 comparison: ```julia setups = [Dict(:alg=>DP5()) #Dict(:alg=>ode45()) Dict(:alg=>Tsit5())] wp = WorkPrecisionSet(prob,abstols,reltols,setups;error_estimate=:L2,dense_errors=true,numruns=100) plot(wp) ``` Note that all of ODE.jl uses a 3rd order Hermite interpolation, while the DifferentialEquations algorithms interpolations which are specialized to the algorithm. For example, `DP5` and `Tsit5` both use "free" order 4 interpolations, which are both as fast as the Hermite interpolation while achieving far less error. At higher order: ```julia setups = [Dict(:alg=>DP5()) Dict(:alg=>Vern7()) #Dict(:alg=>ode78()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;error_estimate=:L2,dense_errors=true,numruns=100) plot(wp) ``` ## Comparison with Fixed Timestep RK4 Let's run the first benchmark but add some fixed timestep RK4 methods to see the difference: ```julia abstols = 1.0 ./ 10.0 .^ (3:13) reltols = 1.0 ./ 10.0 .^ (0:10); dts = [1,1/2,1/4,1/10,1/20,1/40,1/60,1/80,1/100,1/140,1/240] setups = [Dict(:alg=>DP5()) Dict(:alg=>ode45()) Dict(:alg=>dopri5()) Dict(:alg=>RK4(),:dts=>dts) Dict(:alg=>Tsit5())] solnames = ["DifferentialEquations";"ODE";"ODEInterface";"DifferentialEquations RK4";"DifferentialEquations Tsit5"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ## Comparison with Non-RK methods Now let's test Tsit5 and Vern9 against parallel extrapolation methods and an Adams-Bashforth-Moulton: ```julia setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>VCABM()) Dict(:alg=>AitkenNeville(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true))] solnames = ["Tsit5","Vern9","VCABM","AitkenNeville","Midpoint Deuflhard","Midpoint Hairer Wanner"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointDeuflhard(min_order=1, max_order=9, init_order=9, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=false)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :romberg, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, sequence = :bulirsch, threading=true))] solnames = ["Deuflhard","No threads","standard","Romberg","Bulirsch"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia setups = [Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=11, init_order=4, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=11, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=2, max_order=15, init_order=10, threading=true)) Dict(:alg=>ExtrapolationMidpointHairerWanner(min_order=5, max_order=7, init_order=6, threading=true))] solnames = ["1","2","3","4","5"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;names=solnames, save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (12:15) reltols = 1.0 ./ 10.0 .^ (9:12) setups = [Dict(:alg=>Tsit5()) Dict(:alg=>Vern9()) Dict(:alg=>VCABM()) #Dict(:alg=>AitkenNeville(threading = OrdinaryDiffEq.PolyesterThreads())) Dict(:alg=>ExtrapolationMidpointDeuflhard(threading = OrdinaryDiffEq.PolyesterThreads())) Dict(:alg=>ExtrapolationMidpointHairerWanner(threading = OrdinaryDiffEq.PolyesterThreads())) Dict(:alg=>odex()) Dict(:alg=>dop853()) Dict(:alg=>CVODE_Adams()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=false,verbose=false,numruns=100) plot(wp) ``` ## Conclusion DifferentialEquations's default choice of `Tsit5` does well for quick and easy solving at normal tolerances. However, at low tolerances the higher order algorithms are faster. In every case, the DifferentialEquations algorithms are far in the lead, many times an order of magnitude faster than the competitors. `Vern7` with its included 7th order interpolation looks to be a good workhorse for scientific computing in floating point range. These along with many other benchmarks are why these algorithms were chosen as part of the defaults. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9367
--- title: SDE Basic Weak Work-Precision Diagrams author: Chris Rackauckas --- # SDE Basic Weak Work-Precision Diagrams In this notebook we will run some benchmarks for the weak error on some simple sample SDEs. The weak error is defined as: $$E_W = \mathbb{E}[Y_\delta(t)] - \mathbb{E}[Y(t)]$$ and is thus a measure of how close the mean of the numerical solution is to the mean of the true solution. Other moments can be measured as well, but the mean is a good stand-in for other properties. Note that convergence of the mean is calculated on a sample. Thus there's acutally two sources of error. We have not only the error between the numerical and actual results, but we also have the error of the mean to the true mean due to only taking a finite sample. Using the normal confidence interval of the mean due to the Central Limit Theorem, the error due to finite sampling is $$E_S = V[Y(t)]/\sqrt(N)$$ for $N$ being the number of samples. In practice, $$E = minimum(E_W,E_S)$$ Thus in each case, we will determine the variance of the true solution and use that to estimate the sample error, and the goal is to thus find the numerical method that achieves the sample error most efficiently. ```julia using StochasticDiffEq, DiffEqDevTools, ParameterizedFunctions, SDEProblemLibrary using Plots; gr() import SDEProblemLibrary: prob_sde_additive, prob_sde_linear, prob_sde_wave const N = 1000 ``` ### Additive Noise Problem $$dX_{t}=\left(\frac{\beta}{\sqrt{1+t}}-\frac{1}{2\left(1+t\right)}X_{t}\right)dt+\frac{\alpha\beta}{\sqrt{1+t}}dW_{t},\thinspace\thinspace\thinspace X_{0}=\frac{1}{2}$$ where $\alpha=\frac{1}{10}$ and $\beta=\frac{1}{20}$. Actual Solution: $$X_{t}=\frac{1}{\sqrt{1+t}}X_{0}+\frac{\beta}{\sqrt{1+t}}\left(t+\alpha W_{t}\right).$$ ```julia prob = prob_sde_additive reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [ Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRA1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRA1()) Dict(:alg=>SRIW1()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns_error=N, save_everystep = false, parallel_type = :none, error_estimate=:weak_final)# plot(wp) ``` ```julia sample_size = Int[10;1e2;1e3;1e4] se = get_sample_errors(prob,setups[6],numruns=sample_size, sample_error_runs = 100_000,solution_runs=100) ``` ```julia times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:red,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ```julia prob = prob_sde_additive reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [ Dict(:alg=>SRA1()) Dict(:alg=>SRA2()) Dict(:alg=>SRA3()) Dict(:alg=>SOSRA()) Dict(:alg=>SOSRA2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns_error=N, save_everystep = false, maxiters = 1e7, parallel_type = :none, error_estimate=:weak_final) plot(wp) ``` ```julia sample_size = Int[10;1e2;1e3;1e4] se = get_sample_errors(prob,setups[4],numruns=sample_size, sample_error_runs = 100_000,solution_runs=100) ``` ```julia times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:red,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ### Scalar Noise We will use a the linear SDE (also known as the Black-Scholes equation) $$dX_{t}=\alpha X_{t}dt+\beta X_{t}dW_{t},\thinspace\thinspace\thinspace X_{0}=\frac{1}{2}$$ where $\alpha=\frac{1}{10}$ and $\beta=\frac{1}{20}$. Actual Solution: $$X_{t}=X_{0}e^{\left(\beta-\frac{\alpha^{2}}{2}\right)t+\alpha W_{t}}.$$ ```julia prob = prob_sde_linear reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns_error=N, save_everystep = false, maxiters = 1e7, parallel_type = :none, error_estimate=:weak_final) plot(wp) ``` ```julia sample_size = Int[10;1e2;1e3;1e4] se = get_sample_errors(prob,setups[1],numruns=sample_size, sample_error_runs = 100_000,solution_runs=100) ``` ```julia times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:red,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ```julia prob = prob_sde_linear reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2),:adaptive=>false) Dict(:alg=>SRI()) Dict(:alg=>SRIW1()) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns_error=N, save_everystep = false, maxiters = 1e7, parallel_type = :none, error_estimate=:weak_final) plot(wp) ``` ```julia sample_size = Int[10;1e2;1e3;1e4] se = get_sample_errors(prob,setups[6],numruns=sample_size, sample_error_runs = 100_000,solution_runs=100) ``` ```julia times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:red,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ## Scalar Wave SDE $$dX_{t}=-\left(\frac{1}{10}\right)^{2}\sin\left(X_{t}\right)\cos^{3}\left(X_{t}\right)dt+\frac{1}{10}\cos^{2}\left(X_{t}\right)dW_{t},\thinspace\thinspace\thinspace X_{0}=\frac{1}{2}$$ Actual Solution: $$X_{t}=\arctan\left(\frac{1}{10}W_{t}+\tan\left(X_{0}\right)\right).$$ ```julia prob = prob_sde_wave reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [ Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns_error=N, save_everystep = false, maxiters = 1e7, parallel_type = :none, error_estimate=:weak_final) plot(wp) ``` ```julia sample_size = Int[10;1e2;1e3;1e4] se = get_sample_errors(prob,setups[4],numruns=sample_size, sample_error_runs = 100_000,solution_runs=100) ``` ```julia times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:red,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ```julia prob = prob_sde_wave reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2),:adaptive=>false) Dict(:alg=>SRI()) Dict(:alg=>SRIW1()) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns_error=N, save_everystep = false, maxiters = 1e7, parallel_type = :none, error_estimate=:weak_final) plot(wp) ``` ```julia sample_size = Int[10;1e2;1e3;1e4] se = get_sample_errors(prob,setups[6],numruns=sample_size, sample_error_runs = 100_000,solution_runs=100) ``` ```julia times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:red,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ## Summary In the additive noise problem, the `EM` and `RKMil` algorithms are not effective at reaching the sample error. In the other two problems, the `EM` and `RKMil` algorithms are as efficient as the higher order methods at achieving the maximal weak error. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9117
--- title: SDE Basic Work-Precision Diagrams author: Chris Rackauckas --- # SDE Work-Precision Diagrams In this notebook we will run some simple work-precision diagrams for the SDE integrators. These problems are additive and diagonal noise SDEs which can utilize the specialized Rossler methods. These problems are very well-behaved, meaning that adaptive timestepping should not be a significant advantage (unlike more difficult and realistic problems). Thus these tests will measure both the efficiency gains of the Rossler methods along with the overhead of adaptivity. ```julia using StochasticDiffEq, Plots, DiffEqDevTools, SDEProblemLibrary import SDEProblemLibrary: prob_sde_additivesystem, prob_sde_additive, prob_sde_2Dlinear, prob_sde_linear, prob_sde_wave gr() const N = 1000 ``` In this notebook, the error that will be measured is the strong error. The strong error is defined as $$ E = \mathbb{E}[Y_\delta(t) - Y(t)] $$ where $Y_\delta$ is the numerical approximation to $Y$. This is the same as saying, for a given Wiener trajectory $W(t)$, how well does the numerical trajectory match the real trajectory? Note that this is not how well the mean or other moments match the true mean/variance/etc. (that's the weak error), this is how close the trajectory is to the true trajectory which is a stronger notion. In a sense, this is measuring convergence, rather than just convergence in distribution. ### Additive Noise Problem \begin{equation} dX_{t}=\left(\frac{\beta}{\sqrt{1+t}}-\frac{1}{2\left(1+t\right)}X_{t}\right)dt+\frac{\alpha\beta}{\sqrt{1+t}}dW_{t},\thinspace\thinspace\thinspace X_{0}=\frac{1}{2} \end{equation} where $\alpha=\frac{1}{10}$ and $\beta=\frac{1}{20}$. Actual Solution: \begin{equation} X_{t}=\frac{1}{\sqrt{1+t}}X_{0}+\frac{\beta}{\sqrt{1+t}}\left(t+\alpha W_{t}\right). \end{equation} First let's solve this using a system of SDEs, repeating this same problem 4 times. ```julia prob = prob_sde_additivesystem prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRA1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRA1()) ] names = ["SRIW1","EM","RKMil","SRIW1 Fixed","SRA1 Fixed","SRA1"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,maxiters=1e7,error_estimate=:l2) plot(wp) ``` ```julia prob = prob_sde_additivesystem prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [ Dict(:alg=>SRA1()) Dict(:alg=>SRA2()) Dict(:alg=>SRA3()) Dict(:alg=>SOSRA()) Dict(:alg=>SOSRA2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,maxiters=1e7,error_estimate=:l2) plot(wp) ``` Now as a scalar SDE. ```julia prob = prob_sde_additive prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRA1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRA1()) ] names = ["SRIW1","EM","RKMil","SRIW1 Fixed","SRA1 Fixed","SRA1"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,maxiters=1e7,error_estimate=:l2) plot(wp) ``` ```julia prob = prob_sde_additive prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [ Dict(:alg=>SRA1()) Dict(:alg=>SRA2()) Dict(:alg=>SRA3()) Dict(:alg=>SOSRA()) Dict(:alg=>SOSRA2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,error_estimate=:l2) plot(wp) ``` ### Diagonal Noise We will use a 4x2 matrix of indepdendent linear SDEs (also known as the Black-Scholes equation) \begin{equation} dX_{t}=\alpha X_{t}dt+\beta X_{t}dW_{t},\thinspace\thinspace\thinspace X_{0}=\frac{1}{2} \end{equation} where $\alpha=\frac{1}{10}$ and $\beta=\frac{1}{20}$. Actual Solution: \begin{equation} X_{t}=X_{0}e^{\left(\beta-\frac{\alpha^{2}}{2}\right)t+\alpha W_{t}}. \end{equation} ```julia prob = prob_sde_2Dlinear prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) ] names = ["SRIW1","EM","RKMil","SRIW1 Fixed"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,maxiters=1e7,error_estimate=:l2) plot(wp) ``` ```julia prob = prob_sde_2Dlinear prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2),:adaptive=>false) Dict(:alg=>SRI()) Dict(:alg=>SRIW1()) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,maxiters=1e7,error_estimate=:l2) plot(wp) ``` Now just the scalar Black-Scholes ```julia prob = prob_sde_linear prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) ] names = ["SRIW1","EM","RKMil","SRIW1 Fixed"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,maxiters=1e7,error_estimate=:l2) plot(wp) ``` ```julia setups = [Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2),:adaptive=>false) Dict(:alg=>SRI()) Dict(:alg=>SRIW1()) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,maxiters=1e7,error_estimate=:l2) plot(wp) ``` Now a scalar wave SDE: \begin{equation} dX_{t}=-\left(\frac{1}{10}\right)^{2}\sin\left(X_{t}\right)\cos^{3}\left(X_{t}\right)dt+\frac{1}{10}\cos^{2}\left(X_{t}\right)dW_{t},\thinspace\thinspace\thinspace X_{0}=\frac{1}{2} \end{equation} Actual Solution: \begin{equation} X_{t}=\arctan\left(\frac{1}{10}W_{t}+\tan\left(X_{0}\right)\right). \end{equation} ```julia prob = prob_sde_wave prob = remake(prob,tspan=(0.0,1.0)) reltols = 1.0 ./ 10.0 .^ (1:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 1),:adaptive=>false) ] names = ["SRIW1","EM","RKMil","SRIW1 Fixed"] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,maxiters=1e7,error_estimate=:l2) plot(wp) ``` Note that in this last problem, the adaptivity algorithm accurately detects that the error is already low enough, and does not increase the number of steps as the tolerance drops further. ```julia setups = [Dict(:alg=>EM(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2)) Dict(:alg=>RKMil(),:dts=>1.0./5.0.^((1:length(reltols)) .+ 2),:adaptive=>false) Dict(:alg=>SRI()) Dict(:alg=>SRIW1()) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,maxiters=1e7,error_estimate=:l2) plot(wp) ``` ### Conclusion The RSwM3 adaptivity algorithm does not appear to have any significant overhead even on problems which do not necessitate adaptive timestepping. The tolerance clearly In addition, the Rossler methods are shown to be orders of magnitude more efficient and should be used whenever applicable. The Oval2 tests show that these results are only magnified as the problem difficulty increases. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
3719
--- title: SDE Lokta-Volterra Work-Precision Diagrams author: Chris Rackauckas --- ```julia using StochasticDiffEq, DiffEqDevTools, ParameterizedFunctions using Plots; gr() const N = 100 f = @ode_def LotkaVolterraTest begin dx = a*x - b*x*y dy = -c*y + d*x*y end a b c d p = [1.5,1.0,3.0,1.0] function g(du,u,p,t) du .= 0.1u end u0 = [1.0;1.0] tspan = (0.0,10.0) prob = SDEProblem(f,g,u0,tspan,p); ``` ```julia sol = solve(prob,SRIW1(),abstol=1e-4,reltol=1e-4) plot(sol) ``` ## Strong Error The starting `dt`s was chosen as the largest in the `1/4^i` which were stable. All larger `dt`s contained trajectories which would veer off to infinity. ```julia reltols = 1.0 ./ 4.0 .^ (2:4) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./12.0.^((1:length(reltols)) .+ 1.5)) Dict(:alg=>RKMil(),:dts=>1.0./12.0.^((1:length(reltols)) .+ 1.5),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./4.0.^((1:length(reltols)) .+ 5),:adaptive=>false) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] test_dt = 1/10^2 appxsol_setup = Dict(:alg=>SRIW1(),:abstol=>1e-4,:reltol=>1e-4) wp = WorkPrecisionSet(prob,abstols,reltols,setups,test_dt; maxiters = 1e7, verbose=false,save_everystep=false, parallel_type = :threads, appxsol_setup = appxsol_setup, numruns_error=N,error_estimate=:final) plot(wp) ``` ## Weak Error ```julia reltols = 1.0 ./ 4.0 .^ (2:4) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()) Dict(:alg=>EM(),:dts=>1.0./12.0.^((1:length(reltols)) .+ 1.5)) Dict(:alg=>RKMil(),:dts=>1.0./12.0.^((1:length(reltols)) .+ 1.5),:adaptive=>false) Dict(:alg=>SRIW1(),:dts=>1.0./4.0.^((1:length(reltols)) .+ 5),:adaptive=>false) Dict(:alg=>SRIW2()) Dict(:alg=>SOSRI()) Dict(:alg=>SOSRI2()) ] test_dt = 1e-2 appxsol_setup = Dict(:alg=>SRIW1(),:abstol=>1e-4,:reltol=>1e-4) wp = WorkPrecisionSet(prob,abstols,reltols,setups,test_dt; maxiters = 1e7, verbose=false,save_everystep=false, parallel_type = :none, appxsol_setup = appxsol_setup, numruns_error=N,error_estimate=:weak_final) plot(wp;legend=:topleft) ``` ```julia sample_size = Int[10;1e2;1e3] se = get_sample_errors(prob,setups[6],test_dt,numruns=sample_size, appxsol_setup = appxsol_setup, sample_error_runs = 100_000,solution_runs=20) ``` ```julia plot(wp;legend=:topleft) times = [wp[i].times for i in 1:length(wp)] times = [minimum(minimum(t) for t in times),maximum(maximum(t) for t in times)] plot!([se[end];se[end]],times,color=:orange,linestyle=:dash,label="Sample Error: 1000",lw=3) ``` ## Conclusion These results show that in both strong and weak error, the high order method is more efficient. The strong and the weak are track each other well for the methods tested on this problem, with the strong error slightly higher than the weak error. To reach the sample error for a 100 trajectories, the higher order method is around 5x faster. To reach the sampling error for 10000 trajectories, the higher order method is nearly 100x faster. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9061
--- title: Allen-Cahn PDE Physics-Informed Neural Network (PINN) Loss Function Error vs Time Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup Code ```julia using NeuralPDE using Integrals, IntegralsCubature, IntegralsCuba using OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots using DelimitedFiles using QuasiMonteCarlo import ModelingToolkit: Interval, infimum, supremum function allen_cahn(strategy, minimizer, maxIters) ## DECLARATIONS @parameters t x1 x2 x3 x4 @variables u(..) Dt = Differential(t) Dxx1 = Differential(x1)^2 Dxx2 = Differential(x2)^2 Dxx3 = Differential(x3)^2 Dxx4 = Differential(x4)^2 # Discretization tmax = 1.0 x1width = 1.0 x2width = 1.0 x3width = 1.0 x4width = 1.0 tMeshNum = 10 x1MeshNum = 10 x2MeshNum = 10 x3MeshNum = 10 x4MeshNum = 10 dt = tmax / tMeshNum dx1 = x1width / x1MeshNum dx2 = x2width / x2MeshNum dx3 = x3width / x3MeshNum dx4 = x4width / x4MeshNum domains = [t ∈ Interval(0.0, tmax), x1 ∈ Interval(0.0, x1width), x2 ∈ Interval(0.0, x2width), x3 ∈ Interval(0.0, x3width), x4 ∈ Interval(0.0, x4width)] ts = 0.0:dt:tmax x1s = 0.0:dx1:x1width x2s = 0.0:dx2:x2width x3s = 0.0:dx3:x3width x4s = 0.0:dx4:x4width # Operators Δu = Dxx1(u(t, x1, x2, x3, x4)) + Dxx2(u(t, x1, x2, x3, x4)) + Dxx3(u(t, x1, x2, x3, x4)) + Dxx4(u(t, x1, x2, x3, x4)) # Laplacian # Equation eq = Dt(u(t, x1, x2, x3, x4)) - Δu - u(t, x1, x2, x3, x4) + u(t, x1, x2, x3, x4) * u(t, x1, x2, x3, x4) * u(t, x1, x2, x3, x4) ~ 0 #ALLEN CAHN EQUATION initialCondition = 1 / (2 + 0.4 * (x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4)) # see PNAS paper bcs = [u(0, x1, x2, x3, x4) ~ initialCondition] #from literature ## NEURAL NETWORK n = 10 #neuron number chain = Lux.Chain(Lux.Dense(5, n, tanh), Lux.Dense(n, n, tanh), Lux.Dense(n, 1)) #Neural network from OptimizationFlux library indvars = [t, x1, x2, x3, x4] #phisically independent variables depvars = [u(t, x1, x2, x3, x4)] #dependent (target) variable dim = length(domains) losses = [] error = [] times = [] dx_err = 0.2 error_strategy = GridTraining(dx_err) discretization_ = PhysicsInformedNN(chain, error_strategy) @named pde_system_ = PDESystem(eq, bcs, domains, indvars, depvars) prob_ = discretize(pde_system_, discretization_) function loss_function_(θ, p) return prob_.f.f(θ, nothing) end cb_ = function (p, l) deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot append!(times, ctime / 10^9) #Conversion nanosec to seconds append!(losses, l) loss_ = loss_function_(p, nothing) append!(error, loss_) timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations #if (ctime/10^9 > time) #if I exceed the limit time I stop the training # return true #Stop the minimizer and continue from line 142 #end return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) discretization = NeuralPDE.PhysicsInformedNN(chain, strategy) prob = NeuralPDE.discretize(pde_system, discretization) timeCounter = 0.0 startTime = time_ns() #Fix initial time (t=0) before starting the training res = Optimization.solve(prob, minimizer, callback=cb_, maxiters=maxIters) phi = discretization.phi params = res.minimizer # Model prediction domain = [ts, x1s, x2s, x3s, x4s] u_predict = [reshape([first(phi([t, x1, x2, x3, x4], res.minimizer)) for x1 in x1s for x2 in x2s for x3 in x3s for x4 in x4s], (length(x1s), length(x2s), length(x3s), length(x4s))) for t in ts] #matrix of model's prediction return [error, params, domain, times, losses] end ``` ```julia maxIters = [(1,1,1,1,1,1,1000),(1,1,1,1,300,300,300)] #iters for ADAM/LBFGS # maxIters = [(1,1,1,1,1,1,10),(1,1,1,3,3,3,3)] #iters for ADAM/LBFGS strategies = [NeuralPDE.QuadratureTraining(quadrature_alg = CubaCuhre(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.QuadratureTraining(quadrature_alg = HCubatureJL(), reltol = 1e-4, abstol = 1e-4, maxiters = 100, batch = 0), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLh(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLp(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.GridTraining(0.2), NeuralPDE.StochasticTraining(400 ; bcs_points= 50), NeuralPDE.QuasiRandomTraining(400 ; bcs_points= 50)] strategies_short_name = ["CubaCuhre", "HCubatureJL", "CubatureJLh", "CubatureJLp", "GridTraining", "StochasticTraining", "QuasiRandomTraining"] minimizers = [ADAM(0.005),BFGS()] minimizers_short_name = ["ADAM","BFGS"] # Run models error_res = Dict() domains = Dict() params_res = Dict() #to use same params for the next run times = Dict() losses_res = Dict() ``` ## Solve ```julia ## Convergence for min =1:length(minimizers) # minimizer for strat=1:length(strategies) # strategy # println(string(strategies_short_name[strat], " ", minimizers_short_name[min])) res = allen_cahn(strategies[strat], minimizers[min], maxIters[min][strat]) push!(error_res, string(strat,min) => res[1]) push!(params_res, string(strat,min) => res[2]) push!(domains, string(strat,min) => res[3]) push!(times, string(strat,min) => res[4]) push!(losses_res, string(strat,min) => res[5]) end end ``` ## Results ```julia print("\n Plotting error vs times") #Plotting the first strategy with the first minimizer out from the loop to initialize the canvas current_label = string(strategies_short_name[1], " + " , minimizers_short_name[1]) error = Plots.plot(times["11"], error_res["11"], yaxis=:log10, label = current_label)#, xlims = (0,10))#legend = true)#, size=(1200,700)) plot!(error, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[1])) plot!(error, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[1])) plot!(error, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[1])) plot!(error, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[1])) plot!(error, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[1])) plot!(error, times["71"], error_res["71"], yaxis=:log10, label = string(strategies_short_name[7], " + " , minimizers_short_name[1])) plot!(error, times["12"], error_res["12"], yaxis=:log10, label = string(strategies_short_name[1], " + " , minimizers_short_name[2])) plot!(error, times["22"], error_res["22"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[2])) plot!(error, times["32"], error_res["32"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[2])) plot!(error, times["42"], error_res["42"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[2])) plot!(error, times["52"], error_res["52"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[2])) plot!(error, times["62"], error_res["62"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[2])) plot!(error, times["72"], error_res["72"], yaxis=:log10, title = string("Allen Cahn convergence ADAM/LBFGS"), ylabel = "log(error)",xlabel = "t", label = string(strategies_short_name[7], " + " , minimizers_short_name[2])) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
7542
--- title: Diffusion PDE Physics-Informed Neural Network (PINN) Loss Function Error vs Time Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE using Integrals, IntegralsCubature, IntegralsCuba using OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots using DelimitedFiles using QuasiMonteCarlo import ModelingToolkit: Interval, infimum, supremum ``` ```julia function diffusion(strategy, minimizer, maxIters) ## DECLARATIONS @parameters x t @variables u(..) Dt = Differential(t) Dxx = Differential(x)^2 eq = Dt(u(x,t)) - Dxx(u(x,t)) ~ -exp(-t) * (sin(pi * x) - pi^2 * sin(pi * x)) bcs = [u(x,0) ~ sin(pi*x), u(-1,t) ~ 0., u(1,t) ~ 0.] domains = [x ∈ Interval(-1.0,1.0), t ∈ Interval(0.0,1.0)] dx = 0.2; dt = 0.1 xs,ts = [infimum(domain.domain):dx/10:supremum(domain.domain) for (dx,domain) in zip([dx,dt],domains)] indvars = [x,t] depvars = [u(x,t)] chain = Lux.Chain(Lux.Dense(2,10,tanh),Lux.Dense(10,10,tanh),Lux.Dense(10,1)) losses = [] error = [] times = [] dx_err = [0.2,0.1] error_strategy = GridTraining(dx_err) discretization_ = PhysicsInformedNN(chain,error_strategy) @named pde_system_ = PDESystem(eq, bcs, domains, indvars, depvars) prob_ = discretize(pde_system_, discretization_) function loss_function_(θ, p) return prob_.f.f(θ, nothing) end cb_ = function (p,l) deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot append!(times, ctime/10^9) #Conversion nanosec to seconds append!(losses, l) loss_ = loss_function_(p,nothing) append!(error, loss_) timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations return false end discretization = PhysicsInformedNN(chain,strategy) @named pde_system = PDESystem(eq,bcs,domains,indvars,depvars) prob = discretize(pde_system,discretization) timeCounter = 0.0 startTime = time_ns() #Fix initial time (t=0) before starting the training res = Optimization.solve(prob, minimizer; callback=cb_, maxiters=maxIters) phi = discretization.phi params = res.minimizer # Model prediction domain = [x,t] u_predict = reshape([first(phi([x,t],res.minimizer)) for x in xs for t in ts],(length(xs),length(ts))) return [error, params, domain, times, u_predict, losses] end ``` ```julia maxIters = [(5000,5000,5000,5000,5000,5000),(300,300,300,300,300,300)] #iters for ADAM/LBFGS # maxIters = [(5,5,5,5,5,5),(3,3,3,3,3,3)] #iters for ADAM/LBFGS strategies = [#NeuralPDE.QuadratureTraining(quadrature_alg = CubaCuhre(), reltol = 1e-4, abstol = 1e-3, maxiters = 10, batch = 10), NeuralPDE.QuadratureTraining(quadrature_alg = HCubatureJL(), reltol = 1e-4, abstol=1e-5, maxiters=100, batch = 0), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLh(), reltol = 1e-4, abstol=1e-5, maxiters=100), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLp(), reltol = 1e-4, abstol=1e-5, maxiters=100), NeuralPDE.GridTraining([0.2,0.1]), NeuralPDE.StochasticTraining(400 ; bcs_points= 50), NeuralPDE.QuasiRandomTraining(400 ; bcs_points= 50)] strategies_short_name = [#"CubaCuhre", "HCubatureJL", "CubatureJLh", "CubatureJLp", #"CubaVegas", #"CubaSUAVE"] "GridTraining", "StochasticTraining", "QuasiRandomTraining"] minimizers = [ADAM(0.001), #BFGS()] LBFGS()] minimizers_short_name = ["ADAM", "LBFGS"] # "BFGS"] # Run models error_res = Dict() domains = Dict() params_res = Dict() #to use same params for the next run times = Dict() prediction = Dict() losses_res = Dict() ``` ## Solve ```julia print("Starting run") ## Convergence for min =1:length(minimizers) # minimizer for strat=1:length(strategies) # strategy # println(string(strategies_short_name[strat], " ", minimizers_short_name[min])) res = diffusion(strategies[strat], minimizers[min], maxIters[min][strat]) push!(error_res, string(strat,min) => res[1]) push!(params_res, string(strat,min) => res[2]) push!(domains, string(strat,min) => res[3]) push!(times, string(strat,min) => res[4]) push!(prediction, string(strat,min) => res[5]) push!(losses_res, string(strat,min) => res[6]) end end ``` ## Results ```julia current_label = string(strategies_short_name[1], " + " , minimizers_short_name[1]) error = Plots.plot(times["11"], error_res["11"], yaxis=:log10, label = current_label)#, xlims = (0,100))#legend = true)#, size=(1200,700)) plot!(error, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[1])) plot!(error, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[1])) plot!(error, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[1])) plot!(error, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[1])) plot!(error, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[1])) plot!(error, times["12"], error_res["12"], yaxis=:log10, label = string(strategies_short_name[1], " + " , minimizers_short_name[2])) plot!(error, times["22"], error_res["22"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[2])) plot!(error, times["32"], error_res["32"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[2])) plot!(error, times["42"], error_res["42"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[2])) plot!(error, times["52"], error_res["52"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[2])) plot!(error, times["62"], error_res["62"], yaxis=:log10, title = string("Diffusion convergence ADAM/LBFGS"), ylabel = "log(error)",xlabel = "t", label = string(strategies_short_name[6], " + " , minimizers_short_name[2])) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9168
--- title: Hamilton-Jacobi PDE Physics-Informed Neural Network (PINN) Loss Function Error vs Time Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ```julia using NeuralPDE using Integrals, IntegralsCubature, IntegralsCuba using OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots using DelimitedFiles using QuasiMonteCarlo import ModelingToolkit: Interval, infimum, supremum ``` ```julia function hamilton_jacobi(strategy, minimizer, maxIters) ## DECLARATIONS @parameters t x1 x2 x3 x4 @variables u(..) Dt = Differential(t) Dx1 = Differential(x1) Dx2 = Differential(x2) Dx3 = Differential(x3) Dx4 = Differential(x4) Dxx1 = Differential(x1)^2 Dxx2 = Differential(x2)^2 Dxx3 = Differential(x3)^2 Dxx4 = Differential(x4)^2 # Discretization tmax = 1.0 x1width = 1.0 x2width = 1.0 x3width = 1.0 x4width = 1.0 tMeshNum = 10 x1MeshNum = 10 x2MeshNum = 10 x3MeshNum = 10 x4MeshNum = 10 dt = tmax / tMeshNum dx1 = x1width / x1MeshNum dx2 = x2width / x2MeshNum dx3 = x3width / x3MeshNum dx4 = x4width / x4MeshNum domains = [t ∈ Interval(0.0, tmax), x1 ∈ Interval(0.0, x1width), x2 ∈ Interval(0.0, x2width), x3 ∈ Interval(0.0, x3width), x4 ∈ Interval(0.0, x4width)] ts = 0.0:dt:tmax x1s = 0.0:dx1:x1width x2s = 0.0:dx2:x2width x3s = 0.0:dx3:x3width x4s = 0.0:dx4:x4width λ = 1.0f0 # Operators Δu = Dxx1(u(t, x1, x2, x3, x4)) + Dxx2(u(t, x1, x2, x3, x4)) + Dxx3(u(t, x1, x2, x3, x4)) + Dxx4(u(t, x1, x2, x3, x4)) # Laplacian ∇u = [Dx1(u(t, x1, x2, x3, x4)), Dx2(u(t, x1, x2, x3, x4)), Dx3(u(t, x1, x2, x3, x4)), Dx4(u(t, x1, x2, x3, x4))] # Equation eq = Dt(u(t, x1, x2, x3, x4)) + Δu - λ * sum(∇u .^ 2) ~ 0 #HAMILTON-JACOBI-BELLMAN EQUATION terminalCondition = log((1 + x1 * x1 + x2 * x2 + x3 * x3 + x4 * x4) / 2) # see PNAS paper bcs = [u(tmax, x1, x2, x3, x4) ~ terminalCondition] #PNAS paper again ## NEURAL NETWORK n = 10 #neuron number chain = Lux.Chain(Lux.Dense(5, n, tanh), Lux.Dense(n, n, tanh), Lux.Dense(n, 1)) #Neural network from OptimizationFlux library indvars = [t, x1, x2, x3, x4] #phisically independent variables depvars = [u(t, x1, x2, x3, x4)] #dependent (target) variable dim = length(domains) losses = [] error = [] times = [] dx_err = 0.2 error_strategy = GridTraining(dx_err) discretization_ = PhysicsInformedNN(chain, error_strategy) @named pde_system_ = PDESystem(eq, bcs, domains, indvars, depvars) prob_ = discretize(pde_system_, discretization_) function loss_function_(θ, p) return prob_.f.f(θ, nothing) end cb_ = function (p, l) deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot append!(times, ctime / 10^9) #Conversion nanosec to seconds append!(losses, l) loss_ = loss_function_(p, nothing) append!(error, loss_) timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) discretization = NeuralPDE.PhysicsInformedNN(chain, strategy) prob = NeuralPDE.discretize(pde_system, discretization) timeCounter = 0.0 startTime = time_ns() #Fix initial time (t=0) before starting the training res = Optimization.solve(prob, minimizer, callback=cb_, maxiters=maxIters) phi = discretization.phi params = res.minimizer # Model prediction domain = [ts, x1s, x2s, x3s, x4s] u_predict = [reshape([first(phi([t, x1, x2, x3, x4], res.minimizer)) for x1 in x1s for x2 in x2s for x3 in x3s for x4 in x4s], (length(x1s), length(x2s), length(x3s), length(x4s))) for t in ts] #matrix of model's prediction return [error, params, domain, times, losses] end maxIters = [(1,1,1,1000,1000,1000,1000),(1,1,1,300,300,300,300)] #iters for ADAM/LBFGS # maxIters = [(1,1,1,1,1,2,2),(1,1,1,3,3,3,3)] #iters for ADAM/LBFGS strategies = [NeuralPDE.QuadratureTraining(quadrature_alg = CubaCuhre(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.QuadratureTraining(quadrature_alg = HCubatureJL(), reltol = 1e-4, abstol = 1e-4, maxiters = 100, batch = 0), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLh(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLp(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.GridTraining(0.2), NeuralPDE.StochasticTraining(400 ; bcs_points= 50), NeuralPDE.QuasiRandomTraining(400 ; bcs_points= 50)] strategies_short_name = ["CubaCuhre", "HCubatureJL", "CubatureJLh", "CubatureJLp", "GridTraining", "StochasticTraining", "QuasiRandomTraining"] minimizers = [ADAM(0.005), #BFGS()] LBFGS()] minimizers_short_name = ["ADAM", "LBFGS"] #"BFGS"] # Run models error_res = Dict() domains = Dict() params_res = Dict() #to use same params for the next run times = Dict() losses_res = Dict() ``` ## Solve ```julia print("Starting run") ## Convergence for min =1:length(minimizers) # minimizer for strat=1:length(strategies) # strategy # println(string(strategies_short_name[strat], " ", minimizers_short_name[min])) res = hamilton_jacobi(strategies[strat], minimizers[min], maxIters[min][strat]) push!(error_res, string(strat,min) => res[1]) push!(params_res, string(strat,min) => res[2]) push!(domains, string(strat,min) => res[3]) push!(times, string(strat,min) => res[4]) push!(losses_res, string(strat,min) => res[5]) end end ``` ```julia #Plotting the first strategy with the first minimizer out from the loop to initialize the canvas current_label = string(strategies_short_name[1], " + " , minimizers_short_name[1]) error = Plots.plot(times["11"], error_res["11"], yaxis=:log10, label = current_label)#, xlims = (0,10))#legend = true)#, size=(1200,700)) plot!(error, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[1])) plot!(error, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[1])) plot!(error, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[1])) plot!(error, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[1])) plot!(error, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[1])) plot!(error, times["71"], error_res["71"], yaxis=:log10, label = string(strategies_short_name[7], " + " , minimizers_short_name[1])) plot!(error, times["12"], error_res["12"], yaxis=:log10, label = string(strategies_short_name[1], " + " , minimizers_short_name[2])) plot!(error, times["22"], error_res["22"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[2])) plot!(error, times["32"], error_res["32"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[2])) plot!(error, times["42"], error_res["42"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[2])) plot!(error, times["52"], error_res["52"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[2])) plot!(error, times["62"], error_res["62"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[2])) plot!(error, times["72"], error_res["72"], yaxis=:log10, title = string("Hamilton Jacobi convergence ADAM/LBFGS"), ylabel = "log(error)",xlabel = "t", label = string(strategies_short_name[7], " + " , minimizers_short_name[2])) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
8939
--- title: Level Set PDE Physics-Informed Neural Network (PINN) Loss Function Error vs Time Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE using Integrals, IntegralsCubature, IntegralsCuba using OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots using DelimitedFiles using QuasiMonteCarlo import ModelingToolkit: Interval, infimum, supremum ``` ```julia function level_set(strategy, minimizer, maxIters) ## DECLARATIONS @parameters t x y @variables u(..) Dt = Differential(t) Dx = Differential(x) Dy = Differential(y) # Discretization xwidth = 1.0 #ft ywidth = 1.0 tmax = 1.0 #min xScale = 1.0 yScale = 1.0 xMeshNum = 10 yMeshNum = 10 tMeshNum = 10 dx = xwidth / xMeshNum dy = ywidth / yMeshNum dt = tmax / tMeshNum domains = [t ∈ Interval(0.0, tmax), x ∈ Interval(0.0, xwidth), y ∈ Interval(0.0, ywidth)] xs = 0.0:dx:xwidth ys = 0.0:dy:ywidth ts = 0.0:dt:tmax # Definitions x0 = 0.5 y0 = 0.5 Uwind = [0.0, 2.0] #wind vector # Operators gn = (Dx(u(t, x, y))^2 + Dy(u(t, x, y))^2)^0.5 #gradient's norm ∇u = [Dx(u(t, x, y)), Dy(u(t, x, y))] n = ∇u / gn #normal versor #U = ((Uwind[1]*n[1] + Uwind[2]*n[2])^2)^0.5 #inner product between wind and normal vector R0 = 0.112471 ϕw = 0#0.156927*max((0.44*U)^0.04086,1.447799) ϕs = 0 S = R0 * (1 + ϕw + ϕs) # Equation eq = Dt(u(t, x, y)) + S * gn ~ 0 #LEVEL SET EQUATION initialCondition = (xScale * (x - x0)^2 + (yScale * (y - y0)^2))^0.5 - 0.2 #Distance from ignition bcs = [u(0, x, y) ~ initialCondition] #from literature ## NEURAL NETWORK n = 10 #neuron number chain = Lux.Chain(Lux.Dense(3, n, tanh), Lux.Dense(n, n, tanh), Lux.Dense(n, 1)) #Neural network from OptimizationFlux library indvars = [t, x, y] #phisically independent variables depvars = [u(t, x, y)] #dependent (target) variable dim = length(domains) losses = [] error = [] times = [] dx_err = 0.1 error_strategy = GridTraining(dx_err) discretization_ = PhysicsInformedNN(chain, error_strategy) @named pde_system_ = PDESystem(eq, bcs, domains, indvars, depvars) prob_ = discretize(pde_system_, discretization_) function loss_function_(θ, p) return prob_.f.f(θ, nothing) end cb_ = function (p, l) deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot append!(times, ctime / 10^9) #Conversion nanosec to seconds append!(losses, l) loss_ = loss_function_(p, nothing) append!(error, loss_) timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) discretization = NeuralPDE.PhysicsInformedNN(chain, strategy) prob = NeuralPDE.discretize(pde_system, discretization) timeCounter = 0.0 startTime = time_ns() #Fix initial time (t=0) before starting the training res = Optimization.solve(prob, minimizer, callback=cb_, maxiters=maxIters) phi = discretization.phi params = res.minimizer # Model prediction domain = [ts, xs, ys] u_predict = [reshape([first(phi([t, x, y], res.minimizer)) for x in xs for y in ys], (length(xs), length(ys))) for t in ts] #matrix of model's prediction return [error, params, domain, times, losses] #add numeric solution end #level_set(NeuralPDE.QuadratureTraining(algorithm = CubaCuhre(), reltol = 1e-8, abstol = 1e-8, maxiters = 100), ADAM(0.01), 500) maxIters = [(1,1,1,1000,1000,1000,1000),(1,1,1,500,500,500,500)] #iters for ADAM/LBFGS # maxIters = [(1,1,1,2,2,2,2),(1,1,1,2,2,2,2)] #iters for ADAM/LBFGS strategies = [NeuralPDE.QuadratureTraining(quadrature_alg = CubaCuhre(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.QuadratureTraining(quadrature_alg = HCubatureJL(), reltol = 1e-4, abstol = 1e-4, maxiters = 100, batch = 0), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLh(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLp(), reltol = 1e-4, abstol = 1e-4, maxiters = 100), NeuralPDE.GridTraining(0.1), NeuralPDE.StochasticTraining(400 ; bcs_points= 50), NeuralPDE.QuasiRandomTraining(400 ; bcs_points= 50)] strategies_short_name = ["CubaCuhre", "HCubatureJL", "CubatureJLh", "CubatureJLp", "GridTraining", "StochasticTraining", "QuasiRandomTraining"] minimizers = [ADAM(0.005), #BFGS()] LBFGS()] minimizers_short_name = ["ADAM", "LBFGS"] # "BFGS"] # Run models prediction_res = Dict() error_res = Dict() domains = Dict() params_res = Dict() #to use same params for the next run times = Dict() losses_res = Dict() ``` ## Solve ```julia ## Convergence for min =1:length(minimizers) # minimizer for strat=1:length(strategies) # strategy # println(string(strategies_short_name[strat], " ", minimizers_short_name[min])) res = level_set(strategies[strat], minimizers[min], maxIters[min][strat]) push!(error_res, string(strat,min) => res[1]) push!(params_res, string(strat,min) => res[2]) push!(domains, string(strat,min) => res[3]) push!(times, string(strat,min) => res[4]) push!(losses_res, string(strat,min) => res[5]) end end ``` ## Results ```julia #Plotting the first strategy with the first minimizer out from the loop to initialize the canvas current_label = string(strategies_short_name[1], " + " , minimizers_short_name[1]) error = Plots.plot(times["11"], error_res["11"], yaxis=:log10, label = current_label)# xlims = (0,10))#legend = true)#, size=(1200,700)) plot!(error, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[1])) plot!(error, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[1])) plot!(error, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[1])) plot!(error, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[1])) plot!(error, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[1])) plot!(error, times["71"], error_res["71"], yaxis=:log10, label = string(strategies_short_name[7], " + " , minimizers_short_name[1])) plot!(error, times["12"], error_res["12"], yaxis=:log10, label = string(strategies_short_name[1], " + " , minimizers_short_name[2])) plot!(error, times["22"], error_res["22"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[2])) plot!(error, times["32"], error_res["32"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[2])) plot!(error, times["42"], error_res["42"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[2])) plot!(error, times["52"], error_res["52"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[2])) plot!(error, times["62"], error_res["62"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[2])) plot!(error, times["72"], error_res["72"], yaxis=:log10, title = string("Level Set convergence ADAM/LBFGS"), ylabel = "log(error)", xlabel = "t", label = string(strategies_short_name[7], " + " , minimizers_short_name[2])) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
8627
--- title: Nernst-Planck PDE Physics-Informed Neural Network (PINN) Loss Function Error vs Time Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE using Integrals, IntegralsCubature, IntegralsCuba using OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots using DelimitedFiles using QuasiMonteCarlo import ModelingToolkit: Interval, infimum, supremum ``` ```julia function nernst_planck(strategy, minimizer, maxIters) ## DECLARATIONS @parameters t x y z @variables c(..) Dt = Differential(t) Dx = Differential(x) Dy = Differential(y) Dz = Differential(z) Dxx = Differential(x)^2 Dyy = Differential(y)^2 Dzz = Differential(z)^2 ## DOMAINS AND OPERATORS # Discretization xwidth = 1.0 ywidth = 1.0 zwidth = 1.0 tmax = 1.0 xMeshNum = 10 yMeshNum = 10 zMeshNum = 10 tMeshNum = 10 dx = xwidth/xMeshNum dy = ywidth/yMeshNum dz = zwidth/zMeshNum dt = tmax/tMeshNum domains = [t ∈ Interval(0.0,tmax), x ∈ Interval(0.0,xwidth), y ∈ Interval(0.0,ywidth), z ∈ Interval(0.0,zwidth)] xs = 0.0 : dx : xwidth ys = 0.0 : dy : ywidth zs = 0.0 : dz : zwidth ts = 0.0 : dt : tmax # Constants D = 1 #dummy ux = 10 #dummy uy = 10 #dummy uz = 10 #dummy # Operators div = - D*(Dxx(c(t,x,y,z)) + Dyy(c(t,x,y,z)) + Dzz(c(t,x,y,z))) + (ux*Dx(c(t,x,y,z)) + uy*Dy(c(t,x,y,z)) + uz*Dz(c(t,x,y,z))) # Equation eq = Dt(c(t,x,y,z)) + div ~ 0 #NERNST-PLANCK EQUATION # Boundary conditions bcs = [c(0,x,y,z) ~ 0] ## NEURAL NETWORK n = 16 #neuron number chain = Lux.Chain(Lux.Dense(4,n,tanh),Lux.Dense(n,n,tanh),Lux.Dense(n,1)) #Neural network from OptimizationFlux library indvars = [t,x,y,z] #independent variables depvars = [c(t,x,y,z)] #dependent (target) variable dim = length(domains) losses = [] error = [] times = [] dx_err = 0.2 error_strategy = GridTraining(dx_err) discretization_ = PhysicsInformedNN(chain, error_strategy) @named pde_system_ = PDESystem(eq, bcs, domains, indvars, depvars) prob_ = discretize(pde_system_, discretization_) function loss_function_(θ, p) return prob_.f.f(θ, nothing) end cb_ = function (p,l) deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot append!(times, ctime/10^9) #Conversion nanosec to seconds append!(losses, l) loss_ = loss_function_(p,nothing) append!(error, loss_) timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) discretization = NeuralPDE.PhysicsInformedNN(chain,strategy) prob = NeuralPDE.discretize(pde_system,discretization) timeCounter = 0.0 startTime = time_ns() #Fix initial time (t=0) before starting the training res = Optimization.solve(prob, minimizer, callback = cb_, maxiters=maxIters) phi = discretization.phi params = res.minimizer # Model prediction domain = [ts, xs, ys, zs] u_predict = [reshape([phi([t,x,y,z],res.minimizer) for x in xs for y in ys for z in zs], (length(xs),length(ys),length(zs))) for t in ts] return [error, params, domain, times] end maxIters = [(1,1,1,1000,1000,1000,1000),(1,1,1,300,300,300,300)] #iters for ADAM/LBFGS # maxIters = [(1,1,1,10,10,10,10),(1,1,1,3,3,3,3)] #iters for ADAM/LBFGS strategies = [NeuralPDE.QuadratureTraining(quadrature_alg = CubaCuhre(), reltol = 1e-4, abstol = 1e-4, maxiters = 50), NeuralPDE.QuadratureTraining(quadrature_alg = HCubatureJL(), reltol = 1e-4, abstol = 1e-4, maxiters = 50, batch = 0), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLh(), reltol = 1e-4, abstol = 1e-4, maxiters = 50), NeuralPDE.QuadratureTraining(quadrature_alg = CubatureJLp(), reltol = 1e-4, abstol = 1e-4, maxiters = 50), NeuralPDE.GridTraining(0.2), NeuralPDE.StochasticTraining(400 ; bcs_points= 50), NeuralPDE.QuasiRandomTraining(400 ; bcs_points= 50)] strategies_short_name = ["CubaCuhre", "HCubatureJL", "CubatureJLh", "CubatureJLp", "GridTraining", "StochasticTraining", "QuasiRandomTraining"] minimizers = [ADAM(0.005), #BFGS()] LBFGS()] minimizers_short_name = ["ADAM", "LBFGS"] # "BFGS"] # Run models error_res = Dict() domains = Dict() params_res = Dict() #to use same params for the next run times = Dict() ``` ## Solve ```julia ## Convergence for strat=1:length(strategies) # strategy for min =1:length(minimizers) # minimizer # println(string(strategies_short_name[strat], " ", minimizers_short_name[min])) res = nernst_planck(strategies[strat], minimizers[min], maxIters[min][strat]) push!(error_res, string(strat,min) => res[1]) push!(params_res, string(strat,min) => res[2]) push!(domains, string(strat,min) => res[3]) push!(times, string(strat,min) => res[4]) end end ``` ## Results ```julia #Plotting the first strategy with the first minimizer out from the loop to initialize the canvas current_label = string(strategies_short_name[1], " + " , minimizers_short_name[1]) error = Plots.plot(times["11"], error_res["11"], yaxis=:log10, label = current_label)#, xlims = (0,10))#legend = true)#, size=(1200,700)) plot!(error, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[1])) plot!(error, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[1])) plot!(error, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[1])) plot!(error, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[1])) plot!(error, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[1])) plot!(error, times["71"], error_res["71"], yaxis=:log10, label = string(strategies_short_name[7], " + " , minimizers_short_name[1])) plot!(error, times["12"], error_res["12"], yaxis=:log10, label = string(strategies_short_name[1], " + " , minimizers_short_name[2])) plot!(error, times["22"], error_res["22"], yaxis=:log10, label = string(strategies_short_name[2], " + " , minimizers_short_name[2])) plot!(error, times["32"], error_res["32"], yaxis=:log10, label = string(strategies_short_name[3], " + " , minimizers_short_name[2])) plot!(error, times["42"], error_res["42"], yaxis=:log10, label = string(strategies_short_name[4], " + " , minimizers_short_name[2])) plot!(error, times["52"], error_res["52"], yaxis=:log10, label = string(strategies_short_name[5], " + " , minimizers_short_name[2])) plot!(error, times["62"], error_res["62"], yaxis=:log10, label = string(strategies_short_name[6], " + " , minimizers_short_name[2])) plot!(error, times["72"], error_res["72"], yaxis=:log10, title = string("Nernst Planck convergence ADAM/LBFGS"), ylabel = "log(error)", xlabel = "t",label = string(strategies_short_name[7], " + " , minimizers_short_name[2])) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
4109
