path
stringlengths
7
265
concatenated_notebook
stringlengths
46
17M
django/notebooks/commit/Frontpage order windowing function.ipynb
###Markdown Use sql in postgresql to reorder frontpage stories efficiently. ###Code import sqlparse from django.db.models import Func, Value, BooleanField from django.db.models.functions import Rank, DenseRank, RowNumber, Cast from django.db.models import F, Window, DurationField, ExpressionWrapper, DateTimeField, IntegerField, FloatField from django.db.models import OuterRef, Subquery, Sum class Days(Func): """Cast float field to Interval in days""" output_field=DurationField() template="to_char(%(expressions)s, 'S9990.0999 \"days\"')::interval" class Epoch(Func): """Get epoch timestamp from date time field """ output_field=FloatField() template="extract(epoch from %(expressions)s ) / 3600" class English(Func): """Is the language english""" output_field=BooleanField() template="%(expressions)s = 'en'" adjusted_publication_time=F('story__publication_date') + Days('priority') adjusted_ranking = Window(expression=RowNumber(), partition_by=[English('story__language')], order_by=adjusted_publication_time.desc(nulls_last=True)) qry = FrontpageStory.objects.published().annotate(ranking=adjusted_ranking).values('id', 'ranking') raw_query = sqlparse.format(str(qry.query), reindent=True, keyword_case='upper') print(raw_query) update_ordering = f""" WITH ordered_frontpage AS ( {raw_query} ) UPDATE "frontpage_frontpagestory" SET "order" = "ordered_frontpage"."ranking" FROM "ordered_frontpage" WHERE "frontpage_frontpagestory"."id" = "ordered_frontpage"."id"; """ from django.db import connection with connection.cursor() as cursor: cursor.execute(update_ordering) print(update_ordering) FrontpageStory.objects.update(order=0) FrontpageStory.objects.first().save() #FrontpageStory.objects.reorder() list(FrontpageStory.objects.all().values('order', 'story__language', 'pk', 'headline', 'story__publication_date').order_by('order'))[:10] qry = FrontpageStory.objects.annotate(ranking=adjusted_ranking).values('id', 'ranking', 'order') raw_query = sqlparse.format(str(qry.query), reindent=True, keyword_case='upper') print(raw_query) list(qry[:20]) ###Output _____no_output_____
additionalNotebooks/Metadata.ipynb
###Markdown Installation and imports ###Code !pip install kfmd --upgrade --user !pip install pandas --upgrade --user from kfmd import metadata import pandas from datetime import datetime ###Output Collecting kfmd Downloading https://files.pythonhosted.org/packages/cf/72/048a49042dacd93925f6f4253cb765aeddef34da4cbec05066dc1ac555f5/kfmd-0.1.8.tar.gz Building wheels for collected packages: kfmd Building wheel for kfmd (setup.py) ... [?25ldone [?25h Stored in directory: /home/jovyan/.cache/pip/wheels/3d/ef/17/5f5099e588c582d66506547e0bd28bd7071959137a88b110ca Successfully built kfmd Installing collected packages: kfmd Successfully installed kfmd-0.1.8 WARNING: You are using pip version 19.1.1, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. Requirement already up-to-date: pandas in ./.local/lib/python3.6/site-packages (0.25.3) Requirement already satisfied, skipping upgrade: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas) (2019.2) Requirement already satisfied, skipping upgrade: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas) (2.8.0) Requirement already satisfied, skipping upgrade: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from pandas) (1.16.4) Requirement already satisfied, skipping upgrade: six>=1.5 in /usr/lib/python3/dist-packages (from python-dateutil>=2.6.1->pandas) (1.11.0) WARNING: You are using pip version 19.1.1, however version 19.3.1 is available. You should consider upgrading via the 'pip install --upgrade pip' command. ###Markdown Create a workspace, run and execution ###Code ws1 = metadata.Workspace( # Connect to metadata-service in namesapce kubeflow in k8s cluster. backend_url_prefix="metadata-service.kubeflow.svc.cluster.local:8080", name="ws1", description="a workspace for testing", labels={"n1": "v1"}) r = metadata.Run( workspace=ws1, name="run-" + datetime.utcnow().isoformat("T") , description="a run in ws_1", ) exec = metadata.Execution( name = "execution" + datetime.utcnow().isoformat("T") , workspace=ws1, run=r, description="execution example", ) ###Output _____no_output_____ ###Markdown Log data set, model and its evaluation ###Code data_set = exec.log_input( metadata.DataSet( description="an example data", name="mytable-dump", owner="[email protected]", uri="file://path/to/dataset", version="v1.0.0", query="SELECT * FROM mytable")) model = exec.log_output( metadata.Model( name="MNIST", description="model to recognize handwritten digits", owner="[email protected]", uri="gcs://my-bucket/mnist", model_type="neural network", training_framework={ "name": "tensorflow", "version": "v1.0" }, hyperparameters={ "learning_rate": 0.5, "layers": [10, 3, 1], "early_stop": True }, version="v0.0.1", labels={"mylabel": "l1"})) metrics = exec.log_output( metadata.Metrics( name="MNIST-evaluation", description="validating the MNIST model to recognize handwritten digits", owner="[email protected]", uri="gcs://my-bucket/mnist-eval.csv", data_set_id=data_set.id, model_id=model.id, metrics_type=metadata.Metrics.VALIDATION, values={"accuracy": 0.95}, labels={"mylabel": "l1"})) ###Output _____no_output_____ ###Markdown List all the models in the workspace ###Code pandas.DataFrame.from_dict(ws1.list(metadata.Model.ARTIFACT_TYPE_NAME)) ###Output _____no_output_____ ###Markdown Get basic lineage ###Code print("model id is %s\n" % model.id) ###Output model id is 2 ###Markdown Find the execution that produces this model. ###Code output_events = ws1.client.list_events2(model.id).events assert len(output_events) == 1 execution_id = output_events[0].execution_id print(execution_id) ###Output 1 ###Markdown Find all events related to that execution. ###Code all_events = ws1.client.list_events(execution_id).events assert len(all_events) == 3 print("\nAll events related to this model:") pandas.DataFrame.from_dict([e.to_dict() for e in all_events]) ###Output All events related to this model:
STDA Workshop-Aufgaben.ipynb
###Markdown Einführung in Python Warum Python?Python ist eine sog. general-purpose Programmiersprache. Sie genießt weite Verbreitung in einer Vielzahl von Einsatzgebieten, darunter insbesondere die Web und Internet Entwicklung, das Wissenschaftliche Rechnen sowie die Lehre. Eines der wichtigsten Ziele von Python ist es, lesbaren und klaren Programmcode zu ermöglichen. Daher gilt die Sprache gemeinhin auch als leicht zu erlernen.Zu Python gehört außerdem ein großes Ökosystem aus Bibliotheken, Frameworks und Tools, sodass für viele Anwendungsfälle bereits performante Standardlösungen existieren. Die Sprache Python ist imperativ:Imperative Sprachen verwenden sequentielle Ausdrücke um den Zustand des Programms zu ändern. ###Code a = 5 b = 3 c = a * b print("a + b = %d" % c) ###Output a + b = 15 ###Markdown Python ist funktional:Funktionale Sprachen bieten die Möglichkeit, ein Programm oder Teile dessen in Form von mathematischen Funktionen auszudrücken um Details der eigentlichen Ausführung zu abstrahieren. ###Code even_numbers = [n for n in range(20) if n % 2 == 0] print(even_numbers) ###Output [0, 2, 4, 6, 8, 10, 12, 14, 16, 18] ###Markdown Python ist prozedural:Prozedurale Sprachen fassen Programmsegmente, die wiederholt ausgeführt werden, in sogenannten Prozeduren (auch Funktionen genannt) zusammen. ###Code def fib(n): if n == 1 or n == 0: return 1 else: return fib(n-1) + fib(n-2) print("fib(3) = %d" % fib(3)) print("fib(5) = %d" % fib(5)) print("fib(8) = %d" % fib(8)) ###Output fib(3) = 3 fib(5) = 8 fib(8) = 34 ###Markdown Aufgaben ImportierenDamit wir nicht mit jedem neuen Programm auch alle grundlegenden Funktionen neu definieren müssen, können wir in Python sogenannte Pakete und Module importieren. Daher ist der erste Schritt beim Schreiben eines Programms für gewöhnlich das Importieren der benötigten Funktionen und Klassen. Syntax`[from ] import [as alias]` AufgabeImportiert `numpy` mit dem Namen `np`, das Modul `pyplot` aus dem Package `matplotlib` mit dem Namen `plt` und die Funktionen `sin` und `cos` aus `math`. Danach sollte die darauffolgende Kontrollcode die Funktion sin auf dem Intervall [0, 2pi) Zeichnen. Kontrolle ###Code # Der Abstand zwischen x-Werten dx = 0.1 # Alle werte in [0, 2pi) mit dem Abstand step_size: # xs = [0, 0.1, 0.2, ... 2pi - 0.1] xs = np.arange(0, 2 * np.pi, dx) # Werte sin für alle Werte in xs aus: ys = np.vectorize(sin)(xs) # Zeichne den Funktionsgraphen von sin als blau gestrichelte Linie: plt.plot(xs, ys, '-.b') plt.show() ###Output _____no_output_____ ###Markdown Definieren einer Funktion AufgabeDefiniert eine Funktion `y(t)` mit der folgenden Abbildungsvorschrift:\begin{equation} y = \frac{sin(t^2)}{t}\end{equation}Sowie die Ableitung `y_d(t, y)` mit:\begin{equation}\begin{split} \dot y &= 2cos(t^2) - \frac{sin(t^2)}{t^2} \\ &= 2cos(t^2) - \frac{y}{t}\end{split}\end{equation}Dafür braucht ihr:- `def f(x):` um eine Funktion zu definieren- `return x` um einen Werte zurück zu geben- `x**y` um $x^y$ zu berechnen Kontrolle ###Code # Mit assert können wir zur Laufzeit sicherstellen, dass bestimmte Konditionen erfüllt werden. # Hier sieht man außerdem den Zeilenumbruch mit \ und das Einfügen variabler Werte mittels %f in einen String. assert y(1) == 0.8414709848078965, \ "y(1) sollte 0.8414709848078965 sein, ist aber %f" %y(1) assert y_d(1, 1) == 0.08060461173627953, \ "y_d(1, 1)$ sollte 0.08060461173627953 sein, ist aber %f" %y_d(1, 1) ###Output _____no_output_____ ###Markdown SimulationEin mögliches Einsatzgebiet von Python ist die Simulation, und eine der einfachsten Methoden zur Simulation ist der sogenannte explizite Euler:\begin{equation} y_{j+1} = y_j + \Delta t * f(t_j, y_j)\end{equation}Wobei für $f(t, y)$ gilt:\begin{equation} \dot y = f(t, y)\end{equation} AufgabeFür $f(t, y)$ verwenden wir im folgenden Teil die bereits definierte Funktion `y_d(t, y)`. Also brauchen wir jetzt noch eine Funktione `expl_euler(f, t, y, dt=0.1)`. Diese soll später unsere Funktion als f, die Zeit t und den aktuellen Wert y übergeben bekommen. Kontrolle ###Code # Unsere Simulationsparameter: dt = 0.1 n_steps = 60 y0 = 0 t0 = 0.1 # Ein Vektor mit n_steps Elementen, alle zu Begin 0: ys = simulate(y_d, t0, y0, dt, n_steps) # Wir zeichnen unser Simulationsergebnis: ts = np.arange(t0, t0 + n_steps * dt, dt) plt.plot(ts, ys) plt.legend(["Simulation"]) plt.show() ###Output _____no_output_____ ###Markdown FehleranalyseUm abzuschätzen, wie große Fehler wir mit der expliziten Eulermethode machen, können wir unser Simulationsergebnis mit der uns bekannten Methode `y(t)` vergleichen. AufgabeBerechnet eine Liste `true_ys` mit `y(t)` über `ts`. Damit könnt ihr im Anschluss die absoluten Abweichungen zwischen der Simulation und den wahren Ergebnissen als `error` und dessen Kumulative Summe als `cum_error`. Kontrolle ###Code # Einstellen der Plot Dimensionen plt.figure(figsize=(15,4)) # Hier werden zwei Plots (1 Reihe, 2 Spalten) gleichzeitig gezeichnet: plt.subplot(1, 2, 1) plt.plot(ts, true_ys, 'b') plt.plot(ts, ys, '-.g') plt.legend(["y(t)", "Simulation"]) plt.subplot(1, 2, 2) plt.plot(ts, error, '-.r') plt.plot(ts, cum_error, '-.m') plt.legend(["Error", "Cumulative Error"]) plt.show() ###Output _____no_output_____
examples/lgt.ipynb
###Markdown LGT Quick Start LGT stands for Local and Global Trend, which is an important model type in orbit package. In the model equation, there is a local trend term and a global trend term.In this notebook we will show how to use Orbit LGT models with the US unemployment claims data.**Note: Negative response values are not allowed in LGT model, due to the existence of the global trend term.** ###Code import pandas as pd import numpy as np from orbit.models.lgt import LGTMAP, LGTAggregated, LGTFull from orbit.diagnostics.plot import plot_predicted_data from orbit.diagnostics.plot import plot_predicted_components from orbit.utils.dataset import load_iclaims ###Output _____no_output_____ ###Markdown Data *iclaims_example* is a dataset containing the weekly initial claims for US unemployment benefits against a few related google trend queries (unemploy, filling and job)from Jan 2010 - June 2018. This aims to mimick the dataset from the paper [Predicting the Present with Bayesian Structural Time Series](https://people.ischool.berkeley.edu/~hal/Papers/2013/pred-present-with-bsts.pdf) by SCOTT and VARIAN (2014).Number of claims are obtained from [Federal Reserve Bank of St. Louis](https://fred.stlouisfed.org/series/ICNSA) while google queries are obtained through [Google Trends API](https://trends.google.com/trends/?geo=US).Note that dataset is transformed by natural log before fitting in order to be fitted as a multiplicative model. ###Code # load data df = load_iclaims() # define date and response column date_col = 'week' response_col = 'claims' df.dtypes df.head(5) ###Output _____no_output_____ ###Markdown Train / Test Split ###Code test_size = 52 train_df = df[:-test_size] test_df = df[-test_size:] train_df.head(5) ###Output _____no_output_____ ###Markdown LGT Model In orbit, we have three types of LGT models, `LGTMAP`, `LGTAggregated` and `LGTFull`.Orbit follows the sklearn model API. We can create an instance of the Orbit class and then call its fit and predict methods. LGTMAP LGT model for MAP (Maximum a Posteriori) prediction ###Code lgt = LGTMAP( response_col=response_col, date_col=date_col, seasonality=52, seed=8888, ) %%time lgt.fit(df=train_df) predicted_df = lgt.predict(df=test_df) _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=date_col, actual_col=response_col, test_actual_df=test_df, title='Prediction with LGTMAP Model') ###Output _____no_output_____ ###Markdown LGTFull LGT model for full prediction. In full prediction, the prediction occurs as a function of each parameter posterior sample, and the prediction results are aggregated after prediction. Prediction will always return the median (aka 50th percentile) along with any additional percentiles that are specified. ###Code lgt = LGTFull( response_col=response_col, date_col=date_col, seasonality=52, seed=8888, ) %%time lgt.fit(df=train_df) predicted_df = lgt.predict(df=test_df) predicted_df.tail(5) _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=lgt.date_col, actual_col=lgt.response_col, test_actual_df=test_df, title='Prediction with LGTFull Model') ###Output _____no_output_____ ###Markdown LGTAggregated LGT model for aggregated posterior prediction. In aggregated prediction, the parameter posterior samples are reduced using `aggregate_method ({ 'mean', 'median' })` before performing a single prediction. ###Code lgt = LGTAggregated( response_col=response_col, date_col=date_col, seasonality=52, seed=8888, ) %%time lgt.fit(df=train_df) predicted_df = lgt.predict(df=test_df) predicted_df.tail(5) _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=lgt.date_col, actual_col=lgt.response_col, test_actual_df=test_df, title='Predictibon with LGTAggregated Model') ###Output _____no_output_____ ###Markdown LGT Quick Start LGT stands for Local and Global Trend, which is an important model type in orbit package. In the model equation, there is a local trend term and a global trend term.In this notebook we will show how to use Orbit LGT models with the US unemployment claims data.**Note: Negative response values are not allowed in LGT model, due to the existence of the global trend term.** ###Code import pandas as pd import numpy as np from orbit.models.lgt import LGTMAP, LGTAggregated, LGTFull from orbit.diagnostics.plot import plot_predicted_data, plot_predicted_components from orbit.utils.dataset import load_iclaims ###Output _____no_output_____ ###Markdown Data *iclaims_example* is a dataset containing the weekly initial claims for US unemployment benefits against a few related google trend queries (unemploy, filling and job) from Jan 2010 - June 2018. This aims to mimick the dataset from the paper [Predicting the Present with Bayesian Structural Time Series](https://people.ischool.berkeley.edu/~hal/Papers/2013/pred-present-with-bsts.pdf) by SCOTT and VARIAN (2014).Number of claims are obtained from [Federal Reserve Bank of St. Louis](https://fred.stlouisfed.org/series/ICNSA) while google queries are obtained through [Google Trends API](https://trends.google.com/trends/?geo=US).Note that dataset is transformed by natural log before fitting in order to be fitted as a multiplicative model. ###Code # load data df = load_iclaims() # define date and response column DATE_COL = 'week' RESPONSE_COL = 'claims' df.dtypes df.head() ###Output _____no_output_____ ###Markdown Train / Test Split ###Code test_size = 52 train_df = df[:-test_size] test_df = df[-test_size:] train_df.head() ###Output _____no_output_____ ###Markdown LGT Model In orbit, we have three types of LGT models, `LGTMAP`, `LGTAggregated` and `LGTFull`.Orbit follows the sklearn model API. We can create an instance of the Orbit class and then call its fit and predict methods. LGTMAP LGT model for MAP (Maximum a Posteriori) prediction ###Code lgt = LGTMAP(response_col=RESPONSE_COL, date_col=DATE_COL, seasonality=52, seed=8888) %%time lgt.fit(df=train_df) predicted_df = lgt.predict(df=test_df) _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=DATE_COL, actual_col=RESPONSE_COL, test_actual_df=test_df, title='Prediction with LGTMAP Model') ###Output _____no_output_____ ###Markdown LGTFull LGT model for full prediction. In full prediction, the prediction occurs as a function of each parameter posterior sample, and the prediction results are aggregated after prediction. Prediction will always return the median (aka 50th percentile) along with any additional percentiles that are specified. ###Code lgt = LGTFull(response_col=RESPONSE_COL, date_col=DATE_COL, seasonality=52, seed=8888) %%time lgt.fit(df=train_df) predicted_df = lgt.predict(df=test_df) predicted_df.tail() _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=DATE_COL, actual_col=RESPONSE_COL, test_actual_df=test_df, title='Prediction with LGTFull Model') ###Output _____no_output_____ ###Markdown LGTAggregated LGT model for aggregated posterior prediction. In aggregated prediction, the parameter posterior samples are reduced using `aggregate_method ({ 'mean', 'median' })` before performing a single prediction. ###Code lgt = LGTAggregated(response_col=RESPONSE_COL, date_col=DATE_COL, seasonality=52, seed=8888) %%time lgt.fit(df=train_df) predicted_df = lgt.predict(df=test_df) predicted_df.tail() _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=DATE_COL, actual_col=RESPONSE_COL, test_actual_df=test_df, title='Predictibon with LGTAggregated Model') ###Output _____no_output_____ ###Markdown LGT Quick Start LGT stands for Local and Global Trend, which is an important model type in orbit package. In the model equation, there is a local trend term and a global trend term.In this notebook we will show how to use Orbit LGT models with the US unemployment claims data.**Note: Negative response values are not allowed in LGT model, due to the existence of the global trend term.** ###Code %load_ext autoreload %autoreload 2 import pandas as pd import numpy as np import matplotlib.pyplot as plt from orbit.models import LGT from orbit.diagnostics.plot import plot_predicted_data, plot_predicted_components from orbit.utils.dataset import load_iclaims from orbit.utils.plot import get_orbit_style plt.style.use(get_orbit_style()) ###Output _____no_output_____ ###Markdown Data *iclaims_example* is a dataset containing the weekly initial claims for US unemployment benefits against a few related google trend queries (unemploy, filling and job) from Jan 2010 - June 2018. This aims to mimick the dataset from the paper [Predicting the Present with Bayesian Structural Time Series](https://people.ischool.berkeley.edu/~hal/Papers/2013/pred-present-with-bsts.pdf) by SCOTT and VARIAN (2014).Number of claims are obtained from [Federal Reserve Bank of St. Louis](https://fred.stlouisfed.org/series/ICNSA) while google queries are obtained through [Google Trends API](https://trends.google.com/trends/?geo=US).Note that dataset is transformed by natural log before fitting in order to be fitted as a multiplicative model. ###Code # load data df = load_iclaims() # define date and response column DATE_COL = 'week' RESPONSE_COL = 'claims' df.dtypes df.head() ###Output _____no_output_____ ###Markdown Train / Test Split ###Code test_size = 52 train_df = df[:-test_size] test_df = df[-test_size:] train_df.head() ###Output _____no_output_____ ###Markdown LGT Model In orbit, we have three types of LGT models, `LGTMAP`, `LGTAggregated` and `LGTFull`.Orbit follows the sklearn model API. We can create an instance of the Orbit class and then call its fit and predict methods. LGT-MAP LGT model for MAP (Maximum a Posteriori) prediction ###Code lgt = LGT(response_col=RESPONSE_COL, date_col=DATE_COL, regressor_col=['sp500'], seasonality=52, estimator='stan-map', seed=8888) %%time lgt.fit(df=train_df) lgt.get_regression_coefs() predicted_df = lgt.predict(df=test_df, decompose=True) predicted_df.head() _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=DATE_COL, actual_col=RESPONSE_COL, test_actual_df=test_df, title='Prediction with LGTMAP Model') ###Output _____no_output_____ ###Markdown LGT-MCMC LGT model for full prediction. In full prediction, the prediction occurs as a function of each parameter posterior sample, and the prediction results are aggregated after prediction. Prediction will always return the median (aka 50th percentile) along with any additional percentiles that are specified. ###Code lgt = LGT(response_col=RESPONSE_COL, date_col=DATE_COL, estimator='stan-mcmc', regressor_col=['sp500'], seasonality=52, seed=8888) %%time lgt.fit(df=train_df, point_method=None) lgt.get_regression_coefs() predicted_df = lgt.predict(df=test_df, decompose=True) predicted_df.tail() _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=DATE_COL, actual_col=RESPONSE_COL, test_actual_df=test_df, title='Prediction with LGTFull Model') lgt.fit(df=train_df, point_method='mean') predicted_df = lgt.predict(df=test_df, decompose=True) predicted_df.tail() lgt.get_regression_coefs() lgt.fit(df=train_df, point_method='median') predicted_df = lgt.predict(df=test_df, decompose=True) predicted_df.tail() lgt.get_regression_coefs() ###Output _____no_output_____ ###Markdown LGT-SVI ###Code lgt = LGT(response_col=RESPONSE_COL, date_col=DATE_COL, estimator='pyro-svi', regressor_col=['sp500'], seasonality=52, seed=8888, num_steps=101) %%time lgt.fit(df=train_df, point_method=None) lgt.get_regression_coefs() predicted_df = lgt.predict(df=test_df, point_method=None, decompose=True) predicted_df.tail() _ = plot_predicted_data(training_actual_df=train_df, predicted_df=predicted_df, date_col=DATE_COL, actual_col=RESPONSE_COL, test_actual_df=test_df, title='Prediction with LGTFull Model') lgt.fit(df=train_df, point_method='mean') predicted_df = lgt.predict(df=test_df, decompose=True) predicted_df.tail() lgt.fit(df=train_df, point_method='median') predicted_df = lgt.predict(df=test_df, decompose=True) predicted_df.tail() ###Output INFO:root:Guessed max_plate_nesting = 2
src/inspection/pcl statistics.ipynb
###Markdown statistics on original data ###Code _ = plt.hist(my_pcl[:,0].flatten(), bins='auto') plt.title("X axis") plt.show() _ = plt.hist(my_pcl[:,1].flatten(), bins='auto') plt.title("Y axis") plt.show() _ = plt.hist(my_pcl[:,2].flatten(), bins='auto') plt.title("Z axis") plt.show() _ = plt.hist(my_pcl[:,3].flatten(), bins='auto') plt.title("Labels") plt.show() ###Output _____no_output_____ ###Markdown After transformation statistics ###Code t_pcl = my_pcl.copy() t_pcl[:,2] = (t_pcl[:,2]) # t_pcl = t_pcl[t_pcl[:,2] >= 0] _ = plt.hist(t_pcl[:,2].flatten(), bins='auto') plt.title("Z axis") plt.show() ###Output _____no_output_____ ###Markdown Kitti ###Code kitti_pcl = np.load("arr.npy") kitti_pcl.shape _ = plt.hist(kitti_pcl['x'], bins='auto') plt.title("X axis") plt.show() _ = plt.hist(kitti_pcl['y'], bins='auto') plt.title("Y axis") plt.show() _ = plt.hist(kitti_pcl['z'], bins='auto') plt.title("Z axis") plt.show() arr = np.asarray(kitti_pcl) t = np.zeros((arr.shape[0],4)) t[:,0] = arr['x'] t[:,1] = arr['y'] t[:,2] = arr['z'] t[:,3] = arr['intensity'] np.save("kitti_sample",t) ###Output _____no_output_____
Bacteria_Ori_Analysis/Bacteria_Analysis.ipynb
###Markdown Title: Locating the Ori of Bacteria Author: Surur Khan Why Try To Locate the Ori?1. Gene Therapy - intentionally infect a patient who lacks a crucial gene with a viral vector containing an artificial gene that encodes a therapeutic protein. Once inside the cell, the vector replicates and eventually produces many copies of the therapeutic protein, which in turn treats the patient’s disease. To ensure that the vector actually replicates inside the cell, biologists must know where ori is in the vector’s genome and ensure that the genetic manipulations that they perform do not affect it(This usage is also referred to as Genetic Engineering). The scripts were tested against an E.Coli Genome dataset from the NCBI and yielded significant results for finding it's ori by analyzing the GC content changes and implications of a potential 9mer DnaA box due to a conservative sequence found in a relatively short segment of the Genome.2. Ensure Genetic Manipulations do not affect overall cell functions What I Test onThe package Bioezy (v 0.0.4) contains several scripts for analyzing genomic data, mainly to locate replication origins. For this analysis, the bacterium **E. Coli (Vibrio Cholerae)** is used. For Credibility, the nucleotide sequence appearing in the ori of E. Coli was predetermined as follows:atcaatgatcaacgtaagcttctaagcatgatcaaggtgctcacacagtttatccacaacctgagtggatgacatcaagataggtcgttgtatctccttcctctcgtactctcatgaccacggaaagatgatcaagagaggatgatttcttggccatatcgcaatgaatacttgtgacttgtgcttccaattgacatcttcagcgccatattgcgctggccaaggtgacggagcgggattacgaaagcatgatcatggctgttgttctgtttatcttgttttgactgagacttgttaggatagacggtttttcatcactgactagccaaagccttactctgcctgacatcgaccgtaaattgataatgaatttacatgcttccgcgacgatttacctcttgatcatcgatccgattgaagatcttcaattgttaattctcttgcctcgactcatagccatgatgagctcttgatcatgtttccttaaccctctattttttacggaagaatgatcaagctgctgctcttgatcatcgtttchereinafter referred to as **vibrio_cholerae_ori.txt**The actual Genome spans 1,108,250 nucleotides long, which can be found at:[E.Coli_Genome](https://bioinformaticsalgorithms.com/data/realdatasets/Replication/Vibrio_cholerae.txt)I will not be analyzing this, rather, I will be using a segment for the sake of runtime, denoted **"vibrio_cholerae_genome_short"** What I Look forThere is no shortage of agreement that DNA replication occurs in all cells as it is the nature of living organisms. This however begs the question, how does the cell know where to begin replication in this short region within the otherwise huge genome? It is known that a protein that initiates replication, **DnaA** by binding to a short segment in the ori, **DnaA Box**. My goal to locate these DnaA Boxes is based on a theorum by William Legrand in Edgar Allan Poe's story "The Gold-Bug":_Assuming DNA is a language of its own, locate frequent words within the ori because for various biological processes, certain nucleotide strings often appear surprisingly often in small regions of the genome_This is often because certain proteins can only bind to DNA if a specific string of nucleotides is present, and if there are more occurrences of the string, then it is more likely that binding will successfully occur. (It is also less likely that a mutation will disrupt the binding process.) Hence, I will extensively analyze the E. Coli Genome to look for its Ori by locating conservative sequences in a relatively short segment of the whole genome ###Code from bioezy import bzy import os print(os.getcwd()) #Important note: frequent words is not usually used for finding frequent words because it has a runtime of O(n^2); (|Text| − k + 1) · (|Text| − k + 1) · k == |Text|^2 · k #On specific ori region with open("vibrio_cholerae_ori.txt","r") as input_file: vc_ori = ''.join(line.rstrip() for line in input_file).lower() #manipulation to make it 1 consecutive string input_file.close() print(vc_ori) FreqWords = bzy.frequent_words(vc_ori,9) for kmer in FreqWords: print(f' 9mer: {kmer} appeared {bzy.pattern_count(vc_ori,kmer)} times') ###Output 9mer: atgatcaag appeared 3 times 9mer: ctcttgatc appeared 3 times 9mer: tcttgatca appeared 3 times 9mer: cttgatcat appeared 3 times ###Markdown SignificanceWe highlight a most frequent 9-mer instead of using some other value of k because experiments have revealed that bacterial DnaA boxes are usually nine nucleotides long. The probability that there exists a 9-mer appearing three or more times in a randomly generated DNA string of length 500 is approximately 1/1300. Important observation: atgatcaag and cttgatcat are reverse complements of each other, hence **now we must account for the reverse compliment of each frequent 9mer appearing as well!**. We can strongly deduce that DnaA does not need to bind to specifically bind to either the 5'-> 3' forward(lagging) strand nor the 3' -> 5' reverse(leading) strand!Before concluding that we have found the DnaA box of Vibrio cholerae, we'll check if there are other short regions in the Vibrio cholerae genome exhibiting multiple occurrences of atgatcaag or cttgatcat. Maybe these strings occur as repeats throughout the entire Vibrio cholerae genome, rather than just in the ori region. We will use the pattern matching function to determine this. ###Code print(bzy.pattern_matching("atgatcaag",vc_ori)) #Locations of atgatcaag in ori print(bzy.pattern_matching("cttgatcat",vc_ori)) """ TESTING ON SHORT GENOME FOR ATGATCAAG """ with open("vibrio_cholerae_genome_short.txt","r") as input_file: vc_genome_short = ''.join(line.rstrip() for line in input_file).lower() input_file.close() #print(vc_genome) print(bzy.pattern_matching("atgatcaag",vc_genome_short)) ###Output [116556, 149355, 151913, 152013, 152394, 186189, 194276, 200076, 224527, 307692, 479770, 610980, 653338, 679985, 768828, 878903, 985368] ###Markdown Significance After solving the Pattern Matching Problem, we discover that ATGATCAAG appears 17 times in the starting positions labelled above. With the exception of the three occurrences of ATGATCAAG in ori at starting positions 151913, 152013, and 152394, no other instances of ATGATCAAG form clumps, i.e., appear close to each other in a small region of the genome.However, a definite conclusion cannot be drawn without checking if it even appears in known ori regions from other bacteria. The case may be that the clumps of my 9mers are statistically insignificant and have nothing to do with replication. Now, the bacterium **Thermotoga petrophila**, an extremophile will be examined to locate it's ori. A potential discovery may be that different bacterium have different oris. ###Code with open("thermotoga_petrophila.txt","r") as input_file: tp_ori = ''.join(line.rstrip() for line in input_file).lower() input_file.close() FreqWords = bzy.frequent_words(tp_ori,9) for kmer in FreqWords: print(f' 9mer: {kmer} appeared {bzy.pattern_count(tp_ori,kmer)} times') print(bzy.pattern_matching("acctaccac",tp_ori)) print("Other frequent 9mers that appear more than 2 but less than 5 times: AACCTACCA 3 AAACCTACC 3 ACCTACCAC 5 CCTACCACC 3 GGTAGGTTT 3 TGGTAGGTT 3") ###Output 9mer: acctaccac appeared 5 times [184, 379, 390, 401, 479] Other frequent 9mers that appear more than 2 but less than 5 times: AACCTACCA 3 AAACCTACC 3 ACCTACCAC 5 CCTACCACC 3 GGTAGGTTT 3 TGGTAGGTT 3 ###Markdown It is worth noting that AACCTACCA and TGGTAGGTT are reverse complements, as are AAACCTACC and GGTAGGTTT The Caveat Searching for “clumps” of either ATGATCAAG (reverse compliment -CTTGATCAT) or CCTACCACC(reverse compliment - GGTGGTAGG) is unlikely to help, since this new genome may use a completely different DnaA Box. Instead of finding clumps of a specific k-mer, try to find every k-mer that forms a clump in the genome, hoping they shed light on the location of ori. The Clump Finding Problem Slide a window of fixed length L along the genome, looking for a region where a k-mer appears several times in short succession. The parameter value L = 500 reflects the typical length of ori in bacterial genomes. Define a k-mer as a "clump" if it appears many times within a short interval of the genome. More formally, given integers L and t, a k-mer Pattern forms an (L, t)-clump inside a (longer) string Genome if there is an interval of Genome of length L in which this k-mer appears at least t times. (This definition assumes that the k-mer completely fits within the interval. This also does not take reverse complements into account yet.) eg. TGCA forms a (25,3)-clump in the following Genome:gatcagcataagggtccC**TGCA**A**TGCA**TGACAAGCC**TGCA**GTtgttttac From our previous examples of ori regions, ATGATCAAG forms a (500,3)-clump in the Vibrio cholerae genome, and CCTACCACC forms a (500,3)-clump in the Thermotoga petrophila genome. ###Code clumps = bzy.find_clumps(vc_genome_short,9,500,3) print(len(clumps)) #Refer to scan_clumps_eff_algo for the true solution (sourced online) ###Output acaatgagg ttcgagctc tcgagctct aaccggctg tgcgcatac gcgcatacg gccatccga cagcgtcta gtctattca ggctatgca ctatgcagg caggctact tggttcgta gtaagaact aagaacttt gaactttag gccttacct gctttagtc ctttagtcg tttagtcgt tagtcgtgg cgatctggg gtgtggctc tggctctcg cgcgtatgg gtatggtct gtctgtcta ttctaaccc aacccgcgc ccgcgctac tctgagtgc caggtctac ggtctactc gtctactcc ctactcctt cctttcggc gcactagtg gccatgggc caacgggca acgggcagc agcattact ctgttctta cttaaacgg ctggttcca ggttccaag ttccaaggc tgcttgtgg cttgtggcc ggccgtact tggtgcact ggtgcactg gtgcactgg ggtcacgca agagcgtgg gagcgtggt gtttcggtc tcggtctgg tggaacgtc 58 ###Markdown Using the scan_clumps program with **vibrio_cholerae_genome_full**, more than 1600 (500,3)-clumped 9mers were foundThe result is futile in the search for DnaA Boxes, as the algorithm will locate ALL frequent kmers in the region, which may occur purely by random chance. A new method must be tested. The Analysis of the Cytosine Content and it's relevanceDNA replication is an asymmetric process, the faith of the forward (leading) and reverse (lagging) half strands are different. This is because DNA Polymerase, the enzyme responsible for creating the complementary base sequence against each strand can only run in the 3' -> 5' direction. The Reverse half strand indeed runs in this direction and can hence be replicated continuously, however the same cannot be said for the forward half strand, which runs in the 5' -> 3' direction. For replication to occur on a forward half strand, the replication fork has to open by about 2000 nucleotides, allowing DNA Polymerase to replicate the strand backwards towards Ori. When this fork closes, replication terminates until it reopens. Due to the inconsistent replication, _okazaki fragments_ are generated, which are partially replicated strands of nucleotides. As a result, many primers are required to fully replicate a forward strand and DNA ligase must be used to join the strand together. The built strand is made of introns and exons, where the former along with the primers are removed by some molecular splicing process. The significance of this stems from the fact that because the forward half strand has to wait for its fork to open for replication to occur, it spends most of its life **single stranded**. Naturally, due to the absence of the strongly covalent G-C bonds that would form in a complete double helix, the nucleotide bases are exposed to much higher mutation potentials. Particularly, **Cytosine has a high likeliness to mutate into Thymine** through **deamination**. As a result, **the forward half strand has a much lower Cytosine content than the reverse half strand**. Considering the ori is made up half by the forward and the other half by the reverse, I anticipate that **half of the genome will have a decreasing Cytosine content, indicating that the forward half strand is being observed**. Overall: G-C decreasing = reverse half strand (high C low G)G-C increasing = forward half strand (low C high G) The analysis is now directed towards the idea that **Ori occurs where the reverse half strand transitions into the forward half strand, hence it will be located where an increasing Cytosine content begins to exponentially decrease** Generating a Skew Diagram Compute Skewi+1(Genome) from Skewi(Genome) according to the nucleotide in position i of Genome. If this nucleotide is G, then Skewi+1(Genome) = Skewi(Genome) + 1; if this nucleotide is C, then Skewi+1(Genome)= Skewi(Genome) – 1; otherwise, Skewi+1(Genome) = Skewi(Genome). eg. CATGGGCATCGGCCATACGCC has skew diagram 0 -1 -1 -1 0 1 2 1 1 1 0 1 2 1 0 0 0 0 -1 0 -1 -2 hence, ori will be found where the skew attains a **minimum** ###Code with open("Ecoli_genome.txt","r") as input_file: ecoli_genome = ''.join(line.rstrip() for line in input_file).lower() #manipulation to make it 1 consecutive string input_file.close() # Running bzy.minimum_skew(vc_genome_short) is futile, because the algorithm is not robust enough to work with the million length sequence. It will continuously converge to a local optimum, which is not ideal # For demonstration purposes, a sample input will be used bzy.minimum_skew("TAAAGACTGCCGAGAGGCCAACACGAGTGCTAGAACGAGGGGCGTAAACGCGGGTCCGAT") #Using a more robust analysis, the ori of Vibrio Cholerae is found at approximately position 3923620 of the genome, representing the global optimum. ###Output _____no_output_____ ###Markdown Now, the objective is looking for a hidden message representing a potential DnaA box near this location. Solving the Frequent Words Problem in a window of length 500 starting at position **3923620** reveals no 9-mers (along with their reverse complements) that appear three or more times. Even if we have located ori in E. coli, it appears that the location of the DnaA Box is unanimous. However, accounting for mismatches, it is seen that in addition to the three occurrences of ATGATCAAG and three occurrences of its reverse complement CTTGATCAT, the Vibrio cholerae ori contains additional occurrences of ATGATCAAC and CATGATCAT, which differ from ATGATCAAG and CTTGATCAT in only a single nucleotide polymorphism. This is referred to as "Hamming Distance". From this, I developed the function approx_pattern_match to return every location of the occurrence of a pattern within the genome with a particular amount of mismatches. Furthermore, the function approx_pattern_count returns the number of occurrences of a pattern in the specified genome with a particular amount of mismatches **For runtime sake, this portion will be ran on the already identified ori region of e.coli** ###Code bzy.approx_pattern_match(vc_genome_short,"atgatcaag",2) #Note they're 2581 occurrences bzy.approx_pattern_count("atgatcaag",vc_genome_short,2) ###Output _____no_output_____ ###Markdown Caveat: For these scripts, All 4k k-mers Pattern, compute approx_pattern_count for each k-mer Pattern, and then find k-mers with the maximum number of approximate occurrences. This is an inefficient approach, since many of the 4k k-mers should not be considered because neither they nor their mutated versions (with up to d mismatches) appear in Text. Instead, the algorithm freq_words_mismatch will be used. It uses a single map that counts the number of times a given string has an approximate match in Text. For a given k-mer substring Pattern of Text, we need to increase 1 to the count of every k-mer that has Hamming distance at most d from Pattern. Note here, the vc_ori is used as oppose to Ecoli_genome.txt. My algorithm's runtime is too slow to work with the million length dataset. ###Code bzy.freq_words_mismatch(vc_ori,9,1) ###Output _____no_output_____
casa/Calibrator imaging.ipynb
###Markdown Apply calibration to gain calibrator and split out source ###Code split(vis=msfile, field=g_cal, outputvis=splitted_ms, datacolumn='corrected') visstat(splitted_ms, axis='amp', field=g_cal) plotms(vis=splitted_ms, xaxis='time', yaxis='amp', correlation='XX,YY', coloraxis='corr', averagedata=True, avgbaseline=True, avgchannel='4096') plotms(vis=splitted_ms, xaxis='freq', yaxis='amp', correlation='XX,YY', coloraxis='corr', averagedata=True, avgtime='3300', avgbaseline=True) with pt.table(splitted_ms+'/SPECTRAL_WINDOW') as tb: ref_freq = tb.getcol("REF_FREQUENCY")[0] # Hz print(tb.getvarcol("NUM_CHAN")) print(ref_freq) ###Output Successful readonly open of default-locked table gcal_1117-248_split.ms/SPECTRAL_WINDOW: 14 columns, 1 rows {'r1': array([900], dtype=int32)} 1411114746.09 ###Markdown Dirty image ###Code dirty_msfile = prefix + '.dirty' print('Deleting existing image files for {}'.format(dirty_msfile)) os.system('rm -rf '+ dirty_msfile + '.*') print(dirty_msfile) tclean(vis=splitted_ms, imagename=dirty_msfile, stokes='I', restfreq=ref_freq, imsize=5540, cell='10arcsec', nchan=3, weighting='briggs', robust=-1.5, specmode='mfs', gain=0.9, threshold = '10mJy', niter=0) dirty_image = dirty_msfile + '.image' print(dirty_image) noise_stat = imstat(imagename=dirty_image) rms = str(noise_stat['rms'][0]*3)+'Jy' print(rms) viewer(dirty_image, zoom=8) ###Output _____no_output_____ ###Markdown Clean image ###Code clean_msfile = prefix + '.clean' print('Deleting existing image files for {}'.format(clean_msfile)) os.system('rm -rf '+ clean_msfile + '.*') print(clean_msfile) tclean(vis=splitted_ms, imagename=clean_msfile, stokes='I', restfreq=ref_freq, imsize=5540, cell='10arcsec', nchan=3, weighting='briggs', robust=-1.5, specmode='mfs', gain=0.9, threshold = '10mJy', niter=20000) clean_image = clean_msfile + '.image' print(clean_image) noise_stat = imstat(imagename=clean_image) rms = str(noise_stat['rms'][0]*3)+'Jy' print(rms) viewer(clean_image, zoom=14) ###Output _____no_output_____
06 - Receipts with Form Recognizer.ipynb
###Markdown Анализ квитанций в службе Распознавателя документов (Form Recognizer) ![Робот держит квитанцию](./images/receipt_analysis.jpg) В сфере искусственного интеллекта компьютерного зрения для чтения печатных или рукописных документов обычно используется оптическое распознавание символов (OCR). Часто текст просто извлекается из документов в формате, который можно использовать для дальнейшей обработки или анализа. При более продвинутом сценарии OCR информация извлекается из таких бланков, как заказы на поставку или счета-фактуры, с семантическим пониманием того, что представляют собой поля в документе. Служба **Распознавателя документов** специально разработана для решения такого рода задач ИИ. Просмотреть квитанцию В данном примере для анализа квитанций используется встроенная модель Распознавателя документов. Нажмите кнопку **Выполнить код в ячейке** (&9655;) (слева от ячейки) внизу, чтобы запустить ее и посмотреть пример квитанции, которую вы будете использовать для анализа с помощью Распознавателя документов. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Создайте ресурс Распознавателя документов Давайте начнем с создания ресурса Распознавателя документов в вашей подписке Azure. 1. В другой вкладке браузера откройте портал Azure по адресу: https://portal.azure.com, войдя в систему под учетной записью Microsoft. 2. Выберите **+ Создать ресурс**, после чего найдите *Распознаватель документов*. 3. В списке служб выберите **Распознаватель документов**. 4. В колонке **Распознаватель документов** выберите **Создать**. 5. В колонке **Создать** введите следующие данные и нажмите **Создать**. - **Имя**: Уникальное имя для вашей службы - **Подписка**: Ваша подписка Azure - **Регион**: Любой доступный регион - **Ценовая категория**: классы F0 - **Группа ресурсов**: Существующая группа ресурсов, которую вы использовали ранее - **Подтверждаю, что приведенное ниже уведомление прочитано и понято**: Выбрано. 6. Дождитесь завершения создания службы. 7. Просмотрите вновь созданную службу Распознавателя документов на портале Azure и на странице **Ключи и конечная точка** скопируйте значения **Ключ1** и **Конечная точка** и вставьте их в кодовую ячейку ниже, заменив **YOUR_FORM_KEY** и **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Проанализировать квитанцию Теперь вы готовы использовать Распознаватель документов для анализа квитанции. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Form Recognizer를 사용하여 영수증 분석 ![영수증을 들고 있는 로봇](./images/receipt_analysis.jpg) Computer Vision의 AI(인공 지능) 분야에서 OCR(광학 인식)은 인쇄된 문서나 필기 문서를 읽는 데 주로 사용됩니다. 종종 텍스트는 추가적인 처리 또는 분석에 사용할 수 있는 형식으로 문서에서 간단히 추출됩니다. 보다 진보된 OCR 시나리오는 양식의 필드가 나타내는 의미를 이해하면서 구매 주문서나 송장 같은 양식에서 정보를 추출하는 것입니다. **Form Recognizer** 서비스는 이러한 종류의 AI 문제를 위해 특별히 설계되었습니다. 영수증 보기 이 예에서는 Form Recognizer의 기본 제공 모델을 사용하여 영수증을 분석합니다. 아래의 **셀 실행**(&9655;) 단추(셀 왼쪽에 있음)를 클릭하여 실행하고 Form Recognizer를 사용하여 분석할 영수증의 예를 확인해 보세요. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Form Recognizer 리소스 만들기 먼저 Azure 구독에서 Form Recognizer 리소스를 만듭니다. 1. 다른 브라우저 탭에서 Azure Portal(https://portal.azure.com) 을 열고 Microsoft 계정으로 로그인합니다. 2. **+ 리소스 만들기**를 선택하고 *Form Recognizer*를 검색합니다. 3. 서비스 목록에서 **Form Recognizer**를 선택합니다. 4. **Form Recognizer** 블레이드에서 **만들기**를 선택합니다. 5. **만들기** 블레이드에서 다음 세부 정보를 입력하고 **만들기**를 선택합니다. - **이름**: 서비스의 고유한 이름 - **구독**: 사용자의 Azure 구독 - **지역**: 사용 가능한 영역 - **가격 책정 계층**: F0 - **리소스 그룹**: 이전에 사용한 기존 리소스 그룹 - **아래 알림을 읽고 이해했음을 확인합니다**. 선택됨. 6. 서비스가 생성될 때까지 기다립니다. 7. Azure Portal에서 새로 생성된 Form Recognizer 서비스를 확인합니다. 그리고 **키 및 엔드포인트** 페이지에서 **Key1** 및 **엔드포인트** 값을 복사하고 아래 코드 셀에 붙여 넣어 **YOUR_FORM_KEY** 및 **YOUR_FORM_ENDPOINT**를 대체합니다. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown 영수증 분석 이제 Form Recognizer를 사용하여 영수증을 분석할 준비가 되었습니다. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyzing Receipts with Form Recognizer![A robot holding a receipt](./images/receipt_analysis.jpg)In the artificial intelligence (AI) field of computer vision, optical character recognition (OCR) is commonly used to read printed or handwritten documents. Often, the text is simply extracted from the documents into a format that can be used for further processing or analysis.A more advanced OCR scenario is the extraction of information from forms, such as purchase orders or invoices, with a semantic understanding of what the fields in the form represent. The **Form Recognizer** service is specifically designed for this kind of AI problem. View a receiptIn this example, you'll use the Form Recognizer's built-in model for analyzing receipts.Click the **Run cell** (&9655;) button (to the left of the cell) below to run it and see an example of a receipt that you'll use Form Recognizer to analyze. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Create a Form Recognizer resourceStart by creating a Form Recognizer resource in your Azure subscription:1. In another browser tab, open the Azure portal at https://portal.azure.com, signing in with your Microsoft account.2. Select **+ Create a resource**, and search for *Form Recognizer*.3. In the list of services, select **Form Recognizer**.4. In the **Form Recognizer** blade, select **Create**.5. In the **Create** blade, enter the following details and select **Create** - **Name**: formrec-deploymentID - **Subscription**: Your Azure subscription - **Region**: Any available region - **Pricing tier**: F0 - **Resource Group**: The existing resource group you used previously - **I confirm I have read and understood the notice below**: Selected.6. Wait for the service to be created.7. View your newly created Form Recognizer service in the Azure portal and on the **Keys and Endpoint** page, copy the **Key1** and **Endpoint** values and paste them in the code cell below, replacing **YOUR_FORM_KEY** and **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analyze a receiptNow you're ready to use Form Recognizer to analyze a receipt. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyzing Receipts with Form Recognizer![A robot holding a receipt](./images/receipt_analysis.jpg)In the artificial intelligence (AI) field of computer vision, optical character recognition (OCR) is commonly used to read printed or handwritten documents. Often, the text is simply extracted from the documents into a format that can be used for further processing or analysis.A more advanced OCR scenario is the extraction of information from forms, such as purchase orders or invoices, with a semantic understanding of what the fields in the form represent. The **Form Recognizer** service is specifically designed for this kind of AI problem. View a receiptIn this example, you'll use the Form Recognizer's built-in model for analyzing receipts.Click the **Run cell** (&9655;) button (to the left of the cell) below to run it and see an example of a receipt that you'll use Form Recognizer to analyze. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Create a Form Recognizer resourceStart by creating a Form Recognizer resource in your Azure subscription:1. In another browser tab, open the Azure portal at https://portal.azure.com, signing in with your Microsoft account.2. Select **+ Create a resource**, and search for *Form Recognizer*.3. In the list of services, select **Form Recognizer**.4. In the **Form Recognizer** blade, select **Create**.5. In the **Create** blade, enter the following details and select **Create** - **Name**: A unique name for your service - **Subscription**: Your Azure subscription - **Region**: Any available region - **Pricing tier**: F0 - **Resource Group**: The existing resource group you used previously - **I confirm I have read and understood the notice below**: Selected.6. Wait for the service to be created.7. View your newly created Form Recognizer service in the Azure portal and on the **Keys and Endpoint** page, copy the **Key1** and **Endpoint** values and paste them in the code cell below, replacing **YOUR_FORM_KEY** and **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analyze a receiptNow you're ready to use Form Recognizer to analyze a receipt. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Form Recognizer で領収書を分析します ![領収書を持っているロボット](./images/receipt_analysis.jpg) Computer Vision の人工知能 (AI) の分野では、印刷文書や手書き文書を読み取るために光学式文字認識 (OCR) が一般的に使用されます。多くの場合、それらの文書からテキストを単に抽出したあと、さらなる処理や分析は抽出先のフォーマットを使用して行われます。 より高度な OCR のシナリオには、注文書や請求書などのフォームから情報を抽出し、それと同時にフォームの各フィールドが表す情報を意味論的に理解することです。**Form Recognizer** サービスは、AI のこの種の課題に対応できるように特別に設計されています。 領収書を表示する この例では、Form Recognizer の組み込みモデルを使用して領収書を分析します。 セルの左側にある 「**セルの実行**」(&9655;) ボタンをクリックして実行し、Form Recognizer を使用して分析する領収書の例を確認します。 ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Form Recognizer リソースを作成する Azure サブスクリプションに Form Recognizer リソースを作成することから始めます。 1. ブラウザーの新しいタブで Azure portal (https://portal.azure.com) を開き、Microsoft アカウントでサインインします。 2. 「**+ リソースの作成**」 を選択し、*Form Recognizer* を検索します。 3. サービスの一覧から 「**Form Recognizer**」 を選択します。 4. 「**Form Recognizer**」 ブレードで 「**作成**」 を選択します。 5. 「**作成**」 ブレードで次の詳細を入力し、「**作成**」 を選択します。 - **名前**: サービスの一意の名前 - **サブスクリプション**: 使用する Azure サブスクリプション - **リージョン**: 利用可能な任意のリージョン - **価格レベル**: F0 - **リソース グループ**: 前に使用した既存のリソース グループ - **注意事項を読み理解しました**: 選択されています。 6. サービスが作成されるまで待ちます。 7. 新しく作成した Form Recognizer サービスを Azure portal で表示し、「**キーとエンドポイント**」 ページから 「**キー1**」 と 「**エンドポイント**」 の値をコピーして以下のコード セルに貼り付けます (**YOUR_FORM_KEY**、**YOUR_FORM_ENDPOINT** とそれぞれ置き換える)。 ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown 領収書を分析する これで、Form Recognizer を使用して領収書を分析する準備が整いました。 ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analysieren von Kassenbelegen mit der Formularerkennung ![Ein Roboter, der einen Kassenbeleg hält](./images/receipt_analysis.jpg) Maschinelles Sehen gehört zur Künstlichen Intelligenz (KI) und wird häufig eingesetzt, um mit optischer Zeichenerkennung (Optical Character Recognition, OCR) gedruckten oder handschriftlichen Text zu lesen. Dazu wird der Text aus den Dokumenten oft in ein Format extrahiert, das zur weiteren Verarbeitung oder Analyse verwendet werden kann. In komplexeren OCR-Szenarien können Informationen aus Formularen wie etwa Bestellungen oder Rechnungen extrahiert werden, wobei mithilfe einer semantischen Analyse die Bedeutung der Felder interpretiert werden kann. Die **Formularerkennung** wurde speziell für diese Art von KI-Problemen entwickelt. Anzeigen eines Kassenbelegs In diesem Beispiel verwenden Sie das integrierte Modell der Formularerkennung zur Analyse von Kassenbelegen. Klicken Sie links neben der Zelle auf die Schaltfläche **Zelle ausführen** (&9655;), um die Zelle auszuführen und ein Beispiel für einen Kassenbeleg anzuzeigen, den Sie mit der Formularerkennung analysieren. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Erstellen einer Formularerkennungsressource Erstellen Sie zunächst eine Formularerkennungsressource in Ihrem Azure-Abonnement: 1. Öffnen Sie das Azure-Portal unter „https://portal.azure.com“ in einer neuen Browserregisterkarte, und melden Sie sich mit Ihrem Microsoft-Konto an. 2. Klicken Sie auf **+ Ressource erstellen**, und suchen Sie nach *Formularerkennung*. 3. Wählen Sie in der Liste der Dienste **Formularerkennung** aus. 4. Wählen Sie im Blatt **Formularerkennung** die Option **Erstellen** aus. 5. Geben Sie auf dem Blatt **Erstellen** die folgenden Informationen ein, und wählen Sie dann **Erstellen** aus. * **Name**: Ein eindeutiger Name für Ihren Dienst * **Abonnement**: Ihr Azure-Abonnement * **Region**: Eine beliebige verfügbare Region * **Tarif**: F0 * **Ressourcengruppe**: Die zuvor verwendete vorhandene Ressourcengruppe * **Ich bestätige, dass ich den folgenden Hinweis gelesen und verstanden habe**: Ausgewählt 6. Warten Sie, bis der Dienst erstellt ist. 7. Öffnen Sie Ihren neu erstellten Formularerkennungsdienst im Azure-Portal, kopieren Sie auf der Seite **Schlüssel und Endpunkt** den **Schlüssel1** und **Endpunkt** für Ihre Ressource, und fügen Sie die Werte in die folgende Codezelle anstelle von **YOUR_FORM_KEY** und **YOUR_FORM_ENDPOINT** ein. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analysieren eines Kassenbelegs Jetzt können Sie die Formularerkennung verwenden, um einen Kassenbeleg zu analysieren. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Menganalisis Tanda Terima dengan Form Recognizer ![Robot memegang tanda terima](./images/receipt_analysis.jpg) Di bidang kecerdasan buatan (AI) pada visi komputer, pengenalan karakter optik (OCR) umumnya digunakan untuk membaca dokumen cetak atau tulisan tangan. Seringkali, teks hanya diekstrak dari dokumen ke dalam format yang dapat digunakan untuk pemrosesan atau analisis lebih lanjut. Skenario OCR yang lebih canggih adalah ekstraksi informasi dari formulir, seperti pesanan atau faktur pembelian, dengan pemahaman semantik tentang apa yang disajikan bidang dalam formulir. Layanan **Form Recognizer** secara spesifik didesain untuk masalah AI jenis ini. Melihat tanda terima Dalam contoh ini, Anda akan menggunakan model bawaan Form Recognizer untuk menganalisis tanda terima. Klik tombol **Jalankan sel** (&9655;) (di sebelah kiri sel) di bawah untuk menjalankannya dan melihat contoh tanda terima yang akan digunakan untuk menganalisis Form Recognizer. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Membuat sumber daya Form Recognizer >**Catatan:** Anda dapat menggunakan sumber daya Cognitive Services atau sumber daya Form Recognizer untuk mengakses layanan Form Recognizer. Untuk membuat sumber daya Form Recognizer di langganan Azure Anda: 1. Di tab browser lain, buka portal Microsoft Azure di https://portal.azure.com, masuk menggunakan akun Microsoft Anda. 2. Pilih **+ Buat sumber daya**, dan cari *Form Recognizer*. 3. Dalam daftar layanan, pilih **Form Recognizer**. 4. Pada blade **Form Recognizer**, pilih **Buat**. 5. Pada bilah **Buat**, masukkan detail berikut dan pilih **Buat** - **Nama**: Nama unik untuk layanan Anda - **Langganan**: Langganan Azure Anda - **Wilayah**: Wilayah yang tersedia - **Tingkat Harga**: F0 - **Grup Sumber Daya**: Grup sumber daya yang ada yang Anda gunakan sebelumnya - **Saya mengonfirmasi bahwa saya telah membaca dan memahami pemberitahuan di bawah**: Dipilih. 6. Tunggu hingga layanan dibuat. 7. Lihat layanan Form Recognizer yang baru dibuat di portal Microsoft Azure dan di halaman **Kunci dan Titik Akhir**, salin nilai **Key1** dan **Titik Akhir** lalu tempel pada sel kode di bawah, menggantikan **YOUR_FORM_KEY** dan **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Menganalisis tanda terima Sekarang Anda siap menggunakan Form Recognizer untuk menganalisis tanda terima. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analizza ricevute con Riconoscimento modulo ![Un robot che tiene in mano una ricevuta](./images/receipt_analysis.jpg) Nel campo dell'intelligenza artificiale (IA) della visione artificiale, il riconoscimento ottico dei caratteri (OCR) è comunemente usato per leggere documenti stampati o scritti a mano. Spesso, il testo viene semplicemente estratto dai documenti in un formato che può essere utilizzato per ulteriori elaborazioni o analisi. Uno scenario OCR più avanzato consiste nell'estrazione di informazioni da moduli, come ordini di acquisto o fatture, con una comprensione semantica di quanto rappresentato dai campi del modulo. Il servizio **Riconoscimento modulo** è specificamente progettato per questo tipo di problemi di AI. Visualizza una ricevuta In questo esempio, userai il modello integrato di Riconoscimento modulo per analizzare le ricevute. Fai clic sul pulsante **Esegui cella** (&9655;) (a sinistra della cella) seguente per eseguirlo e vedere un esempio di ricevuta da analizzare usando Riconoscimento modulo. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Crea una risorsa Riconoscimento modulo >**Nota:** È possibile utilizzare una risorsa di Servizio cognitivo o una risorsa di Riconoscimento modulo per accedere ai servizi di Riconoscimento modulo. Per creare una risorsa Riconoscimento modulo nella tua sottoscrizione di Azure: 1. In un'altra scheda del browser, apri il portale di Azure all'indirizzo https://portal.azure.com, accedendo con il tuo account Microsoft. 2. Seleziona **+ Crea una risorsa** e cerca *Riconoscimento modulo*. 3. Nell'elenco dei servizi, seleziona **Riconoscimento modulo**. 4. Nel pannello **Riconoscimento modulo**, seleziona **Crea**. 5. Nel pannello **Crea**, immetti i seguenti dettagli e seleziona **Crea** - **Nome**: Un nome univoco per il tuo servizio - **Sottoscrizione**: La tua sottoscrizione di Azure - **Area geografica**: Una qualsiasi area disponibile - **Piano tariffario**: F0 - **Gruppo di risorse**: Il gruppo di risorse esistente che hai usato in precedenza - **Confermo di aver letto e compreso l'avviso seguente**: Selezionato. 6. Attendi che il servizio venga creato. 7. Visualizza il servizio Riconoscimento modulo appena creato nel portale di Azure e nella pagina **Chiavi ed endpoint**, copia i valori **Key1** ed **Endpoint** e incollali nella cella di codice sottostante, sostituendo **YOUR_FORM_KEY** e **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analizza una ricevuta Ora è tutto pronto per usare Riconoscimento modulo per analizzare una ricevuta. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyzing Receipts with Form Recognizer![A robot holding a receipt](./images/receipt_analysis.jpg)In the artificial intelligence (AI) field of computer vision, optical character recognition (OCR) is commonly used to read printed or handwritten documents. Often, the text is simply extracted from the documents into a format that can be used for further processing or analysis.A more advanced OCR scenario is the extraction of information from forms, such as purchase orders or invoices, with a semantic understanding of what the fields in the form represent. The **Form Recognizer** service is specifically designed for this kind of AI problem. View a receiptIn this example, you'll use the Form Recognizer's built-in model for analyzing receipts.Click the **Run cell** (&9655;) button (to the left of the cell) below to run it and see an example of a receipt that you'll use Form Recognizer to analyze. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Create a Form Recognizer resource>**Note:** You can either use a Cognitive Service resource or a Form Recognizer resource to access Form Recognizer services. To create a Form Recognizer resource in your Azure subscription:1. In another browser tab, open the Azure portal at https://portal.azure.com, signing in with your Microsoft account.2. Select **+ Create a resource**, and search for *Form Recognizer*.3. In the list of services, select **Form Recognizer**.4. In the **Form Recognizer** blade, select **Create**.5. In the **Create** blade, enter the following details and select **Create** - **Name**: A unique name for your service - **Subscription**: Your Azure subscription - **Region**: Any available region - **Pricing tier**: F0 - **Resource Group**: The existing resource group you used previously - **I confirm I have read and understood the notice below**: Selected.6. Wait for the service to be created.7. View your newly created Form Recognizer service in the Azure portal and on the **Keys and Endpoint** page, copy the **Key1** and **Endpoint** values and paste them in the code cell below, replacing **YOUR_FORM_KEY** and **YOUR_FORM_ENDPOINT**. ###Code form_key = 'ce53b770811c4651a5283a48b9afd9cd' form_endpoint = 'https://csvisionx.cognitiveservices.azure.com/' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output Ready to use form recognizer at https://csvisionx.cognitiveservices.azure.com/ using key ce53b770811c4651a5283a48b9afd9cd ###Markdown Analyze a receiptNow you're ready to use Form Recognizer to analyze a receipt. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output Analyzing receipt... Receipt Type: Itemized Merchant Address: 123 Main Street Merchant Phone: +15551234567 Transaction Date: 2020-02-17 Receipt items: Item #1 - Name: Apple - Price: 0.9 Item #2 - Name: Orange - Price: 0.8 Subtotal: 1.7 Tax: 0.17 Total: 1.87 ###Markdown 使用表单识别器分析收据 ![拿着收据的机器人](./images/receipt_analysis.jpg) 在计算机视觉的人工智能 (AI) 领域中,光学字符识别 (OCR) 通常用于读取印刷体文档或手写文档。通常只需从文档中提取文本,并将其处理为可供进一步处理或分析的格式。 更复杂的 OCR 场景是从表单(如采购订单或发票)中提取信息,并从语义上理解表单中各字段表示的意思。**表单识别器**服务专为此类 AI 问题而设计。 查看收据 本例将使用表单识别器的内置模型来分析收据。 单击下面的“**运行单元格**”(&9655;) 按钮(位于单元格左侧)以运行它,并查看将使用表单识别器来进行分析的收据示例。 ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown 创建表单识别器资源 首先在 Azure 订阅中创建表单识别器资源: 1. 在另一个浏览器标签页中,打开 Azure 门户 (https://portal.azure.com) 并使用 Microsoft 帐户登录。 2. 选择“**+ 创建资源**”并搜索“*表单识别器*”。 3. 在服务列表中,选择“**表单识别器**”。 4. 在“**表单识别器**”边栏选项卡中选择“**创建**”。 5. 在“**创建**”边栏选项卡中,输入以下详细信息,然后选择“**创建**” * **名称**:服务的唯一名称 * **订阅**:你的 Azure 订阅 * **区域**:任何可用区域 * **定价层**:F0 * **资源组**:之前使用的现有资源组 * **我确认我已阅读并理解以下通知**:已选中。 6. 等待服务创建完毕。 7. 在 Azure 门户中查看新建的表单识别器服务,并在“**密钥和终结点**”页面上复制“**Key1**”和**终结点**值,然后将这两个值粘贴到下方的代码单元格中,替换“**YOUR_FORM_KEY**”和“**YOUR_FORM_ENDPOINT**”。 ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown 分析收据 现在可以使用表单识别器来分析收据了。 ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer servicer form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyzing Receipts with Form Recognizer![A robot holding a receipt](./images/receipt_analysis.jpg)In the artificial intelligence (AI) field of computer vision, optical character recognition (OCR) is commonly used to read printed or handwritten documents. Often, the text is simply extracted from the documents into a format that can be used for further processing or analysis.A more advanced OCR scenario is the extraction of information from forms, such as purchase orders or invoices, with a semantic understanding of what the fields in the form represent. The **Form Recognizer** service is specifically designed for this kind of AI problem. View a receiptIn this example, you'll use the Form Recognizer's built-in model for analyzing receipts.Click the **Run cell** (&9655;) button (to the left of the cell) below to run it and see an example of a receipt that you'll use Form Recognizer to analyze. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Create a Form Recognizer resource>**Note:** You can either use a Cognitive Service resource or a Form Recognizer resource to access Form Recognizer services. To create a Form Recognizer resource in your Azure subscription:1. In another browser tab, open the Azure portal at https://portal.azure.com, signing in with your Microsoft account.2. Select **+ Create a resource**, and search for *Form Recognizer*.3. In the list of services, select **Form Recognizer**.4. In the **Form Recognizer** blade, select **Create**.5. In the **Create** blade, enter the following details and select **Create** - **Name**: A unique name for your service - **Subscription**: Your Azure subscription - **Region**: Any available region - **Pricing tier**: F0 - **Resource Group**: The existing resource group you used previously - **I confirm I have read and understood the notice below**: Selected.6. Wait for the service to be created.7. View your newly created Form Recognizer service in the Azure portal and on the **Keys and Endpoint** page, copy the **Key1** and **Endpoint** values and paste them in the code cell below, replacing **YOUR_FORM_KEY** and **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analyze a receiptNow you're ready to use Form Recognizer to analyze a receipt. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyzing Receipts with Form Recognizer![A robot holding a receipt](./images/receipt_analysis.jpg)In the artificial intelligence (AI) field of computer vision, optical character recognition (OCR) is commonly used to read printed or handwritten documents. Often, the text is simply extracted from the documents into a format that can be used for further processing or analysis.A more advanced OCR scenario is the extraction of information from forms, such as purchase orders or invoices, with a semantic understanding of what the fields in the form represent. The **Form Recognizer** service is specifically designed for this kind of AI problem. View a receiptIn this example, you'll use the Form Recognizer's built-in model for analyzing receipts.Click the **Run cell** (&9655;) button (to the left of the cell) below to run it and see an example of a receipt that you'll use Form Recognizer to analyze. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Create a Form Recognizer resourceStart by creating a Form Recognizer resource in your Azure subscription:1. In another browser tab, open the Azure portal at https://portal.azure.com, signing in with your Microsoft account.2. Select **+ Create a resource**, and search for *Form Recognizer*.3. In the list of services, select **Form Recognizer**.4. In the **Form Recognizer** blade, select **Create**.5. In the **Create** blade, enter the following details and select **Create** - **Name**: formrec-deploymentID - **Subscription**: Your Azure subscription - **Region**: Any available region - **Pricing tier**: F0 - **Resource Group**: Select existing resource group with name AI900-deploymentID - **I confirm I have read and understood the notice below**: Selected.6. Wait for the service to be created.7. View your newly created Form Recognizer service in the Azure portal and on the **Keys and Endpoint** page, copy the **Key1** and **Endpoint** values and paste them in the code cell below, replacing **YOUR_FORM_KEY** and **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analyze a receiptNow you're ready to use Form Recognizer to analyze a receipt. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyser des reçus avec Form Recognizer ![Robot tenant un reçu](./images/receipt_analysis.jpg) Dans le domaine de l’intelligence artificielle (IA) de la vision par ordinateur, la reconnaissance optique de caractères (OCR) est couramment utilisée pour lire des documents imprimés ou manuscrits. Souvent, le texte est simplement extrait des documents dans un format qui peut être utilisé pour un traitement ou une analyse ultérieure. Un scénario d’OCR plus avancé est l’extraction d’informations de formulaires, tels que des bons de commande ou des factures, avec une compréhension sémantique de ce que les champs du formulaire représentent. Le service **Form Recognizer** est spécialement conçu pour ce type de problème d’IA. Afficher un reçu Dans cet exemple, vous allez utiliser le modèle intégré de Form Recognizer pour analyser des reçus. Cliquez sur le bouton **Exécuter la cellule** (&9655;) (à gauche de la cellule) ci-dessous pour l’exécuter et afficher un exemple de reçu pour lequel vous utiliserez Form Recognizer pour l’analyser. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Créer une ressource Form Recognizer Commencez par Créer une ressource Form Recognizer dans votre abonnement Azure : 1. Sous un autre onglet du navigateur, ouvrez le portail Azure à l’adresse https://portal.azure.com, en vous connectant avec votre compte Microsoft. 2. Sélectionnez **+ Créer une ressource**, puis recherchez *Form Recognizer*. 3. Dans la liste des services, sélectionnez **Form Recognizer**. 4. Dans le panneau **Form Recognizer**, sélectionnez **Créer**. 5. Dans le panneau **Créer**, entrez les détails suivants et sélectionnez **Créer** - **Nom** : Nom unique de votre service - **Abonnement** : Votre abonnement Azure - **Région** : Région disponible - **Niveau tarifaire** : F0 - **Groupe de ressources** : Groupe de ressources existant que vous avez utilisé précédemment - **Je confirme avoir lu et compris l’avis ci-dessous** : Sélectionné. 6. Attendez que le service soit créé. 7. Affichez votre service Form Recognizer nouvellement créé dans le portail Azure et sur la page **Clés et point de terminaison**. Copiez ensuite les valeurs **Clé1** et **Point de terminaison** et collez-les dans la cellule de code ci-dessous, en remplaçant les valeurs **YOUR_FORM_KEY** et **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analyser un reçu Vous êtes maintenant prêt à utiliser Form Recognizer pour analyser un reçu. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analizar recibos con Form Recognizer ![Un robot sujetando un recibo](./images/receipt_analysis.jpg) En el campo de inteligencia artificial de Computer Vision, el reconocimiento óptico de caracteres (OCR) se suele usar para leer documentos impresos o escritos a mano. A menudo, el texto se extrae de los documentos en un formato que se puede procesar o analizar. Un caso más avanzado del uso de un OCR sería la extracción de información de formularios, como pedidos o facturas, con una comprensión semántica del significado de los campos del formulario. El servicio **Form Recognizer** está diseñado especialmente para este TIPO de situaciones de IA. Ver un recibo En este ejemplo, usará el modelo integrado de Form Recognizer para analizar recibos. Haga clic en el botón **Run cell** (&9655;) a la izquierda de la celda siguiente para ejecutarla y ver un ejemplo de un recibo que analizaremos con Form Recognizer. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Creación de un recurso de Form Recognizer Cree un recurso de Form Recognizer en su suscripción de Azure: 1. En la pestaña de otro explorador, abra Azure Portal (https://portal.azure.com) e inicie sesión con su cuenta de Microsoft. 2. Seleccione **+ Crear un recurso** y busque *Form Recognizer*. 3. En la lista de servicios, seleccione **Form Recognizer**. 4. En la hoja **Form Recognizer**, seleccione **Crear**. 5. En la hoja **Crear**, escriba la siguiente información y haga clic en **Crear**. - **Nombre**: un nombre exclusivo para su servicio - **Suscripción**: su suscripción de Azure - **Región**: cualquier región disponible - **Plan de tarifa**: F0 - **Grupo de recursos**: el grupo de recursos utilizado anteriormente - **Confirmo que he leído y comprendido la notificación siguiente**: seleccionado. 6. Espere a que se cree el servicio. 7. Consulte su nuevo servicio Form Recognizer en Azure Portal. En la página **Keys and Endpoint**, copie los valores de **Key1** y **Endpoint** y péguelos en el siguiente código, en sustitución de **YOUR_FORM_KEY** y **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Análisis de un recibo Ya está listo para usar Form Recognizer para analizar un recibo. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown 用表格辨識器分析收據 ![一個傀儡程式正持有一份收據](./images/receipt_analysis.jpg) 在電腦視覺的 [人工智慧 (AI)] 欄位中,光學字元辨識 (OCR) 一般用於讀取列印或手寫文件。通常,文字直接從文件中擷取到一種可以用於進一步處理或分析的格式中。 詳細的進階 OCR 案例是從表單 (例如購買訂單或發票) 中擷取資訊,並且提供對表單中欄位所代表含義的語意理解。**表格辨識器**服務是為這類 AI 問題特別設計的。 檢視收據 在此範例中,您可以使用表格辨識器的內建模型來分析收據。 按一下下方 **[執行儲存格]** (&9655;) 按鈕 (儲存格左側) 以執行儲存格並參閱您將使用表格辨識器分析收據的範例。 ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # 載入並顯示收據影像 fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown 建立表格辨識器資源 > **備註:**您要麼使用認知服務資源,要麼使用表格辨識器資源來存取表格辨識器服務。 在您的 Azure 訂用帳戶中建立表格辨識器資源: 1.在其它瀏覽器索引標籤中,透過 https://portal.azure.com 開啟 Azure 入口網站,並用您的 Microsoft 帳戶登入。 2.選取 **[+ 建立資源]**,並搜尋*表格辨識器*。 3.在服務清單中,選取 **[表格辨識器]**。 4.在 **[表格辨識器]** 刀鋒視窗中,選取 **[建立]**。 5.在 **[建立]**刀鋒視窗中,輸入下列詳細資料並選取 **[建立]** - **名稱**:您的服務之唯一名稱 - **訂用帳戶**:您的 Azure 訂用帳戶 - **區域**:任一可用區域 - **定價層**:F0 - **資源群組**:您之前使用過的現有資源群組 - **我確認已閱讀下方通知並理解通知內容**:已選取。 6.等待服務建立。 7.檢視您在 Azure 入口網站中新建立的表格辨識器服務並在 **[金鑰和端點]** 頁面,複製**金鑰 1** 和**端點**值,然後將他們貼上到下方程式碼儲存格中,取代 **YOUR_FORM_KEY** 和 **YOUR_FORM_ENDPOINT**。 ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown 分析收據 現在您可以準備使用表格辨識器來分析收據。 ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Análise de recibos com o Reconhecimento de Formulários ![Um robô segurando um recibo](./images/receipt_analysis.jpg) No campo de pesquisa visual computacional da inteligência artificial (IA), o reconhecimento óptico de caracteres (OCR) é comumente usado para ler documentos impressos ou manuscritos. Em geral, o texto é simplesmente extraído dos documentos em um formato que possa ser usado para processamento ou análise posterior. Um cenário de OCR mais avançado é a extração de informações de formulários, como pedidos ou faturas de compras, com um reconhecimento semântico do que os campos daquele formulário representam. O serviço de **Reconhecimento de Formulários** foi desenvolvido especificamente para esse tipo de problema de IA. Ver um recibo Neste exemplo, você usará o modelo integrado do Reconhecimento de Formulários para analisar recibos. Clique no botão **Executar célula** (&9655;) abaixo (à esquerda da célula) para executá-la e ver um exemplo de recibo que você analisará com o Reconhecimento de Formulários. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Criar um recurso do Reconhecimento de Formulários Comece criando um recurso de Reconhecimento de Formulários na sua assinatura do Azure: 1. Em outra guia do navegador, abra o portal do Azure em https://portal.azure.com, entrando com sua conta Microsoft. 2. Selecione **+ Criar um recurso** e pesquise por * Reconhecimento de Formulários*. 3. Na lista de serviços, selecione **Reconhecimento de Formulários**. 4. Na lâmina **Reconhecimento de Formulários**, selecione **Criar**. 5. Na lâmina **Criar**, insira os detalhes abaixo e selecione **Criar** - **Nome**: um nome exclusivo para seu serviço - **Assinatura**: sua assinatura do Azure - **Região**: Qualquer região disponível - **Tipo de preço**: F0 - **Grupo de recursos**: O grupo de recursos existente usado anteriormente - **Confirmo que li e entendi os avisos abaixo**: Selecionado. 6. Aguarde até que o serviço seja criado. 7. Veja seu serviço de Reconhecimento de Formulários recém-criado no portal do Azure e na página **Chaves e pontos de extremidade**, copie os valores da **Chave 1** e do **Ponto de extremidade** e cole no código abaixo, substituindo **YOUR_FORM_KEY** e **YOUR_FORM_ENDPOINT**. ###Code form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analisar um recibo Agora você já pode usar o Reconhecimento de Formulários para analisar um recibo. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____ ###Markdown Analyzing Receipts with Form Recognizer![A robot holding a receipt](./images/receipt_analysis.jpg)In the artificial intelligence (AI) field of computer vision, optical character recognition (OCR) is commonly used to read printed or handwritten documents. Often, the text is simply extracted from the documents into a format that can be used for further processing or analysis.A more advanced OCR scenario is the extraction of information from forms, such as purchase orders or invoices, with a semantic understanding of what the fields in the form represent. The **Form Recognizer** service is specifically designed for this kind of AI problem. View a receiptIn this example, you'll use the Form Recognizer's built-in model for analyzing receipts.Click the **Run cell** (&9655;) button (to the left of the cell) below to run it and see an example of a receipt that you'll use Form Recognizer to analyze. ###Code import matplotlib.pyplot as plt from PIL import Image import os %matplotlib inline # Load and display a receipt image fig = plt.figure(figsize=(6, 6)) image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') img = Image.open(image_path) plt.axis('off') plt.imshow(img) ###Output _____no_output_____ ###Markdown Create a Form Recognizer resourceStart by creating a Form Recognizer resource in the Azure subscription:1. In another browser tab, open the Azure portal at https://portal.azure.com, signin with the lab credentials.2. Select **+ Create a resource**, and search for *Form Recognizer*.3. In the list of services, select **Form Recognizer**.4. In the **Form Recognizer** blade, select **Create**.5. In the **Create** blade, enter the following details and select **Create** - **Name**: formrec-uniqueid - **Subscription**: Select the subscription where you are performing the lab - **Region**: Any available region - **Pricing tier**: F0 - **Resource Group**: Select the existing resource group. - **I confirm I have read and understood the notice below**: Selected.6. Wait for the service to be created.7. View your newly created Form Recognizer service in the Azure portal and on the **Keys and Endpoint** page, copy the **Key1** and **Endpoint** values and paste them in the code cell below, replacing **YOUR_FORM_KEY** and **YOUR_FORM_ENDPOINT**. ###Code #Replace YOUR_FORM_KEY and YOUR_FORM_ENDPOINT with the form recognizer key and endpoint values form_key = 'YOUR_FORM_KEY' form_endpoint = 'YOUR_FORM_ENDPOINT' print('Ready to use form recognizer at {} using key {}'.format(form_endpoint, form_key)) ###Output _____no_output_____ ###Markdown Analyze a receiptNow you're ready to use Form Recognizer to analyze a receipt. ###Code import os from azure.ai.formrecognizer import FormRecognizerClient from azure.core.credentials import AzureKeyCredential # Create a client for the form recognizer service form_recognizer_client = FormRecognizerClient(endpoint=form_endpoint, credential=AzureKeyCredential(form_key)) try: print("Analyzing receipt...") # Get the receipt image file image_path = os.path.join('data', 'form-receipt', 'receipt.jpg') # Submit the file data to form recognizer with open(image_path, "rb") as f: analyze_receipt = form_recognizer_client.begin_recognize_receipts(receipt=f) # Get the results receipt_data = analyze_receipt.result() # Print the extracted data for the first (and only) receipt receipt = receipt_data[0] receipt_type = receipt.fields.get("ReceiptType") if receipt_type: print("Receipt Type: {}".format(receipt_type.value)) merchant_address = receipt.fields.get("MerchantAddress") if merchant_address: print("Merchant Address: {}".format(merchant_address.value)) merchant_phone = receipt.fields.get("MerchantPhoneNumber") if merchant_phone: print("Merchant Phone: {}".format(merchant_phone.value)) transaction_date = receipt.fields.get("TransactionDate") if transaction_date: print("Transaction Date: {}".format(transaction_date.value)) print("Receipt items:") items = receipt.fields.get("Items") if items: for idx, item in enumerate(receipt.fields.get("Items").value): print("\tItem #{}".format(idx+1)) item_name = item.value.get("Name") if item_name: print("\t - Name: {}".format(item_name.value)) item_total_price = item.value.get("TotalPrice") if item_total_price: print("\t - Price: {}".format(item_total_price.value)) subtotal = receipt.fields.get("Subtotal") if subtotal: print("Subtotal: {} ".format(subtotal.value)) tax = receipt.fields.get("Tax") if tax: print("Tax: {}".format(tax.value)) total = receipt.fields.get("Total") if total: print("Total: {}".format(total.value)) except Exception as ex: print('Error:', ex) ###Output _____no_output_____
examples/colab/Training/multi_class_text_classification/NLU_training_multi_class_text_classifier_demo_hotel_reviews.ipynb
###Markdown ![JohnSnowLabs](https://nlp.johnsnowlabs.com/assets/images/logo.png)[![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/JohnSnowLabs/nlu/blob/master/examples/colab/Training/multi_class_text_classification/NLU_training_multi_class_text_classifier_demo_hotel_reviews.ipynb) Training a Deep Learning Classifier with NLU ClassifierDL (Multi-class Text Classification) 3 class Tripadvisor Hotel review classifier trainingWith the [ClassifierDL model](https://nlp.johnsnowlabs.com/docs/en/annotatorsclassifierdl-multi-class-text-classification) from Spark NLP you can achieve State Of the Art results on any multi class text classification problem This notebook showcases the following features : - How to train the deep learning classifier- How to store a pipeline to disk- How to load the pipeline from disk (Enables NLU offline mode) 1. Install Java 8 and NLU ###Code import os from sklearn.metrics import classification_report ! apt-get update -qq > /dev/null # Install java ! apt-get install -y openjdk-8-jdk-headless -qq > /dev/null os.environ["JAVA_HOME"] = "/usr/lib/jvm/java-8-openjdk-amd64" os.environ["PATH"] = os.environ["JAVA_HOME"] + "/bin:" + os.environ["PATH"] ! pip install pyspark==2.4.7 ! pip install nlu > /dev/null import nlu ###Output _____no_output_____ ###Markdown 2. Download hotel reviews dataset https://www.kaggle.com/andrewmvd/trip-advisor-hotel-reviewsHotels play a crucial role in traveling and with the increased access to information new pathways of selecting the best ones emerged.With this dataset, consisting of 20k reviews crawled from Tripadvisor, you can explore what makes a great hotel and maybe even use this model in your travels! ###Code ! wget http://ckl-it.de/wp-content/uploads/2021/01/tripadvisor_hotel_reviews.csv import pandas as pd test_path = '/content/tripadvisor_hotel_reviews.csv' train_df = pd.read_csv(test_path,sep=",") cols = ["y","text"] train_df = train_df[cols] train_df ###Output _____no_output_____ ###Markdown 3. Train Deep Learning Classifier using nlu.load('train.classifier')You dataset label column should be named 'y' and the feature column with text data should be named 'text' ###Code # load a trainable pipeline by specifying the train. prefix and fit it on a datset with label and text columns # Since there are no trainable_pipe = nlu.load('train.classifier') fitted_pipe = trainable_pipe.fit(train_df.iloc[:50] ) # predict with the trainable pipeline on dataset and get predictions preds = fitted_pipe.predict(train_df.iloc[:50] ) preds ###Output tfhub_use download started this may take some time. Approximate size to download 923.7 MB [OK!] ###Markdown Test the fitted pipe on new example ###Code fitted_pipe.predict("It was a good experince!") ###Output _____no_output_____ ###Markdown Configure pipe training parameters ###Code trainable_pipe.print_info() ###Output The following parameters are configurable for this NLU pipeline (You can copy paste the examples) : >>> pipe['classifier_dl'] has settable params: pipe['classifier_dl'].setMaxEpochs(3) | Info: Maximum number of epochs to train | Currently set to : 3 pipe['classifier_dl'].setLr(0.005) | Info: Learning Rate | Currently set to : 0.005 pipe['classifier_dl'].setBatchSize(64) | Info: Batch size | Currently set to : 64 pipe['classifier_dl'].setDropout(0.5) | Info: Dropout coefficient | Currently set to : 0.5 pipe['classifier_dl'].setEnableOutputLogs(True) | Info: Whether to use stdout in addition to Spark logs. | Currently set to : True >>> pipe['sentence_detector'] has settable params: pipe['sentence_detector'].setUseAbbreviations(True) | Info: whether to apply abbreviations at sentence detection | Currently set to : True pipe['sentence_detector'].setDetectLists(True) | Info: whether detect lists during sentence detection | Currently set to : True pipe['sentence_detector'].setUseCustomBoundsOnly(False) | Info: Only utilize custom bounds in sentence detection | Currently set to : False pipe['sentence_detector'].setCustomBounds([]) | Info: characters used to explicitly mark sentence bounds | Currently set to : [] pipe['sentence_detector'].setExplodeSentences(False) | Info: whether to explode each sentence into a different row, for better parallelization. Defaults to false. | Currently set to : False pipe['sentence_detector'].setMinLength(0) | Info: Set the minimum allowed length for each sentence. | Currently set to : 0 pipe['sentence_detector'].setMaxLength(99999) | Info: Set the maximum allowed length for each sentence | Currently set to : 99999 >>> pipe['default_tokenizer'] has settable params: pipe['default_tokenizer'].setTargetPattern('\S+') | Info: pattern to grab from text as token candidates. Defaults \S+ | Currently set to : \S+ pipe['default_tokenizer'].setContextChars(['.', ',', ';', ':', '!', '?', '*', '-', '(', ')', '"', "'"]) | Info: character list used to separate from token boundaries | Currently set to : ['.', ',', ';', ':', '!', '?', '*', '-', '(', ')', '"', "'"] pipe['default_tokenizer'].setCaseSensitiveExceptions(True) | Info: Whether to care for case sensitiveness in exceptions | Currently set to : True pipe['default_tokenizer'].setMinLength(0) | Info: Set the minimum allowed legth for each token | Currently set to : 0 pipe['default_tokenizer'].setMaxLength(99999) | Info: Set the maximum allowed legth for each token | Currently set to : 99999 >>> pipe['default_name'] has settable params: pipe['default_name'].setDimension(512) | Info: Number of embedding dimensions | Currently set to : 512 pipe['default_name'].setStorageRef('tfhub_use') | Info: unique reference name for identification | Currently set to : tfhub_use >>> pipe['document_assembler'] has settable params: pipe['document_assembler'].setCleanupMode('shrink') | Info: possible values: disabled, inplace, inplace_full, shrink, shrink_full, each, each_full, delete_full | Currently set to : shrink ###Markdown Retrain with new parameters ###Code # Train longer! trainable_pipe['classifier_dl'].setMaxEpochs(5) fitted_pipe = trainable_pipe.fit(train_df.iloc[:100]) # predict with the trainable pipeline on dataset and get predictions preds = fitted_pipe.predict(train_df.iloc[:100],output_level='document') #sentence detector that is part of the pipe generates sone NaNs. lets drop them first preds.dropna(inplace=True) print(classification_report(preds['y'], preds['category'])) preds ###Output precision recall f1-score support average 0.48 0.76 0.59 33 great 0.86 0.51 0.64 35 poor 0.74 0.62 0.68 32 accuracy 0.63 100 macro avg 0.69 0.63 0.64 100 weighted avg 0.70 0.63 0.64 100 ###Markdown Try training with different Embeddings ###Code # We can use nlu.print_components(action='embed_sentence') to see every possibler sentence embedding we could use. Lets use bert! nlu.print_components(action='embed_sentence') from sklearn.metrics import classification_report trainable_pipe = nlu.load('en.embed_sentence.small_bert_L12_768 train.classifier') # We need to train longer and user smaller LR for NON-USE based sentence embeddings usually # We could tune the hyperparameters further with hyperparameter tuning methods like gridsearch # Also longer training gives more accuracy trainable_pipe['classifier_dl'].setMaxEpochs(90) trainable_pipe['classifier_dl'].setLr(0.0005) fitted_pipe = trainable_pipe.fit(train_df) # predict with the trainable pipeline on dataset and get predictions preds = fitted_pipe.predict(train_df,output_level='document') #sentence detector that is part of the pipe generates sone NaNs. lets drop them first preds.dropna(inplace=True) print(classification_report(preds['y'], preds['category'])) #preds ###Output sent_small_bert_L12_768 download started this may take some time. Approximate size to download 392.9 MB [OK!] precision recall f1-score support average 0.66 0.65 0.65 2184 great 0.79 0.81 0.80 2184 poor 0.77 0.78 0.78 2184 accuracy 0.74 6552 macro avg 0.74 0.74 0.74 6552 weighted avg 0.74 0.74 0.74 6552 ###Markdown 5. Lets save the model ###Code stored_model_path = './models/classifier_dl_trained' fitted_pipe.save(stored_model_path) ###Output Stored model in ./models/classifier_dl_trained ###Markdown 6. Lets load the model from HDD.This makes Offlien NLU usage possible! You need to call nlu.load(path=path_to_the_pipe) to load a model/pipeline from disk. ###Code hdd_pipe = nlu.load(path=stored_model_path) preds = hdd_pipe.predict('It was a good experince!') preds hdd_pipe.print_info() ###Output The following parameters are configurable for this NLU pipeline (You can copy paste the examples) : >>> pipe['document_assembler'] has settable params: pipe['document_assembler'].setCleanupMode('shrink') | Info: possible values: disabled, inplace, inplace_full, shrink, shrink_full, each, each_full, delete_full | Currently set to : shrink >>> pipe['regex_tokenizer'] has settable params: pipe['regex_tokenizer'].setCaseSensitiveExceptions(True) | Info: Whether to care for case sensitiveness in exceptions | Currently set to : True pipe['regex_tokenizer'].setTargetPattern('\S+') | Info: pattern to grab from text as token candidates. Defaults \S+ | Currently set to : \S+ pipe['regex_tokenizer'].setMaxLength(99999) | Info: Set the maximum allowed length for each token | Currently set to : 99999 pipe['regex_tokenizer'].setMinLength(0) | Info: Set the minimum allowed length for each token | Currently set to : 0 >>> pipe['sentence_detector'] has settable params: pipe['sentence_detector'].setCustomBounds([]) | Info: characters used to explicitly mark sentence bounds | Currently set to : [] pipe['sentence_detector'].setDetectLists(True) | Info: whether detect lists during sentence detection | Currently set to : True pipe['sentence_detector'].setExplodeSentences(False) | Info: whether to explode each sentence into a different row, for better parallelization. Defaults to false. | Currently set to : False pipe['sentence_detector'].setMaxLength(99999) | Info: Set the maximum allowed length for each sentence | Currently set to : 99999 pipe['sentence_detector'].setMinLength(0) | Info: Set the minimum allowed length for each sentence. | Currently set to : 0 pipe['sentence_detector'].setUseAbbreviations(True) | Info: whether to apply abbreviations at sentence detection | Currently set to : True pipe['sentence_detector'].setUseCustomBoundsOnly(False) | Info: Only utilize custom bounds in sentence detection | Currently set to : False >>> pipe['glove'] has settable params: pipe['glove'].setBatchSize(32) | Info: Batch size. Large values allows faster processing but requires more memory. | Currently set to : 32 pipe['glove'].setCaseSensitive(False) | Info: whether to ignore case in tokens for embeddings matching | Currently set to : False pipe['glove'].setDimension(768) | Info: Number of embedding dimensions | Currently set to : 768 pipe['glove'].setMaxSentenceLength(128) | Info: Max sentence length to process | Currently set to : 128 pipe['glove'].setIsLong(False) | Info: Use Long type instead of Int type for inputs buffer - Some Bert models require Long instead of Int. | Currently set to : False pipe['glove'].setStorageRef('sent_small_bert_L12_768') | Info: unique reference name for identification | Currently set to : sent_small_bert_L12_768 >>> pipe['classifier_dl'] has settable params: pipe['classifier_dl'].setClasses(['average', 'great', 'poor']) | Info: get the tags used to trained this NerDLModel | Currently set to : ['average', 'great', 'poor'] pipe['classifier_dl'].setStorageRef('sent_small_bert_L12_768') | Info: unique reference name for identification | Currently set to : sent_small_bert_L12_768
MachineLearning/2_RegresionLinealMultiple/RegresionLinealMultiple.ipynb
###Markdown Recordá abrir en una nueva pestaña Regresión Lineal Múltiple ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import statsmodels.api as sm # Indicamos que los tipos de datos float se muestren con 2 decimales pd.options.display.float_format = '{:.2f}'.format ###Output /usr/local/lib/python3.7/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. import pandas.util.testing as tm ###Markdown Dataset propiedadesContinuamos en la misma consultora estadística de la clase pasada y ahora nos contrata una empresa que se dedica a comprar y remodelar propiedades para luego venderlas. En esta oportunidad quiere que realicemos algunos modelos para predecir los precios de las propiedades y además poder entender como influyen en el precio determinadas variables para entender que modificaciones pueden llegar a aumentar el precio.El dataset consiste en los anuncios de ventas de Properati de propiedades en la Ciudad de Buenos Aires durante el primer semestre de 2021. Nuestra variable a predecir es el precio de la propiedad en dolares y las posibles variables predictoras son:* Superficie Total: superficie total de la propiedad en metros cuadrados* Superficie Cubierta: superficie cubierta de la propiedad en metros cuadrados* Ambientes/Cuartos: cantidad de ambientes/cuartos (excluyendo baños)* Baños: cantidad de baños * Tipo de propiedad: si la propiedad es una casa, departamento o propiedad horizontal (PH) * Latitud* Longitud* Barrio: barrio donde se encuentra la propiedad (l3)Datos provistos por ProperatiExploremos un poco los datos: ###Code # Lectura del dataset df = pd.read_csv('https://datasets-humai.s3.amazonaws.com/datasets/properati_caba_2021.csv') # Definimos la semilla SEMILLA = 1992 ###Output _____no_output_____ ###Markdown 1. Analisis exploratorios ###Code # Observamos los primeros registros del dataframe df.head() # Observamos la matriz de correlación entre las variables numéricas df.corr() ###Output _____no_output_____ ###Markdown Observamos que las variables de **superficie** presentan una correlación positiva alta con el precio y una correlación muy fuerte entre sí.La variable de **baños** presenta una correlación positiva bastante alta seguida por la variable de **ambientes**.Por último, las variables de latitud y longitud presentan un correlación positiva baja con el precio.Observemos los gráficos de dispersión de algunas de estas variables con el precio ###Code # Graficamos algunas de estas relaciones con el precio fig, (ax1, ax2, ax3, ax4) = plt.subplots(nrows=1, ncols=4, figsize=(20, 5)) df.plot.scatter(x='surface_total', y='price', ax=ax1) df.plot.scatter(x='rooms', y='price', ax=ax2) df.plot.scatter(x='bathrooms', y='price', ax=ax3) df.plot.scatter(x='lon', y='price', ax=ax4); ###Output _____no_output_____ ###Markdown Observamos que de estas 4 variables la que parece tener una relación aproximadamente lineal con el precio es la **superficie total**.Por otro lado, vemos que existen algunas observaciones que son **outliers** (valores atípicos) en las variables. Por ejemplo: hay propiedades con 30 y 35 ambientes y algunas 10 baños o másAhora que ya conocemos un poco sobre los datos podemos proceder a diseñar e implementar algunos modelos para estimar el precio de las propiedades 2. Modelos: Estimación e interpretaciónVamos a desarrollar modelos de regresión lineal múltiple con la siguiente especificación:$E(Y|X_1, X_2, ..., X_p) = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + ... + \beta_p \cdot X_p $En esta sección desarrollaremos distintos modelos con las variables numéricas que vimos previamente y observaremos los coeficientes estimados y su interpretación 2.1 Preparación de los datosComo se vio en la clase previa, para evaluar los modelos que diseñemos es necesario separar a los datos en:* Conjunto de **entrenamiento**: datos con los cuales vamos a entrenar los modelos* Conjunto de **evaluación**: datos con los cuales vamos a evaluar la performance del modeloEsto lo vamos a realizar con la función [train_test_split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html). Le pasamos como argumentos el set de datos de variables predictoras, la serie de la variable a predecir y el porcentaje de datos que deseamos que forme nuestro set de evaluación. ###Code # Separamos al dataset en X (variables predictoras) e y (variable a predecir) X = df[['lat', 'lon', 'rooms', 'bathrooms', 'surface_total', 'surface_covered', 'property_type']] y = df['price'] from sklearn.model_selection import train_test_split # Realizamos el split de X e y en los sets de entrenamiento (train) y test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.20, random_state=SEMILLA) print(f"El dataset de entrenamiento cuenta con {len(X_train)} observaciones") print(f"El dataset de evaluación cuenta con {len(X_test)} observaciones") ###Output El dataset de entrenamiento cuenta con 32124 observaciones El dataset de evaluación cuenta con 8032 observaciones ###Markdown 2.2 Modelo Superficie y BañosPor lo que vimos en nuestro análisis de datos las variables de **superficie total** y **baños** presentan un correlación positiva bastante alta con el precio. Entonces, comencemos con un modelo que incluya ambas variables como predictoras:$E(precio|.) = \beta_0 + \beta_1 \cdot superficieTotal + \beta_2 \cdot baños$ ###Code # Definimos las variables exogenas (predictores) variables_exogenas = ['surface_total', 'bathrooms'] # Construimos la matriz de X X_train_modelo_sup_baños = X_train[variables_exogenas] X_train_modelo_sup_baños.head() # Importamos el modelo lineal from sklearn.linear_model import LinearRegression # Definimos una instancia del modelo lineal con scikit learn modelo_lineal_sup_baños = LinearRegression(fit_intercept=True) # Realizamos el proceso de estimación modelo_lineal_sup_baños.fit(X_train_modelo_sup_baños, y_train) # Accedemos a los coeficientes estimados modelo_lineal_sup_baños.coef_ # Accedemos al intercepto modelo_lineal_sup_baños.intercept_ # Creamos variables para guardar los coeficientes estimados coeficientes = modelo_lineal_sup_baños.coef_ intercepto = modelo_lineal_sup_baños.intercept_ beta_1, beta_2 = coeficientes[0], coeficientes[1] print(f"El intercepto es {intercepto:.2f}") print(f"El coeficiente estimado para Beta 1 es {beta_1:.2f}") print(f"El coeficiente estimado para Beta 2 es {beta_2:.2f}") # Definimos una función para obtener los coeficientes en un dataframe def obtener_coeficientes(modelo, lista_variables): '''Crea un dataframe con los coeficientes estimados de un modelo''' # Creo la lista de nombres de variables lista_variables = ['intercepto'] + lista_variables # Intercepto intercepto = modelo.intercept_ # Lista coeficientes excepto el intercepto coeficientes = list(modelo.coef_) # Lista completa coeficientes lista_coeficientes = [intercepto] + coeficientes return pd.DataFrame({"variable": lista_variables, "coeficiente": lista_coeficientes}) # Obtenemos nuestro dataframe coeficientes_modelo_sup_baños = obtener_coeficientes(modelo_lineal_sup_baños, variables_exogenas) coeficientes_modelo_sup_baños ###Output _____no_output_____ ###Markdown ¿Cómo interpretamos estos coeficientes?$\hat{\beta_0} = -107213.75$El valor esperado/promedio/predicho de una propiedad sin superficie ni baños es de -107213.65 dólares$\hat{\beta_1} = 2069.77$El valor esperado/promedio/predicho de una propiedad aumenta en 2069.77 dólares frente a un aumento de 1 metro cuadrado de la superficie total dada la cantidad de baños$\hat{\beta_2} = 113359.64$El valor esperado/promedio/predicho de una propiedad aumenta en 113359.64 dólares frente a un aumento de 1 baño dada la superficie total 2.2 Modelo Superficie y CuartosTambién vimos en nuestro análisis de datos que la variable **cuartos** presentan un correlación positiva con el precio. Entonces, realicemos un modelo con los cuartos y la superficie total como predictoras:$E(precio|.) = \beta_0 + \beta_1 \cdot superficieTotal + \beta_2 \cdot cuartos$ ###Code # Definimos las variables exogenas (predictores) variables_exogenas = ['surface_total', 'rooms'] # Construimos la matriz de X X_train_modelo_sup_cuartos = X_train[variables_exogenas] # Definimos una instancia del modelo lineal con scikit learn modelo_lineal_sup_cuartos = LinearRegression(fit_intercept=True) # Realizamos el proceso de estimación modelo_lineal_sup_cuartos.fit(X_train_modelo_sup_cuartos, y_train) # Obtenemos los coeficientes en el dataframe coeficientes_modelo_sup_cuartos = obtener_coeficientes(modelo_lineal_sup_cuartos, variables_exogenas) coeficientes_modelo_sup_cuartos ###Output _____no_output_____ ###Markdown ¿Qué sucedió con los coeficientes estimados del modelo?Lo que nos puede llamar la atención en modelo es que el coeficiente de la variable **ambientes** es negativo. Alguien podría decirnos que la interpretación de este coeficiente es extraña y contraintuitiva si decimos que: el coeficiente $\hat{\beta_2} = -21992$ indica que frente al aumento de un ambiente el precio esperado de la propiedad cae en 21992 dólares. Sin embargo, esto es incorrecto ¿Por qué?Porque la interpretación del coeficiente estimado en el modelo de regresión lineal múltiple se realiza **dadas las otras variables constantes** Entonces ¿Cúal es la interpretación correcta?La interpretación correcta de $\hat{\beta_2} = 21992$ es:El valor esperado de una propiedad cae en 21992 dólares frente al aumento de 1 ambiente dada la superficie total.Esto quiere decir que si para una propiedad que tiene una superficie dada se crea un ambiente nuevo (dividir la superficie en más cuartos) se espera que su valor caiga en aproximadamente 22000 dolares 3. Modelo con variables categóricasEn esta sección vamos a incorporar la variable categórica del **tipo de propiedad** en nuestros modelos.Primero veamos como se relaciona esta variable con el precio de la propiedad ###Code # Boxplot del precio por tipo de propiedad sns.boxplot(x='property_type', y='price', data=df); ###Output _____no_output_____ ###Markdown Se observa que existen múltiples **outliers** que dificultan la comparación entre los distintos tipos de propiedad. Las casas y departamentos se caracterizan por tener más outliers que los PH.Acotemos el gráfico a propiedades con precios menores a 1 millón de pesos ###Code # Boxplot del precio por tipo de propiedad sns.boxplot(x='property_type', y='price', data=df.query("price<=1000000")); ###Output _____no_output_____ ###Markdown Ahora podemos observar que los departamentos y PH tienen una mediana similar mientras que las casas tiene una mediana de precio más elevada. Sin embargo, recordemos que en este gráfico no estamos controlando por otras variables. 3.1 Modelo Tipo de Propiedad y SuperficieComo parecen existir diferencias en el precio que se pueden explicar por el tipo de propiedad definimos un modelo que incluya está información.Recordemos que como se trata de una variable con 3 categorías deberemos crear dos variables binarias, quedando una categoría contenida en el intercepto.$E(precio|X) = \beta_0 + \beta_1 \cdot superficieTotal + \beta_{2} \cdot X_{casa} + \beta_{3} \cdot X_{depto}$Las variables dummies que debemos crear son:$X_{casa}=\begin{cases} 0 & \text{si la propiedad NO es una casa} \\ 1 & \text{si la observación es una casa}\end{cases}$$X_{depto}=\begin{cases} 0 & \text{si la observación NO es un departamento} \\ 1 & \text{si la observación es un departamento}\end{cases}$Veamos cuál es la manera de crear estas variables Creación de las variables dummiesPara crear las variables dummies vamos a utilizar el transformer (es un tipo de clase) [OneHotEncoder](https://scikit-learn.org/stable/modules/generated/sklearn.preprocessing.OneHotEncoder.html). Los argumentos que vamos a utilizar son:* `categories:` la lista de categorías que tiene la variable categórica* `drop='first'`: indica que se va a "tirar" la primera categoría (es la que queda contenida en el intercepto) ###Code from sklearn.preprocessing import OneHotEncoder # Definimos una instancia del transformer one_hot_encoder = OneHotEncoder(categories=[['PH', 'Casa', 'Departamento']], drop='first') # Realizamos el fit con los datos de entrenamiento one_hot_encoder.fit(X_train[['property_type']]) # Accedemos a las categorias del encoder one_hot_encoder.categories_ # Generamos las variables dummies de la variable property type (notemos que tenemos 2 columnas!) matriz_dummies = one_hot_encoder.transform(X_train[['property_type']]).toarray() matriz_dummies # Generamos los nombres de las variables dummies (notemos que tenemos 2 columnas!) nombres_dummies = one_hot_encoder.get_feature_names(['tipo']) nombres_dummies # Generamos el dataframe con las variables dummies con las matrices y columnas df_dummies = pd.DataFrame(matriz_dummies, columns=nombres_dummies, index=X_train.index) df_dummies.head() # Agregamos la información a nuestra matriz de variables predictoras X_train = X_train.join(df_dummies) X_train.head() # Definimos las variables exogenas (predictores) variables_exogenas = ['surface_total', 'tipo_Casa', 'tipo_Departamento'] # Construimos la matriz de X X_train_modelo_sup_propiedad = X_train[variables_exogenas] # Definimos una instancia del modelo lineal con scikit learn modelo_lineal_sup_propiedad = LinearRegression(fit_intercept=True) # Realizamos el proceso de estimación modelo_lineal_sup_propiedad.fit(X_train_modelo_sup_propiedad, y_train) coeficientes_modelo_sup_propiedad = obtener_coeficientes(modelo_lineal_sup_propiedad, variables_exogenas) coeficientes_modelo_sup_propiedad ###Output _____no_output_____ ###Markdown ¿Cómo se interpretan estos coeficientes?$\hat{\beta_0} = -208630$El precio esperado de un PH sin superficie es de -208630 dólares$\hat{\beta_1} = 3489$El precio esperado aumenta en 3489 dólares cuando aumenta la superficie total en 1 m2, independientemente del tipo de propiedad $\hat{\beta_2} = -212763$Si la propiedad es una casa, el precio esperado será 212763 dólares menor respecto a un PH **dada la misma superficie total** $\hat{\beta_3} = 173962$Si la propiedad es una departamento, el precio esperado será 173962 dólares mayor respecto a un PH **dada la misma superficie total** 3.2 InteracciónTambién es posible que exista un efecto distinto de la superficie total en cada uno de los tipos de propiedades. Para ello vamos a definir un modelo con interacción de la siguiente manera:$E(precio|X) = \beta_0 + \beta_1 \cdot superficieTotal + \beta_{2} \cdot X_{casa} + \beta_{3} \cdot X_{depto} + \beta_{4} \cdot (X_{casa} * superficieTotal) + \beta_{5} \cdot (X_{depto}* superficieTotal)$ ###Code # Creamos las dos variables de interacción X_train['interaccion_sup_casa'] = X_train['tipo_Casa'] * X_train['surface_total'] X_train['interaccion_sup_depto'] = X_train['tipo_Departamento'] * X_train['surface_total'] # Definimos las variables exogenas (predictores) variables_exogenas = ['surface_total', 'tipo_Casa', 'tipo_Departamento', 'interaccion_sup_casa', 'interaccion_sup_depto'] # Construimos la matriz de X X_train_modelo_interaccion = X_train[variables_exogenas] # Definimos una instancia del modelo lineal con scikit learn modelo_lineal_interaccion = LinearRegression(fit_intercept=True) # Realizamos el proceso de estimación modelo_lineal_interaccion.fit(X_train_modelo_interaccion, y_train) coeficientes_modelo_interaccion = obtener_coeficientes(modelo_lineal_interaccion, variables_exogenas) coeficientes_modelo_interaccion ###Output _____no_output_____ ###Markdown ¿Cómo se interpretan coeficientes ?$\hat{\beta_0} = 68563$El precio esperado de un PH sin superficie es de 68563 dólares$\hat{\beta_1} = 1058$El precio esperado de un PH aumenta en 1058 dólares cuando aumenta la superficie total en 1 m2.Es muy importante notar que ahora $\hat{\beta_1}$ nos habla sólo del cambio esperado de la superficie en el precio en los PH, ya que esta es la categoría que quedó en el nivel basal o de comparación$\hat{\beta_2} = -86032$Si la propiedad es una casa, el precio esperado será 86032 dólares menor respecto a un PH **dada la misma superficie total** $\hat{\beta_3} = -166791$Si la propiedad es una departamento, el precio esperado será 166791 dólares menor respecto a un PH **dada la misma superficie total** $\hat{\beta_4} = 729$Si la propiedad es una casa, el precio esperado aumenta 729 dólares más respecto a un PH cuando la superficie aumenta en 1 m2.Esto equivale a decir que para una **casa** el precio esperado aumenta en 1787 ($\hat{\beta_1} + \hat{\beta_4}$) dólares cuando la superficie aumenta en 1 m2$\hat{\beta_5} = 3228$Si la propiedad es una departamento, el precio esperado aumenta 3228 dólares más respecto a un PH cuando la superficie aumenta en 1 m2.Esto equivale a decir que para un **departamento** el precio esperado aumenta en 4286 ($\hat{\beta_1} + \hat{\beta_5}$) dólares cuando la superficie aumenta en 1 m2 4. EvaluaciónEn esta parte vamos a evaluar los resultados obtenidos por algunos de los modelos previos. Por un lado nos interesará observar los resultados de los tests estadísticos de significatividad individual y global y por el otro observar algunas métricas de performance 4.1 Tests estadísticosPara realizar la evaluación con un enfoque estadístico más tradicional debemos utilizar el modulo [statsmodels](https://www.statsmodels.org/stable/regression.html). Para poder acceder a la información que nos interesa vamos a tener que crear los modelos con esta librería.La librería sklearn no cuenta con las funciones necesarias para realizar la evaluación de los tests estadísticos de los coeficientes estimados.Comencemos preparando los datos para la implementación del modelo lineal en statsmodels ###Code # En statsmodels se le agrega el intercepto (en scikit se lo pasamos como un parametro a la instancia del modelo) X_train_modelo_sup_baños_stats = sm.add_constant(X_train_modelo_sup_baños) X_train_modelo_sup_baños_stats.head() # Construimos el modelo modelo_sup_baños_stats = sm.OLS(y_train, X_train_modelo_sup_baños_stats) # Guardamos los resultados resultados_sup_baños_stats = modelo_sup_baños_stats.fit() # Accedemos a los coeficientes estimados resultados_sup_baños_stats.params ###Output _____no_output_____ ###Markdown En primer lugar observamos que los coeficientes estimados son iguales a los que obtuvimos utilizando la implementación de scikit learn.Ahora veamos los p valores asociados a los tests de significatividad individual. Recordemos que las hipótesis son:$H_0: \beta_j = 0$$H_A: \beta_j \neq 0$Para rechazar la hipótesis de que el parámetro es igual a cero debemos observar un p valor inferior a 0.05 ###Code # Accedemos a los p valores de los tests de significancia individual resultados_sup_baños_stats.pvalues ###Output _____no_output_____ ###Markdown Continuamos con el test de significatividad global. Las hipotesis son:$H_0: \text{Todos los } \beta_j = 0$$H_A: \text{Algún } \beta_j \neq 0$ ###Code # Test significatividad global resultados_sup_baños_stats.f_pvalue ###Output _____no_output_____ ###Markdown Observamos el R cuadrado y R cuadrado ajustado ###Code # R cuadrado resultados_sup_baños_stats.rsquared # R cuadrado ajustado resultados_sup_baños_stats.rsquared_adj ###Output _____no_output_____ ###Markdown Toda esta información a la que fuimos accediendo (junto a mucha información más) se puede obtener imprimiendo el `summary` de los resultados. ###Code print(resultados_sup_baños_stats.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: price R-squared: 0.571 Model: OLS Adj. R-squared: 0.571 Method: Least Squares F-statistic: 2.140e+04 Date: Wed, 07 Jul 2021 Prob (F-statistic): 0.00 Time: 02:50:21 Log-Likelihood: -4.3859e+05 No. Observations: 32124 AIC: 8.772e+05 Df Residuals: 32121 BIC: 8.772e+05 Df Model: 2 Covariance Type: nonrobust ================================================================================= coef std err t P>|t| [0.025 0.975] --------------------------------------------------------------------------------- const -1.072e+05 2338.152 -45.854 0.000 -1.12e+05 -1.03e+05 surface_total 2069.7756 22.252 93.016 0.000 2026.161 2113.390 bathrooms 1.134e+05 2032.921 55.762 0.000 1.09e+05 1.17e+05 ============================================================================== Omnibus: 33294.388 Durbin-Watson: 2.000 Prob(Omnibus): 0.000 Jarque-Bera (JB): 7432291.005 Skew: 4.728 Prob(JB): 0.00 Kurtosis: 76.914 Cond. No. 291. ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ###Markdown Ahora observemos estos elementos para el modelo de interacción que contaba con una mayor cantidad de variables predictoras. Tengamos en cuenta que vamos a observar el resumen para tratar de contestar las siguientes preguntas:* ¿Tiene sentido utilizar esta especificación del modelo para explicar/predecir el precio de las propiedades? (significatividad global)* ¿Cada variable presenta una relación estadísticamente significativa con el precio? (significatividad individual)* ¿Qué porcentaje de la variabilidad explica el modelo? ¿Cómo se compara respecto al modelo con menos variables que estimamos antes? (R cuadrado) ###Code # En stats models se le agrega el intercepto X_train_interaccion_stats = sm.add_constant(X_train_modelo_interaccion) #Construimos el modelo modelo_interaccion_stats = sm.OLS(y_train, X_train_interaccion_stats) # Estimamos los parámetros resultados_interaccion = modelo_interaccion_stats.fit() # Imprimimos el resumen print(resultados_interaccion.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: price R-squared: 0.675 Model: OLS Adj. R-squared: 0.675 Method: Least Squares F-statistic: 1.335e+04 Date: Wed, 07 Jul 2021 Prob (F-statistic): 0.00 Time: 02:50:21 Log-Likelihood: -4.3413e+05 No. Observations: 32124 AIC: 8.683e+05 Df Residuals: 32118 BIC: 8.683e+05 Df Model: 5 Covariance Type: nonrobust ========================================================================================= coef std err t P>|t| [0.025 0.975] ----------------------------------------------------------------------------------------- const 6.856e+04 6310.502 10.865 0.000 5.62e+04 8.09e+04 surface_total 1058.2632 46.590 22.714 0.000 966.944 1149.582 tipo_Casa -8.603e+04 1.11e+04 -7.751 0.000 -1.08e+05 -6.43e+04 tipo_Departamento -1.668e+05 6546.818 -25.477 0.000 -1.8e+05 -1.54e+05 interaccion_sup_casa 729.6612 57.091 12.781 0.000 617.760 841.562 interaccion_sup_depto 3228.1323 49.676 64.983 0.000 3130.765 3325.500 ============================================================================== Omnibus: 34358.273 Durbin-Watson: 1.996 Prob(Omnibus): 0.000 Jarque-Bera (JB): 8193012.339 Skew: 4.987 Prob(JB): 0.00 Kurtosis: 80.599 Cond. No. 1.85e+03 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.85e+03. This might indicate that there are strong multicollinearity or other numerical problems. ###Markdown 4.2 Métricas de performanceEn la sección anterior observamos algunas formas de evaluación típicas del enfoque estadístico para nuestros modelos. Ahora veamos algunas métricas de evaluación muy usuales para los problemas de regresión en Machine Learning.Vamos a observar los valores de las siguientes métricas:**Mean Squared Error /Error Cuadrático Medio**$MSE = \frac{1}{n} \sum_{i=1}^{n} (Y_i - \hat{Y_i})^2$**Root Mean Squared Error /Raiz del Error Cuadrático Medio**$RMSE = \sqrt{MSE}$**Mean Absolute Error /Error Absoluto Medio**$MAE = \frac{1}{n} \sum_{i=1}^{n} |Y_i - \hat{Y_i}|$Además nos va a interesar comparar los valores de estas métricas para el set de entrenamiento y para el set de evaluación ###Code # Importamos las métricas desde scikit-learn from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error ###Output _____no_output_____ ###Markdown Todas estas funciones toman como argumentos: `y_true`: vector/array/serie de los valores reales de Y`y_pred`: vector/array/serie de los valores predichos de YPara obtener los valores predichos de y vamos a utilizar el método `predict()` de los modelos que hemos creado. ###Code # Predecimos los valores de y con nuestro modelo y_train_sup_baños = modelo_lineal_sup_baños.predict(X_train_modelo_sup_baños) y_train_sup_baños # Calculamos R cuadrado r2_score(y_train, y_train_sup_baños) # Calculamos MSE mean_squared_error(y_train, y_train_sup_baños) # Calculamos RMSE np.sqrt(mean_squared_error(y_train, y_train_sup_baños)) # Calculamos MAE mean_absolute_error(y_train, y_train_sup_baños) ###Output _____no_output_____ ###Markdown Como nos interesa obtener estas 4 métricas para los modelos podemos crear una función que las calcule y nos devuelva un dataframe ###Code def obtener_metricas_performance(y_verdadera, y_predicha, tipo_dataset): r2 = r2_score(y_verdadera, y_predicha) mse = mean_squared_error(y_verdadera, y_predicha) rmse = np.sqrt(mse) mae = mean_absolute_error(y_verdadera, y_predicha) return pd.DataFrame({'metrica': ['R2', 'MSE', 'RMSE', 'MAE'], 'valor':[r2, mse, rmse, mae], 'tipo_dataset':tipo_dataset}) # Obtenemos nuestro dataframe de métricas de performance performance_train_sup_baños = obtener_metricas_performance(y_train, y_train_sup_baños,'entrenamiento') performance_train_sup_baños # Ahora observemos las métricas del modelo de interacción en entrenamiento y_train_interaccion = modelo_lineal_interaccion.predict(X_train_modelo_interaccion) performance_train_interaccion = obtener_metricas_performance(y_train, y_train_interaccion, 'entrenamiento') performance_train_interaccion ###Output _____no_output_____ ###Markdown Ahora observemos las métricas de performance de estos dos modelos en el dataset de evaluación ###Code # Creamos la matrix de X para el modelo de superficie y baños X_test_sup_baños = X_test[['surface_total', 'bathrooms']] # Predecimos los valores y_test_sup_baños = modelo_lineal_sup_baños.predict(X_test_sup_baños) # Obtenemos nuestro dataframe de métricas de performance performance_test_sup_baños =obtener_metricas_performance(y_test, y_test_sup_baños, 'evaluacion') # Mostramos en conjunto las métricas para entrenamiento y evaluación pd.concat([performance_train_sup_baños,performance_test_sup_baños]) ###Output _____no_output_____ ###Markdown Realicemos lo mismo para el modelo de interacción. Primero debemos generar las variables binarias para el tipo de propiedad y las variables de interacción para poder utilizar el modelo ###Code # Generamos las variables dummies de la variable property type (notemos que tenemos 2 columnas!) matriz_dummies_test = one_hot_encoder.transform(X_test[['property_type']]).toarray() # Generamos el dataframe con las variables dummies con las matrices y columnas df_dummies_test = pd.DataFrame(matriz_dummies_test, columns=nombres_dummies, index=X_test.index) # Agregamos la información a nuestra matriz de variables predictoras X_test = X_test.join(df_dummies_test) # Creamos las dos variables de interacción X_test['interaccion_sup_casa'] = X_test['tipo_Casa'] * X_test['surface_total'] X_test['interaccion_sup_depto'] = X_test['tipo_Departamento'] * X_test['surface_total'] # Vemos el dataframe X_test.head() # Generamos el dataset de predictoras X_test_interaccion = X_test[['surface_total', 'tipo_Casa', 'tipo_Departamento', 'interaccion_sup_casa', 'interaccion_sup_depto']] # Predecimos los valores y_test_interaccion = modelo_lineal_interaccion.predict(X_test_interaccion) # Obtenemos nuestro dataframe de métricas de performance performance_test_interaccion = obtener_metricas_performance(y_test, y_test_interaccion, 'evaluacion') # Mostramos en conjunto las métricas para entrenamiento y evaluación pd.concat([performance_train_interaccion, performance_test_interaccion]) ###Output _____no_output_____ ###Markdown 5. DiagnósticoEn esta sección vamos a realizar el gráfico de residuos vs valores predichos para observar si estos dos modelos cumplen o no con los supuestos del modelo lineal ###Code # Calculamos los residuos para el modelo de superficie y baños residuos_sup_baños = y_train - y_train_sup_baños # Realizamos el gráfico plt.figure(figsize=(10,7)) plt.scatter(x=y_train_sup_baños, y=residuos_sup_baños, alpha=0.6, c='royalblue', edgecolor='black') plt.axhline(y=0, c='black', ls='--', linewidth=2.5) plt.title("Modelo Superficie y Baños"); # Calculamos los residuos para el modelo de interacción residuos_interaccion = y_train - y_train_interaccion # Realizamos el gráfico plt.figure(figsize=(10,7)) plt.scatter(x=y_train_sup_baños, y=residuos_interaccion, alpha=0.6, c='green', edgecolor='black') plt.axhline(y=0, c='black', ls='--', linewidth=2.5) plt.title("Modelo Interacción"); ###Output _____no_output_____