--- title: Diffusion Equation Physics-Informed Neural Network (PINN) Optimizer Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE, OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots import ModelingToolkit: Interval, infimum, supremum ``` ```julia function solve(opt) strategy = QuadratureTraining() @parameters x t @variables u(..) Dt = Differential(t) Dxx = Differential(x)^2 eq = Dt(u(x,t)) - Dxx(u(x,t)) ~ -exp(-t) * (sin(pi * x) - pi^2 * sin(pi * x)) bcs = [u(x,0) ~ sin(pi*x), u(-1,t) ~ 0., u(1,t) ~ 0.] domains = [x ∈ Interval(-1.0,1.0), t ∈ Interval(0.0,1.0)] chain = Lux.Chain(Lux.Dense(2,18,tanh),Lux.Dense(18,18,tanh),Lux.Dense(18,1)) discretization = PhysicsInformedNN(chain,strategy) indvars = [x, t] #phisically independent variables depvars = [u(x,t)] #dependent (target) variable loss = [] initial_time = nothing times = [] cb_ = function (p,l) if initial_time == nothing initial_time = time() end push!(times, time() - initial_time) #println("Current loss for $opt is: $l") push!(loss, l) # println(l ) # println(time() - initial_time) return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) prob = discretize(pde_system, discretization) if opt == "both" res = Optimization.solve(prob, ADAM(); callback = cb_, maxiters=50) prob = remake(prob,u0=res.minimizer) res = Optimization.solve(prob, BFGS(); callback = cb_, maxiters=150) else res = Optimization.solve(prob, opt; callback = cb_, maxiters=200) end times[1] = 0.01 return loss, times #add numeric solution end ``` ```julia opt1 = ADAM() opt2 = ADAM(0.005) opt3 = ADAM(0.05) opt4 = RMSProp() opt5 = RMSProp(0.005) opt6 = RMSProp(0.05) opt7 = OptimizationOptimJL.BFGS() opt8 = OptimizationOptimJL.LBFGS() ``` ## Solve ```julia loss_1, times_1 = solve(opt1) loss_2, times_2 = solve(opt2) loss_3, times_3 = solve(opt3) loss_4, times_4 = solve(opt4) loss_5, times_5 = solve(opt5) loss_6, times_6 = solve(opt6) loss_7, times_7 = solve(opt7) loss_8, times_8 = solve(opt8) loss_9, times_9 = solve("both") ``` ## Results ```julia p = plot([times_1, times_2, times_3, times_4, times_5, times_6, times_7, times_8, times_9], [loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9],xlabel="time (s)", ylabel="loss", xscale=:log10, yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia p = plot([loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9], xlabel="iterations", ylabel="loss", yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia @show loss_1[end], loss_2[end], loss_3[end], loss_4[end], loss_5[end], loss_6[end], loss_7[end], loss_8[end], loss_9[end] ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
6717
--- title: Nernst-Planck Equation Physics-Informed Neural Network (PINN) Optimizer Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE, OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots import ModelingToolkit: Interval, infimum, supremum ``` ```julia t_ref = 1.0 # s x_ref = 0.38 # dm C_ref = 0.16 # mol/dm^3 Phi_ref = 1.0 # V epsilon = 78.5 # K F = 96485.3415 # A s mol^-1 R = 831.0 # kg dm^2 s^-2 K^-1 mol^-1 T = 298.0 # K z_Na = 1.0 # non-dim z_Cl = -1.0 # non-dim D_Na = 0.89e-7 # dm^2 s^−1 D_Cl = 1.36e-7 # dm^2 s^−1 u_Na = D_Na * abs(z_Na) * F / (R * T) u_Cl = D_Cl * abs(z_Cl) * F / (R * T) t_max = 0.01 / t_ref # non-dim x_max = 0.38 / x_ref # non-dim Na_0 = 0.16 / C_ref # non-dim Cl_0 = 0.16 / C_ref # non-dim Phi_0 = 4.0 / Phi_ref # non-dim Na_anode = 0.0 # non-dim Na_cathode = 2.0 * Na_0 # non-dim Cl_anode = 1.37 * Cl_0 # non-dim Cl_cathode = 0.0 # non-dim Pe_Na = x_ref^2 / ( t_ref * D_Na ) # non-dim Pe_Cl = x_ref^2 / ( t_ref * D_Cl ) # non-dim M_Na = x_ref^2 / ( t_ref * Phi_ref * u_Na ) # non-dim M_Cl = x_ref^2 / ( t_ref * Phi_ref * u_Cl ) # non-dim Po_1 = (epsilon * Phi_ref) / (F * x_ref * C_ref) # non-dim dx = 0.01 # non-dim ``` ```julia function solve(opt) strategy = QuadratureTraining() @parameters t,x @variables Phi(..),Na(..),Cl(..) Dt = Differential(t) Dx = Differential(x) Dxx = Differential(x)^2 eqs = [ ( Dxx(Phi(t,x)) ~ ( 1.0 / Po_1 ) * ( z_Na * Na(t,x) + z_Cl * Cl(t,x) ) ) , ( Dt(Na(t,x)) ~ ( 1.0 / Pe_Na ) * Dxx(Na(t,x)) + z_Na / ( abs(z_Na) * M_Na ) * ( Dx(Na(t,x)) * Dx(Phi(t,x)) + Na(t,x) * Dxx(Phi(t,x)) ) ) , ( Dt(Cl(t,x)) ~ ( 1.0 / Pe_Cl ) * Dxx(Cl(t,x)) + z_Cl / ( abs(z_Cl) * M_Cl ) * ( Dx(Cl(t,x)) * Dx(Phi(t,x)) + Cl(t,x) * Dxx(Phi(t,x)) ) ) ] bcs = [ Phi(t,0.0) ~ Phi_0, Phi(t,x_max) ~ 0.0 , Na(0.0,x) ~ Na_0, Na(t,0.0) ~ Na_anode, Na(t,x_max) ~ Na_cathode , Cl(0.0,x) ~ Cl_0, Cl(t,0.0) ~ Cl_anode, Cl(t,x_max) ~ Cl_cathode ] # Space and time domains ################################################### domains = [ t ∈ Interval(0.0, t_max), x ∈ Interval(0.0, x_max) ] # Neural network, Discretization ########################################### dim = length(domains) output = length(eqs) neurons = 16 chain1 = Lux.Chain( Lux.Dense(dim, neurons, tanh), Lux.Dense(neurons, neurons, tanh), Lux.Dense(neurons, neurons, tanh), Lux.Dense(neurons, 1)) chain2 = Lux.Chain( Lux.Dense(dim, neurons, tanh), Lux.Dense(neurons, neurons, tanh), Lux.Dense(neurons, neurons, tanh), Lux.Dense(neurons, 1)) chain3 = Lux.Chain( Lux.Dense(dim, neurons, tanh), Lux.Dense(neurons, neurons, tanh), Lux.Dense(neurons, neurons, tanh), Lux.Dense(neurons, 1)) discretization = PhysicsInformedNN([chain1, chain2, chain3], strategy) indvars = [t, x] #phisically independent variables depvars = [Phi, Na, Cl] #dependent (target) variable loss = [] initial_time = 0 times = [] cb = function (p,l) if initial_time == 0 initial_time = time() end push!(times, time() - initial_time) #println("Current loss for $opt is: $l") push!(loss, l) return false end @named pde_system = PDESystem(eqs, bcs, domains, indvars, depvars) prob = discretize(pde_system, discretization) if opt == "both" res = Optimization.solve(prob, ADAM(); callback = cb, maxiters=50) prob = remake(prob,u0=res.minimizer) res = Optimization.solve(prob, BFGS(); callback = cb, maxiters=150) else res = Optimization.solve(prob, opt; callback = cb, maxiters=200) end times[1] = 0.001 return loss, times #add numeric solution end ``` ```julia opt1 = ADAM() opt2 = ADAM(0.005) opt3 = ADAM(0.05) opt4 = RMSProp() opt5 = RMSProp(0.005) opt6 = RMSProp(0.05) opt7 = OptimizationOptimJL.BFGS() opt8 = OptimizationOptimJL.LBFGS() ``` ## Solve ```julia loss_1, times_1 = solve(opt1) loss_2, times_2 = solve(opt2) loss_3, times_3 = solve(opt3) loss_4, times_4 = solve(opt4) loss_5, times_5 = solve(opt5) loss_6, times_6 = solve(opt6) loss_7, times_7 = solve(opt7) loss_8, times_8 = solve(opt8) loss_9, times_9 = solve("both") ``` ## Results ```julia p = plot([times_1, times_2, times_3, times_4, times_5, times_6, times_7, times_8, times_9], [loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9],xlabel="time (s)", ylabel="loss", xscale=:log10, yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia p = plot([loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9[2:end]], xlabel="iterations", ylabel="loss", yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia @show loss_1[end], loss_2[end], loss_3[end], loss_4[end], loss_5[end], loss_6[end], loss_7[end], loss_8[end], loss_9[end] ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
5197
--- title: Allen-Cahn Equation Physics-Informed Neural Network (PINN) Optimizer Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE, OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots import ModelingToolkit: Interval, infimum, supremum ``` ```julia function solve(opt) strategy = QuadratureTraining() @parameters t x1 x2 x3 x4 @variables u(..) Dt = Differential(t) Dxx1 = Differential(x1)^2 Dxx2 = Differential(x2)^2 Dxx3 = Differential(x3)^2 Dxx4 = Differential(x4)^2 # Discretization tmax = 1.0 x1width = 1.0 x2width = 1.0 x3width = 1.0 x4width = 1.0 tMeshNum = 10 x1MeshNum = 10 x2MeshNum = 10 x3MeshNum = 10 x4MeshNum = 10 dt = tmax/tMeshNum dx1 = x1width/x1MeshNum dx2 = x2width/x2MeshNum dx3 = x3width/x3MeshNum dx4 = x4width/x4MeshNum domains = [t ∈ Interval(0.0,tmax), x1 ∈ Interval(0.0,x1width), x2 ∈ Interval(0.0,x2width), x3 ∈ Interval(0.0,x3width), x4 ∈ Interval(0.0,x4width)] ts = 0.0 : dt : tmax x1s = 0.0 : dx1 : x1width x2s = 0.0 : dx2 : x2width x3s = 0.0 : dx3 : x3width x4s = 0.0 : dx4 : x4width # Operators Δu = Dxx1(u(t,x1,x2,x3,x4)) + Dxx2(u(t,x1,x2,x3,x4)) + Dxx3(u(t,x1,x2,x3,x4)) + Dxx4(u(t,x1,x2,x3,x4)) # Laplacian # Equation eq = Dt(u(t,x1,x2,x3,x4)) - Δu - u(t,x1,x2,x3,x4) + u(t,x1,x2,x3,x4)*u(t,x1,x2,x3,x4)*u(t,x1,x2,x3,x4) ~ 0 #ALLEN CAHN EQUATION initialCondition = 1/(2 + 0.4 * (x1*x1 + x2*x2 + x3*x3 + x4*x4)) # see PNAS paper bcs = [u(0,x1,x2,x3,x4) ~ initialCondition] #from literature ## NEURAL NETWORK n = 20 #neuron number chain = Lux.Chain(Lux.Dense(5,n,tanh),Lux.Dense(n,n,tanh),Lux.Dense(n,1)) #Neural network from OptimizationFlux library discretization = PhysicsInformedNN(chain, strategy) indvars = [t,x1,x2,x3,x4] #phisically independent variables depvars = [u] #dependent (target) variable loss = [] initial_time = 0 times = [] cb = function (p,l) if initial_time == 0 initial_time = time() end push!(times, time() - initial_time) #println("Current loss for $opt is: $l") push!(loss, l) return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) prob = discretize(pde_system, discretization) if opt == "both" res = Optimization.solve(prob, ADAM(); callback = cb, maxiters=50) prob = remake(prob,u0=res.minimizer) res = Optimization.solve(prob, BFGS(); callback = cb, maxiters=150) else res = Optimization.solve(prob, opt; callback = cb, maxiters=200) end times[1] = 0.001 return loss, times #add numeric solution end ``` ```julia opt1 = ADAM() opt2 = ADAM(0.005) opt3 = ADAM(0.05) opt4 = RMSProp() opt5 = RMSProp(0.005) opt6 = RMSProp(0.05) opt7 = OptimizationOptimJL.BFGS() opt8 = OptimizationOptimJL.LBFGS() ``` ## Solve ```julia loss_1, times_1 = solve(opt1) loss_2, times_2 = solve(opt2) loss_3, times_3 = solve(opt3) loss_4, times_4 = solve(opt4) loss_5, times_5 = solve(opt5) loss_6, times_6 = solve(opt6) loss_7, times_7 = solve(opt7) loss_8, times_8 = solve(opt8) loss_9, times_9 = solve("both") ``` ## Results ```julia p = plot([times_1, times_2, times_3, times_4, times_5, times_6, times_7, times_8, times_9], [loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9],xlabel="time (s)", ylabel="loss", xscale=:log10, yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia p = plot([loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9[2:end]], xlabel="iterations", ylabel="loss", yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia @show loss_1[end], loss_2[end], loss_3[end], loss_4[end], loss_5[end], loss_6[end], loss_7[end], loss_8[end], loss_9[end] ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9728
--- title: Berger's Equation Physics-Informed Neural Network (PINN) Optimizer Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE, OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots import ModelingToolkit: Interval, infimum, supremum ``` ```julia # Physical and numerical parameters (fixed) nu = 0.07 nx = 10001 #101 x_max = 2.0 * pi dx = x_max / (nx - 1.0) nt = 2 #10 dt = dx * nu t_max = dt * nt # Analytic function analytic_sol_func(t, x) = -2*nu*(-(-8*t + 2*x)*exp(-(-4*t + x)^2/(4*nu*(t + 1)))/ (4*nu*(t + 1)) - (-8*t + 2*x - 12.5663706143592)* exp(-(-4*t + x - 6.28318530717959)^2/(4*nu*(t + 1)))/ (4*nu*(t + 1)))/(exp(-(-4*t + x - 6.28318530717959)^2/ (4*nu*(t + 1))) + exp(-(-4*t + x)^2/(4*nu*(t + 1)))) + 4 ``` ```julia function burgers(strategy, minimizer) @parameters x t @variables u(..) Dt = Differential(t) Dx = Differential(x) Dxx = Differential(x)^2 eq = Dt(u(x, t)) + u(x, t) * Dx(u(x, t)) ~ nu * Dxx(u(x, t)) bcs = [u(x, 0.0) ~ analytic_sol_func(x, 0.0), u(0.0, t) ~ u(x_max, t)] domains = [x ∈ Interval(0.0, x_max), t ∈ Interval(0.0, t_max)] chain = Lux.Chain(Lux.Dense(2, 16, tanh), Lux.Dense(16, 16, tanh), Lux.Dense(16, 1)) discretization = PhysicsInformedNN(chain, strategy) indvars = [x, t] #physically independent variables depvars = [u] #dependent (target) variable dim = length(domains) losses = [] error = [] times = [] dx_err = 0.00005 error_strategy = GridTraining(dx_err) discretization_ = PhysicsInformedNN(chain, error_strategy) @named pde_system_ = PDESystem(eq, bcs, domains, indvars, depvars) prob_ = discretize(pde_system_, discretization_) function loss_function__(θ) return prob_.f.f(θ, nothing) end cb = function (p, l) timeCounter = 0.0 deltaT_s = time_ns() #Start a clock when the callback begins, this will evaluate questo misurerà anche il calcolo degli uniform error ctime = time_ns() - startTime - timeCounter #This variable is the time to use for the time benchmark plot append!(times, ctime / 10^9) #Conversion nanosec to seconds append!(losses, l) append!(error, loss_function__(p)) #println(length(losses), " Current loss is: ", l, " uniform error is, ", loss_function__(p)) timeCounter = timeCounter + time_ns() - deltaT_s #timeCounter sums all delays due to the callback functions of the previous iterations return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) discretization = NeuralPDE.PhysicsInformedNN(chain, strategy) prob = NeuralPDE.discretize(pde_system, discretization) startTime = time_ns() #Fix initial time (t=0) before starting the training if minimizer == "both" res = Optimization.solve(prob, ADAM(); callback=cb, maxiters=5) prob = remake(prob, u0=res.minimizer) res = Optimization.solve(prob, BFGS(); callback=cb, maxiters=15) else res = Optimization.solve(prob, minimizer; callback=cb, maxiters=500) end phi = discretization.phi params = res.minimizer return [error, params, times, losses] end ``` ## Solve ```julia # Settings: #maxIters = [(0,0,0,0,0,0,20000),(300,300,300,300,300,300,300)] #iters strategies = [NeuralPDE.QuadratureTraining()] strategies_short_name = ["QuadratureTraining"] minimizers = [ADAM(), ADAM(0.000005), ADAM(0.0005), RMSProp(), RMSProp(0.00005), RMSProp(0.05), BFGS(), LBFGS()] minimizers_short_name = ["ADAM", "ADAM(0.000005)", "ADAM(0.0005)", "RMS", "RMS(0.00005)", "RMS(0.05)", "BFGS", "LBFGS"] ``` ```julia # Run models error_res = Dict() params_res = Dict() times = Dict() losses_res = Dict() print("Starting run \n") for min in 1:length(minimizers) # minimizer for strat in 1:length(strategies) # strategy #println(string(strategies_short_name[1], " ", minimizers_short_name[min])) res = burgers(strategies[strat], minimizers[min]) push!(error_res, string(strat,min) => res[1]) push!(params_res, string(strat,min) => res[2]) push!(times, string(strat,min) => res[3]) push!(losses_res, string(strat,min) => res[4]) end end ``` ## Results ```julia #PLOT ERROR VS ITER: to compare to compare between minimizers, keeping the same strategy (easily adjustable to compare between strategies) error_iter = Plots.plot(1:length(error_res["11"]), error_res["11"], yaxis=:log10, title = string("Burger error vs iter"), ylabel = "Error", label = string(minimizers_short_name[1]), ylims = (0.0001,1)) plot!(error_iter, 1:length(error_res["12"]), error_res["12"], yaxis=:log10, label = string(minimizers_short_name[2])) plot!(error_iter, 1:length(error_res["13"]), error_res["13"], yaxis=:log10, label = string(minimizers_short_name[3])) plot!(error_iter, 1:length(error_res["14"]), error_res["14"], yaxis=:log10, label = string(minimizers_short_name[4])) plot!(error_iter, 1:length(error_res["15"]), error_res["15"], yaxis=:log10, label = string(minimizers_short_name[5])) plot!(error_iter, 1:length(error_res["16"]), error_res["16"], yaxis=:log10, label = string(minimizers_short_name[6])) plot!(error_iter, 1:length(error_res["17"]), error_res["17"], yaxis=:log10, label = string(minimizers_short_name[7])) plot!(error_iter, 1:length(error_res["18"]), error_res["18"], yaxis=:log10, label = string(minimizers_short_name[8])) Plots.plot(error_iter) ``` ```julia #Use after having modified the analysis setting correctly --> Error vs iter: to compare different strategies, keeping the same minimizer #error_iter = Plots.plot(1:length(error_res["11"]), error_res["11"], yaxis=:log10, title = string("Burger error vs iter"), ylabel = "Error", label = string(strategies_short_name[1]), ylims = (0.0001,1)) #plot!(error_iter, 1:length(error_res["21"]), error_res["21"], yaxis=:log10, label = string(strategies_short_name[2])) #plot!(error_iter, 1:length(error_res["31"]), error_res["31"], yaxis=:log10, label = string(strategies_short_name[3])) #plot!(error_iter, 1:length(error_res["41"]), error_res["41"], yaxis=:log10, label = string(strategies_short_name[4])) #plot!(error_iter, 1:length(error_res["51"]), error_res["51"], yaxis=:log10, label = string(strategies_short_name[5])) #plot!(error_iter, 1:length(error_res["61"]), error_res["61"], yaxis=:log10, label = string(strategies_short_name[6])) #plot!(error_iter, 1:length(error_res["71"]), error_res["71"], yaxis=:log10, label = string(strategies_short_name[7])) ``` ```julia #PLOT ERROR VS TIME: to compare to compare between minimizers, keeping the same strategy error_time = plot(times["11"], error_res["11"], yaxis=:log10, label = string(minimizers_short_name[1]),title = string("Burger error vs time"), ylabel = "Error", size = (1500,500)) plot!(error_time, times["12"], error_res["12"], yaxis=:log10, label = string(minimizers_short_name[2])) plot!(error_time, times["13"], error_res["13"], yaxis=:log10, label = string(minimizers_short_name[3])) plot!(error_time, times["14"], error_res["14"], yaxis=:log10, label = string(minimizers_short_name[4])) plot!(error_time, times["15"], error_res["15"], yaxis=:log10, label = string(minimizers_short_name[5])) plot!(error_time, times["16"], error_res["16"], yaxis=:log10, label = string(minimizers_short_name[6])) plot!(error_time, times["17"], error_res["17"], yaxis=:log10, label = string(minimizers_short_name[7])) plot!(error_time, times["18"], error_res["18"], yaxis=:log10, label = string(minimizers_short_name[7])) Plots.plot(error_time) ``` ```julia #Use after having modified the analysis setting correctly --> Error vs time: to compare different strategies, keeping the same minimizer #error_time = plot(times["11"], error_res["11"], yaxis=:log10, label = string(strategies_short_name[1]),title = string("Burger error vs time"), ylabel = "Error", size = (1500,500)) #plot!(error_time, times["21"], error_res["21"], yaxis=:log10, label = string(strategies_short_name[2])) #plot!(error_time, times["31"], error_res["31"], yaxis=:log10, label = string(strategies_short_name[3])) #plot!(error_time, times["41"], error_res["41"], yaxis=:log10, label = string(strategies_short_name[4])) #plot!(error_time, times["51"], error_res["51"], yaxis=:log10, label = string(strategies_short_name[5])) #plot!(error_time, times["61"], error_res["61"], yaxis=:log10, label = string(strategies_short_name[6])) #plot!(error_time, times["71"], error_res["71"], yaxis=:log10, label = string(strategies_short_name[7])) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
5393
--- title: Hamilton-Jacobi PDE Physics-Informed Neural Network (PINN) Optimizer Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup ```julia using NeuralPDE, OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots import ModelingToolkit: Interval, infimum, supremum ``` ```julia function solve(opt) strategy = QuadratureTraining() ## DECLARATIONS @parameters t x1 x2 x3 x4 @variables u(..) Dt = Differential(t) Dx1 = Differential(x1) Dx2 = Differential(x2) Dx3 = Differential(x3) Dx4 = Differential(x4) Dxx1 = Differential(x1)^2 Dxx2 = Differential(x2)^2 Dxx3 = Differential(x3)^2 Dxx4 = Differential(x4)^2 # Discretization tmax = 1.0 x1width = 1.0 x2width = 1.0 x3width = 1.0 x4width = 1.0 tMeshNum = 10 x1MeshNum = 10 x2MeshNum = 10 x3MeshNum = 10 x4MeshNum = 10 dt = tmax/tMeshNum dx1 = x1width/x1MeshNum dx2 = x2width/x2MeshNum dx3 = x3width/x3MeshNum dx4 = x4width/x4MeshNum domains = [t ∈ Interval(0.0,tmax), x1 ∈ Interval(0.0,x1width), x2 ∈ Interval(0.0,x2width), x3 ∈ Interval(0.0,x3width), x4 ∈ Interval(0.0,x4width)] ts = 0.0 : dt : tmax x1s = 0.0 : dx1 : x1width x2s = 0.0 : dx2 : x2width x3s = 0.0 : dx3 : x3width x4s = 0.0 : dx4 : x4width λ = 1.0f0 # Operators Δu = Dxx1(u(t,x1,x2,x3,x4)) + Dxx2(u(t,x1,x2,x3,x4)) + Dxx3(u(t,x1,x2,x3,x4)) + Dxx4(u(t,x1,x2,x3,x4)) # Laplacian ∇u = [Dx1(u(t,x1,x2,x3,x4)), Dx2(u(t,x1,x2,x3,x4)),Dx3(u(t,x1,x2,x3,x4)),Dx4(u(t,x1,x2,x3,x4))] # Equation eq = Dt(u(t,x1,x2,x3,x4)) + Δu - λ*sum(∇u.^2) ~ 0 #HAMILTON-JACOBI-BELLMAN EQUATION terminalCondition = log((1 + x1*x1 + x2*x2 + x3*x3 + x4*x4)/2) # see PNAS paper bcs = [u(tmax,x1,x2,x3,x4) ~ terminalCondition] #PNAS paper again ## NEURAL NETWORK n = 20 #neuron number chain = Lux.Chain(Lux.Dense(5,n,tanh),Lux.Dense(n,n,tanh),Lux.Dense(n,1)) #Neural network from OptimizationFlux library discretization = PhysicsInformedNN(chain, strategy) indvars = [t,x1,x2,x3,x4] #phisically independent variables depvars = [u] #dependent (target) variable loss = [] initial_time = 0 times = [] cb = function (p,l) if initial_time == 0 initial_time = time() end push!(times, time() - initial_time) #println("Current loss for $opt is: $l") push!(loss, l) return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) prob = discretize(pde_system, discretization) if opt == "both" res = Optimization.solve(prob, ADAM(); callback = cb, maxiters=50) prob = remake(prob,u0=res.minimizer) res = Optimization.solve(prob, BFGS(); callback = cb, maxiters=150) else res = Optimization.solve(prob, opt; callback = cb, maxiters=200) end times[1] = 0.001 return loss, times #add numeric solution end ``` ```julia opt1 = ADAM() opt2 = ADAM(0.005) opt3 = ADAM(0.05) opt4 = RMSProp() opt5 = RMSProp(0.005) opt6 = RMSProp(0.05) opt7 = OptimizationOptimJL.BFGS() opt8 = OptimizationOptimJL.LBFGS() ``` ## Solve ```julia loss_1, times_1 = solve(opt1) loss_2, times_2 = solve(opt2) loss_3, times_3 = solve(opt3) loss_4, times_4 = solve(opt4) loss_5, times_5 = solve(opt5) loss_6, times_6 = solve(opt6) loss_7, times_7 = solve(opt7) loss_8, times_8 = solve(opt8) loss_9, times_9 = solve("both") ``` ## Results ```julia p = plot([times_1, times_2, times_3, times_4, times_5, times_6, times_7, times_8, times_9], [loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9],xlabel="time (s)", ylabel="loss", xscale=:log10, yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia p = plot([loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9], xlabel="iterations", ylabel="loss", yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia @show loss_1[end], loss_2[end], loss_3[end], loss_4[end], loss_5[end], loss_6[end], loss_7[end], loss_8[end], loss_9[end] ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
4181
--- title: Poisson PDE Physics-Informed Neural Network (PINN) Optimizer Benchmarks author: Kirill Zubov, Zoe McCarthy, Yingbo Ma, Francesco Calisto, Valerio Pagliarino, Simone Azeglio, Luca Bottero, Emmanuel Luján, Valentin Sulzer, Ashutosh Bharambe, Nand Vinchhi, Kaushik Balakrishnan, Devesh Upadhyay, Chris Rackauckas --- Adapted from [NeuralPDE: Automating Physics-Informed Neural Networks (PINNs) with Error Approximations](https://arxiv.org/abs/2107.09443). Uses the [NeuralPDE.jl](https://neuralpde.sciml.ai/dev/) library from the [SciML Scientific Machine Learning Open Source Organization](https://sciml.ai/) for the implementation of physics-informed neural networks (PINNs) and other science-guided AI techniques. ## Setup Code ```julia using NeuralPDE, OptimizationFlux, ModelingToolkit, Optimization, OptimizationOptimJL using Lux, Plots import ModelingToolkit: Interval, infimum, supremum ``` ```julia function solve(opt) strategy = QuadratureTraining() @parameters x y @variables u(..) Dxx = Differential(x)^2 Dyy = Differential(y)^2 # 2D PDE eq = Dxx(u(x,y)) + Dyy(u(x,y)) ~ -sin(pi*x)*sin(pi*y) # Boundary conditions bcs = [u(0,y) ~ 0.f0, u(1,y) ~ -sin(pi*1)*sin(pi*y), u(x,0) ~ 0.f0, u(x,1) ~ -sin(pi*x)*sin(pi*1)] # Space and time domains domains = [x ∈ Interval(0.0,1.0), y ∈ Interval(0.0,1.0)] # Neural network dim = 2 # number of dimensions chain = Lux.Chain(Lux.Dense(dim,16,tanh),Lux.Dense(16,16,tanh),Lux.Dense(16,1)) discretization = PhysicsInformedNN(chain,strategy) indvars = [x, y] #phisically independent variables depvars = [u(x,y)] #dependent (target) variable loss = [] initial_time = nothing times = [] cb = function (p,l) if initial_time == nothing initial_time = time() end push!(times, time() - initial_time) #println("Current loss for $opt is: $l") push!(loss, l) return false end @named pde_system = PDESystem(eq, bcs, domains, indvars, depvars) prob = discretize(pde_system, discretization) if opt == "both" res = Optimization.solve(prob, ADAM(); callback = cb, maxiters=50) prob = remake(prob,u0=res.minimizer) res = Optimization.solve(prob, BFGS(); callback = cb, maxiters=150) else res = Optimization.solve(prob, opt; callback = cb, maxiters=200) end times[1] = 0.001 return loss, times #add numeric solution end ``` ```julia opt1 = ADAM() opt2 = ADAM(0.005) opt3 = ADAM(0.05) opt4 = RMSProp() opt5 = RMSProp(0.005) opt6 = RMSProp(0.05) opt7 = OptimizationOptimJL.BFGS() opt8 = OptimizationOptimJL.LBFGS() ``` ## Solve ```julia loss_1, times_1 = solve(opt1) loss_2, times_2 = solve(opt2) loss_3, times_3 = solve(opt3) loss_4, times_4 = solve(opt4) loss_5, times_5 = solve(opt5) loss_6, times_6 = solve(opt6) loss_7, times_7 = solve(opt7) loss_8, times_8 = solve(opt8) loss_9, times_9 = solve("both") ``` ## Results ```julia p = plot([times_1, times_2, times_3, times_4, times_5, times_6, times_7, times_8, times_9], [loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9],xlabel="time (s)", ylabel="loss", xscale=:log10, yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia p = plot([loss_1, loss_2, loss_3, loss_4, loss_5, loss_6, loss_7, loss_8, loss_9], xlabel="iterations", ylabel="loss", yscale=:log10, labels=["ADAM(0.001)" "ADAM(0.005)" "ADAM(0.05)" "RMSProp(0.001)" "RMSProp(0.005)" "RMSProp(0.05)" "BFGS()" "LBFGS()" "ADAM + BFGS"], legend=:bottomleft, linecolor=["#2660A4" "#4CD0F4" "#FEC32F" "#F763CD" "#44BD79" "#831894" "#A6ED18" "#980000" "#FF912B"]) ``` ```julia @show loss_1[end], loss_2[end], loss_3[end], loss_4[end], loss_5[end], loss_6[end], loss_7[end], loss_8[end], loss_9[end] ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
9813
--- title: FitzHugh-Nagumo Parameter Estimation Benchmarks author: Vaibhav Dixit, Chris Rackauckas --- # Parameter estimation of FitzHugh-Nagumo model using optimisation methods ```julia using ParameterizedFunctions, OrdinaryDiffEq, DiffEqParamEstim using BlackBoxOptim, NLopt, Plots,QuadDIRECT gr(fmt=:png) ``` ```julia loc_bounds = Tuple{Float64,Float64}[(0, 1), (0, 1), (0, 1), (0, 1)] glo_bounds = Tuple{Float64,Float64}[(0, 5), (0, 5), (0, 5), (0, 5)] loc_init = [0.5,0.5,0.5,0.5] glo_init = [2.5,2.5,2.5,2.5] ``` ```julia fitz = @ode_def FitzhughNagumo begin dv = v - v^3/3 -w + l dw = τinv*(v + a - b*w) end a b τinv l ``` ```julia p = [0.7,0.8,0.08,0.5] # Parameters used to construct the dataset r0 = [1.0; 1.0] # initial value tspan = (0.0, 30.0) # sample of 3000 observations over the (0,30) timespan prob = ODEProblem(fitz, r0, tspan,p) tspan2 = (0.0, 3.0) # sample of 300 observations with a timestep of 0.01 prob_short = ODEProblem(fitz, r0, tspan2,p) ``` ```julia dt = 30.0/3000 tf = 30.0 tinterval = 0:dt:tf t = collect(tinterval) ``` ```julia h = 0.01 M = 300 tstart = 0.0 tstop = tstart + M * h tinterval_short = 0:h:tstop t_short = collect(tinterval_short) ``` ```julia #Generate Data data_sol_short = solve(prob_short,Vern9(),saveat=t_short,reltol=1e-9,abstol=1e-9) data_short = convert(Array, data_sol_short) # This operation produces column major dataset obs as columns, equations as rows data_sol = solve(prob,Vern9(),saveat=t,reltol=1e-9,abstol=1e-9) data = convert(Array, data_sol) ``` #### Plot of the solution ##### Short Solution ```julia plot(data_sol_short) ``` ##### Longer Solution ```julia plot(data_sol) ``` ## Local Solution from the short data set ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short) res1 = bboptimize(obj_short;SearchRange = glo_bounds, MaxSteps = 7e3) # Lower tolerance could lead to smaller fitness (more accuracy) ``` ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9) res1 = bboptimize(obj_short;SearchRange = glo_bounds, MaxSteps = 7e3) # Change in tolerance makes it worse ``` ```julia obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9) res1 = bboptimize(obj_short;SearchRange = glo_bounds, MaxSteps = 7e3) # using the moe accurate Vern9() reduces the fitness marginally and leads to some increase in time taken ``` ## Using NLopt #### Global Optimisation ```julia obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9) ``` ```julia opt = Opt(:GN_ORIG_DIRECT_L, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_CRS2_LM, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ISRES, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ESCH, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` Now local optimization algorithms are used to check the global ones, these use the local constraints, different intial values and time step ```julia opt = Opt(:LN_BOBYQA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_NELDERMEAD, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_SLSQP, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_COBYLA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_NEWUOA_BOUND, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_PRAXIS, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_SBPLX, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_MMA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ### Now the longer problem is solved for a global solution Vern9 solver with reltol=1e-9 and abstol=1e-9 is used and the dataset is increased to 3000 observations per variable with the same integration time step of 0.01. ```julia obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),tstops=t,reltol=1e-9,abstol=1e-9) res1 = bboptimize(obj;SearchRange = glo_bounds, MaxSteps = 4e3) ``` ```julia opt = Opt(:GN_ORIG_DIRECT_L, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_CRS2_LM, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 20000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ISRES, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 50000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ESCH, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 20000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:LN_BOBYQA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_NELDERMEAD, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-9) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_SLSQP, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[1.0,1.0,1.0,1.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` As expected from other problems the longer sample proves to be extremely challenging for some of the global optimizers. A few give the accurate values, while others seem to struggle with accuracy a lot. #### Using QuadDIRECT ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short) lower = [0,0,0,0] upper = [1,1,1,1] splits = ([0,0.3,0.7],[0,0.3,0.7],[0,0.3,0.7],[0,0.3,0.7]) @time root, x0 = analyze(obj_short,splits,lower,upper) ``` ```julia minimum(root) ``` ```julia obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),tstops=t,reltol=1e-9,abstol=1e-9) lower = [0,0,0,0] upper = [5,5,5,5] splits = ([0,0.5,1],[0,0.5,1],[0,0.5,1],[0,0.5,1]) @time root, x0 = analyze(obj_short,splits,lower,upper) ``` ```julia minimum(root) ``` # Conclusion It is observed that lower tolerance lead to higher accuracy but too low tolerance could affect the convergance time drastically. Also fitting a shorter timespan seems to be easier in comparision (quite intutively). NLOpt methods seem to give great accuracy in the shorter problem with a lot of the algorithms giving 0 fitness, BBO performs very well on it with marginal change with tol values. In case of global optimization of the longer problem there is some difference in the perfomance amongst the algorithms with :LN_BOBYQA giving accurate results for the local optimization and :GN_ISRES :GN_CRS2_LM in case of the global give the highest accuracy. BBO also fails to perform too well in the case of the longer problem. QuadDIRECT performs well in case of the shorter problem but fails to give good results in the longer version. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
14845
--- title: Lorenz Parameter Estimation Benchmarks author: finmod, Chris Rackauckas, Vaibhav Dixit --- # Estimate the parameters of the Lorenz system from the dataset Note: If data is generated with a fixed time step method and then is tested against with the same time step, there is a biased introduced since it's no longer about hitting the true solution, rather it's just about retreiving the same values that the ODE was first generated by! Thus this version uses adaptive timestepping for all portions so that way tests are against the true solution. ```julia using ParameterizedFunctions, OrdinaryDiffEq, DiffEqParamEstim using BlackBoxOptim, NLopt, Plots, QuadDIRECT gr(fmt=:png) ``` ```julia Xiang2015Bounds = Tuple{Float64, Float64}[(9, 11), (20, 30), (2, 3)] # for local optimizations xlow_bounds = [9.0,20.0,2.0] xhigh_bounds = [11.0,30.0,3.0] LooserBounds = Tuple{Float64, Float64}[(0, 22), (0, 60), (0, 6)] # for global optimization GloIniPar = [0.0, 0.5, 0.1] # for global optimizations LocIniPar = [9.0, 20.0, 2.0] # for local optimization ``` ```julia g1 = @ode_def LorenzExample begin dx = σ*(y-x) dy = x*(ρ-z) - y dz = x*y - β*z end σ ρ β p = [10.0,28.0,2.66] # Parameters used to construct the dataset r0 = [1.0; 0.0; 0.0] #[-11.8,-5.1,37.5] PODES Initial values of the system in space # [0.1, 0.0, 0.0] tspan = (0.0, 30.0) # PODES sample of 3000 observations over the (0,30) timespan prob = ODEProblem(g1, r0, tspan,p) tspan2 = (0.0, 3.0) # Xiang test sample of 300 observations with a timestep of 0.01 prob_short = ODEProblem(g1, r0, tspan2,p) ``` ```julia dt = 30.0/3000 tf = 30.0 tinterval = 0:dt:tf t = collect(tinterval) ``` ```julia h = 0.01 M = 300 tstart = 0.0 tstop = tstart + M * h tinterval_short = 0:h:tstop t_short = collect(tinterval_short) ``` ```julia # Generate Data data_sol_short = solve(prob_short,Vern9(),saveat=t_short,reltol=1e-9,abstol=1e-9) data_short = convert(Array, data_sol_short) # This operation produces column major dataset obs as columns, equations as rows data_sol = solve(prob,Vern9(),saveat=t,reltol=1e-9,abstol=1e-9) data = convert(Array, data_sol) ``` Plot the data ```julia plot(data_sol_short,vars=(1,2,3)) # the short solution plot(data_sol,vars=(1,2,3)) # the longer solution interpolation_sol = solve(prob,Vern7(),saveat=t,reltol=1e-12,abstol=1e-12) plot(interpolation_sol,vars=(1,2,3)) ``` ```julia xyzt = plot(data_sol_short, plotdensity=10000,lw=1.5) xy = plot(data_sol_short, plotdensity=10000, vars=(1,2)) xz = plot(data_sol_short, plotdensity=10000, vars=(1,3)) yz = plot(data_sol_short, plotdensity=10000, vars=(2,3)) xyz = plot(data_sol_short, plotdensity=10000, vars=(1,2,3)) plot(plot(xyzt,xyz),plot(xy, xz, yz, layout=(1,3),w=1), layout=(2,1), size=(800,600)) ``` ```julia xyzt = plot(data_sol, plotdensity=10000,lw=1.5) xy = plot(data_sol, plotdensity=10000, vars=(1,2)) xz = plot(data_sol, plotdensity=10000, vars=(1,3)) yz = plot(data_sol, plotdensity=10000, vars=(2,3)) xyz = plot(data_sol, plotdensity=10000, vars=(1,2,3)) plot(plot(xyzt,xyz),plot(xy, xz, yz, layout=(1,3),w=1), layout=(2,1), size=(800,600)) ``` ## Find a local solution for the three parameters from a short data set ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short) res1 = bboptimize(obj_short;SearchRange = LooserBounds, MaxSteps = 7e3) # Tolernace is still too high to get close enough ``` ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9) res1 = bboptimize(obj_short;SearchRange = LooserBounds, MaxSteps = 7e3) # With the tolerance lower, it achieves the correct solution in 3.5 seconds. ``` ```julia obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9) res1 = bboptimize(obj_short;SearchRange = LooserBounds, MaxSteps = 7e3) # With the more accurate solver Vern9 in the solution of the ODE, the convergence is less efficient! # Fastest BlackBoxOptim: 3.5 seconds ``` # Using NLopt First, the global optimization algorithms ```julia obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9) ``` ```julia opt = Opt(:GN_ORIG_DIRECT_L, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Accurate 3.2 seconds ``` ```julia opt = Opt(:GN_CRS2_LM, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Accurate 3.0 seconds ``` ```julia opt = Opt(:GN_ISRES, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Accurate to single precision 8.2 seconds ``` ```julia opt = Opt(:GN_ESCH, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Approximatively accurate, good starting values for local optimization ``` Next, the local optimization algorithms that could be used after the global algorithms as a check on the solution and its precision. All the local optimizers are started from LocIniPar and with the narrow bounds of the Xiang2015Paper. ```julia opt = Opt(:LN_BOBYQA, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # 0.1 seconds ``` ```julia opt = Opt(:LN_NELDERMEAD, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.29 sec ``` ```julia opt = Opt(:LD_SLSQP, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.21 sec ``` ```julia opt = Opt(:LN_COBYLA, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 1.84 sec ``` ```julia opt = Opt(:LN_NEWUOA_BOUND, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.18 sec ROUNDOFF LIMITED ``` ```julia opt = Opt(:LN_PRAXIS, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.18 sec ``` ```julia opt = Opt(:LN_SBPLX, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.65 sec ``` ```julia opt = Opt(:LD_MMA, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.7 sec ``` ```julia opt = Opt(:LD_LBFGS, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.12 sec ``` ```julia opt = Opt(:LD_TNEWTON_PRECOND_RESTART, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Accurate 0.15 sec ``` ## Now let's solve the longer version for a global solution Notice from the plotting above that this ODE problem is chaotic and tends to diverge over time. In the longer version of parameter estimation, the dataset is increased to 3000 observations per variable with the same integration time step of 0.01. Vern9 solver with reltol=1e-9 and abstol=1e-9 has been established to be accurate on the time interval [0,50] ```julia # BB with Vern9 converges very slowly. The final values are within the NarrowBounds. obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),tstops=t,reltol=1e-9,abstol=1e-9) res1 = bboptimize(obj;SearchRange = LooserBounds, MaxSteps = 4e3) # Default adaptive_de_rand_1_bin_radiuslimited 33 sec [10.2183, 24.6711, 2.28969] #res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :adaptive_de_rand_1_bin, MaxSteps = 4e3) # Method 32 sec [13.2222, 25.8589, 2.56176] #res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :dxnes, MaxSteps = 2e3) # Method dxnes 119 sec [16.8648, 24.393, 2.29119] #res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :xnes, MaxSteps = 2e3) # Method xnes 304 sec [19.1647, 24.9479, 2.39467] #res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :de_rand_1_bin_radiuslimited, MaxSteps = 2e3) # Method 44 sec [13.805, 24.6054, 2.37274] #res1 = bboptimize(obj;SearchRange = LooserBounds, Method = :generating_set_search, MaxSteps = 2e3) # Method 195 sec [19.1847, 24.9492, 2.39412] ``` ```julia # using Evolutionary # N = 3 # @time result, fitness, cnt = cmaes(obj, N; μ = 3, λ = 12, iterations = 1000) # cmaes( rastrigin, N; μ = 15, λ = P, tol = 1e-8) ``` ```julia opt = Opt(:GN_ORIG_DIRECT_L, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Fail to converge ``` ```julia opt = Opt(:GN_CRS2_LM, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 20000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Hit and miss. converge approximately accurate values for local opt.91 seconds ``` ```julia opt = Opt(:GN_ISRES, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 50000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Approximately accurate within local bounds ``` ```julia opt = Opt(:GN_ESCH, 3) lower_bounds!(opt,[0.0,0.0,0.0]) upper_bounds!(opt,[22.0,60.0,6.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 20000) @time (minf,minx,ret) = NLopt.optimize(opt,GloIniPar) # Approximately accurate ``` This parameter estimation on the longer sample proves to be extremely challenging for the global optimizers. BlackBoxOptim is best in optimizing the objective function. All of the global algorithms produces final parameter estimates that could be used as starting values for further refinement with the local optimization algorithms. ```julia opt = Opt(:LN_BOBYQA, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Claims SUCCESS but does not iterate to the true values. ``` ```julia opt = Opt(:LN_NELDERMEAD, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-9) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Inaccurate final values ``` ```julia opt = Opt(:LD_SLSQP, 3) lower_bounds!(opt,[9.0,20.0,2.0]) upper_bounds!(opt,[11.0,30.0,3.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,LocIniPar) # Inaccurate final values ``` No local optimizer can improve the global solution to the true values. #### Using QuadDIRECT ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short) lower = [0.0,0.0,0.0] upper = [50.0,50.0,50.0] splits = ([1.0,5.0,15.0],[0,10,20],[0,10,20]) @time root, x0 = analyze(obj_short,splits,lower,upper) ``` ```julia minimum(root) ``` ```julia obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),tstops=t,reltol=1e-9,abstol=1e-9) lower = [0.0,0.0,0.0] upper = [50.0,50.0,50.0] splits = ([0,5.0,15.0],[0,15,30],[0,2,5]) @time root, x0 = analyze(obj,splits,lower,upper) ``` ```julia minimum(root) ``` # Conclusion: 1) As expected the Lorenz system is extremely sensitive to initial space values. Starting the integration from `r0 = [0.1,0.0,0.0]` produces convergence with the short sample of 300 observations. This can be achieved by all the global optimizers as well as most of the local optimizers. Instead starting from `r0= [-11.8,-5.1,37.5]`, as in PODES, with the shorter sample shrinks the number of successful algorithms to 3: `BBO`, `:GN_CRS2_LM `and `:LD_SLSQP`. For the longer sample, all the algorithms fail. 2) When trying to hit the real data, having a low enough tolerance on the numerical solution is key. If the numerical solution is too rough, then we can never actually hone in on the true parameters since even with the true parameters we will erroneously induce numerical error. Maybe this could be adaptive? 3) Excessively low tolerance in the numerical solution is inefficient and delays the convergence of the estimation. 4) The estimation method and the global versus local optimization make a huge difference in the timings. Here, BBO always find the correct solution for a global optimization setup. For local optimization, most methods in NLopt, like :LN_BOBYQA, solve the problem in <0.05 seconds. This is an algorithm that can scale a local optimization but we are aiming to scale a global optimization. 5) QuadDIRECT performs very well on the shorter problem but doesn't give very great results for the longer in the Lorenz case, more can be read about the algorithm [here](https://github.com/timholy/QuadDIRECT.jl). 6) Fitting shorter timespans is easier... maybe this can lead to determining a minimal sample size for the optimizers and the estimator to succeed. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
10124
--- title: Lotka-Volterra Parameter Estimation Benchmarks author: Vaibhav Dixit, Chris Rackauckas --- # Parameter estimation of Lotka Volterra model using optimisation methods ```julia using ParameterizedFunctions, OrdinaryDiffEq, DiffEqParamEstim using BlackBoxOptim, NLopt, Plots, RecursiveArrayTools, QuadDIRECT gr(fmt=:png) ``` ```julia loc_bounds = Tuple{Float64, Float64}[(0, 5), (0, 5), (0, 5), (0, 5)] glo_bounds = Tuple{Float64, Float64}[(0, 10), (0, 10), (0, 10), (0, 10)] loc_init = [1,0.5,3.5,1.5] glo_init = [5,5,5,5] ``` ```julia f = @ode_def LotkaVolterraTest begin dx = a*x - b*x*y dy = -c*y + d*x*y end a b c d ``` ```julia u0 = [1.0,1.0] #initial values tspan = (0.0,10.0) p = [1.5,1.0,3.0,1,0] #parameters used, these need to be estimated from the data tspan = (0.0, 30.0) # sample of 3000 observations over the (0,30) timespan prob = ODEProblem(f, u0, tspan,p) tspan2 = (0.0, 3.0) # sample of 3000 observations over the (0,30) timespan prob_short = ODEProblem(f, u0, tspan2,p) ``` ```julia dt = 30.0/3000 tf = 30.0 tinterval = 0:dt:tf t = collect(tinterval) ``` ```julia h = 0.01 M = 300 tstart = 0.0 tstop = tstart + M * h tinterval_short = 0:h:tstop t_short = collect(tinterval_short) ``` ```julia #Generate Data data_sol_short = solve(prob_short,Tsit5(),saveat=t_short,reltol=1e-9,abstol=1e-9) data_short = convert(Array, data_sol_short) data_sol = solve(prob,Tsit5(),saveat=t,reltol=1e-9,abstol=1e-9) data = convert(Array, data_sol) ``` #### Plot of the solution ##### Short Solution ```julia p1 = plot(data_sol_short) ``` ##### Longer Solution ```julia p2 = plot(data_sol) ``` ### Local Solution from the short data set ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short) res1 = bboptimize(obj_short;SearchRange = glo_bounds, MaxSteps = 7e3) # Lower tolerance could lead to smaller fitness (more accuracy) ``` ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9) res1 = bboptimize(obj_short;SearchRange = glo_bounds, MaxSteps = 7e3) # Change in tolerance makes it worse ``` ```julia obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9) res1 = bboptimize(obj_short;SearchRange = glo_bounds, MaxSteps = 7e3) # using the moe accurate Vern9() reduces the fitness marginally and leads to some increase in time taken ``` # Using NLopt #### Global Optimisation first ```julia obj_short = build_loss_objective(prob_short,Vern9(),L2Loss(t_short,data_short),tstops=t_short,reltol=1e-9,abstol=1e-9) ``` ```julia opt = Opt(:GN_ORIG_DIRECT_L, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_CRS2_LM, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ISRES, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ESCH, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` Now local optimization algorithms are used to check the global ones, these use the local constraints, different intial values and time step ```julia opt = Opt(:LN_BOBYQA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_NELDERMEAD, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_SLSQP, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_COBYLA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_NEWUOA_BOUND, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_PRAXIS, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_SBPLX, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_MMA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_TNEWTON_PRECOND_RESTART, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj_short.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ## Now the longer problem is solved for a global solution Vern9 solver with reltol=1e-9 and abstol=1e-9 is used and the dataset is increased to 3000 observations per variable with the same integration time step of 0.01. ```julia obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),tstops=t,reltol=1e-9,abstol=1e-9) res1 = bboptimize(obj;SearchRange = glo_bounds, MaxSteps = 4e3) ``` ```julia opt = Opt(:GN_ORIG_DIRECT_L, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_CRS2_LM, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 20000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ISRES, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 50000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:GN_ESCH, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[10.0,10.0,10.0,10.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 20000) @time (minf,minx,ret) = NLopt.optimize(opt,glo_init) ``` ```julia opt = Opt(:LN_BOBYQA, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LN_NELDERMEAD, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-9) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` ```julia opt = Opt(:LD_SLSQP, 4) lower_bounds!(opt,[0.0,0.0,0.0,0.0]) upper_bounds!(opt,[5.0,5.0,5.0,5.0]) min_objective!(opt, obj.cost_function2) xtol_rel!(opt,1e-12) maxeval!(opt, 10000) @time (minf,minx,ret) = NLopt.optimize(opt,loc_init) ``` #### Using QuadDIRECT ```julia obj_short = build_loss_objective(prob_short,Tsit5(),L2Loss(t_short,data_short),tstops=t_short) lower = [0.0,0.0,0.0,0.0] upper = [5.0,5.0,5.0,5.0] splits = ([0.0,1.0,3.0],[0.0,1.0,3.0],[0.0,1.0,3.0],[0.0,1.0,3.0]) root, x0 = analyze(obj_short,splits,lower,upper) ``` ```julia minimum(root) ``` ```julia obj = build_loss_objective(prob,Vern9(),L2Loss(t,data),tstops=t,reltol=1e-9,abstol=1e-9) lower = [0.0,0.0,0.0,0.0] upper = [10.0,10.0,10.0,10.0] splits = ([0.0,3.0,6.0],[0.0,3.0,6.0],[0.0,3.0,6.0],[0.0,3.0,6.0]) root, x0 = analyze(obj,splits,lower,upper) ``` ```julia minimum(root) ``` #### Parameter estimation on the longer sample proves to be extremely challenging for some of the global optimizers. A few give the accurate values, BlacBoxOptim also performs quite well while others seem to struggle with accuracy a lot. # Conclusion In general we observe that lower tolerance lead to higher accuracy but too low tolerance could affect the convergance time drastically. Also fitting a shorter timespan seems to be easier in comparision (quite intutively). NLOpt methods seem to give great accuracy in the shorter problem with a lot of the algorithms giving 0 fitness, BBO performs very well on it with marginal change with `tol` values. In case of global optimization of the longer problem there is some difference in the perfomance amongst the algorithms with `LD_SLSQP` `GN_ESCH` `GN_ISRES` `GN_ORIG_DIRECT_L` performing among the worse, BBO also gives a bit high fitness in comparison. QuadDIRECT gives accurate results in the case of the shorter problem but doesn't perform very well in the longer problem case. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
10127