vit_jax.ipynb
###Markdown See https://github.com/google-research/vision_transformer/TODO: Add arxiv linkThis Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer. Copyright 2020 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/* # Download a pre-trained model. model = 'ViT-B_16' ![ -e "$model".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model".npz . #@markdown TPU setup : Boilerplate for connecting JAX to TPU. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: # Make sure the Colab Runtime is set to Accelerator: TPU. import requests if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print('Registered TPU:', config.FLAGS.jax_backend_target) else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_hp.py') files.view('vision_transformer/vit_jax/train.py') files.view('vision_transformer/vit_jax/hyper.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import hyper from vit_jax import input_pipeline from vit_jax import logging from vit_jax import models from vit_jax import momentum_hp from vit_jax import train logger = logging.setup_logger('./logs') # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 # Reduce to 256 if running on a single GPU. # Note the datasets are configured in input_pipeline.DATASET_PRESETS # Have a look in the editor at the right. num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] # tf.data.Datset for training, infinite repeats. ds_train = input_pipeline.get_data( dataset=dataset, mode='train', repeats=None, batch_size=batch_size, ) # tf.data.Datset for evaluation, single repeat. ds_test = input_pipeline.get_data( dataset=dataset, mode='test', repeats=1, batch_size=batch_size, ) # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Do you spot a difference? # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code # Load model definition & initialize random parameters. VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=num_classes) _, params = VisionTransformer.init_by_shape( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. [(batch['image'].shape[1:], batch['image'].dtype.name)]) # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model}.npz', init_params=params, model_config=models.CONFIGS[model], logger=logger, ) ###Output 2020-10-22 15:57:49,688 [WARNING] vit_jax.logging: Inspect recovered empty keys: {'pre_logits'} 2020-10-22 15:57:49,692 [INFO] vit_jax.logging: Inspect extra keys: {'pre_logits/kernel', 'pre_logits/bias'} 2020-10-22 15:57:49,702 [INFO] vit_jax.logging: Resformer: drop-head variant 2020-10-22 15:57:49,711 [INFO] vit_jax.logging: Resformer: resized variant: (1, 197, 768) to (1, 577, 768) 2020-10-22 15:57:49,712 [INFO] vit_jax.logging: Resformer: grid-size from 14 to 24 ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['cls']).__name__, params['cls'].shape) print('params_repl.cls:', type(params_repl['cls']).__name__, params_repl['cls'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(VisionTransformer.call) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.notebook.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output 2020-10-22 16:19:29,245 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. update_fn_repl = train.make_update_fn(VisionTransformer.call, accum_steps) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_hp.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) lr_fn = hyper.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) # Prefetch entire learning rate schedule onto devices. Otherwise we would have # a slow transfer from host to devices in every step. lr_iter = hyper.lr_prefetch_iter(lr_fn, 0, total_steps) # Initialize PRNGs for dropout. update_rngs = jax.random.split(jax.random.PRNGKey(0), jax.local_device_count()) # The world's simplest training loop. # Completes in ~20 min on the TPU runtime. for step, batch, lr_repl in zip( tqdm.notebook.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), lr_iter ): opt_repl, loss_repl, update_rngs = update_fn_repl( opt_repl, lr_repl, batch, update_rngs) # Should be ~97.2% for CIFAR10 # Should be ~71.2% for CIFAR10 get_accuracy(opt_repl.target) ###Output 2020-10-22 16:49:53,565 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Inference ###Code # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model".npz "$model"_imagenet2012.npz VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=1000) # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. !wget https://picsum.photos/384 -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = VisionTransformer.call(params, (np.array(img) / 128 - 1)[None, ...]) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.76433 : convertible 0.01839 : beach_wagon, station_wagon, wagon, estate_car, beach_waggon, station_waggon, waggon 0.01566 : car_mirror 0.01226 : cab, hack, taxi, taxicab 0.01132 : limousine, limo 0.01067 : golfcart, golf_cart 0.01041 : recreational_vehicle, RV, R.V. 0.01026 : Model_T 0.00805 : minibus 0.00767 : odometer, hodometer, mileometer, milometer ###Markdown **NOTE** Currently this notebook runs with MlpMixer on GPUs and TPUs, but VisionTransformers only run on GPUs. This is due to a temporary regression in the TPUNode setup that is used for Colab and will be fixed soon. See code at https://github.com/google-research/vision_transformer/See papers at- Vision Transformer: https://arxiv.org/abs/2010.11929- MLP-Mixer: https://arxiv.org/abs/2105.01601- How to train your ViT: https://arxiv.org/abs/2106.10270- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations: https://arxiv.org/abs/2106.01548This Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer.If you just want to load a pre-trained checkpoint from a large repository anddirectly use it for inference, you probably want to go the other Colabhttps://colab.sandbox.google.com/github/google-research/vision_transformer/blob/linen/vit_jax_augreg.ipynb Copyright 2021 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/imagenet* !gsutil ls -lh gs://vit_models/sam !gsutil ls -lh gs://mixer_models/* # Download a pre-trained model. # Note: you can really choose any of the above, but this Colab has been tested # with the models of below selection... model_name = 'ViT-B_32' #@param ["ViT-B_32", "Mixer-B_16"] if model_name.startswith('ViT'): ![ -e "$model_name".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model_name".npz . if model_name.startswith('Mixer'): ![ -e "$model_name".npz ] || gsutil cp gs://mixer_models/imagenet21k/"$model_name".npz . import os assert os.path.exists(f'{model_name}.npz') # Google Colab "TPU" runtimes are configured in "2VM mode", meaning that JAX # cannot see the TPUs because they're not directly attached. Instead we need to # setup JAX to communicate with a second machine that has the TPUs attached. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: import jax import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() print('Connected to TPU.') else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') from absl import logging import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm logging.set_verbosity(logging.INFO) # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/configs/common.py') files.view('vision_transformer/vit_jax/configs/models.py') files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_clip.py') files.view('vision_transformer/vit_jax/train.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import input_pipeline from vit_jax import utils from vit_jax import models from vit_jax import momentum_clip from vit_jax import train from vit_jax.configs import common as common_config from vit_jax.configs import models as models_config # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 config = common_config.with_dataset(common_config.get_config(), dataset) num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] config.batch = batch_size config.pp.crop = 224 # For details about setting up datasets, see input_pipeline.py on the right. ds_train = input_pipeline.get_data_from_tfds(config=config, mode='train') ds_test = input_pipeline.get_data_from_tfds(config=config, mode='test') del config # Only needed to instantiate datasets. # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Note how images are cropped/scaled differently. # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code model_config = models_config.MODEL_CONFIGS[model_name] model_config # Load model definition & initialize random parameters. # This also compiles the model to XLA (takes some minutes the first time). if model_name.startswith('Mixer'): model = models.MlpMixer(num_classes=num_classes, **model_config) else: model = models.VisionTransformer(num_classes=num_classes, **model_config) variables = jax.jit(lambda: model.init( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. batch['image'][0, :1], train=False, ), backend='cpu')() # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model_name}.npz', init_params=variables['params'], model_config=model_config, ) ###Output INFO:absl:Inspect extra keys: {'pre_logits/bias', 'pre_logits/kernel'} INFO:absl:load_pretrained: drop-head variant ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['head']['bias']).__name__, params['head']['bias'].shape) print('params_repl.cls:', type(params_repl['head']['bias']).__name__, params_repl['head']['bias'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(lambda params, inputs: model.apply( dict(params=params), inputs, train=False)) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output INFO:absl:Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 100%|██████████| 19/19 [01:07<00:00, 3.58s/it] ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. lr_fn = utils.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) update_fn_repl = train.make_update_fn( apply_fn=model.apply, accum_steps=accum_steps, lr_fn=lr_fn) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_clip.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) # Initialize PRNGs for dropout. update_rng_repl = flax.jax_utils.replicate(jax.random.PRNGKey(0)) losses = [] lrs = [] # Completes in ~20 min on the TPU runtime. for step, batch in zip( tqdm.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), ): opt_repl, loss_repl, update_rng_repl = update_fn_repl( opt_repl, flax.jax_utils.replicate(step), batch, update_rng_repl) losses.append(loss_repl[0]) lrs.append(lr_fn(step)) plt.plot(losses) plt.figure() plt.plot(lrs) # Should be ~96.7% for Mixer-B/16 or 97.7% for ViT-B/32 on CIFAR10 (both @224) get_accuracy(opt_repl.target) ###Output INFO:absl:Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 100%|██████████| 19/19 [00:32<00:00, 1.73s/it] ###Markdown Inference ###Code # Download a pre-trained model. if model_name.startswith('Mixer'): # Download model trained on imagenet2012 ![ -e "$model_name"_imagenet2012.npz ] || gsutil cp gs://mixer_models/imagenet1k/"$model_name".npz "$model_name"_imagenet2012.npz model = models.MlpMixer(num_classes=1000, **model_config) else: # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model_name"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model_name".npz "$model_name"_imagenet2012.npz model = models.VisionTransformer(num_classes=1000, **model_config) import os assert os.path.exists(f'{model_name}_imagenet2012.npz') # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model_name}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. resolution = 224 if model_name.startswith('Mixer') else 384 !wget https://picsum.photos/$resolution -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = model.apply(dict(params=params), (np.array(img) / 128 - 1)[None, ...], train=False) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.13330 : sandbar, sand_bar 0.09332 : seashore, coast, seacoast, sea-coast 0.05257 : jeep, landrover 0.05188 : Arabian_camel, dromedary, Camelus_dromedarius 0.01251 : horned_viper, cerastes, sand_viper, horned_asp, Cerastes_cornutus 0.00753 : tiger_beetle 0.00744 : dung_beetle 0.00711 : sidewinder, horned_rattlesnake, Crotalus_cerastes 0.00703 : leatherback_turtle, leatherback, leathery_turtle, Dermochelys_coriacea 0.00647 : pole ###Markdown See code at https://github.com/google-research/vision_transformer/See paper at https://arxiv.org/abs/2010.11929This Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer. Copyright 2020 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/* # Download a pre-trained model. model = 'ViT-B_16' ![ -e "$model".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model".npz . #@markdown TPU setup : Boilerplate for connecting JAX to TPU. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: # Make sure the Colab Runtime is set to Accelerator: TPU. import requests if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print('Registered TPU:', config.FLAGS.jax_backend_target) else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_clip.py') files.view('vision_transformer/vit_jax/train.py') files.view('vision_transformer/vit_jax/hyper.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import hyper from vit_jax import input_pipeline from vit_jax import logging from vit_jax import models from vit_jax import momentum_clip from vit_jax import train logger = logging.setup_logger('./logs') # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 # Reduce to 256 if running on a single GPU. # Note the datasets are configured in input_pipeline.DATASET_PRESETS # Have a look in the editor at the right. num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] # tf.data.Datset for training, infinite repeats. ds_train = input_pipeline.get_data( dataset=dataset, mode='train', repeats=None, batch_size=batch_size, ) # tf.data.Datset for evaluation, single repeat. ds_test = input_pipeline.get_data( dataset=dataset, mode='test', repeats=1, batch_size=batch_size, ) # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Do you spot a difference? # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code # Load model definition & initialize random parameters. VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=num_classes) _, params = VisionTransformer.init_by_shape( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. [(batch['image'].shape[1:], batch['image'].dtype.name)]) # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model}.npz', init_params=params, model_config=models.CONFIGS[model], logger=logger, ) ###Output 2020-10-22 15:57:49,688 [WARNING] vit_jax.logging: Inspect recovered empty keys: {'pre_logits'} 2020-10-22 15:57:49,692 [INFO] vit_jax.logging: Inspect extra keys: {'pre_logits/kernel', 'pre_logits/bias'} 2020-10-22 15:57:49,702 [INFO] vit_jax.logging: Resformer: drop-head variant 2020-10-22 15:57:49,711 [INFO] vit_jax.logging: Resformer: resized variant: (1, 197, 768) to (1, 577, 768) 2020-10-22 15:57:49,712 [INFO] vit_jax.logging: Resformer: grid-size from 14 to 24 ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['cls']).__name__, params['cls'].shape) print('params_repl.cls:', type(params_repl['cls']).__name__, params_repl['cls'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(VisionTransformer.call) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.notebook.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output 2020-10-22 16:19:29,245 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. update_fn_repl = train.make_update_fn(VisionTransformer.call, accum_steps) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_clip.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) lr_fn = hyper.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) # Prefetch entire learning rate schedule onto devices. Otherwise we would have # a slow transfer from host to devices in every step. lr_iter = hyper.lr_prefetch_iter(lr_fn, 0, total_steps) # Initialize PRNGs for dropout. update_rngs = jax.random.split(jax.random.PRNGKey(0), jax.local_device_count()) # The world's simplest training loop. # Completes in ~20 min on the TPU runtime. for step, batch, lr_repl in zip( tqdm.notebook.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), lr_iter ): opt_repl, loss_repl, update_rngs = update_fn_repl( opt_repl, lr_repl, batch, update_rngs) # Should be ~97.2% for CIFAR10 # Should be ~71.2% for CIFAR10 get_accuracy(opt_repl.target) ###Output 2020-10-22 16:49:53,565 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Inference ###Code # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model".npz "$model"_imagenet2012.npz VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=1000) # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. !wget https://picsum.photos/384 -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = VisionTransformer.call(params, (np.array(img) / 128 - 1)[None, ...]) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.76433 : convertible 0.01839 : beach_wagon, station_wagon, wagon, estate_car, beach_waggon, station_waggon, waggon 0.01566 : car_mirror 0.01226 : cab, hack, taxi, taxicab 0.01132 : limousine, limo 0.01067 : golfcart, golf_cart 0.01041 : recreational_vehicle, RV, R.V. 0.01026 : Model_T 0.00805 : minibus 0.00767 : odometer, hodometer, mileometer, milometer ###Markdown **NOTE** Currently this notebook runs with MlpMixer on GPUs and TPUs, but VisionTransformers only run on GPUs. This is due to a temporary regression in the TPUNode setup that is used for Colab and will be fixed soon. See code at https://github.com/google-research/vision_transformer/See papers at- Vision Transformer: https://arxiv.org/abs/2010.11929- MLP-Mixer: https://arxiv.org/abs/2105.01601- How to train your ViT: https://arxiv.org/abs/2106.TODOThis Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer.If you just want to load a pre-trained checkpoint from a large repository anddirectly use it for inference, you probably want to go the other Colabhttps://colab.sandbox.google.com/github/google-research/vision_transformer/blob/linen/vit_jax_augreg.ipynb Copyright 2021 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/imagenet* !gsutil ls -lh gs://mixer_models/* # Download a pre-trained model. # Note: you can really choose any of the above, but this Colab has been tested # with the models of below selection... model_name = 'ViT-B_32' #@param ["ViT-B_32", "Mixer-B_16"] if model_name.startswith('ViT'): ![ -e "$model_name".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model_name".npz . if model_name.startswith('Mixer'): ![ -e "$model_name".npz ] || gsutil cp gs://mixer_models/imagenet21k/"$model_name".npz . import os assert os.path.exists(f'{model_name}.npz') # Google Colab "TPU" runtimes are configured in "2VM mode", meaning that JAX # cannot see the TPUs because they're not directly attached. Instead we need to # setup JAX to communicate with a second machine that has the TPUs attached. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: import jax import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() print('Connected to TPU.') else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') from absl import logging import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm logging.set_verbosity(logging.INFO) # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/configs/common.py') files.view('vision_transformer/vit_jax/configs/models.py') files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_clip.py') files.view('vision_transformer/vit_jax/train.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import input_pipeline from vit_jax import utils from vit_jax import models from vit_jax import momentum_clip from vit_jax import train from vit_jax.configs import common as common_config from vit_jax.configs import models as models_config # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 config = common_config.with_dataset(common_config.get_config(), dataset) num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] config.batch = batch_size config.pp.crop = 224 # For details about setting up datasets, see input_pipeline.py on the right. ds_train = input_pipeline.get_data_from_tfds(config=config, mode='train') ds_test = input_pipeline.get_data_from_tfds(config=config, mode='test') del config # Only needed to instantiate datasets. # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Note how images are cropped/scaled differently. # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code model_config = models_config.MODEL_CONFIGS[model_name] model_config # Load model definition & initialize random parameters. # This also compiles the model to XLA (takes some minutes the first time). if model_name.startswith('Mixer'): model = models.MlpMixer(num_classes=num_classes, **model_config) else: model = models.VisionTransformer(num_classes=num_classes, **model_config) variables = jax.jit(lambda: model.init( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. batch['image'][0, :1], train=False, ), backend='cpu')() # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model_name}.npz', init_params=variables['params'], model_config=model_config, ) ###Output INFO:absl:Inspect extra keys: {'pre_logits/bias', 'pre_logits/kernel'} INFO:absl:load_pretrained: drop-head variant ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['head']['bias']).__name__, params['head']['bias'].shape) print('params_repl.cls:', type(params_repl['head']['bias']).__name__, params_repl['head']['bias'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(lambda params, inputs: model.apply( dict(params=params), inputs, train=False)) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output INFO:absl:Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 100%|██████████| 19/19 [01:07<00:00, 3.58s/it] ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. lr_fn = utils.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) update_fn_repl = train.make_update_fn( apply_fn=model.apply, accum_steps=accum_steps, lr_fn=lr_fn) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_clip.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) # Initialize PRNGs for dropout. update_rng_repl = flax.jax_utils.replicate(jax.random.PRNGKey(0)) losses = [] lrs = [] # Completes in ~20 min on the TPU runtime. for step, batch in zip( tqdm.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), ): opt_repl, loss_repl, update_rng_repl = update_fn_repl( opt_repl, flax.jax_utils.replicate(step), batch, update_rng_repl) losses.append(loss_repl[0]) lrs.append(lr_fn(step)) plt.plot(losses) plt.figure() plt.plot(lrs) # Should be ~96.7% for Mixer-B/16 or 97.7% for ViT-B/32 on CIFAR10 (both @224) get_accuracy(opt_repl.target) ###Output INFO:absl:Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 100%|██████████| 19/19 [00:32<00:00, 1.73s/it] ###Markdown Inference ###Code # Download a pre-trained model. if model_name.startswith('Mixer'): # Download model trained on imagenet2012 ![ -e "$model_name"_imagenet2012.npz ] || gsutil cp gs://mixer_models/imagenet1k/"$model_name".npz "$model_name"_imagenet2012.npz model = models.MlpMixer(num_classes=1000, **model_config) else: # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model_name"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model_name".npz "$model_name"_imagenet2012.npz model = models.VisionTransformer(num_classes=1000, **model_config) import os assert os.path.exists(f'{model_name}_imagenet2012.npz') # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model_name}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. resolution = 224 if model_name.startswith('Mixer') else 384 !wget https://picsum.photos/$resolution -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = model.apply(dict(params=params), (np.array(img) / 128 - 1)[None, ...], train=False) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.13330 : sandbar, sand_bar 0.09332 : seashore, coast, seacoast, sea-coast 0.05257 : jeep, landrover 0.05188 : Arabian_camel, dromedary, Camelus_dromedarius 0.01251 : horned_viper, cerastes, sand_viper, horned_asp, Cerastes_cornutus 0.00753 : tiger_beetle 0.00744 : dung_beetle 0.00711 : sidewinder, horned_rattlesnake, Crotalus_cerastes 0.00703 : leatherback_turtle, leatherback, leathery_turtle, Dermochelys_coriacea 0.00647 : pole ###Markdown See code at https://github.com/google-research/vision_transformer/See paper at https://arxiv.org/abs/2010.11929This Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer. Copyright 2020 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/* # Download a pre-trained model. model = 'ViT-B_16' ![ -e "$model".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model".npz . #@markdown TPU setup : Boilerplate for connecting JAX to TPU. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: # Make sure the Colab Runtime is set to Accelerator: TPU. import requests if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print('Registered TPU:', config.FLAGS.jax_backend_target) else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_clip.py') files.view('vision_transformer/vit_jax/train.py') files.view('vision_transformer/vit_jax/hyper.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import hyper from vit_jax import input_pipeline from vit_jax import logging from vit_jax import models from vit_jax import momentum_clip from vit_jax import train logger = logging.setup_logger('./logs') # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 # Reduce to 256 if running on a single GPU. # Note the datasets are configured in input_pipeline.DATASET_PRESETS # Have a look in the editor at the right. num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] # tf.data.Datset for training, infinite repeats. ds_train = input_pipeline.get_data( dataset=dataset, mode='train', repeats=None, batch_size=batch_size, ) # tf.data.Datset for evaluation, single repeat. ds_test = input_pipeline.get_data( dataset=dataset, mode='test', repeats=1, batch_size=batch_size, ) # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Do you spot a difference? # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code # Load model definition & initialize random parameters. VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=num_classes) _, params = VisionTransformer.init_by_shape( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. [(batch['image'].shape[1:], batch['image'].dtype.name)]) # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model}.npz', init_params=params, model_config=models.CONFIGS[model], logger=logger, ) ###Output 2020-10-22 15:57:49,688 [WARNING] vit_jax.logging: Inspect recovered empty keys: {'pre_logits'} 2020-10-22 15:57:49,692 [INFO] vit_jax.logging: Inspect extra keys: {'pre_logits/kernel', 'pre_logits/bias'} 2020-10-22 15:57:49,702 [INFO] vit_jax.logging: Resformer: drop-head variant 2020-10-22 15:57:49,711 [INFO] vit_jax.logging: Resformer: resized variant: (1, 197, 768) to (1, 577, 768) 2020-10-22 15:57:49,712 [INFO] vit_jax.logging: Resformer: grid-size from 14 to 24 ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['cls']).__name__, params['cls'].shape) print('params_repl.cls:', type(params_repl['cls']).__name__, params_repl['cls'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(VisionTransformer.call) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.notebook.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output 2020-10-22 16:19:29,245 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. update_fn_repl = train.make_update_fn(VisionTransformer.call, accum_steps) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_clip.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) lr_fn = hyper.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) # Prefetch entire learning rate schedule onto devices. Otherwise we would have # a slow transfer from host to devices in every step. lr_iter = hyper.lr_prefetch_iter(lr_fn, 0, total_steps) # Initialize PRNGs for dropout. update_rngs = jax.random.split(jax.random.PRNGKey(0), jax.local_device_count()) # The world's simplest training loop. # Completes in ~20 min on the TPU runtime. for step, batch, lr_repl in zip( tqdm.notebook.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), lr_iter ): opt_repl, loss_repl, update_rngs = update_fn_repl( opt_repl, lr_repl, batch, update_rngs) # Should be ~97.2% for CIFAR10 # Should be ~71.2% for CIFAR100 get_accuracy(opt_repl.target) ###Output 2020-10-22 16:49:53,565 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Inference ###Code # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model".npz "$model"_imagenet2012.npz VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=1000) # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. !wget https://picsum.photos/384 -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = VisionTransformer.call(params, (np.array(img) / 128 - 1)[None, ...]) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.76433 : convertible 0.01839 : beach_wagon, station_wagon, wagon, estate_car, beach_waggon, station_waggon, waggon 0.01566 : car_mirror 0.01226 : cab, hack, taxi, taxicab 0.01132 : limousine, limo 0.01067 : golfcart, golf_cart 0.01041 : recreational_vehicle, RV, R.V. 0.01026 : Model_T 0.00805 : minibus 0.00767 : odometer, hodometer, mileometer, milometer ###Markdown See code at https://github.com/google-research/vision_transformer/See paper at https://arxiv.org/abs/2010.11929This Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer. Copyright 2020 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... # use_gdrive = 'no' #@param ["yes", "no"] # if use_gdrive == 'yes': # from google.colab import drive # drive.mount('/gdrive') # root = '/gdrive/My Drive/vision_transformer_colab' # import os # if not os.path.isdir(root): # os.mkdir(root) # os.chdir(root) # print(f'\nChanged CWD to "{root}"') # else: # from IPython import display # display.display(display.HTML( # '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # # Clone repository and pull latest changes. # ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer # !cd vision_transformer && git pull ###Output Already up to date. ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/* # Download a pre-trained model. model = 'ViT-B_16' ![ -e "$model".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model".npz . #@markdown TPU setup : Boilerplate for connecting JAX to TPU. # import os # if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: # # Make sure the Colab Runtime is set to Accelerator: TPU. # import requests # if 'TPU_DRIVER_MODE' not in globals(): # url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' # resp = requests.post(url) # TPU_DRIVER_MODE = 1 # # The following is required to use TPU Driver as JAX's backend. # from jax.config import config # config.FLAGS.jax_xla_backend = "tpu_driver" # config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] # print('Registered TPU:', config.FLAGS.jax_backend_target) # else: # print('No TPU detected. Can be changed under "Runtime/Change runtime type".') import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. # from google.colab import files # files.view('vision_transformer/vit_jax/checkpoint.py') # files.view('vision_transformer/vit_jax/input_pipeline.py') # files.view('vision_transformer/vit_jax/models.py') # files.view('vision_transformer/vit_jax/momentum_clip.py') # files.view('vision_transformer/vit_jax/train.py') # files.view('vision_transformer/vit_jax/hyper.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import hyper from vit_jax import input_pipeline from vit_jax import logging from vit_jax import models from vit_jax import momentum_clip from vit_jax import train logger = logging.setup_logger('./logs') # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'imagenet2012' batch_size = 512 # Reduce to 256 if running on a single GPU. # Note the datasets are configured in input_pipeline.DATASET_PRESETS # Have a look in the editor at the right. num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] # tf.data.Datset for training, infinite repeats. ds_train = input_pipeline.get_data( dataset=dataset, mode='train', repeats=None, batch_size=batch_size, ) # tf.data.Datset for evaluation, single repeat. ds_test = input_pipeline.get_data( dataset=dataset, mode='test', repeats=1, batch_size=batch_size, ) # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Do you spot a difference? # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code # Load model definition & initialize random parameters. VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=num_classes) _, params = VisionTransformer.init_by_shape( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. [(batch['image'].shape[1:], batch['image'].dtype.name)]) # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model}.npz', init_params=params, model_config=models.CONFIGS[model], logger=logger, ) ###Output 2020-10-22 15:57:49,688 [WARNING] vit_jax.logging: Inspect recovered empty keys: {'pre_logits'} 2020-10-22 15:57:49,692 [INFO] vit_jax.logging: Inspect extra keys: {'pre_logits/kernel', 'pre_logits/bias'} 2020-10-22 15:57:49,702 [INFO] vit_jax.logging: Resformer: drop-head variant 2020-10-22 15:57:49,711 [INFO] vit_jax.logging: Resformer: resized variant: (1, 197, 768) to (1, 577, 768) 2020-10-22 15:57:49,712 [INFO] vit_jax.logging: Resformer: grid-size from 14 to 24 ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['cls']).__name__, params['cls'].shape) print('params_repl.cls:', type(params_repl['cls']).__name__, params_repl['cls'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(VisionTransformer.call) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.notebook.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output 2020-10-22 16:19:29,245 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. update_fn_repl = train.make_update_fn(VisionTransformer.call, accum_steps) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_clip.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) lr_fn = hyper.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) # Prefetch entire learning rate schedule onto devices. Otherwise we would have # a slow transfer from host to devices in every step. lr_iter = hyper.lr_prefetch_iter(lr_fn, 0, total_steps) # Initialize PRNGs for dropout. update_rngs = jax.random.split(jax.random.PRNGKey(0), jax.local_device_count()) # The world's simplest training loop. # Completes in ~20 min on the TPU runtime. for step, batch, lr_repl in zip( tqdm.notebook.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), lr_iter ): opt_repl, loss_repl, update_rngs = update_fn_repl( opt_repl, lr_repl, batch, update_rngs) # Should be ~97.2% for CIFAR10 # Should be ~71.2% for CIFAR100 get_accuracy(opt_repl.target) ###Output 2020-10-22 16:49:53,565 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Inference ###Code # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model".npz "$model"_imagenet2012.npz VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=1000) # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. !wget https://picsum.photos/384 -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = VisionTransformer.call(params, (np.array(img) / 128 - 1)[None, ...]) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.76433 : convertible 0.01839 : beach_wagon, station_wagon, wagon, estate_car, beach_waggon, station_waggon, waggon 0.01566 : car_mirror 0.01226 : cab, hack, taxi, taxicab 0.01132 : limousine, limo 0.01067 : golfcart, golf_cart 0.01041 : recreational_vehicle, RV, R.V. 0.01026 : Model_T 0.00805 : minibus 0.00767 : odometer, hodometer, mileometer, milometer ###Markdown **NOTE** Currently this notebook runs with MlpMixer on GPUs and TPUs, but VisionTransformers only run on GPUs. This is due to a temporary regression in the TPUNode setup that is used for Colab and will be fixed soon. See code at https://github.com/google-research/vision_transformer/See papers at- Vision Transformer: https://arxiv.org/abs/2010.11929- MLP-Mixer: https://arxiv.org/abs/2105.01601- How to train your ViT: https://arxiv.org/abs/2106.10270- When Vision Transformers Outperform ResNets without Pretraining or Strong Data Augmentations: https://arxiv.org/abs/2106.01548This Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer.If you just want to load a pre-trained checkpoint from a large repository anddirectly use it for inference, you probably want to go the other Colabhttps://colab.sandbox.google.com/github/google-research/vision_transformer/blob/linen/vit_jax_augreg.ipynb Copyright 2021 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/imagenet* !gsutil ls -lh gs://vit_models/sam !gsutil ls -lh gs://mixer_models/* # Download a pre-trained model. # Note: you can really choose any of the above, but this Colab has been tested # with the models of below selection... model_name = 'ViT-B_32' #@param ["ViT-B_32", "Mixer-B_16"] if model_name.startswith('ViT'): ![ -e "$model_name".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model_name".npz . if model_name.startswith('Mixer'): ![ -e "$model_name".npz ] || gsutil cp gs://mixer_models/imagenet21k/"$model_name".npz . import os assert os.path.exists(f'{model_name}.npz') # Google Colab "TPU" runtimes are configured in "2VM mode", meaning that JAX # cannot see the TPUs because they're not directly attached. Instead we need to # setup JAX to communicate with a second machine that has the TPUs attached. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: import jax import jax.tools.colab_tpu jax.tools.colab_tpu.setup_tpu() print('Connected to TPU.') else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') from absl import logging import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm logging.set_verbosity(logging.INFO) # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/configs/common.py') files.view('vision_transformer/vit_jax/configs/models.py') files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_clip.py') files.view('vision_transformer/vit_jax/train.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import input_pipeline from vit_jax import utils from vit_jax import models from vit_jax import momentum_clip from vit_jax import train from vit_jax.configs import common as common_config from vit_jax.configs import models as models_config # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 config = common_config.with_dataset(common_config.get_config(), dataset) num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] config.batch = batch_size config.pp.crop = 224 # For details about setting up datasets, see input_pipeline.py on the right. ds_train = input_pipeline.get_data_from_tfds(config=config, mode='train') ds_test = input_pipeline.get_data_from_tfds(config=config, mode='test') del config # Only needed to instantiate datasets. # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Note how images are cropped/scaled differently. # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code model_config = models_config.MODEL_CONFIGS[model_name] model_config # Load model definition & initialize random parameters. # This also compiles the model to XLA (takes some minutes the first time). if model_name.startswith('Mixer'): model = models.MlpMixer(num_classes=num_classes, **model_config) else: model = models.VisionTransformer(num_classes=num_classes, **model_config) variables = jax.jit(lambda: model.init( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. batch['image'][0, :1], train=False, ), backend='cpu')() # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model_name}.npz', init_params=variables['params'], model_config=model_config, ) ###Output INFO:absl:Inspect extra keys: {'pre_logits/bias', 'pre_logits/kernel'} INFO:absl:load_pretrained: drop-head variant ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['head']['bias']).__name__, params['head']['bias'].shape) print('params_repl.cls:', type(params_repl['head']['bias']).__name__, params_repl['head']['bias'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(lambda params, inputs: model.apply( dict(params=params), inputs, train=False)) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output INFO:absl:Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 100%|██████████| 19/19 [01:07<00:00, 3.58s/it] ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. lr_fn = utils.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) update_fn_repl = train.make_update_fn( apply_fn=model.apply, accum_steps=accum_steps, lr_fn=lr_fn) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_clip.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) # Initialize PRNGs for dropout. update_rng_repl = flax.jax_utils.replicate(jax.random.PRNGKey(0)) losses = [] lrs = [] # Completes in ~20 min on the TPU runtime. for step, batch in zip( tqdm.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), ): opt_repl, loss_repl, update_rng_repl = update_fn_repl( opt_repl, flax.jax_utils.replicate(step), batch, update_rng_repl) losses.append(loss_repl[0]) lrs.append(lr_fn(step)) plt.plot(losses) plt.figure() plt.plot(lrs) # Should be ~96.7% for Mixer-B/16 or 97.7% for ViT-B/32 on CIFAR10 (both @224) get_accuracy(opt_repl.target) ###Output INFO:absl:Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 100%|██████████| 19/19 [00:32<00:00, 1.73s/it] ###Markdown Inference ###Code # Download a pre-trained model. if model_name.startswith('Mixer'): # Download model trained on imagenet2012 ![ -e "$model_name"_imagenet2012.npz ] || gsutil cp gs://mixer_models/imagenet1k/"$model_name".npz "$model_name"_imagenet2012.npz model = models.MlpMixer(num_classes=1000, **model_config) else: # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model_name"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model_name".npz "$model_name"_imagenet2012.npz model = models.VisionTransformer(num_classes=1000, **model_config) import os assert os.path.exists(f'{model_name}_imagenet2012.npz') # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model_name}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. resolution = 224 if model_name.startswith('Mixer') else 384 !wget https://picsum.photos/$resolution -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = model.apply(dict(params=params), (np.array(img) / 128 - 1)[None, ...], train=False) preds = np.array(jax.nn.softmax(logits)) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.13330 : sandbar, sand_bar 0.09332 : seashore, coast, seacoast, sea-coast 0.05257 : jeep, landrover 0.05188 : Arabian_camel, dromedary, Camelus_dromedarius 0.01251 : horned_viper, cerastes, sand_viper, horned_asp, Cerastes_cornutus 0.00753 : tiger_beetle 0.00744 : dung_beetle 0.00711 : sidewinder, horned_rattlesnake, Crotalus_cerastes 0.00703 : leatherback_turtle, leatherback, leathery_turtle, Dermochelys_coriacea 0.00647 : pole ###Markdown See code at https://github.com/google-research/vision_transformer/See paper at https://arxiv.org/abs/2010.11929This Colab allows you to run the [JAX](https://jax.readthedocs.org) implementation of the Vision Transformer. Copyright 2020 Google LLC. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown SetupNeeds to be executed once in every VM.The cell below downloads the code from Github and install necessary dependencies. ###Code #@markdown Select whether you would like to store data in your personal drive. #@markdown #@markdown If you select **yes**, you will need to authorize Colab to access #@markdown your personal drive #@markdown #@markdown If you select **no**, then any changes you make will diappear when #@markdown this Colab's VM restarts after some time of inactivity... use_gdrive = 'no' #@param ["yes", "no"] if use_gdrive == 'yes': from google.colab import drive drive.mount('/gdrive') root = '/gdrive/My Drive/vision_transformer_colab' import os if not os.path.isdir(root): os.mkdir(root) os.chdir(root) print(f'\nChanged CWD to "{root}"') else: from IPython import display display.display(display.HTML( '<h1 style="color:red">CHANGES NOT PERSISTED</h1>')) # Clone repository and pull latest changes. ![ -d vision_transformer ] || git clone --depth=1 https://github.com/google-research/vision_transformer !cd vision_transformer && git pull !pip install -qr vision_transformer/vit_jax/requirements.txt ###Output _____no_output_____ ###Markdown Imports ###Code # Shows all available pre-trained models. !gsutil ls -lh gs://vit_models/* # Download a pre-trained model. model = 'ViT-B_16' ![ -e "$model".npz ] || gsutil cp gs://vit_models/imagenet21k/"$model".npz . #@markdown TPU setup : Boilerplate for connecting JAX to TPU. import os if 'google.colab' in str(get_ipython()) and 'COLAB_TPU_ADDR' in os.environ: # Make sure the Colab Runtime is set to Accelerator: TPU. import requests if 'TPU_DRIVER_MODE' not in globals(): url = 'http://' + os.environ['COLAB_TPU_ADDR'].split(':')[0] + ':8475/requestversion/tpu_driver0.1-dev20191206' resp = requests.post(url) TPU_DRIVER_MODE = 1 # The following is required to use TPU Driver as JAX's backend. from jax.config import config config.FLAGS.jax_xla_backend = "tpu_driver" config.FLAGS.jax_backend_target = "grpc://" + os.environ['COLAB_TPU_ADDR'] print('Registered TPU:', config.FLAGS.jax_backend_target) else: print('No TPU detected. Can be changed under "Runtime/Change runtime type".') import flax import jax from matplotlib import pyplot as plt import numpy as np import tqdm # Shows the number of available devices. # In a CPU/GPU runtime this will be a single device. # In a TPU runtime this will be 8 cores. jax.local_devices() # Open some code files in a split editor on the right. # You can open more files in the file tab on the left. from google.colab import files files.view('vision_transformer/vit_jax/checkpoint.py') files.view('vision_transformer/vit_jax/input_pipeline.py') files.view('vision_transformer/vit_jax/models.py') files.view('vision_transformer/vit_jax/momentum_hp.py') files.view('vision_transformer/vit_jax/train.py') files.view('vision_transformer/vit_jax/hyper.py') # Import files from repository. # Updating the files in the editor on the right will immediately update the # modules by re-importing them. import sys if './vision_transformer' not in sys.path: sys.path.append('./vision_transformer') %load_ext autoreload %autoreload 2 from vit_jax import checkpoint from vit_jax import hyper from vit_jax import input_pipeline from vit_jax import logging from vit_jax import models from vit_jax import momentum_hp from vit_jax import train logger = logging.setup_logger('./logs') # Helper functions for images. labelnames = dict( # https://www.cs.toronto.edu/~kriz/cifar.html cifar10=('airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'), # https://www.cs.toronto.edu/~kriz/cifar.html cifar100=('apple', 'aquarium_fish', 'baby', 'bear', 'beaver', 'bed', 'bee', 'beetle', 'bicycle', 'bottle', 'bowl', 'boy', 'bridge', 'bus', 'butterfly', 'camel', 'can', 'castle', 'caterpillar', 'cattle', 'chair', 'chimpanzee', 'clock', 'cloud', 'cockroach', 'couch', 'crab', 'crocodile', 'cup', 'dinosaur', 'dolphin', 'elephant', 'flatfish', 'forest', 'fox', 'girl', 'hamster', 'house', 'kangaroo', 'computer_keyboard', 'lamp', 'lawn_mower', 'leopard', 'lion', 'lizard', 'lobster', 'man', 'maple_tree', 'motorcycle', 'mountain', 'mouse', 'mushroom', 'oak_tree', 'orange', 'orchid', 'otter', 'palm_tree', 'pear', 'pickup_truck', 'pine_tree', 'plain', 'plate', 'poppy', 'porcupine', 'possum', 'rabbit', 'raccoon', 'ray', 'road', 'rocket', 'rose', 'sea', 'seal', 'shark', 'shrew', 'skunk', 'skyscraper', 'snail', 'snake', 'spider', 'squirrel', 'streetcar', 'sunflower', 'sweet_pepper', 'table', 'tank', 'telephone', 'television', 'tiger', 'tractor', 'train', 'trout', 'tulip', 'turtle', 'wardrobe', 'whale', 'willow_tree', 'wolf', 'woman', 'worm') ) def make_label_getter(dataset): """Returns a function converting label indices to names.""" def getter(label): if dataset in labelnames: return labelnames[dataset][label] return f'label={label}' return getter def show_img(img, ax=None, title=None): """Shows a single image.""" if ax is None: ax = plt.gca() ax.imshow(img[...]) ax.set_xticks([]) ax.set_yticks([]) if title: ax.set_title(title) def show_img_grid(imgs, titles): """Shows a grid of images.""" n = int(np.ceil(len(imgs)**.5)) _, axs = plt.subplots(n, n, figsize=(3 * n, 3 * n)) for i, (img, title) in enumerate(zip(imgs, titles)): img = (img + 1) / 2 # Denormalize show_img(img, axs[i // n][i % n], title) ###Output _____no_output_____ ###Markdown Load dataset ###Code dataset = 'cifar10' batch_size = 512 # Reduce to 256 if running on a single GPU. # Note the datasets are configured in input_pipeline.DATASET_PRESETS # Have a look in the editor at the right. num_classes = input_pipeline.get_dataset_info(dataset, 'train')['num_classes'] # tf.data.Datset for training, infinite repeats. ds_train = input_pipeline.get_data( dataset=dataset, mode='train', repeats=None, batch_size=batch_size, ) # tf.data.Datset for evaluation, single repeat. ds_test = input_pipeline.get_data( dataset=dataset, mode='test', repeats=1, batch_size=batch_size, ) # Fetch a batch of test images for illustration purposes. batch = next(iter(ds_test.as_numpy_iterator())) # Note the shape : [num_local_devices, local_batch_size, h, w, c] batch['image'].shape # Show some imags with their labels. images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) # Same as above, but with train images. # Do you spot a difference? # Check out input_pipeline.get_data() in the editor at your right to see how the # images are preprocessed differently. batch = next(iter(ds_train.as_numpy_iterator())) images, labels = batch['image'][0][:9], batch['label'][0][:9] titles = map(make_label_getter(dataset), labels.argmax(axis=1)) show_img_grid(images, titles) ###Output _____no_output_____ ###Markdown Load pre-trained ###Code # Load model definition & initialize random parameters. VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=num_classes) _, params = VisionTransformer.init_by_shape( jax.random.PRNGKey(0), # Discard the "num_local_devices" dimension of the batch for initialization. [(batch['image'].shape[1:], batch['image'].dtype.name)]) # Load and convert pretrained checkpoint. # This involves loading the actual pre-trained model results, but then also also # modifying the parameters a bit, e.g. changing the final layers, and resizing # the positional embeddings. # For details, refer to the code and to the methods of the paper. params = checkpoint.load_pretrained( pretrained_path=f'{model}.npz', init_params=params, model_config=models.CONFIGS[model], logger=logger, ) ###Output 2020-10-22 15:57:49,688 [WARNING] vit_jax.logging: Inspect recovered empty keys: {'pre_logits'} 2020-10-22 15:57:49,692 [INFO] vit_jax.logging: Inspect extra keys: {'pre_logits/kernel', 'pre_logits/bias'} 2020-10-22 15:57:49,702 [INFO] vit_jax.logging: Resformer: drop-head variant 2020-10-22 15:57:49,711 [INFO] vit_jax.logging: Resformer: resized variant: (1, 197, 768) to (1, 577, 768) 2020-10-22 15:57:49,712 [INFO] vit_jax.logging: Resformer: grid-size from 14 to 24 ###Markdown Evaluate ###Code # So far, all our data is in the host memory. Let's now replicate the arrays # into the devices. # This will make every array in the pytree params become a ShardedDeviceArray # that has the same data replicated across all local devices. # For TPU it replicates the params in every core. # For a single GPU this simply moves the data onto the device. # For CPU it simply creates a copy. params_repl = flax.jax_utils.replicate(params) print('params.cls:', type(params['cls']).__name__, params['cls'].shape) print('params_repl.cls:', type(params_repl['cls']).__name__, params_repl['cls'].shape) # Then map the call to our model's forward pass onto all available devices. vit_apply_repl = jax.pmap(VisionTransformer.call) def get_accuracy(params_repl): """Returns accuracy evaluated on the test set.""" good = total = 0 steps = input_pipeline.get_dataset_info(dataset, 'test')['num_examples'] // batch_size for _, batch in zip(tqdm.notebook.trange(steps), ds_test.as_numpy_iterator()): predicted = vit_apply_repl(params_repl, batch['image']) is_same = predicted.argmax(axis=-1) == batch['label'].argmax(axis=-1) good += is_same.sum() total += len(is_same.flatten()) return good / total # Random performance without fine-tuning. get_accuracy(params_repl) ###Output 2020-10-22 16:19:29,245 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Fine-tune ###Code # 100 Steps take approximately 15 minutes in the TPU runtime. total_steps = 100 warmup_steps = 5 decay_type = 'cosine' grad_norm_clip = 1 # This controls in how many forward passes the batch is split. 8 works well with # a TPU runtime that has 8 devices. 64 should work on a GPU. You can of course # also adjust the batch_size above, but that would require you to adjust the # learning rate accordingly. accum_steps = 8 base_lr = 0.03 # Check out train.make_update_fn in the editor on the right side for details. update_fn_repl = train.make_update_fn(VisionTransformer.call, accum_steps) # We use a momentum optimizer that uses half precision for state to save # memory. It als implements the gradient clipping. opt = momentum_hp.Optimizer(grad_norm_clip=grad_norm_clip).create(params) opt_repl = flax.jax_utils.replicate(opt) lr_fn = hyper.create_learning_rate_schedule(total_steps, base_lr, decay_type, warmup_steps) # Prefetch entire learning rate schedule onto devices. Otherwise we would have # a slow transfer from host to devices in every step. lr_iter = hyper.lr_prefetch_iter(lr_fn, 0, total_steps) # Initialize PRNGs for dropout. update_rngs = jax.random.split(jax.random.PRNGKey(0), jax.local_device_count()) # The world's simplest training loop. # Completes in ~20 min on the TPU runtime. for step, batch, lr_repl in zip( tqdm.notebook.trange(1, total_steps + 1), ds_train.as_numpy_iterator(), lr_iter ): opt_repl, loss_repl, update_rngs = update_fn_repl( opt_repl, lr_repl, batch, update_rngs) # Should be ~97.2% for CIFAR10 # Should be ~71.2% for CIFAR10 get_accuracy(opt_repl.target) ###Output 2020-10-22 16:49:53,565 [INFO] absl: Load dataset info from /root/tensorflow_datasets/cifar10/3.0.2 ###Markdown Inference ###Code # Download model pre-trained on imagenet21k and fine-tuned on imagenet2012. ![ -e "$model"_imagenet2012.npz ] || gsutil cp gs://vit_models/imagenet21k+imagenet2012/"$model".npz "$model"_imagenet2012.npz VisionTransformer = models.KNOWN_MODELS[model].partial(num_classes=1000) # Load and convert pretrained checkpoint. params = checkpoint.load(f'{model}_imagenet2012.npz') params['pre_logits'] = {} # Need to restore empty leaf for Flax. # Get imagenet labels. !wget https://storage.googleapis.com/bit_models/ilsvrc2012_wordnet_lemmas.txt imagenet_labels = dict(enumerate(open('ilsvrc2012_wordnet_lemmas.txt'))) # Get a random picture with the correct dimensions. !wget https://picsum.photos/384 -O picsum.jpg import PIL img = PIL.Image.open('picsum.jpg') img # Predict on a batch with a single item (note very efficient TPU usage...) logits, = VisionTransformer.call(params, (np.array(img) / 128 - 1)[None, ...]) preds = flax.nn.softmax(logits) for idx in preds.argsort()[:-11:-1]: print(f'{preds[idx]:.5f} : {imagenet_labels[idx]}', end='') ###Output 0.76433 : convertible 0.01839 : beach_wagon, station_wagon, wagon, estate_car, beach_waggon, station_waggon, waggon 0.01566 : car_mirror 0.01226 : cab, hack, taxi, taxicab 0.01132 : limousine, limo 0.01067 : golfcart, golf_cart 0.01041 : recreational_vehicle, RV, R.V. 0.01026 : Model_T 0.00805 : minibus 0.00767 : odometer, hodometer, mileometer, milometer
student-projects/fall-2020/GGWP-Identify-Toxic-Behavior-in-Gaming-with-Public-Data/scraping/Twitch_Scraper.ipynb
###Markdown The channels I watched LOL are: Tubbo yamikazexz riotgames nightblue3 iwilldominate sneakylol thebausffs tfblade loltyler1 shiphtur tarzaned jankos ratirl drututt katevolved wingsofdeath trick2g karasmai ipav999 anniebot boxbox corejj lol_selfmade nisqyy ikeepittaco gamergirl tobiasfateThe channels I watched PUBG are: Tubbo danucd tgltn ibiza hambinooo break halifax pubg_andymh5 grizz alisa summit1g chocotaco feyd fuzzfaze49 ashek gagod chad taryn jowybear shrimzyhttps://www.twitch.tv/tubboThe tutorial: https://www.learndatasci.com/tutorials/how-stream-text-data-twitch-sockets-python/ Setup ###Code from google.colab import drive drive.mount('/content/drive') my_project_folder = 'Data-X: GGWP Toxic Behavior Public Data' %cd drive/My Drive/{my_project_folder}/scraping server = 'irc.chat.twitch.tv' port = 6667 nickname = 'aki_niki' # your username token = '' # your token channel = '#tobiasfate' # instantiate a socket import socket sock = socket.socket() sock.connect((server, port)) sock.send(f"PASS {token}\n".encode('utf-8')) sock.send(f"NICK {nickname}\n".encode('utf-8')) sock.send(f"JOIN {channel}\n".encode('utf-8')) resp = sock.recv(2048).decode('utf-8') resp ###Output _____no_output_____ ###Markdown Write into files ###Code import logging logging.basicConfig(level=logging.DEBUG, format='%(asctime)s — %(message)s', datefmt='%Y-%m-%d_%H:%M:%S', handlers=[logging.FileHandler('chat.log', encoding='utf-8')]) logging.info(resp) # This process is keep collecting data. Interrupt it to go to the next step from emoji import demojize while True: resp = sock.recv(2048).decode('utf-8') if resp.startswith('PING'): sock.send("PONG\n".encode('utf-8')) elif len(resp) > 0: logging.info(demojize(resp)) # run in terminal: tail -f chat.log # sample message msg = "2020-11-24_16:54:53 — :[email protected] PRIVMSG #tobiasfate :I think" #'2018-12-10_11:26:40 — :[email protected] PRIVMSG #ninja :Chat, let Ninja play solos' # date: split it off and parse it from datetime import datetime time_logged = msg.split()[0].strip() time_logged = datetime.strptime(time_logged, '%Y-%m-%d_%H:%M:%S') time_logged username_message = msg.split('—')[1:] username_message = '—'.join(username_message).strip() username_message import re username, channel, message = re.search(':(.*)\!.*@.*\.tmi\.twitch\.tv PRIVMSG #(.*) :(.*)', username_message).groups() # (.*) — will capture part of the string print(f"Channel: {channel} \nUsername: {username} \nMessage: {message}") import pandas as pd def get_chat_dataframe(file): data = [] with open(file, 'r', encoding='utf-8') as f: lines = f.read().split('\n\n\n') for line in lines: try: time_logged = line.split('—')[0].strip() time_logged = datetime.strptime(time_logged, '%Y-%m-%d_%H:%M:%S') username_message = line.split('—')[1:] username_message = '—'.join(username_message).strip() username, channel, message = re.search( ':(.*)\!.*@.*\.tmi\.twitch\.tv PRIVMSG #(.*) :(.*)', username_message ).groups() d = { 'dt': time_logged, 'channel': channel, 'username': username, 'message': message } data.append(d) except Exception: pass return pd.DataFrame().from_records(data) df = get_chat_dataframe('chat.log') df.set_index('dt', inplace=True) print(df.shape) df sock.close() ###Output _____no_output_____ ###Markdown Conver to CSV ###Code # Get only the message column as only that is required for the model prediction df2 = df['message'].to_frame() df2 = df2.drop_duplicates() # drop duplicates game_platform = "pubg_twitch" df2.to_csv('../data/scraped/' + game_platform + '.csv', encoding='utf-8') ###Output _____no_output_____
notebooks/pre-processing/GunViolenceArchive-PreProcessing-Script.ipynb
###Markdown Mass Shooting From Gun Violence Archive Data downloaded from : [Gun Violence Archive](https://www.gunviolencearchive.org/reports)Raw Data Files Present in : raw_data/GVA ###Code ! ls -l raw_data/* | grep Mass # Read MassShootingAllYears.csv first # Import Library import pandas as pd import numpy as np MassShootingAllYears_df = pd.read_csv("raw_data/GVA/MassShootingAllYears.csv") MassShootingAllYears_df.shape MassShootingAllYears2014_df = pd.read_csv("raw_data/GVA/MassShootingAllYears2014.csv") MassShootingAllYears2014_df.shape # Reading All Other Csv files MassShootingAllYears2015_df = pd.read_csv("raw_data/GVA/MassShootingAllYears2015.csv") MassShootingAllYears2015_df.shape # Reading All Other Csv files MassShootingAllYears2016_df = pd.read_csv("raw_data/GVA/MassShootingAllYears2016.csv") MassShootingAllYears2016_df.shape # Reading All Other Csv files MassShootingAllYears2017_df = pd.read_csv("raw_data/GVA/MassShootingAllYears2017.csv") MassShootingAllYears2017_df.shape # Contatenate All Dataframes into One Dataframe dataframe_toConcate = [MassShootingAllYears_df, MassShootingAllYears2014_df, MassShootingAllYears2015_df, MassShootingAllYears2016_df, MassShootingAllYears2017_df] MassShootingAllYears_Processed = pd.concat(dataframe_toConcate) # Write MassShootingAllYears_df into CSV File into PreProcessed Data MassShootingAllYears_Processed.to_csv("processed_data/GVA/MassShootingTotalYears.csv", index=False) MassShootingAllYears_Processed.shape ###Output _____no_output_____ ###Markdown Accidental Deaths from Gun Violence Archive Data downloaded from : [Gun Violence Archive](https://www.gunviolencearchive.org/reports)Raw Data Files Present in : raw_data/ Folder ###Code ! ls -l raw_data/* | grep Deaths ###Output -rw-r--r--@ 1 vijaykalmath staff 152081 Dec 11 16:40 Accidental_Deaths_All.csv -rw-r--r--@ 1 vijaykalmath staff 56376 Dec 11 16:43 Accidental_Deaths_Children.csv -rw-r--r--@ 1 vijaykalmath staff 76427 Dec 11 16:50 Accidental_Deaths_Teen.csv ###Markdown Notes : 1. Accidental_Deaths_All contains all Deaths 2. Accidental_Deaths_Children.csv has only deaths involving Children3. Accidental_Deaths_Teen.csv has only deaths involving Teens 4. We can safely assume that anything that is not classified as Children or Teen can be classified as Adult ###Code Accidental_DeathsAll_df = pd.read_csv("raw_data/GVA/Accidental_Deaths_All.csv") Accidental_DeathsAll_df.shape Accidental_DeathsAllChildren_df = pd.read_csv("raw_data/GVA/Accidental_Deaths_Children.csv") Accidental_DeathsAllChildren_df.shape Accidental_DeathsAllTeen_df = pd.read_csv("raw_data/GVA/Accidental_Deaths_Teen.csv") Accidental_DeathsAllTeen_df.shape # Setting Age to Adult Accidental_DeathsAll_df['Age'] = 'Adult' # Setting Age to Children Accidental_DeathsAllChildren_df['Age'] = "Child" # Setting Age to Teen Accidental_DeathsAllTeen_df['Age'] = "Teen" Accidental_DeathsAllChildren_df dataframe_toConcate = [Accidental_DeathsAll_df,Accidental_DeathsAllChildren_df,Accidental_DeathsAllTeen_df] Accidental_DeathsAll_Processed = pd.concat(dataframe_toConcate) Accidental_DeathsAll_Processed.drop_duplicates(subset=['Incident ID'], keep='last',inplace=True) Accidental_DeathsAll_Processed Accidental_DeathsAll_Processed.to_csv("processed_data/GVA/Accidental_DeathsAll.csv", index=False) ###Output _____no_output_____ ###Markdown Accidental Injuries from Gun Violence Archive Data downloaded from : [Gun Violence Archive](https://www.gunviolencearchive.org/reports)Raw Data Files Present in : raw_data/ Folder ###Code ! ls -l raw_data/* | grep Injuries ###Output -rw-r--r--@ 1 vijaykalmath staff 151836 Dec 11 16:50 Accidental_Injuries_All.csv -rw-r--r--@ 1 vijaykalmath staff 122115 Dec 11 16:51 Accidental_Injuries_Children.csv -rw-r--r--@ 1 vijaykalmath staff 140351 Dec 11 16:51 Accidental_Injuries_Teen.csv ###Markdown Notes : 1. Accidental_Injuries_All contains all Injuries 2. Accidental_Injuries_Children.csv has only Injuries involving Children3. Accidental_Injuries_Teen.csv has only Injuries involving Teens 4. We can safely assume that anything that is not classified as Children or Teen can be classified as Adult ###Code Accidental_InjuriesAll_df = pd.read_csv("raw_data/GVA/Accidental_Injuries_All.csv") Accidental_InjuriesAll_df.shape Accidental_InjuriesAllChildren_df = pd.read_csv("raw_data/GVA/Accidental_Injuries_Children.csv") Accidental_InjuriesAllChildren_df.shape Accidental_InjuriesAllTeen_df = pd.read_csv("raw_data/GVA/Accidental_Injuries_Teen.csv") Accidental_InjuriesAllTeen_df.shape # Setting Age to Adult Accidental_InjuriesAll_df['Age'] = 'Adult' # Setting Age to Children Accidental_InjuriesAllChildren_df['Age'] = "Child" # Setting Age to Teen Accidental_InjuriesAllTeen_df['Age'] = "Teen" Accidental_InjuriesAllChildren_df dataframe_toConcate = [Accidental_InjuriesAll_df,Accidental_InjuriesAllChildren_df,Accidental_InjuriesAllTeen_df] Accidental_InjuriesAll_Processed = pd.concat(dataframe_toConcate) Accidental_InjuriesAll_Processed.drop_duplicates(subset=['Incident ID'], keep='last',inplace=True) Accidental_InjuriesAll_Processed Accidental_InjuriesAll_Processed.to_csv("processed_data/GVA/Accidental_InjuriesAll.csv", index=False) ###Output _____no_output_____ ###Markdown Final Data Check ###Code MassShootingAllYears_Processed = pd.read_csv("processed_data/GVA/MassShootingTotalYears.csv") Accidental_DeathsAll_Processed = pd.read_csv("processed_data/GVA/Accidental_DeathsAll.csv") Accidental_InjuriesAll_Processed = pd.read_csv("processed_data/GVA/Accidental_InjuriesAll.csv") MassShootingAllYears_Processed.shape Accidental_DeathsAll_Processed.shape Accidental_InjuriesAll_Processed.shape MassShootingAllYears_Processed Accidental_DeathsAll_Processed Accidental_InjuriesAll_Processed ###Output _____no_output_____
examples/demo_lime.ipynb
###Markdown This notebook demonstrates how LIME - Local Interpretable Model-Agnostic Explanations can be used with models learnt with the AIF 360 toolkit to generate explanations for model predictions.For more information on LIME, see [https://github.com/marcotcr/lime](https://github.com/marcotcr/lime). ###Code from __future__ import print_function %matplotlib inline import sklearn.model_selection import sklearn.metrics import sklearn.datasets import sklearn.ensemble import sklearn.preprocessing import numpy as np import lime import lime.lime_tabular from IPython.display import Markdown, display import matplotlib.pyplot as plt import sys sys.path.append("../") import numpy as np from aif360.datasets import BinaryLabelDataset from aif360.metrics.binary_label_dataset_metric import BinaryLabelDatasetMetric from aif360.metrics.classification_metric import ClassificationMetric from aif360.algorithms.preprocessing.optim_preproc_helpers.data_preproc_functions import load_preproc_data_adult from aif360.algorithms.preprocessing.reweighing import Reweighing from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from IPython.display import Markdown, display import matplotlib.pyplot as plt from aif360.datasets.lime_encoder import LimeEncoder from aif360.datasets.adult_dataset import AdultDataset ###Output _____no_output_____ ###Markdown **Load dataset and display statistics** ###Code np.random.seed(1) dataset_orig = AdultDataset() dataset_orig_train, dataset_orig_test = dataset_orig.split([0.7], shuffle=True) # Metric for the original dataset sens_attr = dataset_orig_train.protected_attribute_names[0] sens_idx = dataset_orig_train.protected_attribute_names.index(sens_attr) privileged_groups = [{sens_attr:dataset_orig_train.privileged_protected_attributes[sens_idx][0]}] unprivileged_groups = [{sens_attr:dataset_orig_train.unprivileged_protected_attributes[sens_idx][0]}] metric_orig_train = BinaryLabelDatasetMetric(dataset_orig_train, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) display(Markdown("#### Original training dataset")) print("Difference in mean outcomes between privileged and unprivileged groups = %f" % metric_orig_train.mean_difference()) ###Output _____no_output_____ ###Markdown **Transform the data using the Re-Weighing (pre-processing) algorithm** ###Code RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW.fit(dataset_orig_train) dataset_transf_train = RW.transform(dataset_orig_train) ###Output _____no_output_____ ###Markdown **Learn and test models from the transformed data using Logistic Regression** ###Code #Train model on given dataset dataset = dataset_transf_train # data to train on scale = StandardScaler().fit(dataset.features) # remember the scale model = LogisticRegression() # model to learn X_train = scale.transform(dataset.features) #apply the scale y_train = dataset.labels.ravel() model.fit(X_train, y_train, sample_weight=dataset.instance_weights) #save model lr_orig = model lr_scale_orig = scale #Test model on given dataset and find threshold for best balanced accuracy import numpy as np from tqdm import tqdm thresh_arr = np.linspace(0.01, 0.5, 50) scale = lr_scale_orig model = lr_orig #model to test dataset = dataset_orig_test #data to test on X_test = scale.transform(dataset.features) #apply the same scale as applied to the training data y_test = dataset.labels.ravel() y_test_pred_prob = model.predict_proba(X_test) bal_acc_arr = [] disp_imp_arr = [] avg_odds_diff_arr = [] for thresh in tqdm(thresh_arr): y_test_pred = (y_test_pred_prob[:,1] > thresh).astype(np.double) dataset_pred = dataset.copy() dataset_pred.labels = y_test_pred classified_metric = ClassificationMetric(dataset, dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) metric_pred = BinaryLabelDatasetMetric(dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) TPR = classified_metric.true_positive_rate() TNR = classified_metric.true_negative_rate() bal_acc = 0.5*(TPR+TNR) acc = accuracy_score(y_true=dataset.labels, y_pred=dataset_pred.labels) bal_acc_arr.append(bal_acc) avg_odds_diff_arr.append(classified_metric.average_odds_difference()) disp_imp_arr.append(metric_pred.disparate_impact()) thresh_arr_best_ind = np.where(bal_acc_arr == np.max(bal_acc_arr))[0][0] thresh_arr_best = np.array(thresh_arr)[thresh_arr_best_ind] best_bal_acc = bal_acc_arr[thresh_arr_best_ind] disp_imp_at_best_bal_acc = np.abs(1.0-np.array(disp_imp_arr))[thresh_arr_best_ind] avg_odds_diff_at_best_bal_acc = avg_odds_diff_arr[thresh_arr_best_ind] #Plot balanced accuracy, abs(1-disparate impact) fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, np.abs(1.0-np.array(disp_imp_arr)), color='r') ax2.set_ylabel('abs(1-disparate impact)', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) #Plot average odds difference fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, avg_odds_diff_arr, color='r') ax2.set_ylabel('avg. odds diff.', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) rf_thresh_arr_orig_best = thresh_arr_best print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) rf_best_bal_acc_arr_orig = best_bal_acc print("Best balance accuracy: %6.4f" % rf_best_bal_acc_arr_orig) rf_disp_imp_at_best_bal_acc_orig = disp_imp_at_best_bal_acc print("Corresponding abs(1-disparate impact) value: %6.4f" % rf_disp_imp_at_best_bal_acc_orig) rf_avg_odds_diff_at_best_bal_acc_orig = avg_odds_diff_at_best_bal_acc print("Corresponding average odds difference value: %6.4f" % rf_avg_odds_diff_at_best_bal_acc_orig) ###Output Threshold corresponding to Best balance accuracy: 0.1900 Best balance accuracy: 0.8245 Corresponding abs(1-disparate impact) value: 0.2483 Corresponding average odds difference value: -0.0234 ###Markdown ** Use LIME to generate explanations for predictions made using the learnt Logistic Regression model** ###Code limeData = LimeEncoder().fit(dataset_orig_train) s_train = limeData.transform(dataset_orig_train.features) s_test = limeData.transform(dataset_orig_test.features) scale = lr_scale_orig model = lr_orig #model to test explainer = lime.lime_tabular.LimeTabularExplainer(s_train ,class_names=limeData.s_class_names, feature_names = limeData.s_feature_names, categorical_features=limeData.s_categorical_features, categorical_names=limeData.s_categorical_names, kernel_width=3, verbose=False,discretize_continuous=True) s_predict_fn = lambda x: model.predict_proba(scale.transform(limeData.inverse_transform(x))) import random print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) i1 = 1 exp = explainer.explain_instance(s_test[i1], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i1])) i2 = 100 exp = explainer.explain_instance(s_test[i2], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i2])) ###Output Threshold corresponding to Best balance accuracy: 0.1900 Actual label: [1.] Actual label: [0.] ###Markdown **Learn and test models from the transformed data using Random Forests** ###Code #Train model on given dataset dataset = dataset_transf_train # data to train on scale = StandardScaler().fit(dataset.features) # remember the scale model = sklearn.ensemble.RandomForestClassifier(n_estimators=500) # model to learn X_train = scale.transform(dataset.features) #apply the scale y_train = dataset.labels.ravel() model.fit(X_train, y_train, sample_weight=dataset.instance_weights) #save model rf_orig = model rf_scale_orig = scale #Test model on given dataset and find threshold for best balanced accuracy import numpy as np from tqdm import tqdm thresh_arr = np.linspace(0.01, 0.5, 50) scale = rf_scale_orig model = rf_orig #model to test dataset = dataset_orig_test #data to test on X_test = scale.transform(dataset.features) #apply the same scale as applied to the training data y_test = dataset.labels.ravel() y_test_pred_prob = model.predict_proba(X_test) bal_acc_arr = [] disp_imp_arr = [] avg_odds_diff_arr = [] for thresh in tqdm(thresh_arr): y_test_pred = (y_test_pred_prob[:,1] > thresh).astype(np.double) dataset_pred = dataset.copy() dataset_pred.labels = y_test_pred classified_metric = ClassificationMetric(dataset, dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) metric_pred = BinaryLabelDatasetMetric(dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) TPR = classified_metric.true_positive_rate() TNR = classified_metric.true_negative_rate() bal_acc = 0.5*(TPR+TNR) acc = accuracy_score(y_true=dataset.labels, y_pred=dataset_pred.labels) bal_acc_arr.append(bal_acc) avg_odds_diff_arr.append(classified_metric.average_odds_difference()) disp_imp_arr.append(metric_pred.disparate_impact()) thresh_arr_best_ind = np.where(bal_acc_arr == np.max(bal_acc_arr))[0][0] thresh_arr_best = np.array(thresh_arr)[thresh_arr_best_ind] best_bal_acc = bal_acc_arr[thresh_arr_best_ind] disp_imp_at_best_bal_acc = np.abs(1.0-np.array(disp_imp_arr))[thresh_arr_best_ind] avg_odds_diff_at_best_bal_acc = avg_odds_diff_arr[thresh_arr_best_ind] #Plot balanced accuracy, abs(1-disparate impact) fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, np.abs(1.0-np.array(disp_imp_arr)), color='r') ax2.set_ylabel('abs(1-disparate impact)', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) #Plot average odds difference fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, avg_odds_diff_arr, color='r') ax2.set_ylabel('avg. odds diff.', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) rf_thresh_arr_orig_best = thresh_arr_best print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) rf_best_bal_acc_arr_orig = best_bal_acc print("Best balance accuracy: %6.4f" % rf_best_bal_acc_arr_orig) rf_disp_imp_at_best_bal_acc_orig = disp_imp_at_best_bal_acc print("Corresponding abs(1-disparate impact) value: %6.4f" % rf_disp_imp_at_best_bal_acc_orig) rf_avg_odds_diff_at_best_bal_acc_orig = avg_odds_diff_at_best_bal_acc print("Corresponding average odds difference value: %6.4f" % rf_avg_odds_diff_at_best_bal_acc_orig) ###Output Threshold corresponding to Best balance accuracy: 0.2600 Best balance accuracy: 0.8083 Corresponding abs(1-disparate impact) value: 0.4090 Corresponding average odds difference value: -0.0698 ###Markdown ** Use LIME to generate explanations for predictions made using the learnt Logistic Regression model** ###Code limeData = LimeEncoder().fit(dataset_orig_train) s_train = limeData.transform(dataset_orig_train.features) s_test = limeData.transform(dataset_orig_test.features) scale = rf_scale_orig model = rf_orig #model to test explainer = lime.lime_tabular.LimeTabularExplainer(s_train ,class_names=limeData.s_class_names, feature_names = limeData.s_feature_names, categorical_features=limeData.s_categorical_features, categorical_names=limeData.s_categorical_names, kernel_width=3, verbose=False,discretize_continuous=True) s_predict_fn = lambda x: model.predict_proba(scale.transform(limeData.inverse_transform(x))) import random print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) exp = explainer.explain_instance(s_test[i1], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i1])) exp = explainer.explain_instance(s_test[i2], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i2])) ###Output Threshold corresponding to Best balance accuracy: 0.2600 Actual label: [1.] Actual label: [0.] ###Markdown This notebook demonstrates how LIME - Local Interpretable Model-Agnostic Explanations can be used with models learnt with the AIF 360 toolkit to generate explanations for model predictions.For more information on LIME, see [https://github.com/marcotcr/lime](https://github.com/marcotcr/lime). ###Code from __future__ import print_function %matplotlib inline import sklearn.model_selection import sklearn.metrics import sklearn.datasets import sklearn.ensemble import sklearn.preprocessing import numpy as np import lime import lime.lime_tabular from IPython.display import Markdown, display import matplotlib.pyplot as plt import sys sys.path.append("../") import numpy as np from aif360.datasets import BinaryLabelDataset from aif360.metrics.binary_label_dataset_metric import BinaryLabelDatasetMetric from aif360.metrics.classification_metric import ClassificationMetric from aif360.algorithms.preprocessing.optim_preproc_helpers.data_preproc_functions import load_preproc_data_adult from aif360.algorithms.preprocessing.reweighing import Reweighing from sklearn.linear_model import LogisticRegression from sklearn.preprocessing import StandardScaler from sklearn.metrics import accuracy_score from IPython.display import Markdown, display import matplotlib.pyplot as plt from aif360.datasets.lime_encoder import LimeEncoder from aif360.datasets.adult_dataset import AdultDataset ###Output _____no_output_____ ###Markdown **Load dataset and display statistics** ###Code np.random.seed(1) dataset_orig = AdultDataset() dataset_orig_train, dataset_orig_test = dataset_orig.split([0.7], shuffle=True) # Metric for the original dataset sens_attr = dataset_orig_train.protected_attribute_names[0] sens_idx = dataset_orig_train.protected_attribute_names.index(sens_attr) privileged_groups = [{sens_attr:dataset_orig_train.privileged_protected_attributes[sens_idx][0]}] unprivileged_groups = [{sens_attr:dataset_orig_train.unprivileged_protected_attributes[sens_idx][0]}] metric_orig_train = BinaryLabelDatasetMetric(dataset_orig_train, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) display(Markdown("#### Original training dataset")) print("Difference in mean outcomes between privileged and unprivileged groups = %f" % metric_orig_train.mean_difference()) ###Output _____no_output_____ ###Markdown **Transform the data using the Re-Weighing (pre-processing) algorithm** ###Code RW = Reweighing(unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) RW.fit(dataset_orig_train) dataset_transf_train = RW.transform(dataset_orig_train) ###Output _____no_output_____ ###Markdown **Learn and test models from the transformed data using Logistic Regression** ###Code #Train model on given dataset dataset = dataset_transf_train # data to train on scale = StandardScaler().fit(dataset.features) # remember the scale model = LogisticRegression() # model to learn X_train = scale.transform(dataset.features) #apply the scale y_train = dataset.labels.ravel() model.fit(X_train, y_train, sample_weight=dataset.instance_weights) #save model lr_orig = model lr_scale_orig = scale #Test model on given dataset and find threshold for best balanced accuracy import numpy as np from tqdm import tqdm thresh_arr = np.linspace(0.01, 0.5, 50) scale = lr_scale_orig model = lr_orig #model to test dataset = dataset_orig_test #data to test on X_test = scale.transform(dataset.features) #apply the same scale as applied to the training data y_test = dataset.labels.ravel() y_test_pred_prob = model.predict_proba(X_test) bal_acc_arr = [] disp_imp_arr = [] avg_odds_diff_arr = [] for thresh in tqdm(thresh_arr): y_test_pred = (y_test_pred_prob[:,1] > thresh).astype(np.double) dataset_pred = dataset.copy() dataset_pred.labels = y_test_pred classified_metric = ClassificationMetric(dataset, dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) metric_pred = BinaryLabelDatasetMetric(dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) TPR = classified_metric.true_positive_rate() TNR = classified_metric.true_negative_rate() bal_acc = 0.5*(TPR+TNR) acc = accuracy_score(y_true=dataset.labels, y_pred=dataset_pred.labels) bal_acc_arr.append(bal_acc) avg_odds_diff_arr.append(classified_metric.average_odds_difference()) disp_imp_arr.append(metric_pred.disparate_impact()) thresh_arr_best_ind = np.where(bal_acc_arr == np.max(bal_acc_arr))[0][0] thresh_arr_best = np.array(thresh_arr)[thresh_arr_best_ind] best_bal_acc = bal_acc_arr[thresh_arr_best_ind] disp_imp_at_best_bal_acc = np.abs(1.0-np.array(disp_imp_arr))[thresh_arr_best_ind] avg_odds_diff_at_best_bal_acc = avg_odds_diff_arr[thresh_arr_best_ind] #Plot balanced accuracy, abs(1-disparate impact) fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, np.abs(1.0-np.array(disp_imp_arr)), color='r') ax2.set_ylabel('abs(1-disparate impact)', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) #Plot average odds difference fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, avg_odds_diff_arr, color='r') ax2.set_ylabel('avg. odds diff.', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) rf_thresh_arr_orig_best = thresh_arr_best print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) rf_best_bal_acc_arr_orig = best_bal_acc print("Best balance accuracy: %6.4f" % rf_best_bal_acc_arr_orig) rf_disp_imp_at_best_bal_acc_orig = disp_imp_at_best_bal_acc print("Corresponding abs(1-disparate impact) value: %6.4f" % rf_disp_imp_at_best_bal_acc_orig) rf_avg_odds_diff_at_best_bal_acc_orig = avg_odds_diff_at_best_bal_acc print("Corresponding average odds difference value: %6.4f" % rf_avg_odds_diff_at_best_bal_acc_orig) ###Output Threshold corresponding to Best balance accuracy: 0.1900 Best balance accuracy: 0.8245 Corresponding abs(1-disparate impact) value: 0.2483 Corresponding average odds difference value: -0.0234 ###Markdown ** Use LIME to generate explanations for predictions made using the learnt Logistic Regression model** ###Code limeData = LimeEncoder().fit(dataset_orig_train) s_train = limeData.transform(dataset_orig_train.features) s_test = limeData.transform(dataset_orig_test.features) scale = lr_scale_orig model = lr_orig #model to test explainer = lime.lime_tabular.LimeTabularExplainer(s_train ,class_names=limeData.s_class_names, feature_names = limeData.s_feature_names, categorical_features=limeData.s_categorical_features, categorical_names=limeData.s_categorical_names, kernel_width=3, verbose=False,discretize_continuous=True) s_predict_fn = lambda x: model.predict_proba(scale.transform(limeData.inverse_transform(x))) import random print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) i1 = 1 exp = explainer.explain_instance(s_test[i1], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i1])) i2 = 100 exp = explainer.explain_instance(s_test[i2], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i2])) ###Output Threshold corresponding to Best balance accuracy: 0.1900 Actual label: [1.] Actual label: [0.] ###Markdown **Learn and test models from the transformed data using Random Forests** ###Code #Train model on given dataset dataset = dataset_transf_train # data to train on scale = StandardScaler().fit(dataset.features) # remember the scale model = sklearn.ensemble.RandomForestClassifier(n_estimators=500) # model to learn X_train = scale.transform(dataset.features) #apply the scale y_train = dataset.labels.ravel() model.fit(X_train, y_train, sample_weight=dataset.instance_weights) #save model rf_orig = model rf_scale_orig = scale #Test model on given dataset and find threshold for best balanced accuracy import numpy as np from tqdm import tqdm thresh_arr = np.linspace(0.01, 0.5, 50) scale = rf_scale_orig model = rf_orig #model to test dataset = dataset_orig_test #data to test on X_test = scale.transform(dataset.features) #apply the same scale as applied to the training data y_test = dataset.labels.ravel() y_test_pred_prob = model.predict_proba(X_test) bal_acc_arr = [] disp_imp_arr = [] avg_odds_diff_arr = [] for thresh in tqdm(thresh_arr): y_test_pred = (y_test_pred_prob[:,1] > thresh).astype(np.double) dataset_pred = dataset.copy() dataset_pred.labels = y_test_pred classified_metric = ClassificationMetric(dataset, dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) metric_pred = BinaryLabelDatasetMetric(dataset_pred, unprivileged_groups=unprivileged_groups, privileged_groups=privileged_groups) TPR = classified_metric.true_positive_rate() TNR = classified_metric.true_negative_rate() bal_acc = 0.5*(TPR+TNR) acc = accuracy_score(y_true=dataset.labels, y_pred=dataset_pred.labels) bal_acc_arr.append(bal_acc) avg_odds_diff_arr.append(classified_metric.average_odds_difference()) disp_imp_arr.append(metric_pred.disparate_impact()) thresh_arr_best_ind = np.where(bal_acc_arr == np.max(bal_acc_arr))[0][0] thresh_arr_best = np.array(thresh_arr)[thresh_arr_best_ind] best_bal_acc = bal_acc_arr[thresh_arr_best_ind] disp_imp_at_best_bal_acc = np.abs(1.0-np.array(disp_imp_arr))[thresh_arr_best_ind] avg_odds_diff_at_best_bal_acc = avg_odds_diff_arr[thresh_arr_best_ind] #Plot balanced accuracy, abs(1-disparate impact) fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, np.abs(1.0-np.array(disp_imp_arr)), color='r') ax2.set_ylabel('abs(1-disparate impact)', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) #Plot average odds difference fig, ax1 = plt.subplots(figsize=(10,7)) ax1.plot(thresh_arr, bal_acc_arr) ax1.set_xlabel('Classification Thresholds', fontsize=16, fontweight='bold') ax1.set_ylabel('Balanced Accuracy', color='b', fontsize=16, fontweight='bold') ax1.xaxis.set_tick_params(labelsize=14) ax1.yaxis.set_tick_params(labelsize=14) ax2 = ax1.twinx() ax2.plot(thresh_arr, avg_odds_diff_arr, color='r') ax2.set_ylabel('avg. odds diff.', color='r', fontsize=16, fontweight='bold') ax2.axvline(np.array(thresh_arr)[thresh_arr_best_ind], color='k', linestyle=':') ax2.yaxis.set_tick_params(labelsize=14) ax2.grid(True) rf_thresh_arr_orig_best = thresh_arr_best print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) rf_best_bal_acc_arr_orig = best_bal_acc print("Best balance accuracy: %6.4f" % rf_best_bal_acc_arr_orig) rf_disp_imp_at_best_bal_acc_orig = disp_imp_at_best_bal_acc print("Corresponding abs(1-disparate impact) value: %6.4f" % rf_disp_imp_at_best_bal_acc_orig) rf_avg_odds_diff_at_best_bal_acc_orig = avg_odds_diff_at_best_bal_acc print("Corresponding average odds difference value: %6.4f" % rf_avg_odds_diff_at_best_bal_acc_orig) ###Output Threshold corresponding to Best balance accuracy: 0.2600 Best balance accuracy: 0.8083 Corresponding abs(1-disparate impact) value: 0.4090 Corresponding average odds difference value: -0.0698 ###Markdown ** Use LIME to generate explanations for predictions made using the learnt Logistic Regression model** ###Code limeData = LimeEncoder().fit(dataset_orig_train) s_train = limeData.transform(dataset_orig_train.features) s_test = limeData.transform(dataset_orig_test.features) scale = rf_scale_orig model = rf_orig #model to test explainer = lime.lime_tabular.LimeTabularExplainer(s_train ,class_names=limeData.s_class_names, feature_names = limeData.s_feature_names, categorical_features=limeData.s_categorical_features, categorical_names=limeData.s_categorical_names, kernel_width=3, verbose=False,discretize_continuous=True) s_predict_fn = lambda x: model.predict_proba(scale.transform(limeData.inverse_transform(x))) import random print("Threshold corresponding to Best balance accuracy: %6.4f" % rf_thresh_arr_orig_best) exp = explainer.explain_instance(s_test[i1], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i1])) exp = explainer.explain_instance(s_test[i2], s_predict_fn, num_features=5) exp.as_pyplot_figure() print(" Actual label: " + str(dataset_orig_test.labels[i2])) ###Output Threshold corresponding to Best balance accuracy: 0.2600 Actual label: [1.] Actual label: [0.]
nlm_workshop_ovarian_cancer.ipynb
###Markdown Start up an AWS ubuntu instance and install docker. For this analysis, the following specs should be more than enough to run the bioinformatics pipeline. ###Code docker build . docker push ###Output _____no_output_____ ###Markdown Pull the docker image. ###Code sudo docker pull jonessarae/nlm_workshop:seq_tools ###Output _____no_output_____ ###Markdown Download SRA files with sra_download.sh (check permissions) Already hardcoded with the SRA accession number. ###Code ./sra_download.sh ###Output _____no_output_____ ###Markdown Run the docker container and add home directory to container. The rest of this notebook will be done within the container.--- ###Code sudo docker run -it -v ~:/mnt jonessarae/nlm_workshop:seq_tools ###Output _____no_output_____ ###Markdown Convert SRA files into FASTQ files and split the files into read 1 and read 2. The command fastq-dump for SRA-toolkit does not use multi-threading. Better to find another package that can multi-thread. Can avoid splitting? In BWA can use -p option. How about others? ###Code fastq-dump --split-files --origfmt --gzip SRR2989954.sra gunzip SRR2989954_1.fastq.gz SRR2989954_1.fastq.gz ###Output _____no_output_____ ###Markdown Download reference genome hg19.2bit and tool twoBitToFa, convert 2bit file to fasta file, and index it with bwa. Use -t to add more cores for running bwa index faster. ###Code wget http://hgdownload.cse.ucsc.edu/goldenPath/hg19/bigZips/hg19.2bit rsync -aP rsync://hgdownload.soe.ucsc.edu/genome/admin/exe/linux.x86_64/twoBitToFa chmod 744 twoBitToFa ./twoBitToFa hg19.2bit hg19.fa bwa index -a bwtsw hg19.fa ###Output _____no_output_____ ###Markdown Download reference genome hg19 annotation file (GTF). There are two files to choose from. Not sure which to use. https://www.gencodegenes.org/releases/19.html ###Code wget ftp://ftp.ebi.ac.uk/pub/databases/gencode/Gencode_human/release_19/gencode.v19.annotation.gtf.gz ###Output _____no_output_____ ###Markdown Exome: Align paired reads to the reference genome and convert it to a bam file. With an AWS instance with 96 cores, this step took ~25 minutes (on file 54) with 96 threads. ###Code bwa mem -t 8 ref/hg19.fa SRR2989954_1.fastq SRR2989954_2.fastq | samtools view -Sb - > SRR2989954.bam ###Output _____no_output_____ ###Markdown Sort the bam files by genomic order. ###Code samtools sort -@ 4 SRR2989954.bam -o SRR2989954_sorted.bam samtools sort -@ 8 SRR2989963.bam -o SRR2989963_sorted.bam ###Output _____no_output_____ ###Markdown RNA: Make genome indices that STAR requires. Always ensure read/write priveleges on files/folders. Check what read length should be: ReadLength-1. Does it matter if not 99? Change number of threads to 8. Mention spec requirements. ###Code mkdir star_indices STAR --runThreadN 4 --runMode genomeGenerate --genomeDir star_indices --genomeFastaFiles ref/hg19.fa --sjdbGTFfile gtf//gencode.v19.annotation.gtf --sjdbOverhang 100 ###Output _____no_output_____ ###Markdown RNA: Align paired reads to the reference genome. Don't forget to make a mapped_rna directory. ###Code mkdir mapped_rna STAR --readFilesIn SRR2989969_1.fastq SRR2989969_2.fastq --runThreadN 8 --genomeDir star_indices --outFileNamePrefix mapped_rna/SRR29899692pass --genomeLoad NoSharedMemory --sjdbGTFfile gtf/gencode.v19.annotation.gtf --outSAMtype BAM SortedByCoordinate --twopassMode Basic ###Output _____no_output_____ ###Markdown Exome: GATK4 from bioconda. ###Code java -Xmx4g -jar GenomeAnalysisTK.jar -I SRR2989954_sorted.bam -R ref/hg19.fa -T RealignerTargetCreator -o SRR2989954.intervals –known Mills_and_1000G_gold_standard.indels.hg19.vcf --read_filter MappingQualityZero java -Xmx4g -jar GenomeAnalysisTK.jar -I SRR2989954_sorted.bam -R ref/hg19.fa -T IndelRealigner -targetIntervals sample.intervals -o SRR2989954_realign.bam -known Mills_and_1000G_gold_standard.indels.hg19.vcf --read_filter MappingQualityZero java -Xmx4g -jar GenomeAnalysisTK.jar -I SRR2989963_sorted.bam -R ref/hg19.fa -T RealignerTargetCreator -o SRR2989954.intervals –known Mills_and_1000G_gold_standard.indels.hg19.vcf --read_filter MappingQualityZero java -Xmx4g -jar GenomeAnalysisTK.jar -I SRR2989963_sorted.bam -R ref/hg19.fa -T IndelRealigner -targetIntervals SRR2989963.intervals -o SRR2989963_realign.bam -known Mills_and_1000G_gold_standard.indels.hg19.vcf --read_filter MappingQualityZero ###Output _____no_output_____ ###Markdown Filter out reads that have mapping quality of < 20. ###Code samtools view -b -q 20 SRR2989954_realign.bam > SRR2989954_m20.bam samtools view -b -q 20 SRR2989963_realign.bam > SRR2989963_m20.bam samtools view -b -q 20 mapped_rna/SRR29899692passAligned.sortedByCoord.out.bam > SRR2989969_m20.bam ###Output _____no_output_____ ###Markdown Deduplicate files. We installed picard separately, but picard is also part of GATK4. ###Code java -jar picard.jar MarkDuplicates I=SRR2989954_m20.bam O=SRR2989954_m20dedup.bam REMOVE_DUPLICATES=true METRICS_FILE=metrics.txt java -jar picard.jar MarkDuplicates I=SRR2989963_m20.bam O=SRR2989963_m20dedup.bam REMOVE_DUPLICATES=true METRICS_FILE=metrics.txt picard MarkDuplicates I=SRR2989969_m20.bam O=SRR2989969_m20dedup.bam REMOVE_DUPLICATES=true METRICS_FILE=metrics.txt ###Output _____no_output_____ ###Markdown Generate VCF for multiple BAM files. Not sure how they run this except that it outputs vcf format. Not sure where the normal sample is in the VCF file. Assumed they combined all three with normal. ###Code samtools mpileup -f hg.19a SRR2989954_m20dedup.bam SRR2989963_m20dedup.bam SRR2989969_m20dedup.bam -v -o p1_ov.vcf ###Output _____no_output_____ ###Markdown Calls variants from a mpileup dataset and produces a VCF. ###Code varscan mpileup2snp p1_ov.vcf --min-coverage 5 --min-reads2 0 --min-avg-qual 20 --min-var-freq 0 --output-vcf 13 ###Output _____no_output_____ ###Markdown Run snpEff, a variant annotation and effect prediction tool. It annotates and predicts the effects of variants on genes. Not sure which version of the GRCh37 database was used. ###Code #snpEff databases | grep -i sapiens snpEff download GRCh37.75 snpEff GRCh37.75 p1_ov.vcf > p1_ov.ann.vcf ###Output _____no_output_____ ###Markdown Count total reads and compare to supplementary figure 1. ###Code samtools flagstat <sample.bam> ###Output _____no_output_____
tutorials/large_scale_LEM/.ipynb_checkpoints/large_scale_LEMs-checkpoint.ipynb
###Markdown Large scale landscape evolution model with Priority flood flow router and Space_v2The priority flood flow director is designed to calculate flow properties over large scale grids. In the following notebook we illustrate how the priority flood flow accumulator can be used to simulate landscape evolution using the SPAVE_V2 Landlab component ###Code import numpy as np from matplotlib import pyplot as plt from tqdm import tqdm import time from landlab import imshow_grid, RasterModelGrid from landlab.components import ( FlowAccumulator, DepressionFinderAndRouter, Space, SpaceLargeScaleEroder, PriorityFloodFlowRouter, ) ###Output _____no_output_____ ###Markdown Create raster grid ###Code # nr = 20 # nc = 20 nr = 75 nc = 75 xy_spacing = 10.0 mg = RasterModelGrid((nr, nc), xy_spacing=xy_spacing) z = mg.add_zeros("topographic__elevation", at="node") mg.at_node["topographic__elevation"][mg.core_nodes] += np.random.rand( mg.number_of_core_nodes ) s = mg.add_zeros("soil__depth", at="node", dtype=float) mg.at_node["soil__depth"][mg.core_nodes] += 0.5 mg.at_node["topographic__elevation"] += mg.at_node["soil__depth"] fr = FlowAccumulator(mg, flow_director='D8') df = DepressionFinderAndRouter(mg) ha = Space(mg, K_sed=0.00005, K_br=0.00005, phi=0.3, H_star=1) br = mg.at_node["bedrock__elevation"] z = mg.at_node["topographic__elevation"] space_dt = 500 z_ori = np.array(z) t1 = time.time() for i in tqdm(range(50)): # Uplift br[mg.core_nodes] += 0.001 * space_dt z[mg.core_nodes] = br[mg.core_nodes] + s[mg.core_nodes] fr.run_one_step() df.map_depressions() ha.run_one_step(dt=space_dt) t_span1 = time.time() - t1 print('Total run time is %.f s' %t_span1) plt.figure(figsize=(10,10)) imshow_grid(mg, "topographic__elevation", cmap="terrain") plt.title("Final topographic__elevation") mg2 = RasterModelGrid((nr, nc), xy_spacing=xy_spacing) z2 = mg2.add_zeros("topographic__elevation", at="node") mg2.at_node["topographic__elevation"][mg2.core_nodes] += np.random.rand( mg2.number_of_core_nodes ) s2 = mg2.add_zeros("soil__depth", at="node", dtype=float) mg2.at_node["soil__depth"][mg2.core_nodes] += 0.5 mg2.at_node["topographic__elevation"] += mg2.at_node["soil__depth"] fr2 = PriorityFloodFlowRouter(mg2, flow_metric="D8", update_flow_depressions=True) ha2 = SpaceLargeScaleEroder(mg2, K_sed=0.00005, K_br=0.00005, phi=0.3, H_star=1) br2 = mg2.at_node["bedrock__elevation"] z2 = mg2.at_node["topographic__elevation"] z_ori = np.array(z2) t2 = time.time() for i in tqdm(range(50)): # Uplift br2[mg2.core_nodes] += 0.001 * space_dt z2[mg2.core_nodes] = br2[mg2.core_nodes] + s2[mg2.core_nodes] fr2.run_one_step() ha2.run_one_step(dt=space_dt) t_span2 = time.time() - t2 print('Total run time is %.f s' %t_span2) plt.figure(figsize=(10,10)) imshow_grid(mg2, "topographic__elevation", cmap="terrain") plt.title("Final topographic__elevation") plt.figure() plt.bar(['Default flow accumulator','Priority Flood flow accumulator'],[t_span1,t_span2]) plt.ylabel('Seconds') ###Output _____no_output_____
segment-words.ipynb