--- title: Quorum Sensing Work-Precision Diagrams author: David Widmann, Chris Rackauckas --- # Quorum Sensing Here we test a model of quorum sensing of Pseudomonas putida IsoF in continuous cultures with constant delay which was published by K. Buddrus-Schiemann et al. in "Analysis of N-Acylhomoserine Lactone Dynamics in Continuous Cultures of Pseudomonas Putida IsoF By Use of ELISA and UHPLC/qTOF-MS-derived Measurements and Mathematical Models", Analytical and Bioanalytical Chemistry, 2014. ```julia using DelayDiffEq, DiffEqDevTools, DDEProblemLibrary, Plots import DDEProblemLibrary: prob_dde_qs gr() sol = solve(prob_dde_qs, MethodOfSteps(Vern9(); fpsolve = NLFunctional(; max_iter = 1000)); reltol=1e-14, abstol=1e-14) plot(sol) ``` Particularly, we are interested in the third, low-level component of the system: ```julia sol = solve(prob_dde_qs, MethodOfSteps(Vern9(); fpsolve = NLFunctional(; max_iter = 1000)); reltol=1e-14, abstol=1e-14, save_idxs=3) test_sol = TestSolution(sol) plot(sol) ``` ## Qualitative comparisons First we compare the quality of the solution's third component for different algorithms, using the default tolerances. ### RK methods ```julia sol = solve(prob_dde_qs, MethodOfSteps(BS3()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(Tsit5()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(RK4()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(DP5()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(DP8()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(OwrenZen3()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(OwrenZen4()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(OwrenZen5()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ### Rosenbrock methods ```julia sol = solve(prob_dde_qs, MethodOfSteps(Rosenbrock23()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(Rosenbrock32()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(Rodas4()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(Rodas5()); reltol=1e-4, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ### Lazy interpolants ```julia sol = solve(prob_dde_qs, MethodOfSteps(Vern7()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ```julia sol = solve(prob_dde_qs, MethodOfSteps(Vern9()); reltol=1e-3, abstol=1e-6, save_idxs=3) p = plot(sol); scatter!(p,sol.t, sol.u) p ``` ## Qualitative comparisons Now we compare these methods quantitatively. ### High tolerances #### RK methods We start with RK methods at high tolerances. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` We also compare interpolation errors: ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` And the maximal interpolation error: ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(BS3())), Dict(:alg=>MethodOfSteps(Tsit5())), Dict(:alg=>MethodOfSteps(RK4())), Dict(:alg=>MethodOfSteps(DP5())), Dict(:alg=>MethodOfSteps(OwrenZen3())), Dict(:alg=>MethodOfSteps(OwrenZen4())), Dict(:alg=>MethodOfSteps(OwrenZen5()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L∞) plot(wp) ``` Since the correct solution is in the range of 1e-7, we see that most solutions, even at the lower end of tested tolerances, always lead to relative maximal interpolation errors of at least 1e-1 (and usually worse). `RK4` performs slightly better with relative maximal errors of at least 1e-2. This matches our qualitative analysis above. #### Rosenbrock methods We repeat these tests with Rosenbrock methods, and include `RK4` as reference. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())), Dict(:alg=>MethodOfSteps(Rosenbrock32())), Dict(:alg=>MethodOfSteps(Rodas4())), Dict(:alg=>MethodOfSteps(RK4()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())), Dict(:alg=>MethodOfSteps(Rosenbrock32())), Dict(:alg=>MethodOfSteps(Rodas4())), Dict(:alg=>MethodOfSteps(RK4()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())), Dict(:alg=>MethodOfSteps(Rosenbrock32())), Dict(:alg=>MethodOfSteps(Rodas4())), Dict(:alg=>MethodOfSteps(RK4()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L∞) plot(wp) ``` Out of the tested Rosenbrock methods `Rodas4` and `Rosenbrock23` perform best at high tolerances. #### Lazy interpolants Finally we test the Verner methods with lazy interpolants, and include `Rosenbrock23` as reference. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(Rosenbrock23()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(Rosenbrock23()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>MethodOfSteps(Vern6())), Dict(:alg=>MethodOfSteps(Vern7())), Dict(:alg=>MethodOfSteps(Vern8())), Dict(:alg=>MethodOfSteps(Vern9())), Dict(:alg=>MethodOfSteps(Rosenbrock23()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L∞) plot(wp) ``` All in all, at high tolerances `Rodas5` and `Rosenbrock23` are the best methods for solving this stiff DDE. ### Low tolerances #### Rosenbrock methods We repeat our tests of Rosenbrock methods `Rosenbrock23` and `Rodas5` at low tolerances: ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())), Dict(:alg=>MethodOfSteps(Rodas4())), Dict(:alg=>MethodOfSteps(Rodas5()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:final) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())), Dict(:alg=>MethodOfSteps(Rodas4())), Dict(:alg=>MethodOfSteps(Rodas5()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (8:11) reltols = 1.0 ./ 10.0 .^ (5:8) setups = [Dict(:alg=>MethodOfSteps(Rosenbrock23())), Dict(:alg=>MethodOfSteps(Rodas4())), Dict(:alg=>MethodOfSteps(Rodas5()))] wp = WorkPrecisionSet(prob_dde_qs,abstols,reltols,setups; save_idxs=3,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L∞) plot(wp) ``` Thus at low tolerances `Rodas5` outperforms `Rosenbrock23`. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
17152
--- title: Brusselator Work-Precision Diagrams author: Chris Rackauckas and Utkarsh --- ```julia using OrdinaryDiffEq, DiffEqDevTools, Sundials, ParameterizedFunctions, Plots, ODEInterfaceDiffEq, LSODA, SparseArrays, LinearSolve, LinearAlgebra, IncompleteLU, AlgebraicMultigrid, Symbolics, ModelingToolkit gr() const N = 8 xyd_brusselator = range(0,stop=1,length=N) brusselator_f(x, y, t) = (((x-0.3)^2 + (y-0.6)^2) <= 0.1^2) * (t >= 1.1) * 5. limit(a, N) = a == N+1 ? 1 : a == 0 ? N : a function brusselator_2d_loop(du, u, p, t) A, B, alpha, dx = p alpha = alpha/dx^2 @inbounds for I in CartesianIndices((N, N)) i, j = Tuple(I) x, y = xyd_brusselator[I[1]], xyd_brusselator[I[2]] ip1, im1, jp1, jm1 = limit(i+1, N), limit(i-1, N), limit(j+1, N), limit(j-1, N) du[i,j,1] = alpha*(u[im1,j,1] + u[ip1,j,1] + u[i,jp1,1] + u[i,jm1,1] - 4u[i,j,1]) + B + u[i,j,1]^2*u[i,j,2] - (A + 1)*u[i,j,1] + brusselator_f(x, y, t) du[i,j,2] = alpha*(u[im1,j,2] + u[ip1,j,2] + u[i,jp1,2] + u[i,jm1,2] - 4u[i,j,2]) + A*u[i,j,1] - u[i,j,1]^2*u[i,j,2] end end p = (3.4, 1., 10., step(xyd_brusselator)) input = rand(N,N,2) output = similar(input) sparsity_pattern = Symbolics.jacobian_sparsity(brusselator_2d_loop,output,input,p,0.0) jac_sparsity = Float64.(sparse(sparsity_pattern)) f = ODEFunction{true, SciMLBase.FullSpecialize}(brusselator_2d_loop;jac_prototype=jac_sparsity) function init_brusselator_2d(xyd) N = length(xyd) u = zeros(N, N, 2) for I in CartesianIndices((N, N)) x = xyd[I[1]] y = xyd[I[2]] u[I,1] = 22*(y*(1-y))^(3/2) u[I,2] = 27*(x*(1-x))^(3/2) end u end u0 = init_brusselator_2d(xyd_brusselator) prob = ODEProblem(f,u0,(0.,11.5),p); ``` ```julia prob_mtk = ODEProblem(modelingtoolkitize(prob),[],(0.0,11.5),jac=true,sparse=true); ``` Also comparing with MethodOfLines.jl: ```julia using MethodOfLines, DomainSets @parameters x y t @variables u(..) v(..) Dt = Differential(t) Dx = Differential(x) Dy = Differential(y) Dxx = Differential(x)^2 Dyy = Differential(y)^2 ∇²(u) = Dxx(u) + Dyy(u) brusselator_f(x, y, t) = (((x-0.3)^2 + (y-0.6)^2) <= 0.1^2) * (t >= 1.1) * 5. x_min = y_min = t_min = 0.0 x_max = y_max = 1.0 t_max = 11.5 α = 10. u0_mol(x,y,t) = 22(y*(1-y))^(3/2) v0_mol(x,y,t) = 27(x*(1-x))^(3/2) eq = [Dt(u(x,y,t)) ~ 1. + v(x,y,t)*u(x,y,t)^2 - 4.4*u(x,y,t) + α*∇²(u(x,y,t)) + brusselator_f(x, y, t), Dt(v(x,y,t)) ~ 3.4*u(x,y,t) - v(x,y,t)*u(x,y,t)^2 + α*∇²(v(x,y,t))] domains = [x ∈ Interval(x_min, x_max), y ∈ Interval(y_min, y_max), t ∈ Interval(t_min, t_max)] bcs = [u(x,y,0) ~ u0_mol(x,y,0), u(0,y,t) ~ u(1,y,t), u(x,0,t) ~ u(x,1,t), v(x,y,0) ~ v0_mol(x,y,0), v(0,y,t) ~ v(1,y,t), v(x,0,t) ~ v(x,1,t)] @named pdesys = PDESystem(eq,bcs,domains,[x,y,t],[u(x,y,t),v(x,y,t)]) # Method of lines discretization dx = 1/N dy = 1/N order = 2 discretization = MOLFiniteDifference([x=>dx, y=>dy], t; approx_order = order, jac = true, sparse = true, wrap = Val(false)) # Convert the PDE system into an ODE problem prob_mol = discretize(pdesys,discretization) ``` ```julia using Base.Experimental: Const, @aliasscope macro vp(expr) nodes = (Symbol("llvm.loop.vectorize.predicate.enable"), 1) if expr.head != :for error("Syntax error: loopinfo needs a for loop") end push!(expr.args[2].args, Expr(:loopinfo, nodes)) return esc(expr) end struct Brusselator2DLoop <: Function N::Int s::Float64 end function (b::Brusselator2DLoop)(du, unc, p, t) N = b.N s = b.s A, B, alpha, dx = p alpha = alpha/abs2(dx) u = Base.Experimental.Const(unc) Base.Experimental.@aliasscope begin @inbounds @fastmath begin b = ((abs2(-0.3) + abs2(-0.6)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[N,1,1] + u[2,1,1] + u[1,2,1] + u[1,N,1] - 4u[1,1,1]) + B + abs2(u[1,1,1])*u[1,1,2] - (A + 1)*u[1,1,1] + b du2 = alpha*(u[N,1,2] + u[2,1,2] + u[1,2,2] + u[1,N,2] - 4u[1,1,2]) + A*u[1,1,1] - abs2(u[1,1,1])*u[1,1,2] du[1,1,1] = du1 du[1,1,2] = du2 @vp for i = 2:N-1 x = (i-1)*s ip1 = i+1 im1 = i-1 b = ((abs2(x-0.3) + abs2(-0.6)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[im1,1,1] + u[ip1,1,1] + u[i,2,1] + u[i,N,1] - 4u[i,1,1]) + B + abs2(u[i,1,1])*u[i,1,2] - (A + 1)*u[i,1,1] + b du2 = alpha*(u[im1,1,2] + u[ip1,1,2] + u[i,2,2] + u[i,N,2] - 4u[i,1,2]) + A*u[i,1,1] - abs2(u[i,1,1])*u[i,1,2] du[i,1,1] = du1 du[i,1,2] = du2 end b = ((abs2(0.7) + abs2(-0.6)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[N-1,1,1] + u[1,1,1] + u[N,2,1] + u[N,N,1] - 4u[N,1,1]) + B + abs2(u[N,1,1])*u[N,1,2] - (A + 1)*u[N,1,1] + b du2 = alpha*(u[N-1,1,2] + u[1,1,2] + u[N,2,2] + u[N,N,2] - 4u[N,1,2]) + A*u[N,1,1] - abs2(u[N,1,1])*u[N,1,2] du[N,1,1] = du1 du[N,1,2] = du2 for j = 2:N-1 y = (j-1)*s jp1 = j+1 jm1 = j-1 b0 = ((abs2(-0.3) + abs2(y-0.6)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du[1,j,1] = alpha*(u[N,j,1] + u[2,j,1] + u[1,jp1,1] + u[1,jm1,1] - 4u[1,j,1]) + B + abs2(u[1,j,1])*u[1,j,2] - (A + 1)*u[1,j,1] + b0 du[1,j,2] = alpha*(u[N,j,2] + u[2,j,2] + u[1,jp1,2] + u[1,jm1,2] - 4u[1,j,2]) + A*u[1,j,1] - abs2(u[1,j,1])*u[1,j,2] @vp for i = 2:N-1 x = (i-1)*s b = ((abs2(x-0.3) + abs2(y-0.6)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[i-1,j,1] + u[i+1,j,1] + u[i,jp1,1] + u[i,jm1,1] - 4u[i,j,1]) + B + abs2(u[i,j,1])*u[i,j,2] - (A + 1)*u[i,j,1] + b du2 = alpha*(u[i-1,j,2] + u[i+1,j,2] + u[i,jp1,2] + u[i,jm1,2] - 4u[i,j,2]) + A*u[i,j,1] - abs2(u[i,j,1])*u[i,j,2] du[i,j,1] = du1 du[i,j,2] = du2 end bN = ((abs2(0.7) + abs2(y-0.6)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du[N,j,1] = alpha*(u[N-1,j,1] + u[1,j,1] + u[N,jp1,1] + u[N,jm1,1] - 4u[N,j,1]) + B + abs2(u[N,j,1])*u[N,j,2] - (A + 1)*u[N,j,1] + bN du[N,j,2] = alpha*(u[N-1,j,2] + u[1,j,2] + u[N,jp1,2] + u[N,jm1,2] - 4u[N,j,2]) + A*u[N,j,1] - abs2(u[N,j,1])*u[N,j,2] end b = ((abs2(-0.3) + abs2(0.4)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[N,N,1] + u[2,N,1] + u[1,1,1] + u[1,N-1,1] - 4u[1,N,1]) + B + abs2(u[1,N,1])*u[1,N,2] - (A + 1)*u[1,N,1] + b du2 = alpha*(u[N,N,2] + u[2,N,2] + u[1,1,2] + u[1,N-1,2] - 4u[1,N,2]) + A*u[1,N,1] - abs2(u[1,N,1])*u[1,N,2] du[1,N,1] = du1 du[1,N,2] = du2 @vp for i = 2:N-1 x = (i-1)*s ip1 = i+1 im1 = i-1 b = ((abs2(x-0.3) + abs2(0.4)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[im1,N,1] + u[ip1,N,1] + u[i,1,1] + u[i,N-1,1] - 4u[i,N,1]) + B + abs2(u[i,N,1])*u[i,N,2] - (A + 1)*u[i,N,1] + b du2 = alpha*(u[im1,N,2] + u[ip1,N,2] + u[i,1,2] + u[i,N-1,2] - 4u[i,N,2]) + A*u[i,N,1] - abs2(u[i,N,1])*u[i,N,2] du[i,N,1] = du1 du[i,N,2] = du2 end b = ((abs2(0.7) + abs2(0.4)) <= abs2(0.1)) * (t >= 1.1) * 5.0 du1 = alpha*(u[N-1,N,1] + u[1,N,1] + u[N,1,1] + u[N,N-1,1] - 4u[N,N,1]) + B + abs2(u[N,N,1])*u[N,N,2] - (A + 1)*u[N,N,1] + b du2 = alpha*(u[N-1,N,2] + u[1,N,2] + u[N,1,2] + u[N,N-1,2] - 4u[N,N,2]) + A*u[N,N,1] - abs2(u[N,N,1])*u[N,N,2] du[N,N,1] = du1 du[N,N,2] = du2 end end end function fast_bruss(N) xyd_brusselator = range(0,stop=1,length=N) brusselator_2d_loop = Brusselator2DLoop(N,Float64(step(xyd_brusselator))) p = (3.4, 1., 10., step(xyd_brusselator)) input = rand(N,N,2) output = similar(input) sparsity_pattern = Symbolics.jacobian_sparsity(brusselator_2d_loop,output,input,p,0.0) jac_sparsity = Float64.(sparse(sparsity_pattern)) f = ODEFunction(brusselator_2d_loop;jac_prototype=jac_sparsity) u0 = zeros(N, N, 2) @inbounds for I in CartesianIndices((N, N)) x = xyd_brusselator[I[1]] y = xyd_brusselator[I[2]] u0[I,1] = 22*(y*(1-y))^(3/2) u0[I,2] = 27*(x*(1-x))^(3/2) end return ODEProblem(f,u0,(0.,11.5),p) end fastprob = fast_bruss(N) ``` ```julia sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(prob_mtk,CVODE_BDF(linear_solver = :KLU),abstol=1/10^14,reltol=1/10^14) sol3 = solve(prob_mol,CVODE_BDF(linear_solver = :KLU),abstol=1/10^14,reltol=1/10^14,wrap=Val(false)) ``` ```julia test_sol = [sol,sol2,sol,sol3] probs = [prob,prob_mtk,fastprob,prob_mol]; ``` ```julia plot(sol,vars = 1) ``` ```julia plot(sol,vars = 10) ``` ## Setup Preconditioners ### OrdinaryDiffEq ```julia function incompletelu(W,du,u,p,t,newW,Plprev,Prprev,solverdata) if newW === nothing || newW Pl = ilu(convert(AbstractMatrix,W), τ = 50.0) else Pl = Plprev end Pl,nothing end function algebraicmultigrid(W,du,u,p,t,newW,Plprev,Prprev,solverdata) if newW === nothing || newW Pl = aspreconditioner(ruge_stuben(convert(AbstractMatrix,W))) else Pl = Plprev end Pl,nothing end ``` ### Sundials ```julia const jaccache = prob_mtk.f.jac(prob.u0,prob.p,0.0) const W = I - 1.0*jaccache prectmp = ilu(W, τ = 50.0) const preccache = Ref(prectmp) function psetupilu(p, t, u, du, jok, jcurPtr, gamma) if !jok prob_mtk.f.jac(jaccache,u,p,t) jcurPtr[] = true # W = I - gamma*J @. W = -gamma*jaccache idxs = diagind(W) @. @view(W[idxs]) = @view(W[idxs]) + 1 # Build preconditioner on W preccache[] = ilu(W, τ = 5.0) end end function precilu(z,r,p,t,y,fy,gamma,delta,lr) ldiv!(z,preccache[],r) end prectmp2 = aspreconditioner(ruge_stuben(W, presmoother = AlgebraicMultigrid.Jacobi(rand(size(W,1))), postsmoother = AlgebraicMultigrid.Jacobi(rand(size(W,1))))) const preccache2 = Ref(prectmp2) function psetupamg(p, t, u, du, jok, jcurPtr, gamma) if !jok prob_mtk.f.jac(jaccache,u,p,t) jcurPtr[] = true # W = I - gamma*J @. W = -gamma*jaccache idxs = diagind(W) @. @view(W[idxs]) = @view(W[idxs]) + 1 # Build preconditioner on W preccache2[] = aspreconditioner(ruge_stuben(W, presmoother = AlgebraicMultigrid.Jacobi(rand(size(W,1))), postsmoother = AlgebraicMultigrid.Jacobi(rand(size(W,1))))) end end function precamg(z,r,p,t,y,fy,gamma,delta,lr) ldiv!(z,preccache2[],r) end ``` ## Compare Problem Implementations ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [ Dict(:alg => KenCarp47(linsolve=KLUFactorization())), Dict(:alg => KenCarp47(linsolve=KLUFactorization()), :prob_choice => 2), Dict(:alg => KenCarp47(linsolve=KLUFactorization()), :prob_choice => 3), Dict(:alg => KenCarp47(linsolve=KLUFactorization()), :prob_choice => 4), Dict(:alg => KenCarp47(linsolve=KrylovJL_GMRES())), Dict(:alg => KenCarp47(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg => KenCarp47(linsolve=KrylovJL_GMRES()), :prob_choice => 3), Dict(:alg => KenCarp47(linsolve=KrylovJL_GMRES()), :prob_choice => 4),] names = ["KenCarp47 KLU","KenCarp47 KLU MTK","KenCarp47 KLU FastBruss", "KenCarp47 KLU MOL", "KenCarp47 GMRES", "KenCarp47 GMRES MTK", "KenCarp47 GMRES FastBruss", "KenCarp47 GMRES MOL"]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;names = names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10,wrap=Val(false)) plot(wp) ``` ## High Tolerances This is the speed when you just want the answer. ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [ Dict(:alg=>CVODE_BDF(linear_solver = :KLU), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver = :GMRES)), Dict(:alg=>CVODE_BDF(linear_solver = :GMRES), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precilu,psetup=psetupilu,prec_side=1)), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precamg,psetup=psetupamg,prec_side=1)), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precilu,psetup=psetupilu,prec_side=1), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precamg,psetup=psetupamg,prec_side=1), :prob_choice => 2), ] names = ["CVODE MTK KLU","CVODE GMRES","CVODE MTK GMRES", "CVODE iLU GMRES", "CVODE AMG GMRES", "CVODE iLU MTK GMRES", "CVODE AMG MTK GMRES"]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;names=names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [ Dict(:alg=>KenCarp47(linsolve=KLUFactorization())), Dict(:alg=>KenCarp47(linsolve=KLUFactorization()), :prob_choice => 2), Dict(:alg=>KenCarp47(linsolve=UMFPACKFactorization())), Dict(:alg=>KenCarp47(linsolve=UMFPACKFactorization()), :prob_choice => 2), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES())), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES(),precs=incompletelu,concrete_jac=true)), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES(),precs=incompletelu,concrete_jac=true), :prob_choice => 2), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES(),precs=algebraicmultigrid,concrete_jac=true)), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES(),precs=algebraicmultigrid,concrete_jac=true), :prob_choice => 2), ] names = ["KenCarp47 KLU","KenCarp47 KLU MTK","KenCarp47 UMFPACK", "KenCarp47 UMFPACK MTK", "KenCarp47 GMRES", "KenCarp47 GMRES MTK", "KenCarp47 iLU GMRES", "KenCarp47 iLU GMRES MTK", "KenCarp47 AMG GMRES", "KenCarp47 AMG GMRES MTK"]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;names = names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [ Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp47()), # Dict(:alg=>QNDF()), # bad Dict(:alg=>FBDF()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [ Dict(:alg=>KenCarp47(linsolve=KLUFactorization()), :prob_choice => 2), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg=>FBDF(linsolve=KLUFactorization()), :prob_choice => 2), Dict(:alg=>FBDF(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver = :KLU), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precilu,psetup=psetupilu,prec_side=1), :prob_choice => 2), ] names = ["KenCarp47 KLU MTK", "KenCarp47 GMRES MTK", "FBDF KLU MTK", "FBDF GMRES MTK", "CVODE MTK KLU", "CVODE iLU MTK GMRES" ]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;names = names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ### Low Tolerances This is the speed at lower tolerances, measuring what's good when accuracy is needed. ```julia abstols = 1.0 ./ 10.0 .^ (7:12) reltols = 1.0 ./ 10.0 .^ (4:9) setups = [ Dict(:alg=>CVODE_BDF(linear_solver = :KLU), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver = :GMRES)), Dict(:alg=>CVODE_BDF(linear_solver = :GMRES), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precilu,psetup=psetupilu,prec_side=1)), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precamg,psetup=psetupamg,prec_side=1)), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precilu,psetup=psetupilu,prec_side=1), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precamg,psetup=psetupamg,prec_side=1), :prob_choice => 2), ] names = ["CVODE MTK KLU","CVODE GMRES","CVODE MTK GMRES", "CVODE iLU GMRES", "CVODE AMG GMRES", "CVODE iLU MTK GMRES", "CVODE AMG MTK GMRES"]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;names = names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [ Dict(:alg=>KenCarp47(linsolve=KLUFactorization()), :prob_choice => 2), Dict(:alg=>KenCarp47(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg=>FBDF(linsolve=KLUFactorization()), :prob_choice => 2), Dict(:alg=>FBDF(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg=>Rodas5P(linsolve=KrylovJL_GMRES()), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver = :KLU), :prob_choice => 2), Dict(:alg=>CVODE_BDF(linear_solver=:GMRES,prec=precilu,psetup=psetupilu,prec_side=1), :prob_choice => 2), ] names = ["KenCarp47 KLU MTK", "KenCarp47 GMRES MTK", "FBDF KLU MTK", "FBDF GMRES MTK", "Rodas5P GMRES MTK", "CVODE MTK KLU", "CVODE iLU MTK GMRES" ]; wp = WorkPrecisionSet(probs,abstols,reltols,setups;names = names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
10640
--- title: HIRES Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, ParameterizedFunctions, Plots, ODE, ODEInterfaceDiffEq, LSODA, DiffEqDevTools, Sundials using LinearAlgebra, StaticArrays gr() #gr(fmt=:png) f = @ode_def Hires begin dy1 = -1.71*y1 + 0.43*y2 + 8.32*y3 + 0.0007 dy2 = 1.71*y1 - 8.75*y2 dy3 = -10.03*y3 + 0.43*y4 + 0.035*y5 dy4 = 8.32*y2 + 1.71*y3 - 1.12*y4 dy5 = -1.745*y5 + 0.43*y6 + 0.43*y7 dy6 = -280.0*y6*y8 + 0.69*y4 + 1.71*y5 - 0.43*y6 + 0.69*y7 dy7 = 280.0*y6*y8 - 1.81*y7 dy8 = -280.0*y6*y8 + 1.81*y7 end u0 = zeros(8) u0[1] = 1 u0[8] = 0.0057 prob = ODEProblem{true, SciMLBase.FullSpecialize}(f,u0,(0.0,321.8122)) probstatic = ODEProblem{false}(f,SVector{8}(u0),(0.0,321.8122)) sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Rodas5P(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; abstols = 1.0 ./ 10.0 .^ (4:11) reltols = 1.0 ./ 10.0 .^ (1:8); ``` ```julia plot(sol) ``` ```julia plot(sol,tspan=(0.0,5.0)) ``` ## Omissions The following were omitted from the tests due to convergence failures. ODE.jl's adaptivity is not able to stabilize its algorithms, while GeometricIntegratorsDiffEq has not upgraded to Julia 1.0. GeometricIntegrators.jl's methods used to be either fail to converge at comparable dts (or on some computers errors due to type conversions). ```julia #sol = solve(prob,ode23s()); println("Total ODE.jl steps: $(length(sol))") #using GeometricIntegratorsDiffEq #try # sol = solve(prob,GIRadIIA3(),dt=1/10) #catch e # println(e) #end ``` The stabilized explicit methods are not stable enough to handle this problem well. While they don't diverge, they are really slow. ```julia setups = [ #Dict(:alg=>ROCK2()), #Dict(:alg=>ROCK4()) #Dict(:alg=>ESERK5()) ] ``` ## High Tolerances This is the speed when you just want the answer. ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>ROS34PW1a()), Dict(:alg=>lsoda()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;dense = false,verbose=false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Kvaerno3()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp3()), # Dict(:alg=>SDIRK2()), # Removed because it's bad Dict(:alg=>radau())] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;dense = false,verbose=false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp4(), :prob_choice => 2), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(order=5)), Dict(:alg=>ARKODE()), Dict(:alg=>ARKODE(order=3))] names = ["Rosenbrock23" "Rosenbrock23 Static" "KenCarp5" "KenCarp4" "KenCarp3" "ARKODE5" "ARKODE4" "ARKODE3"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;dense = false,verbose=false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>TRBDF2()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), Dict(:alg=>ABDF2()), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>Exprb43()), Dict(:alg=>Exprb32()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ### Low Tolerances This is the speed at lower tolerances, measuring what's good when accuracy is needed. ```julia abstols = 1.0 ./ 10.0 .^ (7:13) reltols = 1.0 ./ 10.0 .^ (4:10) setups = [ Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>CVODE_BDF()), Dict(:alg=>ddebdf()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>lsoda()), Dict(:alg=>RadauIIA5()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia setups = [Dict(:alg=>GRK4A()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>Kvaerno5()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>lsoda()), Dict(:alg=>KenCarp4()), Dict(:alg=>Rodas4()), Dict(:alg=>radau()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2) plot(wp) ``` ```julia setups = [Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp4(), :prob_choice => 2), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(order=5)), Dict(:alg=>ARKODE()), Dict(:alg=>ARKODE(order=3))] names = ["Rodas5" "Rodas5 Static" "KenCarp5" "KenCarp4" "KenCarp4 Static" "KenCarp3" "ARKODE5" "ARKODE4" "ARKODE3"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2) plot(wp) ``` The following algorithms were removed since they failed. ```julia #setups = [#Dict(:alg=>Hairer4()), #Dict(:alg=>Hairer42()), #Dict(:alg=>Rodas3()), #Dict(:alg=>Kvaerno4()), #Dict(:alg=>KenCarp5()), #Dict(:alg=>Cash4()) #] #wp = WorkPrecisionSet(probs,abstols,reltols,setups; # save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) #plot(wp) ``` Multithreading with Parallel Extrapolation Methods ```julia #Setting BLAS to one thread to measure gains LinearAlgebra.BLAS.set_num_threads(1) abstols = 1.0 ./ 10.0 .^ (10:12) reltols = 1.0 ./ 10.0 .^ (7:9) setups = [ Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>QNDF()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>seulex()), Dict(:alg=>ImplicitEulerExtrapolation(min_order = 4, init_order = 7,threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerExtrapolation(min_order = 4, init_order = 7,threading = false)), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(min_order = 4, init_order = 7, threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(min_order = 4, init_order = 7, threading = false)), Dict(:alg=>ImplicitHairerWannerExtrapolation(min_order = 3, init_order = 6,threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitHairerWannerExtrapolation(min_order = 3, init_order = 6,threading = false)), ] solnames = ["CVODE_BDF","KenCarp4","Rodas4","Rodas4 Static","Rodas5P","Rodas5P Static","QNDF","lsoda","radau","seulex","ImplEulerExtpl (threaded)", "ImplEulerExtpl (non-threaded)", "ImplEulerBaryExtpl (threaded)","ImplEulerBaryExtpl (non-threaded)","ImplHWExtpl (threaded)","ImplHWExtpl (non-threaded)"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names = solnames,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp, title = "Implicit Methods: HIRES",legend=:outertopleft,size = (1000,500), xticks = 10.0 .^ (-15:1:1), yticks = 10.0 .^ (-6:0.3:5), bottom_margin= 5Plots.mm) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
10359
--- title: OREGO Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, DiffEqDevTools, ParameterizedFunctions, Plots, ODE, ODEInterfaceDiffEq, LSODA, Sundials gr() #gr(fmt=:png) using LinearAlgebra, StaticArrays f = @ode_def Orego begin dy1 = p1*(y2+y1*(1-p2*y1-y2)) dy2 = (y3-(1+y1)*y2)/p1 dy3 = p3*(y1-y3) end p1 p2 p3 p = SA[77.27,8.375e-6,0.161] prob = ODEProblem{true, SciMLBase.FullSpecialize}(f,[1.0,2.0,3.0],(0.0,30.0),p) probstatic = ODEProblem{false}(f,SA[1.0,2.0,3.0],(0.0,30.0),p) sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Rodas5P(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; abstols = 1.0 ./ 10.0 .^ (4:11) reltols = 1.0 ./ 10.0 .^ (1:8); ``` ```julia plot_prob = ODEProblem(f,[1.0,2.0,3.0],(0.0,400.0),p) sol = solve(plot_prob,CVODE_BDF()) plot(sol,yscale=:log10) ``` ## Omissions and Tweaking The following were omitted from the tests due to convergence failures. ODE.jl's adaptivity is not able to stabilize its algorithms, while GeometricIntegratorsDiffEq has not upgraded to Julia 1.0. GeometricIntegrators.jl's methods used to be either fail to converge at comparable dts (or on some computers errors due to type conversions). ```julia #sol = solve(prob,ode23s()); println("Total ODE.jl steps: $(length(sol))") #using GeometricIntegratorsDiffEq #try # sol = solve(prob,GIRadIIA3(),dt=1/10) #catch e # println(e) #end ``` ```julia sol = solve(prob,ARKODE(),abstol=1e-5,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(nonlinear_convergence_coefficient = 1e-3),abstol=1e-5,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(order=3),abstol=1e-5,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(order=3,nonlinear_convergence_coefficient = 1e-5),abstol=1e-5,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(order=5),abstol=1e-5,reltol=1e-1); ``` The stabilized explicit methods are not stable enough to handle this problem well. While they don't diverge, they are really slow. ```julia setups = [ #Dict(:alg=>ROCK2()) #Unstable #Dict(:alg=>ROCK4()) #needs more iterations #Dict(:alg=>ESERK5()), ] ``` The EPIRK and exponential methods also fail: ```julia sol = solve(prob,EXPRB53s3(),dt=2.0^(-8)); sol = solve(prob,EPIRK4s3B(),dt=2.0^(-8)); sol = solve(prob,EPIRK5P2(),dt=2.0^(-8)); ``` PDIRK44 also fails ```julia sol = solve(prob,PDIRK44(),dt=2.0^(-8)); ``` ## High Tolerances This is the speed when you just want the answer. ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>ROS34PW1a()), Dict(:alg=>lsoda()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;dense = false,verbose=false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Kvaerno3()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp3()), Dict(:alg=>lsoda()), # Dict(:alg=>SDIRK2()), # Removed because it's bad Dict(:alg=>radau())] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;dense = false,verbose = false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp4(), :prob_choice => 2), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(order=5)), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-6)), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-5,order=3)) ] names = ["Rosenbrock23" "Rosenbrock23 Static" "KenCarp5" "KenCarp4" "KenCarp4 Static" "KenCarp3" "ARKODE5" "ARKODE4" "ARKODE3"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ### Low Tolerances This is the speed at lower tolerances, measuring what's good when accuracy is needed. ```julia abstols = 1.0 ./ 10.0 .^ (7:13) reltols = 1.0 ./ 10.0 .^ (4:10) setups = [ Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>Rodas4P()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>ddebdf()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>lsoda()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>GRK4A()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>Kvaerno5()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp4(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` The following algorithms were removed since they failed. ```julia #setups = [Dict(:alg=>Hairer4()), #Dict(:alg=>Hairer42()), #Dict(:alg=>Rodas3()), #Dict(:alg=>Kvaerno4()), #Dict(:alg=>Cash4()) #] #wp = WorkPrecisionSet(probs,abstols,reltols,setups; # save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) #plot(wp) ``` Multithreading benchmarks with Parallel Extrapolation Methods ```julia #Checking for threading print(Threads.nthreads()) ``` ```julia #Setting BLAS to one thread to measure gains LinearAlgebra.BLAS.set_num_threads(1) abstols = 1.0 ./ 10.0 .^ (10:12) reltols = 1.0 ./ 10.0 .^ (7:9) setups = [ Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>QNDF()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>seulex()), Dict(:alg=>ImplicitEulerExtrapolation(init_order = 4,threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerExtrapolation(init_order = 4,threading = false)), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(init_order = 4, threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(init_order = 4, threading = false)), Dict(:alg=>ImplicitHairerWannerExtrapolation(init_order = 5,threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitHairerWannerExtrapolation(init_order = 5,threading = false)), ] solnames = ["CVODE_BDF","KenCarp4","Rodas4","Rodas4 Static","Rodas%P","Rodas5P Static","QNDF","lsoda","radau","seulex","ImplEulerExtpl (threaded)", "ImplEulerExtpl (non-threaded)", "ImplEulerBaryExtpl (threaded)","ImplEulerBaryExtpl (non-threaded)","ImplHWExtpl (threaded)","ImplHWExtpl (non-threaded)"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names = solnames,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp, title = "Implicit Methods: OREGO",legend=:outertopleft,size = (1000,500), xticks = 10.0 .^ (-15:1:1), yticks = 10.0 .^ (-6:0.3:5), bottom_margin= 5Plots.mm) ``` ### Conclusion At high tolerances, `Rosenbrock23` hits the the error estimates and is fast. At lower tolerances and normal user tolerances, `Rodas4` and `Rodas5` are extremely fast. When you get down to `reltol=1e-9` `radau` begins to become as efficient as `Rodas4`, and it continues to do well below that. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
13605
--- title: POLLU Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, DiffEqDevTools, Sundials, ParameterizedFunctions, Plots, ODE, ODEInterfaceDiffEq, LSODA, LinearSolve using ProfileSVG, BenchmarkTools, Profile gr() # gr(fmt=:png) using LinearAlgebra const k1=.35e0 const k2=.266e2 const k3=.123e5 const k4=.86e-3 const k5=.82e-3 const k6=.15e5 const k7=.13e-3 const k8=.24e5 const k9=.165e5 const k10=.9e4 const k11=.22e-1 const k12=.12e5 const k13=.188e1 const k14=.163e5 const k15=.48e7 const k16=.35e-3 const k17=.175e-1 const k18=.1e9 const k19=.444e12 const k20=.124e4 const k21=.21e1 const k22=.578e1 const k23=.474e-1 const k24=.178e4 const k25=.312e1 function f(dy,y,p,t) r1 = k1 *y[1] r2 = k2 *y[2]*y[4] r3 = k3 *y[5]*y[2] r4 = k4 *y[7] r5 = k5 *y[7] r6 = k6 *y[7]*y[6] r7 = k7 *y[9] r8 = k8 *y[9]*y[6] r9 = k9 *y[11]*y[2] r10 = k10*y[11]*y[1] r11 = k11*y[13] r12 = k12*y[10]*y[2] r13 = k13*y[14] r14 = k14*y[1]*y[6] r15 = k15*y[3] r16 = k16*y[4] r17 = k17*y[4] r18 = k18*y[16] r19 = k19*y[16] r20 = k20*y[17]*y[6] r21 = k21*y[19] r22 = k22*y[19] r23 = k23*y[1]*y[4] r24 = k24*y[19]*y[1] r25 = k25*y[20] dy[1] = -r1-r10-r14-r23-r24+ r2+r3+r9+r11+r12+r22+r25 dy[2] = -r2-r3-r9-r12+r1+r21 dy[3] = -r15+r1+r17+r19+r22 dy[4] = -r2-r16-r17-r23+r15 dy[5] = -r3+r4+r4+r6+r7+r13+r20 dy[6] = -r6-r8-r14-r20+r3+r18+r18 dy[7] = -r4-r5-r6+r13 dy[8] = r4+r5+r6+r7 dy[9] = -r7-r8 dy[10] = -r12+r7+r9 dy[11] = -r9-r10+r8+r11 dy[12] = r9 dy[13] = -r11+r10 dy[14] = -r13+r12 dy[15] = r14 dy[16] = -r18-r19+r16 dy[17] = -r20 dy[18] = r20 dy[19] = -r21-r22-r24+r23+r25 dy[20] = -r25+r24 end function fjac(J,y,p,t) J .= 0.0 J[1,1] = -k1-k10*y[11]-k14*y[6]-k23*y[4]-k24*y[19] J[1,11] = -k10*y[1]+k9*y[2] J[1,6] = -k14*y[1] J[1,4] = -k23*y[1]+k2*y[2] J[1,19] = -k24*y[1]+k22 J[1,2] = k2*y[4]+k9*y[11]+k3*y[5]+k12*y[10] J[1,13] = k11 J[1,20] = k25 J[1,5] = k3*y[2] J[1,10] = k12*y[2] J[2,4] = -k2*y[2] J[2,5] = -k3*y[2] J[2,11] = -k9*y[2] J[2,10] = -k12*y[2] J[2,19] = k21 J[2,1] = k1 J[2,2] = -k2*y[4]-k3*y[5]-k9*y[11]-k12*y[10] J[3,1] = k1 J[3,4] = k17 J[3,16] = k19 J[3,19] = k22 J[3,3] = -k15 J[4,4] = -k2*y[2]-k16-k17-k23*y[1] J[4,2] = -k2*y[4] J[4,1] = -k23*y[4] J[4,3] = k15 J[5,5] = -k3*y[2] J[5,2] = -k3*y[5] J[5,7] = 2k4+k6*y[6] J[5,6] = k6*y[7]+k20*y[17] J[5,9] = k7 J[5,14] = k13 J[5,17] = k20*y[6] J[6,6] = -k6*y[7]-k8*y[9]-k14*y[1]-k20*y[17] J[6,7] = -k6*y[6] J[6,9] = -k8*y[6] J[6,1] = -k14*y[6] J[6,17] = -k20*y[6] J[6,2] = k3*y[5] J[6,5] = k3*y[2] J[6,16] = 2k18 J[7,7] = -k4-k5-k6*y[6] J[7,6] = -k6*y[7] J[7,14] = k13 J[8,7] = k4+k5+k6*y[6] J[8,6] = k6*y[7] J[8,9] = k7 J[9,9] = -k7-k8*y[6] J[9,6] = -k8*y[9] J[10,10] = -k12*y[2] J[10,2] = -k12*y[10]+k9*y[11] J[10,9] = k7 J[10,11] = k9*y[2] J[11,11] = -k9*y[2]-k10*y[1] J[11,2] = -k9*y[11] J[11,1] = -k10*y[11] J[11,9] = k8*y[6] J[11,6] = k8*y[9] J[11,13] = k11 J[12,11] = k9*y[2] J[12,2] = k9*y[11] J[13,13] = -k11 J[13,11] = k10*y[1] J[13,1] = k10*y[11] J[14,14] = -k13 J[14,10] = k12*y[2] J[14,2] = k12*y[10] J[15,1] = k14*y[6] J[15,6] = k14*y[1] J[16,16] = -k18-k19 J[16,4] = k16 J[17,17] = -k20*y[6] J[17,6] = -k20*y[17] J[18,17] = k20*y[6] J[18,6] = k20*y[17] J[19,19] = -k21-k22-k24*y[1] J[19,1] = -k24*y[19]+k23*y[4] J[19,4] = k23*y[1] J[19,20] = k25 J[20,20] = -k25 J[20,1] = k24*y[19] J[20,19] = k24*y[1] return end u0 = zeros(20) u0[2] = 0.2 u0[4] = 0.04 u0[7] = 0.1 u0[8] = 0.3 u0[9] = 0.01 u0[17] = 0.007 prob = ODEProblem(ODEFunction{true, SciMLBase.FullSpecialize}(f, jac=fjac),u0,(0.0,60.0)) sol = solve(prob,Rodas5(),abstol=1/10^14,reltol=1/10^14) test_sol = TestSolution(sol) abstols = 1.0 ./ 10.0 .^ (4:11) reltols = 1.0 ./ 10.0 .^ (1:8); ``` ```julia plot(sol) ``` ```julia plot(sol,tspan=(0.0,5.0)) ``` ## Omissions The following were omitted from the tests due to convergence failures. ODE.jl's adaptivity is not able to stabilize its algorithms, while GeometricIntegratorsDiffEq has not upgraded to Julia 1.0. GeometricIntegrators.jl's methods used to be either fail to converge at comparable dts (or on some computers errors due to type conversions). ```julia #sol = solve(prob,ode23s()); println("Total ODE.jl steps: $(length(sol))") #using GeometricIntegratorsDiffEq #try # sol = solve(prob,GIRadIIA3(),dt=1/10) #catch e # println(e) #end ``` The stabilized explicit methods fail. ```julia setups = [ #Dict(:alg=>ROCK2()), #Dict(:alg=>ROCK4()) #Dict(:alg=>ESERK5()) ] ``` The EPIRK and exponential methods also fail: ```julia sol = solve(prob,EXPRB53s3(),dt=2.0^(-8)); sol = solve(prob,EPIRK4s3B(),dt=2.0^(-8)); sol = solve(prob,EPIRK5P2(),dt=2.0^(-8)); ``` ## High Tolerances This is the speed when you just want the answer. ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>lsoda()), Dict(:alg=>RadauIIA5()), ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;verbose=false, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups;dense = false,verbose = false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups;verbose=false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Kvaerno3()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp3()), Dict(:alg=>Rodas4()), Dict(:alg=>lsoda()), Dict(:alg=>radau())] wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups;dense = false,verbose = false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>KenCarp5()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(order=5)), Dict(:alg=>ARKODE()), Dict(:alg=>ARKODE(order=3))] names = ["Rosenbrock23" "KenCarp5" "KenCarp4" "KenCarp3" "ARKODE5" "ARKODE4" "ARKODE3"] wp = WorkPrecisionSet(prob,abstols,reltols,setups; names=names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>TRBDF2()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), Dict(:alg=>ABDF2()), Dict(:alg=>FBDF()), #Dict(:alg=>QNDF()), #Dict(:alg=>Exprb43()), #matrix contains Infs or NaNs #Dict(:alg=>Exprb32()), #matrix contains Infs or NaNs ] wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>TRBDF2()), Dict(:alg=>ImplicitEulerExtrapolation(linsolve = RFLUFactorization())), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(linsolve = RFLUFactorization())), Dict(:alg=>ImplicitHairerWannerExtrapolation(linsolve = RFLUFactorization())), Dict(:alg=>ABDF2()), Dict(:alg=>FBDF()), #Dict(:alg=>QNDF()), #Dict(:alg=>Exprb43()), #matrix contains Infs or NaNs #Dict(:alg=>Exprb32()), #matrix contains Infs or NaNs ] wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` ### Low Tolerances This is the speed at lower tolerances, measuring what's good when accuracy is needed. ```julia abstols = 1.0 ./ 10.0 .^ (7:13) reltols = 1.0 ./ 10.0 .^ (4:10) setups = [ Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>Rodas4P()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>ddebdf()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas5P()), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>lsoda()) ] wp = WorkPrecisionSet(prob,abstols,reltols,setups;verbose=false, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups;verbose=false, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>GRK4A()), Dict(:alg=>Rodas5()), Dict(:alg=>Kvaerno4()), Dict(:alg=>Kvaerno5()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp5()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas5P()), Dict(:alg=>radau()), Dict(:alg=>ImplicitEulerExtrapolation(min_order = 3)), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), ] wp = WorkPrecisionSet(prob,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups;verbose=false, dense=false,appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia wp = WorkPrecisionSet(prob,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e5),error_estimate=:L2,numruns=10) plot(wp) ``` The following algorithms were removed since they failed. ```julia #setups = [#Dict(:alg=>Hairer4()), #Dict(:alg=>Hairer42()), #Dict(:alg=>Rodas3()), #Dict(:alg=>Cash4()) #] #wp = WorkPrecisionSet(prob,abstols,reltols,setups; # save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) #plot(wp) ``` Multithreading benchmarks with Parallel Extrapolation Methods ```julia #Setting BLAS to one thread to measure gains LinearAlgebra.BLAS.set_num_threads(1) abstols = 1.0 ./ 10.0 .^ (11:13) reltols = 1.0 ./ 10.0 .^ (8:10) setups = [ Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>QNDF()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>seulex()), Dict(:alg=>ImplicitEulerExtrapolation(min_order = 5, init_order = 3,threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerExtrapolation(min_order = 5, init_order = 3,threading = false)), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(min_order = 5, threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(min_order = 5, threading = false)), Dict(:alg=>ImplicitHairerWannerExtrapolation(threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitHairerWannerExtrapolation(threading = false)), ] solnames = ["CVODE_BDF","KenCarp4","Rodas4","Rodas5","Rodas5P","QNDF","lsoda","radau","seulex","ImplEulerExtpl (threaded)", "ImplEulerExtpl (non-threaded)", "ImplEulerBaryExtpl (threaded)","ImplEulerBaryExtpl (non-threaded)","ImplHWExtpl (threaded)","ImplHWExtpl (non-threaded)"] wp = WorkPrecisionSet(prob,abstols,reltols,setups; names = solnames,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp, title = "Implicit Methods: POLLUTION",legend=:outertopleft,size = (1000,500), xticks = 10.0 .^ (-15:1:1), yticks = 10.0 .^ (-6:0.3:5), bottom_margin= 5Plots.mm) ``` ### Conclusion Sundials `CVODE_BDF` the best here. `lsoda` does well at high tolerances but then grows fast when tolerances get too low. `KenCarp4` or `Rodas5` is a decent substitute when necessary. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
12290
--- title: ROBER Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, DiffEqDevTools, Sundials, ParameterizedFunctions, Plots, ODE, ODEInterfaceDiffEq, LSODA gr() using LinearAlgebra, StaticArrays rober = @ode_def begin dy₁ = -k₁*y₁+k₃*y₂*y₃ dy₂ = k₁*y₁-k₂*y₂^2-k₃*y₂*y₃ dy₃ = k₂*y₂^2 end k₁ k₂ k₃ prob = ODEProblem{true, SciMLBase.FullSpecialize}(rober,[1.0,0.0,0.0],(0.0,1e5),(0.04,3e7,1e4)) probstatic = ODEProblem{false}(rober,SA[1.0,0.0,0.0],(0.0,1e5),(0.04,3e7,1e4)) sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Rodas5P(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; abstols = 1.0 ./ 10.0 .^ (4:11) reltols = 1.0 ./ 10.0 .^ (1:8); ``` ```julia plot(sol,labels=["y1","y2","y3"]) ``` ## Omissions And Tweaking The following were omitted from the tests due to convergence failures. ODE.jl's adaptivity is not able to stabilize its algorithms, while GeometricIntegratorsDiffEq has not upgraded to Julia 1.0. GeometricIntegrators.jl's methods used to be either fail to converge at comparable dts (or on some computers errors due to type conversions). ```julia #sol = solve(prob,ode23s()); println("Total ODE.jl steps: $(length(sol))") #using GeometricIntegratorsDiffEq #try # sol = solve(prob,GIRadIIA3(),dt=1/10) #catch e # println(e) #end ``` `ARKODE` needs a lower `nonlinear_convergence_coefficient` in order to not diverge. ```julia #sol = solve(prob,ARKODE(nonlinear_convergence_coefficient = 1e-6),abstol=1e-5,reltol=1e-1); # Noisy, output omitted ``` ```julia sol = solve(prob,ARKODE(nonlinear_convergence_coefficient = 1e-7),abstol=1e-5,reltol=1e-1); ``` Note that `1e-7` matches the value from the Sundials manual which was required for their example to converge on this problem. The default is `1e-1`. ```julia #sol = solve(prob,ARKODE(order=3),abstol=1e-4,reltol=1e-1); # Fails to diverge but doesn't finish ``` ```julia #sol = solve(prob,ARKODE(order=5),abstol=1e-4,reltol=1e-1); # Noisy, output omitted ``` ```julia #sol = solve(prob,ARKODE(order=5,nonlinear_convergence_coefficient = 1e-9),abstol=1e-5,reltol=1e-1); # Noisy, output omitted ``` Additionally, the ROCK methods do not perform well on this benchmark. ```julia setups = [ #Dict(:alg=>ROCK2()) #Unstable #Dict(:alg=>ROCK4()) #needs more iterations ] ``` Some of the bad Rosenbrocks fail: ```julia setups = [ #Dict(:alg=>Hairer4()), #Dict(:alg=>Hairer42()), #Dict(:alg=>Cash4()), ] ``` The EPIRK and exponential methods also fail: ```julia sol = solve(prob,EXPRB53s3(),dt=2.0^(-8)); sol = solve(prob,EPIRK4s3B(),dt=2.0^(-8)); sol = solve(prob,EPIRK5P2(),dt=2.0^(-8)); ``` PDIRK44 also fails ```julia sol = solve(prob,PDIRK44(),dt=2.0^(-8)); ``` In fact, all non-adaptive methods fail on this problem. ## High Tolerances This is the speed when you just want the answer. `ode23s` from ODE.jl was removed since it fails. Note that at high tolerances Sundials' `CVODE_BDF` fails as well so it's excluded from this test. ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>ROS34PW1a()), ] gr() wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Kvaerno3()), Dict(:alg=>KenCarp4()), Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp3()), Dict(:alg=>lsoda()), # Dict(:alg=>SDIRK2()), # Removed because it's bad Dict(:alg=>radau())] names = ["Rosenbrock23" "Rosenbrock23 Static" "Kvaerno3" "KenCarp4" "TRBDF2" "KenCarp3" "lsoda" "radau"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;names=names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp4(), :prob_choice => 2), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-9,order=5)), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-8)), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-7,order=3)) ] names = ["Rosenbrock23" "Rosenbrock23 Static" "KenCarp5" "KenCarp4" "KenCarp4 Static" "KenCarp3" "ARKODE5" "ARKODE4" "ARKODE3"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>TRBDF2()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), #Dict(:alg=>ABDF2()), # Maxiters Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), #Dict(:alg=>Exprb43()), #SingularException #Dict(:alg=>Exprb32()), #SingularException ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ### Timeseries Errors ```julia abstols = 1.0 ./ 10.0 .^ (5:8) reltols = 1.0 ./ 10.0 .^ (1:4); setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>ROS34PW1a()), ] gr() wp = WorkPrecisionSet(probs,abstols,reltols,setups;error_estimate=:l2, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Kvaerno3()), Dict(:alg=>KenCarp4()), Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp3()), # Dict(:alg=>SDIRK2()), # Removed because it's bad Dict(:alg=>radau())] names = ["Rosenbrock23" "Rosenbrock23 Static" "Kvaerno3" "KenCarp4" "TRBDF2" "KenCarp3" "radau"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;names=names, appxsol=test_sol,maxiters=Int(1e5),error_estimate=:l2,numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>TRBDF2()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), #Dict(:alg=>ABDF2()), # Maxiters Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), #Dict(:alg=>Exprb43()), #SingularException #Dict(:alg=>Exprb32()), #SingularException ] wp = WorkPrecisionSet(probs,abstols,reltols,setups;verbose=false,error_estimate=:l2, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ### Low Tolerances This is the speed at lower tolerances, measuring what's good when accuracy is needed. ```julia abstols = 1.0 ./ 10.0 .^ (7:12) reltols = 1.0 ./ 10.0 .^ (4:9) setups = [#Dict(:alg=>Rodas5()), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>ddebdf()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), #Dict(:alg=>Rodas5P()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Kvaerno4()), Dict(:alg=>Kvaerno5()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp47()), Dict(:alg=>KenCarp47(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), #Dict(:alg=>Rodas5P()), #Dict(:alg=>Rodas5()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (10:12) reltols = 1.0 ./ 10.0 .^ (7:9) setups = [Dict(:alg=>Rodas4()) Dict(:alg=>Rodas4(), :prob_choice => 2) Dict(:alg=>Rodas5()) Dict(:alg=>Rodas5(), :prob_choice => 2) Dict(:alg=>Rodas5P()) Dict(:alg=>Rodas5P(), :prob_choice => 2)] names = ["Rodas4" "Rodas4 Static" "Rodas5" "Rodas5 Static" "Rodas5P" "Rodas5P Static"] wp = WorkPrecisionSet(probs,abstols,reltols,setups;names=names, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` Multithreading benchmarks with Parallel Extrapolation Methods ```julia #Setting BLAS to one thread to measure gains LinearAlgebra.BLAS.set_num_threads(1) abstols = 1.0 ./ 10.0 .^ (10:12) reltols = 1.0 ./ 10.0 .^ (7:9) setups = [ Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>QNDF()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>seulex()), Dict(:alg=>ImplicitEulerExtrapolation(threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerExtrapolation(threading = false)), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(min_order = 4, threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitEulerBarycentricExtrapolation(min_order = 4, threading = false)), Dict(:alg=>ImplicitHairerWannerExtrapolation(threading = OrdinaryDiffEq.PolyesterThreads())), Dict(:alg=>ImplicitHairerWannerExtrapolation(threading = false)), ] solnames = ["CVODE_BDF","KenCarp4","Rodas4","Rodas4 Static","Rodas5P","Rodas5P Static","QNDF","lsoda","radau","seulex","ImplEulerExtpl (threaded)", "ImplEulerExtpl (non-threaded)", "ImplEulerBaryExtpl (threaded)","ImplEulerBaryExtpl (non-threaded)","ImplHWExtpl (threaded)","ImplHWExtpl (non-threaded)"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names = solnames,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp, title = "Implicit Methods: ROBER",legend=:outertopleft,size = (1000,500), xticks = 10.0 .^ (-15:1:1), yticks = 10.0 .^ (-6:0.3:5), bottom_margin= 5Plots.mm) ``` ### Conclusion At high tolerances, `Rosenbrock23` and `lsoda` hit the the error estimates and are fast. At lower tolerances and normal user tolerances, `Rodas4` and `Rodas5` are extremely fast. `lsoda` does quite well across both ends. When you get down to `reltol=1e-9` `radau` begins to become as efficient as `Rodas4`, and it continues to do well below that. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
13583
--- title: VanDerPol Work-Precision Diagrams author: Chris Rackauckas --- ```julia using OrdinaryDiffEq, DiffEqDevTools, Sundials, ParameterizedFunctions, Plots, ODE, ODEInterfaceDiffEq, LSODA gr() using LinearAlgebra, StaticArrays van = @ode_def begin dy = μ*((1-x^2)*y - x) dx = 1*y end μ abstols = 1.0 ./ 10.0 .^ (5:9) reltols = 1.0 ./ 10.0 .^ (2:6) prob = ODEProblem{true, SciMLBase.FullSpecialize}(van,[1.0;1.0],(0.0,6.3),1e6) probstatic = ODEProblem{false}(van,SA[0;2.],(0.0,6.3),1e6) sol = solve(prob,CVODE_BDF(),abstol=1/10^14,reltol=1/10^14) sol2 = solve(probstatic,Rodas5P(),abstol=1/10^14,reltol=1/10^14) probs = [prob,probstatic] test_sol = [sol,sol2]; ``` ### Plot Test ```julia plot(sol,ylim=[-4;4]) ``` ```julia plot(sol) ``` ## Omissions And Tweaking The following were omitted from the tests due to convergence failures. ODE.jl's adaptivity is not able to stabilize its algorithms, while GeometricIntegratorsDiffEq has not upgraded to Julia 1.0. GeometricIntegrators.jl's methods used to be either fail to converge at comparable dts (or on some computers errors due to type conversions). ```julia #sol = solve(prob,ode23s()); println("Total ODE.jl steps: $(length(sol))") #using GeometricIntegratorsDiffEq #try # sol = solve(prob,GIRadIIA3(),dt=1/1000) #catch e # println(e) #end ``` `ARKODE` needs a lower `nonlinear_convergence_coefficient` in order to not diverge. ```julia sol = solve(prob,ARKODE(),abstol=1e-4,reltol=1e-2); ``` ```julia sol = solve(prob,ARKODE(nonlinear_convergence_coefficient = 1e-6),abstol=1e-4,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(order=3),abstol=1e-4,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(nonlinear_convergence_coefficient = 1e-6,order=3),abstol=1e-4,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(order=5,nonlinear_convergence_coefficient = 1e-3),abstol=1e-4,reltol=1e-1); ``` ```julia sol = solve(prob,ARKODE(order=5,nonlinear_convergence_coefficient = 1e-4),abstol=1e-4,reltol=1e-1); ``` Additionally, the ROCK methods do not perform well on this benchmark. ```julia setups = [ #Dict(:alg=>ROCK2()) #Unstable #Dict(:alg=>ROCK4()) #needs more iterations #Dict(:alg=>ESERK5()), ] ``` Some of the bad Rosenbrocks fail: ```julia setups = [ #Dict(:alg=>Hairer4()), #Dict(:alg=>Hairer42()), #Dict(:alg=>Cash4()), ] ``` The EPIRK and exponential methods also fail: ```julia sol = solve(prob,EXPRB53s3(),dt=2.0^(-8)); sol = solve(prob,EPIRK4s3B(),dt=2.0^(-8)); sol = solve(prob,EPIRK5P2(),dt=2.0^(-8)); ``` ## Low Order and High Tolerance This tests the case where accuracy is not needed as much and quick robust solutions are necessary. Note that `ARKODE`'s convergence coefficient must be lowered to `1e-7` in order to converge. #### Final timepoint error This measures the efficiency to get the value at the endpoint correct. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>FBDF()), Dict(:alg=>QNDF()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>ddebdf()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau())] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Rodas3()), Dict(:alg=>TRBDF2()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>ROS34PW1a()), ] gr() wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Kvaerno3()), Dict(:alg=>KenCarp4()), Dict(:alg=>TRBDF2()), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-6)), Dict(:alg=>SDIRK2()), Dict(:alg=>radau())] names = ["Rosenbrock23" "Rosenbrock23 Static" "Kvaerno3" "KenCarp4" "TRBDF2" "KenCarp3" "ARKODE" "SDIRK2" "radau"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>KenCarp5()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp4(), :prob_choice => 2), Dict(:alg=>KenCarp3()), Dict(:alg=>ARKODE(order=5,nonlinear_convergence_coefficient = 1e-4)), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-6)), Dict(:alg=>ARKODE(nonlinear_convergence_coefficient = 1e-6,order=3))] names = ["Rosenbrock23" "Rosenbrock23 Static" "KenCarp5" "KenCarp4" "KenCarp4 Static" "KenCarp3" "ARKODE5" "ARKODE4" "ARKODE3"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>TRBDF2()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), Dict(:alg=>ABDF2()), Dict(:alg=>FBDF()), #Dict(:alg=>QNDF()), # ??? #Dict(:alg=>Exprb43()), # Diverges #Dict(:alg=>Exprb32()), # SingularException ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` Notice that `KenCarp4` is the same overarching algorithm as `ARKODE` here (with major differences to stage predictors and adaptivity though). In this case, `KenCarp4` is more robust and more efficient than `ARKODE`. `CVODE_BDF` does quite well here, which is unusual for it on small equations. You can see that the low-order Rosenbrock methods `Rosenbrock23` and `Rodas3` dominate this test. #### Timeseries error Now we measure the average error of the timeseries. ```julia abstols = 1.0 ./ 10.0 .^ (4:7) reltols = 1.0 ./ 10.0 .^ (1:4) setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>FBDF()), #Dict(:alg=>QNDF()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>TRBDF2()), Dict(:alg=>ddebdf()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau())] wp = WorkPrecisionSet(probs,abstols,reltols,setups; error_estimate=:l2,appxsol=test_sol,maxiters=Int(1e5),seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>Rosenbrock23()), Dict(:alg=>Rosenbrock23(), :prob_choice => 2), Dict(:alg=>Rodas3()), Dict(:alg=>TRBDF2()), Dict(:alg=>rodas()), Dict(:alg=>lsoda()), Dict(:alg=>radau()), Dict(:alg=>RadauIIA5()), Dict(:alg=>ROS34PW1a()), ] gr() wp = WorkPrecisionSet(probs,abstols,reltols,setups;error_estimate=:l2, save_everystep=false,appxsol=test_sol,maxiters=Int(1e5),numruns=10) plot(wp) ``` ### Higher accuracy tests Now we transition to higher accracy tests. In this domain higher order methods are stable and much more efficient. ```julia abstols = 1.0 ./ 10.0 .^ (7:11) reltols = 1.0 ./ 10.0 .^ (4:8) setups = [Dict(:alg=>Rodas3()), #Dict(:alg=>FBDF()), #Diverges #Dict(:alg=>QNDF()), Dict(:alg=>Rodas4P()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>CVODE_BDF()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>lsoda()), Dict(:alg=>RadauIIA5()), Dict(:alg=>Rodas5()), Dict(:alg=>ImplicitEulerExtrapolation()), Dict(:alg=>ImplicitEulerBarycentricExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation()), ] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e6),seconds=5) plot(wp) ``` ```julia abstols = 1.0 ./ 10.0 .^ (7:11) reltols = 1.0 ./ 10.0 .^ (4:8) setups = [Dict(:alg=>Rodas3()), Dict(:alg=>Kvaerno4()), Dict(:alg=>Kvaerno5()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp5()), Dict(:alg=>ARKODE()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>radau()), Dict(:alg=>Rodas5())] names = ["Rodas3" "Kvaerno4" "Kvaerno5" "CVODE_BDF" "KenCarp4" "KenCarp5" "ARKODE" "Rodas4" "Rodas5P" "Rodas5P Static" "radau" "Rodas5"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e6),seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>Rodas3()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>Rodas4()), Dict(:alg=>radau()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2)] wp = WorkPrecisionSet(probs,abstols,reltols,setups; save_everystep=false,appxsol=test_sol,maxiters=Int(1e6),seconds=5) plot(wp) ``` #### Timeseries Errors ```julia abstols = 1.0 ./ 10.0 .^ (7:11) reltols = 1.0 ./ 10.0 .^ (4:8) setups = [Dict(:alg=>Rodas3()), #Dict(:alg=>FBDF()), #Diverges #Dict(:alg=>QNDF()), Dict(:alg=>Rodas4P()), Dict(:alg=>Rodas5P(), :prob_choice => 2), Dict(:alg=>CVODE_BDF()), Dict(:alg=>Rodas4()), Dict(:alg=>Rodas4(), :prob_choice => 2), Dict(:alg=>rodas()), Dict(:alg=>radau()), Dict(:alg=>lsoda()), Dict(:alg=>RadauIIA5()), Dict(:alg=>Rodas5())] wp = WorkPrecisionSet(probs,abstols,reltols,setups;error_estimate=:l2, save_everystep=false,appxsol=test_sol,maxiters=Int(1e6),seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>Rodas3()), Dict(:alg=>Kvaerno4()), Dict(:alg=>Kvaerno5()), Dict(:alg=>CVODE_BDF()), Dict(:alg=>KenCarp4()), Dict(:alg=>KenCarp5()), Dict(:alg=>Rodas4()), Dict(:alg=>radau()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2)] names = ["Rodas3" "Kvaerno4" "Kvaerno5" "CVODE_BDF" "KenCarp4" "KenCarp5" "Rodas4" "radau" "Rodas5" "Rodas5P" "Rodas5P Static"] wp = WorkPrecisionSet(probs,abstols,reltols,setups; names=names,appxsol=test_sol,maxiters=Int(1e6),error_estimate=:l2,seconds=5) plot(wp) ``` ```julia setups = [Dict(:alg=>CVODE_BDF()), Dict(:alg=>Rodas4()), Dict(:alg=>radau()), Dict(:alg=>Rodas5()), Dict(:alg=>Rodas5P()), Dict(:alg=>Rodas5P(), :prob_choice => 2)] wp = WorkPrecisionSet(probs,abstols,reltols,setups; appxsol=test_sol,maxiters=Int(1e6),error_estimate=:l2,seconds=5) plot(wp) ``` Multithreading benchmarks with Parallel Extrapolation Methods ```julia #Setting BLAS to one thread to measure gains LinearAlgebra.BLAS.set_num_threads(1) abstols = 1.0 ./ 10.0 .^ (7:11) reltols = 1.0 ./ 10.0 .^ (4:8) setups = [Dict(:alg=>ImplicitHairerWannerExtrapolation()), Dict(:alg=>ImplicitHairerWannerExtrapolation(threading = true)), Dict(:alg=>ImplicitHairerWannerExtrapolation(threading = OrdinaryDiffEq.PolyesterThreads())), ] names = ["unthreaded","threaded","Polyester"]; wp = WorkPrecisionSet(probs,abstols,reltols,setups; names = names,save_everystep=false,appxsol=test_sol,maxiters=Int(1e5)) plot(wp) ``` The timeseries test is a little odd here because of the high peaks in the VanDerPol oscillator. At a certain accuracy, the steps try to resolve those peaks and so the error becomes higher. While the higher order order Julia-based Rodas methods (`Rodas4` and `Rodas4P`) Rosenbrock methods are not viable at higher tolerances, they dominate for a large portion of this benchmark. When the tolerance gets low enough, `radau` adaptive high order (up to order 13) takes the lead. ### Conclusion `Rosenbrock23` and `Rodas3` do well when tolerances are higher. In most standard tolerances, `Rodas4` and `Rodas4P` do extremely well. Only when the tolerances get very low does `radau` do well. The Julia Rosenbrock methods vastly outperform their Fortran counterparts. `CVODE_BDF` is a top performer in the final timepoint errors with low accuracy, but take that with a grain of salt because the problem is periodic which means it's getting the spikes wrong but the low parts correct. `ARKODE` does poorly in these tests. `lsoda` does quite well in both low and high accuracy domains, but is never the top. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
2609
--- title: Oval2 Long Run author: Chris Rackauckas --- ```julia using StochasticDiffEq, SDEProblemLibrary, Random prob = SDEProblemLibrary.oval2ModelExample(largeFluctuations=true,useBigs=false) ``` ```julia Random.seed!(250) prob = remake(prob,tspan = (0.0,500.0)) sol = solve(prob,SRIW1(),dt=(1/2)^(18),progress=true,qmax=1.125, saveat=0.1,abstol=1e-5,reltol=1e-3,maxiters=1e7); Random.seed!(250) prob = remake(prob,tspan = (0.0,500.0)) @time sol = solve(prob,SRIW1(),dt=(1/2)^(18),progress=true,qmax=1.125, saveat=0.1,abstol=1e-5,reltol=1e-3,maxiters=1e7); ``` ```julia println(maximum(sol[:,2])) using Plots; gr() lw = 2 lw2 = 3 p1 = plot(sol,vars=(0,16), title="(A) Timeseries of Ecad Concentration",xguide="Time (s)", yguide="Concentration",guidefont=font(16),tickfont=font(16), linewidth=lw,leg=false) ``` ```julia p2 = plot(sol,vars=(0,17), title="(B) Timeseries of Vim Concentration",xguide="Time (s)", yguide="Concentration",guidefont=font(16), tickfont=font(16),linewidth=lw,leg=false) ``` ```julia prob = remake(prob,tspan = (0.0,1.0)) ## Little Run sol = solve(prob,EM(),dt=(1/2)^(20), progressbar=true,saveat=0.1) println("EM") @time sol = solve(prob,EM(),dt=(1/2)^(20), progressbar=true,saveat=0.1) sol = solve(prob,SRI(),dt=(1/2)^(18),adaptive=false, progressbar=true,save_everystep=false) println("SRI") @time sol = solve(prob,SRI(),dt=(1/2)^(18),adaptive=false, progressbar=true,save_everystep=false) sol = solve(prob,SRIW1(),dt=(1/2)^(18),adaptive=false, adaptivealg=:RSwM3,progressbar=false,qmax=4,saveat=0.1) println("SRIW1") @time sol = solve(prob,SRIW1(),dt=(1/2)^(18),adaptive=false, adaptivealg=:RSwM3,progressbar=false,qmax=4,saveat=0.1) sol = solve(prob,SRI(),dt=(1/2)^(18), adaptivealg=:RSwM3,progressbar=false,qmax=1.125, saveat=0.1,abstol=1e-6,reltol=1e-4) println("SRI Adaptive") @time sol = solve(prob,SRI(),dt=(1/2)^(18), adaptivealg=:RSwM3,progressbar=false,qmax=1.125, saveat=0.1,abstol=1e-6,reltol=1e-4) @show length(sol.t) sol = solve(prob,SRIW1(),dt=(1/2)^(18), adaptivealg=:RSwM3,progressbar=false,qmax=1.125, saveat=0.1,abstol=1e-6,reltol=1e-4) println("SRIW1 Adaptive") @time sol = solve(prob,SRIW1(),dt=(1/2)^(18), adaptivealg=:RSwM3,progressbar=false,qmax=1.125, saveat=0.1,abstol=1e-6,reltol=1e-4) @show length(sol.t) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
2546
--- title: Oval2 Long Times author: Chris Rackauckas --- ```julia using StochasticDiffEq, SDEProblemLibrary, Random Random.seed!(200) prob = SDEProblemLibrary.oval2ModelExample(largeFluctuations=true,useBigs=false) using LinearAlgebra BLAS.set_num_threads(1) ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SRIW1(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-5,reltol=1e-3) end ``` ```julia Random.seed!(200) @time for i in 1:10 @show i sol = solve(prob,ImplicitEM(),dt=1/60000) end ``` ```julia Random.seed!(200) @time for i in 1:10 @show i sol = solve(prob,ImplicitRKMil(),dt=1/50000) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-4,reltol=1e-2) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI2(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-4,reltol=1e-4) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI2(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-5,reltol=1e-3) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-3,reltol=1e-2) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-4,reltol=1e-4) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-2,reltol=1e-2) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-5,reltol=1e-3) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-2,reltol=1e-1) end ``` ```julia Random.seed!(200) @time for i in 1:10 sol = solve(prob,SOSRI2(),dt=(1/2)^(18),qmax=1.125, saveat=0.1,maxiters=1e7,abstol=1e-4,reltol=1e-1) end ``` ```julia Random.seed!(200) @time for i in 1:10 @show i sol = solve(prob,ImplicitEM(),dt=1/50000) end ``` ```julia Random.seed!(200) @time for i in 1:10 @show i sol = solve(prob,ImplicitRKMil(),dt=1/40000) end ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
11360
--- title: Oval2 Timings author: Chris Rackauckas --- ```julia using StochasticDiffEq, SDEProblemLibrary, Random, Base.Threads prob = SDEProblemLibrary.oval2ModelExample(largeFluctuations=true,useBigs=false) prob_func(prob,i,repeat) = remake(prob,seed=i) prob = EnsembleProblem(remake(prob,tspan=(0.0,1.0)),prob_func=prob_func) js = 16:21 dts = 1.0 ./ 2.0 .^ (js) trajectories = 1000 fails = Array{Int}(undef,length(dts),3) times = Array{Float64}(undef,length(dts),3) ``` ## Timing Runs ```julia sol = solve(prob,SRIW1(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-7),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SRIW1(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-7),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? Inf : adaptive_time println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SRI(error_terms=2),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-7),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SRI(error_terms=2),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-7),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SRI(),EnsembleThreads(),abstol=2.0^(-14),reltol=2.0^(-18),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SRI(),EnsembleThreads(),abstol=2.0^(-14),reltol=2.0^(-18),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SRI(tableau=StochasticDiffEq.constructSRIOpt1()),EnsembleThreads(),abstol=2.0^(-7),reltol=2.0^(-4),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SRI(tableau=StochasticDiffEq.constructSRIOpt1()),EnsembleThreads(),abstol=2.0^(-7),reltol=2.0^(-4),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-7),reltol=2.0^(-4),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-7),reltol=2.0^(-4),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-7),reltol=2.0^(-6),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-7),reltol=2.0^(-6),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-12),reltol=2.0^(-15),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-12),reltol=2.0^(-15),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-7),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-7),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-12),reltol=2.0^(-15),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI(),EnsembleThreads(),abstol=2.0^(-12),reltol=2.0^(-15),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI2(),EnsembleThreads(),abstol=2.0^(-12),reltol=2.0^(-15),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI2(),EnsembleThreads(),abstol=2.0^(-12),reltol=2.0^(-15),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI2(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-11),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI2(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-11),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia sol = solve(prob,SOSRI2(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-11),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=Threads.nthreads()) adaptive_time = @elapsed sol = solve(prob,SOSRI2(),EnsembleThreads(),abstol=2.0^(-13),reltol=2.0^(-11),maxiters=Int(1e11),qmax=1.125,save_everystep=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) best_adaptive_time = numfails != 0 ? adaptive_time : min(best_adaptive_time,adaptive_time) println("The number of Adaptive Fails is $numfails. Elapsed time was $adaptive_time") ``` ```julia for j in eachindex(js) println("j = $j") sol =solve(prob,EM(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=Threads.nthreads()) t1 = @elapsed sol = solve(prob,EM(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) println("The number of Euler-Maruyama Fails is $numfails. Elapsed time was $t1") fails[j,1] = numfails times[j,1] = t1 end ``` ```julia for j in 1:4 println("j = $j") sol =solve(prob,SRIW1(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=Threads.nthreads()) t1 = @elapsed sol = solve(prob,SRIW1(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) println("The number of SRIW1 Fails is $numfails. Elapsed time was $t1") fails[j,3] = numfails times[j,3] = t1 end ``` ```julia js = 17:21 dts = 1.0 ./2.0 .^ (js) for j in 1:6 println("j = $j") sol =solve(prob,ImplicitEM(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=Threads.nthreads()) t1 = @elapsed sol = solve(prob,ImplicitEM(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) println("The number of Implicit-EM Fails is $numfails. Elapsed time was $t1") end ``` ```julia js = 17:21 dts = 1.0 ./ 2.0 .^(js) for j in 1:6 println("j = $j") sol =solve(prob,ImplicitRKMil(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=Threads.nthreads()) t1 = @elapsed sol = solve(prob,ImplicitRKMil(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) println("The number of Implicit-RKMil Fails is $numfails. Elapsed time was $t1") end ``` ```julia for j in 1:6 println("j = $j") sol =solve(prob,RKMil(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=Threads.nthreads()) t1 = @elapsed sol = solve(prob,RKMil(),EnsembleThreads(),dt=dts[j],maxiters=Int(1e11),save_everystep=false,verbose=false,trajectories=trajectories) numfails = sum([Int(any(isnan,sol[i]) || sol[i].t[end] != 1) for i in 1:trajectories]) println("The number of RKMil Fails is $numfails. Elapsed time was $t1") fails[j,2] = numfails times[j,2] = t1 end ``` ```julia using Plots lw = 3 p2 = plot(dts,times,xscale=:log2,yscale=:log2,guidefont=font(16),tickfont=font(14),yguide="Elapsed Time (s)",xguide=L"Chosen $\Delta t$",top_margin=50px,linewidth=lw,lab=["Euler-Maruyama" "RK-Mil" "RosslerSRI"],legendfont=font(14)) plot!(dts,repmat([best_adaptive_time],11),linewidth=lw,line=:dash,lab="ESRK+RSwM3",left_margin=75px) scatter!([2.0^(-20);2.0^(-20);2.0^(-18)],[times[5,1];times[5,2];times[3,3]],markersize=20,c=:red,lab="") plot(p2,size=(800,800)) ``` ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
3704
--- title: Quadratic Stiffness Benchmarks author: Chris Rackauckas --- # Quadratic Stiffness In this notebook we will explore the quadratic stiffness problem. References: The composite Euler method for stiff stochastic differential equations Kevin Burrage, Tianhai Tian And S-ROCK: CHEBYSHEV METHODS FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS ASSYR ABDULLE AND STEPHANE CIRILLI This is a scalar SDE with two arguments. The first controls the deterministic stiffness and the later controls the diffusion stiffness. ```julia using SDEProblemLibrary, StochasticDiffEq, DiffEqDevTools import SDEProblemLibrary: prob_sde_stiffquadito using Plots; gr() const N = 10 ``` ```julia prob = remake(prob_sde_stiffquadito,p=(50.0,1.0)) sol = solve(prob,SRIW1()) plot(sol) ``` ```julia prob = remake(prob_sde_stiffquadito,p=(500.0,1.0)) sol = solve(prob,SRIW1()) plot(sol) ``` ## Top dts Let's first determine the maximum dts which are allowed. Anything higher is mostly unstable. ### Deterministic Stiffness Mild ```julia prob = remake(prob_sde_stiffquadito,p=(50.0,1.0)) @time sol = solve(prob,SRIW1()) @time sol = solve(prob,SRIW1(),adaptive=false,dt=0.01) @time sol = solve(prob,ImplicitRKMil(),dt=0.005) @time sol = solve(prob,EM(),dt=0.01); ``` ### Deterministic Stiffness High ```julia prob = remake(prob_sde_stiffquadito,p=(500.0,1.0)) @time sol = solve(prob,SRIW1()) @time sol = solve(prob,SRIW1(),adaptive=false,dt=0.002) @time sol = solve(prob,ImplicitRKMil(),dt=0.001) @time sol = solve(prob,EM(),dt=0.002); ``` ### Mixed Stiffness ```julia prob = remake(prob_sde_stiffquadito,p=(5000.0,70.0)) @time sol = solve(prob,SRIW1(),dt=0.0001) @time sol = solve(prob,SRIW1(),adaptive=false,dt=0.00001) @time sol = solve(prob,ImplicitRKMil(),dt=0.00001) @time sol = solve(prob,EM(),dt=0.00001); ``` Notice that in this problem, the stiffness in the noise term still prevents the semi-implicit integrator to do well. In that case, the advantage of implicitness does not take effect, and thus explicit methods do well. When we don't care about the error, Euler-Maruyama is fastest. When there's mixed stiffness, the adaptive algorithm is unstable. ## Work-Precision Diagrams ```julia prob = remake(prob_sde_stiffquadito,p=(50.0,1.0)) reltols = 1.0 ./ 10.0 .^ (3:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()), Dict(:alg=>EM(),:dts=>1.0./8.0.^((1:length(reltols)) .+ 1)), Dict(:alg=>SRIW1(),:dts=>1.0./8.0.^((1:length(reltols)) .+ 1),:adaptive=>false) #Dict(:alg=>RKMil(),:dts=>1.0./8.0.^((1:length(reltols)) .+ 1),:adaptive=>false), ] names = ["SRIW1","EM","SRIW1 Fixed"] #"RKMil", wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,error_estimate=:l2) plot(wp) ``` ```julia prob = remake(prob_sde_stiffquadito,p=(500.0,1.0)) reltols = 1.0 ./ 10.0 .^ (3:5) abstols = reltols#[0.0 for i in eachindex(reltols)] setups = [Dict(:alg=>SRIW1()), Dict(:alg=>EM(),:dts=>1.0./8.0.^((1:length(reltols)) .+ 2)), Dict(:alg=>SRIW1(),:dts=>1.0./8.0.^((1:length(reltols)) .+ 2),:adaptive=>false) #Dict(:alg=>RKMil(),:dts=>1.0./8.0.^((1:length(reltols)) .+ 2),:adaptive=>false), ] names = ["SRIW1","EM","SRIW1 Fixed"] #"RKMil", wp = WorkPrecisionSet(prob,abstols,reltols,setups;numruns=N,names=names,error_estimate=:l2,print_names=true) plot(wp) ``` ## Conclusion Noise stiffness is tough. Right now the best solution is to run an explicit integrator with a low enough dt. Adaptivity does have a cost in this case, likely due to memory management. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
4053
--- title: Stochastic Heat Equation Benchmarks author: Chris Rackauckas --- # Stochastic Heat Equation Benchmarks In this notebook we will benchmark against the stochastic heat equation with Dirichlet BCs and scalar noise. The function for generating the problem is as follows: Stochastic Heat Equation with scalar multiplicative noise S-ROCK: CHEBYSHEV METHODS FOR STIFF STOCHASTIC DIFFERENTIAL EQUATIONS ASSYR ABDULLE AND STEPHANE CIRILLI Raising D or k increases stiffness ```julia using StochasticDiffEq, DiffEqNoiseProcess, LinearAlgebra, Statistics function generate_stiff_stoch_heat(D=1,k=1;N = 100, t_end = 3.0, adaptivealg = :RSwM3) A = Array(Tridiagonal([1.0 for i in 1:N-1],[-2.0 for i in 1:N],[1.0 for i in 1:N-1])) dx = 1/N A = D/(dx^2) * A function f(du,u,p,t) mul!(du,A,u) end #= function f(::Type{Val{:analytic}},u0,p,t,W) exp((A-k/2)*t+W*I)*u0 # no -k/2 for Strat end =# function g(du,u,p,t) @. du = k*u end SDEProblem(f,g,ones(N),(0.0,t_end),noise=WienerProcess(0.0,0.0,0.0,rswm=RSWM(adaptivealg=adaptivealg))) end N = 100 D = 1; k = 1 A = Array(Tridiagonal([1.0 for i in 1:N-1],[-2.0 for i in 1:N],[1.0 for i in 1:N-1])) dx = 1/N A = D/(dx^2) * A; ``` Now lets solve it with high accuracy. ```julia prob = generate_stiff_stoch_heat(1.0,1.0) @time sol = solve(prob,SRIW1(),progress=true,abstol=1e-6,reltol=1e-6); ``` ## Highest dt Let's try to find the highest possible dt: ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),SRIW1()); ``` ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),SRIW1(),progress=true,adaptive=false,dt=0.00005); ``` ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),EM(),progress=true,adaptive=false,dt=0.00005); ``` ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),ImplicitRKMil(),progress=true,dt=0.1); ``` ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),ImplicitRKMil(),progress=true,dt=0.01); ``` ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),ImplicitRKMil(),progress=true,dt=0.001); ``` ```julia @time sol = solve(generate_stiff_stoch_heat(1.0,1.0),ImplicitEM(),progress=true,dt=0.001); ``` ## Simple Error Analysis Now let's check the error at an arbitrary timepoint in there. Our analytical solution only exists in the Stratanovich sense, so we are limited in the methods we can calculate errors for. ```julia function simple_error(alg;kwargs...) sol = solve(generate_stiff_stoch_heat(1.0,1.0,t_end=0.25),alg;kwargs...); sum(abs2,sol[end] - exp(A*sol.t[end]+sol.W[end]*I)*prob.u0) end ``` ```julia mean(simple_error(EulerHeun(),dt=0.00005) for i in 1:400) ``` ```julia mean(simple_error(ImplicitRKMil(interpretation=:Stratanovich),dt=0.1) for i in 1:400) ``` ```julia mean(simple_error(ImplicitRKMil(interpretation=:Stratanovich),dt=0.01) for i in 1:400) ``` ```julia mean(simple_error(ImplicitRKMil(interpretation=:Stratanovich),dt=0.001) for i in 1:400) ``` ```julia mean(simple_error(ImplicitEulerHeun(),dt=0.001) for i in 1:400) ``` ```julia mean(simple_error(ImplicitEulerHeun(),dt=0.01) for i in 1:400) ``` ```julia mean(simple_error(ImplicitEulerHeun(),dt=0.1) for i in 1:400) ``` ## Interesting Property Note that RSwM1 and RSwM2 are not stable on this problem. ```julia sol = solve(generate_stiff_stoch_heat(1.0,1.0,adaptivealg=:RSwM1),SRIW1()); ``` ## Conclusion In this problem, the implicit methods do not have a stepsize limit. This is because the stiffness almost entirely deteriministic due to diffusion. In that case, if we do not care about the error too much, the implicit methods dominate. Of course, as the tolerance gets lower there is a tradeoff point where the higher order methods will become more efficient. The explicit methods are clearly stability-bound and thus unless we want an error of like 10^-10 we are better off using an implicit method here. ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
0.1.3
f4076dd5a103010d48bb6c4e50c5526f6622fa96
docs
507
--- title: Test author: Chris Rackauckas --- This is a test of the builder system. It often gets bumped in PRs related to CI. ```julia using InteractiveUtils versioninfo() ``` ```julia Threads.nthreads() ``` ```julia using Plots plot(rand(10,10)) ``` ```math \begin{equation} y'(t) = \frac{0.2y(t-14)}{1 + y(t-14)^{10}} - 0.1y(t) \end{equation} ``` $\alpha$ ``u_0`` ## Appendix ```julia, echo = false using SciMLBenchmarks SciMLBenchmarks.bench_footer(WEAVE_ARGS[:folder],WEAVE_ARGS[:file]) ```
SciMLBenchmarks
https://github.com/SciML/SciMLBenchmarks.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
1040
using Documenter, DiffEqBayes cp("./docs/Manifest.toml", "./docs/src/assets/Manifest.toml", force = true) cp("./docs/Project.toml", "./docs/src/assets/Project.toml", force = true) ENV["PLOTS_TEST"] = "true" ENV["GKSwstype"] = "100" include("pages.jl") makedocs(sitename = "DiffEqBayes.jl", authors = "Chris Rackauckas, Vaibhav Kumar Dixit et al.", clean = true, doctest = false, modules = [DiffEqBayes], strict = [ :doctest, :linkcheck, :parse_error, :example_block, # Other available options are # :autodocs_block, :cross_references, :docs_block, :eval_block, :example_block, :footnote, :meta_block, :missing_docs, :setup_block ], format = Documenter.HTML(assets = ["assets/favicon.ico"], canonical = "https://docs.sciml.ai/DiffEqBayes/stable/"), pages = pages) deploydocs(repo = "github.com/SciML/DiffEqBayes.jl.git"; push_preview = true)
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
113
pages = ["index.md", "Methods" => "methods.md", "Examples" => ["examples.md", "examples/pendulum.md"], ]
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
808
""" $(DocStringExtensions.README) """ module DiffEqBayes using DiffEqBase, Distributions, Turing, MacroTools using RecursiveArrayTools, ModelingToolkit, LinearAlgebra using Parameters, Distributions, Optim, Requires using Distances, DocStringExtensions, Random, StanSample using DynamicHMC, TransformVariables, LogDensityProblemsAD, TransformedLogDensities STANDARD_PROB_GENERATOR(prob, p) = remake(prob; u0 = eltype(p).(prob.u0), p = p) function STANDARD_PROB_GENERATOR(prob::EnsembleProblem, p) EnsembleProblem(remake(prob.prob; u0 = eltype(p).(prob.prob.u0), p = p)) end include("turing_inference.jl") # include("abc_inference.jl") include("stan_string.jl") include("stan_inference.jl") include("dynamichmc_inference.jl") export turing_inference, stan_inference, dynamichmc_inference end # module
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
1820
function createabcfunction(prob, t, distancefunction, alg; save_idxs = nothing, sample_u0 = false, kwargs...) function simfunc(params, constants, data) local u0 if sample_u0 u0 = save_idxs === nothing ? params[1:length(prob.u0)] : params[1:length(save_idxs)] if length(u0) < length(prob.u0) for i in length(u0):length(prob.u0) push!(u0, prob.u0[i]) end end else u0 = prob.u0 end sol = solve(prob, alg, u0 = u0, p = params, saveat = t, save_idxs = save_idxs, kwargs...) if size(sol, 2) < length(t) return Inf, nothing else simdata = convert(Array, sol) return distancefunction(data, simdata), nothing end end end function abc_inference(prob::DiffEqBase.DEProblem, alg, t, data, priors; ϵ = 0.001, distancefunction = euclidean, ABCalgorithm = ABCSMC, progress = false, num_samples = 500, maxiterations = 10^5, save_idxs = nothing, sample_u0 = false, parallel = false, kwargs...) abcsetup = ABCalgorithm(createabcfunction(prob, t, distancefunction, alg; save_idxs = save_idxs, sample_u0 = sample_u0, kwargs...), length(priors), ϵ, ApproxBayes.Prior(priors); nparticles = num_samples, maxiterations = maxiterations) abcresult = runabc(abcsetup, data, progress = progress, parallel = parallel) return abcresult end
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
6102
""" $(TYPEDEF) Defines a callable that returns the log density for given parameter values when called with a `NamedTuple` `(parameters = ..., σ = ...)` where `parameters` is a vector of parameters, and `σ` is the vector of noise scales. For a common use case, see [`dynamichmc_inference`](@ref). # Fields $(FIELDS) """ Base.@kwdef struct DynamicHMCPosterior{TA, TP, TD, TT, TR, TS, TK, TI} "Algorithm for the ODE solver." algorithm::TA "An ODE problem definition (`DiffEqBase.DEProblem`)." problem::TP "Time values at which the simulated path is compared to `data`." t::TT "Data, as a matrix with each time value in a column." data::TD "Priors for parameters, an iterable with the same length as the number of parameters." parameter_priors::TR """ Priors for the noise scales (currently the standard deviation of a normal distribution), one for each variable. """ σ_priors::TS "Keyword arguments passed on the the ODE solver `solve`." solve_kwargs::TK sample_u0::Bool save_idxs::TI end function (P::DynamicHMCPosterior)(θ) @unpack parameters, σ = θ @unpack algorithm, problem, data, t, parameter_priors = P @unpack σ_priors, solve_kwargs, sample_u0, save_idxs = P T = eltype(parameters) nu = save_idxs === nothing ? length(problem.u0) : length(save_idxs) u0 = convert.(T, sample_u0 ? parameters[1:nu] : problem.u0) p = convert.(T, sample_u0 ? parameters[(nu + 1):end] : parameters) if length(u0) < length(problem.u0) # assumes u is ordered such that the observed variables are in the beginning, consistent with ordered theta for i in length(u0):length(problem.u0) push!(u0, convert(T, problem.u0[i])) end end _saveat = t === nothing ? Float64[] : t sol = solve(problem, algorithm; u0 = u0, p = p, saveat = _saveat, save_idxs = save_idxs, solve_kwargs...) failure = size(sol, 2) < length(_saveat) failure && return T(0) * sum(σ) + T(-Inf) log_likelihood = sum(sum(map(logpdf, Normal.(0.0, σ), sol[:, i] .- data[:, i])) for (i, t) in enumerate(t)) log_prior_parameters = sum(map(logpdf, parameter_priors, parameters)) log_prior_σ = sum(map(logpdf, σ_priors, σ)) log_likelihood + log_prior_parameters + log_prior_σ end # function (P::DynamicHMCPosterior)(θ) # @unpack parameters, σ = θ # @unpack algorithm, problem, data, t, parameter_priors, σ_priors, solve_kwargs = P # prob = remake(problem, u0 = convert.(eltype(parameters), problem.u0), p = parameters) # solution = solve(prob, algorithm; solve_kwargs...) # any((s.retcode ≠ :Success && s.retcode ≠ :Terminated) for s in solution) && return -Inf # log_likelihood = sum(sum(logpdf.(Normal.(0.0, σ), solution(t) .- data[:, i])) # for (i, t) in enumerate(t)) # log_prior_parameters = sum(map(logpdf, parameter_priors, parameters)) # log_prior_σ = sum(map(logpdf, σ_priors, σ)) # log_likelihood + log_prior_parameters + log_prior_σ # end """ $(SIGNATURES) Run MCMC for an ODE problem. Return a `NamedTuple`, which is similar to the one returned by `DynamicHMC.mcmc_with_warmup`, with an added field `posterior` which contains a vector of posterior values (transformed from `ℝⁿ`). # Arguments - `problem` is the ODE problem - `algorithm` is the ODE algorithm - `t` is the time values at which the solution is compared to `data` - `data` is a matrix of data, with one column for each element in `t` - `parameter_priors` is an iterable with the length of the number of paramers, and is used as a prior on it, should have comparable structure. - `parameter_transformations`: a `TransformVariables` transformation to mapping `ℝⁿ` to the vector of valid parameters. # Keyword arguments - `rng` is the random number generator used for MCMC. Defaults to the global one. - `num_samples` is the number of MCMC draws (default: 1000) - `AD_gradient_kind` is passed on to `LogDensityProblems.ADgradient`, make sure to `import` the corresponding library. - `solve_kwargs` is passed on to `solve` - `mcmc_kwargs` are passed on as keyword arguments to `DynamicHMC.mcmc_with_warmup` """ function dynamichmc_inference(problem::DiffEqBase.DEProblem, algorithm, t, data, parameter_priors, parameter_transformations = as(Vector, asℝ₊, length(parameter_priors)); σ_priors = fill(Normal(0, 5), size(data, 1)), sample_u0 = false, rng = Random.GLOBAL_RNG, num_samples = 1000, AD_gradient_kind = Val(:ForwardDiff), save_idxs = nothing, solve_kwargs = (), mcmc_kwargs = (initialization = (q = zeros(length(parameter_priors) + (save_idxs === nothing ? length(data[:, 1]) : length(save_idxs))),),)) P = DynamicHMCPosterior(; algorithm = algorithm, problem = problem, t = t, data = data, parameter_priors = parameter_priors, σ_priors = σ_priors, solve_kwargs = solve_kwargs, sample_u0 = sample_u0, save_idxs = save_idxs) trans = as((parameters = parameter_transformations, σ = as(Vector, asℝ₊, length(σ_priors)))) ℓ = TransformedLogDensity(trans, P) ∇ℓ = LogDensityProblemsAD.ADgradient(AD_gradient_kind, ℓ) results = mcmc_with_warmup(rng, ∇ℓ, num_samples; mcmc_kwargs...) chain = if haskey(results, :chain) # DynamicHMC < 3.3.0 results.chain else eachcol(results.posterior_matrix) end posterior = map(Base.Fix1(TransformVariables.transform, trans), chain) merge((; posterior), results) end
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
8116
struct StanResult{M, R, C} model::M return_code::R chains::C end function Base.show(io::IO, mime::MIME"text/plain", res::StanResult) show(io, mime, res.chains) end struct StanODEData end function generate_priors(n, priors) priors_string = "" if priors === nothing for i in 1:n priors_string = string(priors_string, "theta_$i ~ normal(0, 1)", " ; ") end else for i in 1:n priors_string = string(priors_string, "theta_$i ~ ", stan_string(priors[i]), ";") end end priors_string end function generate_theta(n, priors) theta = "" for i in 1:n upper_bound = "" lower_bound = "" if !isnothing(priors) && maximum(priors[i]) != Inf upper_bound = string("upper=", maximum(priors[i])) end if !isnothing(priors) && minimum(priors[i]) != -Inf lower_bound = string("lower=", minimum(priors[i])) end if lower_bound != "" && upper_bound != "" theta = string(theta, "real", "<$lower_bound", ",", "$upper_bound>", " theta_$i", ";") elseif lower_bound != "" theta = string(theta, "real", "<$lower_bound", ">", " theta_$i", ";") elseif upper_bound != "" theta = string(theta, "real", "<", "$upper_bound>", " theta_$i", ";") else theta = string(theta, "real", " theta_$i", ";") end end return theta end function stan_inference(prob::DiffEqBase.DEProblem, # Positional arguments t, data, priors = nothing, stanmodel = nothing; # DiffEqBayes keyword arguments likelihood = Normal, vars = (StanODEData(), InverseGamma(3, 3)), sample_u0 = false, save_idxs = nothing, diffeq_string = nothing, # Stan differential equation function keyword arguments alg = :rk45, reltol = 1e-3, abstol = 1e-6, maxiter = Int(1e5), # stan_sample keyword arguments num_samples = 1000, num_warmups = 1000, num_cpp_chains = 1, num_chains = 1, num_threads = 1, delta = 0.8, # read_samples arguments output_format = :mcmcchains, # read_summary arguments print_summary = true, # pass in existing tmpdir tmpdir = mktempdir()) save_idxs !== nothing && length(save_idxs) == 1 ? save_idxs = save_idxs[1] : save_idxs = save_idxs length_of_y = length(prob.u0) save_idxs = something(save_idxs, 1:length_of_y) length_of_params = length(vars) if isnothing(diffeq_string) sys = ModelingToolkit.modelingtoolkitize(prob) length_of_parameter = length(ModelingToolkit.parameters(sys)) + sample_u0 * length(save_idxs) else length_of_parameter = length(prob.p) + sample_u0 * length(save_idxs) end if stanmodel === nothing if alg == :adams algorithm = "ode_adams_tol" elseif alg == :rk45 algorithm = "ode_rk45_tol" elseif alg == :bdf algorithm = "ode_bdf_tol" else error("The choices for alg are :adams, :rk45, or :bdf") end hyper_params = "" tuple_hyper_params = "" setup_params = "" thetas = "" theta_names = "" theta_string = generate_theta(length_of_parameter, priors) for i in 1:length_of_parameter thetas = string(thetas, "real theta_$i", ";") theta_names = string(theta_names, "theta_$i", ",") end for i in 1:length_of_params if isa(vars[i], StanODEData) tuple_hyper_params = string(tuple_hyper_params, "u_hat[t,$save_idxs]", ",") else dist = stan_string(vars[i]) hyper_params = string(hyper_params, "sigma$(i-1) ~ $dist;") tuple_hyper_params = string(tuple_hyper_params, "sigma$(i-1)", ",") setup_params = string(setup_params, "row_vector<lower=0>[$(length(save_idxs))] sigma$(i-1);") end end tuple_hyper_params = tuple_hyper_params[1:(length(tuple_hyper_params) - 1)] priors_string = string(generate_priors(length_of_parameter, priors)) stan_likelihood = stan_string(likelihood) if sample_u0 nu = length(save_idxs) dv_names_ind = findfirst("$nu", theta_names)[1] if nu < length(prob.u0) u0 = "" for u_ in prob.u0[(nu + 1):length(prob.u0)] u0 = u0 * string(u_) end integral_string = "u_hat = $algorithm(sho, [$(theta_names[1:dv_names_ind]),$u0]', t0, ts, $reltol, $abstol, $maxiter, $(rstrip(theta_names[dv_names_ind+2:end],',')));" else integral_string = "u_hat = $algorithm(sho, [$(theta_names[1:dv_names_ind])]', t0, ts, $reltol, $abstol, $maxiter, $(rstrip(theta_names[dv_names_ind+2:end],',')));" end else integral_string = "u_hat = $algorithm(sho, u0, t0, ts, $reltol, $abstol, $maxiter, $(rstrip(theta_names,',')));" end binsearch_string = """ int bin_search(real x, int min_val, int max_val){ int range = (max_val - min_val + 1) / 2; int mid_pt = min_val + range; int out; while (range > 0) { if (x == mid_pt) { out = mid_pt; range = 0; } else { range = (range + 1) / 2; mid_pt = x > mid_pt ? mid_pt + range: mid_pt - range; } } return out; } """ if isnothing(diffeq_string) diffeq_string = ModelingToolkit.build_function(ModelingToolkit.equations(sys), ModelingToolkit.states(sys), ModelingToolkit.parameters(sys), ModelingToolkit.get_iv(sys); expression = Val{true}, fname = :sho, target = ModelingToolkit.StanTarget()) end parameter_estimation_model = " functions { $diffeq_string } data { vector[$length_of_y] u0; int<lower=1> T; real internal_var___u[T,$(length(save_idxs))]; real t0; real ts[T]; } parameters { $setup_params $theta_string } model{ vector[$length_of_y] u_hat[T]; $hyper_params $priors_string $integral_string for (t in 1:T){ internal_var___u[t,:] ~ $stan_likelihood($tuple_hyper_params); } } " stanmodel = SampleModel("parameter_estimation_model", parameter_estimation_model, tmpdir) end data = Dict("u0" => prob.u0, "T" => length(t), "internal_var___u" => view(data, :, 1:length(t)), "t0" => prob.tspan[1], "ts" => t) @time rc = stan_sample(stanmodel; data, num_threads, num_cpp_chains, num_samples, num_warmups, num_chains, delta) if success(rc) return StanResult(stanmodel, rc, read_samples(stanmodel, output_format)) else rc.err end end
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
6100
using Distributions function stan_string(p::Union{Type{Bernoulli}, Bernoulli}) try parameters = (params(p)[1]) return string("bernoulli($parameters)") catch return string("bernoulli") end end function stan_string(p::Union{Type{Binomial}, Binomial}) try parameters = (params(p)[1], params(p)[2]) return string("binomial$parameters") catch return string("binomial") end end function stan_string(p::Union{Type{BetaBinomial}, BetaBinomial}) try parameters = (params(p)[1], params(p)[2], params(p)[3]) return string("beta_binomial$parameters") catch return string("beta_binomial") end end function stan_string(p::Union{Type{Hypergeometric}, Hypergeometric}) try parameters = (params(p)[1], params(p)[2], params(p)[3]) return string("hypergeometric$parameters") catch return string("hypergeometric") end end function stan_string(p::Union{Type{Categorical}, Categorical}) try parameters = (params(p)[1]) return string("categorical($parameters)") catch return string("categorical") end end function stan_string(p::Union{Type{NegativeBinomial}, NegativeBinomial}) try parameters = (params(p)[1], params(p)[2]) return string("neg_binomial$parameters") catch return string("neg_binomial") end end function stan_string(p::Union{Type{Poisson}, Poisson}) try parameters = (params(p)[1]) return string("poisson($parameters)") catch return string("poisson") end end function stan_string(p::Union{Type{Normal}, Normal}) try parameters = (params(p)[1], params(p)[2]) return string("normal$parameters") catch return string("normal") end end function stan_string(p::Union{Type{TDist}, TDist}) try parameters = (params(p)[1]) return string("student_t($parameters,0,1)") catch return string("student_t") end end function stan_string(p::Union{Type{Cauchy}, Cauchy}) try parameters = (params(p)[1], params(p)[2]) return string("cauchy$parameters") catch return string("cauchy") end end function stan_string(p::Union{Type{Laplace}, Laplace}) try parameters = (params(p)[1], params(p)[2]) return string("double_exponential$parameters") catch return string("double_exponential") end end function stan_string(p::Union{Type{Distributions.Logistic}, Distributions.Logistic}) try parameters = (params(p)[1], params(p)[2]) return string("logistic$parameters") catch return string("logistic") end end function stan_string(p::Union{Type{Gumbel}, Gumbel}) try parameters = (params(p)[1], params(p)[2]) return string("gumbel$parameters") catch return string("gumbel") end end function stan_string(p::Union{Type{LogNormal}, LogNormal}) try parameters = (params(p)[1], params(p)[2]) return string("lognormal$parameters") catch return string("lognormal") end end function stan_string(p::Union{Type{Chisq}, Chisq}) try parameters = (params(p)[1]) return string("chi_square($parameters)") catch return string("chi_square") end end function stan_string(p::Union{Type{Exponential}, Exponential}) try parameters = (params(p)[1]) return string("exponential($parameters)") catch return string("exponential") end end function stan_string(p::Union{Type{Gamma}, Gamma}) try parameters = (params(p)[1], params(p)[2]) return string("gamma$parameters") catch return string("gamma") end end function stan_string(p::Union{Type{InverseGamma}, InverseGamma}) try parameters = (params(p)[1], params(p)[2]) return string("inv_gamma$parameters") catch return string("inv_gamma") end end function stan_string(p::Union{Type{Weibull}, Weibull}) try parameters = (params(p)[1], params(p)[2]) return string("weibull$parameters") catch return string("weibull") end end function stan_string(p::Union{Type{Frechet}, Frechet}) try parameters = (params(p)[1], params(p)[2]) return string("frechet$parameters") catch return string("frechet") end end function stan_string(p::Union{Type{Rayleigh}, Rayleigh}) try parameters = (params(p)[1]) return string("rayleigh($parameters)") catch return string("rayleigh") end end function stan_string(p::Union{Type{Pareto}, Pareto}) try parameters = (params(p)[1], params(p)[2]) return string("pareto$parameters") catch return string("pareto") end end function stan_string(p::Union{Type{GeneralizedPareto}, GeneralizedPareto}) try parameters = (params(p)[1], params(p)[2], params(p)[3]) return string("pareto_type_2$parameters") catch return string("pareto_type_2") end end function stan_string(p::Union{Type{Beta}, Beta}) try parameters = (params(p)[1], params(p)[2]) return string("beta$parameters") catch return string("beta") end end function stan_string(p::Union{Type{Uniform}, Uniform}) try parameters = (params(p)[1], params(p)[2]) return string("uniform$parameters") catch return string("uniform") end end function stan_string(p::Union{Type{VonMises}, VonMises}) try parameters = (params(p)[1], params(p)[2]) return string("von_mises$parameters") catch return string("von_mises") end end function stan_string(p::Truncated) min_truncated, max_truncated = extrema(p) min_untruncated, max_untruncated = extrema(p.untruncated) lower = min_truncated == min_untruncated ? "" : string(min_truncated) upper = max_truncated == max_untruncated ? "" : string(max_truncated) raw_string = stan_string(p.untruncated) return string(raw_string, " T[", lower, ",", upper, "]") end
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
2675
function turing_inference(prob::DiffEqBase.DEProblem, alg, t, data, priors; likelihood_dist_priors = [InverseGamma(2, 3)], likelihood = (u, p, t, σ) -> MvNormal(u, Diagonal((σ[1])^2 * ones(length(u)))), num_samples = 1000, sampler = Turing.NUTS(0.65), parallel_type = MCMCSerial(), n_chains = 1, syms = [Turing.@varname(theta[i]) for i in 1:length(priors)], sample_u0 = false, save_idxs = nothing, progress = false, kwargs...) N = length(priors) Turing.@model function infer(x, ::Type{T} = Float64) where {T <: Real} theta = Vector{T}(undef, length(priors)) for i in 1:length(priors) theta[i] ~ NamedDist(priors[i], syms[i]) end σ = Vector{T}(undef, length(likelihood_dist_priors)) for i in 1:length(likelihood_dist_priors) σ[i] ~ likelihood_dist_priors[i] end nu = save_idxs === nothing ? length(prob.u0) : length(save_idxs) u0 = convert.(T, sample_u0 ? theta[1:nu] : prob.u0) p = convert.(T, sample_u0 ? theta[(nu + 1):end] : theta) if length(u0) < length(prob.u0) # assumes u is ordered such that the observed variables are in the beginning, consistent with ordered theta for i in length(u0):length(prob.u0) push!(u0, convert(T, prob.u0[i])) end end _saveat = t === nothing ? Float64[] : t sol = solve(prob, alg; u0 = u0, p = p, saveat = _saveat, progress = progress, save_idxs = save_idxs, kwargs...) failure = size(sol, 2) < length(_saveat) if failure Turing.DynamicPPL.acclogp!!(__varinfo__, -Inf) return end if ndims(sol) == 1 x ~ likelihood(Array(sol), theta, Inf, σ) else for i in 1:length(t) x[:, i] ~ likelihood(sol[:, i], theta, sol.t[i], σ) end end return end false # Instantiate a Model object. model = infer(data) chn = sample( model, sampler, parallel_type, num_samples, n_chains; progress = progress ) return chn end
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
3395
using DiffEqBayes, OrdinaryDiffEq, ParameterizedFunctions, Distances, StatsBase, Distributions, RecursiveArrayTools using Test # One parameter case f1 = @ode_def begin dx = a * x - x * y dy = -3y + x * y end a u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, [1.5]) sol = solve(prob1, Tsit5()) t = collect(range(1, stop = 10, length = 10)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [Normal(1.5, 0.01)] bayesian_result = abc_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, ϵ = 0.001) @test mean(bayesian_result.parameters, weights(bayesian_result.weights))≈1.5 atol=0.1 priors = [Normal(1.0, 0.01), Normal(1.0, 0.01), Normal(1.5, 0.01)] bayesian_result = abc_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, ϵ = 0.001, sample_u0 = true) meanvals = mean(bayesian_result.parameters, weights(bayesian_result.weights), 1) @test meanvals[1]≈1.0 atol=0.1 @test meanvals[2]≈1.0 atol=0.1 @test meanvals[3]≈1.5 atol=0.1 sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(1)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [Normal(1.5, 0.01)] bayesian_result = abc_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, ϵ = 0.001, save_idxs = [1]) @test mean(bayesian_result.parameters, weights(bayesian_result.weights))≈1.5 atol=0.1 priors = [Normal(1.0, 0.01), Normal(1.5, 0.01)] bayesian_result = abc_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, ϵ = 0.001, sample_u0 = true, save_idxs = [1]) meanvals = mean(bayesian_result.parameters, weights(bayesian_result.weights), 1) @test meanvals[1]≈1.0 atol=0.1 @test meanvals[2]≈1.5 atol=0.1 # custom distance-function weights_ = ones(size(data)) # weighted data for i in 1:3:length(data) weights_[i] = 0 data[i] = 1e20 # to test that those points are indeed not used end distfn = function (d1, d2) d = 0.0 for i in 1:length(d1) d += (d1[i] - d2[i])^2 * weights_[i] end return sqrt(d) end priors = [Normal(1.5, 0.01)] bayesian_result = abc_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, ϵ = 0.001, distancefunction = distfn) @test mean(bayesian_result.parameters, weights(bayesian_result.weights))≈1.5 atol=0.1 # Four parameter case f1 = @ode_def begin dx = a * x - b * x * y dy = -c * y + d * x * y end a b c d u0 = [1.0, 1.0] tspan = (0.0, 10.0) p = [1.5, 1.0, 3.0, 1.0] prob1 = ODEProblem(f1, u0, tspan, p) sol = solve(prob1, Tsit5()) t = collect(range(1, stop = 10, length = 10)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [truncated(Normal(1.5, 1), 0, 2), truncated(Normal(1.0, 1), 0, 1.5), truncated(Normal(3.0, 1), 0, 4), truncated(Normal(1.0, 1), 0, 2)] bayesian_result = abc_inference(prob1, Tsit5(), t, data, priors; num_samples = 500) meanvals = mean(bayesian_result.parameters, weights(bayesian_result.weights), 1) @test meanvals[1]≈1.5 atol=3e-1 @test meanvals[2]≈1.0 atol=3e-1 @test meanvals[3]≈3.0 atol=3e-1 @test meanvals[4]≈1.0 atol=3e-1
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
4316