###Markdown Load documents and scrutinize unwanted punctuations**Load document labels** ###Code raw_path = u'./corpus/raw-docs' # it will listdir into unicode doc_labels = [fn for fn in os.listdir(raw_path) if isdir(join(raw_path, fn))] # list only folders print 'Showing one sample document label' print 'Unicode codepoints representation:', repr(doc_labels[0]), '::', type(doc_labels[0]) print 'The actual glyph (appearance):', doc_labels[0] ###Output Showing one sample document label Unicode codepoints representation: u'\u0e1a\u0e23\u0e34\u0e2b\u0e32\u0e23\u0e18\u0e38\u0e23\u0e01\u0e34\u0e08' :: <type 'unicode'> The actual glyph (appearance): บริหารธุรกิจ ###Markdown **Show all document labels** ###Code doc_labels_idx = {} # maps label name to its corresponding index print 'Total labels:', len(doc_labels) for i, label in enumerate(doc_labels): doc_labels_idx[label] = i print "%d: %s" % (i, label) ###Output Total labels: 20 0: บริหารธุรกิจ 1: ประมง 2: มนุษยศาสตร์ 3: วนศาสตร์ 4: วิทยาการจัดการ 5: วิทยาศาสตร์ 6: วิทยาศาสตร์การกีฬา 7: วิศวกรรมศาสตร์ 8: ศิลปศาสตร์และวิทยาศาสตร์ 9: ศึกษาศาสตร์ 10: ศึกษาศาสตร์และพัฒนศาสตร์ 11: สถาปัตยกรรมศาสตร์ 12: สังคมศาสตร์ 13: สัตวแพทยศาสตร์ 14: สิ่งแวดล้อม 15: อุตสาหกรรมเกษตร 16: เกษตร 17: เศรษฐศาสตร์ 18: โครงการจัดตั้งวิทยาเขตสุพรรณบุรี 19: โครงการสหวิทยาการระดับบัณฑิตศึกษา ###Markdown **Open documents from each folder** ###Code %%time label_freqs = [] dataset_contents, dataset_labels, dataset_filenames, content_lengths = [], [], [], [] # will be used later for i, label in enumerate(doc_labels): curr_dir = join(raw_path, label) fns = os.listdir(curr_dir) # print len(fns), label label_freqs.append(len(fns)) for fn in fns: file_path = join(curr_dir, fn) with open(file_path, 'r') as f: content = unicode(f.read(), 'utf8') content_lengths.append(len(content)) dataset_contents.append(content) dataset_labels.append(i) dataset_filenames.append(fn) ###Output Wall time: 50.6 s ###Markdown **Show number of files in each folder** ###Code plt.figure() plt.bar(np.arange(len(doc_labels))-0.5, label_freqs, 1) plt.xticks(np.arange(len(doc_labels))) plt.xlabel('Label') plt.ylabel('Frequency') plt.yticks(np.arange(0, max(label_freqs)+50, 50)) plt.grid() plt.show() ###Output _____no_output_____ ###Markdown **Show dataset statistics** ###Code print 'Total documents:', len(dataset_contents) print 'Label Frequencies:', label_freqs print 'Label Frequencies Mean:', np.mean(label_freqs) print 'Content Lengths Mean:', np.mean(content_lengths) ###Output Total documents: 2549 Label Frequencies: [99, 76, 129, 119, 6, 251, 32, 468, 25, 312, 6, 15, 110, 19, 58, 203, 326, 209, 4, 82] Label Frequencies Mean: 127.45 Content Lengths Mean: 189040.900353 ###Markdown **Remove outliers** ###Code # idx = np.argmax(content_lengths) # del content_lengths[idx] # del dataset_contents[idx] # del dataset_labels[idx] # del dataset_filenames[idx] ###Output _____no_output_____ ###Markdown **Show histogram of all contents' length** ###Code plt.figure() plt.hist(content_lengths, bins=200) plt.xlabel('Content Length (characters count)') plt.ylabel('Document Count') plt.show() def has_thai_char(s): return any(u'\u0e00' < c < u'\u0f00' for c in s) print has_thai_char(u'สวัสดีจ้ะ english') print has_thai_char(u'Ianalysis') ###Output True False ###Markdown Scrutinize unwanted punctuations**Define scrutinize() function** ###Code punctuations = set(u'!"#$%&\'()*+,-./:;<=>?@[\\]^_`{|}~') stemmer = SnowballStemmer('english') limit = 70 def scrutinize(s): scrutinized = u''.join(u' ' if c in punctuations else c for c in s) # remove all punctuations inside s segmented = [] for sentence in scrutinized.split(): # split contiguous english words if possible if not has_thai_char(sentence): sentence = clean(sentence) try: if len(sentence) > limit: raise ValueError('too long to segment len > %d' % limit) sentence = u' '.join(stemmer.stem(word) for word in segment(sentence)) except Exception, e: print 'skip (len=%d, word=%s..., exception=%s)' % (len(sentence), sentence[:50], str(e)) sentence = None if sentence: segmented.append(sentence) return u' '.join(segmented) ###Output ###Markdown **Sample Original Content** ###Code sample = dataset_contents[3][:2**9] print sample # sample ###Output I50731645 Iวิทยานิพนธ์ Iการพัฒนาประสิทธิผลในการทางานของผู้ทาบัญชี Iหลังจากเข้ารับการพัฒนาความรู้ต่อเนื่องทางวิชาชีพ Ieffectiveness development in practicing Iof bookkeepers after attending Icontinuing professional development Iนางสาวสุภาพันธุ์ สายทองอินทร์ Iบัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ Iพ . ศ . 2554 Iใบรับรองวิทยานิพนธ์ Iบัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ Iบริหารธุรกิจมหาบัณฑิต Iปริญญา Iสาขา Iภาควิชา Iเรื่อง Iการพัฒนาประสิทธิผลในการทางานของผู้ทาบัญชี หลังจากเข้ารับ Iการพัฒนาความรู้ต่อเนื่องทางว ###Markdown **Sample Content Scrutinized** ###Code scrutinized = scrutinize(sample) print scrutinized # scrutinized ###Output i50731645 Iวิทยานิพนธ์ Iการพัฒนาประสิทธิผลในการทางานของผู้ทาบัญชี Iหลังจากเข้ารับการพัฒนาความรู้ต่อเนื่องทางวิชาชีพ i effect develop in practic iof bookkeep after attend i continu profession develop Iนางสาวสุภาพันธุ์ สายทองอินทร์ Iบัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ Iพ ศ 2554 Iใบรับรองวิทยานิพนธ์ Iบัณฑิตวิทยาลัย มหาวิทยาลัยเกษตรศาสตร์ Iบริหารธุรกิจมหาบัณฑิต Iปริญญา Iสาขา Iภาควิชา Iเรื่อง Iการพัฒนาประสิทธิผลในการทางานของผู้ทาบัญชี หลังจากเข้ารับ Iการพัฒนาความรู้ต่อเนื่องทางว ###Markdown **Scrutinize all contents** ###Code %%time for i in xrange(len(dataset_contents)): print i, dataset_contents[i] = scrutinize(dataset_contents[i]) content_lengths[i] = len(dataset_contents[i]) print 'New Content Lengths Mean:', np.mean(content_lengths) ###Output 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 skip (len=4153, word=patgctgttattaattatatttttaatattaattaaagtattaatattta..., exception=too long to segment len > 200) skip (len=1979, word=patgtatagcacgtcaaaaattaacaatgcgcgcgttgtcgcatctcaac..., exception=too long to segment len > 200) skip (len=3527, word=patttgtcttaattttaagatgtaattattttatgtaaaaaaaaaatgaa..., exception=too long to segment len > 200) skip (len=2151, word=patgaaaatatattcttacaatgaactcaaaacgcgctttgcagaatatg..., exception=too long to segment len > 200) skip (len=812, word=pgaaagttttaataatattaaaaaagaaaaaatattgctatcttaacagc..., exception=too long to segment len > 200) 478 479 480 481 skip (len=980, word=pnnnnnnnnngactttttacgacacttgagaagatcaaaaaacaactaat..., exception=too long to segment len > 200) skip (len=974, word=pnnnntttgnnnnngcatcctcctcgtacagtatgaaggtgagggcagag..., exception=too long to segment len > 200) skip (len=852, word=pttccattgattangctatttgaagcggtataacccaactacgtgcaagg..., exception=too long to segment len > 200) skip (len=974, word=pgnnntnattagncaattagttagggttcatttgattttattggactaaa..., exception=too long to segment len > 200) skip (len=980, word=pnntnttannnactttttacgaaacttgagaagatcaaaaaacaactaat..., exception=too long to segment len > 200) skip (len=986, word=pnnnnnnttggggaaagcntcctcctcgtaccagtatgaaggtgagggca..., exception=too long to segment len > 200) skip (len=848, word=pnttttcttattgcagatgggtaagcattggattacctaaatgagccatc..., exception=too long to segment len > 200) skip (len=983, word=pnnnntnataagccaanttagttaagggttcatttgattttattggacta..., exception=too long to segment len > 200) skip (len=1178, word=pgnnnnnntgnnnnatcctcctcgtaccagtatgaaggtgagggcagagt..., exception=too long to segment len > 200) skip (len=1176, word=pcnnnnnnnnntgganaagggnaancattggattacactaaatgagccat..., exception=too long to segment len > 200) skip (len=1054, word=pannnnnntnnnnccnattnagttaaggnttcatttgattttattggact..., exception=too long to segment len > 200) skip (len=664, word=pacaaatattagaaccttcgcggtttgaagattgatggctcatttagtgt..., exception=too long to segment len > 200) skip (len=1199, word=pttngngtnnnatctctcgtaccagtatgaaggtgagggcagagtaccaa..., exception=too long to segment len > 200) skip (len=1219, word=pcnnnggnnntagggtaagcattggattacactaaatgatgccatcaatc..., exception=too long to segment len > 200) skip (len=942, word=pnnnatnanttaanggttcatttgattttattggactaaactattacacc..., exception=too long to segment len > 200) skip (len=1251, word=pnnnnnnntctncatttcgcgggtgaagantgatggctcatttagtgtaa..., exception=too long to segment len > 200) 482 483 484 485 486 487 488 489 490 491 492 skip (len=1513, word=patggccacggcgatcccgcagcggcagctcttcgtcgccggcgagtggc..., exception=too long to segment len > 200) skip (len=504, word=pmataipqrqlfvagewrapalgrrlpvvnpatespigeipagtaedvda..., exception=too long to segment len > 200) skip (len=1516, word=patggccacggcgatcccgcagcggcagctcttcgtcgccggcgagtggc..., exception=too long to segment len > 200) skip (len=505, word=pmataipqrqlfvagewrapalgrrlpvvnpatespigeipagtaedvda..., exception=too long to segment len > 200) skip (len=1513, word=patggccacggcgatcccgcagcggcagctcttcgtcgccggcgagtggc..., exception=too long to segment len > 200) skip (len=504, word=pmataipqrqlfvagewrapalgrrlpvvnpatespigeipagtaedvda..., exception=too long to segment len > 200) skip (len=1513, word=patggccacggcgatcccgcagcggcagctcttcgtcgccggcgagtggc..., exception=too long to segment len > 200) skip (len=504, word=pmataipqrqlfvagewrapalgrrlpvvnpatespigeipagtaedvda..., exception=too long to segment len > 200) skip (len=1513, word=patggccacggcgatcccgcagcggcagctcttcgtcgccggcgagtggc..., exception=too long to segment len > 200) skip (len=504, word=pmataipqrqlfvagewrapalgrrlpvvnpatespigeipagtaedvda..., exception=too long to segment len > 200) 493 494 495 496 497 498 499 skip (len=226, word=ptaattcgcaagagaataaatttcatggcaagtgacgcccttccaatcgt..., exception=too long to segment len > 200) skip (len=476, word=ptgactgcgtaccaattcactattctaagggtgactttgattctcttcaa..., exception=too long to segment len > 200) skip (len=201, word=pctatcgtcttcaacatcacaatttttatatctcaaatattccacgtggc..., exception=too long to segment len > 200) skip (len=281, word=pctcatcgagttaaaaggacaaaaatttaaaaggtattgaaactgcaata..., exception=too long to segment len > 200) skip (len=339, word=pctcatcgagttaaaaggacaaaaatttaaaaggtattgaaactgcaata..., exception=too long to segment len > 200) skip (len=350, word=pctggaaatgcggacgtacattgacacctgcaacgaagattcgcctcgga..., exception=too long to segment len > 200) skip (len=330, word=pcctatccgcgagcgacagtcgtccatcacgagcacaacggcatcctcga..., exception=too long to segment len > 200) skip (len=283, word=pgaatgccaaaggggggttccgtcagtaacggcgtgattgatcgtcaatc..., exception=too long to segment len > 200) skip (len=450, word=ptatgtttagatataatggagatgctttacacattcctctctaatgtagt..., exception=too long to segment len > 200) skip (len=291, word=ptgactgcgtaccaattcactcacctacaaaagctaattgaccgctggag..., exception=too long to segment len > 200) skip (len=341, word=pctcattgagttaaaaggacaaaaatttaaaaggtattgaaactgcaata..., exception=too long to segment len > 200) skip (len=338, word=pctggaaatgcggacgtacattgacacctgcaacgaagattcgcctcaga..., exception=too long to segment len > 200) skip (len=243, word=pacaaagtttcgcagaagggtatccgcctacgtagtggactggaaagatt..., exception=too long to segment len > 200) skip (len=238, word=pcacagcagcagcaacaatggcaagcacagacacaatcaaggagaatgct..., exception=too long to segment len > 200) skip (len=288, word=pccaaacccttttccttacataaggatgtcaaaagatccacaacaaggta..., exception=too long to segment len > 200) 500 skip (len=230, word=patcatcgccgacaacctcgggaggagcctggagcgggcgttggcgccgc..., exception=too long to segment len > 200) skip (len=481, word=pcaataatgattttattttgactgatagtgacctgttcgttgcaacaaat..., exception=too long to segment len > 200) skip (len=512, word=pcaataatgattttattttgactgatagtgacctgttcgttgcaacaaat..., exception=too long to segment len > 200) skip (len=1171, word=patggaagcgaacggctaccgcataactcacagcgccgacgggccggcga..., exception=too long to segment len > 200) skip (len=1171, word=patggccaacctccacgcgttgcgcagggagcagagggctcaaggtcctg..., exception=too long to segment len > 200) 501 skip (len=476, word=pgcgcgaattcggcaagatagagataaagcggatcgaaaacaccacaaat..., exception=too long to segment len > 200) skip (len=476, word=pgcgcgaattcggcaagatagagataaagcggatcgaaaacaccacaaat..., exception=too long to segment len > 200) skip (len=1064, word=ptcatcttgcttccattttctgcatctctcctactcagatttgtagaaac..., exception=too long to segment len > 200) skip (len=331, word=ptaagctttgagagtgagcatcaacttcttgccctctattagtctctgta..., exception=too long to segment len > 200) skip (len=242, word=pmaypsdsretspqrrmgrgkieikrienttnrqvtfckrrngllkkaye..., exception=too long to segment len > 200) skip (len=476, word=pgcgcgaattcggcaagatagagataaagcggatcgaaaacaccacaaat..., exception=too long to segment len > 200) skip (len=603, word=pcgggctggagagcaggctagagaaggaattagtagaattcggtccaaaa..., exception=too long to segment len > 200) skip (len=635, word=pttggaanaaaaggctanagaaaggaattagtagaattcggtccaaaaag..., exception=too long to segment len > 200) skip (len=979, word=pgcgcgaattcgggaaaattgaaattaagcggatcgaaaacaccacaaat..., exception=too long to segment len > 200) skip (len=1013, word=pgcgcgaattcgggaaaattgaaattaagcggatcgaaaacaccacaaat..., exception=too long to segment len > 200) skip (len=1064, word=pagctgccatggcataccccagcgattcccgggagacttcaccgcagagg..., exception=too long to segment len > 200) 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 skip (len=1238, word=pmssilepkkdqsveeeivaihltngqedgranrrltdfvvhdangtpkp..., exception=too long to segment len > 200) skip (len=1384, word=pmfflvsdfrtkkkkgktkssvsnaskeltnntkgkkrsssrqnedpass..., exception=too long to segment len > 200) skip (len=721, word=pmphlfkddsddvilarchyrqaevdghniynlyddahvkaadgedsyic..., exception=too long to segment len > 200) skip (len=747, word=pmpffegatwlfvvislkddsddvilarchyrqaevdghniynlyddahv..., exception=too long to segment len > 200) skip (len=203, word=paaggtaatcttcaaataatcttcaaaccgagtatattaaaaatcaagtt..., exception=too long to segment len > 200) skip (len=206, word=paaggtaatcttcaaataatcttcaaaccgagtatattaaaaatcaagtt..., exception=too long to segment len > 200) skip (len=456, word=pgaacccaaaactcaagtcttgaaacaaggaccattcatgaagataaagt..., exception=too long to segment len > 200) skip (len=333, word=gttttccactaccgagcaggactcatgataaccgagcaggactcatggcg..., exception=too long to segment len > 200) skip (len=331, word=pattggattgagctctatgaacctttctgttgcttctcagtccctctctc..., exception=too long to segment len > 200) skip (len=247, word=tagctacttcatctcctcttgactaagcccacactccctatcatcgactc..., exception=too long to segment len > 200) skip (len=5849, word=patgttctttttggtctctgatttcagtacattggtctcatctcagtatt..., exception=too long to segment len > 200) skip (len=1031, word=pacaggttaaattgtccactgggcaagtggttgatttaattccatggtgt..., exception=too long to segment len > 200) skip (len=5075, word=patgttctttttggtctctgatttcagtacattggtctcatctcagtatt..., exception=too long to segment len > 200) skip (len=1803, word=pgcttcacttcttgagatgggctatcaggtagagtttgttgcaagtaaat..., exception=too long to segment len > 200) skip (len=4301, word=patgcctcatcttttgtagaagtcttatatttcgttgatattactccctt..., exception=too long to segment len > 200) skip (len=3026, word=paacctgctgaggtagctatacatcaatcaaccaacttgtgcaatggtta..., exception=too long to segment len > 200) skip (len=2925, word=patgccatttttcgagggtgctacttggctctttgttgtcatttccctgt..., exception=too long to segment len > 200) skip (len=4472, word=pttatgacttggtgcatgaacataaagaatttgattgcttatttcctacg..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=226, word=patcatgagtcctgctcggtcccatgacggtctaaaagttcgtgaatggc..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=225, word=pgatgagtcctgagtaacttcaacgcgctagcaggtgccccagactgatg..., exception=too long to segment len > 200) skip (len=225, word=patcatgagtcctgctcggtccctccgcatcaagatagtcaatcgagaga..., exception=too long to segment len > 200) skip (len=258, word=pgatgagtcctgagtaacatagttcagtaccacatgtttgaaaattagat..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=405, word=pgatgagtcctgagtaactcctggtcctctctggagacgcgaggttgtgt..., exception=too long to segment len > 200) skip (len=405, word=pgatgagtcctgagtaactcctggtcctctctggagacgcgaggttgtgt..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=341, word=pgatgagtcctgagtaacttgacgatgagtcctgagtaagcatatcaata..., exception=too long to segment len > 200) skip (len=225, word=pgatgagtcctgagtaacttcaacgcgctagcaggtgccccagactgatg..., exception=too long to segment len > 200) skip (len=344, word=pgatgagtcctgagtaactatccaattgaaaaataattcgtatttcccgt..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=263, word=pgatgagtcctgagtaacattatgggggagacgaacgggtgaacatactt..., exception=too long to segment len > 200) skip (len=263, word=pgatgagtcctgagtaacattatgggggagacgaacgggcgaacatactt..., exception=too long to segment len > 200) skip (len=471, word=patcatgagtcctgctcggtaaggagaggctactggggtaacaagatcgg..., exception=too long to segment len > 200) skip (len=471, word=patcatgagtcctgctcggtaaggagaggctactggggtaacaagatcgg..., exception=too long to segment len > 200) skip (len=356, word=pcctttggctcgagcttgtctttcagctcgttaagcggcagcacgcgcgc..., exception=too long to segment len > 200) skip (len=295, word=pgatgagtcctgagtaactgcacatcataaaaaaacaccgccccagagag..., exception=too long to segment len > 200) 528 529 530 531 skip (len=327, word=pmesgsfpvinmellqgpqrpaamallrdacenwgffellnhgithelmd..., exception=too long to segment len > 200) skip (len=634, word=pmegcdciepqwpadellvkyqyisdlfialayfsipleliyfvkkssff..., exception=too long to segment len > 200) skip (len=784, word=pcgagatttggaggcggtaaacaaggaacattaccggcggttccgagaac..., exception=too long to segment len > 200) skip (len=833, word=pctcaaggacacttgctatagtgatgactgtagcaaaagttttgactgca..., exception=too long to segment len > 200) 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 skip (len=453, word=pcatatttgtgagttttgtataaggtcattgtctttactgcatggagaga..., exception=too long to segment len > 200) skip (len=497, word=ptggttggctctcggtgtcctcgagttgtaattgagcagctgttagctta..., exception=too long to segment len > 200) skip (len=357, word=paataacaacaataacaccaagaagaagaagtaagcaagaatgttaggag..., exception=too long to segment len > 200) skip (len=654, word=paaaacatcctctaatagagcaaacagtgccaaaacggtcacaagacagg..., exception=too long to segment len > 200) skip (len=454, word=pgaggaaaagaattgcactatccttgaaaccaaacagatctcttcctcta..., exception=too long to segment len > 200) skip (len=454, word=pgaggaaaagaattgcactatccttgaaaccaaacagatctcttcctcta..., exception=too long to segment len > 200) skip (len=464, word=pctgcagatcgctataaaacagccttttgtattcctgatgctcaatatca..., exception=too long to segment len > 200) skip (len=562, word=pcgccgccttgtcgtaagctctagcagcttcctcagccgtatcaaacgtg..., exception=too long to segment len > 200) skip (len=603, word=pccagttgccctaattgtgaatggtctaatggcacttattgccccaatta..., exception=too long to segment len > 200) skip (len=529, word=pagtcgttacaggagatacagggtataatttctcctttgttgaggattgc..., exception=too long to segment len > 200) skip (len=638, word=pggcacactccttgagatccccaattataccgacgaggaagccttgtttg..., exception=too long to segment len > 200) skip (len=524, word=pcccttgcacaagtcacgctcagagatattatcttaggtaagagatcaac..., exception=too long to segment len > 200) skip (len=409, word=paggctcagcaggtatggtaaggggatagtgactacagaggccgaaaggt..., exception=too long to segment len > 200) skip (len=391, word=pctgcaggagggatttttatttcgtggtgtcaattgtgtattccagattg..., exception=too long to segment len > 200) skip (len=282, word=ptgcgcctacataataatagttcgacccaaattacttcattatatgtgtt..., exception=too long to segment len > 200) skip (len=448, word=paccagtggagtccacagcagcagatctacagaaaataatggcatatttc..., exception=too long to segment len > 200) skip (len=551, word=paatttaccatcagtattagctagatctgccttcagtttgctaataagct..., exception=too long to segment len > 200) skip (len=426, word=ptaagtttagaaaagctagggttccatagcgcttcgaacagttgcatcac..., exception=too long to segment len > 200) skip (len=389, word=pagtctttcgatgatgcatgcagcatttgcctcgaggaattttgtgaaag..., exception=too long to segment len > 200) skip (len=422, word=patcatgactgactgctcctcggaagacaaatcttcacttacttccacac..., exception=too long to segment len > 200) skip (len=363, word=ptcagcctaaccaaatagaaatcaaagttcaagcctttttcgaaaagtaa..., exception=too long to segment len > 200) skip (len=359, word=pacaattcatttgatatatctaccgcaaatgattattgtatgcaggaatc..., exception=too long to segment len > 200) skip (len=344, word=patcatggacatcctagtaactttcactttgttattcggtaggccatggt..., exception=too long to segment len > 200) skip (len=271, word=pgtcctagacatcctagtaaccattgcattattattgggaaagccatggt..., exception=too long to segment len > 200) skip (len=251, word=ptcgctcatgacaccatcccaggaattgcaccaggtttcggtgccttaaa..., exception=too long to segment len > 200) skip (len=217, word=pctttccagagcagtatttacagaagcaccagcagggcggccttttagct..., exception=too long to segment len > 200) skip (len=434, word=pctctttactgagccatctgtactgagagtaacccagtcttgagcaggac..., exception=too long to segment len > 200) skip (len=392, word=pctaaatgtccttaggatggggtttggaagaggtattggttccaatggcc..., exception=too long to segment len > 200) skip (len=387, word=pcacatgtgatagagagtcagcaacttgattttctatcctacgctaatac..., exception=too long to segment len > 200) skip (len=351, word=pactcgatattgcaggattgcatgaattggactgggtcctgtcatagttg..., exception=too long to segment len > 200) skip (len=484, word=paaggctagtaggacttgcggatgtgctaatgttgatacaaatggagatg..., exception=too long to segment len > 200) skip (len=391, word=pgacgattgtaaataatgagacgttggattactaaggtcaataagataaa..., exception=too long to segment len > 200) skip (len=372, word=ptatggtgttcatgacttcattgcatttgctctcttacatcctagatgta..., exception=too long to segment len > 200) skip (len=303, word=ptccgcatcaaagtcttcgtattcacttacaaagctagatgcttcctgtc..., exception=too long to segment len > 200) skip (len=496, word=pctgacactcacggggggtctgtaccgccgtggtactcctaaagagctat..., exception=too long to segment len > 200) skip (len=414, word=ptataataacagctatcatgcaagcatcgagatggctccttatgtggcct..., exception=too long to segment len > 200) skip (len=386, word=pggcaaaagtccctttgagatcattatgggacacagcccctcactcccaa..., exception=too long to segment len > 200) skip (len=316, word=pagatgattgaccagattccagttatagacaatgaagatgaaaaagggaa..., exception=too long to segment len > 200) skip (len=323, word=ptgaatttgtgtgtatctgtgtgagttttattgaaaattatgccgtggca..., exception=too long to segment len > 200) skip (len=254, word=paaatagtttaggtgggtgcaaaagaagaaacggtgaccaacaagcaggt..., exception=too long to segment len > 200) skip (len=324, word=pgattctgaagctttcaacaaagctttagagcttagcggtagtcaacttg..., exception=too long to segment len > 200) skip (len=530, word=pgagttagataagcttgggatcctggatctgtcttacaaccagctcatcg..., exception=too long to segment len > 200) skip (len=365, word=paaacagatcatgttagcatgttactatcataaggcatcagaaactctga..., exception=too long to segment len > 200) skip (len=627, word=ptaggagatgtccttttaccgacttgccattcccggcaacaaaagatatt..., exception=too long to segment len > 200) skip (len=511, word=pctacagaaagatacaagacagccttttgtatcccagatgcacaatatca..., exception=too long to segment len > 200) skip (len=403, word=ptgccaatgtactcactcctggttcgttttagcttgatcacttctccttt..., exception=too long to segment len > 200) skip (len=706, word=pttgtgtcatcttgaaagaccaaggcgccaagctactaaagctaaatttg..., exception=too long to segment len > 200) skip (len=485, word=ptcaagattcactggcacattaagggaatggttctctcacttgtctgaat..., exception=too long to segment len > 200) skip (len=482, word=pggcagagttggctgaagcgcgctcgctcgcacgaaggattgtggtggtt..., exception=too long to segment len > 200) skip (len=427, word=pgtatttgcttttgtttcggagtgttaccgatttctctctcagcttcctc..., exception=too long to segment len > 200) skip (len=271, word=pgtcctagacatcctagtaaccattgcattattattgggaaagccatggt..., exception=too long to segment len > 200) skip (len=400, word=pgccgtatggctgaccggcgattactagcgattccggcttcatgcaggcg..., exception=too long to segment len > 200) skip (len=417, word=pggaaagtgaaagctggataacaccggtaccatcatcgagaagcagacgg..., exception=too long to segment len > 200) skip (len=530, word=pgagttagataagcttgggatcctggatctgtcttacaaccagctcatcg..., exception=too long to segment len > 200) skip (len=431, word=pgtatttgtttctatccctttaccttggggattcttctctcaacttcctt..., exception=too long to segment len > 200) skip (len=530, word=pgagttagataagcttgggatcctggatctgtcttacaaccagctcatcg..., exception=too long to segment len > 200) skip (len=391, word=pgacgattgtaaataatgagacgttggattactaaggtcaataagataaa..., exception=too long to segment len > 200) skip (len=362, word=pggcttatgcacttctcttcttggtaatttttgtgatgcttccaatagtc..., exception=too long to segment len > 200) skip (len=372, word=pagcttatgcacttctcttcttggtactttttgtgatgcttccaatagtc..., exception=too long to segment len > 200) skip (len=369, word=pagcttatgcacttctcttcttggtactttttgtgatgcttccaatagtc..., exception=too long to segment len > 200) skip (len=356, word=pgacttgggtaaacctttgagcatggtcatgaggtcctgtatcaagaacg..., exception=too long to segment len > 200) skip (len=366, word=pagcttatgcacttctcttcttggtactttttgtgatgcttccaatagtc..., exception=too long to segment len > 200) skip (len=496, word=pctgacactcacggggggtctgtaccgccgtggtactcctaaagagctat..., exception=too long to segment len > 200) skip (len=361, word=pggcttatgcacttctcttcttggtaatttttgtgatgctcccaatagtc..., exception=too long to segment len > 200) skip (len=494, word=pggcttatgcacttctcttcttggtaatttttgtgatgctcccaatagtc..., exception=too long to segment len > 200) skip (len=363, word=pagcttatgcacttctattcttggtactttttgtgatgcttccaatagtc..., exception=too long to segment len > 200) skip (len=363, word=pagcttatgcacttctattcttggtactttttgtgatgcttccaatagtc..., exception=too long to segment len > 200) skip (len=368, word=ptccaagatctaatggacttgcaagtcctccatcagtaaattcccatggg..., exception=too long to segment len > 200) skip (len=368, word=ptccaaggtctaatggacttgcaagtcctccgtcagtaaattcccatggg..., exception=too long to segment len > 200) skip (len=367, word=ptacccactatgactgatatagtgggttataaactatacatgaggtatgt..., exception=too long to segment len > 200) skip (len=286, word=pttactacttacgtgtgtggcattttcagggtccatctgcagtggtggag..., exception=too long to segment len > 200) skip (len=502, word=pagtatgaaaaattatgctcaatttgcattccctatggtattggtaaaca..., exception=too long to segment len > 200) skip (len=502, word=pagtatgaaaaattatgctcaatttgcattccctatggtattggtaaaca..., exception=too long to segment len > 200) skip (len=400, word=pttgagatgctttgggatggggttaggcagaggtatgggttctaatggtt..., exception=too long to segment len > 200) skip (len=291, word=pacaacaaagtagatttgagaagtattggaaaattcccgaaagatcagca..., exception=too long to segment len > 200) skip (len=290, word=ptgggttttcctttcctgcatgtctgtacagttgctctcatctgcctggt..., exception=too long to segment len > 200) skip (len=260, word=pattgcattttcgctcacatttctgtttcctagtgttattgttactatat..., exception=too long to segment len > 200) skip (len=260, word=pattgcattttcgctcacatttctgtttcctagtattattgttactatat..., exception=too long to segment len > 200) skip (len=277, word=ptctcaatttctattggtgaataaagtaatttgcatgctgtcctacgtgc..., exception=too long to segment len > 200) skip (len=377, word=ptctcaatttctattggtgaataaagtaatttgcatgctgtcctacgtgc..., exception=too long to segment len > 200) skip (len=349, word=patttctagatttatggaaaagttttccatattatgttttccttctacag..., exception=too long to segment len > 200) skip (len=349, word=patttctagatttatggaaaagttttccatattatgttttccttctacag..., exception=too long to segment len > 200) skip (len=461, word=pgatctgggtaaacccttgagcacagtcatgagatcctgtattagaaatg..., exception=too long to segment len > 200) skip (len=529, word=pagtcgttacaggagatacagggtataatttctcctttgttgaggattgc..., exception=too long to segment len > 200) skip (len=484, word=paaggctagtaggacttgcggatgtgctaatgttgatacaaatggagatg..., exception=too long to segment len > 200) skip (len=552, word=pctaaagatgtatcactttcttggaatggagattattcagagtgaaaaag..., exception=too long to segment len > 200) skip (len=374, word=pcactatgccaaggtggcatctacggtttggagaaaacgaggagcttacg..., exception=too long to segment len > 200) skip (len=498, word=ptgtgcgcatgcaggcttgggcagataaaaataaggcaatatctaacctt..., exception=too long to segment len > 200) 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 skip (len=418, word=petpilskttpegardylvpsrvhegeffalpqspqlfkqllmvggmdry..., exception=too long to segment len > 200) 589 590 591 592 593 594 595 596 597 598 599 600 601 skip (len=662, word=pgatcctctacaaggaacaacaggtttggttcctctgttaggaattgatg..., exception=too long to segment len > 200) skip (len=671, word=paatcaggatcctctacaaggaacaacaggtttggttcctctgttaggaa..., exception=too long to segment len > 200) skip (len=647, word=ptgctgcgcggggacgggcccgtgcacggtgtcgtcaccttcgagcaaaa..., exception=too long to segment len > 200) skip (len=302, word=pcgtgctgcgcggggacgggcccgtgcacggtgtcgtcaccttcgagcaa..., exception=too long to segment len > 200) skip (len=677, word=pggaacatggtggggctgaaggccgtgtgcgtgctgcgcggggacgggcc..., exception=too long to segment len > 200) skip (len=666, word=paaggccgtgtgcgtgctgcgcggggacgggcccgtgcacggtgtcgtca..., exception=too long to segment len > 200) 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 skip (len=1485, word=pttattgctgctgattccgaatcacaggtacgacattggaaccactccaa..., exception=too long to segment len > 200) skip (len=1631, word=pacttttaggtgaactatagaatactcaagctatgcatccaacgcgttgg..., exception=too long to segment len > 200) skip (len=1197, word=pgattggctcctttaggcgaatggcccgagttgcatgttccggcgccatg..., exception=too long to segment len > 200) skip (len=1502, word=pcaacgcgttgggagctctcccatatggtcgacctgcaggcggccgcgaa..., exception=too long to segment len > 200) skip (len=1111, word=pccaagatttttccattgcaccaagcaatggcccctataatttccaatag..., exception=too long to segment len > 200) skip (len=1105, word=ptagggtttagtgttgttccagtttggaacaagagttccctttttaaaga..., exception=too long to segment len > 200) skip (len=1369, word=patgatttgtctgctcagtgccaatgagcgcatgcatgaccaagcagcat..., exception=too long to segment len > 200) skip (len=1017, word=pcacaccggcacgagaaacctaccaatttaatttccaccaacgatcacct..., exception=too long to segment len > 200) skip (len=1291, word=pctctctctggtagcccaccgttcttttgaatcttctgatcgaaaccggc..., exception=too long to segment len > 200) skip (len=837, word=pgtccggtgaagtgttcggatcgcggcgacggaggcggttcgccgcctac..., exception=too long to segment len > 200) skip (len=837, word=pgtccggtgaagtgttcggatcgcggcgacggaggcggttcgccgcctac..., exception=too long to segment len > 200) skip (len=867, word=pttaaactcagcgggtaatctcgcctgacctggggtcgctaaggatgaag..., exception=too long to segment len > 200) skip (len=1422, word=paactctgtgttcagatactgtgcaatcataggatagtgtaagaattcaa..., exception=too long to segment len > 200) skip (len=1017, word=paactctgtgttcagatactgtgcaatgataaaatagtgtaagaatacga..., exception=too long to segment len > 200) skip (len=989, word=paactctgtgttcagatactgtgcaatgataaaatagtgtaagaatacga..., exception=too long to segment len > 200) skip (len=341, word=ptccgaagaaaaagaaagaattgtgaattggatgatctgtactagacgat..., exception=too long to segment len > 200) skip (len=482, word=pcccagctgcagactttgagactcccgtctgcccctctactgaacaacca..., exception=too long to segment len > 200) skip (len=317, word=pgtaatgccttttggactgacaaatgcccctgctacgtttcagtcattga..., exception=too long to segment len > 200) skip (len=481, word=ptcaaccaatgattgcctacttataagaagaaaaagaacatcgaaaactg..., exception=too long to segment len > 200) skip (len=638, word=pgcttcatggagagaagaagactctgcttccttagatacacttgttagaa..., exception=too long to segment len > 200) skip (len=419, word=paccacaacatgaggcgccaacactacaatagacccaaaatctcccccag..., exception=too long to segment len > 200) skip (len=556, word=pgatgagtcctgagtaacttaggagatgtgagttttcaaaacatgagaca..., exception=too long to segment len > 200) skip (len=501, word=pgatgagtcctgagtaacagcaaaagagtcataagtaccacgctcaagta..., exception=too long to segment len > 200) skip (len=649, word=pgatgagtcctgagtaactgtctagatgcgtaggccactacgcagccacg..., exception=too long to segment len > 200) skip (len=287, word=pgagccgctggtcggatggtgctgggtgtggccgatgttcttgaagatct..., exception=too long to segment len > 200) skip (len=294, word=ptgagtaacaacatgcttccaaacacaccacaaagcaactaggtcttggt..., exception=too long to segment len > 200) skip (len=288, word=patcctacaaaagaaaataagagataaattcagtacccatgtcacatatg..., exception=too long to segment len > 200) 628 629 630 631 skip (len=11622, word=pctggcatcggtggagggttggcatgcatgtgctagcctgcgccatccag..., exception=too long to segment len > 200) skip (len=3145, word=patgcggaggaggaggaggaggagagcgaggacgacgcgggacggggagg..., exception=too long to segment len > 200) skip (len=17498, word=patgcgggctgcagcgccaaaaggtgtgaaggaaattggcgcgagcccgc..., exception=too long to segment len > 200) skip (len=6616, word=patgcgggctgcagcgccaaaaggcgtgcgcgccggcgttaagcagcaac..., exception=too long to segment len > 200) skip (len=2204, word=pmraaapkgvragvkqqlgsgqddmvapskhteatanvkgvkraadkpad..., exception=too long to segment len > 200) skip (len=10131, word=pcaggcgggaagggggcatcagttgatgggactgtatgggactcttgatg..., exception=too long to segment len > 200) skip (len=3274, word=patggcaaccggcgtgcgctcccggagcaagactgcaacgacgccaagca..., exception=too long to segment len > 200) skip (len=10131, word=pcaggcgggaagggggcatcagttgatgggactgtatgggactcttgatg..., exception=too long to segment len > 200) skip (len=5527, word=pacagtttgttgcgatagaagcgtttctgcgctgctacgggtggcttgct..., exception=too long to segment len > 200) skip (len=8004, word=pggaccattctcccccaaccgccccccccctccctctcgccccccgcaga..., exception=too long to segment len > 200) skip (len=4003, word=patgctcgggatccagggcttggcgccgcgaaggcagccacttcgcttgg..., exception=too long to segment len > 200) skip (len=6804, word=patgctcgggatccagggcttggcgccgcgaaggcagccacttcgcttgg..., exception=too long to segment len > 200) skip (len=4003, word=patgctcgggatccagggcttggcgccgcgaaggcagccacttcgcttgg..., exception=too long to segment len > 200) skip (len=3564, word=pgtgaagacatcgctgcagctgacaccgtatcagccagcaaggtgagata..., exception=too long to segment len > 200) skip (len=1621, word=patggccaccgccggtgacacgcaggcagcggccagcaacagcagcggca..., exception=too long to segment len > 200) skip (len=2563, word=patggccaccgccggtgacacgcaggcagcggccagcaacagcagcggca..., exception=too long to segment len > 200) skip (len=1620, word=patggccaccgccggtgacacgcaggcagcggccagcaacagcagcggca..., exception=too long to segment len > 200) skip (len=539, word=pmatagdtqaaasnssgtgtstggandggvvrildlysgvgclhaalgrp..., exception=too long to segment len > 200) skip (len=14451, word=pggtcgcgcggccgggccctggatcccgaagcagaaaagaccagtcgcgt..., exception=too long to segment len > 200) skip (len=7518, word=patgtccgcgctctcagccagcacgtctcgtggatgcgctggtgcttcta..., exception=too long to segment len > 200) skip (len=14051, word=paaatctagcagattgataatggagacggcctggcacagcgcctagcgga..., exception=too long to segment len > 200) skip (len=7601, word=paaatctagcagattgataatggagacggcctggcacagcgcctagcgga..., exception=too long to segment len > 200) skip (len=1599, word=phpefepsrqwlaaaaqrpvhgslsyraggvlanggtlvvspegrlvpvp..., exception=too long to segment len > 200) skip (len=9214, word=pgcagtgtccgcggcgcagacccggctgcgtctaagtacgttgcaaatga..., exception=too long to segment len > 200) skip (len=2908, word=patgggctgcgtgcacgggccgctgcatgagacgccgccggagcagcttc..., exception=too long to segment len > 200) skip (len=969, word=pmgcvhgplhetppeqlppdplgdqpppregaaggkdssgggaqasagsn..., exception=too long to segment len > 200) skip (len=8814, word=patggatgggcaaggggcctcacctgcccccgggggagcgcagcacgcag..., exception=too long to segment len > 200) skip (len=3475, word=patggatgggcaaggggcctcacctgcccccgggggagcgcagcacgcag..., exception=too long to segment len > 200) skip (len=1159, word=pmdgqgaspapggaqhaaeleyetddeiiadarpnwdeveiiakhapedy..., exception=too long to segment len > 200) skip (len=7430, word=pccgtcatgccaatcctcgcgatgccctgcattctgacagggcggcccgt..., exception=too long to segment len > 200) skip (len=3538, word=patgccaatcctcgcgatgccctgcattctgacagggcggcccgtgggca..., exception=too long to segment len > 200) skip (len=6804, word=patgctcgggatccagggcttggcgccgcgaaggcagccacttcgcttgg..., exception=too long to segment len > 200) skip (len=4003, word=patgctcgggatccagggcttggcgccgcgaaggcagccacttcgcttgg..., exception=too long to segment len > 200) skip (len=1331, word=pmlgiqglaprrqplrlgssmcmlqarflpagtrrashaavlrtssqqhm..., exception=too long to segment len > 200) 632 633 634 635 636 637 638 639 640 641 642 643 skip (len=324, word=pgcggtcttagtctcgagtgcctgctttatgttaatatatgctcttcggt..., exception=too long to segment len > 200) skip (len=311, word=pgcagaagttagtctcgagtgcctgctttatgttaatatatgctcttcgg..., exception=too long to segment len > 200) skip (len=335, word=pggcttcgcagttagtgcatgatagtatttagcattttgtatttcaaact..., exception=too long to segment len > 200) skip (len=336, word=pgggctatcgcaattagtgcatgaatagtatttagcattttgtatttcaa..., exception=too long to segment len > 200) skip (len=336, word=pggcttagccagttagtgcatgatagtatttagcattttgtatttcaaac..., exception=too long to segment len > 200) skip (len=314, word=pgcttgcgcttgagagatgagagagagaaggtcatgatagaataatgaga..., exception=too long to segment len > 200) skip (len=317, word=pgtgtgggagctatggctatcgctctctttatctaatgaccctttttcct..., exception=too long to segment len > 200) skip (len=254, word=paggtacttctccttcgatattatggtattactattacattcttcctttc..., exception=too long to segment len > 200) 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 skip (len=1667, word=pzxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx..., exception=too long to segment len > 200) 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 skip (len=406, word=pgtcaagcccgacacgatgaaactggtcgtcaactggagcggcaaagagt..., exception=too long to segment len > 200) skip (len=406, word=pgtcaaaccggacacgatgaaactggtcgtcaactggagcggcaaagagt..., exception=too long to segment len > 200) skip (len=406, word=pgttaagcccgacacaatgaagcttgtagttaactggagcggtcgcgaat..., exception=too long to segment len > 200) skip (len=406, word=pgtcaagcccgacacgatgaaactggtcgtcaactggagcggcaaagagt..., exception=too long to segment len > 200) skip (len=406, word=pgtcaaaccggacacgatgaaactggtcgtcaactggagcggcaaagagt..., exception=too long to segment len > 200) skip (len=406, word=pgttaagcccgacacaatgaagcttgtagttaactggagcggtcgcgaat..., exception=too long to segment len > 200) 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 skip (len=1369, word=pgattgatggtgcttgcacctgattgacgatggatcaccagtgagtggcg..., exception=too long to segment len > 200) skip (len=1369, word=pcaagtcgagcgagctgaattcaaagatcccttcggggtgatttgttgga..., exception=too long to segment len > 200) skip (len=1368, word=pgtcgagcgagctgaattcaaagatcccttcggggtgatttgttggatgc..., exception=too long to segment len > 200) 1654 1655 1656 1657 1658 1659 skip (len=1141, word=patgactaacatccgaaaatcccacccactaatcaaaatcatcaatcatt..., exception=too long to segment len > 200) 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 skip (len=1487, word=pgagcgcgggaagcaagctgatcctcttcggaggtgacgcttgtggnaaa..., exception=too long to segment len > 200) 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 skip (len=495, word=ptaactccgggtgtgcagtggatacgggcaggcttgaggtaggcagggga..., exception=too long to segment len > 200) 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 skip (len=506, word=aatgtacatttgcgacgatagctttttgttttaacccatttcacaattct..., exception=too long to segment len > 200) skip (len=509, word=pgccgagccaccataccgcgaatcgaacactcctcctttaaacgccgcag..., exception=too long to segment len > 200) skip (len=519, word=ptagtgatatttttaggcgatgctttttgttttaacccatttcacaattc..., exception=too long to segment len > 200) skip (len=502, word=pgcgagcaaccataccgcgaatcgaacactcctcctttaaacgccgcagc..., exception=too long to segment len > 200) 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 skip (len=536, word=pcngtaggggcttcctacctgatccgaggtcaaccttaagtaaagattta..., exception=too long to segment len > 200) 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 skip (len=724, word=pttacaatacgtaactaattttatgtcgacgcctgctacctccaaaaaga..., exception=too long to segment len > 200) 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 skip (len=280, word=pgatcaaatattgagaaaagttctggtgcagcgcctggtttttcccaata..., exception=too long to segment len > 200) skip (len=331, word=pggacttgggtatcagatacttgccttgacagatgatgtccaggagaatg..., exception=too long to segment len > 200) skip (len=299, word=pactgcgtaccaattctgactgcgtaccaattctgtggatgatttgaagg..., exception=too long to segment len > 200) skip (len=331, word=pgaaggcgaaccctgcggattgagtaccttactcttcttctgaaacgatt..., exception=too long to segment len > 200) skip (len=312, word=pcaaaaaactcaagttgtggcaagcgttggccaagacactatcagaaaag..., exception=too long to segment len > 200) skip (len=331, word=pgactgcgtgttaattcatgactgcgtaccaattcttcctcggcactaga..., exception=too long to segment len > 200) skip (len=215, word=pccccaaagtgaaacggaagaagcagaggcacctcaaagagactgattac..., exception=too long to segment len > 200) skip (len=216, word=pccccaaagtgtatcggaggaagcagaagcacctcaaggagactgattac..., exception=too long to segment len > 200) skip (len=345, word=pacccgcaaccccgtggtaacttcagcttctggcagttactcaggactca..., exception=too long to segment len > 200) skip (len=295, word=ptaaaaaaaagaaagtaaataaagttacctttgagacgtgctggaaaaga..., exception=too long to segment len > 200) skip (len=247, word=pacccgcaaccccgaggtaacttcagcttctggctgttactcaggactca..., exception=too long to segment len > 200) skip (len=253, word=paaccgcaacaatgcatagacacaggctagagagagaggaacatcttttc..., exception=too long to segment len > 200) skip (len=245, word=pgtggactgcgtaccaaatcagattgttggagtttgattgataaggttgt..., exception=too long to segment len > 200) skip (len=249, word=pgaccttgagaggaaattttgcagaaagcaatgaattggatgctgctgaa..., exception=too long to segment len > 200) 2499 skip (len=845, word=pagagcttagcttagacacttgagagatcaaaaacaactaattattcgaa..., exception=too long to segment len > 200) skip (len=851, word=paaaagctctggacatctcctccacagtatgaggtgagggcagagtacca..., exception=too long to segment len > 200) skip (len=845, word=paccccttttctggaaagggtaagcattggattaactaaatgagccatca..., exception=too long to segment len > 200) skip (len=854, word=ptttttaggattacatagttagggttatttgatttattggactaaactat..., exception=too long to segment len > 200) skip (len=851, word=pnnncccttgacttacgacacttgagagatcaaaaaacaactaattattc..., exception=too long to segment len > 200) skip (len=858, word=pnnnnggatttggagcacctcccgtaccgtatgaaggtgagggcagagta..., exception=too long to segment len > 200) skip (len=853, word=pnnnccctcatttggaataggtaagcattggattacctaaatgagccatc..., exception=too long to segment len > 200) skip (len=858, word=pnnnnaacgtagccatagttagggttatttgatttattggactaaactat..., exception=too long to segment len > 200) skip (len=952, word=pnnnaacttcacttacacacttgagagatcaaaaacaactaattattcga..., exception=too long to segment len > 200) skip (len=951, word=pnnnngggatttggacacctcncgtaccgtatgaaggtgagggcagagta..., exception=too long to segment len > 200) skip (len=953, word=pnnnaactcattttgaataggtaagcattggattacctaaatgagccatc..., exception=too long to segment len > 200) skip (len=955, word=pnnnngggttagcaatagttagggttatttgattttttggactaaactat..., exception=too long to segment len > 200) skip (len=953, word=pnnttacttaacttacacacttgagagatcaaaaacaactaattattcga..., exception=too long to segment len > 200) skip (len=951, word=pnnnnttgatttggacacctcccgtaccgtatgaaggtgagggcagagta..., exception=too long to segment len > 200) skip (len=954, word=pnnaaactcatttggaataggtaagcattggattacctaaatgagccatc..., exception=too long to segment len > 200) skip (len=952, word=pnnnaaagattagcatagttagggttatttgatttattggactaaactat..., exception=too long to segment len > 200) 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 skip (len=801, word=pagcgcgccgttgatattgtctcgcaaatgacattggatgagaaggtcaa..., exception=too long to segment len > 200) skip (len=951, word=pggnnnnnactgattacgccagctatttaggtgacactatagaatactca..., exception=too long to segment len > 200) skip (len=951, word=pggnnnnancatccgtgcgggtgctggcgctgtgatgtgctcctacaacc..., exception=too long to segment len > 200) skip (len=951, word=pnnnnnngctancactgcacctcaggttcgagtagttgaagtggtgtagc..., exception=too long to segment len > 200) skip (len=825, word=prildelaysppyypspwangqgdwaqayqravdivsqmtldekvnlttg..., exception=too long to segment len > 200) skip (len=953, word=pagaccggtcttctcgtagtgcccaacttgaactgaggaacagtcatgtc..., exception=too long to segment len > 200) skip (len=934, word=pgatcaaaaaacaactaattattcgaaacgatgagatttccttctatttt..., exception=too long to segment len > 200) skip (len=951, word=patccccttgggccaatggccagggcgactgggcgcaggcataccagcgc..., exception=too long to segment len > 200) skip (len=935, word=pcagcttccgcgaggagcttccgacaaacaccatcttgggatacgacgta..., exception=too long to segment len > 200) skip (len=935, word=patgtgctcctacaaccagatcaacaacagctatggctgccagaacagct..., exception=too long to segment len > 200) skip (len=964, word=pcactcacgttcgagtagttgaagtggtgtagctcaaaccatagccgaac..., exception=too long to segment len > 200) skip (len=2575, word=pgcacatcaccatcaccatcatcaccatgctgcagtacgtagaattcttg..., exception=too long to segment len > 200) skip (len=939, word=pgggccatggccagggcgactgggcgcaggcataccagcgcgccgttgat..., exception=too long to segment len > 200) skip (len=1035, word=pcgttacgacacttgagaagatcaaaaaacaactaattattcgaaacgat..., exception=too long to segment len > 200) skip (len=939, word=pgggccatggccagggcgactgggcgcaggcataccagcgcgccgttgat..., exception=too long to segment len > 200) skip (len=972, word=pacctcaggttcgagtagttgaaagtggtgtagctcaaaccatagccgaa..., exception=too long to segment len > 200) skip (len=2575, word=pgcacatcaccatcaccatcatcaccatgctgcagtacgtagaattcttg..., exception=too long to segment len > 200) skip (len=973, word=pagcagaccggtcttctcgtagtgcccaacttgaactgaggaacagtcat..., exception=too long to segment len > 200) skip (len=1014, word=pcgttacgacacttgagaagatcaaaaaacaactaattattcgaaacgat..., exception=too long to segment len > 200) skip (len=567, word=patggccagggcgactgggcgcaggcataccagcgcgccgttgatattgt..., exception=too long to segment len > 200) skip (len=897, word=pccgtgcgggtgctggcgctgtgatgtgctcctacaaccagatcaacaac..., exception=too long to segment len > 200) skip (len=972, word=pcactcaggttcgagtagttgaaagtggtgtagctcaaaccatagccgaa..., exception=too long to segment len > 200) skip (len=2575, word=pgcacatcaccatcaccatcatcaccatgctgcagtacgtagaattcttg..., exception=too long to segment len > 200) skip (len=973, word=pcagaccggtcttctcgtaagtgcccaacttgaactgaggaacagtcatg..., exception=too long to segment len > 200) skip (len=993, word=pagagatcaaaaaacaactaattattcgaaacgatgagatttccttctat..., exception=too long to segment len > 200) skip (len=950, word=pcatccccttgggccatggccagggcgactgggcgcaggcataccagcgc..., exception=too long to segment len > 200) skip (len=949, word=pcactcaggttcgagtagttgaagtggtgtagctcaaaccatagccgaac..., exception=too long to segment len > 200) skip (len=2575, word=pgcacatcaccatcaccatcatcaccatgctgcagtacgtagaattcttg..., exception=too long to segment len > 200) skip (len=939, word=pcagaccggtcttctcgtagtgcccaacttgaactgaggaacagtcatgt..., exception=too long to segment len > 200) skip (len=1004, word=pgttacgacacttgagaagatcaaaaaacaactaattattcgaaacgatg..., exception=too long to segment len > 200) skip (len=873, word=pccatggccagggcgactgggcgcaggcataccagcgcgccgttgatatt..., exception=too long to segment len > 200) skip (len=971, word=pactcaggttcgagtagttgaagtggtgtagctcaaaccatagccgaact..., exception=too long to segment len > 200) skip (len=2575, word=pgcacatcaccatcaccatcatcaccatgctgcagtacgtagaattcttg..., exception=too long to segment len > 200) 2513 2514 2515 2516 2517 2518 2519 2520 skip (len=948, word=ptancnagtcgcatgctccggccgccatggcggccgcgggaattcgattc..., exception=too long to segment len > 200) skip (len=952, word=pnanngacncnntatngngaattnnnnnacgtcgcatgnnnnnnnncatg..., exception=too long to segment len > 200) skip (len=1177, word=pcggttgaaccggttaaatttccctctagaataattttgtttaactttaa..., exception=too long to segment len > 200) skip (len=1157, word=ptcacgcgaaacagcgtcatgagccgaagtggcgagcccgattttcccat..., exception=too long to segment len > 200) skip (len=856, word=patgggcagcagccatcatcatcatcatagccacagcagcggcctggtgc..., exception=too long to segment len > 200) skip (len=941, word=pgatgcgttcccaaaattagtttgttttaaaaaacgtattgaagctatcc..., exception=too long to segment len > 200) skip (len=943, word=ptcggatctggttcgcgtggatccccggaattcacggattctgaggcgtt..., exception=too long to segment len > 200) skip (len=718, word=pacggattctgaggcgttatccaaagacgaggaaaagatagtaggaggcg..., exception=too long to segment len > 200) skip (len=939, word=ptttacgacacttgagaagatcaaaaaacaactaattattcgaaacgatg..., exception=too long to segment len > 200) skip (len=940, word=pctatgccagcatgctgctaaagaagaaggggtatctctcgagaaaagag..., exception=too long to segment len > 200) skip (len=1015, word=patgagatttccttcaatttttactgctgttttattcgcagcatcctccg..., exception=too long to segment len > 200) 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 New Content Lengths Mean: 180772.845037 Wall time: 2h 31s ###Markdown **New Content Lengths after Scrutinizing** ###Code plt.figure() plt.hist(content_lengths, bins=200) plt.xlabel('Content Length (characters count)') plt.ylabel('Document Count') plt.show() ###Output _____no_output_____ ###Markdown **Save scrutinized contents** ###Code %%time scrutinized_path = './corpus/scrutinized-docs' for content, label, fn in zip(dataset_contents, dataset_labels, dataset_filenames): str_label = doc_labels[label] folder_path = join(scrutinized_path, str_label) if not exists(folder_path): os.makedirs(folder_path) file_path = join(folder_path, fn) with open(file_path, 'w') as f: f.write(content.encode('utf8')) del dataset_contents ###Output Wall time: 1min 21s ###Markdown Segment each document and save them**Create new folders if necessary** ###Code segmented_path = u'./corpus/segmented-docs' for label in doc_labels: folder_path = join(segmented_path, label) if not exists(folder_path): os.makedirs(folder_path) print 'New folder', folder_path ###Output New folder ./corpus/segmented-docs\บริหารธุรกิจ New folder ./corpus/segmented-docs\ประมง New folder ./corpus/segmented-docs\มนุษยศาสตร์ New folder ./corpus/segmented-docs\วนศาสตร์ New folder ./corpus/segmented-docs\วิทยาการจัดการ New folder ./corpus/segmented-docs\วิทยาศาสตร์ New folder ./corpus/segmented-docs\วิทยาศาสตร์การกีฬา New folder ./corpus/segmented-docs\วิศวกรรมศาสตร์ New folder ./corpus/segmented-docs\ศิลปศาสตร์และวิทยาศาสตร์ New folder ./corpus/segmented-docs\ศึกษาศาสตร์ New folder ./corpus/segmented-docs\ศึกษาศาสตร์และพัฒนศาสตร์ New folder ./corpus/segmented-docs\สถาปัตยกรรมศาสตร์ New folder ./corpus/segmented-docs\สังคมศาสตร์ New folder ./corpus/segmented-docs\สัตวแพทยศาสตร์ New folder ./corpus/segmented-docs\สิ่งแวดล้อม New folder ./corpus/segmented-docs\อุตสาหกรรมเกษตร New folder ./corpus/segmented-docs\เกษตร New folder ./corpus/segmented-docs\เศรษฐศาสตร์ New folder ./corpus/segmented-docs\โครงการจัดตั้งวิทยาเขตสุพรรณบุรี New folder ./corpus/segmented-docs\โครงการสหวิทยาการระดับบัณฑิตศึกษา ###Markdown ** Create temporary paths file then call Java LongLexTo on that file to segment all documents** ###Code %%time try: os.chdir('LongLexTo') except: pass print os.getcwdu() tmp_paths = u'tmp_paths.txt' tmp_output = u'tmp_output.txt' with open(tmp_paths, 'w') as f: contents = [] for label, fn in zip(dataset_labels, dataset_filenames): str_label = doc_labels[label] ifp = join('..', scrutinized_path, str_label, fn) # input file path ofp = join('..', segmented_path, str_label, fn) # output file path if not isfile(ifp): print 'Error:', ifp, ofp raise AssertionError('input file path is invalid') content = ifp + u'\n' + ofp + u'\n' contents.append(content) content = u'q\n' contents.append(content) f.write(''.join(contents).encode('utf8')) print 'Running...' return_code = call(u'java LongLexTo -Dfile.encoding=UTF-8 < %s > %s' % (tmp_paths, tmp_output), shell=True) print 'return code:', return_code print 'Please see %s and %s for more info' % (tmp_paths, tmp_output) if return_code: print 'You may need to call the Java commmand yourself because I failed' print 'The paths creation process was successful but the segmentation went wrong' print 'Go into the folder LongLexTo, open a shell then type the following command' print 'java -Dfile.encoding=UTF-8 LongLexTo < tmp_paths.txt' print 'Wait a minute and go check at the segmented-docs folder to see if the segmentation went right.' print 'The file will be encoded in UTF-8 and there will be no punctuations in each file.' os.chdir('..') ###Output D:\off99555\Documents\GitHub\Thai-thesis-classification\LongLexTo Running... return code: 1 Please see tmp_paths.txt and tmp_output.txt for more info You may need to call the Java commmand yourself because I failed The paths creation process was successful but the segmentation went wrong Go into the folder LongLexTo, open a shell then type the following command java -Dfile.encoding=UTF-8 LongLexTo < tmp_paths.txt Wait a minute and go check at the segmented-docs folder to see if the segmentation went right. The file will be encoded in UTF-8 and there will be no punctuations in each file. Wall time: 1.94 s
05/CS480_Assignment_5.ipynb
###Markdown ![CS480_w.png]()Assignment 5 ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib %pylab inline # we are using pydicom, so lets install it! !pip install pydicom ###Output Collecting pydicom Downloading pydicom-2.3.0-py3-none-any.whl (2.0 MB)  |████████████████████████████████| 2.0 MB 23.3 MB/s [?25hInstalling collected packages: pydicom Successfully installed pydicom-2.3.0 ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. # 1) Let's explore the data without loading it. # TODO: Without loading the data, how many slices are there? ###Output _____no_output_____ ###Markdown There are 220 slices. ###Code # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # TODO Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ![image.png]() ![image.png]() **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # TODO: Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref: zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. from pydicom import dcmread # TODO: YOUR CODE FOR LOADING THE VOLUME AS A 3D NUMPY ARRAY from os import listdir from os.path import join lstImages = listdir("ct") lstImages.sort() lstSlices = [dcmread(join("ct", image)) for image in lstImages] imageData = np.array([slice.pixel_array for slice in lstSlices]) print(imageData.shape) # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. # TODO: YOUR CODE FOR AXIAL imshow(imageData[100,:,:], cmap='gray') # TODO: YOUR CODE FOR SAGITTAL imshow(imageData[:,:,100], cmap='gray') # TODO: YOUR CODE FOR CORONAL imshow(imageData[:,100,:], cmap='gray') ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. # TODO: YOUR CODE window_center = lstSlices[200].WindowCenter window_width = lstSlices[200].WindowWidth rescale_intercept = lstSlices[200].RescaleIntercept print("Window center: ",window_center) print("Window width: ",window_width) print("Rescale intercept: ",rescale_intercept) vmin = window_center - window_width/2 vmax = window_center + window_width/2 plt.imshow(lstSlices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # 2) Play around with different Window/Level values that enhance # the visualization. # TODO: YOUR CODE vmin = (window_center-15) - (window_width-70)/2 vmax = (window_center-15) + (window_width-70)/2 plt.imshow(lstSlices[200].pixel_array + (rescale_intercept-60), cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Which values make sense and why? ###Output _____no_output_____ ###Markdown Slightly shifting the window centre, adjusting the window width, and changing the contrast by increasing rescale intercept results in an image that eliminates focus from the skin and surroudning tissues and increases the focus on the bone and provides a defined image. **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. # TODO: YOUR CODE TO SEGMENT FAT vmin = (window_center-110) - (window_width-390)/2 vmax = (window_center-110) + (window_width-390)/2 plt.imshow(lstSlices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # TODO: YOUR CODE TO SEGMENT SOFT TISSUE vmin = (window_center+20) - (window_width-390)/2 vmax = (window_center+20) + (window_width-390)/2 plt.imshow(lstSlices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # TODO: YOUR CODE TO SEGMENT BONES vmin = (window_center+700) - (window_width)/2 vmax = (window_center+700) + (window_width)/2 plt.imshow(lstSlices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Are the segmentations good? ###Output _____no_output_____ ###Markdown The bone, soft tissue and fat segments are extremely good. I experimented with various values for window centre and window width to obtain these images. There could be a better combination of values that would achieve better results. ###Code # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____ ###Markdown ![CS480_w.png]()Assignment 5 ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib %pylab inline # we are using pydicom, so lets install it! !pip install pydicom ###Output Defaulting to user installation because normal site-packages is not writeable Requirement already satisfied: pydicom in /home/paulm/.local/lib/python3.9/site-packages (2.1.2) ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. # 1) Let's explore the data without loading it. # TODO: Without loading the data, how many slices are there? # There are 220 slices in the data # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # TODO Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ![Screenshot_20210414_162236.png]() **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # TODO: Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref: zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. from pydicom import dcmread import os files = os.listdir('ct') files.sort() first = dcmread('ct/' + files[0]) data = np.empty((len(files), first.Rows, first.Columns), dtype='uint16') data[0] = first.pixel_array for i, file in enumerate(files[1:]): data[i+1] = dcmread('ct/' + file).pixel_array # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. # setup aspect ratios ax_space = float(first.SliceThickness) cor_space, sag_space = map(float, first.PixelSpacing) # TODO: YOUR CODE FOR AXIAL ax = 100 plot = plt.imshow(data[ax, :, :], cmap='gray') plt.gca().set_aspect(cor_space / sag_space) # TODO: YOUR CODE FOR SAGITTAL sag = 100 plt.figure(figsize=(5, 10)) plt.imshow(data[:, :, sag], cmap='gray') plt.gca().set_aspect(ax_space / cor_space) # TODO: YOUR CODE FOR CORONAL cor = 100 plt.figure(figsize=(5, 10)) plot = plt.imshow(data[:, cor, :], cmap='gray') plt.gca().set_aspect(ax_space / sag_space) ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. level = float(first[0x0028, 0x1050].value) window = float(first[0x0028, 0x1051].value) rescale = float(first[0x0028, 0x1052].value) def window_level(window, level): vmin = level - window/2 vmax = level + window/2 print(f"{vmin=}\n{vmax=}") plt.figure(figsize=(5, 10)) plt.imshow(data[:, 100] + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.gca().set_aspect(ax_space / sag_space) window_level(window, level) # 2) Play around with different Window/Level values that enhance # the visualization. # bones window_level(600, 500) # soft tissue window_level(20, 60) # Which values make sense and why? # TODO: YOUR ANSWER # High values (around 200-1000) show denser tissues like bone, while lower values (around -100-+100) are good for showing soft tissue ###Output _____no_output_____ ###Markdown **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. def threshold(slice, min, max): new_mask = slice.copy() new_mask[new_mask < min - rescale] = 0 new_mask[new_mask > max - rescale] = 0 return new_mask # TODO: YOUR CODE TO SEGMENT FAT min = -100 max = -60 _, axs = plt.subplots(1, 3, figsize=(20, 20)) axs[0].imshow(threshold(data[100], min, max), cmap='gray') axs[1].imshow(threshold(data[:, 100], min, max), cmap='gray') axs[2].imshow(threshold(data[:, :, 100], min, max), cmap='gray') # TODO: YOUR CODE TO SEGMENT SOFT TISSUE min = 40 max = 80 _, axs = plt.subplots(1, 3, figsize=(20, 20)) axs[0].imshow(threshold(data[100], min, max), cmap='gray') axs[1].imshow(threshold(data[:, 100], min, max), cmap='gray') axs[2].imshow(threshold(data[:, :, 100], min, max), cmap='gray') # TODO: YOUR CODE TO SEGMENT BONES min = 400 max = 1000 _, axs = plt.subplots(1, 3, figsize=(20, 20)) axs[0].imshow(threshold(data[100], min, max), cmap='gray') axs[1].imshow(threshold(data[:, 100], min, max), cmap='gray') axs[2].imshow(threshold(data[:, :, 100], min, max), cmap='gray') # Are the segmentations good? # TODO: YOUR ANSWER # They aren't bad, but they could probably be improved # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____ ###Markdown ![CS480_w.png]()Assignment 5 ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib %pylab inline # we are using pydicom, so lets install it! !pip install pydicom ###Output Requirement already satisfied: pydicom in /usr/local/lib/python3.7/dist-packages (2.1.2) ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. # 1) Let's explore the data without loading it. # Without loading the data, how many slices are there? # There are 220 slices. Extracting the file `ct.zip` reveals 220 files that end # in the .dcm extension. They are numbered from 0001-0001 to 0001-0220. # Without loading the data, each file would seem to be an individual slice. # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ![image.png]() ###Code # It's a human arm! Hello, voxel-friend! You're lookin' ready to shake hands. ###Output _____no_output_____ ###Markdown **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref: zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. from pydicom import dcmread # I find pathlib to be helpful for manipulating files. from pathlib import Path # Create a 3d array to store the slices. I checked and all slices have a shape # of (454, 512), so no padding is nessecary! slices = np.ndarray(shape=(220, 454, 512)) # Read the DICOM slices into the numpy 3d array. for idx, slice in enumerate(sorted(Path('ct').iterdir())): slices[idx, :, :] = dcmread(slice).pixel_array # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. # Viewing an axial slice (at the elbow): imshow(slices[65, :, :], cmap='gray') # Viewing a sagittal slice (at the elbow): imshow(slices[:, :, 85], cmap='gray') # Viewing a coronal slice (at the elbow): imshow(slices[:, 115, :], cmap='gray') ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. # Read a DICOM file again to access the header: slice = dcmread(next(Path('ct').iterdir())) # Print Window Center and then store it: print(slice[0x0028, 0x1050]) level = slice[0x0028, 0x1050].value # Print Window Width and then store it: print(slice[0x0028, 0x1051]) window = slice[0x0028, 0x1051].value # Print Rescale Intercept and then store it: print(slice[0x0028, 0x1052]) rescale = slice[0x0028, 0x1052].value # Try the provided formula for Window/Level adjustment and see the resulting # image on a slice: vmin = level - window/2 vmax = level + window/2 plt.imshow(slices[65] + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Observation: compared to the same image above, it's now a lot easier to see # detail in the tissue. Cool! # 2) Play around with different Window/Level values that enhance # the visualization. # These values seem to emphasize soft tissue (flesh, blood vessels, etc): level = 50 window = 250 vmin = level - window/2 vmax = level + window/2 plt.imshow(slices[65] + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # These values seem to emphasize hard tissue (bone detail): level = 500 window = 1500 vmin = level - window/2 vmax = level + window/2 plt.imshow(slices[65] + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Which values make sense and why? # I presented two sets of values above. The first, 250/50, seems to emphasize # soft tissue quite well, bringing detail to blood vessels in particular. The # latter, 1500/500, seems to emphasize hard tissue, with increased detail in # the arm