using DiffEqBayes, OrdinaryDiffEq, ParameterizedFunctions, RecursiveArrayTools using DynamicHMC, TransformVariables, LinearAlgebra using Parameters, Distributions, Optim using Test reporter = LogProgressReport(nothing, 100, 60.0) f1 = @ode_def LotkaVolterraTest1 begin dx = a * x - x * y dy = -3 * y + x * y end a p = [1.5] u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, p) σ = 0.01 # noise, fixed for now t = collect(range(1, stop = 10, length = 10)) # observation times sol = solve(prob1, Tsit5()) randomized = VectorOfArray([(sol(t[i]) + σ * randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) mcmc_kwargs = (initialization = (q = zeros(1 + 2),), reporter = reporter) bayesian_result = dynamichmc_inference(prob1, Tsit5(), t, data, (Normal(1.5, 1),), as(Vector, asℝ₊, 1), mcmc_kwargs = mcmc_kwargs) @test mean(p.parameters[1] for p in bayesian_result.posterior)≈p[1] atol=0.1 priors = [Normal(1.0, 0.01), Normal(1.0, 0.01), Normal(1.5, 0.01)] mcmc_kwargs = (initialization = (q = zeros(3 + 2),), reporter = reporter) bayesian_result = dynamichmc_inference(prob1, Tsit5(), t, data, priors, as(Vector, asℝ₊, 3), mcmc_kwargs = mcmc_kwargs, sample_u0 = true) @test mean(p.parameters[1] for p in bayesian_result.posterior)≈1.0 atol=0.1 @test mean(p.parameters[2] for p in bayesian_result.posterior)≈1.0 atol=0.1 @test mean(p.parameters[3] for p in bayesian_result.posterior)≈1.5 atol=0.1 sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + σ * randn(1)) for i in 1:length(t)]) data = convert(Array, randomized) mcmc_kwargs = (initialization = (q = zeros(1 + 1),), reporter = reporter) bayesian_result = dynamichmc_inference(prob1, Tsit5(), t, data, (Normal(1.5, 1),), as(Vector, asℝ₊, 1), mcmc_kwargs = mcmc_kwargs, save_idxs = [1]) @test mean(p.parameters[1] for p in bayesian_result.posterior)≈p[1] atol=0.1 priors = [Normal(1.0, 0.001), Normal(1.5, 0.001)] mcmc_kwargs = (initialization = (q = zeros(2 + 1),), reporter = reporter) bayesian_result = dynamichmc_inference(prob1, Tsit5(), t, data, priors, as(Vector, asℝ₊, 2), mcmc_kwargs = mcmc_kwargs, save_idxs = [1], sample_u0 = true) @test mean(p.parameters[1] for p in bayesian_result.posterior)≈1.0 atol=0.1 @test mean(p.parameters[2] for p in bayesian_result.posterior)≈1.5 atol=0.1 # With hand-code likelihood function weights_ = ones(size(data)) # weighted data for i in 1:3:length(data) weights_[i] = 0 data[i] = 1e20 # to test that those points are indeed not used end likelihood = function (sol) l = zero(eltype(first(sol))) for (i, t) in enumerate(t) l += sum(logpdf.(Normal(0.0, σ), sol(t) - data[:, i]) .* weights_[:, i]) end return l end @test_broken bayesian_result = dynamichmc_inference(prob1, Tsit5(), likelihood, [truncated(Normal(1.5, 1), 0, 2)], as((a = asℝ₊,))) @test_broken mean(bayesian_result[1][1])≈1.5 atol=1e-1 f1 = @ode_def LotkaVolterraTest4 begin dx = a * x - b * x * y dy = -c * y + d * x * y end a b c d u0 = [1.0, 1.0] tspan = (0.0, 10.0) p = [1.5, 1.0, 3.0, 1.0] prob1 = ODEProblem(f1, u0, tspan, p) sol = solve(prob1, Tsit5()) t = collect(range(1, stop = 10, length = 10)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = (a = truncated(Normal(1.5, 0.01), 0, 2), b = truncated(Normal(1.0, 0.01), 0, 1.5), c = truncated(Normal(3.0, 0.01), 0, 4), d = truncated(Normal(1.0, 0.01), 0, 2)) mcmc_kwargs = (initialization = (q = zeros(4 + 2), ϵ = 1.0), reporter = reporter, warmup_stages = default_warmup_stages(; stepsize_search = nothing)) bayesian_result = dynamichmc_inference(prob1, Tsit5(), t, data, priors, as(Vector, asℝ₊, 4), mcmc_kwargs = mcmc_kwargs) @test norm(mean([p.parameters for p in bayesian_result.posterior]) .- p, Inf) ≤ 0.1
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
495
using SafeTestsets const LONGER_TESTS = false const GROUP = get(ENV, "GROUP", "All") if GROUP == "All" || GROUP == "Core" @time @safetestset "DynamicHMC" begin include("dynamicHMC.jl") end @time @safetestset "Turing" begin include("turing.jl") end # @time @safetestset "ABC" begin include("abc.jl") end end if GROUP == "Stan" || GROUP == "All" @time @safetestset "Stan_String" begin include("stan_string.jl") end @time @safetestset "Stan" begin include("stan.jl") end end
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
3459
using DiffEqBayes, OrdinaryDiffEq, ParameterizedFunctions, RecursiveArrayTools, Distributions, Test println("One parameter case") f1 = @ode_def begin dx = a * x - x * y dy = -3y + x * y end a u0 = [1.0, 1.0] tspan = (0.0, 10.0) p = [1.5] prob1 = ODEProblem(f1, u0, tspan, p) sol = solve(prob1, Tsit5()) t = collect(range(1, stop = 10, length = 50)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [truncated(Normal(1.5, 0.1), 1.0, 1.8)] bayesian_result = stan_inference(prob1, t, data, priors; num_samples = 300, num_warmups = 500, likelihood = Normal) @test mean(get(bayesian_result.chains, :theta_1)[1])≈1.5 atol=3e-1 # Test norecompile bayesian_result2 = stan_inference(prob1, t, data, priors, bayesian_result.model; num_samples = 300, num_warmups = 500, likelihood = Normal) @test mean(get(bayesian_result2.chains, :theta_1)[1])≈1.5 atol=3e-1 priors = [ truncated(Normal(1.0, 0.01), 0.5, 2.0), truncated(Normal(1.0, 0.01), 0.5, 2.0), truncated(Normal(1.5, 0.01), 1.0, 2.0), ] bayesian_result = stan_inference(prob1, t, data, priors; num_samples = 300, num_warmups = 500, likelihood = Normal, sample_u0 = true) @test mean(get(bayesian_result.chains, :theta_1)[1])≈1.0 atol=3e-1 @test mean(get(bayesian_result.chains, :theta_2)[1])≈1.0 atol=3e-1 @test mean(get(bayesian_result.chains, :theta_3)[1])≈1.5 atol=3e-1 sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + 0.01 * randn(1)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [truncated(Normal(1.5, 0.1), 0.5, 2)] bayesian_result = stan_inference(prob1, t, data, priors; num_samples = 300, num_warmups = 500, likelihood = Normal, save_idxs = [1]) @test mean(get(bayesian_result.chains, :theta_1)[1])≈1.5 atol=3e-1 priors = [truncated(Normal(1.0, 0.01), 0.5, 2), truncated(Normal(1.5, 0.01), 0.5, 2)] bayesian_result = stan_inference(prob1, t, data, priors; num_samples = 300, num_warmups = 500, likelihood = Normal, save_idxs = [1], sample_u0 = true) @test mean(get(bayesian_result.chains, :theta_1)[1])≈1.0 atol=3e-1 @test mean(get(bayesian_result.chains, :theta_2)[1])≈1.5 atol=3e-1 println("Four parameter case") f1 = @ode_def begin dx = a * x - b * x * y dy = -c * y + d * x * y end a b c d u0 = [1.0, 1.0] tspan = (0.0, 10.0) p = [1.5, 1.0, 3.0, 1.0] prob1 = ODEProblem(f1, u0, tspan, p) sol = solve(prob1, Tsit5()) t = collect(range(1, stop = 10, length = 50)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [truncated(Normal(1.5, 0.01), 0.5, 2), truncated(Normal(1.0, 0.01), 0.5, 1.5), truncated(Normal(3.0, 0.01), 0.5, 4), truncated(Normal(1.0, 0.01), 0.5, 2)] bayesian_result = stan_inference(prob1, t, data, priors; num_samples = 100, num_warmups = 500, vars = (DiffEqBayes.StanODEData(), InverseGamma(4, 1))) @test mean(get(bayesian_result.chains, :theta_1)[1])≈1.5 atol=1e-1 @test mean(get(bayesian_result.chains, :theta_2)[1])≈1.0 atol=1e-1 @test mean(get(bayesian_result.chains, :theta_3)[1])≈3.0 atol=1e-1 @test mean(get(bayesian_result.chains, :theta_4)[1])≈1.0 atol=1e-1
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
4884
using Distributions, DiffEqBayes println("Starting the test") @test DiffEqBayes.stan_string(Bernoulli(1)) == "bernoulli(1.0)" @test DiffEqBayes.stan_string(Bernoulli) == "bernoulli" @test DiffEqBayes.stan_string(Binomial(5, 0.3)) == "binomial(5, 0.3)" @test DiffEqBayes.stan_string(Binomial) == "binomial" @test DiffEqBayes.stan_string(BetaBinomial(5, 1, 1)) == "beta_binomial(5, 1.0, 1.0)" @test DiffEqBayes.stan_string(BetaBinomial) == "beta_binomial" @test DiffEqBayes.stan_string(Hypergeometric(5, 5, 3)) == "hypergeometric(5, 5, 3)" @test DiffEqBayes.stan_string(Hypergeometric) == "hypergeometric" @test DiffEqBayes.stan_string(NegativeBinomial(5, 0.3)) == "neg_binomial(5.0, 0.3)" @test DiffEqBayes.stan_string(NegativeBinomial) == "neg_binomial" @test DiffEqBayes.stan_string(Poisson(5)) == "poisson(5.0)" @test DiffEqBayes.stan_string(Poisson) == "poisson" @test DiffEqBayes.stan_string(Normal(0, 1)) == "normal(0.0, 1.0)" @test DiffEqBayes.stan_string(Normal) == "normal" @test DiffEqBayes.stan_string(TDist(5)) == "student_t(5.0,0,1)" @test DiffEqBayes.stan_string(TDist) == "student_t" @test DiffEqBayes.stan_string(Cauchy(0, 1)) == "cauchy(0.0, 1.0)" @test DiffEqBayes.stan_string(Cauchy) == "cauchy" @test DiffEqBayes.stan_string(Laplace(0, 1)) == "double_exponential(0.0, 1.0)" @test DiffEqBayes.stan_string(Laplace) == "double_exponential" @test DiffEqBayes.stan_string(Distributions.Logistic(0, 1)) == "logistic(0.0, 1.0)" @test DiffEqBayes.stan_string(Distributions.Logistic) == "logistic" @test DiffEqBayes.stan_string(Gumbel(0, 1)) == "gumbel(0.0, 1.0)" @test DiffEqBayes.stan_string(Gumbel) == "gumbel" @test DiffEqBayes.stan_string(LogNormal(0, 1)) == "lognormal(0.0, 1.0)" @test DiffEqBayes.stan_string(LogNormal) == "lognormal" @test DiffEqBayes.stan_string(Chisq(5)) == "chi_square(5.0)" @test DiffEqBayes.stan_string(Chisq) == "chi_square" @test DiffEqBayes.stan_string(Exponential(5)) == "exponential(5.0)" @test DiffEqBayes.stan_string(Exponential) == "exponential" @test DiffEqBayes.stan_string(Gamma(2, 3)) == "gamma(2.0, 3.0)" @test DiffEqBayes.stan_string(Gamma) == "gamma" @test DiffEqBayes.stan_string(InverseGamma(2, 3)) == "inv_gamma(2.0, 3.0)" @test DiffEqBayes.stan_string(InverseGamma) == "inv_gamma" @test DiffEqBayes.stan_string(Weibull(1, 1)) == "weibull(1.0, 1.0)" @test DiffEqBayes.stan_string(Weibull) == "weibull" @test DiffEqBayes.stan_string(Frechet(1, 1)) == "frechet(1.0, 1.0)" @test DiffEqBayes.stan_string(Frechet) == "frechet" @test DiffEqBayes.stan_string(Rayleigh(5)) == "rayleigh(5.0)" @test DiffEqBayes.stan_string(Rayleigh) == "rayleigh" @test DiffEqBayes.stan_string(Pareto(2, 3)) == "pareto(2.0, 3.0)" @test DiffEqBayes.stan_string(Pareto) == "pareto" @test DiffEqBayes.stan_string(GeneralizedPareto(0, 1, 2)) == "pareto_type_2(0.0, 1.0, 2.0)" @test DiffEqBayes.stan_string(GeneralizedPareto) == "pareto_type_2" @test DiffEqBayes.stan_string(Beta(3, 3)) == "beta(3.0, 3.0)" @test DiffEqBayes.stan_string(Beta) == "beta" @test DiffEqBayes.stan_string(Uniform(1, 4)) == "uniform(1.0, 4.0)" @test DiffEqBayes.stan_string(Uniform) == "uniform" @test DiffEqBayes.stan_string(VonMises(0, 2)) == "von_mises(0.0, 2.0)" @test DiffEqBayes.stan_string(VonMises) == "von_mises" @test DiffEqBayes.stan_string(truncated(Normal(1, 2), -1, 3)) == "normal(1.0, 2.0) T[-1.0,3.0]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2); lower = -1, upper = 3)) == "normal(1.0, 2.0) T[-1.0,3.0]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2), -Inf, 3)) == "normal(1.0, 2.0) T[,3.0]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2), nothing, 3)) == "normal(1.0, 2.0) T[,3.0]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2); upper = 3)) == "normal(1.0, 2.0) T[,3.0]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2), -1, Inf)) == "normal(1.0, 2.0) T[-1.0,]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2), -1, nothing)) == "normal(1.0, 2.0) T[-1.0,]" @test DiffEqBayes.stan_string(truncated(Normal(1, 2); lower = -1)) == "normal(1.0, 2.0) T[-1.0,]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3), 0.1, 0.4)) == "beta(2.0, 3.0) T[0.1,0.4]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3); lower = 0.1, upper = 0.4)) == "beta(2.0, 3.0) T[0.1,0.4]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3), 0, 0.4)) == "beta(2.0, 3.0) T[,0.4]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3), nothing, 0.4)) == "beta(2.0, 3.0) T[,0.4]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3); upper = 0.4)) == "beta(2.0, 3.0) T[,0.4]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3), 0.1, 1)) == "beta(2.0, 3.0) T[0.1,]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3), 0.1, nothing)) == "beta(2.0, 3.0) T[0.1,]" @test DiffEqBayes.stan_string(truncated(Beta(2, 3); lower = 0.1)) == "beta(2.0, 3.0) T[0.1,]"
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
code
4187
using DiffEqBayes, OrdinaryDiffEq, ParameterizedFunctions, RecursiveArrayTools using Test, Distributions, SteadyStateDiffEq using Turing println("One parameter case") f1 = @ode_def begin dx = a * x - x * y dy = -3y + x * y end a u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, [1.5]) sol = solve(prob1, Tsit5()) t = collect(range(1, stop = 10, length = 10)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [Normal(1.5, 0.01)] bayesian_result = turing_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, syms = [:a]) @show bayesian_result @test mean(get(bayesian_result, :a)[1])≈1.5 atol=3e-1 bayesian_result = turing_inference(prob1, Rosenbrock23(autodiff = false), t, data, priors; num_samples = 500, syms = [:a]) bayesian_result = turing_inference(prob1, Rosenbrock23(), t, data, priors; num_samples = 500, syms = [:a]) # --- test Multithreaded sampling println("Multithreaded case") result_threaded = turing_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, syms = [:a], parallel_type=MCMCThreads(), n_chains=2) @test length(result_threaded.value.axes[3]) == 2 @test mean(get(result_threaded, :a)[1])≈1.5 atol=3e-1 # --- priors = [Normal(1.0, 0.01), Normal(1.0, 0.01), Normal(1.5, 0.01)] bayesian_result = turing_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, sample_u0 = true, syms = [:u1, :u2, :a]) @test mean(get(bayesian_result, :a)[1])≈1.5 atol=3e-1 @test mean(get(bayesian_result, :u1)[1])≈1.0 atol=3e-1 @test mean(get(bayesian_result, :u2)[1])≈1.0 atol=3e-1 sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + 0.01 * randn(1)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [Normal(1.5, 0.01)] bayesian_result = turing_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, syms = [:a], save_idxs = [1]) @test mean(get(bayesian_result, :a)[1])≈1.5 atol=3e-1 priors = [Normal(1.0, 0.01), Normal(1.5, 0.01)] bayesian_result = turing_inference(prob1, Tsit5(), t, data, priors; num_samples = 500, sample_u0 = true, syms = [:u1, :a], save_idxs = [1]) @test mean(get(bayesian_result, :a)[1])≈1.5 atol=3e-1 @test mean(get(bayesian_result, :u1)[1])≈1.0 atol=3e-1 println("Four parameter case") f2 = @ode_def begin dx = a * x - b * x * y dy = -c * y + d * x * y end a b c d u0 = [1.0, 1.0] tspan = (0.0, 10.0) p = [1.5, 1.0, 3.0, 1.0] prob2 = ODEProblem(f2, u0, tspan, p) sol = solve(prob2, Tsit5()) t = collect(range(1, stop = 10, length = 10)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) priors = [truncated(Normal(1.5, 0.01), 0, 2), truncated(Normal(1.0, 0.01), 0, 1.5), truncated(Normal(3.0, 0.01), 0, 4), truncated(Normal(1.0, 0.01), 0, 2)] bayesian_result = turing_inference(prob2, Tsit5(), t, data, priors; num_samples = 500, syms = [:a, :b, :c, :d]) @show bayesian_result @test mean(get(bayesian_result, :a)[1])≈1.5 atol=3e-1 @test mean(get(bayesian_result, :b)[1])≈1.0 atol=3e-1 @test mean(get(bayesian_result, :c)[1])≈3.0 atol=3e-1 @test mean(get(bayesian_result, :d)[1])≈1.0 atol=3e-1 println("Steady state problem") function f(du, u, p, t) α = p[1] du[1] = 2 - α * u[1] du[2] = u[1] - 4u[2] end p = [2.0] u0 = zeros(2) s_prob = SteadyStateProblem(f, u0, p) s_sol = solve(s_prob, SSRootfind()) s_sol = solve(s_prob, DynamicSS(Tsit5()), abstol = 1e-4, reltol = 1e-3) # true data is 1.00, 0.25 data = [1.05, 0.23] priors = [truncated(Normal(2.0, 0.2), 0, 3)] bayesian_result = turing_inference(s_prob, DynamicSS(Tsit5()), nothing, data, priors; num_samples = 500, maxiters = 1e6, syms = [:α], abstol = 1e-4, reltol = 1e-3,) @test mean(get(bayesian_result, :α)[1])≈2.0 atol=3e-1
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
docs
3848
# DiffEqBayes.jl [![Join the chat at https://julialang.zulipchat.com #sciml-bridged](https://img.shields.io/static/v1?label=Zulip&message=chat&color=9558b2&labelColor=389826)](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) [![Global Docs](https://img.shields.io/badge/docs-SciML-blue.svg)](https://docs.sciml.ai/DiffEqBayes/stable/) [![codecov](https://codecov.io/gh/SciML/DiffEqBayes.jl/branch/master/graph/badge.svg)](https://codecov.io/gh/SciML/DiffEqBayes.jl) [![Build Status](https://github.com/SciML/DiffEqBayes.jl/workflows/CI/badge.svg)](https://github.com/SciML/DiffEqBayes.jl/actions?query=workflow%3ACI) [![ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://img.shields.io/badge/ColPrac-Contributor%27s%20Guide-blueviolet)](https://github.com/SciML/ColPrac) [![SciML Code Style](https://img.shields.io/static/v1?label=code%20style&message=SciML&color=9558b2&labelColor=389826)](https://github.com/SciML/SciMLStyle) This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using [CmdStan.jl](https://stanjulia.github.io/CmdStan.jl/stable/), [Turing.jl](https://turing.ml/stable/docs/using-turing/), [DynamicHMC.jl](https://www.tamaspapp.eu/DynamicHMC.jl/stable/) and [ApproxBayes.jl](https://github.com/marcjwilliams1/ApproxBayes.jl) to perform a Bayesian estimation of a differential equation problem specified via the [DifferentialEquations.jl](https://docs.sciml.ai/DiffEqDocs/stable/) interface. To begin you first need to add this repository using the following command. ```julia Pkg.add("DiffEqBayes") using DiffEqBayes ``` ## Tutorials and Documentation For information on using the package, [see the stable documentation](https://docs.sciml.ai/DiffEqBayes/stable/). Use the [in-development documentation](https://docs.sciml.ai/DiffEqBayes/dev/) for the version of the documentation, which contains the unreleased features. ## Example ```julia using ParameterizedFunctions, OrdinaryDiffEq, RecursiveArrayTools, Distributions f1 = @ode_def LotkaVolterra begin dx = a * x - x * y dy = -3 * y + x * y end a p = [1.5] u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, p) σ = 0.01 # noise, fixed for now t = collect(1.0:10.0) # observation times sol = solve(prob1, Tsit5()) priors = [Normal(1.5, 1)] randomized = VectorOfArray([(sol(t[i]) + σ * randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) using CmdStan #required for using the Stan backend bayesian_result_stan = stan_inference(prob1, t, data, priors) bayesian_result_turing = turing_inference(prob1, Tsit5(), t, data, priors) using DynamicHMC #required for DynamicHMC backend bayesian_result_hmc = dynamichmc_inference(prob1, Tsit5(), t, data, priors) bayesian_result_abc = abc_inference(prob1, Tsit5(), t, data, priors) ``` ### Using save_idxs to declare observables You don't always have data for all of the variables of the model. In case of certain latent variables you can utilise the `save_idxs` kwarg to declare the observed variables and run the inference using any of the backends as shown below. ```julia sol = solve(prob1, Tsit5(), save_idxs = [1]) randomized = VectorOfArray([(sol(t[i]) + σ * randn(1)) for i in 1:length(t)]) data = convert(Array, randomized) using CmdStan #required for using the Stan backend bayesian_result_stan = stan_inference(prob1, t, data, priors, save_idxs = [1]) bayesian_result_turing = turing_inference(prob1, Tsit5(), t, data, priors, save_idxs = [1]) using DynamicHMC #required for DynamicHMC backend bayesian_result_hmc = dynamichmc_inference(prob1, Tsit5(), t, data, priors, save_idxs = [1]) bayesian_result_abc = abc_inference(prob1, Tsit5(), t, data, priors, save_idxs = [1]) ```
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
docs
1696
# Bayesian Inference of ODE For this tutorial, we will show how to do Bayesian inference to infer the parameters of the Lotka-Volterra equations using each of the three backends: - Turing.jl - Stan.jl - DynamicHMC.jl ## Setup First, let's set up our ODE and the data. For the data, we will simply solve the ODE and take that solution at some known parameters as the dataset. This looks like the following: ```@example all using DiffEqBayes, ParameterizedFunctions, OrdinaryDiffEq, RecursiveArrayTools, Distributions f1 = @ode_def LotkaVolterra begin dx = a * x - x * y dy = -3 * y + x * y end a p = [1.5] u0 = [1.0, 1.0] tspan = (0.0, 10.0) prob1 = ODEProblem(f1, u0, tspan, p) σ = 0.01 # noise, fixed for now t = collect(1.0:10.0) # observation times sol = solve(prob1, Tsit5()) priors = [Normal(1.5, 1)] randomized = VectorOfArray([(sol(t[i]) + σ * randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) ``` ## Inference Methods ### Stan ```@example all using CmdStan #required for using the Stan backend bayesian_result_stan = stan_inference(prob1, t, data, priors) ``` ### Turing ```@example all bayesian_result_turing = turing_inference(prob1, Tsit5(), t, data, priors) ``` ### DynamicHMC We can use [DynamicHMC.jl](https://github.com/tpapp/DynamicHMC.jl) as the backend for sampling with the `dynamic_inference` function. It is similarly used as follows: ```@example all bayesian_result_hmc = dynamichmc_inference(prob1, Tsit5(), t, data, priors) ``` ## More Information For a better idea of the summary statistics and plotting, you can take a look at the [benchmarks](https://github.com/SciML/SciMLBenchmarks.jl).
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
docs
2965
# DiffEqBayes.jl: Bayesian Parameter Estimation for Differential Equations This repository is a set of extension functionality for estimating the parameters of differential equations using Bayesian methods. It allows the choice of using [CmdStan.jl](https://stanjulia.github.io/CmdStan.jl/stable/), [Turing.jl](https://turing.ml/stable/docs/using-turing/), [DynamicHMC.jl](https://www.tamaspapp.eu/DynamicHMC.jl/stable/) and [ApproxBayes.jl](https://github.com/marcjwilliams1/ApproxBayes.jl) to perform a Bayesian estimation of a differential equation problem specified via the [DifferentialEquations.jl](https://docs.sciml.ai/DiffEqDocs/stable/) interface. ## Installation To install DiffEqBayes.jl, use the Julia package manager: ```julia using Pkg Pkg.add("DiffEqBayes") ``` ## Contributing - Please refer to the [SciML ColPrac: Contributor's Guide on Collaborative Practices for Community Packages](https://github.com/SciML/ColPrac/blob/master/README.md) for guidance on PRs, issues, and other matters relating to contributing to SciML. - See the [SciML Style Guide](https://github.com/SciML/SciMLStyle) for common coding practices and other style decisions. - There are a few community forums: + The #diffeq-bridged and #sciml-bridged channels in the [Julia Slack](https://julialang.org/slack/) + The #diffeq-bridged and #sciml-bridged channels in the [Julia Zulip](https://julialang.zulipchat.com/#narrow/stream/279055-sciml-bridged) + On the [Julia Discourse forums](https://discourse.julialang.org) + See also [SciML Community page](https://sciml.ai/community/) ## Reproducibility ```@raw html <details><summary>The documentation of this SciML package was built using these direct dependencies,</summary> ``` ```@example using Pkg # hide Pkg.status() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>and using this machine and Julia version.</summary> ``` ```@example using InteractiveUtils # hide versioninfo() # hide ``` ```@raw html </details> ``` ```@raw html <details><summary>A more complete overview of all dependencies and their versions is also provided.</summary> ``` ```@example using Pkg # hide Pkg.status(; mode = PKGMODE_MANIFEST) # hide ``` ```@raw html </details> ``` ```@raw html You can also download the <a href=" ``` ```@eval using TOML version = TOML.parse(read("../../Project.toml", String))["version"] name = TOML.parse(read("../../Project.toml", String))["name"] link = "https://github.com/SciML/" * name * ".jl/tree/gh-pages/v" * version * "/assets/Manifest.toml" ``` ```@raw html ">manifest</a> file and the <a href=" ``` ```@eval using TOML version = TOML.parse(read("../../Project.toml", String))["version"] name = TOML.parse(read("../../Project.toml", String))["name"] link = "https://github.com/SciML/" * name * ".jl/tree/gh-pages/v" * version * "/assets/Project.toml" ``` ```@raw html ">project</a> file. ```
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
docs
5185
# Bayesian Methods The following methods require DiffEqBayes.jl: ```julia using Pkg Pkg.add("DiffEqBayes") using DiffEqBayes ``` ### stan_inference ```julia stan_inference(prob::ODEProblem, t, data, priors = nothing; alg = :rk45, num_samples = 1000, num_warmups = 1000, reltol = 1e-3, abstol = 1e-6, maxiter = Int(1e5), likelihood = Normal, vars = (StanODEData(), InverseGamma(2, 3))) ``` `stan_inference` uses [Stan.jl](https://stanjulia.github.io/CmdStan.jl/latest/INTRO/) to perform the Bayesian inference. The [Stan installation process](https://stanjulia.github.io/CmdStan.jl/latest/INSTALLATION/) is required to use this function. `t` is the array of time and `data` is the array where the first dimension (columns) corresponds to the array of system values. `priors` is an array of prior distributions for each parameter, specified via a [Distributions.jl](https://juliastats.github.io/Distributions.jl/dev/) type. `alg` is a choice between `:rk45` and `:bdf`, the two internal integrators of Stan. `num_samples` is the number of samples to take per chain, and `num_warmups` is the number of MCMC warm-up steps. `abstol` and `reltol` are the keyword arguments for the internal integrator. `likelihood` is the likelihood distribution to use with the arguments from `vars`, and `vars` is a tuple of priors for the distributions of the likelihood hyperparameters. The special value `StanODEData()` in this tuple denotes the position that the ODE solution takes in the likelihood's parameter list. ### turing_inference ```julia function turing_inference(prob::DiffEqBase.DEProblem, alg, t, data, priors; likelihood_dist_priors, likelihood, num_samples = 1000, sampler = Turing.NUTS(num_samples, 0.65), parallel_type = MCMCSerial(), n_chains = 1, syms, kwargs...) end ``` `turing_inference` uses [Turing.jl](https://github.com/TuringLang/Turing.jl) to perform its parameter inference. `prob` can be any `DEProblem` with a corresponding `alg` choice. `t` is the array of time points and `data` is the set of observations for the differential equation system at time point `t[i]` (or higher dimensional). `priors` is an array of prior distributions for each parameter, specified via a [Distributions.jl](https://juliastats.github.io/Distributions.jl/dev/) type. `num_samples` is the number of samples per MCMC chain. Sampling from multiple chains is possible, see [`Turing.jl` documentation](https://turinglang.org/v0.26/docs/using-turing/guide#sampling-multiple-chains), serially or parallelly using `parallel_type` and `n_chains`. The extra `kwargs` are given to the internal differential equation solver. ### dynamichmc_inference ```julia dynamichmc_inference(prob::DEProblem, alg, t, data, priors, transformations; σ = 0.01, ϵ = 0.001, initial = Float64[]) ``` `dynamichmc_inference` uses [DynamicHMC.jl](https://github.com/tpapp/DynamicHMC.jl) to perform the Bayesian parameter estimation. `prob` can be any `DEProblem`, `data` is the set of observations for our model which is to be used in the Bayesian Inference process. `priors` represent the choice of prior distributions for the parameters to be determined, passed as an array of [Distributions.jl] (https://juliastats.github.io/Distributions.jl/dev/) distributions. `t` is the array of time points. `transformations` is an array of [Transformations](https://github.com/tpapp/ContinuousTransformations.jl) imposed for constraining the parameter values to specific domains. `initial` values for the parameters can be passed, if not passed the means of the `priors` are used. `ϵ` can be used as a kwarg to pass the initial step size for the NUTS algorithm. ### abc_inference ```julia abc_inference(prob::DEProblem, alg, t, data, priors; ϵ = 0.001, distancefunction = euclidean, ABCalgorithm = ABCSMC, progress = false, num_samples = 500, maxiterations = 10^5, kwargs...) ``` `abc_inference` uses [ApproxBayes.jl](https://github.com/marcjwilliams1/ApproxBayes.jl), which uses Approximate Bayesian Computation (ABC) to perform its parameter inference. `prob` can be any `DEProblem` with a corresponding `alg` choice. `t` is the array of time points and `data[:,i]` is the set of observations for the differential equation system at time point `t[i]` (or higher dimensional). `priors` is an array of prior distributions for each parameter, specified via a [Distributions.jl](https://juliastats.github.io/Distributions.jl/dev/) type. `num_samples` is the number of posterior samples. `ϵ` is the target distance between the data and simulated data. `distancefunction` is a distance metric specified from the [Distances.jl](https://github.com/JuliaStats/Distances.jl) package, the default is `euclidean`. `ABCalgorithm` is the ABC algorithm to use, options are `ABCSMC` or `ABCRejection` from [ApproxBayes.jl](https://github.com/marcjwilliams1/ApproxBayes.jl), the default is the former which is more efficient. `maxiterations` is the maximum number of iterations before the algorithm terminates. The extra `kwargs` are given to the internal differential equation solver.
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "MIT" ]
3.6.1
db6084790646024c59a036eb1e694c646b3b738e
docs
4712
# Bayesian Inference of Pendulum Parameters In this tutorial, we will perform Bayesian parameter inference of the parameters of a pendulum. ## Set up simple pendulum problem ```@example pendulum using DiffEqBayes, OrdinaryDiffEq, RecursiveArrayTools, Distributions, Plots, StatsPlots, BenchmarkTools, TransformVariables, CmdStan, DynamicHMC ``` Let's define our simple pendulum problem. Here, our pendulum has a drag term `ω` and a length `L`. ![pendulum](https://user-images.githubusercontent.com/1814174/59942945-059c1680-942f-11e9-991c-2025e6e4ccd3.jpg) We get first order equations by defining the first term as the velocity and the second term as the position, getting: ```@example pendulum function pendulum(du, u, p, t) ω, L = p x, y = u du[1] = y du[2] = -ω * y - (9.8 / L) * sin(x) end u0 = [1.0, 0.1] tspan = (0.0, 10.0) prob1 = ODEProblem(pendulum, u0, tspan, [1.0, 2.5]) ``` ## Solve the model and plot To understand the model and generate data, let's solve and visualize the solution with the known parameters: ```@example pendulum sol = solve(prob1, Tsit5()) plot(sol) ``` It's the pendulum, so you know what it looks like. It's periodic, but since we have not made a small angle assumption, it's not exactly `sin` or `cos`. Because the true dampening parameter `ω` is 1, the solution does not decay over time, nor does it increase. The length `L` determines the period. ## Create some dummy data to use for estimation We now generate some dummy data to use for estimation ```@example pendulum t = collect(range(1, stop = 10, length = 10)) randomized = VectorOfArray([(sol(t[i]) + 0.01randn(2)) for i in 1:length(t)]) data = convert(Array, randomized) ``` Let's see what our data looks like on top of the real solution ```@example pendulum scatter!(data') ``` This data captures the non-dampening effect and the true period, making it perfect for attempting a Bayesian inference. ## Perform Bayesian Estimation Now let's fit the pendulum to the data. Since we know our model is correct, this should give us back the parameters that we used to generate the data! Define priors on our parameters. In this case, let's assume we don't have much information, but have a prior belief that ω is between 0.1 and 3.0, while the length of the pendulum L is probably around 3.0: ```@example pendulum priors = [ truncated(Normal(0.1, 1.0), lower = 0.0), truncated(Normal(3.0, 1.0), lower = 0.0), ] ``` Finally, let's run the estimation routine from DiffEqBayes.jl with the Turing.jl backend to check if we indeed recover the parameters! ```@example pendulum bayesian_result = turing_inference(prob1, Tsit5(), t, data, priors; num_samples = 10_000, syms = [:omega, :L]) ``` Notice that while our guesses had the wrong means, the learned parameters converged to the correct means, meaning that it learned good posterior distributions for the parameters. To look at these posterior distributions on the parameters, we can examine the chains: ```@example pendulum plot(bayesian_result) ``` As a diagnostic, we will also check the parameter chains. The chain is the MCMC sampling process. The chain should explore parameter space and converge reasonably well, and we should be taking a lot of samples after it converges (it is these samples that form the posterior distribution!) ```@example pendulum plot(bayesian_result, colordim = :parameter) ``` Notice that after a while these chains converge to a “fuzzy line”, meaning it found the area with the most likelihood and then starts to sample around there, which builds a posterior distribution around the true mean. DiffEqBayes.jl allows the choice of using Stan.jl, Turing.jl and DynamicHMC.jl for MCMC, you can also use ApproxBayes.jl for Approximate Bayesian computation algorithms. Let's compare the timings across the different MCMC backends. We'll stick with the default arguments and 10,000 samples in each. However, there is a lot of room for micro-optimization specific to each package and algorithm combinations, you might want to do your own experiments for specific problems to get better understanding of the performance. ```@example pendulum @btime bayesian_result = turing_inference(prob1, Tsit5(), t, data, priors; syms = [:omega, :L], num_samples = 10_000) ``` ```@example pendulum @btime bayesian_result = stan_inference(prob1, t, data, priors; num_samples = 10_000, print_summary = false) ``` ```@example pendulum @btime bayesian_result = dynamichmc_inference(prob1, Tsit5(), t, data, priors; num_samples = 10_000) ```
DiffEqBayes
https://github.com/SciML/DiffEqBayes.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
818
using LeafOptics using Documenter # define default docs pages pages = Any[ "Home" => "index.md", "API" => "API.md" ]; @show pages; # format the docs mathengine = MathJax( Dict( :TeX => Dict( :equationNumbers => Dict(:autoNumber => "AMS"), :Macros => Dict() ) ) ); format = Documenter.HTML( prettyurls = get(ENV, "CI", nothing) == "true", mathengine = mathengine, collapselevel = 1, assets = ["assets/favicon.ico"] ); # build the docs makedocs( sitename = "LeafOptics", format = format, clean = false, modules = [LeafOptics], pages = pages ); # deploy the docs to Github gh-pages deploydocs( repo = "github.com/Yujie-W/LeafOptics.jl.git", target = "build", devbranch = "main", push_preview = true );
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
475
module LeafOptics using ClimaCache: HyperspectralAbsorption, HyperspectralRadiation, HyperspectralLeafBiophysics, WaveLengthSet using ClimaCache: MonoMLGrassSPAC, MonoMLPalmSPAC, MonoMLTreeSPAC using EmeraldConstants: AVOGADRO, H_PLANCK, LIGHT_SPEED, M_H₂O, ρ_H₂O using SpecialFunctions: expint using UnPack: @unpack include("fluorescence.jl" ) include("photon.jl" ) include("radiation.jl" ) include("spectra.jl" ) include("transmittance.jl") end # module
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
2837
####################################################################################################################################################################################################### # # Changes made to this function # General # 2021-Jul-08: add leaf level SIF simulation # 2021-Jul-08: use mat_b and mat_f for SIF at backward and forward directions # 2021-Aug-05: add option to sumulate SIF in photon to photon mode # 2021-Oct-22: refactor the function to leaf_SIF to return the SIFs directly # 2022-Jan-13: use LeafBiophysics directly in the function rather than Leaf # 2022-Jun-15: rename LeafBiophysics to HyperspectralLeafBiophysics to be more descriptive # ####################################################################################################################################################################################################### """ leaf_SIF(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, rad::HyperspectralRadiation{FT}, ϕ::FT = FT(0.01); ϕ_photon::Bool = true) where {FT<:AbstractFloat} Return the leaf level SIF at backward and forward directions, given - `bio` `HyperspectralLeafBiophysics` type struct that contains leaf biophysical parameters - `wls` `WaveLengthSet` type struct that contains wave length bins - `rad` `HyperspectralRadiation` type struct that contains incoming radiation information - `ϕ` Fluorescence quantum yield - `ϕ_photon` If true (default), convert photon to photon when computing SIF; otherwise, convert energy to energy --- # Examples ```julia wls = ClimaCache.WaveLengthSet{Float64}(); bio = ClimaCache.HyperspectralLeafBiophysics{Float64}(); rad = ClimaCache.HyperspectralRadiation{Float64}(); sif_b,sif_f = leaf_SIF(bio, wls, rad, 0.01); sif_b,sif_f = leaf_SIF(bio, wls, rad, 0.01; ϕ_photon=false); ``` """ function leaf_SIF(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, rad::HyperspectralRadiation{FT}, ϕ::FT = FT(0.01); ϕ_photon::Bool = true) where {FT<:AbstractFloat} @unpack IΛ_SIFE, ΔΛ_SIFE, Λ_SIF, Λ_SIFE = wls; # calculate the excitation energy and photons _e_excitation = (view(rad.e_direct, IΛ_SIFE) .+ view(rad.e_diffuse, IΛ_SIFE)) .* ΔΛ_SIFE; # convert energy to energy using the matrices if !ϕ_photon _sif_b = bio.mat_b * _e_excitation * ϕ / FT(pi); _sif_f = bio.mat_f * _e_excitation * ϕ / FT(pi); return _sif_b, _sif_f end; # convert energy to photon _phot_excitation = photon.(Λ_SIFE, _e_excitation); # convert photon to photon using the matrices _phot_b = bio.mat_b * _phot_excitation * ϕ / FT(pi); _phot_f = bio.mat_f * _phot_excitation * ϕ / FT(pi); # convert photon to back to energy _sif_b = energy.(Λ_SIF, _phot_b); _sif_f = energy.(Λ_SIF, _phot_f); return _sif_b, _sif_f end
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
4234
# constants const FAC = 1e-9 / (H_PLANCK() * LIGHT_SPEED() * AVOGADRO()); ####################################################################################################################################################################################################### # # Changes made to this function # General # 2021-Oct-22: rename the function to photon # 2021-Oct-22: add a method to convert direct from number to number # ####################################################################################################################################################################################################### """ photon(λ::FT, E::FT) where {FT<:AbstractFloat} Return the number of moles of photons, given - `λ` Wave length in `[nm]`, converted to `[m]` by FAC - `E` Joules of energy """ function photon(λ::FT, E::FT) where {FT<:AbstractFloat} return E * λ * FT(FAC) end ####################################################################################################################################################################################################### # # Changes made to this function # General # 2022-Jun-13: add function # 2021-Jun-13: add method to save to provided 3rd variable # 2021-Jun-13: add method to save to provided 2rd variable # ####################################################################################################################################################################################################### """ photon!(λ::Vector{FT}, E::Vector{FT}, phot::Vector{FT}) where {FT<:AbstractFloat} photon!(λ::Vector{FT}, E::Vector{FT}) where {FT<:AbstractFloat} Compute and save the number of moles of photons, given - `λ` Wave length in `[nm]`, converted to `[m]` by FAC - `E` Joules of energy (will be converted to moles of photons if phot in not given) - `phot` Mole of photons (variable to save) """ function photon! end photon!(λ::Vector{FT}, E::Vector{FT}, phot::Vector{FT}) where {FT<:AbstractFloat} = (phot .= photon.(λ, E); return nothing); photon!(λ::Vector{FT}, E::Vector{FT}) where {FT<:AbstractFloat} = (E .*= λ .* FT(FAC); return nothing); ####################################################################################################################################################################################################### # # Changes made to this function # General # 2021-Oct-22: define function to convert photon back to energy # ####################################################################################################################################################################################################### """ energy(λ::FT, phot::FT) where {FT<:AbstractFloat} Return the energy, given - `λ` Wave length in `[nm]`, converted to `[m]` by FAC - `phot` Number of moles of photon """ function energy(λ::FT, phot::FT) where {FT<:AbstractFloat} return phot / (λ * FT(FAC)) end ####################################################################################################################################################################################################### # # Changes made to this function # General # 2022-Jun-13: add function # 2021-Jun-13: add method to save to provided 3rd variable # 2021-Jun-13: add method to save to provided 2rd variable # ####################################################################################################################################################################################################### """ energy!(λ::Vector{FT}, phot::Vector{FT}, E::Vector{FT}) where {FT<:AbstractFloat} energy!(λ::Vector{FT}, phot::Vector{FT}) where {FT<:AbstractFloat} Compute and save the number of moles of photons, given - `λ` Wave length in `[nm]`, converted to `[m]` by FAC - `phot` Mole of photons (will be converted to moles of photons if E is not given) - `E` Joules of energy (variable to save) """ function energy! end energy!(λ::Vector{FT}, phot::Vector{FT}, E::Vector{FT}) where {FT<:AbstractFloat} = (E .= energy.(λ, phot); return nothing); energy!(λ::Vector{FT}, phot::Vector{FT}) where {FT<:AbstractFloat} = (phot ./= λ .* FT(FAC); return nothing);
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
3082
####################################################################################################################################################################################################### # # Changes made to this function # General # 2021-Oct-22: add function to compute leaf level PAR and APAR # 2022-Jan-13: use LeafBiophysics directly in the function rather than Leaf # 2022-Jun-15: rename LeafBiophysics to HyperspectralLeafBiophysics to be more descriptive # 2022-Jun-27: refactor the function to return PAR, APAR, and PPAR # ####################################################################################################################################################################################################### """ leaf_PAR(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, rad::HyperspectralRadiation{FT}; APAR_car::Bool = true) where {FT<:AbstractFloat} Return leaf level PAR, APAR, and PPAR, given - `bio` `HyperspectralLeafBiophysics` type struct that contains leaf biophysical parameters - `wls` `WaveLengthSet` type struct that contains wave length bins - `rad` `HyperspectralRadiation` type struct that contains incoming radiation information - `APAR_car` If true (default), account carotenoid absorption as PPAR; otherwise, PPAR is only by chlorophyll --- # Examples ```julia wls = ClimaCache.WaveLengthSet{Float64}(); bio = ClimaCache.HyperspectralLeafBiophysics{Float64}(); rad = ClimaCache.HyperspectralRadiation{Float64}(); par,apar,ppar = leaf_PAR(bio, wls, rad); par,apar,ppar = leaf_PAR(bio, wls, rad; APAR_car=false); ``` """ function leaf_PAR(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, rad::HyperspectralRadiation{FT}; APAR_car::Bool = true) where {FT<:AbstractFloat} @unpack IΛ_PAR, ΔΛ_PAR, Λ_PAR = wls; # PPAR absorption feature (after APAR is computed) _α_ppar = (APAR_car ? view(bio.α_cabcar, IΛ_PAR) : view(bio.α_cab, IΛ_PAR)); # PAR, APAR, and PPAR energy from direct and diffuse light _e_par_dir = view(rad.e_direct , IΛ_PAR); _e_par_diff = view(rad.e_diffuse, IΛ_PAR); _e_apar_dir = view(bio.α_sw, IΛ_PAR) .* _e_par_dir; _e_apar_diff = view(bio.α_sw, IΛ_PAR) .* _e_par_diff; _e_ppar_dir = _α_ppar .* _e_apar_dir; _e_ppar_diff = _α_ppar .* _e_apar_diff; # PAR, APAR, and PPAR photons from direct and diffuse light _par_dir = photon.(Λ_PAR, _e_par_dir ); _par_diff = photon.(Λ_PAR, _e_par_diff ); _apar_dir = photon.(Λ_PAR, _e_apar_dir ); _apar_diff = photon.(Λ_PAR, _e_apar_diff); _ppar_dir = photon.(Λ_PAR, _e_ppar_dir ); _ppar_diff = photon.(Λ_PAR, _e_ppar_diff); # total PAR and APAR in μmol photons m⁻² s⁻¹ _Σpar_dir = _par_dir' * ΔΛ_PAR * 1000; _Σpar_diff = _par_diff' * ΔΛ_PAR * 1000; _Σapar_dir = _apar_dir' * ΔΛ_PAR * 1000; _Σapar_diff = _apar_diff' * ΔΛ_PAR * 1000; _Σppar_dir = _ppar_dir' * ΔΛ_PAR * 1000; _Σppar_diff = _ppar_diff' * ΔΛ_PAR * 1000; return _Σpar_dir + _Σpar_diff, _Σapar_dir + _Σapar_diff, _Σppar_dir + _Σppar_diff end
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
14264
####################################################################################################################################################################################################### # # Changes made to this function # General # 2021-Oct-01: rename the function to leaf_spectra! as the function updates not only fluorescence but also reflectance, transmittance, and absorption spectra # 2021-Oct-22: add another method to prescribe leaf spectra such as transmittance and reflectance from broadband method # ####################################################################################################################################################################################################### """ This function updates leaf level reflectance, transmittance, and fluorescence spectra related parameters. Supported methods are - Update leaf spectra based on pigment concentrations - Update leaf spectra (reflectance and transmittance) to given broadband values - Update leaf spectra based on pigment concentrations for the entire SPAC """ function leaf_spectra! end ####################################################################################################################################################################################################### # # Changes made to this method # General # 2020-Mar-30: account for carotenoid absorption as PPAR as well as chlorophyll # 2020-Mar-31: use 40° rather than 59° for _τ_α calculation (following PROSPECT-D) # 2021-Aug-07: replace function `expint` with that from SpecialFunctions # 2021-Oct-21: add α to input parameters so that one can roll back to 50° for _τ_α calculation # 2021-Nov-29: separate HyperspectralAbsorption as constant struct # 2022-Jan-13: use LeafBiophysics directly in the function rather than Leaf # 2022-Jun-15: rename LeafBiophysics to HyperspectralLeafBiophysics to be more descriptive # 2022-Jul-22: add lwc to function variable list # 2022-Jul-28: run leaf_spectra! only if lwc differs from _v_storage # 2022-Aug-17: add option reabsorb to function to enable/disable SIF reabsorption # Bug fix # 2021-Aug-06: If bio.CBC and bio.PRO are not zero, they are accounted for twice in bio.LMA, thus the spectrum from LMA need to subtract the contribution from CBC and PRO # To do # TODO: add References for this methods # TODO: speed up this function by preallocate memories using a cache structure # ####################################################################################################################################################################################################### """ leaf_spectra!( bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, lha::HyperspectralAbsorption{FT}, lwc::FT; APAR_car::Bool = true, reabsorb::Bool = true, α::FT = FT(40) ) where {FT<:AbstractFloat} Update leaf reflectance and transmittance spectra, and fluorescence spectrum matrices, given - `bio` `HyperspectralLeafBiophysics` type struct that contains leaf biophysical parameters - `wls` `WaveLengthSet` type struct that contain wave length bins - `lha` `HyperspectralAbsorption` type struct that contains absorption characteristic curves - `lwc` Leaf water content `[mol m⁻²]` - `APAR_car` If true, carotenoid absorption is accounted for in PPAR, default is `true` - `reabsorb` If true, SIF reabsorption is enabled; otherwise, mat_b and mat_f should be based on the case with no reabsorption - `α` Optimum angle of incidence (default is 40° as in PROSPECT-D, SCOPE uses 59°) # Examples ```julia wls = ClimaCache.WaveLengthSet{Float64}(); bio = ClimaCache.HyperspectralLeafBiophysics{Float64}(); lha = ClimaCache.HyperspectralAbsorption{Float64}(); leaf_spectra!(bio, wls, lha, 50.0); leaf_spectra!(bio, wls, lha, 50.0; APAR_car=false); leaf_spectra!(bio, wls, lha, 50.0; APAR_car=false, α=59.0); ``` """ leaf_spectra!( bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, lha::HyperspectralAbsorption{FT}, lwc::FT; APAR_car::Bool = true, reabsorb::Bool = true, α::FT = FT(40) ) where {FT<:AbstractFloat} = ( # if leaf water content is the same as the historical value, do nothing if lwc == bio._v_storage return nothing end; @unpack MESOPHYLL_N, NDUB = bio; @unpack K_ANT, K_BROWN, K_CAB, K_CAR_V, K_CAR_Z, K_CBC, K_H₂O, K_LMA, K_PRO, K_PS, NR = lha; @unpack IΛ_SIF, IΛ_SIFE, Λ_SIF, Λ_SIFE = wls; # calculate the average absorption feature and relative Cab and Car partitions bio.k_all .= (K_CAB .* bio.cab .+ # chlorophyll absorption K_CAR_V .* bio.car .* (1 - bio.f_zeax) .+ # violaxanthin carotenoid absorption K_CAR_Z .* bio.car .* bio.f_zeax .+ # zeaxanthin carotenoid absorption K_ANT .* bio.ant .+ # anthocynanin absorption absorption K_BROWN .* bio.brown .+ # TODO: needs to be a concentration K_H₂O .* (lwc * M_H₂O() / ρ_H₂O() * 100) .+ # water absorption K_CBC .* bio.cbc .+ # carbon-based constituents absorption K_PRO .* bio.pro .+ # protein absorption K_LMA .* (bio.lma - bio.cbc - bio.pro) # dry mass absorption (if some remained) ) ./ MESOPHYLL_N; bio.α_cab .= (K_CAB .* bio.cab) ./ bio.k_all ./ MESOPHYLL_N; bio.α_cabcar .= (K_CAB .* bio.cab .+ K_CAR_V .* bio.car .* (1 - bio.f_zeax) .+ K_CAR_Z .* bio.car .* bio.f_zeax) ./ bio.k_all ./ MESOPHYLL_N; # calculate the reflectance and transmittance at the interfaces of one layer _τ = (1 .- bio.k_all) .* exp.(-bio.k_all) .+ bio.k_all .^ 2 .* expint.(bio.k_all .+ eps(FT)); _τ_α = average_transmittance.(α, NR); _ρ_α = 1 .- _τ_α; _τ₁₂ = average_transmittance.(FT(90), NR); _ρ₁₂ = 1 .- _τ₁₂; _τ₂₁ = _τ₁₂ ./ (NR .^ 2); _ρ₂₁ = 1 .- _τ₂₁; # top surface side _denom = 1 .- (_τ .* _ρ₂₁) .^ 2; _τ_top = _τ_α .* _τ .* _τ₂₁ ./ _denom; _ρ_top = _ρ_α .+ _ρ₂₁ .* _τ .* _τ_top; # bottom surface side _τ_bottom = _τ₁₂ .* _τ .* _τ₂₁ ./ _denom; _ρ_bottom = _ρ₁₂ .+ _ρ₂₁ .* _τ .* _τ_bottom; # calculate the reflectance and transmittance at the interfaces of N layer _d = sqrt.((1 .+ _ρ_bottom .+ _τ_bottom) .* (1 .+ _ρ_bottom .- _τ_bottom) .* (1 .- _ρ_bottom .+ _τ_bottom) .* (1 .- _ρ_bottom .- _τ_bottom)); _ρ² = _ρ_bottom .^ 2; _τ² = _τ_bottom .^ 2; _a = (1 .+ _ρ² .- _τ² .+ _d) ./ (2 .* _ρ_bottom); _b = (1 .- _ρ² .+ _τ² .+ _d) ./ (2 .* _τ_bottom); _bⁿ⁻¹ = _b .^ (MESOPHYLL_N - 1); _b²ⁿ⁻² = _bⁿ⁻¹ .^ 2; _a² = _a .^ 2; _denom = _a² .* _b²ⁿ⁻² .- 1; _ρ_sub = _a .* (_b²ⁿ⁻² .- 1) ./ _denom; _τ_sub = _bⁿ⁻¹ .* (_a² .- 1) ./ _denom; # avoid case of zero absorption _j = findall(_ρ_bottom .+ _τ_bottom .>= 1); _τ_sub[_j] = _τ_bottom[_j] ./ (_τ_bottom[_j] + (1 .- _τ_bottom[_j]) * (MESOPHYLL_N - 1)); _ρ_sub[_j] = 1 .- _τ_sub[_j]; # reflectance & transmittance of the leaf: combine top layer with next N-1 layers _denom = 1 .- _ρ_sub .* _ρ_bottom; bio.τ_sw = _τ_top .* _τ_sub ./ _denom; bio.ρ_sw = _ρ_top .+ _τ_top .* _ρ_sub .* _τ_bottom ./ _denom; bio.α_sw = 1 .- bio.τ_sw .- bio.ρ_sw; # Doubling method used to calculate fluoresence is now only applied to the part of the leaf where absorption takes place, that is, the part exclusive of the leaf-air interfaces. # The reflectance (rho) and transmittance (tau) of this part of the leaf are now determined by "subtracting" the interfaces. # CF Note: All of the below takes about 10 times more time than the RT above. Need to rething speed and accuracy. (10nm is bringing it down a lot!) _ρ_b = (bio.ρ_sw .- _ρ_α) ./ (_τ_α .* _τ₂₁ .+ (bio.ρ_sw - _ρ_α) .* _ρ₂₁); _tt1 = _τ_α .* _τ₂₁; _tt2 = bio.τ_sw .* (1 .- _ρ_b .* _ρ₂₁); _z = _tt2 ./ _tt1; _tt1 = _ρ_b - _ρ₂₁ .* _z .^ 2; _tt2 = 1 .- (_ρ₂₁.* _z) .^ 2; _ρ = max.(0, _tt1 ./ _tt2); _tt1 = 1 .- _ρ_b .* _ρ₂₁; _τ = _tt1 ./ _tt2 .* _z; # Derive Kubelka-Munk s and k _i = findall((_ρ .+ _τ) .< 1); _j = findall((_ρ .+ _τ) .> 1); _d[_i] .= sqrt.((1 .+ _ρ[_i] .+ _τ[_i]) .* (1 .+ _ρ[_i] .- _τ[_i]) .* (1 .- _ρ[_i] .+ _τ[_i]) .* (1 .- _ρ[_i] .- _τ[_i])); _a[_i] .= (1 .+ _ρ[_i] .^ 2 .- _τ[_i] .^ 2 .+ _d[_i]) ./ (2 .* _ρ[_i]); _b[_i] .= (1 .- _ρ[_i] .^ 2 .+ _τ[_i] .^ 2 .+ _d[_i]) ./ (2 .* _τ[_i]); _a[_j] .= 1; _b[_j] .= 1; _i = findall((_a .> 1) .& (_a .!= Inf)); _s = _ρ ./ _τ; _k = log.(_b); _s[_i] .= 2 .* _a[_i] ./ (_a[_i] .^ 2 .- 1) .* log.(_b[_i]); _k[_i] .= (_a[_i] .- 1) ./ (_a[_i] .+ 1) .* log.(_b[_i]); _k_chl = (APAR_car ? bio.α_cabcar : bio.α_cab) .* _k; # indices of WLE and WLF within wlp _ϵ = FT(2) ^ -NDUB; _τ_e = 1 .- (_k[IΛ_SIFE] .+ _s[IΛ_SIFE]) * _ϵ; _τ_f = reabsorb ? 1 .- (_k[IΛ_SIF] .+ _s[IΛ_SIF]) * _ϵ : 1 .- _s[IΛ_SIF] * _ϵ; _ρ_e = _s[IΛ_SIFE] * _ϵ; _ρ_f = _s[IΛ_SIF] * _ϵ; _sigmoid = 1 ./ (1 .+ exp.(-Λ_SIF ./ 10) .* exp.(Λ_SIFE' ./ 10)); _mat_f = K_PS[IΛ_SIF] .* _ϵ ./ 2 .* _k_chl[IΛ_SIFE]' .* _sigmoid; _mat_b = K_PS[IΛ_SIF] .* _ϵ ./ 2 .* _k_chl[IΛ_SIFE]' .* _sigmoid; # Doubling adding routine _1_h = ones(FT, 1, length(_τ_e)); _1_v = ones(FT, length(_τ_f), 1); for i in 1:NDUB _x_e = _τ_e ./ (1 .- _ρ_e .^ 2); _x_f = _τ_f ./ (1 .- _ρ_f .^ 2); _τ_e_n = _τ_e .* _x_e; _τ_f_n = _τ_f .* _x_f; _ρ_e_n = _ρ_e .* (1 .+ _τ_e_n); _ρ_f_n = _ρ_f .* (1 .+ _τ_f_n); _a₁₁ = _x_f * _1_h .+ _1_v * _x_e'; _a₁₂ = (_x_f * _x_e') .* (_ρ_f * _1_h .+ _1_v * _ρ_e'); _a₂₁ = 1 .+ (_x_f * _x_e') .* (1 .+ _ρ_f * _ρ_e'); _a₂₂ = (_x_f .* _ρ_f) * _1_h .+ _1_v * (_x_e.*_ρ_e)'; _mat_f_n = _mat_f .* _a₁₁ .+ _mat_b .* _a₁₂; _mat_b_n = _mat_b .* _a₂₁ .+ _mat_f .* _a₂₂; _τ_e = _τ_e_n; _ρ_e = _ρ_e_n; _τ_f = _τ_f_n; _ρ_f = _ρ_f_n; _mat_f = _mat_f_n; _mat_b = _mat_b_n; end; # This reduced red SIF quite a bit in backscatter, not sure why. _ρ_b = _ρ .+ _τ .^ 2 .* _ρ₂₁ ./ (1 .- _ρ .* _ρ₂₁); _x_e = _1_v * (_τ_α[IΛ_SIFE] ./ (1 .- _ρ₂₁[IΛ_SIFE] .* _ρ_b[IΛ_SIFE]))'; _x_f = _τ₂₁[IΛ_SIF] ./ (1 .- _ρ₂₁[IΛ_SIF] .* _ρ_b[IΛ_SIF]) * _1_h; _y_e = _1_v * (_τ[IΛ_SIFE] .* _ρ₂₁[IΛ_SIFE] ./ (1 .- _ρ[IΛ_SIFE] .* _ρ₂₁[IΛ_SIFE]))'; _y_f = _τ[IΛ_SIF] .* _ρ₂₁[IΛ_SIF] ./ (1 .- _ρ[IΛ_SIF] .* _ρ₂₁[IΛ_SIF]) * _1_h; _a = _x_e .* (1 .+ _y_e .* _y_f) .* _x_f; _b = _x_e .* (_y_e .+ _y_f) .* _x_f; bio.mat_b = _a .* _mat_b + _b .* _mat_f; bio.mat_f = _a .* _mat_f + _b .* _mat_b; # store leaf water content bio._v_storage = lwc; return nothing ); ####################################################################################################################################################################################################### # # Changes made to this method # General # 2021-Oct-22: add another method to prescribe leaf spectra such as transmittance and reflectance from broadband method # 2021-Nov-29: separate HyperspectralAbsorption as constant struct # 2022-Jan-13: use LeafBiophysics directly in the function rather than Leaf # 2022-Jun-15: rename LeafBiophysics to HyperspectralLeafBiophysics to be more descriptive # ####################################################################################################################################################################################################### """ leaf_spectra!(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, ρ_par::FT, ρ_nir::FT, τ_par::FT, τ_nir::FT) where {FT<:AbstractFloat} Update leaf reflectance and transmittance (e.g., prescribe broadband PAR and NIR values), given - `bio` `HyperspectralLeafBiophysics` type struct that contains leaf biophysical parameters - `wls` `WaveLengthSet` type struct that contain wave length bins - `ρ_par` Reflectance at PAR region - `ρ_nir` Reflectance at NIR region - `τ_par` Transmittance at PAR region - `τ_nir` Transmittance at NIR region # Examples ```julia wls = ClimaCache.WaveLengthSet{Float64}(); bio = ClimaCache.HyperspectralLeafBiophysics{Float64}(); leaf_spectra!(bio, wls, 0.1, 0.45, 0.05, 0.25); ``` """ leaf_spectra!(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, ρ_par::FT, ρ_nir::FT, τ_par::FT, τ_nir::FT) where {FT<:AbstractFloat} = ( @unpack IΛ_NIR, IΛ_PAR = wls; bio.ρ_sw[IΛ_PAR] .= ρ_par; bio.ρ_sw[IΛ_NIR] .= ρ_nir; bio.τ_sw[IΛ_PAR] .= τ_par; bio.τ_sw[IΛ_NIR] .= τ_nir; bio.α_sw = 1 .- bio.τ_sw .- bio.ρ_sw; return nothing ); ####################################################################################################################################################################################################### # # Changes made to this method # General # 2022-Jun-29: add method for MonoMLGrassSPAC, MonoMLPalmSPAC, and MonoMLTreeSPAC # ####################################################################################################################################################################################################### """ leaf_spectra!(spac::Union{MonoMLGrassSPAC{FT}, MonoMLPalmSPAC{FT}, MonoMLTreeSPAC{FT}}) where {FT<:AbstractFloat} Update leaf reflectance and transmittance for SPAC, given - `spac` `MonoMLGrassSPAC`, `MonoMLPalmSPAC`, or `MonoMLTreeSPAC` type SPAC """ leaf_spectra!(spac::Union{MonoMLGrassSPAC{FT}, MonoMLPalmSPAC{FT}, MonoMLTreeSPAC{FT}}) where {FT<:AbstractFloat} = ( @unpack CANOPY, LEAVES = spac; for _leaf in LEAVES leaf_spectra!(_leaf.BIO, CANOPY.WLSET, CANOPY.LHA, _leaf.HS.v_storage; APAR_car = _leaf.APAR_CAR); end; return nothing );
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
2271
####################################################################################################################################################################################################### # # Changes made to this function # General # 2020-Mar-30: migrate the function from SCOPE # 2021-Oct-21: rename the function to average_transmittance # To do # TODO: figure out where does this equation comes from # ####################################################################################################################################################################################################### """ average_transmittance(α::FT, nr::FT) where {FT<:AbstractFloat} Return the average transmittance of isotropic radiation across an interface between two dielectrics, given - `α` angle of incidence - `nr` Index of refraction # References - Stern (1964) Transmission of isotropic radiation across an interface between two dielectrics. Applied Optics 3(1): 111-113. - Allen (1973) Transmission of isotropic light across a dielectric surface in two and three dimensions. Journal of the Optical Society of America 63(6): 664-666. """ function average_transmittance(α::FT, nr::FT) where {FT<:AbstractFloat} @assert 0 < α <= 90; # some shortcuts to avoid overly comlicated equation _a = (nr + 1) ^ 2 / 2; _a³ = _a ^ 3; _n² = nr ^ 2; _n⁴ = nr ^ 4; _n⁶ = nr ^ 6; _n²p = _n² + 1; _n²p² = _n²p ^ 2; _n²p³ = _n²p ^ 3; _n²m² = (_n² - 1) ^ 2; _k = -1 * _n²m² / 4; _k² = _k ^ 2; _sin²α = sind(α) ^ 2; _b₂ = _sin²α - _n²p/2; _b₁ = (α==90 ? 0 : sqrt(_b₂ ^ 2 + _k)); _b = _b₁ - _b₂; _b³ = _b ^ 3; _npanm = 2 * _n²p * _a - _n²m²; _npbnm = 2 * _n²p * _b - _n²m²; # S polarization _ts = ( _k² / (6*_b³) + _k/_b - _b/2 ) - ( _k² / (6*_a³) + _k/_a - _a/2 ); # P polarization _tp₁ = -2 * _n² * (_b - _a) / _n²p²; _tp₂ = -2 * _n² * _n²p * log(_b / _a) / _n²m²; _tp₃ = _n² * (1/_b - 1/_a) / 2; _tp₄ = 16 * _n⁴ * (_n⁴ + 1) * log(_npbnm / _npanm) / (_n²p³ * _n²m²); _tp₅ = 16 * _n⁶ * (1/_npbnm - 1/_npanm) / _n²p³; _tp = _tp₁ + _tp₂ + _tp₃ + _tp₄ + _tp₅; return (_ts + _tp) / (2 * _sin²α) end
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
code
2446
using ClimaCache using LeafOptics using Test @testset verbose = true "LeafOptics CI Coverage" begin # file spectra.jl @testset "Spectra" begin for FT in [Float32, Float64] wls = ClimaCache.WaveLengthSet{FT}(); bio = ClimaCache.HyperspectralLeafBiophysics{FT}(); lha = ClimaCache.HyperspectralAbsorption{FT}(); spac = ClimaCache.MonoMLTreeSPAC{FT}(); LeafOptics.leaf_spectra!(bio, wls, lha, FT(50)); @test true; LeafOptics.leaf_spectra!(bio, wls, lha, FT(50)); @test true; LeafOptics.leaf_spectra!(bio, wls, lha, FT(49); APAR_car = false); @test true; LeafOptics.leaf_spectra!(bio, wls, lha, FT(48); reabsorb = false); @test true; LeafOptics.leaf_spectra!(bio, wls, FT(0.1), FT(0.45), FT(0.05), FT(0.25)); @test true; LeafOptics.leaf_spectra!(spac); @test true; end; end; # file radiation.jl @testset "PAR & APAR" begin for FT in [Float32, Float64] wls = ClimaCache.WaveLengthSet{FT}(); bio = ClimaCache.HyperspectralLeafBiophysics{FT}(); rad = ClimaCache.HyperspectralRadiation{FT}(); par,apar,ppar = LeafOptics.leaf_PAR(bio, wls, rad); @test true; par,apar,ppar = LeafOptics.leaf_PAR(bio, wls, rad; APAR_car=false); @test true; end; end; # file fluorescence.jl @testset "SIF" begin for FT in [Float32, Float64] wls = ClimaCache.WaveLengthSet{FT}(); bio = ClimaCache.HyperspectralLeafBiophysics{FT}(); rad = ClimaCache.HyperspectralRadiation{FT}(); sif_b,sif_f = LeafOptics.leaf_SIF(bio, wls, rad, FT(0.01)); @test true; sif_b,sif_f = LeafOptics.leaf_SIF(bio, wls, rad, FT(0.01); ϕ_photon = false); @test true; end; end; # file photon.jl @testset "Utils" begin for FT in [Float32, Float64] xs = rand(FT,2); ys = rand(FT,2); LeafOptics.photon!(FT[400,500], xs, ys); @test true; LeafOptics.photon!(FT[400,500], xs); @test true; LeafOptics.energy!(FT[400,500], ys, xs); @test true; LeafOptics.energy!(FT[400,500], ys); @test true; end; end; end;
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
docs
1732
# LeafOptics.jl <!-- Links and shortcuts --> [ju-url]: https://github.com/Yujie-W/LeafOptics.jl [ju-api]: https://yujie-w.github.io/LeafOptics.jl/stable/API/ [dev-img]: https://img.shields.io/badge/docs-dev-blue.svg [dev-url]: https://Yujie-W.github.io/LeafOptics.jl/dev/ [rel-img]: https://img.shields.io/badge/docs-stable-blue.svg [rel-url]: https://Yujie-W.github.io/LeafOptics.jl/stable/ [st-img]: https://github.com/Yujie-W/LeafOptics.jl/workflows/JuliaStable/badge.svg?branch=main [st-url]: https://github.com/Yujie-W/LeafOptics.jl/actions?query=branch%3A"main"++workflow%3A"JuliaStable" [min-img]: https://github.com/Yujie-W/LeafOptics.jl/workflows/Julia-1.6/badge.svg?branch=main [min-url]: https://github.com/Yujie-W/LeafOptics.jl/actions?query=branch%3A"main"++workflow%3A"Julia-1.6" [cov-img]: https://codecov.io/gh/Yujie-W/LeafOptics.jl/branch/main/graph/badge.svg [cov-url]: https://codecov.io/gh/Yujie-W/LeafOptics.jl ## About LeafOptics.jl is a remasted package for leaf transmittance, refleclectance, and fluorescence spectra. The main functionalities are from CanopyLayers.jl, which would be rebranded to account for canopy structure. | Documentation | CI Status | Compatibility | Code Coverage | |:------------------------------------------------|:----------------------|:------------------------|:------------------------| | [![][dev-img]][dev-url] [![][rel-img]][rel-url] | [![][st-img]][st-url] | [![][min-img]][min-url] | [![][cov-img]][cov-url] | ## Installation ```julia julia> using Pkg; julia> Pkg.add("LeafOptics"); ``` ## API See [`API`][ju-api] for more detailed information about how to use [`LeafOptics.jl`][ju-url].
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
docs
742
# LeafOptics ```@meta CurrentModule = LeafOptics ``` ## Leaf spectra ```@docs leaf_spectra! leaf_spectra!(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, lha::HyperspectralAbsorption{FT}, lwc::FT; APAR_car::Bool = true, reabsorb::Bool = true, α::FT = FT(40)) where {FT<:AbstractFloat} leaf_spectra!(bio::HyperspectralLeafBiophysics{FT}, wls::WaveLengthSet{FT}, ρ_par::FT, ρ_nir::FT, τ_par::FT, τ_nir::FT) where {FT<:AbstractFloat} leaf_spectra!(spac::Union{MonoMLGrassSPAC{FT}, MonoMLPalmSPAC{FT}, MonoMLTreeSPAC{FT}}) where {FT<:AbstractFloat} ``` ## Leaf PAR, APAR, and PPAR ```@docs leaf_PAR ``` ## Leaf SIF ```@docs leaf_SIF ``` ## Utility functions ```@docs average_transmittance photon photon! energy energy! ```
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "Apache-2.0" ]
0.3.4
ad5850d26616ed692edc843ef584b5f4c9cabdd4
docs
133
# LeafOptics.jl Functions to calculate leaf spectra, PAR, and SIF. ## Installation ```julia using Pkg; Pkg.add("LeafOptics"); ```
LeafOptics
https://github.com/Yujie-W/LeafOptics.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
286
using Documenter, QuakeML makedocs( sitename = "QuakeML.jl documentation", pages = [ "Home" => "index.md", "Manual" => "manual.md", "Function index" => "function-index.md", ] ) deploydocs( repo = "github.com/anowacki/QuakeML.jl.git", )
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
1078
""" # QuakeML Read and write files in the QuakeML format which describes seismic events. ## User functions - [`QuakeML.read`](@ref): Read a QuakeML file - [`QuakeML.readstring`](@ref): Read a QuakeML document from a string - [`preferred_focal_mechanism`](@ref): Get the preferred focal mechanism for an event - [`preferred_magnitude`](@ref): Get the preferred magnitude for an event - [`preferred_origin`](@ref): Get the preferred origin for an event - [`quakeml`](@ref): Create an XML document from a set of events which can be written with `print(io, quakeml(qml))` """ module QuakeML using Dates: DateTime, Time import UUIDs import EzXML export EventParameters, has_focal_mechanism, has_magnitude, has_origin, preferred_focal_mechanism, preferred_focal_mechanisms, preferred_magnitude, preferred_magnitudes, preferred_origin, preferred_origins, quakeml include("compat.jl") include("util.jl") include("types.jl") include("io.jl") include("constructors.jl") include("accessors.jl") include("types_module.jl") end # module
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
4605
# Functions to get and check values """ has_focal_mechanism(event) -> ::Bool Return `true` if `event` contains one or more focal mechanisms defined. """ has_focal_mechanism(event::Event) = !isempty(event.focal_mechanism) """ has_magnitude(event) --> ::Bool Return `true` if `event` has one or more magnitudes defined. """ has_magnitude(event::Event) = !isempty(event.magnitude) """ has_origin(event) -> ::Bool Return `true` if `event` has one or more origins defined. """ has_origin(event::Event) = !isempty(event.origin) """ preferred_focal_mechanism(event; verbose=false) -> focal_mechanism Return the preferred focal mechanism for an `event`. This may be defined if there is more than one focal mechanism given for an event, and the `preferred_focal_mechanism_id` field is set. If there is only one focal mechanism for this `event`, then that is returned. If there is no focal mechanism associated with this event which matches the stated `preferred_focal_mechanism_id`, then the first focal mechanism is returned, and a warning given is `verbose` is `true`. """ function preferred_focal_mechanism(e::Event; verbose=false) has_focal_mechanism(e) || throw(ArgumentError("event contains no focal mechanisms")) length(e.focal_mechanism) == 1 && return first(e.focal_mechanism) preferred_id = e.preferred_focal_mechanism_id ind = findfirst(x -> x.public_id === preferred_id, e.focal_mechanism) focal_mechanism = if ind === nothing verbose && @warn("no focal mechanism with preferred id; returning the first focal mechanism") first(e.focal_mechanism) else e.focal_mechanism[ind] end focal_mechanism end """ preferred_focal_mechanisms(quakeml::EventParameters; verbose=false) -> focal_mechanisms Return the preferred focal mechanisms for the events contained within `quakeml`. See [`preferred_magnitude`](@ref). """ preferred_focal_mechanisms(ep::EventParameters; verbose=false) = preferred_focal_mechanism.(ep.event; verbose=verbose) """ preferred_magnitude(event; verbose=false) -> magnitude Return the preferred magnitude for an `event`. This may be defined if there is more than one magnitude given for an event, and the `preferred_magnitude_id` field is set. If there is only one magnitude for this `event`, then that is returned. If there is no magnitude associated with this event which matches the stated `preferred_magnitude_id`, then the first magnitude is returned, and a warning given is `verbose` is `true`. """ function preferred_magnitude(e::Event; verbose=false) has_magnitude(e) || throw(ArgumentError("event contains no magnitudes")) length(e.magnitude) == 1 && return first(e.magnitude) preferred_id = e.preferred_magnitude_id ind = findfirst(x -> x.public_id === preferred_id, e.magnitude) magnitude = if ind === nothing verbose && @warn("no magnitude with preferred id; returning the first magnitude") first(e.magnitude) else e.magnitude[ind] end magnitude end """ preferred_magnitueds(quakeml::EventParameters; verbose=false) -> magnitudes Return the preferred magnitudes for the events contained within `quakeml`. See [`preferred_magnitude`](@ref). """ preferred_magnitudes(ep::EventParameters; verbose=false) = preferred_magnitude.(ep.event; verbose=verbose) """ preferred_origin(event; verbose=false) -> origin Return the preferred origin for an `event`. This may be defined if there is more than one origin given for an event, and the `preferred_origin_id` field is set. If there is only one origin for this `event`, then that is returned. If there is no origin associated with this event which matches the stated `preferred_origin_id`, then the first origin is returned and a warning is given when `verbose=true` """ function preferred_origin(e::Event; verbose=false) has_origin(e) || throw(ArgumentError("event contains no origins")) length(e.origin) == 1 && return first(e.origin) preferred_id = e.preferred_origin_id ind = findfirst(x -> x.public_id === preferred_id, e.origin) origin = if ind === nothing verbose && @warn("no origin with preferred id; returning the first origin") first(e.origin) else e.origin[ind] end origin end """ preferred_origins(quakeml::EventParameters; verbose=false) -> origins Return the preferred origins for the events contained within `quakeml`. See [`preferred_origin`](@ref). """ preferred_origins(ep::EventParameters; verbose=false) = preferred_origin.(ep.event; verbose=verbose)
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
154
@static if VERSION < v"1.2" function hasfield(T::Type, name::Symbol) Base.@_pure_meta Base.fieldindex(T, name, false) > 0 end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
1062
# More convenient constructors for types and conversions to types RealQuantity(value::Real) = RealQuantity(value=value) IntegerQuantity(value::Number) = IntegerQuantity(value=value) # Allow filling of fields which are types with only a single field # e.g., EventParameters(public_id="example string") # rather than EventParameters(public_id=ResourceReference("example string")) for T in Base.uniontypes(ValueTypes) @eval Base.convert(::Type{$T}, s::AbstractString) = $T(s) end # Allow contruction of types which use the following more easily. # e.g., # QuakeML.Origin(time=DateTime("2012-01-01T00:00:00"), # longitude=1, latitude=2, public_id="smi:a.com/b") # rather than # QuakeML.Origin(time=TimeQuantity(value=DateTime("2012-01-01T00:00:00")), # longitude=RealQuantity(value=1), etc...) Base.convert(::Type{RealQuantity}, value::Real) = RealQuantity(value=value) Base.convert(::Type{IntegerQuantity}, value::Integer) = IntegerQuantity(value=value) Base.convert(::Type{TimeQuantity}, value::DateTime) = TimeQuantity(value=value)
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
13305
# Reading and parsing functions # # Reading # """ read(filename) -> ::EventParameters Read a QuakeML file with name `filename` from disk and return an `EventParameters` object. # Example ``` julia> file = joinpath(dirname(pathof(QuakeML)), "..", "test", "data", "nepal_mw7.2.qml"); julia> events = QuakeML.read(file) EventParameters comment: Array{QuakeML.Comment}((0,)) event: Array{QuakeML.Event}((1,)) description: Missing missing creation_info: QuakeML.CreationInfo public_id: QuakeML.ResourceIdentifier ``` --- read(io) -> ::EventParameters Read a QuakeML document from the stream `io`. # Example ``` julia> io = IOBuffer(\"\"\" <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.2"> <eventParameters></eventParameters> </quakeml> \"\"\"); julia> QuakeML.read(io) EventParameters comment: Array{QuakeML.Comment}((0,)) event: Array{QuakeML.Event}((0,)) description: Missing missing creation_info: Missing missing public_id: QuakeML.ResourceIdentifier ``` """ read(filename::AbstractString) = readstring(String(Base.read(filename)), filename=filename) read(io) = readstring(String(Base.read(io))) """ readstring(xml_string) -> ::EventParameters Read the QuakeML contained in `xml_string` and return a `EventParameters` object. """ function readstring(xml_string; filename=nothing) # Extremely basic check that this is XML at all occursin(r"^\s*<", xml_string) || throw(ArgumentError("string does not appear to be XML:\n'$(first(xml_string, 100))'")) xml = EzXML.parsexml(xml_string) file_string = filename === nothing ? "" : " in file $filename" xml_is_quakeml(xml) || throw(ArgumentError("QuakeML$file_string does not appear to be a StationXML file")) schema_version_is_okay(xml) || throw(ArgumentError("QuakeML$file_string does not have the correct schema version")) elements = EzXML.elements(xml.root) length(elements) == 1 || error("QuakeML$file_string does not have one single root element") parse_node(first(elements)) end """ xml_is_quakeml(xml) Return `true` if `xml` appears to be a QuakeML file. """ xml_is_quakeml(xml) = EzXML.hasroot(xml) && xml.root.name == "quakeml" """ schema_version_is_okay(xml::EzXML.Document) -> ::Bool Return `true` if this XML document is of a version which we know we can correctly parse. Note: QuakeML does not include the schema version as a field of its own, so we simply try and parse the namespace definition. QuakeML files in the wild appear to do this a number of ways. """ function schema_version_is_okay(xml::EzXML.Document) namespaces = Dict(EzXML.namespaces(xml.root)) version_string = if haskey(namespaces, "q") last(split(namespaces["q"], '/')) elseif haskey(namespaces, "") last(split(namespaces[""], '/')) else @warn("cannot determine QuakeML schema version from file") return true end version = VersionNumber(version_string) if version <= v"1.2" return true elseif version > v"1.2" @warn("document is StationXML version $version; only v1.2 data will be read") return true end end attributes_and_elements(node::EzXML.Node) = vcat(EzXML.attributes(node), EzXML.elements(node)) """ parse_node(root::EzXML.Node) -> ::EventParameters Parse the `root` node of a QuakeML document. This can be accessed as `EzXML.readxml(file).root`. """ parse_node(root::EzXML.Node) = parse_node(EventParameters, root) "Types which can be directly parsed from a Node" const ParsableTypes = Union{Type{String},Type{Float64},Type{Int},Type{Bool}} parse_node(T::ParsableTypes, node::EzXML.Node) = local_parse(T, node.content) # Handle dates with greater than millisecond precision by truncating to nearest millisecond, # cope with UTC time zone information (ends with 'Z'), and convert non-UTC time zones to UTC function parse_node(T::Type{DateTime}, node::EzXML.Node) # Remove sub-millisecond intervals m = match(r"(.*T..:..:..[\.]?)([0-9]{0,3})[0-9]*([-+Z].*)*", node.content) dt = DateTime(m.captures[1] * m.captures[2]) # Local date to ms (m.captures[3] === nothing || m.captures[3] in ("", "Z", "+00:00", "-00:00")) && return dt # UTC pm = m.captures[3][1] # Whether ahead or behind UTC offset = Time(m.captures[3][2:end]) - Time("00:00") dt = pm == '+' ? dt + offset : dt - offset dt end "Types of types with a single field: `value::String`" const ValueFieldType = Union{ # XML URI; aliased to ResourceReference Type{ResourceIdentifier}, # Unconstrained phase name Type{Phase}, # String types with value restrictions Type{OriginUncertaintyDescription}, Type{AmplitudeCategory}, Type{OriginDepthType}, Type{OriginType}, Type{MTInversionType}, Type{EvaluationMode}, Type{EvaluationStatus}, Type{PickOnset}, Type{EventType}, Type{DataUsedWaveType}, Type{AmplitudeUnit}, Type{EventDescriptionType}, Type{MomentTensorCategory}, Type{EventTypeCertainty}, Type{SourceTimeFunctionType}, Type{PickPolarity} } # FIXME: Maintain one list which automatically fills this and ValueFieldType "Types with a single field: `value::String" const ValueTypes = Union{ ResourceIdentifier, Phase, OriginUncertaintyDescription, AmplitudeCategory, OriginDepthType, OriginType, MTInversionType, EvaluationMode, EvaluationStatus, PickOnset, EventType, DataUsedWaveType, AmplitudeUnit, EventDescriptionType, MomentTensorCategory, EventTypeCertainty, SourceTimeFunctionType, PickPolarity } parse_node(T::ValueFieldType, node::EzXML.Node) = T(node.content) """ parse_node(T, node::EzXML.Node) -> ::T Create a type `T` from the QuakeML module from an XML `node`. """ function parse_node(T, node::EzXML.Node) @debug("\n===\nParsing node type $T\n===") # Value field types have extra attributes is_value_field = Type{T} <: ValueFieldType @debug("$T is a value field: $is_value_field") node_name = transform_name(node.name) @debug("Node name is $(node_name)") is_attribute = is_attribute_field(T, node_name) @debug if is_attribute "Node corresponds to an attribute field" end # Arguments to the keyword constructor of the type T args = Dict{Symbol,Any}() all_elements = is_attribute ? EzXML.elements(node) : attributes_and_elements(node) all_names = [transform_name(e.name) for e in all_elements] @debug("Element names: $all_names") @debug("Field names: $(fieldnames(T))") # Fill in the field for field in fieldnames(T) field_type = fieldtype(T, field) @debug field, T, field_type # Skip fields not in our types if !(field in all_names) # Types with a `value` field with the same name as the upper field would # fail the test without `field == :value` if !(is_value_field && field == :value) @debug(" Skipping non-value field") continue end end if !(is_value_field && field == :value) elm = all_elements[findfirst(isequal(field), all_names)] end # Unions are Missing-supporting fields; should only ever have two types if field_type isa Union @debug("Field $field is a Union type") union_types = Base.uniontypes(field_type) @assert length(union_types) == 2 && Missing in union_types field_type = union_types[1] == Missing ? union_types[2] : union_types[1] @debug("Field type is $field_type") args[field] = parse_node(field_type, elm) @debug("\n Saving $field as $(args[field])") # Multiple elements allowed elseif field_type <: AbstractVector el_type = eltype(field_type) @debug("Element type is $el_type") ifields = findall(isequal(field), all_names) values = el_type[] for i in ifields push!(values, parse_node(el_type, all_elements[i])) end args[field] = values @debug("\n Saving $field as $values") # The value field of a ValueFieldType elseif field == :value && is_value_field @assert value !== nothing @debug("Value of field is $(repr(value))") args[field] = local_parse(field_type, value) @debug("\n Saving $field as $(repr(args[field]))") # Just one (maybe optional) field else args[field] = parse_node(field_type, elm) @debug("\n Saving $field as $(repr(args[field]))") end end T(; args...) end # Versions of parse which accept String as the type. # Don't define this for Base as this is type piracy. local_tryparse(T::Type{<:AbstractString}, s::AbstractString) = s local_tryparse(T::DataType, s::AbstractString) = tryparse(T, s) local_parse(T::Type{<:AbstractString}, s::AbstractString) = s local_parse(T::DataType, s::AbstractString) = parse(T, s) # # Writing # """ write(io, qml::EventParameters; kwargs...) Write a set of `EventParameters` to `io`. `kwargs` are passed to [`quakeml`](@ref) to control the creation of the XML representing the catalogue. # Examples (Note that `"example_quakeml_file.xml"` may not exist.) Write a file with the default settings ``` julia> qml = QuakeML.read("example_quakeml_file.xml"); julia> write("new_file.xml", qml) ``` Write a file with custom version ``` julia> write("new_file2.xml", qml, version="1.1") ``` """ function Base.write(io::IO, qml::EventParameters; kwargs...) EzXML.prettyprint(io, quakeml(qml; kwargs...)) end """ quakeml(qml::EventParameters; version="1.2") -> xml::EzXML.XMLDocument Create an XML document from `qml`, a set of events of type `EventParameters`. `xml` is an `EzXML.XMLDocument` suitable for output. The user may also set the nominal `version` of QuakeML created. The QuakeML document `xml` may be written with `write(io, xml)` or converted to a string with `string(xml)`. """ function quakeml(qml::EventParameters; version::AbstractString="1.2") doc = EzXML.XMLDocument("1.0") root = EzXML.ElementNode("quakeml") # FIXME: Is this the only way to set a namespace in EzXML? namespace = EzXML.AttributeNode("xmlns", "http://quakeml.org/xmlns/quakeml/" * version) EzXML.link!(root, namespace) EzXML.setroot!(doc, root) event_parameters = EzXML.ElementNode("eventParameters") EzXML.link!(root, event_parameters) add_attributes!(event_parameters, qml) add_elements!(event_parameters, :event_parameters, qml) doc end """ add_attributes!(node, value) -> node Add the attribute fields from the structure `value` to a `node`. For QuakeML documents, all attributes should be `ResourceReference`s. """ function add_attributes!(node, value::T) where T for field in attribute_fields(T) content = getfield(value, field) content === missing && continue @assert content isa ResourceIdentifier name = retransform_name(field) attr = EzXML.AttributeNode(name, content.value) EzXML.link!(node, attr) end node end """ add_elements!(node, parent_field, value) -> node Add the elements to `node` contained within `value`. `parent_field` is the name of the field which contains `value`. """ function add_elements!(node, parent_field, value::T) where T for field in fieldnames(T) @debug("adding $parent_field: $field") is_attribute_field(T, field) && continue content = getfield(value, field) if content === missing continue end add_element!(node, field, content) end node end function add_elements!(node, parent_field, values::AbstractArray) for value in values add_elements!(node, parent_field, value) end node end "Union of types which can be natively written" const WritableTypes = Union{Float64, Int, String, DateTime, Bool} """ add_element!(node, field, value) -> node Add an element called `field` to `node` with content `value`. """ function add_element!(node, field, value::WritableTypes) @debug(" adding writable type name $field with value $value") name = retransform_name(field) elem = EzXML.ElementNode(name) content = EzXML.TextNode(string(value)) EzXML.link!(elem, content) EzXML.link!(node, elem) node end function add_element!(node, field, value::ValueTypes) @debug(" adding value type name $field with value $value") name = retransform_name(field) elem = EzXML.ElementNode(name) content = EzXML.TextNode(value.value) EzXML.link!(elem, content) EzXML.link!(node, elem) node end function add_element!(node, field, values::AbstractArray) @debug(" adding array type name $field with $(length(values)) values") for value in values add_element!(node, field, value) end node end function add_element!(node, field, value) @debug(" adding compound type name $field of type $(typeof(value))") name = retransform_name(field) elem = EzXML.ElementNode(name) EzXML.link!(node, elem) add_attributes!(elem, value) add_elements!(elem, field, value) node end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
73167
# Definition of types as per the QuakeML schema using Parameters: @with_kw # Shorthand for single values which may or may not be present once, # equivalent to `minOccurs="0" maxOccurs="1"` in the schema. const M{T} = Union{Missing,T} """ RealQuantity(; kwargs...) Physical quantities that can be expressed numerically—either as integers or as floating point numbers—are represented by their measured or computed values and optional values for symmetric or upper and lower uncertainties. The interpretation of these uncertainties is not defined in the standard. They can contain statistically well-defined error measures, but the mechanism can also be used to simply describe a possible value range. Ifthe confidence level of the uncertainty is known, it can be listed in the optional field `confidence_level`. Note that `uncertainty`, `upper_uncertainty`, and `lower_uncertainty` are given as absolute values of the deviation from the main `value`. # List of fields - `value :: Float64`: Value of the quantity. The unit is implicitly defined and depends on the context. (**Required field.**) - `uncertainty :: Float64`: Uncertainty as the absolute value of symmetric deviation from the main value. - `lower_uncertainty :: Float64`: Uncertainty as the absolute value of deviation from the main `value` towards smaller values. - `upper_uncertainty :: Float64`: Uncertainty as the absolute value of deviation from the main `value` towards larger values. - `confidence_level :: Float64`: Confidence level of the uncertainty, given in percent. """ @with_kw mutable struct RealQuantity value::Float64 uncertainty::M{Float64} = missing lower_uncertainty::M{Float64} = missing upper_uncertainty::M{Float64} = missing confidence_level::M{Float64} = missing end """ IntegerQuantity(; kwargs...) Physical quantities that can be expressed numerically—either as integers or as floating point numbers—are represented by their measured or computed values and optional values for symmetric or upper and lower uncertainties. The interpretation of these uncertainties is not defined in the standard. They can contain statistically well-defined error measures, but the mechanism can also be used to simply describe a possible value range. Ifthe confidence level of the uncertainty is known, it can be listed in the optional field `confidence_level`. Note that `uncertainty`, `upper_uncertainty`, and `lower_uncertainty` are given as absolute values of the deviation from the main `value`. # List of fields - `value :: Int`: Value of the quantity. The unit is implicitly defined and depends on the context. (**Required field.**) - `uncertainty :: Int`: Uncertainty as the absolute value of symmetric deviation from the main value. - `lower_uncertainty :: Int`: Uncertainty as the absolute value of deviation from the main `value` towards smaller values. - `upper_uncertainty :: Int`: Uncertainty as the absolute value of deviation from the main `value` towards larger values. - `confidence_level :: Float64`: Confidence level of the uncertainty, given in percent. """ @with_kw mutable struct IntegerQuantity value::Int uncertainty::M{Int} = missing lower_uncertainty::M{Int} = missing upper_uncertainty::M{Int} = missing confidence_level::M{Float64} = missing end """ ResourceReference(value) ResourceReference(; value=::String) `String` that is used as a reference to a QuakeML resource. It must adhere to the format specificationsgiven in Sect. 3.1 of the QuakeML specificaiton. The string has a maximum length of 255 characters. In this package, when creating objects which require a `ResourceReference` (usually in a field called `public_id`), a unique URI is created of the form `"smi:local/XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX"`, where `X` represents a hexadecimal characters (matching `r"[0-9a-f]"`). This is generated by calling [`QuakeML.random_reference`](@ref). # Further information Identifiers take the generic form of: [smi|quakeml]:〈authority-id〉/〈resource-id〉[#〈local-id〉] They consist of an authority identifier, a unique resource identifier, and an optional local identifier. The URI schema name `smi` stands for 'seismological meta-information', thus indicating a connection to a set of metadata associated with the resource. The authority-id part must consist of at least three characters, of which the first character has to be alphanu-meric. The subsequent characters can be alphanumeric or from the following list: `-`, `.`, `~`, `*`, `'`, `(`, `)`. After the authority-id, a forward slash (`"/"`) must follow which separates the authority-id from the resource-id. The resource-id must contain at least one character, which can be either alphanumeric, or from the eight special characters which are allowed for the authority-id. For the remaining characters of the resource-id, also the comma (`","`) and semicolon (`";"`) characters and characters from the following list can be used: `+`, `?`, `=`, `#`, `/`, `&`. Note that the forward slash which separates authority-id and resource-id is always the first forwards lash in the resource identifier. The resource-id may be followed by a stop character (`"#"`) and a local identifier which can be made up of alphanumeric characters, the comma (`","`) and semicolon (`";"`) characters, and the characters from the following list: `-`, `.`, `~`, `*`, `'`, `(`, `)`, `/`, `+`, `=`, `?`. Local identifiers are thought to denote resources that have no own metadata description associated, but are part of a larger collection for which such metadata exists. For even more information, see [Section 3.1 of the QuakeML specification](https://quake.ethz.ch/quakeml/docs/latest?action=AttachFile&do=get&target=QuakeML-BED.pdf) !!! note `ResourceReference`s are also called `ResourceIdentifier`s. """ @with_kw struct ResourceIdentifier value::String function ResourceIdentifier(value) occursin(r"(smi|quakeml):[\w\d][\w\d\-\.\*\(\)_~']{2,}/[\w\d\-\.\*\(\)_~'][\w\d\-\.\*\(\)\+\?_~'=,;#/&amp;]*", value) || throw(ArgumentError("ResourceIdentifier '$value' is not valid URI")) check_string_length("value", value, 255) new(value) end end """ WhitespaceOrEmptyString Contains a single field, `value`, which may only contain an empty `String`, or one that contains only whitespace characters. """ @with_kw struct WhitespaceOrEmptyString value::String WhitespaceOrEmptyString(value) = (occursin(r"^\s*$", value) || throw(ArgumentError("\"" * value *"\" is not blank")); new(value)) end const ResourceReference = ResourceIdentifier const ResourceReference_optional = Union{ResourceReference, WhitespaceOrEmptyString} @enumerated_struct( OriginUncertaintyDescription, String, ("horizontal uncertainty", "uncertainty ellipse", "confidence ellipsoid") ) @enumerated_struct( AmplitudeCategory, String, ("point", "mean", "duration", "period", "integral", "other") ) @enumerated_struct( OriginDepthType, String, ("from location", "from moment tensor inversion", "from modeling of broad-band P waveforms", "constrained by depth phases", "constrained by direct phases", "constrained by depth and direct phases", "operator assigned", "other") ) @enumerated_struct( OriginType, String, ("hypocenter", "centroid", "amplitude", "macroseismic", "rupture start", "rupture end") ) @enumerated_struct( MTInversionType, String, ("general", "zero trace", "double couple") ) @enumerated_struct( EvaluationMode, String, ("manual", "automatic") ) @enumerated_struct( EvaluationStatus, String, ("preliminary", "confirmed", "reviewed", "final", "rejected") ) @enumerated_struct( PickOnset, String, ("emergent", "impulsive", "questionable") ) @enumerated_struct( EventType, String, ("not existing", "not reported", "earthquake", "anthropogenic event", "collapse", "cavity collapse", "mine collapse", "building collapse", "explosion", "accidental explosion", "chemical explosion", "controlled explosion", "experimental explosion", "industrial explosion", "mining explosion", "quarry blast", "road cut", "blasting levee", "nuclear explosion", "induced or triggered event", "rock burst", "reservoir loading", "fluid injection", "fluid extraction", "crash", "plane crash", "train crash", "boat crash", "other event", "atmospheric event", "sonic boom", "sonic blast", "acoustic noise", "thunder", "avalanche", "snow avalanche", "debris avalanche", "hydroacoustic event", "ice quake", "slide", "landslide", "rockslide", "meteorite", "volcanic eruption") ) @enumerated_struct( DataUsedWaveType, String, ("P waves", "body waves", "surface waves", "mantle waves", "combined", "unknown") ) @enumerated_struct( AmplitudeUnit, String, ("m", "s", "m/s", "m/(s*s)", "m*s", "dimensionless", "other") ) @enumerated_struct( EventDescriptionType, String, ("felt report", "Flinn-Engdahl region", "local time", "tectonic summary", "nearest cities", "earthquake name", "region name") ) @enumerated_struct( MomentTensorCategory, String, ("teleseismic", "regional") ) @enumerated_struct( EventTypeCertainty, String, ("known", "suspected") ) @enumerated_struct( SourceTimeFunctionType, String, ("box car", "triangle", "trapezoid", "unknown") ) @enumerated_struct( PickPolarity, String, ("positive", "negative", "undecidable") ) """ TimeQuantity(; kwargs...) Describes a point in time, given in ISO 8601 format, with optional symmetric or asymmetric uncertainties given in seconds. The time has to be specified in UTC. # List of fields - `value :: Dates.DateTime`: Point in time (UTC), given in ISO 8601 format. (**Required field.**) - `uncertainty :: Float64`: Symmetric uncertainty of point in time. Unit: s. - `lower_uncertainty :: Float64`: Lower uncertainty of point in time. Unit: s. - `upper_uncertainty :: Float64`: Upper uncertainty of point in time. Unit: s. - `confidence_level :: Float64`: Confidence level of the uncertainty, given in percent. """ @with_kw mutable struct TimeQuantity value::DateTime uncertainty::M{Float64} = missing lower_uncertainty::M{Float64} = missing upper_uncertainty::M{Float64} = missing confidence_level::M{Float64} = missing end """ CreationInfo(; kwargs...) Used to describe creation metadata (author, version, and creation time) of a resource. # List of fields - `agency_id :: String`: Designation of agency that published a resource. The string has a maximum length of 64 characters. - `agency_uri :: ResourceReference`: URI of the agency that published a resource. - `author :: String`: Name describing the author of a resource. The string has a maximum length of 128 characters. - `author_uri :: ResourceReference`: URI of the author of a resource. - `creation_time :: Dates.DateTime`: Time of creation of a resource, in ISO 8601 format. It has to be given in UTC. - `version :: String`: Version string of a resource. The string has a maximum length of 64 characters. """ @with_kw mutable struct CreationInfo agency_id::M{String} = missing agency_uri::M{ResourceReference} = missing author::M{String} = missing author_uri::M{ResourceReference} = missing creation_time::M{DateTime} = missing version::M{String} = missing function CreationInfo(agency_id, agency_uri, author, author_uri, creation_time, version) check_string_length("agency_id", agency_id, 64) check_string_length("author", author, 128) check_string_length("version", version, 64) new(agency_id, agency_uri, author, author_uri, creation_time, version) end end # Enforce string lengths upon field setting function Base.setproperty!(ci::CreationInfo, field::Symbol, value) if field === :agency_id || field === :version check_string_length(String(field), value, 64) elseif field === :author check_string_length(String(field), value, 128) end setfield!(ci, field, value) end """ EventDescription(; text, type) Free-form string with additional event description. This can be a well-known name, like `"1906 San Francisco Earthquake"`. A number of categories can be given in `type`. # List of fields - `text :: String`: Free-form text with earthquake description. (**Required field.**) - `type :: EventDescriptionType`: Category of earthquake description. Values can be taken from the following: - `"felt report"` - `"Flinn-Engdahl region"` - `"local time"` - `"tectonic summary"` - `"nearest cities"` - `"earthquake name"` - `"region name"` """ @with_kw mutable struct EventDescription text::String type::M{EventDescriptionType} = missing end """ Phase(code) Phase(; value=code) Phase code as given in the IASPEI Standard Seismic Phase List (Storchak et al. 2003). String with a maximum length of 32 characters. # List of fields - `value :: String`: Phase code. (**Required field.**) """ @with_kw mutable struct Phase value::String end """ Comment(; text, creation_info, id) Holds information on comments to a resource as well as author and creation time information. # List of fields - `text :: String`: Text of comment. (**Required field.**) - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `Comment` object. - `id :: ResourceReference`: Identifier of comment, in QuakeML URI format. """ @with_kw mutable struct Comment text::String creation_info::M{CreationInfo} = missing id::M{ResourceReference} = missing end """ Axis(; azimuth, plunge, length) Describes an eigenvector of a moment tensor expressed in its principal-axes system. It uses the angles `azimuth`, `plunge`, and the eigenvalue `length`. # List of fields - `azimuth :: RealQuantity`: Azimuth of eigenvector of moment tensor expressed in principal-axes system. Measured clockwisefrom south-north direction at epicenter. Unit: °. (**Required field.**) - `plunge :: RealQuantity`: Plunge of eigenvector of moment tensor expressed in principal-axes system. Measured against downward vertical direction at epicenter. Unit: °. (**Required field.**) - `length :: RealQuantity`: Eigenvalue of moment tensor expressed in principal-axes system. Unit: N m. (**Required field.**) """ @with_kw mutable struct Axis azimuth::RealQuantity plunge::RealQuantity length::RealQuantity end """ PrincipleAxes(; t_axis, p_axis, n_axis) # List of fields - `tAxis :: Axis`: T (tension) axis of a moment tensor. (**Required field.**) - `p_axis :: Axis`: P (pressure) axis of a moment tensor. (**Required field.**) - `n_axis :: Axis`: N (neutral) axis of a moment tensor. """ @with_kw mutable struct PrincipleAxes t_axis::Axis p_axis::Axis n_axis::M{Axis} = missing end """ DataUsed(; kwargs...) Describes the type of data that has been used for a moment-tensor inversion. # List of fields - `wave_type : DataUsedWaveType`: Type of waveform data. This can be one of the following values (see [`DataUsedWaveType`](@ref)): - `"P waves"` - `"body waves"` - `"surface waves"` - `"mantle waves"` - `"combined"` - `"unknown"` (**Required field.**) - `station_count :: Int`: Number of stations that have contributed data of the type given in `wave_type`. - `component_count :: Int`: Number of data components of the type given in `wave_type`. - `shortest_period :: Float64`: Shortest period present in data. Unit: s. - `longest_period :: Float64`: Longest period present in data. Unit: s. """ @with_kw mutable struct DataUsed wave_type::DataUsedWaveType station_count::M{Int} = missing component_count::M{Int} = missing shortest_period::M{Float64} = missing longest_period::M{Float64} = missing end """ CompositeTime(; year, month, day, hour, minute, second) Focal times differ significantly in their precision. While focal times of instrumentally located earthquakes areestimated precisely down to seconds, historic events have only incomplete time descriptions. Sometimes, even contradictory information about the rupture time exist. The `CompositeTime` type allows for such complex descriptions. If the specification is given with no greater accuracy than days (i.e., no time components are given), the date refers to local time. However, if time components are given, they have to refer to UTC. As an example, consider a historic earthquake in California, e.g., on 28 February 1730, with no time information given. Expressed in UTC, this day extends from 1730-02-28T08:00:00Z until 1730-03-01T08:00:00Z. Such a specification would be against intuition. Therefore, for date-time specifications without time components, local time is used. In the example, the `CompositeTime` fields are simply `year=1730`, `month=2`, and `day=28`. In the corresponding time attribute of the origin, however, UTC has to be used. If the unknown time components are assumed to be zero, the value is `DateTime("1730-02-28T08:00:00")`. # List of fields - `year ::IntegerQuantity`: Year or range of years of the event’s focal time. - `month ::IntegerQuantity`: Month or range of months of the event’s focal time. - `day ::IntegerQuantity`: Day or range of days of the event’s focal time. - `hour ::IntegerQuantity`: Hour or range of hours of the event’s focal time. - `minute ::IntegerQuantity`: Minute or range of minutes of the event’s focal time. - `second :: RealQuantity`: Second and fraction of seconds or range of seconds with fraction of the event’s focal time. """ @with_kw mutable struct CompositeTime year::M{IntegerQuantity} = missing month::M{IntegerQuantity} = missing day::M{IntegerQuantity} = missing hour::M{IntegerQuantity} = missing minute::M{IntegerQuantity} = missing second::M{RealQuantity} = missing end """ Tensor(mrr, mtt, mpp, mrt, mrp, mtp) Tensor(; mrr, mtt, mpp, mrt, mrp, mtp) The `Tensor` type represents the six moment-tensor elements Mrr, Mtt, Mpp, Mrt, Mrp, Mtp in the spherical coordinate system defined by local upward vertical (r), North-South (t), and West-East (p) directions. See Aki and Richards(1980) for conversions to other coordinate systems. # List of fields - `mrr :: RealQuantity`: Moment-tensor component Mrr. Unit: N m. (**Required field.**) - `mtt :: RealQuantity`: Moment-tensor component Mtt. Unit: N m. (**Required field.**) - `mpp :: RealQuantity`: Moment-tensor component Mpp. Unit: N m. (**Required field.**) - `mrt :: RealQuantity`: Moment-tensor component Mrt. Unit: N m. (**Required field.**) - `mrp :: RealQuantity`: Moment-tensor component Mrp. Unit: N m. (**Required field.**) - `mtp :: RealQuantity`: Moment-tensor component Mtp. Unit: N m. (**Required field.