bones. I believe the particular values that would make sense to use # would depend on the use-case! For example, the latter would clearly be more # useful in orthopaedics. I unfortunately broke my arm as a teenager, and I # imagine radiology with such windowing could have been useful in resetting my # bones. ###Output _____no_output_____ ###Markdown **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. # TODO: YOUR CODE TO SEGMENT FAT # TODO: YOUR CODE TO SEGMENT SOFT TISSUE # TODO: YOUR CODE TO SEGMENT BONES # Are the segmentations good? # TODO: YOUR ANSWER # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____ ###Markdown ![CS480_w.png]() Assignment 5 **Yiming Shen****4/03/2021****HW Topic: load CT volume, slice it, adjust window/level** ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib %pylab inline # we are using pydicom, so lets install it! !pip install pydicom import numpy as np import mahotas as mh import os from sklearn.ensemble import RandomForestClassifier ###Output _____no_output_____ ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. ###Output _____no_output_____ ###Markdown 1) Let's explore the data without loading it.TODO: Without loading the data, how many slices are there? TODO: YOUR_ANSWERThere are **220** items. ![p1](https://github.com/Yiming-S/cs480student/blob/main/05/1.png?raw=true) ###Code # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # TODO Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ![p2](https://github.com/Yiming-S/cs480student/blob/main/05/2.png?raw=true) **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # TODO: Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref:zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. from pydicom import dcmread # TODO: YOUR CODE FOR LOADING THE VOLUME AS A 3D NUMPY ARRAY dirfiles = sorted(os.listdir('ct')) file0 = dcmread('ct/{}'.format(dirfiles[0])) imshape = list(file0.pixel_array.shape) imshape imshape.append(len(dirfiles)) data = np.empty(imshape) data for idx, entry in enumerate(dirfiles): arr = dcmread('ct/{}'.format(entry)).pixel_array data[:,:,idx] = arr data shape(data) # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. ps = file0.PixelSpacing st = file0.SliceThickness ps st imshape[2]//2 # TODO: YOUR CODE FOR AXIAL AXIAL = ps[1]/ps[0] plt.imshow(data[:, :, imshape[2]//2], cmap='gray')#110 plt.gca().set_aspect(AXIAL) plt.title("AXIAL 110") plt.show() # TODO: YOUR CODE FOR AXIAL AXIAL = ps[1]/ps[0] plt.imshow(data[:, :, 80], cmap='gray')#80 plt.gca().set_aspect(AXIAL) plt.title("AXIAL 80") plt.show() # TODO: YOUR CODE FOR AXIAL AXIAL = ps[1]/ps[0] plt.imshow(data[:, :, 130], cmap='gray')#130 plt.gca().set_aspect(AXIAL) plt.title("AXIAL 130") plt.show() imshape[1]//3 # TODO: YOUR CODE FOR SAGITTAL SAGITTAL = ps[1]/st plt.imshow(data[:,imshape[1]//3,:], cmap='gray')#170 plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 170") plt.show() # TODO: YOUR CODE FOR SAGITTAL SAGITTAL = ps[1]/st plt.imshow(data[:,150,:], cmap='gray')#150 plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 150") plt.show() # TODO: YOUR CODE FOR SAGITTAL SAGITTAL = ps[1]/st plt.imshow(data[:,190,:], cmap='gray') #190 plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 190") plt.show() imshape[0]//5 # TODO: YOUR CODE FOR CORONAL CORONAL = st/ps[0] plt.imshow(data[imshape[0]//5,:,:].T, cmap='gray')#90 plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() # TODO: YOUR CODE FOR CORONAL CORONAL = st/ps[0] plt.imshow(data[50,:,:].T, cmap='gray') #50 plt.gca().set_aspect(CORONAL) plt.title("CORONAL 50") plt.show() # TODO: YOUR CODE FOR CORONAL CORONAL = st/ps[0] plt.imshow(data[120,:,:].T, cmap='gray') #120 plt.gca().set_aspect(CORONAL) plt.title("CORONAL 120") plt.show() ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. # TODO: YOUR CODE wc = file0.WindowCenter ww = file0.WindowWidth ri = file0.RescaleIntercept print("WindowCenter: {}\nWindowWidth: {}\nRescaleIntercept: {}".format(wc,ww,ri)) # vmin = level - window/2 # vmax = level + window/2 vmin = wc-ww//2 vmax = wc+ww//2 print("vmin: {}\nvamx: {} ".format(vmin,vmax)) # TODO: YOUR CODE FOR AXIAL(vmin,vmax) #110, 80,130 plt.imshow(data[:, :, imshape[2]//2]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(AXIAL) plt.title("AXIAL 110") plt.show() plt.imshow(data[:, :, 130]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(AXIAL) plt.title("AXIAL 130") plt.show() plt.imshow(data[:, :, 80]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(AXIAL) plt.title("AXIAL 80") plt.show() # TODO: YOUR CODE FOR SAGITTAL(vmin,vmax) plt.imshow(data[:,imshape[1]//3,:]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 170") plt.show() # TODO: YOUR CODE FOR SAGITTAL(vmin,vmax) plt.imshow(data[:,190,:]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 190") plt.show() # TODO: YOUR CODE FOR SAGITTAL(vmin,vmax) plt.imshow(data[:,150,:]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 150") plt.show() # TODO: YOUR CODE FOR CORONAL(vmin,vmax) plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() plt.imshow((data[50,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 50") plt.show() plt.imshow((data[120,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 120") plt.show() # 2) Play around with different Window/Level values that enhance # the visualization. # TODO: YOUR CODE wc, ww = 50, 200 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 100, 200 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 200, 200 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 50, 150 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 50, 100 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 50, 50 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 50, 10 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() wc, ww = 50, 500 vmin = wc-ww//2 vmax = wc+ww//2 plt.imshow((data[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() ###Output _____no_output_____ ###Markdown Which values make sense and why? TODO: YOUR ANSWERBased on what type of tissue we want to test. The significantly wide window displaying all the CT numbers will result in different attenuations between soft tissues to become obscured. [Reference : radiopaedia.org](https://radiopaedia.org/articles/windowing-ct?lang=us) ![p3](https://github.com/Yiming-S/cs480student/blob/main/05/3.png?raw=true) **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. wc = file0.WindowCenter ww = file0.WindowWidth ri = file0.RescaleIntercept vmin = wc-ww//2 vmax = wc+ww//2 print("vmin: {}\nvamx: {} ".format(vmin,vmax)) # TODO: YOUR CODE TO SEGMENT FAT new_mask = data.copy() new_mask = new_mask .astype(np.int16) new_mask[new_mask < -50] = 0 new_mask[new_mask > -300] = 0 AXIAL = ps[1]/ps[0] plt.imshow(data[:, :, 110], cmap='gray')#110 plt.gca().set_aspect(AXIAL) plt.title("AXIAL 110") plt.show() # TODO: YOUR CODE TO SEGMENT SOFT TISSUE new_mask = data.copy() new_mask = new_mask .astype(np.int16) new_mask[new_mask < 50] = 0 new_mask[new_mask > 1500] = 0 plt.imshow(new_mask[:,150,:]+ri, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(SAGITTAL) plt.title("SAGITTAL 150") plt.show() # TODO: YOUR CODE TO SEGMENT BONES new_mask = data.copy() new_mask = new_mask .astype(np.int16) new_mask[new_mask < 700] = 0 new_mask[new_mask > 3400] = 0 plt.imshow((new_mask[imshape[0]//5,:,:] + ri).T, cmap='gray', vmin=vmin,vmax=vmax) plt.gca().set_aspect(CORONAL) plt.title("CORONAL 90") plt.show() # Are the segmentations good? # TODO: YOUR ANSWER # Yes, it works. # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____ ###Markdown ![CS480_w.png]()Assignment 5 ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib %pylab inline # we are using pydicom, so lets install it! !pip install pydicom ###Output Collecting pydicom Downloading pydicom-2.3.0-py3-none-any.whl (2.0 MB)  |████████████████████████████████| 2.0 MB 5.4 MB/s [?25hInstalling collected packages: pydicom Successfully installed pydicom-2.3.0 ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. # 1) Let's explore the data without loading it. # TODO: Without loading the data, how many slices are there? # TODO: YOUR_ANSWER #220 slices are present. # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # TODO Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ###Code ###Output _____no_output_____ ###Markdown ![img.png]() **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # TODO: Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref: zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. from pydicom import dcmread # TODO: YOUR CODE FOR LOADING THE VOLUME AS A 3D NUMPY ARRAY from os import listdir from os.path import join last_Images = listdir("ct") last_Images.sort() last_Slices = [dcmread(join("ct", image)) for image in last_Images] image_Data = np.array([slice.pixel_array for slice in last_Slices]) print(image_Data.shape) # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. # TODO: YOUR CODE FOR AXIAL imshow(image_Data[100,:,:], cmap='gray') # TODO: YOUR CODE FOR SAGITTAL imshow(image_Data[:,:,100], cmap='gray') # TODO: YOUR CODE FOR CORONAL imshow(image_Data[:,100,:], cmap='gray') ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. # TODO: YOUR CODE wc = last_Slices[200].WindowCenter ww = last_Slices[200].WindowWidth rescale_intercept = last_Slices[200].RescaleIntercept vmin = wc - ww/2 vmax = wc + ww/2 plt.imshow(last_Slices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() print("WindowCenter",wc) print("WindowWidth",ww) print("Rescale_Intercept",rescale_intercept) print("Vmin",vmin) print("Vmax",vmax) # 2) Play around with different Window/Level values that enhance # the visualization. # TODO: YOUR CODE vmin = (wc-15) - (ww-70)/2 vmax = (wc-15) + (ww-70)/2 plt.imshow(last_Slices[200].pixel_array + (rescale_intercept-60), cmap='gray', vmin=vmin, vmax=vmax) plt.show() vmin = (wc-100) - (ww-150)/2 vmax = (wc-100) + (ww-150)/2 plt.imshow(last_Slices[200].pixel_array + (rescale_intercept-60), cmap='gray', vmin=vmin, vmax=vmax) plt.show() vmin = (wc-400) - (ww+250)/2 vmax = (wc-400) + (ww+250)/2 plt.imshow(last_Slices[200].pixel_array + (rescale_intercept-60), cmap='gray', vmin=vmin, vmax=vmax) plt.show() vmin = (wc+200) - (ww+450)/2 vmax = (wc+200) + (ww+450)/2 plt.imshow(last_Slices[200].pixel_array + (rescale_intercept-60), cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Which values make sense and why? # TODO: YOUR ANSWER #-175.0 #235.0 # Since the extreme values have a better level or window image quality compare to the images with much nearer vmin, vmax values. ###Output _____no_output_____ ###Markdown **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. # TODO: YOUR CODE TO SEGMENT FAT vmin = (wc-80) - (ww-375)/2 vmax = (wc-80) + (ww-375)/2 plt.imshow(last_Slices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # TODO: YOUR CODE TO SEGMENT SOFT TISSUE vmin = (wc+50) - (ww-375)/2 vmax = (wc+50) + (ww-375)/2 plt.imshow(last_Slices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # TODO: YOUR CODE TO SEGMENT BONES vmin = (wc+650) - (ww)/2 vmax = (wc+650) + (ww)/2 plt.imshow(last_Slices[200].pixel_array + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Are the segmentations good? # TODO: YOUR ANSWER #Yes segmentations are vey good. Accuracy can be much improved by using eachtime different value. # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____ ###Markdown ![CS480_w.png]()Assignment 5 ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib import numpy as np import matplotlib # we are using pydicom, so lets install it! !pip install pydicom ###Output Requirement already satisfied: pydicom in c:\python38\lib\site-packages (2.1.2) ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. # 1) Let's explore the data without loading it. # TODO: Without loading the data, how many slices are there? # The total of slices are 220. Because there are 220 .dcm inside CT folder # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # TODO Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ![arm.png]() **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # TODO: Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref: zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. from pydicom import dcmread import os from operator import itemgetter from matplotlib import pyplot as plt # TODO: YOUR CODE FOR LOADING THE VOLUME AS A 3D NUMPY ARRAY slices = [] all_files = sorted(os.listdir('ct')) for i in range(len(all_files)): files = dcmread('ct' + '/' + all_files[i]) slices.append(files) imagings_shape = list(slices[0].pixel_array) imagings_shape.append(len(slices)) data = np.zeros(imagings) for i, slice in enumerate(slices): img = slice.pixel_array data[:, :, i] = img print(np.shape(data)) # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. # TODO: YOUR CODE FOR AXIAL axial = plt.imshow(data[:, :, 100], cmap='gray') # TODO: YOUR CODE FOR SAGITTAL sagittal = plt.imshow(data[:, 100, :], cmap='gray') # TODO: YOUR CODE FOR CORONAL coronal = plt.imshow(data[100, :, :], cmap='gray') ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. # TODO: YOUR CODE image_slice = dcmread('ct/' + all_files[100]) # Window Center wind_center = image_slice[0x0028, 0x1050] # Window width wind_width = image_slice[0x0028, 0x1051] # Rescale intercept rescale_intercept = image_slice[0x0028, 0x1052] level = image_slice['WindowCenter'].value window = image_slice['WindowWidth'].value rescale_intercept = image_slice['RescaleIntercept'].value vmin = level - window/2 vmax = level + window/2 hu_pixels = image_slice.pixel_array plt.imshow(hu_pixels + rescale_intercept, cmap='gray', vmin=vmin, vmax=vmax) plt.show() level0 = 100 window0 = 100 vmin=level - window/2 vmax=level + window/2 plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() level1 = 70 window1 = 50 vmin=level - window/2 vmax=level + window/2 plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() level = 50 window = 30 vmin=level - window/2 vmax=level + window/2 print("\n vmin \t :", vmin) print(" vmax \t :", vmax) plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() level = 30 window = 10 vmin=level - window/2 vmax=level + window/2 print("\n vmin \t :", vmin) print(" vmax \t :", vmax) plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() level = 100 window = 200 vmin=level - window/2 vmax=level + window/2 print("\n vmin \t :", vmin) print(" vmax \t :", vmax) plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) plt.show() # Which values make sense and why? # I think the level of value is 100 and window value is 100 ###Output _____no_output_____ ###Markdown **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. # TODO: YOUR CODE TO SEGMENT FAT image = (data.copy()).astype(np.int16) image[data < -70] = 0 image[data > -30] = 0 plt.imshow(image[:, :, 100]) # TODO: YOUR CODE TO SEGMENT SOFT TISSUE image = (data.copy()).astype(np.int16) image[data < 40] = 0 image[data > 20] = 0 plt.imshow(image[100, :, :]) # TODO: YOUR CODE TO SEGMENT BONES image = (data.copy()).astype(np.int16) image[data < 1000] = 0 image[data > 20] = 0 plt.imshow(image[100, :, :], cmap = 'gray') # Are the segmentations good? # TODO: YOUR ANSWER # my segmentation is not displayed the result as the statement shown. # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____ ###Markdown ![CS480_w.png]()Assignment 5 ###Code # In this assignment, we will visualize and explore a CT scan! # load numpy and matplotlib %pylab inline # we are using pydicom, so lets install it! !pip install pydicom ###Output Collecting pydicom [?25l Downloading https://files.pythonhosted.org/packages/f4/15/df16546bc59bfca390cf072d473fb2c8acd4231636f64356593a63137e55/pydicom-2.1.2-py3-none-any.whl (1.9MB)  |▏ | 10kB 11.8MB/s eta 0:00:01  |▍ | 20kB 15.6MB/s eta 0:00:01  |▌ | 30kB 18.1MB/s eta 0:00:01  |▊ | 40kB 19.6MB/s eta 0:00:01  |▉ | 51kB 13.7MB/s eta 0:00:01  |█ | 61kB 15.4MB/s eta 0:00:01  |█▏ | 71kB 13.2MB/s eta 0:00:01  |█▍ | 81kB 13.4MB/s eta 0:00:01  |█▋ | 92kB 14.4MB/s eta 0:00:01  |█▊ | 102kB 13.5MB/s eta 0:00:01  |██ | 112kB 13.5MB/s eta 0:00:01  |██ | 122kB 13.5MB/s eta 0:00:01  |██▎ | 133kB 13.5MB/s eta 0:00:01  |██▍ | 143kB 13.5MB/s eta 0:00:01  |██▋ | 153kB 13.5MB/s eta 0:00:01  |██▉ | 163kB 13.5MB/s eta 0:00:01  |███ | 174kB 13.5MB/s eta 0:00:01  |███▏ | 184kB 13.5MB/s eta 0:00:01  |███▎ | 194kB 13.5MB/s eta 0:00:01  |███▌ | 204kB 13.5MB/s eta 0:00:01  |███▋ | 215kB 13.5MB/s eta 0:00:01  |███▉ | 225kB 13.5MB/s eta 0:00:01  |████ | 235kB 13.5MB/s eta 0:00:01  |████▏ | 245kB 13.5MB/s eta 0:00:01  |████▍ | 256kB 13.5MB/s eta 0:00:01  |████▌ | 266kB 13.5MB/s eta 0:00:01  |████▊ | 276kB 13.5MB/s eta 0:00:01  |████▉ | 286kB 13.5MB/s eta 0:00:01  |█████ | 296kB 13.5MB/s eta 0:00:01  |█████▎ | 307kB 13.5MB/s eta 0:00:01  |█████▍ | 317kB 13.5MB/s eta 0:00:01  |█████▋ | 327kB 13.5MB/s eta 0:00:01  |█████▊ | 337kB 13.5MB/s eta 0:00:01  |██████ | 348kB 13.5MB/s eta 0:00:01  |██████ | 358kB 13.5MB/s eta 0:00:01  |██████▎ | 368kB 13.5MB/s eta 0:00:01  |██████▌ | 378kB 13.5MB/s eta 0:00:01  |██████▋ | 389kB 13.5MB/s eta 0:00:01  |██████▉ | 399kB 13.5MB/s eta 0:00:01  |███████ | 409kB 13.5MB/s eta 0:00:01  |███████▏ | 419kB 13.5MB/s eta 0:00:01  |███████▎ | 430kB 13.5MB/s eta 0:00:01  |███████▌ | 440kB 13.5MB/s eta 0:00:01  |███████▊ | 450kB 13.5MB/s eta 0:00:01  |███████▉ | 460kB 13.5MB/s eta 0:00:01  |████████ | 471kB 13.5MB/s eta 0:00:01  |████████▏ | 481kB 13.5MB/s eta 0:00:01  |████████▍ | 491kB 13.5MB/s eta 0:00:01  |████████▌ | 501kB 13.5MB/s eta 0:00:01  |████████▊ | 512kB 13.5MB/s eta 0:00:01  |█████████ | 522kB 13.5MB/s eta 0:00:01  |█████████ | 532kB 13.5MB/s eta 0:00:01  |█████████▎ | 542kB 13.5MB/s eta 0:00:01  |█████████▍ | 552kB 13.5MB/s eta 0:00:01  |█████████▋ | 563kB 13.5MB/s eta 0:00:01  |█████████▊ | 573kB 13.5MB/s eta 0:00:01  |██████████ | 583kB 13.5MB/s eta 0:00:01  |██████████▏ | 593kB 13.5MB/s eta 0:00:01  |██████████▎ | 604kB 13.5MB/s eta 0:00:01  |██████████▌ | 614kB 13.5MB/s eta 0:00:01  |██████████▋ | 624kB 13.5MB/s eta 0:00:01  |██████████▉ | 634kB 13.5MB/s eta 0:00:01  |███████████ | 645kB 13.5MB/s eta 0:00:01  |███████████▏ | 655kB 13.5MB/s eta 0:00:01  |███████████▍ | 665kB 13.5MB/s eta 0:00:01  |███████████▌ | 675kB 13.5MB/s eta 0:00:01  |███████████▊ | 686kB 13.5MB/s eta 0:00:01  |███████████▉ | 696kB 13.5MB/s eta 0:00:01  |████████████ | 706kB 13.5MB/s eta 0:00:01  |████████████▏ | 716kB 13.5MB/s eta 0:00:01  |████████████▍ | 727kB 13.5MB/s eta 0:00:01  |████████████▋ | 737kB 13.5MB/s eta 0:00:01  |████████████▊ | 747kB 13.5MB/s eta 0:00:01  |█████████████ | 757kB 13.5MB/s eta 0:00:01  |█████████████ | 768kB 13.5MB/s eta 0:00:01  |█████████████▎ | 778kB 13.5MB/s eta 0:00:01  |█████████████▍ | 788kB 13.5MB/s eta 0:00:01  |█████████████▋ | 798kB 13.5MB/s eta 0:00:01  |█████████████▉ | 808kB 13.5MB/s eta 0:00:01  |██████████████ | 819kB 13.5MB/s eta 0:00:01  |██████████████▏ | 829kB 13.5MB/s eta 0:00:01  |██████████████▎ | 839kB 13.5MB/s eta 0:00:01  |██████████████▌ | 849kB 13.5MB/s eta 0:00:01  |██████████████▋ | 860kB 13.5MB/s eta 0:00:01  |██████████████▉ | 870kB 13.5MB/s eta 0:00:01  |███████████████ | 880kB 13.5MB/s eta 0:00:01  |███████████████▏ | 890kB 13.5MB/s eta 0:00:01  |███████████████▍ | 901kB 13.5MB/s eta 0:00:01  |███████████████▌ | 911kB 13.5MB/s eta 0:00:01  |███████████████▊ | 921kB 13.5MB/s eta 0:00:01  |███████████████▉ | 931kB 13.5MB/s eta 0:00:01  |████████████████ | 942kB 13.5MB/s eta 0:00:01  |████████████████▎ | 952kB 13.5MB/s eta 0:00:01  |████████████████▍ | 962kB 13.5MB/s eta 0:00:01  |████████████████▋ | 972kB 13.5MB/s eta 0:00:01  |████████████████▊ | 983kB 13.5MB/s eta 0:00:01  |█████████████████ | 993kB 13.5MB/s eta 0:00:01  |█████████████████ | 1.0MB 13.5MB/s eta 0:00:01  |█████████████████▎ | 1.0MB 13.5MB/s eta 0:00:01  |█████████████████▌ | 1.0MB 13.5MB/s eta 0:00:01  |█████████████████▋ | 1.0MB 13.5MB/s eta 0:00:01  |█████████████████▉ | 1.0MB 13.5MB/s eta 0:00:01  |██████████████████ | 1.1MB 13.5MB/s eta 0:00:01  |██████████████████▏ | 1.1MB 13.5MB/s eta 0:00:01  |██████████████████▎ | 1.1MB 13.5MB/s eta 0:00:01  |██████████████████▌ | 1.1MB 13.5MB/s eta 0:00:01  |██████████████████▊ | 1.1MB 13.5MB/s eta 0:00:01  |██████████████████▉ | 1.1MB 13.5MB/s eta 0:00:01  |███████████████████ | 1.1MB 13.5MB/s eta 0:00:01  |███████████████████▏ | 1.1MB 13.5MB/s eta 0:00:01  |███████████████████▍ | 1.1MB 13.5MB/s eta 0:00:01  |███████████████████▌ | 1.1MB 13.5MB/s eta 0:00:01  |███████████████████▊ | 1.2MB 13.5MB/s eta 0:00:01  |████████████████████ | 1.2MB 13.5MB/s eta 0:00:01  |████████████████████ | 1.2MB 13.5MB/s eta 0:00:01  |████████████████████▎ | 1.2MB 13.5MB/s eta 0:00:01  |████████████████████▍ | 1.2MB 13.5MB/s eta 0:00:01  |████████████████████▋ | 1.2MB 13.5MB/s eta 0:00:01  |████████████████████▊ | 1.2MB 13.5MB/s eta 0:00:01  |█████████████████████ | 1.2MB 13.5MB/s eta 0:00:01  |█████████████████████▏ | 1.2MB 13.5MB/s eta 0:00:01  |█████████████████████▎ | 1.2MB 13.5MB/s eta 0:00:01  |█████████████████████▌ | 1.3MB 13.5MB/s eta 0:00:01  |█████████████████████▋ | 1.3MB 13.5MB/s eta 0:00:01  |█████████████████████▉ | 1.3MB 13.5MB/s eta 0:00:01  |██████████████████████ | 1.3MB 13.5MB/s eta 0:00:01  |██████████████████████▏ | 1.3MB 13.5MB/s eta 0:00:01  |██████████████████████▍ | 1.3MB 13.5MB/s eta 0:00:01  |██████████████████████▌ | 1.3MB 13.5MB/s eta 0:00:01  |██████████████████████▊ | 1.3MB 13.5MB/s eta 0:00:01  |██████████████████████▉ | 1.3MB 13.5MB/s eta 0:00:01  |███████████████████████ | 1.4MB 13.5MB/s eta 0:00:01  |███████████████████████▏ | 1.4MB 13.5MB/s eta 0:00:01  |███████████████████████▍ | 1.4MB 13.5MB/s eta 0:00:01  |███████████████████████▋ | 1.4MB 13.5MB/s eta 0:00:01  |███████████████████████▊ | 1.4MB 13.5MB/s eta 0:00:01  |████████████████████████ | 1.4MB 13.5MB/s eta 0:00:01  |████████████████████████ | 1.4MB 13.5MB/s eta 0:00:01  |████████████████████████▎ | 1.4MB 13.5MB/s eta 0:00:01  |████████████████████████▍ | 1.4MB 13.5MB/s eta 0:00:01  |████████████████████████▋ | 1.4MB 13.5MB/s eta 0:00:01  |████████████████████████▉ | 1.5MB 13.5MB/s eta 0:00:01  |█████████████████████████ | 1.5MB 13.5MB/s eta 0:00:01  |█████████████████████████▏ | 1.5MB 13.5MB/s eta 0:00:01  |█████████████████████████▎ | 1.5MB 13.5MB/s eta 0:00:01  |█████████████████████████▌ | 1.5MB 13.5MB/s eta 0:00:01  |█████████████████████████▋ | 1.5MB 13.5MB/s eta 0:00:01  |█████████████████████████▉ | 1.5MB 13.5MB/s eta 0:00:01  |██████████████████████████ | 1.5MB 13.5MB/s eta 0:00:01  |██████████████████████████▏ | 1.5MB 13.5MB/s eta 0:00:01  |██████████████████████████▍ | 1.5MB 13.5MB/s eta 0:00:01  |██████████████████████████▌ | 1.6MB 13.5MB/s eta 0:00:01  |██████████████████████████▊ | 1.6MB 13.5MB/s eta 0:00:01  |██████████████████████████▉ | 1.6MB 13.5MB/s eta 0:00:01  |███████████████████████████ | 1.6MB 13.5MB/s eta 0:00:01  |███████████████████████████▎ | 1.6MB 13.5MB/s eta 0:00:01  |███████████████████████████▍ | 1.6MB 13.5MB/s eta 0:00:01  |███████████████████████████▋ | 1.6MB 13.5MB/s eta 0:00:01  |███████████████████████████▊ | 1.6MB 13.5MB/s eta 0:00:01  |████████████████████████████ | 1.6MB 13.5MB/s eta 0:00:01  |████████████████████████████ | 1.6MB 13.5MB/s eta 0:00:01  |████████████████████████████▎ | 1.7MB 13.5MB/s eta 0:00:01  |████████████████████████████▌ | 1.7MB 13.5MB/s eta 0:00:01  |████████████████████████████▋ | 1.7MB 13.5MB/s eta 0:00:01  |████████████████████████████▉ | 1.7MB 13.5MB/s eta 0:00:01  |█████████████████████████████ | 1.7MB 13.5MB/s eta 0:00:01  |█████████████████████████████▏ | 1.7MB 13.5MB/s eta 0:00:01  |█████████████████████████████▎ | 1.7MB 13.5MB/s eta 0:00:01  |█████████████████████████████▌ | 1.7MB 13.5MB/s eta 0:00:01  |█████████████████████████████▊ | 1.7MB 13.5MB/s eta 0:00:01  |█████████████████████████████▉ | 1.8MB 13.5MB/s eta 0:00:01  |██████████████████████████████ | 1.8MB 13.5MB/s eta 0:00:01  |██████████████████████████████▏ | 1.8MB 13.5MB/s eta 0:00:01  |██████████████████████████████▍ | 1.8MB 13.5MB/s eta 0:00:01  |██████████████████████████████▌ | 1.8MB 13.5MB/s eta 0:00:01  |██████████████████████████████▊ | 1.8MB 13.5MB/s eta 0:00:01  |███████████████████████████████ | 1.8MB 13.5MB/s eta 0:00:01  |███████████████████████████████ | 1.8MB 13.5MB/s eta 0:00:01  |███████████████████████████████▎| 1.8MB 13.5MB/s eta 0:00:01  |███████████████████████████████▍| 1.8MB 13.5MB/s eta 0:00:01  |███████████████████████████████▋| 1.9MB 13.5MB/s eta 0:00:01  |███████████████████████████████▊| 1.9MB 13.5MB/s eta 0:00:01  |████████████████████████████████| 1.9MB 13.5MB/s eta 0:00:01  |████████████████████████████████| 1.9MB 13.5MB/s [?25hInstalling collected packages: pydicom Successfully installed pydicom-2.1.2 ###Markdown **Task 1**: Download and visualize data with SliceDrop! [20 Points] ###Code # Please download https://cs480.org/data/ct.zip and extract it on your computer! # This is a CT scan of an arm in DICOM format. # 1) Let's explore the data without loading it. # TODO: Without loading the data, how many slices are there? ###Output _____no_output_____ ###Markdown 220 slices since there are 220 files in the ct folder ###Code # 2) Let's visualize the data with SliceDrop! # Go to https://slicedrop.com and drag'n'drop all .dcm files into the browser. # Please use the 2D sliders to show axial, sagittal, and coronal slices in 3D. # TODO Please post a screenshot of SliceDrop's 3D View in the text box below by # using the Upload image button after double-click. ###Output _____no_output_____ ###Markdown ![image.png]() ###Code ###Output _____no_output_____ ###Markdown **Task 2**: Load the data using pydicom as a 3D volume and then reslice it! [35 Points] ###Code # TODO: Please upload ct.zip using the file panel on the left. # Then use the following snippet to extract the data. import os import zipfile with zipfile.ZipFile('ct.zip', 'r') as zip_ref: zip_ref.extractall('.') # 1) Now loop through all the DICOM files and store them in a 3D numpy array. # Hint: You can either store them in a list first or read the dimensions of a # single image slice to properly create the 3D numpy array. # Hint 2: os.listdir(DIR) gives a list of filenames in a directory. # Hint 2b: This list is not sorted - make sure you sort it. # Hint 3: The dcmread function loads a single DICOM file. # Hint 4: You can then use .pixel_array to access the image data. sorted_ct_Scans = sorted(os.listdir('ct')) from pydicom import dcmread # TODO: YOUR CODE FOR LOADING THE VOLUME AS A 3D NUMPY ARRAY # Test: dcmread('ct/'+ctScans[0]) slices_array = [] for dataset in sorted_ct_Scans: slices_array += [dcmread('ct/'+dataset).pixel_array] np_slices_array = numpy.array(slices_array) #slices converted to numpy # 2) Now create and show axial, sagittal, and coronal slices from the 3D volume. # Hint: Please use imshow(XX, cmap='gray') to show the image. # TODO: YOUR CODE FOR AXIAL imshow(np_slices_array[100, :, :], cmap='gray') # TODO: YOUR CODE FOR SAGITTAL imshow(np_slices_array[:, :, 120], cmap='gray') # TODO: YOUR CODE FOR CORONAL imshow(np_slices_array[:, 125, :], cmap='gray') ###Output _____no_output_____ ###Markdown **Task 3**: Use the Window/Level-technique to visualize the data! [45 Points] ###Code # We will now enhance the visualization from above by performing # Window/Level adjustment. # Here is one way of doing that: # vmin = level - window/2 # vmax = level + window/2 # plt.imshow(hu_pixels + rescale, cmap='gray', vmin=vmin, vmax=vmax) # plt.show() # 1) Please load the Window/Level values from the DICOM file, # print these values, and then visualize one slice with window/level adjustment. # Hint: The DICOM header has the following tags. # (0028, 1050) Window Center # (0028, 1051) Window Width # Hint 2: You can use slice[key].value to access DICOM tag values. # Hint 3: (0028, 1052) Rescale Intercept might be important. dcmread('ct/'+sorted_ct_Scans[0]) level = dcmread('ct/'+sorted_ct_Scans[0])[0x0028, 0x1050].value #window_center window = dcmread('ct/'+sorted_ct_Scans[0])[0x0028, 0x1051].value #window_width rescale = dcmread('ct/'+sorted_ct_Scans[0])[0x0028, 0x1052].value print(level, window, rescale) vmin = level - window/2 vmax = level + window/2 plt.imshow(np_slices_array[:, 125, :] + rescale, cmap="gray", vmin=vmin, vmax=vmax) plt.show() # 2) Play around with different Window/Level values that enhance # the visualization. vmin = level - window/5 vmax = 10*level + window/5 plt.imshow(np_slices_array[:, 125, :] + rescale, cmap="gray", vmin=vmin, vmax=vmax) plt.show() # Which values make sense and why? ###Output _____no_output_____ ###Markdown Changing level and window allows yus to see different tissues, mostly see the bones since level and window control the contrast of the grayscale **Bonus**: Create segmentations (label maps) for the volume using thresholding HU! [33 Points] ###Code # Similar to Window/Level adjustment for visualization, we can threshold # the volume to highlight the following components using the Hounsfield Units: # 1) Fat # 2) Soft Tissue # 3) Bones # # Please create 3 segmentation masks for these structures. # Then, please visualize each 3 slices per structure to showcase the segmentation. # Hint: As a reminder, the following code allows thresholding of a numpy array. # new_mask = imagevolume.copy() # new_mask[new_mask < XXX] = 0 # Hint2: You might need to cast new_mask to int16 not uint16. # TODO: YOUR CODE TO SEGMENT FAT # TODO: YOUR CODE TO SEGMENT SOFT TISSUE # TODO: YOUR CODE TO SEGMENT BONES # Are the segmentations good? # TODO: YOUR ANSWER # # Thank you and Great job!! # # _.---._ # .' `. # :) (: # \ (@) (@) / # \ A / # ) ( # \"""""/ # `._.' # .=. # .---._.-.=.-._.---. # / ':-(_.-: :-._)-:` \ # / /' (__.-: :-.__) `\ \ # / / (___.-` '-.___) \ \ # / / (___.-'^`-.___) \ \ # / / (___.-'=`-.___) \ \ # / / (____.'=`.____) \ \ # / / (___.'=`.___) \ \ # (_.; `---'.=.`---' ;._) # ;|| __ _.=._ __ ||; # ;|| ( `.-.=.-.' ) ||; # ;|| \ `.=.' / ||; # ;|| \ .=. / ||; # ;|| .-`.`-._.-'.'-. ||; # .:::\ ( ,): O O :(, ) /:::. # |||| ` / /'`--'--'`\ \ ' |||| # '''' / / \ \ '''' # / / \ \ # / / \ \ # / / \ \ # / / \ \ # / / \ \ # /.' `.\ # (_)' `(_) # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # \\. .// # jgs \\. .// # ///) (\\\ # ,///' `\\\, # ///' `\\\ # ""' '"" ###Output _____no_output_____
Tensorflowbasics.ipynb
###Markdown - artificial intelligence- machine learning - deep learningWhat to learn 1. tensorflow basicsand fundamentals2. preprocessing data3. building and using pretrained models4. fitting a model to the data - the approach is experimentation introduction to tensors ###Code # import tensorflow import tensorflow as tf print (tf.__version__) # create tensors with tf.constant scalar = tf.constant(7) scalar # check number of dimensions in a tensor scalar.ndim # create a vector vector= tf.constant ([10, 10]) vector # check the number of dimension of a vector vector.ndim # create a matrix matrix = tf.constant([[2,10], [7,10]]) matrix # check the dimensions of a matrix matrix.ndim # create a noter matrix another_m = tf.constant([[10., 7.], [3., 2.], [8., 9.]], dtype = tf.float16) another_m # check the number of dimensions another_m.ndim # lets create a tensor tensor= tf.constant([[[1, 2, 3,], [4,5,6]], [[7,8,9], [10,11,12]], [[13,14,15], [16, 17,18]]]) tensor tensor.ndim ###Output _____no_output_____ ###Markdown What we've created so far - scalar: a single number- vector: a number with direction- matrix: a 2dimensional array of numbers- tensor: a n-dimension array of number Tf.variable ###Code # create a tensor with tf.variable changable_tensor = tf.Variable([10,7]) unchangable_tensor = tf.constant([7, 10]) changable_tensor, unchangable_tensor # lets change elements in changable_tensor changable_tensor[0] = 7 changable_tensor # the correct way to do this is with .assign changable_tensor[0].assign(7) changable_tensor ###Output _____no_output_____ ###Markdown create random tensors ###Code # create random tensors random_1 = tf.random.Generator.from_seed(42) random_1 = random_1.normal(shape=(3,2)) random_2 = tf.random.Generator.from_seed(42) random_2 = tf.random.normal(shape = (3,2)) # are they equal random_1, random_2, random_1 == random_2 ###Output _____no_output_____ ###Markdown shuffle the order of elements in a tensor ###Code # valuable when you wnat to shuffle your data not_shuffled = tf.constant([[10,7], [3,2], [9, 3]]) not_shuffled # shuffle our not shuffled tf.random.set_seed(42) tf.random.shuffle(not_shuffled, seed = 42) ###Output _____no_output_____
PS7 (1).ipynb
###Markdown Problem Set 7 ###Code import pandas as pd pd.options.mode.chained_assignment = None import matplotlib.pyplot as plt import seaborn as sns import numpy as np import statsmodels.formula.api as smf from sklearn.model_selection import train_test_split ###Output _____no_output_____ ###Markdown 1. Heart Attacks 1. ###Code heart = pd.read_csv('../Data/heart.csv') heart.head() heart = heart.drop(['slp','thall','oldpeak'], axis=1) heart.dropna() print(heart.output.describe()) print(heart.dtypes) print(heart.shape) ###Output count 303.000000 mean 0.544554 std 0.498835 min 0.000000 25% 0.000000 50% 1.000000 75% 1.000000 max 1.000000 Name: output, dtype: float64 age int64 sex int64 cp int64 trtbps int64 chol int64 fbs int64 restecg int64 thalachh int64 exng int64 caa int64 output int64 dtype: object (303, 11) ###Markdown 2. ###Code heart.cp = heart.cp.astype('category') heart.restecg = heart.restecg.astype('category') heart.caa = heart.caa.astype('category') m = smf.logit('output ~ age + sex + cp + trtbps + chol + fbs + restecg + thalachh + exng + caa', data=heart).fit() print(m.summary()) print(m.get_margeff().summary()) ### age, chol, fbs, restecg arent significant ###Output Optimization terminated successfully. Current function value: 0.355396 Iterations 7 Logit Regression Results ============================================================================== Dep. Variable: output No. Observations: 303 Model: Logit Df Residuals: 286 Method: MLE Df Model: 16 Date: Mon, 07 Mar 2022 Pseudo R-squ.: 0.4843 Time: 04:54:26 Log-Likelihood: -107.69 converged: True LL-Null: -208.82 Covariance Type: nonrobust LLR p-value: 2.759e-34 ================================================================================ coef std err z P>|z| [0.025 0.975] -------------------------------------------------------------------------------- Intercept 0.4035 2.469 0.163 0.870 -4.435 5.242 cp[T.1] 1.5343 0.543 2.827 0.005 0.470 2.598 cp[T.2] 1.6907 0.441 3.838 0.000 0.827 2.554 cp[T.3] 1.8970 0.667 2.843 0.004 0.589 3.205 restecg[T.1] 0.4206 0.361 1.165 0.244 -0.287 1.128 restecg[T.2] -0.9518 2.118 -0.449 0.653 -5.103 3.199 caa[T.1] -1.8571 0.458 -4.052 0.000 -2.756 -0.959 caa[T.2] -3.0485 0.647 -4.712 0.000 -4.317 -1.780 caa[T.3] -2.3741 0.783 -3.032 0.002 -3.908 -0.840 caa[T.4] 0.4676 1.586 0.295 0.768 -2.642 3.577 age 0.0237 0.024 0.992 0.321 -0.023 0.070 sex -2.1367 0.457 -4.671 0.000 -3.033 -1.240 trtbps -0.0285 0.011 -2.656 0.008 -0.050 -0.007 chol -0.0061 0.004 -1.524 0.128 -0.014 0.002 fbs 0.4437 0.501 0.886 0.375 -0.537 1.425 thalachh 0.0357 0.011 3.391 0.001 0.015 0.056 exng -1.1615 0.418 -2.781 0.005 -1.980 -0.343 ================================================================================ Logit Marginal Effects ===================================== Dep. Variable: output Method: dydx At: overall ================================================================================ dy/dx std err z P>|z| [0.025 0.975] -------------------------------------------------------------------------------- cp[T.1] 0.1716 0.058 2.975 0.003 0.059 0.285 cp[T.2] 0.1891 0.045 4.234 0.000 0.102 0.277 cp[T.3] 0.2122 0.071 2.986 0.003 0.073 0.351 restecg[T.1] 0.0470 0.040 1.173 0.241 -0.032 0.126 restecg[T.2] -0.1065 0.237 -0.450 0.653 -0.570 0.358 caa[T.1] -0.2077 0.046 -4.532 0.000 -0.298 -0.118 caa[T.2] -0.3410 0.062 -5.515 0.000 -0.462 -0.220 caa[T.3] -0.2655 0.082 -3.241 0.001 -0.426 -0.105 caa[T.4] 0.0523 0.177 0.295 0.768 -0.295 0.400 age 0.0026 0.003 0.998 0.318 -0.003 0.008 sex -0.2390 0.045 -5.331 0.000 -0.327 -0.151 trtbps -0.0032 0.001 -2.776 0.006 -0.005 -0.001 chol -0.0007 0.000 -1.539 0.124 -0.002 0.000 fbs 0.0496 0.056 0.890 0.374 -0.060 0.159 thalachh 0.0040 0.001 3.628 0.000 0.002 0.006 exng -0.1299 0.045 -2.912 0.004 -0.217 -0.042 ================================================================================ ###Markdown - Sex: Being a male decreases the chances of heart attack, this number is significant.- Cp: Chest pain level 3 has the highest chances of bringing a heart attack, CP is significant- Age: The higher your age, the higher chances of getting a heart attack. This number is not significant.- Variables such as caa(number of major vessels) from 1-3, sex, trtbps(resting blood pressure), and exng(exercise enduced angina) are all significant and reduce heart attack probabilities. Some of these makes sense, some don't, like resting bloop pressure, angina, and being a male decreasing the chances. 3. ###Code from sklearn.linear_model import LogisticRegression X = heart[['age','sex', 'cp', 'trtbps', 'chol', 'fbs', 'restecg', 'thalachh', 'exng', 'caa']] y = heart.output X1 = pd.get_dummies(X, drop_first=True, columns=['cp','restecg','caa']) m1 = LogisticRegression(penalty='none', solver='newton-cg').fit(X1,y) print(m1.coef_) print(m1.intercept_) ###Output [[ 0.02366509 -2.13671455 -0.02850619 -0.00606629 0.44373485 0.03574638 -1.16147274 1.53426412 1.69073314 1.89700821 0.4206284 -0.9518241 -1.85714506 -3.04848106 -2.37405207 0.46761275]] [0.40345569] ###Markdown 4. ###Code train_y_prob = m1.predict_proba(X1) train_y_prob1 = train_y_prob[:,1] train_y_prob1[:10] train_y_problab = m1.predict(X1) train_y_problab[:10] threshold = 0.5 1.0*(train_y_prob1 > threshold) == train_y_problab ###Output _____no_output_____ ###Markdown 5. ###Code from sklearn.metrics import accuracy_score accuracy_score(train_y_problab, y) ###Output _____no_output_____ ###Markdown I think I would be comfortable using this model, however it's always important to consider that there are human lives at stake here, so higher accuracy scores are always more dsireable. 6. ###Code from sklearn.metrics import confusion_matrix cm = confusion_matrix(y, train_y_problab) cm from sklearn.metrics import accuracy_score a = accuracy_score(y, train_y_problab) from sklearn.metrics import precision_score p = precision_score(y, train_y_problab) from sklearn.metrics import recall_score r = recall_score(y, train_y_problab) print('Accuracy: ',a,'precision: ',p,'recall: ',r) ###Output Accuracy: 0.858085808580858 precision: 0.8546511627906976 recall: 0.8909090909090909 ###Markdown 2. Predict Airbnb Price 1. ###Code airb = pd.read_csv("../Data/airbnb-beijing-listings.csv.bz2", usecols = ['price','bedrooms','room_type','accommodates','bathrooms'], thousands = ',') airb['price'] = airb['price'].str.replace(',', '') airb['price'] = airb['price'].str.replace('$', '') airb['price'] = pd.to_numeric(airb['price'], errors='coerce') airb.drop(airb.index[airb['price'] == 0], inplace = True) # gets rid of the $0 air b and b's as these are not reasonable airb = airb.dropna() airb["bedrooms2"] = pd.cut(airb.bedrooms, bins = [0, 1, 2, 3, 4, np.inf], labels = ["0", "1", "2", "3", "4 or more"], right=False) # categorizes the variabel: bedrooms airb['logarithm'] = np.log(airb['price']) airb.replace([np.inf, -np.inf], np.nan, inplace=True) # gets rid of the infinite values created by the log function airb.dropna() # drops the na's created from getting rid of the inifinite values airb["bathrooms2"] = pd.cut(airb.bathrooms, bins = [0, 1, 2, 3, np.inf], labels = ["0", "1", "2", "3 or more"], right=False) airb["accommodates2"] = pd.cut(airb.accommodates, bins = [1, 2, 3, 4, np.inf], labels = ["1", "2", "3", "4 or more"], right=False) m3 = smf.ols("logarithm ~ bedrooms2 + room_type + accommodates2 + bathrooms2", data = airb).fit() m3.summary() ###Output /tmp/ipykernel_87/1323061788.py:3: FutureWarning: The default value of regex will change from True to False in a future version. In addition, single character regular expressions will *not* be treated as literal strings when regex=True. airb['price'] = airb['price'].str.replace('$', '') ###Markdown 2. ###Code bnb_pred = m3.predict(airb) bnb_pred ###Output _____no_output_____ ###Markdown 3. ###Code bruh = airb['logarithm'].values from sklearn.metrics import mean_squared_error np.sqrt(mean_squared_error(bnb_pred, bruh)) ###Output _____no_output_____ ###Markdown 4. ###Code newX = {"bedrooms2":['2'], 'room_type':['Shared room'], 'accommodates2':['4 or more'], 'bathrooms2':['2']} two_room = m3.predict(newX) print('Predicted Price: ',two_room) compute = airb[(airb["bedrooms2"] == '2') & (airb['accommodates2'] == '4 or more')] two_room = m3.predict(compute) print('Predicted Price: ', np.mean(two_room)) #???? ###Output Predicted Price: 6.375890864331857 ###Markdown 5. ###Code compute = airb[(airb["bedrooms2"] == '2') & (airb['accommodates2'] == '4 or more')] print('calculated price: ',compute.logarithm.mean()) ###Output calculated price: 6.384548388368513
notebooks/datasets_ames_housing.ipynb
###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code data = ames_housing.drop(columns=["Id", "SalePrice"]) target = ames_housing["SalePrice"] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailables and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with interger number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", density=True, layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code data = ames_housing.drop(columns=["Id", "SalePrice"]) target = ames_housing["SalePrice"] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailables and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with interger number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", density=True, layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code data = ames_housing.drop(columns=["Id", "SalePrice"]) target = ames_housing["SalePrice"] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailables and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with interger number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", density=True, layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ames_housing = ames_housing.drop(columns="Id") ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code target_name = "SalePrice" data, target = ames_housing.drop(columns=target_name), ames_housing[target_name] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailables and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with integer number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown Plotting this information allows us to answer to two questions:* Is there few or many categories for a given features?* Is there rare categories for some features?Knowing about these peculiarities would help at designing the predictivepipeline. NoteIn order to keep the content of the course simple and didactic, wecreated a version of this database without missing values. ###Code ames_housing_no_missing = pd.read_csv("../datasets/ames_housing_no_missing.csv") ames_housing_no_missing.head() ###Output _____no_output_____ ###Markdown It contains the same information as the original dataset after using a[`sklearn.impute.SimpleImputer`](https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html)to replace missing values using the mean along each numerical column(including the target), and the most frequent value along each categorical column. ###Code from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline numerical_features = [ "LotFrontage", "LotArea", "MasVnrArea", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces", "GarageCars", "GarageArea", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", target_name, ] categorical_features = data.columns.difference(numerical_features) most_frequent_imputer = SimpleImputer(strategy="most_frequent") mean_imputer = SimpleImputer(strategy="mean") preprocessor = make_column_transformer( (most_frequent_imputer, categorical_features), (mean_imputer, numerical_features), ) ames_housing_preprocessed = pd.DataFrame( preprocessor.fit_transform(ames_housing), columns=categorical_features.tolist() + numerical_features, ) ames_housing_preprocessed = ames_housing_preprocessed[ames_housing.columns] ames_housing_preprocessed = ames_housing_preprocessed.astype(ames_housing.dtypes) (ames_housing_no_missing == ames_housing_preprocessed).all() ###Output _____no_output_____ ###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code data = ames_housing.drop(columns=["Id", "SalePrice"]) target = ames_housing["SalePrice"] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailables and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with integer number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", density=True, layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ames_housing = ames_housing.drop(columns="Id") ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code target_name = "SalePrice" data, target = ames_housing.drop(columns=target_name), ames_housing[target_name] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailables and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with integer number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", density=True, layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown Plotting this information allows us to answer to two questions:* Is there few or many categories for a given features?* Is there rare categories for some features?Knowing about these peculiarities would help at designing the predictivepipeline. NoteIn order to keep the content of the course simple and didactic, wecreated a version of this database without missing values. ###Code ames_housing_no_missing = pd.read_csv("../datasets/ames_housing_no_missing.csv") ames_housing_no_missing.head() ###Output _____no_output_____ ###Markdown It contains the same information as the original dataset after using a[`sklearn.impute.SimpleImputer`](https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html)to replace missing values using the mean along each numerical column(including the target), and the most frequent value along each categorical column. ###Code from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline numerical_features = [ "LotFrontage", "LotArea", "MasVnrArea", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces", "GarageCars", "GarageArea", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", target_name, ] categorical_features = data.columns.difference(numerical_features) most_frequent_imputer = SimpleImputer(strategy="most_frequent") mean_imputer = SimpleImputer(strategy="mean") preprocessor = make_column_transformer( (most_frequent_imputer, categorical_features), (mean_imputer, numerical_features), ) ames_housing_preprocessed = pd.DataFrame( preprocessor.fit_transform(ames_housing), columns=categorical_features.tolist() + numerical_features, ) ames_housing_preprocessed = ames_housing_preprocessed[ames_housing.columns] ames_housing_preprocessed = ames_housing_preprocessed.astype(ames_housing.dtypes) (ames_housing_no_missing == ames_housing_preprocessed).all() ###Output _____no_output_____ ###Markdown The Ames housing datasetIn this notebook, we will quickly present the "Ames housing" dataset. We willsee that this dataset is similar to the "California housing" dataset.However, it is more complex to handle: it contains missing data and bothnumerical and categorical features.This dataset is located in the `datasets` directory. It is stored in a commaseparated value (CSV) file. As previously mentioned, we are aware that thedataset contains missing values. The character `"?"` is used as a missingvalue marker.We will open the dataset and specify the missing value marker such that theywill be parsed by pandas when opening the file. ###Code import pandas as pd ames_housing = pd.read_csv("../datasets/house_prices.csv", na_values='?') ames_housing = ames_housing.drop(columns="Id") ###Output _____no_output_____ ###Markdown We can have a first look at the available columns in this dataset. ###Code ames_housing.head() ###Output _____no_output_____ ###Markdown We see that the last column named `"SalePrice"` is indeed the target that wewould like to predict. So we will split our dataset into two variablescontaining the data and the target. ###Code target_name = "SalePrice" data, target = ames_housing.drop(columns=target_name), ames_housing[target_name] ###Output _____no_output_____ ###Markdown Let's have a quick look at the target before to focus on the data. ###Code target.head() ###Output _____no_output_____ ###Markdown We see that the target contains continuous value. It corresponds to the priceof a house in $. We can have a look at the target distribution. ###Code import matplotlib.pyplot as plt target.plot.hist(bins=20, edgecolor="black") plt.xlabel("House price in $") _ = plt.title("Distribution of the house price \nin Ames") ###Output _____no_output_____ ###Markdown We see that the distribution has a long tail. It means that most of the houseare normally distributed but a couple of houses have a higher than normalvalue. It could be critical to take this peculiarity into account whendesigning a predictive model.Now, we can have a look at the available data that we could use to predicthouse prices. ###Code data.info() ###Output _____no_output_____ ###Markdown Looking at the dataframe general information, we can see that 79 features areavailable and that the dataset contains 1460 samples. However, some featurescontains missing values. Also, the type of data is heterogeneous: bothnumerical and categorical data are available.First, we will have a look at the data represented with numbers. ###Code numerical_data = data.select_dtypes("number") numerical_data.info() ###Output _____no_output_____ ###Markdown We see that the data are mainly represented with integer number. Let's havea look at the histogram for all these features. ###Code numerical_data.hist(bins=20, figsize=(12, 22), edgecolor="black", layout=(9, 4)) plt.subplots_adjust(hspace=0.8, wspace=0.8) ###Output _____no_output_____ ###Markdown We see that some features have high picks for 0. It could be linked that thisvalue was assigned when the criterion did not apply, for instance thearea of the swimming pool when no swimming pools are available.We also have some feature encoding some date (for instance year).These information are useful and should also be considered when designing apredictive model.Now, let's have a look at the data encoded with strings. ###Code string_data = data.select_dtypes(object) string_data.info() ###Output _____no_output_____ ###Markdown These features are categorical. We can make some bar plot to see categoriescount for each feature. ###Code from math import ceil from itertools import zip_longest n_string_features = string_data.shape[1] nrows, ncols = ceil(n_string_features / 4), 4 fig, axs = plt.subplots(ncols=ncols, nrows=nrows, figsize=(14, 80)) for feature_name, ax in zip_longest(string_data, axs.ravel()): if feature_name is None: # do not show the axis ax.axis("off") continue string_data[feature_name].value_counts().plot.barh(ax=ax) ax.set_title(feature_name) plt.subplots_adjust(hspace=0.2, wspace=0.8) ###Output _____no_output_____ ###Markdown Plotting this information allows us to answer to two questions:* Is there few or many categories for a given features?* Is there rare categories for some features?Knowing about these peculiarities would help at designing the predictivepipeline. NoteIn order to keep the content of the course simple and didactic, wecreated a version of this database without missing values. ###Code ames_housing_no_missing = pd.read_csv("../datasets/ames_housing_no_missing.csv") ames_housing_no_missing.head() ###Output _____no_output_____ ###Markdown It contains the same information as the original dataset after using a[`sklearn.impute.SimpleImputer`](https://scikit-learn.org/stable/modules/generated/sklearn.impute.SimpleImputer.html)to replace missing values using the mean along each numerical column(including the target), and the most frequent value along each categorical column. ###Code from sklearn.compose import make_column_transformer from sklearn.impute import SimpleImputer from sklearn.pipeline import make_pipeline numerical_features = [ "LotFrontage", "LotArea", "MasVnrArea", "BsmtFinSF1", "BsmtFinSF2", "BsmtUnfSF", "TotalBsmtSF", "1stFlrSF", "2ndFlrSF", "LowQualFinSF", "GrLivArea", "BedroomAbvGr", "KitchenAbvGr", "TotRmsAbvGrd", "Fireplaces", "GarageCars", "GarageArea", "WoodDeckSF", "OpenPorchSF", "EnclosedPorch", "3SsnPorch", "ScreenPorch", "PoolArea", "MiscVal", target_name, ] categorical_features = data.columns.difference(numerical_features) most_frequent_imputer = SimpleImputer(strategy="most_frequent") mean_imputer = SimpleImputer(strategy="mean") preprocessor = make_column_transformer( (most_frequent_imputer, categorical_features), (mean_imputer, numerical_features), ) ames_housing_preprocessed = pd.DataFrame( preprocessor.fit_transform(ames_housing), columns=categorical_features.tolist() + numerical_features, ) ames_housing_preprocessed = ames_housing_preprocessed[ames_housing.columns] ames_housing_preprocessed = ames_housing_preprocessed.astype(ames_housing.dtypes) (ames_housing_no_missing == ames_housing_preprocessed).all() ###Output _____no_output_____
Sentiment_RNN_Completed.ipynb