**) """ @with_kw mutable struct Tensor mrr::RealQuantity mtt::RealQuantity mpp::RealQuantity mrt::RealQuantity mrp::RealQuantity mtp::RealQuantity end """ OriginQuality(; kwargs...) This type contains various attributes commonly used to describe the quality of an origin, e. g., errors, azimuthal coverage, etc. `Origin` objects have an optional attribute of the type `OriginQuality`. # List of fields - `associated_phase_count :: Int`: Number of associated phases, regardless of their use for origin computation. - `used_phase_count :: Int`: Number of defining phases, i. e., phase observations that were actually used for computingthe origin. Note that there may be more than one defining phase per station. - `associated_station_count :: Int`: Number of stations at which the event was observed. - `used_station_count :: Int`: Number of stations from which data was used for origin computation. - `depth_phase_count :: Int`: Number of depth phases (typically pP, sometimes sP) used in depth computation. - `standard_error :: Float64`: RMS of the travel time residuals of the arrivals used for the origin computation. Unit: s. - `azimuthal_gap :: Float64`: Largest azimuthal gap in station distribution as seen from epicenter. For an illustration of azimuthal gap and secondary azimuthal gap (see below), see Fig. 5 of Bondár et al. (2004). Unit: °. - `secondary_azimuthal_gap :: Float64`: Secondary azimuthal gap in station distribution, i. e., the largest azimuthal gap a station closes. Unit: °. - `ground_truth_level :: String`: `String` describing ground-truth level, e. g. GT0, GT5, etc. It has a maximum length of 32 characters. - `minimum_distance :: Float64`: Epicentral distance of station closest to the epicenter. Unit: °. - `maximum_distance :: Float64`: Epicentral distance of station farthest from the epicenter. Unit: °. - `median_distance :: Float64`: Median epicentral distance of used stations. Unit: °. """ @with_kw mutable struct OriginQuality associated_phase_count::M{Int} = missing used_phase_count::M{Int} = missing associated_station_count::M{Int} = missing used_station_count::M{Int} = missing depth_phase_count::M{Int} = missing standard_error::M{Float64} = missing azimuthal_gap::M{Float64} = missing secondary_azimuthal_gap::M{Float64} = missing ground_truth_level::M{String} = missing maximum_distance::M{Float64} = missing minimum_distance::M{Float64} = missing median_distance::M{Float64} = missing function OriginQuality(associated_phase_count, used_phase_count, associated_station_count, used_station_count, depth_phase_count, standard_error, azimuthal_gap, secondary_azimuthal_gap, ground_truth_level, maximum_distance, minimum_distance, median_distance) check_string_length("ground_truth_level", ground_truth_level, 32) new(associated_phase_count, used_phase_count, associated_station_count, used_station_count, depth_phase_count, standard_error, azimuthal_gap, secondary_azimuthal_gap, ground_truth_level, maximum_distance, minimum_distance, median_distance) end end function Base.setproperty!(oq::OriginQuality, field::Symbol, value) if field === :ground_truth_level check_string_length("ground_truth_level", value, 32) end type = fieldtype(OriginQuality, field) setfield!(oq, field, convert(type, value)) end """ NodalPlane(; strike, dip, rake) This class describes a nodal plane using the fields `strike`, `dip`, and `rake`. For a definition of the angles see Aki and Richards (1980). # List of fields - `strike :: RealQuantity`: Strike angle of nodal plane. Unit: °. (**Required field.**) - `dip :: RealQuantity`: Dip angle of nodal plane. Unit: °. (**Required field.**) - `rake :: RealQuantity`: Rake angle of nodal plane. Unit: °. (**Required field.**) """ @with_kw mutable struct NodalPlane strike::RealQuantity dip::RealQuantity rake::RealQuantity end """ TimeWindow(; begin_, end_, reference) Describes a time window for amplitude measurements, given by a central point in time, and points in time before and after this central point. Both points before and after may coincide with the central point. # List of fields - `begin_ :: Float64`: Absolute value of duration of time interval before `reference` point in time window. The value may be zero, but not negative. Unit: s. (**Required field.**) - `end_ :: Float64`: Absolute value of duration of time interval after `reference` point in time window. The value may be zero, but not negative. Unit: s. (**Required field.**) - `reference :: Dates.DateTime`: Reference point in time (“central” point). It has to be given in UTC. (**Required field.**) """ @with_kw mutable struct TimeWindow begin_::Float64 end_::Float64 reference::DateTime function TimeWindow(begin_, end_, reference) any(x->x<0, (begin_, end_)) && throw(ArgumentError("begin and end times cannot be negative")) new(begin_, end_, reference) end end """ WaveformStreamID(; kwargs...) Reference to a stream description in an inventory. This is mostly equivalent to the combination of `network_code`, `station_code`, `location_code`, and `channel_code`. However, additional information, e. g., sampling rate, can be referenced by the resource `uri`. It is recommended to use resource URI as a flexible, abstract, and unique stream ID that allows to describe different processing levels, or resampled/filtered products of the same initialstream, without violating the intrinsic meaning of the legacy identifiers (network, station, channel, and location codes). However, for operation in the context of legacy systems, the classical identifier components are upported. # List of fields - `network_code :: String`: Network code. String with a maximum length of 8 characters. (**Required field.**) - `station_code :: String`: Station code. String with a maximum length of 8 characters. (**Required field.**) - `channel_code :: String`: Channel code. String with a maximum length of 8 characters. - `location_code :: String`: Location code. String with a maximum length of 8 characters. - `uri :: ResourceReference`: Resource identifier for the waveform stream. """ @with_kw mutable struct WaveformStreamID uri::M{ResourceReference} = missing network_code::String station_code::String channel_code::M{String} = missing location_code::M{String} = missing function WaveformStreamID(uri, net, sta, cha, loc) check_string_length("network_code", net, 8) check_string_length("station_code", sta, 8) check_string_length("channel_code", cha, 8) check_string_length("location_code", loc, 8) new(uri, net, sta, cha, loc) end end function Base.setproperty!(ws::WaveformStreamID, field::Symbol, value) if field !== :uri check_string_length(String(field), value, 8) end type = fieldtype(WaveformStreamID, field) setfield!(ws, field, convert(type, value)) end """ SourceTimeFunction(; type, duration, rise_time, decay_time) Source time function used in moment-tensor inversion. # List of fields - `type :: SourceTimeFunctionType`: Type of source time function. Values can be taken from the following: - `"box car"` - `"triangle"` - `"trapezoid"` - `"unknown"` (**Required field.**) - `duration :: Float64` Source time function duration. Unit: s. (**Required field.**) - `rise_time :: Float64`: Source time function rise time. Unit: s. - `decay_time :: Float64`: Source time function decay time. Unit: s. """ @with_kw mutable struct SourceTimeFunction type::SourceTimeFunctionType duration::Float64 rise_time::M{Float64} = missing decay_time::M{Float64} = missing end """ NodalPlanes(; nodal_plane1=::NodalPlane, nodal_plane2=::NodalPlane, preferred_plane=::Int) This describes the nodal planes of a moment tensor. The field `preferred_plane` can be used to define which plane is the preferred one, taking a value of `1` or `2`. # List of fields - `nodal_plane1 :: NodalPlane`: First nodal plane of moment tensor. - `nodal_plane2 :: NodalPlane`: Second nodal plane of moment tensor. - `preferred_plane :: Int`: Indicator for preferred nodal plane of moment tensor. It can take integer values `1` or `2`. """ @with_kw mutable struct NodalPlanes nodal_plane1::M{NodalPlane} = missing nodal_plane2::M{NodalPlane} = missing preferred_plane::M{Int} = missing function NodalPlanes(nodal_plane1, nodal_plane2, preferred_plane) if preferred_plane !== missing preferred_plane in (1, 2) || throw(ArgumentError("preferred_plane must be 1 or 2")) end new(nodal_plane1, nodal_plane2, preferred_plane) end end function Base.setproperty!(nps::NodalPlanes, field::Symbol, value) if field === :preferred_plane && value !== missing value in (1, 2) || throw(ArgumentError("preferred_plane must be 1 or 2")) value = Int(value) end type = fieldtype(NodalPlanes, field) # Don't convert here, since preferred_plane should really be # an Integer setfield!(nps, field, value) end """ ConfidenceEllipsoid(; kwargs...) This type represents a description of the location uncertainty as a confidence ellipsoid with arbitrary orientationin space. The orientation of a rigid body in three-dimensional Euclidean space can be described by three parameters. We use the convention of Euler angles, which can be interpreted as a composition of three elemental rotations (i.e., rotations around a single axis). In the special case of Euler angles we use here, the angles are referred to as Tait-Bryan (or Cardan) angles. These angles may be familiar to the reader from their application in flight dynamics, and are referred to as heading (yaw, ψ), elevation (attitude, pitch, φ), and bank (roll, θ). For a definition of the angles, see Figure 4 of the QuakeML specification document at https://quake.ethz.ch/quakeml/docs/latest?action=AttachFile&do=get&target=QuakeML-BED.pdf. Through the three elemental rotations, a Cartesian system `(x,y,z)` centered at the epicenter, with the south-north direction `x`, the west-east direction `y`, and the downward vertical direction `z`, is transferred into a different Cartesian system `(X,Y,Z)` centered on the confidence ellipsoid. Here, `X` denotes the direction of the major axis, and `Y` denotes the direction of the minor axis of the ellipsoid. Note that Figure 4 can be interpreted as a hypothetical view from the _interior_ of the Earth to the inner face of a shell representing Earth's surface. The three Tait-Bryan rotations are performed as follows: (i) a rotation about the `Z` axis with angle ψ (heading, or azimuth); (ii) a rotation about the `Y` axis with angle φ (elevation, or plunge); and (iii) a rotation about the `X` axis with angle θ (bank). Note that in the case of Tait-Bryan angles, the rotations are performed about the ellipsoid's axes, not about the axes of the fixed `(x,y,z)` Cartesian system. # List of fields - `semi_major_axis_length :: Float64`: Largest uncertainty, corresponding to the semi-major axis of the confidence ellipsoid. Unit: m. (**Required field.**) - `semi_minor_axis_length :: Float64`: Smallest uncertainty, corresponding to the semi-minor axis of the confidence ellipsoid. Unit: m. (**Required field.**) - `semi_intermediate_axis_length :: Float64`: Uncertainty in direction orthogonal to major and minor axesof the confidence ellipsoid. Unit: m. (**Required field.**) - `major_axis_plunge :: Float64`: Plunge angle of major axis of confidence ellipsoid. Corresponds to Tait-Bryan angle φ. Unit: °. (**Required field.**) - `major_axis_azimuth :: Float64`: Azimuth angle of major axis of confidence ellipsoid. Corresponds to Tait-Bryan angle ψ. Unit: °. (**Required field.**) - `major_axis_rotation :: Float64`: This angle describes a rotation about the confidence ellipsoid's major axis which is required to define the direction of the ellipsoid's minor axis. Corresponds to Tait-Bryan angle θ. Unit: °. (**Required field.**) """ @with_kw mutable struct ConfidenceEllipsoid semi_major_axis_length::Float64 semi_minor_axis_length::Float64 semi_intermediate_axis_length::Float64 major_axis_plunge::Float64 major_axis_azimuth::Float64 major_axis_rotation::Float64 end """ MomentTensor(; kwargs...) Represents a moment tensor solution for an event. It is an optional part of a `FocalMechanism` description. # List of fields - `public_id :: ResourceReference` Resource identifier of `MomentTensor`. (**Required field.**) - `derived_origin_id :: ResourceReference`: Refers to the `public_id` of the `Origin` derived in the moment tensor inversion. (**Required field.**) - `moment_magnitude_id :: ResourceReference`: Refers to the `public_id` of the `Magnitude` object which represents the derived moment magnitude. - `scalar_moment :: RealQuantity`: Scalar moment as derived in moment tensor inversion. Unit: N m. - `tensor :: Tensor`: `Tensor` object holding the moment tensor elements. - `variance :: Float64`: Variance of moment tensor inversion. - `variance_reduction :: Float64`: Variance reduction of moment tensor inversion, given in percent (Dreger 2003). This is a goodness-of-fit measure. - `double_couple :: Float64`: Double couple parameter obtained from moment tensor inversion (decimal fraction between 0 and 1). - `clvd :: Float64`: CLVD (compensated linear vector dipole) parameter obtained from moment tensor inversion (decimal fraction between 0 and 1). - `iso :: Float64`: Isotropic part obtained from moment tensor inversion (decimal fraction between 0 and 1). - `greens_function_id :: ResourceReference`: Resource identifier of the Green’s function used in moment tensor inversion. - `filter_id :: ResourceReference`: Resource identifier of the filter setup used in moment tensor inversion. - `source_time_function :: SourceTimeFunction`: Source time function used in moment-tensor inversion. - `data_used :: Vector{DataUsed}`: Describes waveform data used for moment-tensor inversion. - `method_id :: ResourceReference`: Resource identifier of the method used for moment-tensor inversion. - `category :: MomentTensorCategory`: Category of moment tensor inversion. Valid entries are given in the following list (see [`MomentTensorCategory`](@ref)): - `"teleseismic"` - `"regional"` - `inversion_type :: MTInversionType`: Type of moment tensor inversion. Users should avoid giving contradictory information in `inversion_type` and `method_id`. Valid entries are given in the following list (see [`MTInversionType`](@ref)): - general - zero trace - double couple - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `MomentTensor` object. """ @with_kw mutable struct MomentTensor data_used::Vector{DataUsed} = DataUsed[] comment::Vector{Comment} = Comment[] derived_origin_id::ResourceReference moment_magnitude_id::M{ResourceReference} = missing scalar_moment::M{RealQuantity} = missing tensor::M{Tensor} = missing variance::M{Float64} = missing variance_reduction::M{Float64} = missing double_couple::M{Float64} = missing clvd::M{Float64} = missing iso::M{Float64} = missing greens_function_id::M{ResourceReference} = missing filter_id::M{ResourceReference} = missing source_time_function::M{SourceTimeFunction} = missing method_id::M{ResourceReference} = missing category::M{MomentTensorCategory} = missing inversion_type::M{MTInversionType} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() end """ FocalMechanism(; kwargs...) Describes the focal mechanism of an event. It includes different descriptions like nodal planes, principal axes, and a moment tensor. The moment tensor description is provided by objects of the type `MomentTensor` which can be specified as fields of `FocalMechanism`. # List of fields - `public_id :: ResourceReference`: Resource identifier of `FocalMechanism`. (**Required field.**) - `triggering_origin_id :: ResourceReference`: Refers to the `public_id` of the triggering origin. - `nodal_planes :: NodalPlanes`: Nodal planes of the focal mechanism. - `principal_axes :: PrincipleAxes`: Principal axes of the focal mechanism. - `azimuthal_gap :: Float64`: Largest azimuthal gap in distribution of stations used for determination of focal mechanism. Unit: °. - `station_polarity_count :: Int`: Number of station polarities used for determination of focal mechanism. - `misfit :: Float64`: Fraction of misfit polarities in a first-motion focal mechanism determination. Decimal fraction between 0 and 1. - `station_distribution_ratio :: Float64`: Station distribution ratio (STDR) parameter. Indicates how the stations are distributed about the focal sphere (Reasenberg and Oppenheimer 1985). Decimal fraction between 0 and 1. - `method_id :: ResourceReference`: Resource identifier of the method used for determination of the focal mechanism. - `waveform_id :: Vector{ResourceReference}`: Refers to a set of waveform streams from which the focal mechanism was derived. - `evaluation_mode :: EvaluationMode`: Evaluation mode of `FocalMechanism` (see [`EvaluationMode`](@ref)). - `evaluation_status :: EvaluationStatus`: Evaluation status of `FocalMechanism` (see [`EvaluationStatus`](@ref)). - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `FocalMechanism` object. """ @with_kw mutable struct FocalMechanism waveform_id::Vector{WaveformStreamID} = WaveformStreamID[] comment::Vector{Comment} = Comment[] moment_tensor::Vector{MomentTensor} = MomentTensor[] triggering_origin_id::M{ResourceReference} = missing nodal_planes::M{NodalPlanes} = missing principle_axes::M{PrincipleAxes} = missing azimuthal_gap::M{Float64} = missing station_polarity_count::M{Int} = missing misfit::M{Float64} = missing station_distribution_ratio::M{Float64} = missing method_id::M{ResourceReference} = missing evaluation_mode::M{EvaluationMode} = missing evaluation_status::M{EvaluationStatus} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() end """ Amplitude(; kwargs...) Represents a quantification of the waveform anomaly, usually a single amplitude measurement or a measurement of the visible signal duration for duration magnitudes. # List of fields - `public_id :: ResourceReference`: Resource identifier of `Amplitude`. (**Required field.**) - `genericAmplitude :: RealQuantity`: Measured amplitude value for the given `waveform_id`. Note that this attribute can describe different physical quantities, depending on the `type` and `category` of the amplitude. These can be, e.g., displacement, velocity, or a period. If the only amplitude information is a period, it has to specified here, not in the `period` field. The latter can be used if the amplitude measurement contains information on, e.g., displacement and an additional period. Since the physical quantity described by this attributeis not fixed, the unit of measurement cannot be defined in advance. However, the quantity has to be specified in SI base units. The enumeration given in the field `unit` provides the most likely units that could be needed here. For clarity, using the optional `unit` field is highly encouraged. (**Required field.**) - `type :: String`: `String` that describes the type of amplitude using the nomenclature from Storchak et al. (2003). Possible values include unspecified amplitude reading (`"A"`), amplitude reading for local magnitude (`"AML"`), amplitude reading for body wave magnitude (`"AMB"`), amplitude reading for surface wave magnitude (`"AMS"`), and time of visible end of record for duration magnitude (`"END"`). It has a maximum length of 32 characters. - `category :: AmplitudeCategory`: This field describes the way the waveform trace is evaluated to derive an amplitude value. This can be just reading a single value for a given point in time (`"point"`), taking a mean value over a time interval (`"mean"`), integrating the trace over a time interval (`"integral"`), specifying just a time interval (`"duration"`), or evaluating a period (`"period"`). (See [`AmplitudeCategory`](@ref).) - `"point"` - `"mean"` - `"duration"` - `"period"` - `"integral"` - `"other"` - `unit :: AmplitudeUnit`: This field provides the most likely measurement units for the physical quantity described in the `generic_Amplitude` field. Possible values are specified as combinations of SI base units. (See [`AmplitudeUnit`](@ref) - `"m"` - `"s:` - `"m/s"` - `"m/(s*s)"` - `"m*s"` - `"dimensionless"` - `"other"` - `method_id :: ResourceReference`: Describes the method of amplitude determination. - `period :: RealQuantity`: Dominant period in the `time_window` in case of amplitude measurements. Not used for duration magnitude. Unit: s. - `snr :: Float64`: Signal-to-noise ratio of the spectrogram at the location the amplitude was measured. - `time_window :: TimeWindow`: Description of the time window used for amplitude measurement. Recommended for duration magnitudes. - `pick_id :: ResourceReference`: Refers to the `public_id` of an associated `Pick` object. - `waveform_id :: ResourceReference`: Identifies the waveform stream on which the amplitude was measured. - `filter_id :: ResourceReference`: Identifies the filter or filter setup used for filtering the waveform stream referenced by `waveform_id`. - `scaling_time :: TimeQuantity`: Scaling time for amplitude measurement. - `magnitude_hint :: String`: Type of magnitude the amplitude measurement is used for. For valid values see [`Magnitude`](@ref QuakeML.Magnitude). String value with a maximum length of 32 characters. - `evaluation_mode :: EvaluationMode`: Evaluation mode of `Amplitude` (see [`EvaluationMode`](@ref)). - `evaluation_status :: EvaluationStatus`: Evaluation status of `Amplitude` (see [`EvaluationStatus`](@ref)). - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `Amplitude` object. """ @with_kw mutable struct Amplitude comment::Vector{Comment} = Comment[] generic_amplitude::RealQuantity type::M{String} = missing category::M{AmplitudeCategory} = missing unit::M{AmplitudeUnit} = missing method_id::M{ResourceReference} = missing period::M{RealQuantity} = missing snr::M{Float64} = missing time_window::M{TimeWindow} = missing pick_id::M{ResourceReference} = missing waveform_id::M{WaveformStreamID} = missing filter_id::M{ResourceReference} = missing scaling_time::M{TimeQuantity} = missing magnitude_hint::M{String} = missing evaluation_mode::M{EvaluationMode} = missing evaluation_status::M{EvaluationStatus} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() function Amplitude(comment, generic_amplitude, type, category, unit, method_id, period, snr, time_window, pick_id, waveform_id, filter_id, scaling_time, magnitude_hint, evaluation_mode, evaluation_status, creation_info, public_id) check_string_length("type", type, 32) check_string_length("magnitude_hint", magnitude_hint, 32) new(comment, generic_amplitude, type, category, unit, method_id, period, snr, time_window, pick_id, waveform_id, filter_id, scaling_time, magnitude_hint, evaluation_mode, evaluation_status, creation_info, public_id) end end function Base.setproperty!(amp::Amplitude, field::Symbol, value) if field === :type || field === :magnitude_hint check_string_length(String(field), value, 32) end type = fieldtype(Amplitude, field) setfield!(amp, field, convert(type, value)) end """ StationMagnitudeContribution(; station_magnitude_id, residual, weight) Describes the weighting of magnitude values froms everal `StationMagnitude` objects for computing a network magnitude estimation. # List of fields - `stationMagnitudeID :: ResourceReference`: Refers to the `publicID` of a [`StationMagnitude`](@ref QuakeML.StationMagnitude) object. (**Required field.**) - `residual :: Float64`: Residual of magnitude computation. - `weight :: Float64`: Weight of the magnitude value from [`StationMagnitude`](@ref QuakeML.StationMagnitude) for computing the magnitude value in [`Magnitude`](@ref). Note that there is no rule for the sum of the weights of all station magnitude contributions to a specific network magnitude. In particular, the weights are not required to sum up to unity. """ @with_kw mutable struct StationMagnitudeContribution station_magnitude_id::ResourceReference residual::M{Float64} = missing weight::M{Float64} = missing end """ Magnitude(; kwargs...) Describes a magnitude which can, but does not need to be associated with an origin. Association with an origin is expressed with the optional field `origin_id`. It is either a combination of different magnitude estimations, or it represents the reported magnitude for the given event. # List of fields - `public_id :: ResourceReference`: Resource identifier of `Magnitude`. (**Required field.**) - `mag :: RealQuantity`: Resulting magnitude value from combining values of type `StationMagnitude`. If no estimations are available, this value can represent the reported magnitude. (**Required field.**) - `type :: String`: Describes the type of magnitude. This is a free-text field because it is impossible to cover all existing magnitude type designations with an enumeration. Possible values are unspecified magitude (`"M"`), local magnitude (`"ML"`), body wave magnitude (`"Mb"`), surface wave magnitude (`"MS"`), moment magnitude (`"Mw"`), duration magnitude (`"Md"`), coda magnitude (`"Mc"`), `"MH"`, `"Mwp"`, `"M50"`, `"M100"`, etc. - `station_magnitude_contribution :: Vector{StationMagnitudeContribution}`: Set of [`StationMagnitudeContribution`](@ref QuakeML.StationMagnitudeContribution)s describing the contributions of each station used to compute the magnitude. - `origin_id :: ResourceReference`: Reference to an origin’s `public_id` if the magnitude has an associated `Origin`. - `method_id :: ResourceReference`: Identifies the method of magnitude estimation. Users should avoid giving contradictory information in `method_id` and `type`. - `station_count` :: Int: Number of used stations for this magnitude computation. - `azimuthal_gap :: Float64`: Azimuthal gap for this magnitude computation. Unit: °. - `evaluation_mode :: EvaluationMode`: Evaluation mode of `Magnitude` (see [`EvaluationMode`](@ref)). - `evaluation_status :: EvaluationStatus`: Evaluation status of `Magnitude` (see [`EvaluationStatus`](@ref)). - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `Magnitude` object. """ @with_kw mutable struct Magnitude comment::Vector{Comment} = Comment[] station_magnitude_contribution::Vector{StationMagnitudeContribution} = StationMagnitudeContribution[] mag::RealQuantity type::M{String} = missing origin_id::M{ResourceReference} = missing method_id::M{ResourceReference} = missing station_count::M{Int} = missing azimuthal_gap::M{Float64} = missing evaluation_mode::M{EvaluationMode} = missing evaluation_status::M{EvaluationStatus} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() function Magnitude(comment, station_magnitude_contribution, mag, type, origin_id, method_id, station_count, azimuthal_gap, evaluation_mode, evaluation_status, creation_info, public_id) check_string_length("type", type, 32) new(comment, station_magnitude_contribution, mag, type, origin_id, method_id, station_count, azimuthal_gap, evaluation_mode, evaluation_status, creation_info, public_id) end end function Base.setproperty!(mag::Magnitude, field::Symbol, value) if field === :type check_string_length("type", value, 32) end type = fieldtype(Magnitude, field) setfield!(mag, field, convert(type, value)) end """ StationMagnitude(; kwargs...) Describes the magnitude derived from a single waveform stream. # List of fields - `public_id :: ResourceReference`: Resource identifier of `StationMagnitude`. (**Required field.**) - `origin_id :: ResourceReference`: Reference to an origin’s `public_id` if the `StationMagnitude` has an `associatedOrigin`. - `mag :: RealQuantity`: Estimated magnitude. (**Required field.**) - `type :: String`: See [`Magnitude`](@ref QuakeML.Magnitude). - `amplitude_id :: ResourceReference`: Identifies the data source of the `StationMagnitude`. For magnitudes derived from amplitudes in waveforms (e. g., local magnitude ML), `amplitude_id` points to `public_id` in [`Amplitude`](@ref QuakeML.Amplitude). - `method_id :: ResourceReference`: See [`Magnitude`](@ref QuakeML.Magnitude). - `waveform_id :: ResourceReference`: Identifies the waveform stream. This element can be helpful if no amplitude is referenced, or the amplitude is not available in the context. Otherwise, it would duplicate the `waveform_id` provided there and can be omitted. - `comment :: Vector{Comment}`: Additional comments. - `creationInfo :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `StationMagnitude` object. """ @with_kw mutable struct StationMagnitude comment::Vector{Comment} = Comment[] mag::RealQuantity type::M{String} = missing origin_id::M{ResourceReference} = missing method_id::M{ResourceReference} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() function StationMagnitude(comment, mag, type, origin_id, method_id, creation_info, public_id) check_string_length("type", type, 32) new(comment, mag, type, origin_id, method_id, creation_info, public_id) end end function Base.setproperty!(stamag::StationMagnitude, field::Symbol, value) if field === :type check_string_length(String(field), value, 32) end type = fieldtype(StationMagnitude, field) setfield!(stamag, field, convert(type, value)) end """ OriginUncertainty(; kwargs...) Describes the location uncertainties of an origin. The uncertainty can be described either as a simple circular horizontal uncertainty, an uncertainty ellipse according to IMS1.0, or a confidence ellipsoid. If multiple uncertainty models are given, the preferred variant can be specified in the field `preferred_description`. # List of fields - `horizontal_uncertainty :: Float64`: Circular confidence region, given by single value of horizontal uncertainty. Unit: m. - `min_horizontal_uncertainty :: Float64`: Semi-minor axis of confidence ellipse. Unit: m. - `max_horizontal_uncertainty :: Float64`: Semi-major axis of confidence ellipse. Unit: m. - `azimuth_max_horizontal_uncertainty :: Float64`: Azimuth of major axis of confidence ellipse. Measured clockwise from south-north direction at epicenter. Unit: °. - `confidence_ellipsoid :: ConfidenceEllipsoid`: Confidence ellipsoid (see [`ConfidenceEllipsoid`](@ref QuakeML.ConfidenceEllipsoid)). - `preferred_description :: OriginUncertaintyDescription`: Preferred uncertainty description. Allowed values are the following (see [`OriginUncertaintyDescription`](@ref): - `"horizontal uncertainty"` - `"uncertainty ellipse"` - `"confidence ellipsoid"` - `confidence_level :: Float64`: Confidence level of the uncertainty, given in percent. """ @with_kw mutable struct OriginUncertainty horizontal_uncertainty::M{Float64} = missing min_horizontal_uncertainty::M{Float64} = missing max_horizontal_uncertainty::M{Float64} = missing azimuth_max_horizontal_uncertainty::M{Float64} = missing confidence_ellipsoid::M{ConfidenceEllipsoid} = missing preferred_description::M{OriginUncertaintyDescription} = missing confidence_level::M{Float64} = missing end """ Arrival(; kwargs...) Successful association of a pick with an origin qualifies this pick as an arrival. An arrival thus connects a pick with an origin and provides additional attributes that describe this relationship. Usually qualification of a pick as an arrival for a given origin is a hypothesis, which is based on assumptions about the type of arrival (phase) as well as observed and (on the basis of an earth model) computed arrival times, or the residual, respectively. Additional pick attributes like the horizontal slowness and backazimuth of the observed wave—especially if derived from array data—may further constrain the nature of the arrival. # List of fields - `public_id :: ResourceReference`: Resource identifier of `Arrival`. (**Required field.**) - `pick_id :: ResourceReference`: Refers to a `public_id` of a [`Pick`](@ref QuakeML.Pick). (**Required field.**) - `phase :: Phase`: Phase identification. For possible values, please refer to the description of the [`Phase`](@ref QuakeML.Phase) type. (**Required field.**) - `time_correction :: Float64`: Time correction value. Usually, a value characteristic for the station at which the pick was detected, sometimes also characteristic for the phase type or the slowness. Unit: s. - `azimuth :: Float64`: Azimuth of station as seen from the epicenter. Unit: °. - `distance :: Float64`: Epicentral distance. Unit: °. - `takeoff_angle :: RealQuantity`: Angle of emerging ray at the source, measured against the downward normal direction. Unit: °. - `time_residual :: Float64`: Residual between observed and expected arrival time assuming proper phase identification and given the `earth_model_id` of the `Origin`, taking into account the `timeCorrection`. Unit: s. - `horizontal_slowness_residual :: Float64`: Residual of horizontal slowness and the expected slowness given the current origin (refers to field `horizontal_slowness` of [`Pick`](@ref QuakeML.Pick)). Unit: s/° - `backazimuthResidual :: Float64`: Residual of backazimuth and the backazimuth computed for the current origin (refers to field `backazimuth` of [`Pick`](@ref QuakeML.Pick)). Unit: °. - `time_weight :: Float64`: Weight of the arrival time for computation of the associated `Origin`. Note that the sum of all weights is not required to be unity. - `horizontal_slowness_weight :: Float64`: Weight of the horizontal slowness for computation of the associated `Origin`. Note that the sum of all weights is not required to be unity. - `backazimuth_weight :: Float64`: Weight of the backazimuth for computation of the associated `Origin`. Note that the sum of all weights is not required to be unity. - `earth_model_id :: ResourceReference`: Earth model which is used for the association of `Arrival` to `Pick` and computation of the residuals. - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `Arrival` object """ @with_kw mutable struct Arrival comment::Vector{Comment} = Comment[] pick_id::ResourceReference phase::Phase time_correction::M{Float64} = missing azimuth::M{Float64} = missing distance::M{Float64} = missing takeoff_angle::M{RealQuantity} = missing time_residual::M{Float64} = missing horizontal_slowness_residual::M{Float64} = missing backazimuth_residual::M{Float64} = missing time_weight::M{Float64} = missing horizontal_slowness_weight::M{Float64} = missing backazimuth_weight::M{Float64} = missing earth_model_id::M{ResourceReference} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() end """ Origin(; kwargs...) Represents the focal time and geographical location of an earthquake hypocenter, as well as additional meta-information. `Origin` can have objects of type `OriginUncertainty` and `Arrival` as fields. # List of fields - `public_id :: ResourceReference`: Resource identifier of `Origin`. (**Required field.**) - `time`: Focal time. (**Required field.**) - `longitude :: RealQuantity`: Hypocenter longitude, with respect to the World Geodetic System 1984 (WGS84) reference system (National Imagery and Mapping Agency 2000). Unit: °. (**Required field.**) - `latitude :: RealQuantity`: Hypocenter latitude, with respect to the WGS84 reference system. Unit: °. (**Required field.**) - `depth :: RealQuantity`: Depth of hypocenter with respect to the nominal sea level given by the WGS84 geoid (Earth Gravitational Model, EGM96, Lemoine et al. 1998). Positive values indicate hypocenters below sea level. For shallow hypocenters, the `depth` value can be negative. Note: Other standards use different conventions for depth measurement. As an example, GSE 2.0, defines depth with respect to the local surface. If event data is converted from other formats to QuakeML, depth values may have to be modified accordingly. Unit: m. - `depth_type :: OriginDepthType`: Type of depth determination. Allowed values are the following (see [`OriginDepthType`](@ref)): - `"from location"` - `"from moment tensor inversion",` - `"from modeling of broad-band P waveforms"` - `"constrained by depth phases",` - `"constrained by direct phases"` - `"constrained by depth and direct phases",` - `"operator assigned"` - `"other"` - `time_fixed :: Bool`: Boolean flag. `true` if focal time was kept fixed for computation of the `Origin`. - `epicenter_fixed :: Bool`: Boolean flag. `true` if epicenter was kept fixed for computationof `Origin`. - `reference_system_id :: ResourceReference`: Identifies the reference system used for hypocenter determination. This is only necessary if a modified version of the standard (with local extensions) is used that provides a non-standard coordinate system. - `method_id :: ResourceReference`: Identifies the method used for locating the event. - `earth_model_id :: ResourceReference`: Identifies the earth model used in `methodID`. - `composite_time :: CompositeTime`: Supplementary information on time of rupture start. Complex descriptions of focal times of historic events are possible, see description of the [`CompositeTime`](@ref QuakeML.CompositeTime) type. Note that even if `composite_time` is used, the mandatory `time` field has to be set too. It has to be set to the single point in time (with uncertainties allowed) that is most characteristic for the event. - `quality :: OriginQuality`: Additional parameters describing the quality of an `Origin` determination. - `type :: OriginType`: Describes the `Origin` type. Allowed values are the following (see [`OriginType`](@ref QuakeML.OriginType)): - `"hypocenter"` - `"centroid"` - `"amplitude"` - `"macroseismic"` - `"rupture start"` - `"rupture end"` - `region :: String`: Can be used to decribe the geographical region of the epicenter location. Useful if an event has multiple origins from different agencies, and these have different region designations. Note that an event-wide region can be defined in the `description` field of an [`Event`](@ref QuakeML.Event) object. The user has to take care that this information corresponds to the region attribute of the preferred `Origin`. String with maximum length of 255 chars. - `evaluation_mode :: EvaluationMode`: Evaluation mode of `Origin` (see [`EvaluationMode`](@ref QuakeML.EvaluationMode). - `evaluation_status :: EvaluationStatus`: Evaluation status of `Origin` (see [`EvaluationStatus`](@ref QuakeML.EvaluationStatus)). - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `Origin` object. """ @with_kw mutable struct Origin composite_time::Vector{CompositeTime} = CompositeTime[] comment::Vector{Comment} = Comment[] origin_uncertainty::Vector{OriginUncertainty} = OriginUncertainty[] arrival::Vector{Arrival} = Arrival[] time::TimeQuantity longitude::RealQuantity latitude::RealQuantity depth::M{RealQuantity} = missing depth_type::M{OriginDepthType} = missing time_fixed::M{Bool} = missing epicenter_fixed::M{Bool} = missing reference_system_id::M{ResourceReference} = missing method_id::M{ResourceReference} = missing earth_model_id::M{ResourceReference} = missing quality::M{OriginQuality} = missing type::M{OriginType} = missing region::M{String} = missing evaluation_mode::M{EvaluationMode} = missing evaluation_status::M{EvaluationStatus} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() function Origin(composite_time, comment, origin_uncertainty, arrival, time, longitude, latitude, depth, depth_type, time_fixed, epicenter_fixed, reference_system_id, method_id, earth_model_id, quality, type, region, evaluation_mode, evaluation_status, creation_info, public_id) check_string_length("region", region, 128) new(composite_time, comment, origin_uncertainty, arrival, time, longitude, latitude, depth, depth_type, time_fixed, epicenter_fixed, reference_system_id, method_id, earth_model_id, quality, type, region, evaluation_mode, evaluation_status, creation_info, public_id) end end function Base.setproperty!(origin::Origin, field::Symbol, value) if field === :region check_string_length("region", value, 128) end type = fieldtype(Origin, field) setfield!(origin, field, convert(type, value)) end """ Pick(; kwargs...) A pick is the observation of an amplitude anomaly in a seismogram at a specific point in time. It is notnecessarily related to a seismic event. # List of fields - `public_id :: ResourceReference`: Resource identifier of `Pick`. (**Required field.**) - `time :: TimeQuantity`: Observed onset time of signal (“pick time”). (**Required field.**) - `waveform_id :: ResourceReference`: Identifes the waveform stream. (**Required field.**) - `filter_id :: ResourceReference`: Identifies the filter or filter setup used for filtering the waveform stream referenced by `waveform_id`. - `method_id :: ResourceReference`: Identifies the picker that produced the pick. This can be either a detection software program or aperson. - `horizontal_slowness :: RealQuantity`: Observed horizontal slowness of the signal. Most relevant in array measurements. Unit: s/°. - `backazimuth :: RealQuantity`: Observed backazimuth of the signal. Most relevant in array measurements. Unit: °. - `slowness_method_id :: ResourceReference`: Identifies the method that was used to determine the slowness. - `onset :: PickOnset`: Flag that roughly categorizes the sharpness of the onset. Allowed values are (see [`PickOnset`](@ref QuakeML.PickOnset)): - `"impulsive"` - `"emergent"` - `"questionable"` - `phase_hint :: Phase`: Tentative phase identification as specified by the picker. - `polarity :: PickPolarity`: Indicates the polarity of first motion, usually from impulsive onsets. Allowed values are (see [`PickPolarity`](@ref)): - `"positive"` - `"negative"` - `"undecidable"` - `evaluation_mode :: EvaluationMode`: Evaluation mode of `Pick` (see [`EvaluationMode`](@ref QuakeML.EvaluationMode)). - `evaluation_status :: EvaluationStatus`: Evaluation status of `Pick` (see [`EvaluationStatus`](@ref QuakeML.EvaluationStatus)). - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the `Pick` object. """ @with_kw mutable struct Pick comment::Vector{Comment} = Comment[] time::TimeQuantity waveform_id::WaveformStreamID filter_id::M{ResourceReference} = missing method_id::M{ResourceReference} = missing horizontal_slowness::M{RealQuantity} = missing backazimuth::M{RealQuantity} = missing slowness_method_id::M{ResourceReference} = missing onset::M{PickOnset} = missing phase_hint::M{Phase} = missing polarity::M{PickPolarity} = missing evaluation_mode::M{EvaluationMode} = missing evaluation_status::M{EvaluationStatus} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() end """ Event(; kwargs...) Describes a seismic event which does not necessarily need to be a tectonic earthquake. An event is usually associated with one or more origins, which contain information about focal time and geographic allocation of the event. Multiple origins can cover automatic and manual locations, a set of location from different agencies, locations generated with different location programs and earth models, etc. Furthermore, an eventis usually associated with one or more magnitudes, and with one or more focal mechanism determinations. In standard QuakeML-BED, `Origin`, `Magnitude`, `StationMagnitude`, and `FocalMechanism` are fields of `Event`. In BED-RT (the real-time version) all these fields are on the same hierarchy level as child elements of `EventParameters`. The association of origins, magnitudes, and focal mechanisms to a particular event is expressed using references inside `Event`. # List of fields - `public_id :: ResourceReference`: Resource identifier of `Event`. (**Required field.**) - `preferred_origin_id :: ResourceReference`: Refers to the `public_id` of the `preferred_origin` object. - `preferred_magnitude_id :: ResourceReference`: Refers to the `public_id` of the `preferred_magnitude` object. - `preferred_focal_mechanism_id :: ResourceReference`: Refers to the `public_id`of the `preferred_focal_mechanism` object. - `type :: EventType`: Describes the type of an event (Storchak et al. 2012). Allowed values are the following (see [`EventType`](@ref)): - `"not existing"` - `"not reported"` - `"earthquake"` - `"anthropogenic event"` - `"collapse"` - `"cavity collapse"` - `"mine collapse"` - `"building collapse"` - `"explosion"` - `"accidental explosion"` - `"chemical explosion"` - `"controlled explosion"` - `"experimental explosion"` - `"industrial explosion"` - `"mining explosion"` - `"quarry blast"` - `"road cut"` - `"blasting levee"` - `"nuclear explosion"` - `"induced or triggered event"` - `"rock burst"` - `"reservoir loading"` - `"fluid injection"` - `"fluid extraction"` - `"crash"` - `"plane crash"` - `"train crash"` - `"boat crash"` - `"other event"` - `"atmospheric event"` - `"sonic boom"` - `"sonic blast"` - `"acoustic noise"` - `"thunder"` - `"avalanche"` - `"snow avalanche"` - `"debris avalanche"` - `"hydroacoustic event"` - `"ice quake"` - `"slide"` - `"landslide"` - `"rockslide"` - `"meteorite"` - `"volcanic eruption"` - `type_certainty :: EventTypeCertainty`: Denotes how certain the information on event type is (Storchak et al. 2012). Allowed values are the following (see [`EventTypeCertainty`](@ref)): - `"known"` - `"suspected"` - `description :: Vector{EventDescription}` Additional event description, like earthquake name, Flinn-Engdahl region, etc. - `comment :: Vector{Comment}`: Comments. - `creation_info :: CreationInfo`: `CreationInfo` for the `Event` object. - `origin :: Vector{Event}`: Set of [`Origin`](@ref QuakeML.Event)s associated with this `Event`. One of these may be the preferred origin, in which case preferred_origin_id` should be set. - `magnitude :: Vector{Magnitude}`: Set of [`Magnitude`](@ref QuakeML.Magnitude)s for this `Event`. One of these may be the preferred magnitude, in which case `preferred_magnitude_id` should be set. - `station_magnitude :: Vector{StationMagnitude}`: Set of [`StationMagnitude`](@ref QuakeML.StationMagnitude)s contributing to the magnitude of this event. - `focal_mechanism :: Vector{FocalMechanism}`: Set of [`FocalMechanism`](@ref QuakeML.FocalMechanism)s for this event. One of these may be the preferred focal mechanism, in which case `preferred_focal_mechanism_id` should be set. - `pick :: Vector{Pick}`: Set of [`Pick`](@ref QuakeML.Pick)s made from this event. - `amplitude :: Vector{Amplitude}`: Set of [`Amplitude`](@ref QuakeML.Amplitude)s measured at stations from this event. (Note: The additional real-time fields `origin_reference`, `magnitude_reference` and `focal_mechanism_reference` are not yet implemented.) """ @with_kw mutable struct Event description::Vector{EventDescription} = EventDescription[] comment::Vector{Comment} = Comment[] focal_mechanism::Vector{FocalMechanism} = FocalMechanism[] amplitude::Vector{Amplitude} = Amplitude[] magnitude::Vector{Magnitude} = Magnitude[] station_magnitude::Vector{StationMagnitude} = StationMagnitude[] origin::Vector{Origin} = Origin[] pick::Vector{Pick} = Pick[] preferred_origin_id::M{ResourceReference} = missing preferred_magnitude_id::M{ResourceReference} = missing preferred_focal_mechanism_id::M{ResourceReference} = missing type::M{EventType} = missing type_certainty::M{EventTypeCertainty} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() end """ EventParameters(; comment, event, description, creation_info, public_id) Root type of QuakeML. `EventParameters` objects contain a set of events and a QuakeML XML file can contain only one `EventParameters` object. In the bulletin-type (non real-time) model, this type serves as a container for `Event` objects. In the real-time version, it can hold objects of type `Event`, `Origin`, `Magnitude`, `StationMagnitude`, `FocalMechanism`, `Reading`, `Amplitude`, and `Pick`. # List of fields - `event :: Vector{Event}`: Set of [`Event`](@ref QuakeML.Event)s making up a catalog or collection of events. - `description :: String`: Description string that can be assigned to the earthquake catalog, or collection of events. - `comment :: Vector{Comment}`: Additional comments. - `creation_info :: CreationInfo`: [`CreationInfo`](@ref QuakeML.CreationInfo) for the earthquake catalog. - `public_id :: ResourceReference`: Resource identifier of `EventParameters`. (**Required field.**) !!! note At present, QuakeML.jl only supports the non-real-time version of QuakeML. """ @with_kw mutable struct EventParameters comment::Vector{Comment} = Comment[] event::Vector{Event} = Event[] description::M{String} = missing creation_info::M{CreationInfo} = missing public_id::ResourceReference = random_reference() end """ is_attribute_field(T, field) -> ::Bool Return `true` if `field` is an attribute of the type `T`, and `false` otherwise. Other fields are assumed to be elements. """ is_attribute_field(::Type, field) = field === :public_id is_attribute_field(::Type{Comment}, field) = field === :id is_attribute_field(::Type{NodalPlanes}, field) = field === :preferred_plane is_attribute_field(::Type{WaveformStreamID}, field) = any(x -> x === field, attribute_fields(WaveformStreamID)) """ has_attributes(T) -> ::Bool Return `true` if the type `T` has fields which are contained in QuakeML documents as attributes rather than elements. """ has_attributes(::Union{Type{Comment}, Type{NodalPlanes}, Type{WaveformStreamID}}) = true has_attributes(T::Type) = hasfield(T, :public_id) """ attribute_fields(T::Type) -> (:a, :b, ...) Return a tuple of `Symbol`s giving the names of the fields of type `T` which are contained in QuakeML documents as attributes rather than elements. """ attribute_fields(T::Type) = hasfield(T, :public_id) ? (:public_id,) : () attribute_fields(::Type{Comment}) = (:id,) attribute_fields(::Type{NodalPlanes}) = (:preferred_plane,) attribute_fields(::Type{WaveformStreamID}) = (:network_code, :station_code, :location_code, :channel_code) # FIXME: Do this by reflection or some other non-manual means "List of types which are mutable structs" const MUTABLE_STRUCTS = ( RealQuantity, IntegerQuantity, TimeQuantity, CreationInfo, EventDescription, Phase, Comment, Axis, PrincipleAxes, DataUsed, CompositeTime, Tensor, OriginQuality, NodalPlane, TimeWindow, WaveformStreamID, SourceTimeFunction, NodalPlanes, ConfidenceEllipsoid, MomentTensor, FocalMechanism, Amplitude, StationMagnitudeContribution, Magnitude, StationMagnitude, OriginUncertainty, Arrival, Origin, Pick, Event, EventParameters ) # Define equality and hashing for sorting/comparison purposes for T in MUTABLE_STRUCTS fields = fieldnames(T) Tsym = nameof(T) @eval Base.:(==)(a::$Tsym, b::$Tsym) = a === b ? true : local_equals(a, b) @eval function Base.hash(x::$Tsym, h::UInt) $([:(h = hash(x.$f, h)) for f in fields]...) h end end "Types which should be compared using Base.==" const COMPARABLE_TYPES = Union{Int, Float64, String, DateTime, Bool} """Local function to compare all types by each of their fields, apart from the types from Base we use.""" local_equals(a::COMPARABLE_TYPES, b::COMPARABLE_TYPES) = a == b local_equals(::Missing, ::Missing) = true local_equals(::Missing, ::COMPARABLE_TYPES) = false local_equals(a::COMPARABLE_TYPES, b::Missing) = local_equals(b, a) function local_equals(a::T1, b::T2) where {T1,T2} T1 == T2 ? all(local_equals(getfield(a, f), getfield(b, f)) for f in fieldnames(T1)) : false end local_equals(a::AbstractArray, b::AbstractArray) = eltype(a) == eltype(b) && size(a) == size(b) && all(local_equals(aa, bb) for (aa, bb) in zip(a,b))
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
1553
module Types import ..QuakeML "All types exported by this module" const EXPORTED_TYPES = ( :RealQuantity, :IntegerQuantity, :ResourceReference, :TimeQuantity, :CreationInfo, :EventDescription, :Phase, :Comment, :Axis, :PrincipleAxes, :DataUsed, :CompositeTime, :Tensor, :OriginQuality, :NodalPlane, :TimeWindow, :WaveformStreamID, :SourceTimeFunction, :NodalPlanes, :ConfidenceEllipsoid, :MomentTensor, :FocalMechanism, :Amplitude, :StationMagnitudeContribution, :Magnitude, :StationMagnitude, :OriginUncertainty, :Arrival, :Origin, :Pick, :Event, :EventParameters) for type in EXPORTED_TYPES @eval begin const $type = QuakeML.$type export $type end end # Document the module let exported_types_list = join(string.("- `", sort([s for s in String.(EXPORTED_TYPES)]), "`"), "\n") @doc """ The `Types` module exports all the public-facing types used by QuakeML. By doing ```julia julia> using QuakeML.Types ``` you may more succinctly write code. !!! note QuakeML's types share names with other packages, such as [Seis.jl](https://github.com/anowacki/Seis.jl)'s `Event` and `Pick`, and [SeisTau.jl](https://github.com/anowacki/SeisTau.jl)'s `Phase`, amongst others. This is because QuakeML's names follow those in the QuakeML specification. # List of exported types $(exported_types_list) """ Types end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
5337
# Utility functions """ @enumerated_struct(name, T, values) Create a `struct` called `name` with a single field, `:value` which must match one of the items in `values`. Also create a keyword constructor with one required keyword argument, `value`. # Example The following code ``` @enumerated_struct(Example, Float64, (1.0, 2.0)) ``` is equivalent to ``` struct Example value::Float64 function Example(value) if value ∉ (1.0, 2.0) throw(ArgumentError("value must be one of `(1.0, 2.0)`")) end new(value) end Example(; value) = Example(value) end ``` """ macro enumerated_struct(name, T, values) values.head === :tuple || throw(ArgumentError("final argument must be a tuple of values")) values_string = string(values) # A nice set of Markdown-formatted values. values_docstring = join((string("`\"", val, "\"`") for val in values.args), ", ", " or ") # For the example in the docstring first_value = string(first(values.args)) @assert length(values.args) > 1 second_value = string(values.args[2]) T = esc(T) name = esc(name) quote """ $($name)(value) $($name)(; value) Enumerated struct containing a single string which must be one of the following: $($values_docstring). Note that when a field of another type is a `$($name)`, it is not necessary to assign a field of type `$($name)` to the field. Instead, one can simply use a `String`, from which a `$($name)` will be automatically constructed. For this reason, $($name) is not exported even when bringing QuakeML's types into scope by doing `using QuakeML.Types`. # Example ``` julia> using QuakeML julia> mutable struct ExampleStruct field::$($name) end julia> es = ExampleStruct("$($first_value)") ExampleStruct($($name)("$($first_value)")) julia> es.field = "$($second_value)" "$($second_value)" ``` """ struct $name value::$T function $name(value) if value ∉ $values $(esc(throw))($(esc(ArgumentError))("value must be one of $($values_string)")) end new(value) end $name(; value) = $name(value) end end end """ check_string_length(name, value, maxlen) -> nothing Throw an `ArgumentError` if `value` is longer than `maxlen` characters. `name` is the name of the field to report in the error message. """ function check_string_length(name, value, maxlen) value === missing && return nothing length(value) > maxlen && throw(ArgumentError("field `$name` can be at most $maxlen characters long")) nothing end """ transform_name(s::AbstractString) -> s′::Symbol Transform the name of an attribute or element of a QuakeML XML document into a `Symbol` suitable for assignment into a `struct`. # Example ```julia julia> QuakeML.transform_name("triggeringOriginID") :triggering_origin_id ``` """ function transform_name(s) s = string(s) # CamelCase to Camel_Case s = replace(s, r"([a-z])([A-Z])" => s"\1_\2") # lowercase s = lowercase(s) # Special cases s = replace(s, r"^begin$" => "begin_") s = replace(s, r"^end$" => "end_") Symbol(s) end """ retransform_name(s::Symbol) -> s′::String Transform the field name of a struct into an element or attribute name as a string, suitable for inclusion into a QuakeML XML document. """ function retransform_name(s) s = string(s) # Special cases s = replace(s, r"^begin_$" => "begin") s = replace(s, r"^end_$" => "end") s = replace(s, "_id" => "ID") # 'x_y' to 'x_Y' s = replace(s, r"(_.)" => uppercase) # 'x_Y' to 'xY' s = replace(s, "_" => "") s end """ xml_unescape(s) -> s′ Replace escaped occurrences of the five XML character entity references `&`, `<`, `>`, `"` and `'` with their unescaped equivalents. Reference: https://en.wikipedia.org/wiki/Character_encodings_in_HTML#XML_character_references """ xml_unescape(s) = # Workaround for JuliaLang/julia#28967 reduce(replace, ("&amp;" => "&", "&lt;" => "<", "&gt;" => ">", "&quot;" => "\"", "&apos;" => "'"), init=s) """ xml_escape(s) -> s′ Replace unescaped occurrences of the five XML characters `&`, `<`, `>`, `"` and `'` with their escaped equivalents. Reference: https://en.wikipedia.org/wiki/Character_encodings_in_HTML#XML_character_references """ xml_escape(s) = # Workaround for JuliaLang/julia#28967 reduce(replace, ("&" => "&amp;", "<" => "&lt;", ">" => "&gt;", "\"" => "&quot;", "'" => "&apos;"), init=s) """ random_reference() -> ::ResourceReference Create a new, random [`ResourceReference`](@ref QuakeML.ResourceReference). """ random_reference(prefix="smi") = ResourceReference(prefix * string(":local/", UUIDs.uuid4()))
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
6783
using Test, QuakeML using Dates: DateTime @testset "Accessors" begin @testset "has_" begin let event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a") @test !has_focal_mechanism(event) @test !has_magnitude(event) @test !has_origin(event) push!(event.focal_mechanism, QuakeML.FocalMechanism(public_id="smi:QuakeML.jl/focal_mechanism/a")) push!(event.magnitude, QuakeML.Magnitude(public_id="smi:QuakeML.jl/magnitude/a", mag=1)) push!(event.origin, QuakeML.Origin(public_id="smi:QuakeML.jl/origin/a", latitude=1, longitude=1, time=Dates.now())) @test has_focal_mechanism(event) @test has_magnitude(event) @test has_origin(event) end end @testset "preferred_origin" begin let qml = QuakeML.read(joinpath(@__DIR__, "data", "nepal_mw7.2.qml")) @test preferred_origin(qml.event[1]).public_id == qml.event[1].preferred_origin_id @test preferred_origin(qml.event[1]) == qml.event[1].origin[2] empty!(qml.event[1].origin) @test_throws ArgumentError preferred_origin(qml.event[1]) end origin1 = QuakeML.Origin(time=Dates.now(), longitude=0, latitude=0, public_id="smi:QuakeML.jl/origin/a") origin2 = QuakeML.Origin(time=Dates.now(), longitude=1, latitude=1, public_id="smi:QuakeML.jl/origin/b") origin3 = QuakeML.Origin(time=Dates.now(), longitude=2, latitude=2, public_id="smi:QuakeML.jl/origin/c") event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a", preferred_origin_id="smi:QuakeML.jl/origin/b") # No origins @test_throws ArgumentError preferred_origin(event) # Returns first regardless push!(event.origin, origin1) # Add one origin with wrong ID @test preferred_origin(event) == origin1 @test_nowarn preferred_origin(event, verbose=true) # Finds the preferred one push!(event.origin, origin2) # Add the right origin @test preferred_origin(event) == origin2 @test preferred_origin(event).longitude.value == 1 # Returns the first if no match empty!(event.origin) append!(event.origin, [origin1, origin3]) # Two wrong origins @test preferred_origin(event) == origin1 @test_nowarn preferred_origin(event) @test_logs((:warn, "no origin with preferred id; returning the first origin"), preferred_origin(event, verbose=true)) # Returns the first if no preferred origin at all event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a", origin=[origin1, origin2, origin3]) @test preferred_origin(event) == origin1 end @testset "preferred_origins" begin let qml = QuakeML.read(joinpath(@__DIR__, "data", "nepal_mw7.2.qml")) @test preferred_origins(qml) == [preferred_origin(qml.event[1])] empty!(qml.event[1].origin) @test_throws ArgumentError preferred_origins(qml) end end @testset "preferred_magnitude" begin mag1 = QuakeML.Magnitude(mag=1, public_id="smi:QuakeML.jl/magnitude/a") mag2 = QuakeML.Magnitude(mag=2, public_id="smi:QuakeML.jl/magnitude/b") mag3 = QuakeML.Magnitude(mag=3, public_id="smi:QuakeML.jl/magnitude/c") event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a", preferred_magnitude_id="smi:QuakeML.jl/magnitude/b") # No magnitudes @test_throws ArgumentError preferred_magnitude(event) # Returns first regardless push!(event.magnitude, mag1) @test preferred_magnitude(event) == mag1 @test_nowarn preferred_magnitude(event, verbose=true) # Finds the preferred one push!(event.magnitude, mag2) @test preferred_magnitude(event) == mag2 @test preferred_magnitude(event).mag.value == 2 # Return the first if no match empty!(event.magnitude) append!(event.magnitude, [mag1, mag3]) @test preferred_magnitude(event) == mag1 @test_nowarn preferred_magnitude(event) @test_logs((:warn, "no magnitude with preferred id; returning the first magnitude"), preferred_magnitude(event, verbose=true)) # Returns the first if no preferred magnitude at all event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a", magnitude=[mag1, mag2, mag3]) @test preferred_magnitude(event) == mag1 end @testset "preferred_magnitudes" begin let qml = QuakeML.read(joinpath(@__DIR__, "data", "nepal_mw7.2.qml")) @test preferred_magnitudes(qml) == [preferred_magnitude(qml.event[1])] empty!(qml.event[1].magnitude) @test_throws ArgumentError preferred_magnitudes(qml) end end @testset "preferred_focal_mechanism" begin fm1 = QuakeML.FocalMechanism(public_id="smi:QuakeML.jl/focmech/a") fm2 = QuakeML.FocalMechanism(public_id="smi:QuakeML.jl/focmech/b") fm3 = QuakeML.FocalMechanism(public_id="smi:QuakeML.jl/focmech/c") event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a", preferred_focal_mechanism_id="smi:QuakeML.jl/focmech/b") # No focal mechanisms @test_throws ArgumentError preferred_focal_mechanism(event) # Returns first regardless push!(event.focal_mechanism, fm1) @test preferred_focal_mechanism(event) == fm1 @test_nowarn preferred_focal_mechanism(event, verbose=true) # Finds the preferred one push!(event.focal_mechanism, fm2) @test preferred_focal_mechanism(event) == fm2 # Return the first if no match empty!(event.focal_mechanism) append!(event.focal_mechanism, [fm1, fm3]) @test preferred_focal_mechanism(event) == fm1 @test_nowarn preferred_focal_mechanism(event) @test_logs((:warn, "no focal mechanism with preferred id; returning the first focal mechanism"), preferred_focal_mechanism(event, verbose=true)) # Returns the first if no preferred focal mechanism at all event = QuakeML.Event(public_id="smi:QuakeML.jl/event/a", focal_mechanism=[fm1, fm2, fm3]) @test preferred_focal_mechanism(event) == fm1 end @testset "preferred_focal_mechanisms" begin let qml = QuakeML.read(joinpath(@__DIR__, "data", "nepal_mw7.2.qml")) @test preferred_focal_mechanisms(qml) == [preferred_focal_mechanism(qml.event[1])] empty!(qml.event[1].focal_mechanism) @test_throws ArgumentError preferred_focal_mechanisms(qml) end end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
815
using Test using QuakeML @testset "Comparison" begin # Two identical EventParameters datafile = joinpath(@__DIR__, "data", "2004-12-26_mag5+.qml") qml = QuakeML.read(datafile) qml′ = QuakeML.read(datafile) # A different EventParameters: one field is missing in one and set in another qml″ = deepcopy(qml) qml″.event[end].magnitude[1].mag.uncertainty = 0.1 @testset "==" begin @test qml == qml′ @test qml != qml″ end @testset "hash" begin @test hash(qml) == hash(qml′) @test hash(qml) != hash(qml″) end # These should follow from the above @testset "Others" begin @test unique([qml, qml′]) == [qml] @test unique([qml, qml″]) == [qml, qml″] @test Dict(qml=>1) == Dict(qml′=>1) != Dict(qml″=>1) end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
1363
using Test, QuakeML using Dates: DateTime @testset "Construction" begin @testset "Convenience" begin @test QuakeML.RealQuantity(1) == QuakeML.RealQuantity(value=1) @test QuakeML.IntegerQuantity(2) == QuakeML.IntegerQuantity(value=2) @test convert(QuakeML.IntegerQuantity, 3) == QuakeML.IntegerQuantity(value=3) @test QuakeML.Origin(time=DateTime(2000), longitude=1, latitude=2, public_id="smi:QuakeML.jl/origin/a").time.value == DateTime(2000) end @testset "Schema version" begin end @testset "ResourceReference" begin # Not a proper URI @test_throws ArgumentError QuakeML.ResourceReference(value="bad URI") # String too long @test_throws ArgumentError QuakeML.ResourceReference(value="smi:local/" * "a"^246) @test QuakeML.ResourceReference("quakeml:QuakeML.jl/refA") isa QuakeML.ResourceReference @test QuakeML.ResourceReference("smi:QuakeML.jl/refB") isa QuakeML.ResourceReference @test QuakeML.ResourceReference("smi:local/a") isa QuakeML.ResourceReference end @testset "WhitespaceOrEmptyString" begin @test_throws ArgumentError QuakeML.WhitespaceOrEmptyString("x") @test QuakeML.WhitespaceOrEmptyString(" \t \n ").value == " \t \n " @test isempty(QuakeML.WhitespaceOrEmptyString("").value) end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
2577
using QuakeML, Test using Dates: DateTime @testset "Field access" begin @testset "CreationInfo" begin let ci = QuakeML.CreationInfo() @test ci.agency_id === missing ci.agency_id = "a"^64 @test ci.agency_id == "a"^64 @test_throws ArgumentError ci.agency_id = "a"^65 @test_throws ArgumentError ci.version = "a"^65 @test_throws ArgumentError ci.author = "a"^129 end end @testset "WaveformStreamID" begin let ws = QuakeML.WaveformStreamID(network_code="AN", station_code="QML") @test ws.network_code == "AN" @test ws.station_code == "QML" @test ws.uri === missing @test_throws ArgumentError ws.uri = "not a URI" ws.uri = "smi:local/uri" @test ws.uri == QuakeML.ResourceReference("smi:local/uri") @test_throws ArgumentError ws.network_code = "123456789" @test_throws ArgumentError ws.station_code = "123456789" @test_throws ArgumentError ws.location_code = "123456789" @test_throws ArgumentError ws.channel_code = "123456789" end end @testset "Amplitude" begin let a = QuakeML.Amplitude(generic_amplitude=1) a.snr = 1 @test a.snr === 1.0 a.snr = 1.f0 @test a.snr === 1.0 @test_throws ArgumentError a.type = "a"^33 @test_throws ArgumentError a.magnitude_hint = "a"^33 end end @testset "Magnitude" begin let a = QuakeML.Magnitude(mag=1) a.mag == QuakeML.RealQuantity(value=1.0) @test_throws ArgumentError a.type = "a"^33 end end @testset "StationMagnitude" begin let a = QuakeML.StationMagnitude(mag=1) @test a.mag == QuakeML.RealQuantity(value=1) @test_throws ArgumentError a.type = "a"^33 end end @testset "Origin" begin let a = QuakeML.Origin(time=DateTime(2000), longitude=0, latitude=1) @test a.time == QuakeML.TimeQuantity(value=DateTime(2000)) @test a.longitude == QuakeML.RealQuantity(value=0.0) @test a.latitude == QuakeML.RealQuantity(value=1.0) @test_throws ArgumentError a.region = "a"^129 end end @testset "OriginQuality" begin let oq = QuakeML.OriginQuality() @test_throws ArgumentError oq.ground_truth_level = "a"^33 oq.ground_truth_level = "a"^32 @test oq.ground_truth_level == "a"^32 end end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
14090
using Test, QuakeML using Dates: DateTime import EzXML datafile1 = joinpath(@__DIR__, "data", "nepal_mw7.2.qml") datafile2 = joinpath(@__DIR__, "data", "2004-12-26_mag6+.qml") datafile3 = joinpath(@__DIR__, "data", "2004-12-26_mag5+.qml") datafiles = (datafile1, datafile2, datafile3) @testset "IO" begin @testset "Read string" begin for file in datafiles @test QuakeML.read(file) == QuakeML.readstring(String(read(file))) end end @testset "Read" begin let badstring = """ <?xml version="1.0" encoding="UTF8"?> <SomeWeirdThing xmlns="http://quakeml.org/xmlns/bed/1.2"> </SomeWeirdThing> """ @test_throws ArgumentError QuakeML.readstring(badstring) end @test_throws ArgumentError QuakeML.readstring(" \nThis is not XML.") let qml = QuakeML.read(datafile1) @test qml isa QuakeML.EventParameters @test isempty(qml.comment) let ci = qml.creation_info test_all_missing(ci, :agency_id, :agency_uri, :author, :author_uri) @test ci.creation_time == DateTime("2020-03-11T11:41:23.271") @test ci.version == "V10" end @test qml.description === missing @test qml.public_id.value == "smi:service.iris.edu/fdsnws/event/1/query" @test length(qml.event) == 1 let e = qml.event[1] @test isempty(e.amplitude) @test isempty(e.comment) @test e.creation_info === missing @test length(e.focal_mechanism) == 1 let fm = e.focal_mechanism[1] test_all_missing(fm, :azimuthal_gap, :evaluation_status, :evaluation_mode, :method_id, :misfit, :principle_axes, :station_distribution_ratio, :station_polarity_count) @test isempty(fm.comment) ci = fm.creation_info test_all_missing(ci, :agency_uri, :author, :author_uri, :creation_time) @test ci.agency_id == "GCMT" @test ci.version == "V10" @test length(fm.moment_tensor) == 1 let mt = fm.moment_tensor[1] test_all_missing(mt, :category, :clvd, :creation_info, :double_couple, :filter_id, :greens_function_id, :inversion_type, :iso, :method_id, :variance, :variance_reduction) @test length(mt.data_used) == 3 @test mt.data_used[1] == QuakeML.DataUsed( QuakeML.DataUsedWaveType("body waves"), 169, 459, 50.0, missing) @test mt.data_used[2] == QuakeML.DataUsed( QuakeML.DataUsedWaveType("surface waves"), 173, 459, 50.0, missing) @test mt.data_used[3] == QuakeML.DataUsed( QuakeML.DataUsedWaveType("mantle waves"), 168, 404, 150.0, missing) @test mt.derived_origin_id.value == "smi:www.iris.edu/spudservice/momenttensor/gcmtid/C201505120705A#cmtorigin" @test mt.moment_magnitude_id.value == "smi:www.iris.washington.edu/spudservice/momenttensor/gcmtid/C201505120705A/quakeml#magnitude" @test mt.public_id.value == "smi:www.iris.washington.edu/spudservice/momenttensor/gcmtid/C201505120705A/quakeml#momenttensor" @test mt.scalar_moment == QuakeML.RealQuantity(; value=88440000000000000000.0) @test mt.source_time_function.type.value == "triangle" @test mt.source_time_function.duration == 20.2 test_all_missing(mt.source_time_function, :rise_time, :decay_time) let t = mt.tensor @test t.mrr == QuakeML.RealQuantity(; value=27000000000000000000.0, uncertainty=90000000000000000.0) @test t.mtt == QuakeML.RealQuantity(; value=-26200000000000000000.0, uncertainty=80000000000000000.0) @test t.mpp == QuakeML.RealQuantity(; value=-830000000000000000.0, uncertainty=80000000000000000.0) @test t.mrt == QuakeML.RealQuantity(; value=82500000000000000000.0, uncertainty=740000000000000000.0) @test t.mrp == QuakeML.RealQuantity(; value=-12800000000000000000.0, uncertainty=800000000000000000.0) @test t.mtp == QuakeML.RealQuantity(; value=12200000000000000000.0, uncertainty=70000000000000000.0) end # t @test mt.public_id.value == "smi:www.iris.washington.edu/spudservice/momenttensor/gcmtid/C201505120705A/quakeml#momenttensor" end # mt @test fm.triggering_origin_id.value == "smi:www.iris.edu/spudservice/momenttensor/gcmtid/C201505120705A#reforigin" @test isempty(fm.waveform_id) end # fm @test length(e.magnitude) == 1 let mag = e.magnitude[1] test_all_missing(mag, :azimuthal_gap, :creation_info, :evaluation_mode, :evaluation_status, :method_id, :origin_id, :station_count) test_all_empty(mag, :comment, :station_magnitude_contribution) @test mag.mag == QuakeML.RealQuantity(value=7.2) @test mag.public_id.value == "smi:www.iris.washington.edu/spudservice/momenttensor/gcmtid/C201505120705A/quakeml#magnitude" @test mag.type == "Mwc" end # mag @test length(e.origin) == 2 let o = e.origin[1] test_all_missing(o, :creation_info, :depth_type, :earth_model_id, :epicenter_fixed, :evaluation_mode, :evaluation_status, :method_id, :quality, :reference_system_id, :region, :time_fixed, :type) test_all_empty(o, :comment) @test o.depth == QuakeML.RealQuantity(value=15000.0) @test o.latitude == QuakeML.RealQuantity(value=27.81) @test o.longitude == QuakeML.RealQuantity(value=86.07) @test o.public_id.value == "smi:www.iris.edu/spudservice/momenttensor/gcmtid/C201505120705A#reforigin" @test o.time == QuakeML.TimeQuantity(value=DateTime(2015, 05, 12, 07, 05, 19, 700)) end # o let o = e.origin[2] test_all_missing(o, :creation_info, :depth_type, :earth_model_id, :evaluation_mode, :evaluation_status, :method_id, :quality, :reference_system_id, :region, :type) test_all_empty(o, :comment) @test o.depth == QuakeML.RealQuantity(value=12000.0) @test o.epicenter_fixed == false @test o.latitude == QuakeML.RealQuantity(value=27.67) @test o.longitude == QuakeML.RealQuantity(value=86.08) @test o.public_id.value == "smi:www.iris.edu/spudservice/momenttensor/gcmtid/C201505120705A#cmtorigin" @test o.time == QuakeML.TimeQuantity(value=DateTime(2015, 05, 12, 07, 05, 27, 500)) @test o.time_fixed == false end # o @test isempty(e.pick) @test e.preferred_focal_mechanism_id.value == "smi:www.iris.washington.edu/spudservice/momenttensor/gcmtid/C201505120705A/quakeml#focalmechanism" @test e.preferred_origin_id.value == "smi:www.iris.edu/spudservice/momenttensor/gcmtid/C201505120705A#cmtorigin" @test e.public_id.value == "smi:service.iris.edu/fdsnws/event/1/query?eventid=5113514" @test isempty(e.station_magnitude) @test e.type.value == "earthquake" @test e.type_certainty === missing end # e end # File with quite a few events let qml = QuakeML.read(datafile2) @test qml.creation_info.agency_id == "ISC" @test qml.creation_info.creation_time == DateTime(2020, 03, 11, 11, 45, 58) @test qml.description == "ISC Bulletin" @test qml.public_id.value == "smi:ISC/bulletin" @test length(qml.event) == 23 @test qml.event[1].description[1].text == "Off west coast of northern Sumatera" @test qml.event[1].description[1].type.value == "Flinn-Engdahl region" @test qml.event[1].origin[1].time.value == DateTime(2004, 12, 26, 00, 58, 53, 080) @test qml.event[1].origin[1].time.uncertainty == 0.26 @test qml.event[1].origin[1].latitude.value == 3.3148 @test qml.event[1].origin[1].longitude.value == 95.9829 @test qml.event[1].origin[1].depth.value == 26451.8 q = qml.event[1].origin[1].quality @test q.used_phase_count == 1671 @test q.associated_station_count == 1653 @test q.standard_error == 2.3141 @test q.azimuthal_gap == 15.980 @test q.minimum_distance == 2.273 @test q.maximum_distance == 173.412 @test length(qml.event[1].origin[1].origin_uncertainty) == 1 ou = qml.event[1].origin[1].origin_uncertainty[1] @test ou.preferred_description.value == "uncertainty ellipse" @test ou.min_horizontal_uncertainty == 3652.95 @test ou.max_horizontal_uncertainty == 4573.66 @test ou.azimuth_max_horizontal_uncertainty == 49.5 @test length(qml.event[1].magnitude) == 2 mag = qml.event[1].magnitude[1] @test mag.mag.value == 6.96 @test mag.type == "mb" @test mag.station_count == 275 @test mag.origin_id.value == "smi:ISC/origid=7900012" end end @testset "Writing string" begin let events = EventParameters(public_id= QuakeML.ResourceReference("smi:QuakeML.jl/events")) evt = QuakeML.Event( public_id=QuakeML.ResourceReference("smi:QuakeML.jl/event/1")) evt = QuakeML.Event(evt, type=QuakeML.EventType("earthquake")) push!(events.event, evt) xml = QuakeML.quakeml(events) @test string(xml) == """ <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.2"><eventParameters publicID="smi:QuakeML.jl/events"><event publicID="smi:QuakeML.jl/event/1"><type>earthquake</type></event></eventParameters></quakeml> """ io1 = IOBuffer() io2 = IOBuffer() # Write converted XML print(io1, xml) # Write EventParameters write(io2, events) seekstart(io1) seekstart(io2) str1 = String(read(io1)) @test str1 == """ <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.2"><eventParameters publicID="smi:QuakeML.jl/events"><event publicID="smi:QuakeML.jl/event/1"><type>earthquake</type></event></eventParameters></quakeml> """ str2 = String(read(io2)) @test str2 == """ <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.2"> <eventParameters publicID="smi:QuakeML.jl/events"> <event publicID="smi:QuakeML.jl/event/1"> <type>earthquake</type> </event> </eventParameters> </quakeml> """ seekstart(io1) seekstart(io2) qml1 = QuakeML.read(io1) qml2 = QuakeML.read(io2) @test qml1 == events @test qml2 == events end # Round trip for file in datafiles events = QuakeML.read(file) xml = QuakeML.quakeml(events) io = IOBuffer() print(io, xml) seekstart(io) events′ = QuakeML.read(io) @test events == events′ io2 = IOBuffer() write(io2, events) seekstart(io2) events″ = QuakeML.read(io2) @test events == events″ end end @testset "Writing" begin for file in datafiles let events = QuakeML.read(file), xml = QuakeML.quakeml(events) mktemp() do tempfile, f print(f, xml) seekstart(f) events′ = QuakeML.read(f) @test events == events′ end end end # Writing version let events = EventParameters(public_id="quakeml:QuakeML.jl/events/0") qml = quakeml(events, version="1.1") @test split(qml.root["xmlns"], '/')[end] == "1.1" io = IOBuffer() write(io, events, version="1.1") seekstart(io) xml = EzXML.readxml(io) @test split(EzXML.namespace(xml.root), '/')[end] == "1.1" end end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
2954
using QuakeML, Test import Dates @testset "Parsing" begin @testset "Local parsing" begin @test QuakeML.local_parse(String, "xyzx̂") == "xyzx̂" @test QuakeML.local_parse(String, SubString("φabc")) == "φabc" @test QuakeML.local_parse(SubString, "ABC ♪") == "ABC ♪" @test QuakeML.local_parse(Float64, "-1.0") == -1.0 == parse(Float64, "-1.0") @test QuakeML.local_tryparse(Int, "12") == 12 @test QuakeML.local_tryparse(Int, "1.23") === nothing @test QuakeML.local_tryparse(String, "⊫") == "⊫" end @testset "Dates" begin let # Too much precision @test QuakeML.readstring(""" <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.0"> <eventParameters publicID="smi:TEST/test"> <creationInfo> <agencyID>ISC</agencyID> <creationTime>2020-03-11T11:45:58.1234567890</creationTime> </creationInfo> </eventParameters> </quakeml> """).creation_info.creation_time == Dates.DateTime(2020, 03, 11, 11, 45, 58, 123) # Time zone ahead of UTC and too much precision @test QuakeML.readstring(""" <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.0"> <eventParameters publicID="smi:TEST/test"> <creationInfo> <agencyID>ISC</agencyID> <creationTime>2000-01-01T12:34:00.123456789-12:34</creationTime> </creationInfo> </eventParameters> </quakeml> """).creation_info.creation_time == Dates.DateTime(2000, 1, 1, 0, 0, 0, 123) # UTC specified @test QuakeML.readstring(""" <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.0"> <eventParameters publicID="smi:TEST/test"> <creationInfo> <agencyID>ISC</agencyID> <creationTime>2020-03-11T11:45:58.1234567890Z</creationTime> </creationInfo> </eventParameters> </quakeml> """).creation_info.creation_time == Dates.DateTime(2020, 03, 11, 11, 45, 58, 123) end end @testset "Version" begin @test_logs (:warn, "document is StationXML version 1.3.0; only v1.2 data will be read") QuakeML.readstring(""" <?xml version="1.0" encoding="UTF-8"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.3"> <eventParameters publicID="smi:TEST/test"> </eventParameters> </quakeml> """) end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
666
using Test using QuakeML "For each field in `fields`, test that x.field is `missing`" function test_all_missing(x, fields...) for f in fields getfield(x, f) === missing || (@show f) @test getfield(x, f) === missing end end "For each field in `fields`, test that x.field is empty" function test_all_empty(x, fields...) for f in fields @test isempty(getfield(x, f)) end end @testset "All tests" begin include("util.jl") include("construction.jl") include("comparison.jl") include("parsing.jl") include("io.jl") include("accessors.jl") include("field_access.jl") include("types_module.jl") end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
892
using QuakeML.Types using Test @testset "Types" begin for type in Types.EXPORTED_TYPES @test isdefined(@__MODULE__, type) end for type in ( :OriginUncertaintyDescription, :AmplitudeCategory, :OriginDepthType, :OriginType, :MTInversionType, :EvaluationMode, :EvaluationStatus, :PickOnset, :EventType, :DataUsedWaveType, :AmplitudeUnit, :EventDescriptionType, :MomentTensorCategory, :EventTypeCertainty, :SourceTimeFunctionType, :PickPolarity, # Not an enumerated type, but unused in the module :WhitespaceOrEmptyString ) @test !isdefined(@__MODULE__, type) end events = EventParameters() @test events isa EventParameters end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
code
2868
using QuakeML, Test import UUIDs @testset "Utils" begin @testset "Macros" begin @eval QuakeML.@enumerated_struct(ExampleStruct, Float32, (1.f0, 2.f0)) @test isdefined(Main, :ExampleStruct) @test fieldnames(ExampleStruct) == (:value,) @test fieldtype(ExampleStruct, :value) == Float32 @test ExampleStruct(1.f0) isa ExampleStruct @test_throws ArgumentError ExampleStruct(3.f0) end @testset "String length" begin @test QuakeML.check_string_length("A", "ABC", 3) === nothing @test QuakeML.check_string_length("A", "ABC", 10) === nothing @test_throws ArgumentError QuakeML.check_string_length("A", "ABC", 2) end @testset "XML escaping" begin let s = "a&amp;b&lt;c&gt;d&quot;e&apos;f", s′ = "a&b<c>d\"e'f" @test QuakeML.xml_unescape(s) == s′ @test QuakeML.xml_escape(s′) == s end end @testset "Name transform" begin let f = QuakeML.transform_name @test f("ModuleURI") == :module_uri @test f("Email") == :email @test f("SelectedNumberChannels") == :selected_number_channels @test f("SomethingLikeID") == :something_like_id end let f = QuakeML.retransform_name @test f(:public_id) == "publicID" @test f(:moment_tensor) == "momentTensor" @test f(:selected_number_channels) == "selectedNumberChannels" @test f(:something_with_id_in_it) == "somethingWithIDInIt" end # Round trip for all names in all types function test_round_trip(T::Union{QuakeML.ParsableTypes,Type{Missing}}, name) @test name == QuakeML.transform_name(QuakeML.retransform_name(name)) end test_round_trip(type::Type{Union{Missing,T}}, name) where T = test_round_trip(T, name) test_round_trip(type::Type{<:AbstractArray{T}}, name) where T = test_round_trip(T, name) function test_round_trip(T, name) for nm in fieldnames(T) type = fieldtype(T, nm) test_round_trip(type, nm) end end test_round_trip(QuakeML.EventParameters, :dummy_name) end @testset "Random reference URI" begin @test QuakeML.random_reference() isa QuakeML.ResourceReference @test startswith(QuakeML.random_reference().value, "smi:local/") @test startswith(QuakeML.random_reference("quakeml").value, "quakeml:local/") @test occursin( r"^(quakeml|smi):local/[0-9a-f]{8}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{4}-[0-9a-f]{12}$", QuakeML.random_reference().value) ref = QuakeML.random_reference() uuid_string = replace(replace(ref.value, r".*/"=>""), "-"=>"") uuid = parse(UInt128, uuid_string, base=16) @test UUIDs.UUID(uuid) isa UUIDs.UUID end end
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
docs
4923
# QuakeML ## Build status [![Build Status](https://github.com/anowacki/QuakeML.jl/workflows/CI/badge.svg)](https://travis-ci.org/anowacki/QuakeML.jl) [![Coverage Status](https://coveralls.io/repos/github/anowacki/QuakeML.jl/badge.svg?branch=master)](https://coveralls.io/github/anowacki/QuakeML.jl?branch=master) ## Documentation [![](https://img.shields.io/badge/docs-stable-blue.svg)](https://anowacki.github.io/QuakeML.jl/stable) [![](https://img.shields.io/badge/docs-dev-blue.svg)](https://anowacki.github.io/QuakeML.jl/dev) ## What is QuakeML.jl? QuakeML.jl is a Julia package to read and write information about earthquakes and seismic events in the [QuakeML format](https://quake.ethz.ch/quakeml). ## User-facing functions - `QuakeML.read`: Read a QuakeML file. (This function is not exported. and requires the module prefix `QuakeML`.) - `QuakeML.readstring`: Read a QuakeML document from a string. (This function is not exported.) - `write`: Write a set of `EventParameters` as a QuakeML XML document. - `preferred_focal_mechanism`: Get the preferred focal mechanism for an event - `preferred_magnitude`: Get the preferred magnitude for an event - `preferred_origin`: Get the preferred origin for an event - `has_focal_mechanism`: Check to see if an event contains any focal mechanisms - `has_magnitude`: Check to see if an event contains any magnitude - `has_origin`: Check to see if an event contains any origins - `quakeml`: Create an XML document from a set of events which can be written with `print(io, quakeml(qml))` ## Examples ### Reading To read a QuakeML document on your computer (e.g., one of the ones supplied with QuakeML.jl), do: ```julia julia> using QuakeML julia> qml_file = joinpath(dirname(dirname(pathof(QuakeML))), "test", "data", "nepal_mw7.2.qml"); julia> qml = QuakeML.read(qml_file) ``` To read a set of events from a string: ```julia julia> QuakeML.readstring(String(read(qml_file))) ``` ### Writing To write a set of events to disk: ```julia julia> write("file/on/disk.xml", qml) ``` For more control of output, convert your set of `EventParameters` into an XML document, and write that: ```julia julia> xml = quakeml(qml); julia> println("/tmp/quakeml_file.qml", quakeml(qml)) ``` Note that here `xml` is an [`EzXML.XMLDocument`](https://bicycle1885.github.io/EzXML.jl/stable/manual/). Or convert your XML document into a `String`: ```julia julia> str = string(xml) ``` ## Export of types By default, QuakeML does not export the types it uses. The user should usually create sets of `EventParameters`, for example, by calling the type's qualified constructor: ```julia julia> QuakeML.EventParameters() QuakeML.EventParameters comment: Array{QuakeML.Comment}((0,)) event: Array{QuakeML.Event}((0,)) description: Missing missing creation_info: Missing missing public_id: QuakeML.ResourceIdentifier ``` To allow less typing, one could create a module alias, such as: ```julia julia> const QML = QuakeML ``` ### `QuakeML.Types` module As an **experimental** feature, the user may use the `QuakeML.Types` module, which exports all the types which are needed to construct a full set of `EventParameters`. For example, to specify a catalogue with one event with an unspecified magnitude type with magnitude 1.0: ```julia julia> using QuakeML.Types julia> event = Event(magnitude=[Magnitude(mag=1.0)]) QuakeML.Event description: Array{QuakeML.EventDescription}((0,)) comment: Array{QuakeML.Comment}((0,)) focal_mechanism: Array{QuakeML.FocalMechanism}((0,)) amplitude: Array{QuakeML.Amplitude}((0,)) magnitude: Array{QuakeML.Magnitude}((1,)) station_magnitude: Array{QuakeML.StationMagnitude}((0,)) origin: Array{QuakeML.Origin}((0,)) pick: Array{QuakeML.Pick}((0,)) preferred_origin_id: Missing missing preferred_magnitude_id: Missing missing preferred_focal_mechanism_id: Missing missing type: Missing missing type_certainty: Missing missing creation_info: Missing missing public_id: QuakeML.ResourceIdentifier ``` ## Repo status QuakeML.jl is beta software. All functionality included is tested and works as advertised, but the public API of the package is still to be decided and may break in v0.2, as per [SemVer](https://semver.org/). So long as any packages you have created declare their compatibility with QuakeML.jl correctly, this will cause no problems. ### Activating debugging messages To turn debugging messages on when running QuakeML, set the environment variable `JULIA_DEBUG` to `QuakeML` or `"all"`, which can even be done at run time in the repl like so: ```julia julia> ENV["JULIA_DEBUG"] = QuakeML ``` Unsetting this value will turn these debugging messages off. See the [manual section on environment variables and logging messages](https://docs.julialang.org/en/v1/stdlib/Logging/#Environment-variables-1) for more information on setting the debug level for QuakeML or other modules.
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
docs
2192
# Function index ## Public types and functions ### IO ```@docs QuakeML.read(filename::AbstractString) QuakeML.readstring write(io::IO, qml::EventParameters; kwargs...) quakeml ``` ### Accessors ```@docs preferred_focal_mechanism preferred_magnitude preferred_origin has_focal_mechanism has_magnitude has_origin ``` ### Types Where a constructor's arguments are given as `Constructor(; kwargs...)`, this means that each listed field name can be given as a keyword argument and a value passed to the constructor that way. !!! note By default, calling a constructor for a type which is required to have a public ID (URI) by the QuakeML specification creates a unique, random URI for that object. To specify your own ID for an object, provide a `String` to the constructor's `public_id` keyword argument; or you can later set the `public_id` field directly. See [`ResourceReference`](@ref QuakeML.ResourceReference) for details of the form that URIs must take. ```@docs QuakeML.Amplitude QuakeML.Arrival QuakeML.Axis QuakeML.Comment QuakeML.CompositeTime QuakeML.ConfidenceEllipsoid QuakeML.CreationInfo QuakeML.DataUsed QuakeML.Event QuakeML.EventDescription QuakeML.EventParameters QuakeML.FocalMechanism QuakeML.IntegerQuantity QuakeML.Magnitude QuakeML.MomentTensor QuakeML.NodalPlane QuakeML.NodalPlanes QuakeML.Origin QuakeML.OriginQuality QuakeML.OriginUncertainty QuakeML.Phase QuakeML.Pick QuakeML.PrincipleAxes QuakeML.RealQuantity QuakeML.ResourceReference QuakeML.SourceTimeFunction QuakeML.StationMagnitude QuakeML.StationMagnitudeContribution QuakeML.Tensor QuakeML.TimeQuantity QuakeML.TimeWindow QuakeML.WaveformStreamID ``` ## Private types and functions ### ID generation ```@docs QuakeML.random_reference ``` ### Enumerated types ```@docs QuakeML.AmplitudeCategory QuakeML.AmplitudeUnit QuakeML.DataUsedWaveType QuakeML.EvaluationMode QuakeML.EvaluationStatus QuakeML.EventDescriptionType QuakeML.EventType QuakeML.EventTypeCertainty QuakeML.MomentTensorCategory QuakeML.MTInversionType QuakeML.OriginDepthType QuakeML.OriginType QuakeML.OriginUncertaintyDescription QuakeML.PickOnset QuakeML.PickPolarity QuakeML.SourceTimeFunctionType ```
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
docs
1384
# QuakeML.jl ## What is [QuakeML.jl](https://github.com/anowacki/QuakeML.jl)? A [Julia](http://julialang.org) package for reading and writing files in the [QuakeML](https://quake.ethz.ch/quakeml) format, which describes the properties of sets of seismic events, such as earthquakes and explosions. This package is primarily meant to be used by other software to correctly and reliably interact with QuakeML files. For example, [Seis.jl](https://github.com/anowacki/Seis.jl) and its related libraries use QuakeML.jl to parse QuakeML files, but do not expose QuakeML.jl types or functions to the user. Though QuakeML.jl is intended to be used as software by other software, it is still a goal that it should be easy to use directly and well-documented and -tested. ### Note on naming In this documentation, ‘QuakeML’ refers to the QuakeML standard, and ‘QuakeML.jl’ refers to this Julia package, which implements the QuakeML standard. ### Current version The current version of QuakeML is [1.2](https://quake.ethz.ch/quakeml/Documents). This is the version of QuakeML supported by QuakeML.jl. ## How to install QuakeML.jl can be added to your Julia environment like so: ```julia julia> import Pkg; Pkg.add("QuakeML") ``` ## Testing To check that your install is working correctly, you can run the package's tests by doing: ```julia julia> import Pkg; Pkg.test("QuakeML") ```
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
0.1.2
607fd77863fd04cdd6010a33236006949b6cfd69
docs
6368
# User manual This section describes how to use QuakeML.jl to read and write QuakeML files, and how to create objects which describe sets of seismic events. ## Preamble The following examples all assume that you have first used the module like so: ```@repl example using QuakeML ``` ### Namespace issues QuakeML.jl deliberately does not export the types it uses by default, since their names follow those in the QuakeML specification, and they are quite generic to seismic processing—for example, `Event` and `Phase`. The recommended way to interact with QuakeML.jl in the REPL or in your own packages is to always use the module name (or an alias of it). For instance, to define an empty set of events, which are held in the type [`EventParameters`](@ref QuakeML.EventParameters), you would write ```@repl example events = QuakeML.EventParameters() ``` !!! note If you _really_ want to bring the QuakeML.jl types into scope without manually importing them, then there is an option. You can do `using QuakeML.Types`. Note that this API is not yet stable and use of the `Types` module is recommended only for interactive use or throwaway scripts. ### Important types For a full list of QuakeML types, see [Types](@ref). The following are a few of the most important when defining one's own catalogues. - [`EventParameters`](@ref QuakeML.EventParameters) is the root type, and contains one or more `Event`s. - An [`Event`](@ref QuakeML.Event) defines a known single source of seismic energy, which may contain one or several - [`Origin`](@ref QuakeML.Origin)s. Each `Origin` is one interpretation of the data, potentially containing information about the source location, origin time, focal mechanism, magnitude, and so on. The types in this package are directly named after those in the QuakeML specification. Similarly, the fields of each type are named to match the names of the attributes and elements of each QuakeML type. Note however that rather than use [camel case](https://en.wikipedia.org/wiki/Camel_case) `likeThis` for these field names, in this package we use [snake case](https://en.wikipedia.org/wiki/Snake_case) `like_this`. Therefore translating between the XML and QuakeML.jl representations of things in the specification should be simple. ### Sample data QuakeML.jl comes with a few sample data sets. To access these, you can define the path to them using the `pathof` function from `Base`. We will call this path `data_dir`: ```@repl example data_dir = joinpath(dirname(dirname(pathof(QuakeML))), "test", "data") ``` ## Reading ### On-disk data To read a set of events from disk, one simply calls [`QuakeML.read`](@ref): ```@repl example nepal_event = QuakeML.read(joinpath(data_dir, "nepal_mw7.2.qml")) ``` ### Strings To read from a `String` which contains QuakeML, you use [`QuakeML.readstring`](@ref): ```@repl example qml_string = """ <?xml version="1.0"?> <quakeml xmlns="http://quakeml.org/xmlns/quakeml/1.2"> <eventParameters publicID="smi:local/events/XXX"> <event publicID="smi:local/event/A"> </event> </eventParameters> </quakeml> """; events = QuakeML.readstring(qml_string) ``` ## Writing ### Writing to disk or subtype of `IO` To write a set of events to a file on disk, call [`write(io, events)`](@ref Base.write(::AbstractString, ::QuakeML.EventParameters)). ```@repl example write("nepal.xml", nepal_event) ``` You can easily verify that the file written is identical to the one we read: ```@repl example QuakeML.read("nepal.xml") == nepal_event ``` ### Converting to a string To convert a set of events into a `String` for subsequent processing, first convert the `EventParameters` object into an XML document, then call `string`: ```@repl example string2 = string(quakeml(events)) ``` !!! note One could also create a `Base.IOBuffer` and `write` to that directly. ### Converting to an in-memory XML document Internally, QuakeML.jl uses [EzXML.jl](https://github.com/bicycle1885/EzXML.jl) to parse XML strings and create XML objects from `EventParameters`. If you are happy to use EzXML, you can create an XML document (an `EzXML.Document`) by calling [`quakeml`](@ref) on an `EventParameters` object. ```@repl example xml = quakeml(nepal_event) typeof(xml) ``` ## Accessing fields In QuakeML.jl, all fields of types are publicly-accessible and part of the API. It is intended that users will directly access and manipulate these fields. Where restrictions on fields exist (for instance, where strings can be only a certain number of characters long, or can only consist of certain characters), these are enforced both upon construction of types and when changing fields (via `setproperty!`). For example, to get the coordinate of the Nepal event we read in earlier, you access the fields directly: ```@repl example nepal_event.event[1] ``` This returns the first `Event` in the `event` field. `event` is a `Vector{Event}`, and may be empty. In QuakeML, any `Event` may have several `Origin`s. Each `Origin` describes a unique onset time and location of the event. Usually, one of these origins is the 'preferred' origin. Typically, one uses [`preferred_origin`](@ref) to return this and then uses the origin parameters within the particular `Origin`. ```@repl example o = preferred_origin(nepal_event.event[1]) lon, lat = o.longitude.value, o.latitude.value ``` !!! note Note that the longitude and latitude of an `Origin` are [`QuakeML.RealQuantity`](@ref)s. As well as the `value` field which contains the nominal value of the quantity, they can also contain uncertainties. Hence in this case, we needed to access the actual value of longitude like `o.longitude.value`, and similarly for latitude. Almost all types (apart from [Enumerated types](@ref)) are `mutable struct`s, which means that their fields can be changed after construction. Almost all types have at least one field which is optional. In QuakeML.jl, these can either take a concrete value, or `missing`. Hence setting any optional field to `missing` (like `origin.depth = missing`) will remove that value. Where multiple values of a field are allowed (such as the `origin` field of an `Event`), these are represented by `Vector`s, and can be empty.
QuakeML
https://github.com/anowacki/QuakeML.jl.git
[ "MIT" ]
1.0.3
4313f4d37ec6b34bb53214759f8a0df02458b6e9
code
971
using Documenter using BoundTypes DocMeta.setdocmeta!(BoundTypes, :DocTestSetup, :(using BoundTypes); recursive = true) makedocs( modules = [BoundTypes], sitename = "BoundTypes.jl", format = Documenter.HTML(; repolink = "https://github.com/bhftbootcamp/BoundTypes.jl", canonical = "https://bhftbootcamp.github.io/BoundTypes.jl", edit_link = "master", assets = ["assets/favicon.ico"], sidebar_sitename = true, # Set to 'false' if the package logo already contain its name ), pages = [ "Home" => "index.md", "API Reference" => [ "pages/bound_number.md", "pages/bound_string.md", "pages/bound_time.md", "pages/utils.md", ], "For Developers" => "pages/devs.md", ], warnonly = [:doctest, :missing_docs], ) deploydocs(; repo = "github.com/bhftbootcamp/BoundTypes.jl", devbranch = "master", push_preview = true, )
BoundTypes
https://github.com/bhftbootcamp/BoundTypes.jl.git
[ "MIT" ]
1.0.3
4313f4d37ec6b34bb53214759f8a0df02458b6e9
code
1288
using BoundTypes # YES NumberPositive{Float64}(10) # NO NumberPositive{Float64}(-10) # YES NumberNonPositive{Float64}(-10) NumberNonPositive{Float64}(0) # NO NumberNonPositive{Float64}(10) # YES NumberNegative{Float64}(-10) # NO NumberNegative{Float64}(10) # YES NumberNonNegative{Float64}(10) NumberNonNegative{Float64}(0) # NO NumberNonNegative{Float64}(-10) # YES NumberGreater{Float64,10}(20) # NO NumberGreater{Float64,10}(5) # YES NumberGreaterOrEqual{Float64,10}(20) NumberGreaterOrEqual{Float64,10}(10) # NO NumberGreaterOrEqual{Float64,10}(5) # YES NumberLess{Float64,10}(5) # NO NumberLess{Float64,10}(20) # YES NumberLessOrEqual{Float64,10}(5) NumberLessOrEqual{Float64,10}(10) # NO NumberLessOrEqual{Float64,10}(20) # YES NumberInterval{Float64,10,<=,<,20}(10) NumberInterval{Float64,10,<=,<,20}(15) # NO NumberInterval{Float64,10,<=,<,20}(20) NumberInterval{Float64,10,<=,<,20}(25) # YES NumberOdd{Float64}(3) # NO NumberOdd{Float64}(4) # YES NumberEven{Float64}(4) # NO NumberEven{Float64}(5) # Nested bounds # YES NumberPositive{NumberLessOrEqual{NumberOdd{Float64},10}}(7) # NO NumberPositive{NumberLessOrEqual{NumberOdd{Float64},10}}(-7) NumberPositive{NumberLessOrEqual{NumberOdd{Float64},10}}(70) NumberPositive{NumberLessOrEqual{NumberOdd{Float64},10}}(6)
BoundTypes
https://github.com/bhftbootcamp/BoundTypes.jl.git
[ "MIT" ]
1.0.3
4313f4d37ec6b34bb53214759f8a0df02458b6e9
code
900
using BoundTypes # YES StringLowerCase{String}("abcdef") # NO StringLowerCase{String}("abCDef") # YES StringUpperCase{String}("ABCDEF") # NO StringUpperCase{String}("ABcdEF") # YES StringMinLength{String,5}("abcdef") # NO StringMinLength{String,5}("abc") # YES StringMaxLength{String,5}("abc") # NO StringMaxLength{String,5}("abcdef") # YES StringFixedLength{String,5}("abcde") # NO StringFixedLength{String,5}("abcdef") StringFixedLength{String,5}("abc") # YES StringPattern{String,pattern"^[a-zA-Z0-9_]+$"}("abcdef") # NO StringPattern{String,pattern"^[a-zA-Z0-9_]+$"}("abc.def") # Nested bounds # YES StringLowerCase{StringMinLength{StringMaxLength{String,6},3}}("abcde") # NO StringLowerCase{StringMinLength{StringMaxLength{String,6},3}}("abCDef") StringLowerCase{StringMinLength{StringMaxLength{String,6},3}}("ab") StringLowerCase{StringMinLength{StringMaxLength{String,6},3}}("abcdefg")
BoundTypes
https://github.com/bhftbootcamp/BoundTypes.jl.git
[ "MIT" ]
1.0.3
4313f4d37ec6b34bb53214759f8a0df02458b6e9
code
1175
using Dates using BoundTypes # YES TimeAfterNow{Date}(Date("2030-01-01")) TimeAfter{Date,Date(2023)}(Date("2024-01-01")) # NO TimeAfterNow{Date}(Date("2020-01-01")) TimeAfter{Date,Date(2023)}(Date("2020-01-01")) # YES TimeBeforeOrEqualNow{Time}(Time(1)) TimeBeforeOrEqual{Time,Time(12)}(Time("2:00:00")) TimeBeforeOrEqual{Time,Time(12)}(Time("12:00:00")) # NO TimeBeforeOrEqualNow{Time}(Time("23:59:00")) TimeBeforeOrEqual{Time,Time(12)}(Time("13:00:00")) # YES TimePeriodAfterNow{DateTime,Day(1)}(now() + Hour(12)) TimePeriodBeforeNow{DateTime,Day(1)}(now() - Hour(12)) # NO TimePeriodAfterNow{DateTime,Day(1)}(now() + Hour(1) + Day(1)) TimePeriodBeforeNow{DateTime,Day(1)}(now() - Hour(1) + Day(1)) # YES TimeInterval{DateTime,DateTime(2020),<=,<,DateTime(2025)}(DateTime(2024)) # NO TimeInterval{DateTime,DateTime(2020),<=,<,DateTime(2025)}(DateTime(2017)) TimeInterval{DateTime,DateTime(2020),<=,<,DateTime(2025)}(DateTime(2030)) # Nested bounds # YES TimeAfterOrEqual{TimeBefore{Time,Time(15)},Time(5)}(Time("10:00:00")) # NO TimeAfterOrEqual{TimeBefore{Time,Time(15)},Time(5)}(Time("20:00:00")) TimeAfterOrEqual{TimeBefore{Time,Time(15)},Time(5)}(Time("2:00:00"))
BoundTypes
https://github.com/bhftbootcamp/BoundTypes.jl.git
[ "MIT" ]
1.0.3
4313f4d37ec6b34bb53214759f8a0df02458b6e9
code
2048
using Dates using Serde using BoundTypes mutable struct UserProfile # Usernames must consist of alphanumeric characters and underscores. username::StringPattern{String,pattern"^[a-zA-Z0-9_]+$"} # Passwords are exactly 12 characters long. password::StringFixedLength{String,12} # Simple pattern for validating email addresses. email::StringPattern{String,pattern"^\S+@\S+\.\S+$"} # Age must be a positive integer. age::NumberPositive{Int64} # Biography field. bio::String # Height in centimeters, bounded between 50 and 250. height_in_cm::NumberInterval{Float64,50,<,<,250} # Weight in kilograms, must be positive or zero. weight_in_kg::NumberNonNegative{Float64} # Account creation must be in the past. account_creation_date::TimeBeforeNow{DateTime} # Subscription must end in the future. subscription_end_date::TimeAfter{DateTime,DateTime(2024,1,1)} end # Deserialization function Serde.deser(::Type{<:UserProfile}, ::Type{<:TimeType}, x::String) return DateTime(x) end valid_user_info = """ { "username": "user123_", "password": "Abc123!@#Def", "email": "[email protected]", "age": 25, "bio": "Just a simple bio.", "height_in_cm": 175.5, "weight_in_kg": 70.0, "account_creation_date": "2023-01-15T14:22:00", "subscription_end_date": "2030-01-15T00:00:00" } """ valid_user = deser_json(UserProfile, valid_user_info) invalid_user_info = """ { "username": "user123_@@", "password": "Abc123!@#Def123", "email": "user123_example!com", "age": -30, "bio": "Just a simple bio.", "height_in_cm": 2000.0, "weight_in_kg": -100.0, "account_creation_date": "2030-01-15T14:22:00", "subscription_end_date": "2010-01-15T00:00:00" } """ invalid_user = deser_json(UserProfile, invalid_user_info) # Serialization user = UserProfile( "user123_", "Abc123!@#Def", "[email protected]", 25, "Just a simple bio.", 175.5, 70.0, DateTime("2023-01-15T14:22:00"), DateTime("2030-01-15T00:00:00"), ) to_json(user)
BoundTypes
https://github.com/bhftbootcamp/BoundTypes.jl.git