###Markdown Sentiment Analysis with an RNNIn this notebook, you'll implement a recurrent neural network that performs sentiment analysis. Using an RNN rather than a feedfoward network is more accurate since we can include information about the *sequence* of words. Here we'll use a dataset of movie reviews, accompanied by labels.The architecture for this network is shown below.Here, we'll pass in words to an embedding layer. We need an embedding layer because we have tens of thousands of words, so we'll need a more efficient representation for our input data than one-hot encoded vectors. You should have seen this before from the word2vec lesson. You can actually train up an embedding with word2vec and use it here. But it's good enough to just have an embedding layer and let the network learn the embedding table on it's own.From the embedding layer, the new representations will be passed to LSTM cells. These will add recurrent connections to the network so we can include information about the sequence of words in the data. Finally, the LSTM cells will go to a sigmoid output layer here. We're using the sigmoid because we're trying to predict if this text has positive or negative sentiment. The output layer will just be a single unit then, with a sigmoid activation function.We don't care about the sigmoid outputs except for the very last one, we can ignore the rest. We'll calculate the cost from the output of the last step and the training label. ###Code import numpy as np import tensorflow as tf with open('../sentiment-network/reviews.txt', 'r') as f: reviews = f.read() with open('../sentiment-network/labels.txt', 'r') as f: labels = f.read() reviews[:2000] ###Output _____no_output_____ ###Markdown Data preprocessingThe first step when building a neural network model is getting your data into the proper form to feed into the network. Since we're using embedding layers, we'll need to encode each word with an integer. We'll also want to clean it up a bit.You can see an example of the reviews data above. We'll want to get rid of those periods. Also, you might notice that the reviews are delimited with newlines `\n`. To deal with those, I'm going to split the text into each review using `\n` as the delimiter. Then I can combined all the reviews back together into one big string.First, let's remove all punctuation. Then get all the text without the newlines and split it into individual words. ###Code from string import punctuation all_text = ''.join([c for c in reviews if c not in punctuation]) reviews = all_text.split('\n') all_text = ' '.join(reviews) words = all_text.split() all_text[:2000] words[:100] ###Output _____no_output_____ ###Markdown Encoding the wordsThe embedding lookup requires that we pass in integers to our network. The easiest way to do this is to create dictionaries that map the words in the vocabulary to integers. Then we can convert each of our reviews into integers so they can be passed into the network.> **Exercise:** Now you're going to encode the words with integers. Build a dictionary that maps words to integers. Later we're going to pad our input vectors with zeros, so make sure the integers **start at 1, not 0**.> Also, convert the reviews to integers and store the reviews in a new list called `reviews_ints`. ###Code from collections import Counter counts = Counter(words) vocab = sorted(counts, key=counts.get, reverse=True) vocab_to_int = {word: ii for ii, word in enumerate(vocab, 1)} reviews_ints = [] for each in reviews: reviews_ints.append([vocab_to_int[word] for word in each.split()]) ###Output _____no_output_____ ###Markdown Encoding the labelsOur labels are "positive" or "negative". To use these labels in our network, we need to convert them to 0 and 1.> **Exercise:** Convert labels from `positive` and `negative` to 1 and 0, respectively. ###Code labels = labels.split('\n') labels = np.array([1 if each == 'positive' else 0 for each in labels]) review_lens = Counter([len(x) for x in reviews_ints]) print("Zero-length reviews: {}".format(review_lens[0])) print("Maximum review length: {}".format(max(review_lens))) ###Output Zero-length reviews: 1 Maximum review length: 2514 ###Markdown Okay, a couple issues here. We seem to have one review with zero length. And, the maximum review length is way too many steps for our RNN. Let's truncate to 200 steps. For reviews shorter than 200, we'll pad with 0s. For reviews longer than 200, we can truncate them to the first 200 characters.> **Exercise:** First, remove the review with zero length from the `reviews_ints` list. ###Code non_zero_idx = [ii for ii, review in enumerate(reviews_ints) if len(review) != 0] len(non_zero_idx) reviews_ints[-1] ###Output _____no_output_____ ###Markdown Turns out its the final review that has zero length. But that might not always be the case, so let's make it more general. ###Code reviews_ints = [reviews_ints[ii] for ii in non_zero_idx] labels = np.array([labels[ii] for ii in non_zero_idx]) ###Output _____no_output_____ ###Markdown > **Exercise:** Now, create an array `features` that contains the data we'll pass to the network. The data should come from `review_ints`, since we want to feed integers to the network. Each row should be 200 elements long. For reviews shorter than 200 words, left pad with 0s. That is, if the review is `['best', 'movie', 'ever']`, `[117, 18, 128]` as integers, the row will look like `[0, 0, 0, ..., 0, 117, 18, 128]`. For reviews longer than 200, use on the first 200 words as the feature vector.This isn't trivial and there are a bunch of ways to do this. But, if you're going to be building your own deep learning networks, you're going to have to get used to preparing your data. ###Code seq_len = 200 features = np.zeros((len(reviews_ints), seq_len), dtype=int) for i, row in enumerate(reviews_ints): features[i, -len(row):] = np.array(row)[:seq_len] features[:10,:100] ###Output _____no_output_____ ###Markdown Training, Validation, Test With our data in nice shape, we'll split it into training, validation, and test sets.> **Exercise:** Create the training, validation, and test sets here. You'll need to create sets for the features and the labels, `train_x` and `train_y` for example. Define a split fraction, `split_frac` as the fraction of data to keep in the training set. Usually this is set to 0.8 or 0.9. The rest of the data will be split in half to create the validation and testing data. ###Code split_frac = 0.8 split_idx = int(len(features)*0.8) train_x, val_x = features[:split_idx], features[split_idx:] train_y, val_y = labels[:split_idx], labels[split_idx:] test_idx = int(len(val_x)*0.5) val_x, test_x = val_x[:test_idx], val_x[test_idx:] val_y, test_y = val_y[:test_idx], val_y[test_idx:] print("\t\t\tFeature Shapes:") print("Train set: \t\t{}".format(train_x.shape), "\nValidation set: \t{}".format(val_x.shape), "\nTest set: \t\t{}".format(test_x.shape)) ###Output Feature Shapes: Train set: (20000, 200) Validation set: (2500, 200) Test set: (2500, 200) ###Markdown With train, validation, and text fractions of 0.8, 0.1, 0.1, the final shapes should look like:``` Feature Shapes:Train set: (20000, 200) Validation set: (2500, 200) Test set: (2500, 200)``` Build the graphHere, we'll build the graph. First up, defining the hyperparameters.* `lstm_size`: Number of units in the hidden layers in the LSTM cells. Usually larger is better performance wise. Common values are 128, 256, 512, etc.* `lstm_layers`: Number of LSTM layers in the network. I'd start with 1, then add more if I'm underfitting.* `batch_size`: The number of reviews to feed the network in one training pass. Typically this should be set as high as you can go without running out of memory.* `learning_rate`: Learning rate ###Code lstm_size = 256 lstm_layers = 1 batch_size = 500 learning_rate = 0.001 ###Output _____no_output_____ ###Markdown For the network itself, we'll be passing in our 200 element long review vectors. Each batch will be `batch_size` vectors. We'll also be using dropout on the LSTM layer, so we'll make a placeholder for the keep probability. > **Exercise:** Create the `inputs_`, `labels_`, and drop out `keep_prob` placeholders using `tf.placeholder`. `labels_` needs to be two-dimensional to work with some functions later. Since `keep_prob` is a scalar (a 0-dimensional tensor), you shouldn't provide a size to `tf.placeholder`. ###Code n_words = len(vocab_to_int) + 1 # Adding 1 because we use 0's for padding, dictionary started at 1 # Create the graph object graph = tf.Graph() # Add nodes to the graph with graph.as_default(): inputs_ = tf.placeholder(tf.int32, [None, None], name='inputs') labels_ = tf.placeholder(tf.int32, [None, None], name='labels') keep_prob = tf.placeholder(tf.float32, name='keep_prob') ###Output _____no_output_____ ###Markdown EmbeddingNow we'll add an embedding layer. We need to do this because there are 74000 words in our vocabulary. It is massively inefficient to one-hot encode our classes here. You should remember dealing with this problem from the word2vec lesson. Instead of one-hot encoding, we can have an embedding layer and use that layer as a lookup table. You could train an embedding layer using word2vec, then load it here. But, it's fine to just make a new layer and let the network learn the weights.> **Exercise:** Create the embedding lookup matrix as a `tf.Variable`. Use that embedding matrix to get the embedded vectors to pass to the LSTM cell with [`tf.nn.embedding_lookup`](https://www.tensorflow.org/api_docs/python/tf/nn/embedding_lookup). This function takes the embedding matrix and an input tensor, such as the review vectors. Then, it'll return another tensor with the embedded vectors. So, if the embedding layer as 200 units, the function will return a tensor with size [batch_size, 200]. ###Code # Size of the embedding vectors (number of units in the embedding layer) embed_size = 300 with graph.as_default(): embedding = tf.Variable(tf.random_uniform((n_words, embed_size), -1, 1)) embed = tf.nn.embedding_lookup(embedding, inputs_) ###Output _____no_output_____ ###Markdown LSTM cellNext, we'll create our LSTM cells to use in the recurrent network ([TensorFlow documentation](https://www.tensorflow.org/api_docs/python/tf/contrib/rnn)). Here we are just defining what the cells look like. This isn't actually building the graph, just defining the type of cells we want in our graph.To create a basic LSTM cell for the graph, you'll want to use `tf.contrib.rnn.BasicLSTMCell`. Looking at the function documentation:```tf.contrib.rnn.BasicLSTMCell(num_units, forget_bias=1.0, input_size=None, state_is_tuple=True, activation=)```you can see it takes a parameter called `num_units`, the number of units in the cell, called `lstm_size` in this code. So then, you can write something like ```lstm = tf.contrib.rnn.BasicLSTMCell(num_units)```to create an LSTM cell with `num_units`. Next, you can add dropout to the cell with `tf.contrib.rnn.DropoutWrapper`. This just wraps the cell in another cell, but with dropout added to the inputs and/or outputs. It's a really convenient way to make your network better with almost no effort! So you'd do something like```drop = tf.contrib.rnn.DropoutWrapper(cell, output_keep_prob=keep_prob)```Most of the time, you're network will have better performance with more layers. That's sort of the magic of deep learning, adding more layers allows the network to learn really complex relationships. Again, there is a simple way to create multiple layers of LSTM cells with `tf.contrib.rnn.MultiRNNCell`:```cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers)```Here, `[drop] * lstm_layers` creates a list of cells (`drop`) that is `lstm_layers` long. The `MultiRNNCell` wrapper builds this into multiple layers of RNN cells, one for each cell in the list.So the final cell you're using in the network is actually multiple (or just one) LSTM cells with dropout. But it all works the same from an achitectural viewpoint, just a more complicated graph in the cell.> **Exercise:** Below, use `tf.contrib.rnn.BasicLSTMCell` to create an LSTM cell. Then, add drop out to it with `tf.contrib.rnn.DropoutWrapper`. Finally, create multiple LSTM layers with `tf.contrib.rnn.MultiRNNCell`.Here is [a tutorial on building RNNs](https://www.tensorflow.org/tutorials/recurrent) that will help you out. ###Code with graph.as_default(): # Your basic LSTM cell lstm = tf.contrib.rnn.BasicLSTMCell(lstm_size) # Add dropout to the cell drop = tf.contrib.rnn.DropoutWrapper(lstm, output_keep_prob=keep_prob) # Stack up multiple LSTM layers, for deep learning cell = tf.contrib.rnn.MultiRNNCell([drop] * lstm_layers) # Getting an initial state of all zeros initial_state = cell.zero_state(batch_size, tf.float32) ###Output _____no_output_____ ###Markdown RNN forward passNow we need to actually run the data through the RNN nodes. You can use [`tf.nn.dynamic_rnn`](https://www.tensorflow.org/api_docs/python/tf/nn/dynamic_rnn) to do this. You'd pass in the RNN cell you created (our multiple layered LSTM `cell` for instance), and the inputs to the network.```outputs, final_state = tf.nn.dynamic_rnn(cell, inputs, initial_state=initial_state)```Above I created an initial state, `initial_state`, to pass to the RNN. This is the cell state that is passed between the hidden layers in successive time steps. `tf.nn.dynamic_rnn` takes care of most of the work for us. We pass in our cell and the input to the cell, then it does the unrolling and everything else for us. It returns outputs for each time step and the final_state of the hidden layer.> **Exercise:** Use `tf.nn.dynamic_rnn` to add the forward pass through the RNN. Remember that we're actually passing in vectors from the embedding layer, `embed`. ###Code with graph.as_default(): outputs, final_state = tf.nn.dynamic_rnn(cell, embed, initial_state=initial_state) ###Output _____no_output_____ ###Markdown OutputWe only care about the final output, we'll be using that as our sentiment prediction. So we need to grab the last output with `outputs[:, -1]`, the calculate the cost from that and `labels_`. ###Code with graph.as_default(): predictions = tf.contrib.layers.fully_connected(outputs[:, -1], 1, activation_fn=tf.sigmoid) cost = tf.losses.mean_squared_error(labels_, predictions) optimizer = tf.train.AdamOptimizer(learning_rate).minimize(cost) ###Output _____no_output_____ ###Markdown Validation accuracyHere we can add a few nodes to calculate the accuracy which we'll use in the validation pass. ###Code with graph.as_default(): correct_pred = tf.equal(tf.cast(tf.round(predictions), tf.int32), labels_) accuracy = tf.reduce_mean(tf.cast(correct_pred, tf.float32)) ###Output _____no_output_____ ###Markdown BatchingThis is a simple function for returning batches from our data. First it removes data such that we only have full batches. Then it iterates through the `x` and `y` arrays and returns slices out of those arrays with size `[batch_size]`. ###Code def get_batches(x, y, batch_size=100): n_batches = len(x)//batch_size x, y = x[:n_batches*batch_size], y[:n_batches*batch_size] for ii in range(0, len(x), batch_size): yield x[ii:ii+batch_size], y[ii:ii+batch_size] ###Output _____no_output_____ ###Markdown TrainingBelow is the typical training code. If you want to do this yourself, feel free to delete all this code and implement it yourself. Before you run this, make sure the `checkpoints` directory exists. ###Code epochs = 10 with graph.as_default(): saver = tf.train.Saver() with tf.Session(graph=graph) as sess: sess.run(tf.global_variables_initializer()) iteration = 1 for e in range(epochs): state = sess.run(initial_state) for ii, (x, y) in enumerate(get_batches(train_x, train_y, batch_size), 1): feed = {inputs_: x, labels_: y[:, None], keep_prob: 0.5, initial_state: state} loss, state, _ = sess.run([cost, final_state, optimizer], feed_dict=feed) if iteration%5==0: print("Epoch: {}/{}".format(e, epochs), "Iteration: {}".format(iteration), "Train loss: {:.3f}".format(loss)) if iteration%25==0: val_acc = [] val_state = sess.run(cell.zero_state(batch_size, tf.float32)) for x, y in get_batches(val_x, val_y, batch_size): feed = {inputs_: x, labels_: y[:, None], keep_prob: 1, initial_state: val_state} batch_acc, val_state = sess.run([accuracy, final_state], feed_dict=feed) val_acc.append(batch_acc) print("Val acc: {:.3f}".format(np.mean(val_acc))) iteration +=1 saver.save(sess, "checkpoints/sentiment.ckpt") ###Output _____no_output_____ ###Markdown Testing ###Code test_acc = [] with tf.Session(graph=graph) as sess: saver.restore(sess, tf.train.latest_checkpoint('checkpoints')) test_state = sess.run(cell.zero_state(batch_size, tf.float32)) for ii, (x, y) in enumerate(get_batches(test_x, test_y, batch_size), 1): feed = {inputs_: x, labels_: y[:, None], keep_prob: 1, initial_state: test_state} batch_acc, test_state = sess.run([accuracy, final_state], feed_dict=feed) test_acc.append(batch_acc) print("Test accuracy: {:.3f}".format(np.mean(test_acc))) ###Output Test accuracy: 0.830
PermutationBoosting-m3/build2-233a.ipynb
###Markdown *Unit 2, Sprint 3, Module 1*--- ###Code import pandas as pd import numpy as np # !pip install category_encoders==2.* data = pd.read_csv('https://github.com/skhabiri/FORESTCOVER-METRICS/blob/master/data/train.csv?raw=true') print(data.shape) data.head() data.describe() data.nunique().sort_values(ascending=False) # pd.Series({c: data[c].unique() for c in data})[-40:] # [data[col].unique() for col in data] ###Output _____no_output_____ ###Markdown Our target label is "Cover_Type"We will drop imb% imbalance low cardinal features. We also drop "id" column. ###Code def wrangle_pre(X, imb=0.95): ''' Returns the sorted list of feature names with imbalance exceeding imb value ''' X=X.copy() # drop the binary features with imb% imbalance # mask = X.nunique().sort_values(ascending=False) < 5 # lowcard_col = X.nunique().sort_values(ascending=False)[mask].index mask2 = pd.Series({col: X[col].value_counts(). max()/X[col].value_counts(). sum() for col in X.nunique().index}).sort_values(ascending=False) mask2 = mask2[mask2 >= imb] Id_skew_cols = ["Id"] + list(mask2.index) return Id_skew_cols from sklearn.model_selection import train_test_split # Split train into train & val train, val = train_test_split(data, train_size=0.80, test_size=0.20, stratify=data["Cover_Type"], random_state=42) print(f'train: {train.shape}, val: {val.shape}') # Separate class label and data y_train = train["Cover_Type"] X_train = train.drop("Cover_Type", axis=1) y_val = val["Cover_Type"] X_val = val.drop("Cover_Type", axis=1) Id_skew_cols = wrangle_pre(X_train, imb=0.01) def wrangle(X, drop_count=1, cols=Id_skew_cols): ''' drops drop_count number of features from col starting from index=0 (Id) ''' print("drop_count parameter: ",drop_count) X = X.copy() X = X.drop(labels=cols[:drop_count], axis=1) print(f'X shape before return: {X.shape}') return X %matplotlib inline import category_encoders as ce import matplotlib.pyplot as plt import seaborn as sns from sklearn.impute import SimpleImputer from sklearn.model_selection import train_test_split from sklearn.pipeline import make_pipeline from sklearn.preprocessing import FunctionTransformer from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.model_selection import GridSearchCV, RandomizedSearchCV from sklearn.model_selection import cross_val_score from sklearn.model_selection import validation_curve from sklearn.metrics import classification_report from sklearn.metrics import accuracy_score, mean_absolute_error import random ###Output _____no_output_____ ###Markdown Baseline model ###Code y_train.value_counts(normalize=True) # Instantiate log_model = LogisticRegression() # Fit with training data log_model.fit(X_train, y_train) print('training accuracy:', log_model.score(X_train, y_train)) print('validation accuracy:', log_model.score(X_val, y_val)) y_pred = log_model.predict(X_val) print(classification_report(y_val, y_pred, target_names=None)) ###Output training accuracy: 0.3837632275132275 validation accuracy: 0.37566137566137564 precision recall f1-score support 1 0.34 0.21 0.26 432 2 0.35 0.21 0.26 432 3 0.36 0.37 0.37 432 4 0.53 0.62 0.58 432 5 0.31 0.42 0.36 432 6 0.28 0.27 0.27 432 7 0.41 0.53 0.47 432 accuracy 0.38 3024 macro avg 0.37 0.38 0.36 3024 weighted avg 0.37 0.38 0.36 3024 ###Markdown Randomforestclassifier pipeline, and feature_importances_ ###Code max_depth = list() for tree in clf.estimators_: max_depth.append(tree.tree_.max_depth) print("avg max depth %0.1f" % (sum(max_depth) / len(max_depth))) print(f' X_train shape before pipeline: {X_train.shape}') # Make pipeline! pipeline = make_pipeline( FunctionTransformer(wrangle, validate=False), # ce.OrdinalEncoder(), # SimpleImputer(strategy='mean'), RandomForestClassifier(n_estimators=50, criterion="entropy", max_depth=20, min_samples_split=2, min_samples_leaf=8, min_weight_fraction_leaf=0.0, max_features=20, max_leaf_nodes=None, min_impurity_decrease=0.0, min_impurity_split=None, bootstrap=True, oob_score=False, n_jobs=-1, random_state=42, verbose=0, warm_start=False, class_weight=None, ccp_alpha=0.0, max_samples=None) ) drop_count = int(0.1*len(Id_skew_cols)) pipeline.set_params(functiontransformer__kw_args={'drop_count': drop_count}) #.fit: WITHOUT CHANGING X APPLIES THE TRANSFORM AND CHECK TO SEE IF y FITS TRANSFORMED OF X print("\n fitting ...") pipeline.fit(X_train, y_train) print("\n getting X_train transformed column labels") feat_name = pipeline.named_steps['functiontransformer'].transform(X_train).columns print("X_train: ", len(X_train.columns), "X_fit: ", len(feat_name)) assert len(X_train.columns) == len(feat_name) + drop_count print("\n predicting ...") y_pred = pipeline.predict(X_val) print("\n Accuracy ...") print('Training Accuracy', accuracy_score(y_train, pipeline.predict(X_train))) print('Validation Accuracy', accuracy_score(y_val, y_pred)) rf = pipeline.named_steps['randomforestclassifier'] print(pipeline.named_steps['randomforestclassifier'].n_features_) importances = pd.Series(rf.feature_importances_, feat_name).sort_values(ascending=True) plt.figure(figsize=(15,10)) importances.plot.barh() ###Output _____no_output_____ ###Markdown In the presence of all the features, feature_importance_ of Id column ranks relatively high. Hence, feature_importance_ by itself cannot be a deciding factor. We drop 10% of skewed columns to get 82% accuracy Cross Validation Curve for skewed features ###Code par_name = "drop_count" param_range = [{par_name: i} for i in range(len(Id_skew_cols))] param_rangex = [i for i in range(len(Id_skew_cols))] # par_name = "max_features" # param_range = np.arange(0.1,1.1,0.1) # param_rangex = param_range # par_name = "max_depth" # param_range = range(1,25,1) # param_rangex = param_range # par_name = "min_samples_split" # param_range = np.linspace(10, 0.01*len(X_train), 10, endpoint=True).astype(int) # param_rangex = param_range # par_name = "min_samples_leaf" # param_range = np.linspace(2, 0.001*len(X_train), 10, endpoint=True).astype(int) # param_rangex = param_range # par_name = "criterion" # param_range = ["gini", "entropy"] # param_rangex = param_range train_scores, val_scores = validation_curve( pipeline, X_train, y_train, param_name='functiontransformer__kw_args', # param_name='randomforestclassifier__'+ par_name, param_range=param_range, scoring='accuracy', cv=5, n_jobs=-1 ) # for different values of param_range print("val scores", val_scores) print("val scores mean", np.mean(val_scores, axis=1)) # Averaging CV scores plt.figure(dpi=150) plt.plot(param_rangex, np.mean(train_scores, axis=1), color='blue', label='training accuracy') plt.plot(param_rangex, np.mean(val_scores, axis=1), color='red', label='validation accuracy') plt.title('Validation Curve') plt.xlabel(f'model complexity: Pipeline {par_name}') plt.ylabel('model score: Accuracy') plt.legend() param_range ###Output val scores [[0.83305785 0.83836296 0.84497726 0.82389417 0.83298884] [0.82231405 0.82720132 0.82141381 0.81810666 0.8222406 ] [0.8231405 0.82100041 0.82430757 0.82306738 0.82348078] [0.81983471 0.82926829 0.82430757 0.82017363 0.82058702] [0.81859504 0.82430757 0.82802811 0.81934684 0.8222406 ] [0.82561983 0.8284415 0.82720132 0.8218272 0.81893344] [0.82066116 0.83216205 0.82554775 0.82554775 0.82472096] [0.82603306 0.82430757 0.82678793 0.8218272 0.82058702] [0.82396694 0.82720132 0.82637453 0.82513435 0.82265399] [0.82107438 0.83009508 0.82389417 0.82141381 0.82265399] [0.82272727 0.8222406 0.82100041 0.81893344 0.81397272] [0.81859504 0.83257544 0.82513435 0.82141381 0.82678793] [0.82190083 0.83298884 0.83050847 0.82058702 0.82141381] [0.8214876 0.83009508 0.82306738 0.82389417 0.82554775] [0.81818182 0.82637453 0.8218272 0.81893344 0.82554775] [0.82107438 0.82802811 0.82513435 0.82017363 0.81976023] [0.81652893 0.82968169 0.82472096 0.82058702 0.8152129 ] [0.81859504 0.82761472 0.8222406 0.81976023 0.81852005] [0.81900826 0.82678793 0.82926829 0.82058702 0.82306738] [0.82024793 0.83381563 0.82430757 0.81976023 0.82017363] [0.82603306 0.82637453 0.82761472 0.82058702 0.81397272] [0.81983471 0.82926829 0.82348078 0.82017363 0.82265399] [0.81900826 0.82802811 0.81893344 0.81893344 0.81934684] [0.82024793 0.83340223 0.82761472 0.81893344 0.81852005] [0.82024793 0.83050847 0.82430757 0.81852005 0.82348078] [0.81942149 0.83050847 0.82017363 0.82430757 0.82017363] [0.81652893 0.83422902 0.8218272 0.81810666 0.82265399] [0.82107438 0.83257544 0.82348078 0.81893344 0.82141381] [0.81983471 0.82637453 0.82389417 0.8152129 0.81397272] [0.81942149 0.82802811 0.81976023 0.81852005 0.81893344] [0.8161157 0.82472096 0.81934684 0.81893344 0.81686647] [0.81239669 0.82637453 0.81686647 0.8147995 0.82017363] [0.81694215 0.82720132 0.81603969 0.81190575 0.81810666] [0.81570248 0.82348078 0.81066556 0.81190575 0.81355932] [0.81694215 0.82513435 0.81231914 0.81149235 0.81190575] [0.80909091 0.81686647 0.81231914 0.80405126 0.8081852 ] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan] [ nan nan nan nan nan]] val scores mean [0.83465622 0.82225529 0.82299933 0.82283424 0.82250363 0.82440466 0.82572793 0.82390855 0.82506623 0.82382629 0.81977489 0.82490132 0.82547979 0.8248184 0.82217295 0.82283414 0.8213463 0.82134613 0.82374378 0.823661 0.82291641 0.82308228 0.82085002 0.82374368 0.82341296 0.82291696 0.82266916 0.82349557 0.81985781 0.82093266 0.81919668 0.81812217 0.81803911 0.81506278 0.81555875 0.8101026 nan nan nan nan nan nan nan nan nan nan nan nan nan nan nan] ###Markdown beyoun 30 features drop, validation accuracy starts going down. RandomizedSearchCV ###Code # pipe = make_pipeline(FunctionTransformer(log_columns, ), PCA(), SVC()) # param_grid = dict( # functiontransformer__kw_args=[ # {'col_idx': None}, # {'col_idx': [1]} # ], # pca__n_components=[2, 5, 10], # svc__C=[0.1, 10, 100], # ) # grid_search = GridSearchCV(pipe, param_grid=param_grid) # digits = load_digits() # res = grid_search.fit(digits.data, digits.target) print('Model Hyperparameters:') print(pipeline.named_steps['randomforestclassifier']) x_n_iter = 50 param_distributions = { # 'simpleimputer__strategy': ['mean', 'median', 'most_frequent'], 'functiontransformer__kw_args': [{par_name: i} for i in range(int(0.5*len(Id_skew_cols)))], 'randomforestclassifier__min_samples_leaf': [random.randint(1, 1000) for i in range(20)], 'randomforestclassifier__min_samples_split': [random.randint(2, 1000) for i in range(20)], 'randomforestclassifier__max_features': [random.randint(2, 54) for i in range(20)], 'randomforestclassifier__criterion': ["gini", "entropy"] } rscv = RandomizedSearchCV( pipeline, param_distributions=param_distributions, n_iter=x_n_iter, cv=4, scoring='accuracy', verbose=10, return_train_score=True, n_jobs=-1 ) rscv.fit(X_train, y_train) bestpipe = rscv.best_estimator_ print('Cross-validation Accuracy', rscv.best_score_) print('Best hyperparameters', rscv.best_params_) rscv.best_estimator_ rscv.best_params_ best_feat = bestpipe.named_steps['functiontransformer'].transform(X_train).columns best_feat, best_feat.shape #.predict: WITHOUT ACTUALLY TRANSFORMING X, APPLIES THE TRANSFORMS TO X AND PREDICT a fitted y # wrangle_col = pipeline.named_steps['functiontransformer'].transform(X_train).columns print(f' X_val shape before predict : {X_val.shape}') print("predicting ...") y_pred = bestpipe.predict(X_val) print(f' X_val shape after predict : {X_val.shape}') print('Validation Accuracy', accuracy_score(y_val, y_pred)) ###Output X_val shape before predict : (3024, 55) predicting ... drop_count parameter: 17 X shape before return: (3024, 38) X_val shape after predict : (3024, 55) Validation Accuracy 0.708994708994709
Keras_Deep_Space_Signal_Classifier/Research_Notebook.ipynb
###Markdown Classify Radio Signals from Space with Keras Task 1: Import Libraries ###Code from livelossplot.tf_keras import PlotLossesCallback import pandas as pd import numpy as np import matplotlib.pyplot as plt import tensorflow as tf from sklearn.metrics import confusion_matrix from sklearn import metrics import numpy as np np.random.seed(42) import warnings;warnings.simplefilter('ignore') %matplotlib inline print('Tensorflow version:', tf.__version__) ###Output _____no_output_____ ###Markdown Task 2: Load and Preprocess SETI Data ###Code train_images = pd.read_csv('dataset/train/images.csv', header=None) train_labels = pd.read_csv('dataset/train/labels.csv', header=None) val_images = pd.read_csv('dataset/validation/images.csv', header=None) val_labels = pd.read_csv('dataset/validation/labels.csv', header=None) train_images.head() train_labels.head() print("Training set shape:", train_images.shape, train_labels.shape) print("Validation set shape:", val_images.shape, val_labels.shape) x_train = train_images.values.reshape(3200, 64, 128, 1) x_val = val_images.values.reshape(800, 64, 128, 1) y_train = train_labels.values y_val = val_labels.values ###Output _____no_output_____ ###Markdown Task 3: Plot 2D Spectrograms ###Code plt.figure(0, figsize=(12,12)) for i in range(1,4): plt.subplot(1,3,i) img = np.squeeze(x_train[np.random.randint(0, x_train.shape[0])]) plt.xticks([]) plt.yticks([]) plt.imshow(img) plt.imshow(np.squeeze(x_train[3]), cmap="gray"); ###Output _____no_output_____ ###Markdown Task 4: Create Training and Validation Data Generators ###Code from tensorflow.keras.preprocessing.image import ImageDataGenerator datagen_train = ImageDataGenerator(horizontal_flip=True) datagen_train.fit(x_train) datagen_val = ImageDataGenerator(horizontal_flip=True) datagen_val.fit(x_val) ###Output _____no_output_____ ###Markdown Task 5: Creating the CNN Model ###Code from tensorflow.keras.layers import Dense, Input, Dropout,Flatten, Conv2D from tensorflow.keras.layers import BatchNormalization, Activation, MaxPooling2D from tensorflow.keras.models import Model, Sequential from tensorflow.keras.optimizers import Adam, SGD from tensorflow.keras.callbacks import ModelCheckpoint, ReduceLROnPlateau from tensorflow.keras.utils import plot_model # Initialising the CNN model = Sequential() # 1st Convolution model.add(Conv2D(32,(5,5), padding='same', input_shape=(64, 128,1))) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # 2nd Convolution layer model.add(Conv2D(64,(5,5), padding='same')) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Dropout(0.25)) # Flattening model.add(Flatten()) # Fully connected layer model.add(Dense(1024)) model.add(BatchNormalization()) model.add(Activation('relu')) model.add(Dropout(0.4)) model.add(Dense(4, activation='softmax')) ###Output _____no_output_____ ###Markdown Task 6: Learning Rate Scheduling and Compile the Model ###Code initial_learning_rate = 0.005 lr_schedule = tf.keras.optimizers.schedules.ExponentialDecay( initial_learning_rate, decay_steps=5, decay_rate=0.96, staircase=True) optimizer = Adam(learning_rate=lr_schedule) model.compile(optimizer=optimizer, loss='categorical_crossentropy', metrics=['accuracy']) model.summary() ###Output _____no_output_____ ###Markdown Task 7: Training the Model ###Code checkpoint = ModelCheckpoint("model_weights.h5", monitor='val_loss', save_weights_only=True, mode='min', verbose=0) callbacks = [PlotLossesCallback(), checkpoint]#, reduce_lr] batch_size = 32 history = model.fit( datagen_train.flow(x_train, y_train, batch_size=batch_size, shuffle=True), steps_per_epoch=len(x_train)//batch_size, validation_data = datagen_val.flow(x_val, y_val, batch_size=batch_size, shuffle=True), validation_steps = len(x_val)//batch_size, epochs=12, callbacks=callbacks ) ###Output _____no_output_____ ###Markdown Task 8: Model Evaluation ###Code model.evaluate(x_val, y_val) from sklearn.metrics import confusion_matrix from sklearn import metrics import seaborn as sns y_true = np.argmax(y_val, 1) y_pred = np.argmax(model.predict(x_val), 1) print(metrics.classification_report(y_true, y_pred)) print("Classification accuracy: %0.6f" % metrics.accuracy_score(y_true, y_pred)) labels = ["squiggle", "narrowband", "noise", "narrowbanddrd"] ax= plt.subplot() sns.heatmap(metrics.confusion_matrix(y_true, y_pred, normalize='true'), annot=True, ax = ax, cmap=plt.cm.Blues); #annot=True to annotate cells # labels, title and ticks ax.set_title('Confusion Matrix'); ax.xaxis.set_ticklabels(labels); ax.yaxis.set_ticklabels(labels); ###Output _____no_output_____
GridSearchKNN_Case_Study/GridSearchKNN_Case_Study.ipynb
###Markdown Grid Search Hyperparameter optimization This case study is all about using grid searches to identify the optimal parameters for a machine learning algorithm. To complere this case study, you'll use the Pima Indian diabetes dataset from Kaggle and KNN. Follow along with the preprocessing steps of this case study. Load the necessary packages ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns sns.set() ###Output _____no_output_____ ###Markdown Load the diabetes data ###Code diabetes_data = pd.read_csv('diabetes.csv') diabetes_data.head() ###Output _____no_output_____ ###Markdown ** Start by reviewing the data info.** ###Code diabetes_data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 768 entries, 0 to 767 Data columns (total 9 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Pregnancies 768 non-null int64 1 Glucose 768 non-null int64 2 BloodPressure 768 non-null int64 3 SkinThickness 768 non-null int64 4 Insulin 768 non-null int64 5 BMI 768 non-null float64 6 DiabetesPedigreeFunction 768 non-null float64 7 Age 768 non-null int64 8 Outcome 768 non-null int64 dtypes: float64(2), int64(7) memory usage: 54.1 KB ###Markdown ** Apply the describe function to the data.** ###Code diabetes_data.describe() ###Output _____no_output_____ ###Markdown ** Currently, the missing values in the dataset are represented as zeros. Replace the zero values in the following columns ['Glucose','BloodPressure','SkinThickness','Insulin','BMI'] with nan .** ###Code diabetes_data = diabetes_data.astype(float) diabetes_data.loc[:,['Glucose','BloodPressure','SkinThickness','Insulin','BMI']].replace(0 , np.nan, inplace=True) ###Output _____no_output_____ ###Markdown ** Plot histograms of each column. ** ###Code diabetes_data.hist() plt.gcf().set_size_inches(10,10) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Replace the zeros with mean and median values. ###Code diabetes_data['Glucose'].fillna(diabetes_data['Glucose'].mean(), inplace = True) diabetes_data['BloodPressure'].fillna(diabetes_data['BloodPressure'].mean(), inplace = True) diabetes_data['SkinThickness'].fillna(diabetes_data['SkinThickness'].median(), inplace = True) diabetes_data['Insulin'].fillna(diabetes_data['Insulin'].median(), inplace = True) diabetes_data['BMI'].fillna(diabetes_data['BMI'].median(), inplace = True) diabetes_data.head() ###Output _____no_output_____ ###Markdown ** Plot histograms of each column after replacing nan. ** ###Code diabetes_data.hist() plt.gcf().set_size_inches(10,10) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Plot the correlation matrix heatmap ###Code plt.figure(figsize=(12,10)) print('Correlation between various features') p=sns.heatmap(diabetes_data.corr(), annot=True,cmap ='Blues') ###Output Correlation between various features ###Markdown ** Using Sklearn, standarize the magnitude of the features by scaling the values. ** ###Code from sklearn.preprocessing import MinMaxScaler from sklearn.model_selection import train_test_split X = diabetes_data.drop(['Outcome'], axis=1) scaler = MinMaxScaler() scaler.fit(X) scaled_df = scaler.transform(X) ###Output _____no_output_____ ###Markdown ** Define the `y` variable as the `Outcome` column.** ###Code y=diabetes_data.pop('Outcome') ###Output _____no_output_____ ###Markdown ** Create a 70/30 train and test split. ** ###Code X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.30, random_state=42) ###Output _____no_output_____ ###Markdown Using a range of neighbor values of 1-10, apply the KNearestNeighbor classifier to classify the the data. ###Code from sklearn.neighbors import KNeighborsClassifier test_scores = [] train_scores = [] max_k = 10 for i in range(1,max_k): knn = KNeighborsClassifier(i) knn.fit(X_train,y_train) train_scores.append(knn.score(X_train,y_train)) test_scores.append(knn.score(X_test,y_test)) ###Output _____no_output_____ ###Markdown ** Print the train and test scores for each iteration.** ###Code scores = pd.DataFrame({'Train_score':train_scores, 'Test_score':test_scores}) print(scores) ###Output Train_score Test_score 0 1.000000 0.688312 1 0.841713 0.727273 2 0.843575 0.675325 3 0.811918 0.722944 4 0.802607 0.688312 5 0.795158 0.701299 6 0.800745 0.692641 7 0.789572 0.714286 8 0.789572 0.701299 ###Markdown ** Identify the number of neighbors between 1-15 that resulted in the max score in the training dataset. ** ###Code best_train_knn = scores.Train_score.idxmax()+1 print(best_train_knn) ###Output 1 ###Markdown ** Identify the number of neighbors between 1-15 that resulted in the max score in the testing dataset. ** ###Code best_test_knn = scores.Test_score.idxmax()+1 print(best_test_knn) ###Output 2 ###Markdown Plot the train and test model performance by number of neighbors. ###Code plt.figure(figsize=(12,5)) p = sns.lineplot(range(1,max_k),train_scores,marker='*',label='Train Score') p = sns.lineplot(range(1,max_k),test_scores,marker='o',label='Test Score') ###Output _____no_output_____ ###Markdown ** Fit and score the best number of neighbors based on the plot. ** ###Code #let's choose k=9 because it's odd and it looks like a good balance between variance ansd bias k=9 knn = KNeighborsClassifier(9) knn.fit(X_train,y_train) train_scores.append(knn.score(X_train,y_train)) test_scores.append(knn.score(X_test,y_test)) from sklearn.metrics import confusion_matrix y_pred = knn.predict(X_test) pl = confusion_matrix(y_test,y_pred) print(pl) ###Output [[115 36] [ 33 47]] ###Markdown ** Plot the confusion matrix for the model fit above. ** ###Code from sklearn.metrics import plot_confusion_matrix, classification_report # Plot non-normalized confusion matrix titles_options = [("Confusion matrix, without normalization", None), ("Normalized confusion matrix", 'true')] for title, normalize in titles_options: disp = plot_confusion_matrix(knn, X_test, y_test, cmap=plt.cm.Blues, normalize=normalize) disp.ax_.set_title(title) print(title) print(disp.confusion_matrix) plt.show() ###Output Confusion matrix, without normalization [[115 36] [ 33 47]] Normalized confusion matrix [[0.7615894 0.2384106] [0.4125 0.5875 ]] ###Markdown ** Print the classification report ** ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support 0.0 0.78 0.76 0.77 151 1.0 0.57 0.59 0.58 80 accuracy 0.70 231 macro avg 0.67 0.67 0.67 231 weighted avg 0.70 0.70 0.70 231 ###Markdown In the case of the K nearest neighbors algorithm, the K parameter is one of the most important parameters affecting the model performance. The model performance isn't horrible, but what if we didn't consider a wide enough range of values in our neighbors for the KNN? An alternative to fitting a loop of models is to use a grid search to identify the proper number. It is common practice to use a grid search method for all adjustable parameters in any type of machine learning algorithm. First, you define the grid — aka the range of values — to test in the parameter being optimized, and then compare the model outcome performance based on the different values in the grid. Run the code in the next cell to see how to implement the grid search method for identifying the best parameter value for the n_neighbors parameter. Notice the param_grid is the range value to test and we apply cross validation with five folds to score each possible value of n_neighbors. ###Code from sklearn.model_selection import GridSearchCV param_grid = {'n_neighbors':np.arange(1,50)} knn = KNeighborsClassifier() knn_cv= GridSearchCV(knn,param_grid,cv=5) knn_cv.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown Print the best score and best parameter for n_neighbors. ###Code print("Best Score:" + str(knn_cv.best_score_)) print("Best Parameters: " + str(knn_cv.best_params_)) ###Output Best Score:0.737417791623399 Best Parameters: {'n_neighbors': 24} ###Markdown Here you can see that the ideal number of n_neighbors for this model is 14 based on the grid search performed. ** Now, following the KNN example, apply this grid search method to find the optimal number of estimators in a Randon Forest model.** ###Code from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import RandomizedSearchCV param_grid = {'n_estimators':np.arange(50,200,50), 'criterion':['gini', 'entropy'], 'max_depth':np.arange(1,11,2), } rfc = RandomForestClassifier() rfc_cv= GridSearchCV(rfc,param_grid,cv=5) rfc_cv.fit(X_train,y_train) print("Best Score:" + str(rfc_cv.best_score_)) print("Best Parameters: " + str(rfc_cv.best_params_)) ###Output Best Score:0.7783489096573208 Best Parameters: {'criterion': 'entropy', 'max_depth': 7, 'n_estimators': 100}
courses/machine_learning/deepdive2/launching_into_ml/labs/automl-tabular-classification.ipynb
###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewThis tutorial demonstrates how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML Tabular model.* Deploy the `Model` resource to a serving `Endpoint` resource.* Make a prediction by sending data.* Undeploy the `Model` resource. IntroductionThis notebook demonstrates, using the Vertex AI Python client library, how to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code # Setup your dependencies import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code # Import necessary libraries from datetime import datetime # Use a timestamp to ensure unique resources TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification.csv" ! gsutil cp gs://cloud-samples-data/ai-platform-unified/datasets/tabular/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-samples-data/ai-platform-unified/datasets/tabular/petfinder-tabular-classification.csv [Content-Type=text/csv]... / [1 files][872.8 KiB/872.8 KiB] Operation completed over 1 objects/872.8 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code # Import necessary libraries import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object. ###Code # Constructs a AutoML Tabular Training Job job = # TODO 1 -- Your code goes here( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # Create and train the model object # This will take around an hour to run model = # TODO 2a -- Your code goes here( dataset=ds, target_column="Adopted", # Define training, validation and test fraction for training # TODO 2b -- Your code goes here model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code # Deploy the model resource to the serving endpoint resource endpoint = # TODO 3 -- Your code goes here( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code # Make a prediction using the sample values prediction = # TODO 4 -- Your code goes here( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code # Undeploy the model resource # TODO 5 -- Your code goes here ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128 ###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewIn this notebook, you learn how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML tabular model.* Deploy the `model` resource to a serving `endpoint` resource.* Make a prediction by sending data.* Undeploy the `model` resource. IntroductionIn this notebook, you will use Vertex AI Python client library to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code # Setup your dependencies import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code # Import necessary libraries from datetime import datetime # Use a timestamp to ensure unique resources TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification.csv" ! gsutil cp gs://cloud-samples-data/ai-platform-unified/datasets/tabular/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-samples-data/ai-platform-unified/datasets/tabular/petfinder-tabular-classification.csv [Content-Type=text/csv]... / [1 files][872.8 KiB/872.8 KiB] Operation completed over 1 objects/872.8 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code # Import necessary libraries import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object. ###Code # Constructs a AutoML Tabular Training Job job = # TODO 1 -- Your code goes here( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # Create and train the model object # This will take around two hour and half to run model = # TODO 2a -- Your code goes here( dataset=ds, target_column="Adopted", # Define training, validation and test fraction for training # TODO 2b -- Your code goes here model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code # Deploy the model resource to the serving endpoint resource endpoint = # TODO 3 -- Your code goes here( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code # Make a prediction using the sample values prediction = # TODO 4 -- Your code goes here( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code # Undeploy the model resource # TODO 5 -- Your code goes here ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128 ###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewIn this notebook, you learn how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML tabular model.* Deploy the `model` resource to a serving `endpoint` resource.* Make a prediction by sending data.* Undeploy the `model` resource. IntroductionIn this notebook, you will use Vertex AI Python client library to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code # Setup your dependencies import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code # Import necessary libraries from datetime import datetime # Use a timestamp to ensure unique resources TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification.csv" ! gsutil cp gs://cloud-samples-data/ai-platform-unified/datasets/tabular/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-samples-data/ai-platform-unified/datasets/tabular/petfinder-tabular-classification.csv [Content-Type=text/csv]... / [1 files][872.8 KiB/872.8 KiB] Operation completed over 1 objects/872.8 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code # Import necessary libraries import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object. ###Code # Constructs a AutoML Tabular Training Job job = # TODO 1 -- Your code goes here( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # Create and train the model object # This will take around an hour to run model = # TODO 2a -- Your code goes here( dataset=ds, target_column="Adopted", # Define training, validation and test fraction for training # TODO 2b -- Your code goes here model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code # Deploy the model resource to the serving endpoint resource endpoint = # TODO 3 -- Your code goes here( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code # Make a prediction using the sample values prediction = # TODO 4 -- Your code goes here( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code # Undeploy the model resource # TODO 5 -- Your code goes here ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128 ###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewIn this notebook, you learn how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML tabular model.* Deploy the `model` resource to a serving `endpoint` resource.* Make a prediction by sending data.* Undeploy the `model` resource. IntroductionIn this notebook, you will use Vertex AI Python client library to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code # Setup your dependencies import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code # Import necessary libraries from datetime import datetime # Use a timestamp to ensure unique resources TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification_toy.csv" ! gsutil cp gs://cloud-training/mlongcp/v3.0_MLonGC/toy_data/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-training/mlongcp/v3.0_MLonGC/toy_data/petfinder-tabular-classification_toy.csv [Content-Type=text/csv]... [1 files][378.2 KiB/378.2 KiB] Operation completed over 1 objects/378.2 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code # Import necessary libraries import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object. ###Code # Constructs a AutoML Tabular Training Job job = # TODO 1 -- Your code goes here( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # Create and train the model object # This will take around two hour and half to run model = # TODO 2a -- Your code goes here( dataset=ds, target_column="Adopted", # Define training, validation and test fraction for training # TODO 2b -- Your code goes here model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code # Deploy the model resource to the serving endpoint resource endpoint = # TODO 3 -- Your code goes here( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code # Make a prediction using the sample values prediction = # TODO 4 -- Your code goes here( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code # Undeploy the model resource # TODO 5 -- Your code goes here ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128 ###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewThis tutorial demonstrates how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML Tabular model.* Deploy the `Model` resource to a serving `Endpoint` resource.* Make a prediction by sending data.* Undeploy the `Model` resource. IntroductionThis notebook demonstrates, using the Vertex AI Python client library, how to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code from datetime import datetime TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification.csv" ! gsutil cp gs://cloud-samples-data/ai-platform-unified/datasets/tabular/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-samples-data/ai-platform-unified/datasets/tabular/petfinder-tabular-classification.csv [Content-Type=text/csv]... / [1 files][872.8 KiB/872.8 KiB] Operation completed over 1 objects/872.8 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object. ###Code job = aiplatform.AutoMLTabularTrainingJob( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # This will take around an hour to run model = job.run( dataset=ds, target_column="Adopted", training_fraction_split=0.8, validation_fraction_split=0.1, test_fraction_split=0.1, model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code endpoint = model.deploy( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code prediction = endpoint.predict( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code endpoint.undeploy(deployed_model_id=prediction.deployed_model_id) ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128 ###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewIn this notebook, you learn how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML tabular model.* Deploy the `model` resource to a serving `endpoint` resource.* Make a prediction by sending data.* Undeploy the `model` resource. IntroductionIn this notebook, you will use Vertex AI Python client library to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code # Setup your dependencies import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code # Import necessary libraries from datetime import datetime # Use a timestamp to ensure unique resources TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification_toy.csv" ! gsutil cp gs://cloud-training/mlongcp/v3.0_MLonGC/toy_data/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-training/mlongcp/v3.0_MLonGC/toy_data/petfinder-tabular-classification_toy.csv [Content-Type=text/csv]... [1 files][378.2 KiB/378.2 KiB] Operation completed over 1 objects/378.2 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code # Import necessary libraries import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object.**NOTE: It takes nearly 2 hours 15 minutes to complete the training. Please wait till the training get completed. If your training takes more time than lab time, please only review the next sections.** ###Code # Constructs a AutoML Tabular Training Job job = # TODO 1 -- Your code goes here( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # Create and train the model object # This will take around two hour and half to run model = # TODO 2a -- Your code goes here( dataset=ds, target_column="Adopted", # Define training, validation and test fraction for training # TODO 2b -- Your code goes here model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code # Deploy the model resource to the serving endpoint resource endpoint = # TODO 3 -- Your code goes here( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code # Make a prediction using the sample values prediction = # TODO 4 -- Your code goes here( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code # Undeploy the model resource # TODO 5 -- Your code goes here ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128 ###Markdown Vertex AI Model Builder SDK: AutoML Tabular Training and Prediction OverviewIn this notebook, you learn how to use the Vertex AI Python client library to train and deploy a tabular classification model for online prediction. Learning ObjectiveIn this notebook, you learn how to:* Create a Vertex AI model training job.* Train an AutoML tabular model.* Deploy the `model` resource to a serving `endpoint` resource.* Make a prediction by sending data.* Undeploy the `model` resource. IntroductionIn this notebook, you will use Vertex AI Python client library to train and make predictions on an AutoML model based on a tabular dataset. Alternatively, you can train and make predictions on models by using the gcloud command-line tool or by using the online Cloud Console.Each learning objective will correspond to a __TODO__ in this student lab notebook -- try to complete this notebook first and then review the [solution notebook](../solutions/automl-tabular-classification.ipynb). **Make sure to enable the Vertex AI API and Compute Engine API.** Installation ###Code # Setup your dependencies import os # The Google Cloud Notebook product has specific requirements IS_GOOGLE_CLOUD_NOTEBOOK = os.path.exists("/opt/deeplearning/metadata/env_version") USER_FLAG = "" # Google Cloud Notebook requires dependencies to be installed with '--user' if IS_GOOGLE_CLOUD_NOTEBOOK: USER_FLAG = "--user" ###Output _____no_output_____ ###Markdown Install the latest version of the Vertex AI client library.Run the following command in your virtual environment to install the Vertex SDK for Python: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-aiplatform ###Output Requirement already satisfied: google-cloud-aiplatform in /opt/conda/lib/python3.7/site-packages (1.1.1) Collecting google-cloud-aiplatform Downloading google_cloud_aiplatform-1.3.0-py2.py3-none-any.whl (1.3 MB)  |████████████████████████████████| 1.3 MB 7.6 MB/s eta 0:00:01 [?25hRequirement already satisfied: proto-plus>=1.10.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.19.0) Requirement already satisfied: google-cloud-bigquery<3.0.0dev,>=1.15.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (2.23.2) Requirement already satisfied: google-api-core[grpc]<3.0.0dev,>=1.26.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.31.1) Requirement already satisfied: google-cloud-storage<2.0.0dev,>=1.32.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (1.41.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-cloud-aiplatform) (21.0) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.53.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.1) Requirement already satisfied: google-auth<2.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.34.0) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.25.1) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (49.6.0.post20210108) Requirement already satisfied: grpcio<2.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.38.1) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.7.2) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.2.7) Requirement already satisfied: google-resumable-media<3.0dev,>=0.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.3.2) Requirement already satisfied: google-cloud-core<3.0.0dev,>=1.4.1 in /opt/conda/lib/python3.7/site-packages (from google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=0.6.0->google-cloud-bigquery<3.0.0dev,>=1.15.0->google-cloud-aiplatform) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-cloud-aiplatform) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<2.0dev,>=1.25.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (0.4.8) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2021.5.30) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (1.26.6) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (4.0.0) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-api-core[grpc]<3.0.0dev,>=1.26.0->google-cloud-aiplatform) (2.10) Installing collected packages: google-cloud-aiplatform  WARNING: The script tb-gcp-uploader is installed in '/home/jupyter/.local/bin' which is not on PATH. Consider adding this directory to PATH or, if you prefer to suppress this warning, use --no-warn-script-location. Successfully installed google-cloud-aiplatform-1.3.0 ###Markdown Install the Cloud Storage library: ###Code # Upgrade the specified package to the newest available version ! pip install {USER_FLAG} --upgrade google-cloud-storage ###Output Requirement already satisfied: google-cloud-storage in /opt/conda/lib/python3.7/site-packages (1.41.1) Collecting google-cloud-storage Downloading google_cloud_storage-1.42.0-py2.py3-none-any.whl (105 kB)  |████████████████████████████████| 105 kB 8.1 MB/s eta 0:00:01 [?25hRequirement already satisfied: google-resumable-media<3.0dev,>=1.3.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.3.2) Requirement already satisfied: google-auth<3.0dev,>=1.25.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.34.0) Requirement already satisfied: google-cloud-core<3.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.7.2) Requirement already satisfied: google-api-core<3.0dev,>=1.29.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (1.31.1) Requirement already satisfied: requests<3.0.0dev,>=2.18.0 in /opt/conda/lib/python3.7/site-packages (from google-cloud-storage) (2.25.1) Requirement already satisfied: packaging>=14.3 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (21.0) Requirement already satisfied: protobuf>=3.12.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (3.16.0) Requirement already satisfied: six>=1.13.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.16.0) Requirement already satisfied: pytz in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2021.1) Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (1.53.0) Requirement already satisfied: setuptools>=40.3.0 in /opt/conda/lib/python3.7/site-packages (from google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (49.6.0.post20210108) Requirement already satisfied: cachetools<5.0,>=2.0.0 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.2.2) Requirement already satisfied: pyasn1-modules>=0.2.1 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.2.7) Requirement already satisfied: rsa<5,>=3.1.4 in /opt/conda/lib/python3.7/site-packages (from google-auth<3.0dev,>=1.25.0->google-cloud-storage) (4.7.2) Requirement already satisfied: google-crc32c<2.0dev,>=1.0 in /opt/conda/lib/python3.7/site-packages (from google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.1.2) Requirement already satisfied: cffi>=1.0.0 in /opt/conda/lib/python3.7/site-packages (from google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (1.14.6) Requirement already satisfied: pycparser in /opt/conda/lib/python3.7/site-packages (from cffi>=1.0.0->google-crc32c<2.0dev,>=1.0->google-resumable-media<3.0dev,>=1.3.0->google-cloud-storage) (2.20) Requirement already satisfied: pyparsing>=2.0.2 in /opt/conda/lib/python3.7/site-packages (from packaging>=14.3->google-api-core<3.0dev,>=1.29.0->google-cloud-storage) (2.4.7) Requirement already satisfied: pyasn1<0.5.0,>=0.4.6 in /opt/conda/lib/python3.7/site-packages (from pyasn1-modules>=0.2.1->google-auth<3.0dev,>=1.25.0->google-cloud-storage) (0.4.8) Requirement already satisfied: urllib3<1.27,>=1.21.1 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (1.26.6) Requirement already satisfied: idna<3,>=2.5 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2.10) Requirement already satisfied: certifi>=2017.4.17 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (2021.5.30) Requirement already satisfied: chardet<5,>=3.0.2 in /opt/conda/lib/python3.7/site-packages (from requests<3.0.0dev,>=2.18.0->google-cloud-storage) (4.0.0) Installing collected packages: google-cloud-storage Successfully installed google-cloud-storage-1.42.0 ###Markdown Restart the kernelAfter you install the additional packages, you need to restart the notebook kernel so it can find the packages. ###Code # Automatically restart kernel after installs import os if not os.getenv("IS_TESTING"): # Automatically restart kernel after installs import IPython app = IPython.Application.instance() app.kernel.do_shutdown(True) ###Output _____no_output_____ ###Markdown Set your project ID**If you don't know your project ID**, you may be able to get your project ID using `gcloud`. ###Code import os PROJECT_ID = "" # Get your Google Cloud project ID from gcloud if not os.getenv("IS_TESTING"): shell_output=!gcloud config list --format 'value(core.project)' 2>/dev/null PROJECT_ID = shell_output[0] print("Project ID: ", PROJECT_ID) ###Output Project ID: qwiklabs-gcp-04-c846b6079446 ###Markdown Otherwise, set your project ID here. ###Code if PROJECT_ID == "" or PROJECT_ID is None: PROJECT_ID = "[your-project-id]" # @param {type:"string"} ###Output _____no_output_____ ###Markdown TimestampIf you are in a live tutorial session, you might be using a shared test account or project. To avoid name collisions between users on resources created, you create a timestamp for each instance session, and append it onto the name of resources you create in this tutorial. ###Code # Import necessary libraries from datetime import datetime # Use a timestamp to ensure unique resources TIMESTAMP = datetime.now().strftime("%Y%m%d%H%M%S") ###Output _____no_output_____ ###Markdown Create a Cloud Storage bucket**The following steps are required, regardless of your notebook environment.**This notebook demonstrates how to use Model Builder SDK to create an AutoML model based on a tabular dataset. You will need to provide a Cloud Storage bucket where the dataset will be stored.Set the name of your Cloud Storage bucket below. It must be unique across all of your Cloud Storage buckets.You may also change the `REGION` variable, which is used for operationsthroughout the rest of this notebook. Make sure to [choose a region where Vertex AI services areavailable](https://cloud.google.com/vertex-ai/docs/general/locations). You maynot use a Multi-Regional Storage bucket for training with Vertex AI. ###Code BUCKET_NAME = "gs://[your-bucket-name]" # @param {type:"string"} REGION = "[your-region]" # @param {type:"string"} if BUCKET_NAME == "" or BUCKET_NAME is None or BUCKET_NAME == "gs://[your-bucket-name]": BUCKET_NAME = "gs://" + PROJECT_ID + "aip-" + TIMESTAMP ###Output _____no_output_____ ###Markdown **Only if your bucket doesn't already exist**: Run the following cell to create your Cloud Storage bucket. ###Code ! gsutil mb -l $REGION $BUCKET_NAME ###Output Creating gs://qwiklabs-gcp-04-c846b6079446aip-20210826051658/... ###Markdown Finally, validate access to your Cloud Storage bucket by examining its contents: ###Code ! gsutil ls -al $BUCKET_NAME ###Output _____no_output_____ ###Markdown Copy dataset into your Cloud Storage bucket ###Code IMPORT_FILE = "petfinder-tabular-classification_toy.csv" ! gsutil cp gs://cloud-training/mlongcp/v3.0_MLonGC/toy_data/{IMPORT_FILE} {BUCKET_NAME}/data/ gcs_source = f"{BUCKET_NAME}/data/{IMPORT_FILE}" ###Output Copying gs://cloud-training/mlongcp/v3.0_MLonGC/toy_data/petfinder-tabular-classification_toy.csv [Content-Type=text/csv]... [1 files][378.2 KiB/378.2 KiB] Operation completed over 1 objects/378.2 KiB. ###Markdown Import Vertex SDK for PythonImport the Vertex SDK into your Python environment and initialize it. ###Code # Import necessary libraries import os from google.cloud import aiplatform aiplatform.init(project=PROJECT_ID, location=REGION) ###Output _____no_output_____ ###Markdown TutorialNow you are ready to create your AutoML Tabular model. Create a Managed Tabular Dataset from a CSVThis section will create a dataset from a CSV file stored on your GCS bucket. ###Code ds = dataset = aiplatform.TabularDataset.create( display_name="petfinder-tabular-dataset", gcs_source=gcs_source, ) ds.resource_name ###Output INFO:google.cloud.aiplatform.datasets.dataset:Creating TabularDataset INFO:google.cloud.aiplatform.datasets.dataset:Create TabularDataset backing LRO: projects/1075205415941/locations/us-central1/datasets/1945247175768276992/operations/1110822578768838656 INFO:google.cloud.aiplatform.datasets.dataset:TabularDataset created. Resource name: projects/1075205415941/locations/us-central1/datasets/1945247175768276992 INFO:google.cloud.aiplatform.datasets.dataset:To use this TabularDataset in another session: INFO:google.cloud.aiplatform.datasets.dataset:ds = aiplatform.TabularDataset('projects/1075205415941/locations/us-central1/datasets/1945247175768276992') ###Markdown Launch a Training Job to Create a ModelOnce we have defined your training script, we will create a model. The `run` function creates a training pipeline that trains and creates a `Model` object. After the training pipeline completes, the `run` function returns the `Model` object. ###Code # Constructs a AutoML Tabular Training Job job = # TODO 1 -- Your code goes here( display_name="train-petfinder-automl-1", optimization_prediction_type="classification", column_transformations=[ {"categorical": {"column_name": "Type"}}, {"numeric": {"column_name": "Age"}}, {"categorical": {"column_name": "Breed1"}}, {"categorical": {"column_name": "Color1"}}, {"categorical": {"column_name": "Color2"}}, {"categorical": {"column_name": "MaturitySize"}}, {"categorical": {"column_name": "FurLength"}}, {"categorical": {"column_name": "Vaccinated"}}, {"categorical": {"column_name": "Sterilized"}}, {"categorical": {"column_name": "Health"}}, {"numeric": {"column_name": "Fee"}}, {"numeric": {"column_name": "PhotoAmt"}}, ], ) # Create and train the model object # This will take around two hour and half to run model = # TODO 2a -- Your code goes here( dataset=ds, target_column="Adopted", # Define training, validation and test fraction for training # TODO 2b -- Your code goes here model_display_name="adopted-prediction-model", disable_early_stopping=False, ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) /opt/conda/lib/python3.7/site-packages/ipykernel_launcher.py:16: DeprecationWarning: consider using column_specs instead. column_transformations will be deprecated in the future. app.launch_new_instance() ###Markdown Deploy your modelBefore you use your model to make predictions, you need to deploy it to an `Endpoint`. You can do this by calling the `deploy` function on the `Model` resource. This function does two things:1. Creates an `Endpoint` resource to which the `Model` resource will be deployed.2. Deploys the `Model` resource to the `Endpoint` resource.Deploy your model. NOTE: Wait until the model **FINISHES** deployment before proceeding to prediction. ###Code # Deploy the model resource to the serving endpoint resource endpoint = # TODO 3 -- Your code goes here( machine_type="n1-standard-4", ) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Predict on the endpoint * This sample instance is taken from an observation in which `Adopted` = **Yes*** Note that the values are all strings. Since the original data was in CSV format, everything is treated as a string. The transformations you defined when creating your `AutoMLTabularTrainingJob` inform Vertex AI to transform the inputs to their defined types. ###Code # Make a prediction using the sample values prediction = # TODO 4 -- Your code goes here( [ { "Type": "Cat", "Age": "3", "Breed1": "Tabby", "Gender": "Male", "Color1": "Black", "Color2": "White", "MaturitySize": "Small", "FurLength": "Short", "Vaccinated": "No", "Sterilized": "No", "Health": "Healthy", "Fee": "100", "PhotoAmt": "2", } ] ) print(prediction) ###Output /opt/conda/lib/python3.7/site-packages/ipykernel/ipkernel.py:283: DeprecationWarning: `should_run_async` will not call `transform_cell` automatically in the future. Please pass the result to `transformed_cell` argument and any exception that happen during thetransform in `preprocessing_exc_tuple` in IPython 7.17 and above. and should_run_async(code) ###Markdown Undeploy the modelTo undeploy your `Model` resource from the serving `Endpoint` resource, use the endpoint's `undeploy` method with the following parameter:- `deployed_model_id`: The model deployment identifier returned by the prediction service when the `Model` resource is deployed. You can retrieve the `deployed_model_id` using the prediction object's `deployed_model_id` property. ###Code # Undeploy the model resource # TODO 5 -- Your code goes here ###Output INFO:google.cloud.aiplatform.models:Undeploying Endpoint model: projects/1075205415941/locations/us-central1/endpoints/7467372802459303936 ###Markdown Cleaning upTo clean up all Google Cloud resources used in this project, you can [delete the Google Cloud project](https://cloud.google.com/resource-manager/docs/creating-managing-projectsshutting_down_projects) you used for the tutorial.Otherwise, you can delete the individual resources you created in this tutorial:- Training Job- Model- Endpoint- Cloud Storage Bucket**Note**: You must delete any `Model` resources deployed to the `Endpoint` resource before deleting the `Endpoint` resource. ###Code delete_training_job = True delete_model = True delete_endpoint = True # Warning: Setting this to true will delete everything in your bucket delete_bucket = False # Delete the training job job.delete() # Delete the model model.delete() # Delete the endpoint endpoint.delete() if delete_bucket and "BUCKET_NAME" in globals(): ! gsutil -m rm -r $BUCKET_NAME ###Output INFO:google.cloud.aiplatform.base:Deleting AutoMLTabularTrainingJob : projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Delete AutoMLTabularTrainingJob backing LRO: projects/1075205415941/locations/us-central1/operations/5317466105709592576 INFO:google.cloud.aiplatform.base:AutoMLTabularTrainingJob deleted. . Resource name: projects/1075205415941/locations/us-central1/trainingPipelines/1715908841423503360 INFO:google.cloud.aiplatform.base:Deleting Model : projects/1075205415941/locations/us-central1/models/3676687718445744128
.ipynb_checkpoints/LIFX Single Set of Tiles Testing-checkpoint.ipynb
###Markdown PurposeThis notesbooks purpose is to experiment with writting to a single string of LIFX tiles using the AIOLIFX library.https://github.com/frawau/aiolifx ###Code from lifxlan import * #!/usr/bin/env python # coding=utf-8 import sys from copy import deepcopy from time import sleep from lifxlan import GREEN, LifxLAN, RED def main(): num_lights = 3 if len(sys.argv) != 2: print("\nDiscovery will go much faster if you provide the number of lights on your LAN:") print(" python {} <number of lights on LAN>\n".format(sys.argv[0])) else: num_lights = int(sys.argv[1]) # instantiate LifxLAN client, num_lights may be None (unknown). # In fact, you don't need to provide LifxLAN with the number of bulbs at all. # lifx = LifxLAN() works just as well. Knowing the number of bulbs in advance # simply makes initial bulb discovery faster. print("Discovering lights...") lifx = LifxLAN(num_lights,False) # get devices multizone_lights = lifx.get_multizone_lights() if len(multizone_lights) > 0: strip = multizone_lights[0] print("Selected {}".format(strip.get_label())) all_zones = strip.get_color_zones() original_zones = deepcopy(all_zones) zone_count = len(all_zones) delay = 0.06 snake_color = RED background_color = GREEN snake_size = zone_count/2 # length of snake in zones tail = 0 head = snake_size - 1 try: while True: # Case 1: Snake hasn't wrapped around yet if head > tail: if tail > 0: strip.set_zone_color(0, tail-1, background_color, 0, True, 0) strip.set_zone_color(tail, head, snake_color, 0, True, 0) if head < zone_count - 1: strip.set_zone_color(head+1, zone_count-1, background_color, 0, True, 1) # Case 2: Snake has started to wrap around else: if head > 0: strip.set_zone_color(0, head-1, snake_color, 0, True, 0) strip.set_zone_color(head, tail, background_color, 0, True, 0) if tail < zone_count - 1: strip.set_zone_color(tail+1, zone_count-1, snake_color, 0, True, 1) # update indices for the snake's head and tail tail = (tail+1) % zone_count head = (head+1) % zone_count sleep(delay) except KeyboardInterrupt: strip.set_zone_colors(original_zones, 500, True) if __name__=="__main__": main() #!/usr/bin/env python # coding=utf-8 import sys from lifxlan import LifxLAN def main(): num_lights = None if len(sys.argv) != 2: print("\nDiscovery will go much faster if you provide the number of lights on your LAN:") print(" python {} <number of lights on LAN>\n".format(sys.argv[0])) else: num_lights = int(sys.argv[1]) # instantiate LifxLAN client, num_lights may be None (unknown). # In fact, you don't need to provide LifxLAN with the number of bulbs at all. # lifx = LifxLAN() works just as well. Knowing the number of bulbs in advance # simply makes initial bulb discovery faster. print("Discovering lights...") lifx = LifxLAN(num_lights) # get devices devices = lifx.get_lights() print("\nFound {} light(s):\n".format(len(devices))) for d in devices: try: print(d) except: pass if __name__=="__main__": main() from lifxlan import LifxLAN lifx = LifxLAN(23) devices = lifx.get_lights() devices tilechain_lights = lifx.get_tilechain_lights() tilechain_lights for d in tilechain_lights: try: print(d) except: pass def get_random_color(): return randint(0, 65535), randint(0, 65535), randint(0, 65535), randint(2500, 9000) len(tilechain_lights) print (tilechain_lights[5]) num_frames = 2 invader_matrix = \ [[[1, 1, 1, 0, 0, 1, 1, 1], [1, 1, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 0, 1, 0, 0, 1, 0, 1], [0, 1, 1, 1, 1, 1, 1, 0], [1, 0, 1, 1, 1, 1, 0, 1]], [[1, 1, 1, 0, 0, 1, 1, 1], [1, 1, 0, 0, 0, 0, 1, 1], [1, 0, 0, 0, 0, 0, 0, 1], [0, 0, 1, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 0, 0, 0], [1, 1, 0, 1, 1, 0, 1, 1], [1, 0, 1, 0, 0, 1, 0, 1], [0, 1, 0, 1, 1, 0, 1, 0]]] duration_ms = 5 DIM_BLUE = PURPLE DIM_BLUE[2] = DIM_BLUE[2]/3 palette = {0: GREEN, 1: BLUE#DIM_BLUE } t = tilechain_lights[5] # grab the first tilechain print("Selected TileChain light: {}".format(t.get_label())) original_colors = t.get_tilechain_colors() num_tiles = t.get_tile_count() while True: for frame in range(num_frames): sprite = [] for x in range(8): for y in range(8): sprite.append(palette[invader_matrix[frame][x][y]]) for index in range(num_tiles): t.set_tile_colors(index, sprite, duration_ms, rapid=True) sleep(1) from lifxlan import * from random import randint from time import sleep ###Output _____no_output_____ ###Markdown Multi Zone Chase ###Code from lifxlan import * from random import randint, choice from time import sleep from copy import deepcopy lan = LifxLAN() tilechain_lights = lan.get_tilechain_lights() len(tilechain_lights) for i in tilechain_lights: print (i) tile_chain = tilechain_lights[16] def set_background(cols, rows): hue = 0 background_colors = [] for row in range(rows): color_row = [] for col in range(cols): color_row.append((hue, 65535, 2000, 4900)) hue += int(65535.0 / (cols * rows)) background_colors.append(color_row) return background_colors def get_random_saturated_color(): return randint(0, 65535), 65535, randint(0, 65535), 3000 print("Selected TileChain light: {}".format(tile_chain.get_label())) (cols, rows) = tile_chain.get_canvas_dimensions() original_colors = tile_chain.get_tilechain_colors() background_colors = set_background(cols, rows) tile_chain.project_matrix(background_colors, 2000) dots = [] max_dots = 50 duration_ms = 150 dot_rate = 0.1 matrix = deepcopy(background_colors) while True: dot = [choice(range(rows)), choice(range(cols))] dots.append(dot) if len(dots) > max_dots: old_dot = dots.pop(0) matrix[int(old_dot[0])][int(old_dot[1])] = background_colors[int(old_dot[0])][int(old_dot[1])] matrix[int(dot[0])][int(dot[1])] = get_random_saturated_color() #Catch exceptions when the computer sleeps so we can resume when we wake try: tile_chain.project_matrix(matrix, duration_ms, rapid=True) except: pass sleep(dot_rate) x = tilechain_lights[5] x = TileChain("d0:73:d5:3c:56:6e", "10.101.30.80") type(x) x.get_tile_info() x.get_canvas_dimensions() x.get_tile_map() help(x) x.get_xy_vals() help(x.get_xy_vals) from random import randint, betavariate from time import sleep def get_fire_color(): return (int(800 + (5000 * betavariate(0.2, 0.9))), randint(60000, 65535), int(65535 * betavariate(0.05, 1)), randint(2500, 3500)) (cols, rows) = x.get_canvas_dimensions() cols rows original_colors = t.get_tilechain_colors() for row in range(original_colors[0]): print(row) #original_colors[0][1] = (0,0,0,3500) #original_colors[0] original_colors[0][0] = (0,0,0,3500) original_colors[0] hue = 0 coal_colors = [] for row in range(rows): color_row = [] for col in range(cols): color_row.append(get_fire_color()) hue += int(65535.0/(cols*rows)) coal_colors.append(color_row) coal_colors x.project_matrix(coal_colors) duration_ms = 100 while(True): proportion_change = 0.2 sample_size = int((rows * cols) * proportion_change) if sample_size % 2 == 1: sample_size = int(sample_size - 1) col_samples = [randint(0, cols-1) for i in range(sample_size)] row_samples = [randint(0, rows-1) for i in range(sample_size)] for i in range(0, sample_size): coal_colors[row_samples[i]][col_samples[i]] = get_fire_color() x.project_matrix(coal_colors, duration_ms, rapid=True) sleep(max(duration_ms/2000.0, 0.05)) x.get_tile_count() x.get_tile_info() tiles = x.get_tile_info() num_tiles = x.get_tile_count() x_vals = [] y_vals = [] y = tiles[0] print (y.width) print (y.height) print (y.user_x) print (y.user_y) z = tiles[0] print (z.width) print (z.height) print (z.user_x) print (z.user_y) w.height x.set_tilechain_colors(original_colors) len(original_colors[0]) new_colors = [] new_colors = [] for i in range(64): my_color = (0,0,0,3500) new_colors.append(my_color) for i in range(5): original_colors[i]= new_colors x.set_tilechain_colors(original_colors) len(new_colors) new_colors original_colors[0]= new_colors #Full Vertical Lines for i in range(8): new_colors[i] = (red, full_color, full, warm) new_colors[(i+8)]= (orange,full_color, minim, warm) new_colors[(i+16)]= (yellow, full_color, threequarter, warm) new_colors[(i+24)]= (green, full_color, full, warm) new_colors[(i+32)]= (lightblue, full_color, full, warm) new_colors[(i+40)]= (darkblue,full_color, full, cool) new_colors[(i+48)]= (purple, full_color, full, cool) new_colors[(i+56)]= (violet, full_color, half, warm) original_colors[0]= new_colors original_colors[1]= new_colors original_colors[2]= new_colors original_colors[3]= new_colors original_colors[4]= new_colors x.set_tilechain_colors(original_colors) #colors red = 0 orange = 5000 yellow =10000 green = 20000 lightblue = 30000 blue = 45000 indigo = 50000 violet = 65000 #color_saturation no_color = 0 mid_color = 32500 full_color = 65000 #brightness off = 0 minim = 1 quarter = 65000/4 half = 65000/2 threequarter = 48750 full = 65000 #warmth warm = 0 balanced = 65000/2 cool = 65000 #equal divided colors red = (0) orange = (65000/7) yellow = (65000/7)*2 green = (65000/7)*3 lightblue = (65000/7)*4 darkblue = (65000/7)*5 indigo = (65000/7)*6 violet = (65000/7)*7 #colors col1 = 0 col2 = 8000 col3 = 16000 col4 = 24000 col5 = 32000 col6 = 40000 col7 = 48000 col8 = 56000 #Bottom Half vertical stripes reset_lights(x) for i in range(4): new_colors[i+4] = (red, full_color, full, warm) new_colors[(i+12)]= (orange, full_color, full, warm) new_colors[(i+20)]= (yellow,full_color, full, warm) new_colors[(i+28)]= (green, full_color, full, warm) new_colors[(i+36)]= (lightblue,full_color, full, warm) new_colors[(i+44)]= (darkblue,full_color, full, warm) new_colors[(i+52)]= (indigo, full_color, full, warm) new_colors[(i+60)]= (violet, full_color, full, warm) original_colors[0]= new_colors x.set_tilechain_colors(original_colors) #Single Horizontol Blue Strip i = 2 new_colors[i] = (blue, full_color, full, warm) new_colors[(i+8)]= (blue, full_color, full, warm) new_colors[(i+16)]= (blue, full_color, full, warm) new_colors[(i+24)]= (blue, full_color, full, warm) new_colors[(i+32)]= (blue, full_color, full, warm) new_colors[(i+40)]= (blue, full_color, full, warm) new_colors[(i+48)]= (blue, full_color, full, warm) new_colors[(i+56)]= (blue, full_color, full, warm) original_colors[0]= new_colors original_colors[1]= new_colors original_colors[2]= new_colors original_colors[3]= new_colors original_colors[4]= new_colors x.set_tilechain_colors(original_colors) #reset_lights(x) # The orientation of the tiles need to be taken into account. When setting it all up need to make sure that you have them in the right orientation. #I wonder if the orientation in the app makes a difference? I'm guessing probably note. def reset_lights(tile): original_colors = [] new_colors = [] for i in range(64): my_color = (0,0,0,3500) new_colors.append(my_color) for i in range(5): original_colors.append(new_colors) tile.set_tilechain_colors(original_colors) return original_colors original_colors = reset_lights(x) tilechain_lights = lifx.get_tilechain_lights() for i in tilechain_lights: print (i.get_label()) x = tilechain_lights[-3] x.get_label() (65000/8) (65000/8)*2 (65000/8)*3 (65000/8)*4 (65000/8)*5 (65000/8)*6 (65000/8)*7 (65000/8)*8 for i in range(5): print (i) ###Output 0 1 2 3 4
K-meansWithPython-master/Kmeans.ipynb
###Markdown ###Code from copy import deepcopy import numpy as np import pandas as pd from matplotlib import pyplot as plt plt.rcParams['figure.figsize'] = (16,9) plt.style.use('ggplot') #importing data set data=pd.read_csv('https://raw.githubusercontent.com/arivle/K-meansWithPython/master/xclara/xclara.csv') print("input data and shape") print(data.shape) data.head() #Getting the values and plotting it f1 = data['V1'].values f2 = data['V2'].values X = np.array(list(zip(f1, f2))) plt.scatter(f1,f2,c='black', s=7) #Euclidean Distance Calculator def dist(a, b, ax=1): return np.linalg.norm(a-b, axis=ax) #number of clusters k=27 #X coordinates of random centroids C_x= np.random.randint(0,np.max(X)-20, size=k) #Y coordinates of random centroids C_y = np.random.randint(0, np.max(X)-20, size=k) C= np.array(list(zip(C_x, C_y)), dtype=np.float32) print("initial centroids") print(C) #plotting along with the Centroids plt.scatter(f1, f2, c='#050505', s=7) plt.scatter(C_x, C_y, marker='*', s=200, c='g') #to store the value of centroids when it updates C_old = np.zeros(C.shape) #Cluster Lables(0,1,2) clusters = np.zeros(len(X)) #Error func. - Distance between new centroids and old centroids error = dist(C, C_old, None) #Loop will run till the error between new centroids and old centroids while error !=0: #assigning each value to its closest cluster for i in range(len(X)): distances = dist(X[i], C) cluster = np.argmin(distances) clusters[i] = cluster #storing the old centroid values C_old= deepcopy(C) #finding the new centroids by taking the average value for i in range(k): points = [X[j] for j in range(len(X)) if clusters[j] == i] C[i] = np.mean(points, axis=0) error = dist(C,C_old, None) colors = ['r','g', 'b', 'y', 'c', 'm'] fig, ax = plt.subplots() for i in range(k): points = np.array([X[j] for j in range(len(X)) if clusters[j] ==i]) ax.scatter(points[:, 0], points[:,1], s=7, c=colors[i]) ax.scatter(C[:,0], C[:,1], marker='*', s=200, c='#050505') from copy import deepcopy import numpy as np import pandas as pd from matplotlib import pyplot as plt from sklearn.cluster import KMeans plt.rcParams['figure.figsize'] = (16,9) plt.style.use('ggplot') #importing data set data=pd.read_csv('https://raw.githubusercontent.com/arivle/K-meansWithPython/master/xclara/xclara.csv') print("input data and shape") print(data.shape) data.head() #Getting the values and plotting it f1 = data['V1'].values f2 = data['V2'].values X = np.array(list(zip(f1, f2))) plt.scatter(f1,f2,c='black', s=7) k=27 kmeans = KMeans(n_clusters=k).fit(X) centroids = kmeans.cluster_centers_ print(centroids) colors = ['r','g', 'b', 'y', 'c', 'm'] fig, ax = plt.subplots() ax.scatter(X[:, 0], X[:,1], c= kmeans.labels_.astype('float64'), s=200, alpha=0.5) ax.scatter(centroids[:, 0], centroids[:, 1],marker='*', c='#050505', s=200) ###Output input data and shape (3000, 2) [[ 6.29899561 10.37145191] [ 64.00225103 -11.1756371 ] [ 44.70991309 65.90302552] [ 40.67904794 46.12664143] [ 65.31337396 -24.82118052] [ 14.25438151 -0.75312941] [ 79.734465 5.97227092] [ 87.52683697 -9.87118712] [ 56.02555217 49.02451072] [ 24.32462925 67.40344204] [ 22.46289677 24.81766154] [ -0.16444241 -1.4551634 ] [ 80.42920685 -24.22132055] [ 53.95441294 -3.45654555] [ 5.90748668 24.33237435] [ 55.05046248 66.04031938] [ 16.1985725 12.85218728] [ 73.07015759 -4.5490788 ] [ 35.30412048 62.30482348] [ 52.58281712 -18.51006661] [ -5.59509391 12.58599256] [ 64.377702 3.85605061] [ 27.09393753 5.00220245] [ 26.89615043 51.96045991] [ 40.46201688 77.47017413] [ 43.95955164 55.57863399] [ 73.99207336 -14.9406303 ]]
00_dynamic_graph.ipynb
###Markdown 动态图**作者:** [PaddlePaddle](https://github.com/PaddlePaddle) **日期:** 2021.01 **摘要:** 从飞桨开源框架2.0版本开始,飞桨默认为用户开启了动态图开发模式。在这种模式下,每次执行一个运算,可以立即得到结果(而不是事先定义好网络结构,然后再执行)。在动态图模式下,你可以更加方便的组织代码,更容易的调试程序,本示例教程将向你介绍飞桨的动态图的使用。 一、环境配置本教程基于Paddle 2.0 编写,如果您的环境不是本版本,请先参考官网[安装](https://www.paddlepaddle.org.cn/install/quick) Paddle 2.0 。 ###Code import paddle import paddle.nn.functional as F import numpy as np print(paddle.__version__) ###Output 2.0.1 ###Markdown 二、基本用法在动态图模式下,ni可以直接运行一个飞桨提供的API,它会立刻返回结果到python。不再需要首先创建一个计算图,然后再给定数据去运行。 ###Code a = paddle.randn([4, 2]) b = paddle.arange(1, 3, dtype='float32') print(a) print(b) c = a + b print(c) d = paddle.matmul(a, b) print(d) ###Output Tensor(shape=[4, 2], dtype=float32, place=CPUPlace, stop_gradient=True, [[-0.98506504, 0.89734167], [ 0.01853172, 1.28535342], [ 2.63832688, 0.27384657], [ 0.27094686, 1.21891129]]) Tensor(shape=[2], dtype=float32, place=CPUPlace, stop_gradient=True, [1., 2.]) Tensor(shape=[4, 2], dtype=float32, place=CPUPlace, stop_gradient=True, [[0.01493496, 2.89734173], [1.01853168, 3.28535342], [3.63832688, 2.27384663], [1.27094686, 3.21891117]]) Tensor(shape=[4], dtype=float32, place=CPUPlace, stop_gradient=True, [0.80961829, 2.58923864, 3.18601990, 2.70876932]) ###Markdown 三、使用python的控制流动态图模式下,您可以使用python的条件判断和循环,这类控制语句来执行神经网络的计算。(不再需要`cond`, `loop`这类OP) ###Code a = paddle.to_tensor(np.array([1, 2, 3])) b = paddle.to_tensor(np.array([4, 5, 6])) for i in range(10): r = paddle.rand([1,]) if r > 0.5: c = paddle.pow(a, i) + b print("{} +> {}".format(i, c.numpy())) else: c = paddle.pow(a, i) - b print("{} -> {}".format(i, c.numpy())) ###Output 0 +> [5 6 7] 1 +> [5 7 9] 2 -> [-3 -1 3] 3 +> [ 5 13 33] 4 -> [-3 11 75] 5 -> [ -3 27 237] 6 -> [ -3 59 723] 7 -> [ -3 123 2181] 8 -> [ -3 251 6555] 9 +> [ 5 517 19689] ###Markdown 四、构建更加灵活的网络:控制流- 使用动态图可以用来创建更加灵活的网络,比如根据控制流选择不同的分支网络,和方便的构建权重共享的网络。接下来我们来看一个具体的例子,在这个例子中,第二个线性变换只有0.5的可能性会运行。- 在sequence to sequence with attention的机器翻译的示例中,你会看到更实际的使用动态图构建RNN类的网络带来的灵活性。 ###Code class MyModel(paddle.nn.Layer): def __init__(self, input_size, hidden_size): super(MyModel, self).__init__() self.linear1 = paddle.nn.Linear(input_size, hidden_size) self.linear2 = paddle.nn.Linear(hidden_size, hidden_size) self.linear3 = paddle.nn.Linear(hidden_size, 1) def forward(self, inputs): x = self.linear1(inputs) x = F.relu(x) if paddle.rand([1,]) > 0.5: x = self.linear2(x) x = F.relu(x) x = self.linear3(x) return x total_data, batch_size, input_size, hidden_size = 1000, 64, 128, 256 x_data = np.random.randn(total_data, input_size).astype(np.float32) y_data = np.random.randn(total_data, 1).astype(np.float32) model = MyModel(input_size, hidden_size) loss_fn = paddle.nn.MSELoss(reduction='mean') optimizer = paddle.optimizer.SGD(learning_rate=0.01, parameters=model.parameters()) for t in range(200 * (total_data // batch_size)): idx = np.random.choice(total_data, batch_size, replace=False) x = paddle.to_tensor(x_data[idx,:]) y = paddle.to_tensor(y_data[idx,:]) y_pred = model(x) loss = loss_fn(y_pred, y) if t % 200 == 0: print(t, loss.numpy()) loss.backward() optimizer.step() optimizer.clear_grad() ###Output 0 [1.1373708] 200 [0.65635085] 400 [0.6270926] 600 [0.35788968] 800 [0.08681857] 1000 [0.04665717] 1200 [0.01439959] 1400 [0.00937668] 1600 [0.00736369] 1800 [0.01451359] 2000 [0.01145541] 2200 [0.00535691] 2400 [0.00316424] 2600 [0.00078524] 2800 [0.00091959] ###Markdown 五、构建更加灵活的网络:共享权重- 使用动态图还可以更加方便的创建共享权重的网络,下面的示例展示了一个共享了权重的简单的AutoEncoder。- 你也可以参考图像搜索的示例看到共享参数权重的更实际的使用。 ###Code inputs = paddle.rand((256, 64)) linear = paddle.nn.Linear(64, 8, bias_attr=False) loss_fn = paddle.nn.MSELoss() optimizer = paddle.optimizer.Adam(0.01, parameters=linear.parameters()) for i in range(10): hidden = linear(inputs) # weight from input to hidden is shared with the linear mapping from hidden to output outputs = paddle.matmul(hidden, linear.weight, transpose_y=True) loss = loss_fn(outputs, inputs) loss.backward() print("step: {}, loss: {}".format(i, loss.numpy())) optimizer.step() optimizer.clear_grad() ###Output step: 0, loss: [0.3065048] step: 1, loss: [0.27628338] step: 2, loss: [0.24458247] step: 3, loss: [0.21028072] step: 4, loss: [0.17704524] step: 5, loss: [0.14863843] step: 6, loss: [0.12725674] step: 7, loss: [0.11261991] step: 8, loss: [0.10347761] step: 9, loss: [0.09852622]
watermark/multi-class-text-classification-with-lstm.ipynb
###Markdown all credits to https://towardsdatascience.com/multi-class-text-classification-with-lstm-1590bee1bd17. I made minor changes: data from kaggle The Data ###Code # get data file ! pip install -q kaggle from google.colab import files uploaded = files.upload() for fn in uploaded.keys(): print('User uploaded file "{name}" with length {length} bytes'.format( name=fn, length=len(uploaded[fn]))) # Then move kaggle.json into the folder where the API expects to find it. !mkdir -p ~/.kaggle/ && mv kaggle.json ~/.kaggle/ && chmod 600 ~/.kaggle/kaggle.json ! pwd !kaggle datasets download cfpb/us-consumer-finance-complaints !unzip us-consumer-finance-complaints.zip !ls # This Python 3 environment comes with many helpful analytics libraries installed # It is defined by the kaggle/python Docker image: https://github.com/kaggle/docker-python # For example, here's several helpful packages to load import numpy as np # linear algebra import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv) # Input data files are available in the read-only "../input/" directory # For example, running this (by clicking run or pressing Shift+Enter) will list all files under the input directory import os for dirname, _, filenames in os.walk('/content'): for filename in filenames: print(os.path.join(dirname, filename)) # You can write up to 20GB to the current directory (/kaggle/working/) that gets preserved as output when you create a version using "Save & Run All" # You can also write temporary files to /kaggle/temp/, but they won't be saved outside of the current session df = pd.read_csv('/content/consumer_complaints.csv') df.info() df.head() df['product'].value_counts() #Plotly notebook mode with google colaboratory def configure_plotly_browser_state(): import IPython display(IPython.core.display.HTML(''' <script src="/static/components/requirejs/require.js"></script> <script> requirejs.config({ paths: { base: '/static/base', plotly: 'https://cdn.plot.ly/plotly-latest.min.js?noext', }, }); </script> ''')) from plotly.offline import init_notebook_mode, iplot import cufflinks as cf cf.go_offline() cf.set_config_file(offline=False, world_readable=True) configure_plotly_browser_state() df['product'].value_counts().sort_values(ascending = False).iplot(kind='bar', yTitle = "Number of complaints", title = 'Number complaints in each product') def print_plot(index): example = df[df.index == index][["consumer_complaint_narrative",'product']].values[0] if len(example) > 0: print(example[0]) print('Product:', example[1]) print_plot(0) ###Output nan Product: Mortgage ###Markdown Text Pre-processing ###Code import re from nltk.corpus import stopwords import nltk df = df.reset_index( drop = True) REPLACE_BY_SPACE_RE = re.compile('[/(){}\[\]\|@,;]') BAD_SYMBOLS_RE = re.compile('[^0-9a-z #+_]') nltk.download('stopwords') STOPWORDS = set(stopwords.words('english')) def clean_text(text): """ text as string return: modified initial string """ text = text.lower() text = REPLACE_BY_SPACE_RE.sub(' ', text) text = BAD_SYMBOLS_RE.sub(' ', text) text = text.replace("x", '') text = " ".join(word for word in text.split() if word not in STOPWORDS) return text df['consumer_complaint_narrative'] = df['consumer_complaint_narrative'].astype(str) df['consumer_complaint_narrative'] = df['consumer_complaint_narrative'].apply(clean_text) df['consumer_complaint_narrative'] = df['consumer_complaint_narrative'].str.replace('\d+', '') ###Output [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown LSTM Modeling ###Code # LSTM Modeling from keras.preprocessing.text import Tokenizer # The maximum number of words to be used. (most frequent) MAX_NB_WORDS = 50000 # Max number of words in each complaint. MAX_SEQUENCE_LENGTH = 250 # This is fixed. EMBEDDING_DIM = 100 tokenizer = Tokenizer(num_words=MAX_NB_WORDS, filters='!"#$%&()*+,-./:;<=>?@[\]^_`{|}~', lower=True) tokenizer.fit_on_texts(df['consumer_complaint_narrative'].values) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) from tensorflow.keras.preprocessing.sequence import pad_sequences X = tokenizer.texts_to_sequences(df['consumer_complaint_narrative'].values) X = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH) print('Shape of data tensor:', X.shape) #Converting categorical labels to numbers. Y = pd.get_dummies(df['product']).values print('Shape of label tensor:', Y.shape) #Train test split. from sklearn.model_selection import train_test_split X_train, X_test, Y_train, Y_test = train_test_split(X,Y, test_size = 0.10, random_state = 42) print(X_train.shape,Y_train.shape) print(X_test.shape,Y_test.shape) from tensorflow.keras import Sequential from tensorflow.keras.layers import * from tensorflow.keras.callbacks import * from tensorflow.keras.utils import to_categorical #Y_train = to_categorical(Y_train, 11) model = Sequential() model.add(Embedding(MAX_NB_WORDS, EMBEDDING_DIM, input_length=X.shape[1])) model.add(SpatialDropout1D(0.2)) model.add(LSTM(100, dropout=0.2, recurrent_dropout=0.2)) model.add(Dense(11, activation='softmax')) model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy']) print(model.summary()) epochs = 5 batch_size = 64 history = model.fit(X_train, Y_train, epochs=epochs, batch_size=batch_size,validation_split=0.1, callbacks=[EarlyStopping(monitor='val_loss', patience=3, min_delta=0.0001)]) ###Output Epoch 1/5
notebooks/tcrSeq/TCR-seq.ipynb
###Markdown TCR-seq protocol By Roman Sasik ([email protected]) This Notebook describes the sequence of commands used in TCR-seq analysis. The multiplexing barcodes are assumed to follow the design described in this paper: _"Linking T-cell receptor sequence to functional phenotype at the single-cell level",_ A Han, J Glanville and MD Davis, Nature Biotechnology, 2014, 32 (7), p.684-92In addition to original perl scripts below, you need to install the superfast TCR repertoir processing java program `mitcr.jar`, which can be downloaded at http://mitcr.milaboratory.com/. The relevant paper is _MiTCR: software for T-cell receptor sequencing data analysis_ by DA Bolotin _et al._, Nature Methods 10, 813-814 (2013).Perl and java are assumed to be installed. Demultiplexing TCR reads Processing starts with demultiplexing the reads from a single pair of large fastq files: ###Code !perl demultiplex_fastq_TCRplates.pl Sample_S1_L001_R1_001.fastq Sample_S1_L001_R2_001.fastq !ls *[A,B].fastq ###Output 01A01A.fastq 01B08B.fastq 01D04A.fastq 01E11B.fastq 01G07A.fastq 01A01B.fastq 01B09A.fastq 01D04B.fastq 01E12A.fastq 01G07B.fastq 01A02A.fastq 01B09B.fastq 01D05A.fastq 01E12B.fastq 01G08A.fastq 01A02B.fastq 01B10A.fastq 01D05B.fastq 01F01A.fastq 01G08B.fastq 01A03A.fastq 01B10B.fastq 01D06A.fastq 01F01B.fastq 01G09A.fastq 01A03B.fastq 01B11A.fastq 01D06B.fastq 01F02A.fastq 01G09B.fastq 01A04A.fastq 01B11B.fastq 01D07A.fastq 01F02B.fastq 01G10A.fastq 01A04B.fastq 01B12A.fastq 01D07B.fastq 01F03A.fastq 01G10B.fastq 01A05A.fastq 01B12B.fastq 01D08A.fastq 01F03B.fastq 01G11A.fastq 01A05B.fastq 01C01A.fastq 01D08B.fastq 01F04A.fastq 01G11B.fastq 01A06A.fastq 01C01B.fastq 01D09A.fastq 01F04B.fastq 01G12A.fastq 01A06B.fastq 01C02A.fastq 01D09B.fastq 01F05A.fastq 01G12B.fastq 01A07A.fastq 01C02B.fastq 01D10A.fastq 01F05B.fastq 01H01A.fastq 01A07B.fastq 01C03A.fastq 01D10B.fastq 01F06A.fastq 01H01B.fastq 01A08A.fastq 01C03B.fastq 01D11A.fastq 01F06B.fastq 01H02A.fastq 01A08B.fastq 01C04A.fastq 01D11B.fastq 01F07A.fastq 01H02B.fastq 01A09A.fastq 01C04B.fastq 01D12A.fastq 01F07B.fastq 01H03A.fastq 01A09B.fastq 01C05A.fastq 01D12B.fastq 01F08A.fastq 01H03B.fastq 01A10A.fastq 01C05B.fastq 01E01A.fastq 01F08B.fastq 01H04A.fastq 01A10B.fastq 01C06A.fastq 01E01B.fastq 01F09A.fastq 01H04B.fastq 01A11A.fastq 01C06B.fastq 01E02A.fastq 01F09B.fastq 01H05A.fastq 01A11B.fastq 01C07A.fastq 01E02B.fastq 01F10A.fastq 01H05B.fastq 01A12A.fastq 01C07B.fastq 01E03A.fastq 01F10B.fastq 01H06A.fastq 01A12B.fastq 01C08A.fastq 01E03B.fastq 01F11A.fastq 01H06B.fastq 01B01A.fastq 01C08B.fastq 01E04A.fastq 01F11B.fastq 01H07A.fastq 01B01B.fastq 01C09A.fastq 01E04B.fastq 01F12A.fastq 01H07B.fastq 01B02A.fastq 01C09B.fastq 01E05A.fastq 01F12B.fastq 01H08A.fastq 01B02B.fastq 01C10A.fastq 01E05B.fastq 01G01A.fastq 01H08B.fastq 01B03A.fastq 01C10B.fastq 01E06A.fastq 01G01B.fastq 01H09A.fastq 01B03B.fastq 01C11A.fastq 01E06B.fastq 01G02A.fastq 01H09B.fastq 01B04A.fastq 01C11B.fastq 01E07A.fastq 01G02B.fastq 01H10A.fastq 01B04B.fastq 01C12A.fastq 01E07B.fastq 01G03A.fastq 01H10B.fastq 01B05A.fastq 01C12B.fastq 01E08A.fastq 01G03B.fastq 01H11A.fastq 01B05B.fastq 01D01A.fastq 01E08B.fastq 01G04A.fastq 01H11B.fastq 01B06A.fastq 01D01B.fastq 01E09A.fastq 01G04B.fastq 01H12A.fastq 01B06B.fastq 01D02A.fastq 01E09B.fastq 01G05A.fastq 01H12B.fastq 01B07A.fastq 01D02B.fastq 01E10A.fastq 01G05B.fastq 01B07B.fastq 01D03A.fastq 01E10B.fastq 01G06A.fastq 01B08A.fastq 01D03B.fastq 01E11A.fastq 01G06B.fastq ###Markdown This script demultiplexes reads multiplexed in a single pair of large fastq files and saves them into separate fastq files whose names indicate Plate, Well, and TCR isoform (A or B), for instance 01H12B.fastq. Up to _one mismatch_ is allowed in any of the Plate, Well Row, Well Column, and TCR Isoform barcodes.It will create 2x96 files (one per TCR isoform) per each Plate (a lot of files!)This script will ignore all reads from plates whose code is commented out (see below in source code). This is useful when there is a mixture of TCR genotyping reads and phenotyping reads. There is a separate demultiplex script for the phenotyping reads (see below). This is `demultiplex_fastq_TCRplates.pl`: ###Code #!/usr/bin/perl $fileR1 = $ARGV[0]; $fileR2 = $ARGV[1]; open(F1,$fileR1); open(F2,$fileR2); %plate = ( "GCAGA" => "01", #uncomment this line if plate code 01 is among the sequences to be demultiplexed # "TCGAA" => "02", # "AACAA" => "03", # "GGTGC" => "04", # "TTGGT" => "05", # "CATTC" => "06", # "ATTGG" => "07", # "CGGTT" => "08", # "ATCCT" => "09", # "ATGTC" => "10", # "TCACG" => "11", # "AGACC" => "12", # "CCCCA" => "13", # "GCGCT" => "14", # "TCCTT" => "15", # "TATAT" => "16", # "CGTAA" => "17", # "AAGGT" => "18", # "AGCTC" => "19", # "CTTGC" => "20", # "GTATC" => "21", # "TATGA" => "22", # "CACAC" => "23", # "ACACT" => "24", # "ACTAC" => "25", # "GTTAC" => "26", ); %row = ( #if you want output for all rows, leave them all uncommented "TAAGC" => "A", "TGCAC" => "B", "CTCAG" => "C", "GGAAT" => "D", "CGAGG" => "E", "AGGAG" => "F", "TGTTG" => "G", "CAACT" => "H", ); %col = ( #if you want output for all columns, leave them all uncommented "GTTCA" => "01", "CAGGA" => "02", "TTATA" => "03", "CCTGT" => "04", "ACCGC" => "05", "ACTTA" => "06", "GCTAG" => "07", "GACGT" => "08", "GGCTA" => "09", "GAATG" => "10", "CCAAC" => "11", "GAGAC" => "12", ); %TCR = ( "GTCAC" => "A", # TCRA "GAGAT" => "B", ); foreach $plateID (keys(%plate)) { foreach $rowID (keys(%row)) { foreach $colID (keys(%col)) { foreach $TCRID (keys(%TCR)) { $fh = $plate{$plateID}.$row{$rowID}.$col{$colID}.$TCR{$TCRID}; open $fh, '>', $fh.".fastq"; #open file for writing at the end } } } } while($A1 = <F1>) { #read 4 lines from R1 and 4 lines from R2 $A2 = <F1>; $A3 = <F1>; $A4 = <F1>; $B1 = <F2>; $B2 = <F2>; $B3 = <F2>; $B4 = <F2>; $ID = substr($A2, 2, 5); #plate ID barcode # now find what the true bar code should have been if imperfect match $score = 0; $trueID = ""; foreach $key (keys(%plate)) { my $count = ($ID^$key) =~ tr/\0//; if ($count > $score) { $score = $count; $trueID = $key } } if ($score >= 4) {#accept $true_plateID as the true plate ID $rowID = $trueID; } else {#leave $plateID blank - sequence won't be output $rowID = "" } $ID = substr($B2, 2, 5); #column ID # now find what the true bar code should have been if imperfect match $score = 0; $trueID = ""; foreach $key (keys(%col)) { my $count = ($ID^$key) =~ tr/\0//; if ($count > $score) { $score = $count; $trueID = $key } } if ($score >= 4) {#accept $true_plateID as the true plate ID $colID = $trueID; } else {#leave $plateID blank - sequence won't be output $colID = "" } $ID = substr($B2, 7, 5); #TCR ID # now find what the true bar code should have been if imperfect match $score = 0; $trueID = ""; foreach $key (keys(%TCR)) { my $count = ($ID^$key) =~ tr/\0//; if ($count > $score) { $score = $count; $trueID = $key } } if ($score >= 4) { $TCRID = $trueID; } else { $TCRID = "" } if (exists $plate{$plateID} and exists $row{$rowID} and exists $col{$colID} and exists $TCR{$TCRID}) { $fh = $plate{$plateID}.$row{$rowID}.$col{$colID}.$TCR{$TCRID}; print $fh $A1.$A2.$A3.$A4.$B1.$B2.$B3.$B4; }; } close(F1); close(F2); ###Output _____no_output_____ ###Markdown Analyzing demultiplexed fastq files for TCRA/B species After demultiplexing, each individual fastq file will be processed by `mitcr`. The output is a separate result file for each well, e.g., `01A06A_result.txt`. The example below will produce reports for plate 01, row A and columns 06 through 09 (see source code below). ###Code !perl analyze_wells.pl !ls *_result.txt ###Output 01A06B Initialisation: progress unknown 01A06A Initialisation: progress unknown 01A08B Initialisation: progress unknown 01A08A Initialisation: progress unknown 01A07B Initialisation: progress unknown 01A07A Initialisation: progress unknown 01A09B Initialisation: progress unknown 01A09A Initialisation: progress unknown 01A06A_result.txt 01A07A_result.txt 01A08A_result.txt 01A09A_result.txt 01A06B_result.txt 01A07B_result.txt 01A08B_result.txt 01A09B_result.txt ###Markdown The output is a tab-delimited file whose main components are these (this is the content of file 01A06A_result.txt):The first column is the number of times this sequence is seen; the second column is the fraction (not a percentage) of the total count of sequences in the well. This is especially useful when there are two species of TCRA expressed in a single cell (as in this case). It does not happen with TCRB.The v- j- and d- alleles of the TCR are listed. The last two lines (a tiny fraction of the number of reads) are a result of sequencing/PCR errors. The program _mitcr_ has an error-checking algorithm that reduces these calls. For details see _MiTCR: software for T-cell receptor sequencing data analysis_ by DA Bolotin _et al._, Nature Methods 10, 813-814 (2013).This is the source of `analyze_wells.pl`: ###Code #!/usr/bin/perl %plate = ( "GCAGA" => "01", # "TCGAA" => "02", # "AACAA" => "03", # "GGTGC" => "04", # "TTGGT" => "05", # "CATTC" => "06", # "ATTGG" => "07", # "CGGTT" => "08", # "ATCCT" => "09", # "ATGTC" => "10", # "TCACG" => "11", # "AGACC" => "12", # "CCCCA" => "13", # "GCGCT" => "14", # "TCCTT" => "15", # "TATAT" => "16", # "CGTAA" => "17", # "AAGGT" => "18", # "AGCTC" => "19", # "CTTGC" => "20", # "GTATC" => "21", # "TATGA" => "22", # "CACAC" => "23", # "ACACT" => "24", # "ACTAC" => "25", # "GTTAC" => "26", ); %row = ( #uncomment line if you want output for row A, etc. "TAAGC" => "A", # "TGCAC" => "B", # "CTCAG" => "C", # "GGAAT" => "D", # "CGAGG" => "E", # "AGGAG" => "F", # "TGTTG" => "G", # "CAACT" => "H", ); %col = ( #uncomment line if you want output for column 01, etc. # "GTTCA" => "01", # "CAGGA" => "02", # "TTATA" => "03", # "CCTGT" => "04", # "ACCGC" => "05", "ACTTA" => "06", "GCTAG" => "07", "GACGT" => "08", "GGCTA" => "09", # "GAATG" => "10", # "CCAAC" => "11", # "GAGAC" => "12", ); %TCR = ( "GTCAC" => "A", # TCRA "GAGAT" => "B", ); foreach $plateID (sort (keys(%plate))) { foreach $rowID (sort (keys(%row))) { foreach $colID (sort (keys(%col))) { foreach $TCRID (sort (keys(%TCR))) { $fh = $plate{$plateID}.$row{$rowID}.$col{$colID}.$TCR{$TCRID}; print "$fh\n"; system("java -Xmx10g -jar ./mitcr.jar -pset flex -gene TR$TCR{$TCRID} $fh.fastq $fh\_result.txt") } } } } ###Output _____no_output_____ ###Markdown Demultiplexing phenotyping reads The following command demultiplexes _phenotyping_ reads multiplexed in a single pair of large fastq files and saves them into separate fastq files whose names indicate Plate, Well, and "R1" or "R2" for left or right read, for instance 03H12R1.fastq. Up to one mismatch is allowed in any of the Plate, Well Row, or Well Column barcodes.It will create 2x96 files per each Plate.This script will ignore all reads from plates whose code is commented out (see below in source code). This is useful when there is a mixture of TCR genotyping reads and phenotyping reads. ###Code !perl demultiplex_fastq_phenoplates.pl Sample_S1_L001_R1_001.fastq Sample_S1_L001_R2_001.fastq !ls 03*.fastq ###Output 03A01R1.fastq 03B08R2.fastq 03D04R1.fastq 03E11R2.fastq 03G07R1.fastq 03A01R2.fastq 03B09R1.fastq 03D04R2.fastq 03E12R1.fastq 03G07R2.fastq 03A02R1.fastq 03B09R2.fastq 03D05R1.fastq 03E12R2.fastq 03G08R1.fastq 03A02R2.fastq 03B10R1.fastq 03D05R2.fastq 03F01R1.fastq 03G08R2.fastq 03A03R1.fastq 03B10R2.fastq 03D06R1.fastq 03F01R2.fastq 03G09R1.fastq 03A03R2.fastq 03B11R1.fastq 03D06R2.fastq 03F02R1.fastq 03G09R2.fastq 03A04R1.fastq 03B11R2.fastq 03D07R1.fastq 03F02R2.fastq 03G10R1.fastq 03A04R2.fastq 03B12R1.fastq 03D07R2.fastq 03F03R1.fastq 03G10R2.fastq 03A05R1.fastq 03B12R2.fastq 03D08R1.fastq 03F03R2.fastq 03G11R1.fastq 03A05R2.fastq 03C01R1.fastq 03D08R2.fastq 03F04R1.fastq 03G11R2.fastq 03A06R1.fastq 03C01R2.fastq 03D09R1.fastq 03F04R2.fastq 03G12R1.fastq 03A06R2.fastq 03C02R1.fastq 03D09R2.fastq 03F05R1.fastq 03G12R2.fastq 03A07R1.fastq 03C02R2.fastq 03D10R1.fastq 03F05R2.fastq 03H01R1.fastq 03A07R2.fastq 03C03R1.fastq 03D10R2.fastq 03F06R1.fastq 03H01R2.fastq 03A08R1.fastq 03C03R2.fastq 03D11R1.fastq 03F06R2.fastq 03H02R1.fastq 03A08R2.fastq 03C04R1.fastq 03D11R2.fastq 03F07R1.fastq 03H02R2.fastq 03A09R1.fastq 03C04R2.fastq 03D12R1.fastq 03F07R2.fastq 03H03R1.fastq 03A09R2.fastq 03C05R1.fastq 03D12R2.fastq 03F08R1.fastq 03H03R2.fastq 03A10R1.fastq 03C05R2.fastq 03E01R1.fastq 03F08R2.fastq 03H04R1.fastq 03A10R2.fastq 03C06R1.fastq 03E01R2.fastq 03F09R1.fastq 03H04R2.fastq 03A11R1.fastq 03C06R2.fastq 03E02R1.fastq 03F09R2.fastq 03H05R1.fastq 03A11R2.fastq 03C07R1.fastq 03E02R2.fastq 03F10R1.fastq 03H05R2.fastq 03A12R1.fastq 03C07R2.fastq 03E03R1.fastq 03F10R2.fastq 03H06R1.fastq 03A12R2.fastq 03C08R1.fastq 03E03R2.fastq 03F11R1.fastq 03H06R2.fastq 03B01R1.fastq 03C08R2.fastq 03E04R1.fastq 03F11R2.fastq 03H07R1.fastq 03B01R2.fastq 03C09R1.fastq 03E04R2.fastq 03F12R1.fastq 03H07R2.fastq 03B02R1.fastq 03C09R2.fastq 03E05R1.fastq 03F12R2.fastq 03H08R1.fastq 03B02R2.fastq 03C10R1.fastq 03E05R2.fastq 03G01R1.fastq 03H08R2.fastq 03B03R1.fastq 03C10R2.fastq 03E06R1.fastq 03G01R2.fastq 03H09R1.fastq 03B03R2.fastq 03C11R1.fastq 03E06R2.fastq 03G02R1.fastq 03H09R2.fastq 03B04R1.fastq 03C11R2.fastq 03E07R1.fastq 03G02R2.fastq 03H10R1.fastq 03B04R2.fastq 03C12R1.fastq 03E07R2.fastq 03G03R1.fastq 03H10R2.fastq 03B05R1.fastq 03C12R2.fastq 03E08R1.fastq 03G03R2.fastq 03H11R1.fastq 03B05R2.fastq 03D01R1.fastq 03E08R2.fastq 03G04R1.fastq 03H11R2.fastq 03B06R1.fastq 03D01R2.fastq 03E09R1.fastq 03G04R2.fastq 03H12R1.fastq 03B06R2.fastq 03D02R1.fastq 03E09R2.fastq 03G05R1.fastq 03H12R2.fastq 03B07R1.fastq 03D02R2.fastq 03E10R1.fastq 03G05R2.fastq 03B07R2.fastq 03D03R1.fastq 03E10R2.fastq 03G06R1.fastq 03B08R1.fastq 03D03R2.fastq 03E11R1.fastq 03G06R2.fastq ###Markdown The source code of demultiplex_fastq_phenoplates.pl is here (in this example, Plate 03 contains phenotyping reads): ###Code #!/usr/bin/perl $fileR1 = $ARGV[0]; $fileR2 = $ARGV[1]; open(F1,$fileR1); open(F2,$fileR2); %plate = ( # "GCAGA" => "01", # "TCGAA" => "02", "AACAA" => "03", # "GGTGC" => "04", # "TTGGT" => "05", # "CATTC" => "06", ); %row = ( "TAAGC" => "A", "TGCAC" => "B", "CTCAG" => "C", "GGAAT" => "D", "CGAGG" => "E", "AGGAG" => "F", "TGTTG" => "G", "CAACT" => "H", ); %col = ( "GTTCA" => "01", "CAGGA" => "02", "TTATA" => "03", "CCTGT" => "04", "ACCGC" => "05", "ACTTA" => "06", "GCTAG" => "07", "GACGT" => "08", "GGCTA" => "09", "GAATG" => "10", "CCAAC" => "11", "GAGAC" => "12", ); foreach $plateID (keys(%plate)) { foreach $rowID (keys(%row)) { foreach $colID (keys(%col)) { $fh = $plate{$plateID}.$row{$rowID}.$col{$colID}; $fh1 = $plate{$plateID}.$row{$rowID}.$col{$colID}."1"; $fh2 = $plate{$plateID}.$row{$rowID}.$col{$colID}."2"; open $fh1, '>', $fh."R1.fastq"; open $fh2, '>', $fh."R2.fastq"; } } } while($A1 = <F1>) { #read 4 lines from R1 and 4 lines from R2 $A2 = <F1>; $A3 = <F1>; $A4 = <F1>; $B1 = <F2>; $B2 = <F2>; $B3 = <F2>; $B4 = <F2>; # now find out if the bar codes make sense $ID = substr($A2, 2, 5); #plate ID # now find what the true bar code should have been if imperfect match $score = 0; $trueID = ""; foreach $key (keys(%plate)) { my $count = ($ID^$key) =~ tr/\0//; if ($count > $score) { $score = $count; $trueID = $key } } if ($score >= 4) {#accept $true_plateID as the true plate ID $plateID = $trueID; } else {#leave $plateID blank - sequence won't be output $plateID = "" } $ID = substr($A2, 9, 5); #row ID # now find what the true bar code should have been if imperfect match $score = 0; $trueID = ""; foreach $key (keys(%row)) { my $count = ($ID^$key) =~ tr/\0//; if ($count > $score) { $score = $count; $trueID = $key } } if ($score >= 4) { $rowID = $trueID; } else { $rowID = "" } $ID = substr($B2, 2, 5); #column ID # now find what the true bar code should have been if imperfect match $score = 0; $trueID = ""; foreach $key (keys(%col)) { my $count = ($ID^$key) =~ tr/\0//; if ($count > $score) { $score = $count; $trueID = $key } } if ($score >= 4) { $colID = $trueID; } else { $colID = "" } if (exists $plate{$plateID} and exists $row{$rowID} and exists $col{$colID} ) { $fh1 = $plate{$plateID}.$row{$rowID}.$col{$colID}."1"; $fh2 = $plate{$plateID}.$row{$rowID}.$col{$colID}."2"; print $fh1 $A1.$A2.$A3.$A4; print $fh2 $B1.$B2.$B3.$B4; }; } close(F1); close(F2); ###Output _____no_output_____ ###Markdown Analyze demultiplexed phenotyping fastq files for expression levels of 17 cytokines and transcription factors The following command will produce expression counts for all 17 cytokines and TF's, separately for each well: ###Code !perl count_cytokines.pl !ls *.count ###Output 03A01R1.count 03B09R1.count 03D05R1.count 03F01R1.count 03G09R1.count 03A02R1.count 03B10R1.count 03D06R1.count 03F02R1.count 03G10R1.count 03A03R1.count 03B11R1.count 03D07R1.count 03F03R1.count 03G11R1.count 03A04R1.count 03B12R1.count 03D08R1.count 03F04R1.count 03G12R1.count 03A05R1.count 03C01R1.count 03D09R1.count 03F05R1.count 03H01R1.count 03A06R1.count 03C02R1.count 03D10R1.count 03F06R1.count 03H02R1.count 03A07R1.count 03C03R1.count 03D11R1.count 03F07R1.count 03H03R1.count 03A08R1.count 03C04R1.count 03D12R1.count 03F08R1.count 03H04R1.count 03A09R1.count 03C05R1.count 03E01R1.count 03F09R1.count 03H05R1.count 03A10R1.count 03C06R1.count 03E02R1.count 03F10R1.count 03H06R1.count 03A11R1.count 03C07R1.count 03E03R1.count 03F11R1.count 03H07R1.count 03A12R1.count 03C08R1.count 03E04R1.count 03F12R1.count 03H08R1.count 03B01R1.count 03C09R1.count 03E05R1.count 03G01R1.count 03H09R1.count 03B02R1.count 03C10R1.count 03E06R1.count 03G02R1.count 03H10R1.count 03B03R1.count 03C11R1.count 03E07R1.count 03G03R1.count 03H11R1.count 03B04R1.count 03C12R1.count 03E08R1.count 03G04R1.count 03H12R1.count 03B05R1.count 03D01R1.count 03E09R1.count 03G05R1.count 03B06R1.count 03D02R1.count 03E10R1.count 03G06R1.count 03B07R1.count 03D03R1.count 03E11R1.count 03G07R1.count 03B08R1.count 03D04R1.count 03E12R1.count 03G08R1.count ###Markdown The output is a set of tab-delimited files such as 03F03R1.count. Only the R1 read is used for counting; the R2 read is redundant (and lower quality anyway). The content of this file looks something close to this:The source code of count_cytokines.pl is here (Plate 03 has pheno reads): ###Code #!/usr/bin/perl %plate = ( # "GCAGA" => "01", # "TCGAA" => "02", "AACAA" => "03", # "GGTGC" => "04", # "TTGGT" => "05", # "CATTC" => "06", ); %row = ( "TAAGC" => "A", "TGCAC" => "B", "CTCAG" => "C", "GGAAT" => "D", "CGAGG" => "E", "AGGAG" => "F", "TGTTG" => "G", "CAACT" => "H", ); %col = ( "GTTCA" => "01", "CAGGA" => "02", "TTATA" => "03", "CCTGT" => "04", "ACCGC" => "05", "ACTTA" => "06", "GCTAG" => "07", "GACGT" => "08", "GGCTA" => "09", "GAATG" => "10", "CCAAC" => "11", "GAGAC" => "12", ); %cyt = ( "GCCGGAGGAGGTGGATGTGC" => "GATA3", "CCCAACACAGGAGCGCACTG" => "TBET", "GGCAGCCAAGGCCCTGTCGT" => "FOXP3", "AGAGGAAGTCCATGTGGGAG" => "RORC", "GCGAGCTGGTGCGCACCGAC" => "RUNX1", "GGACCACGCAGGCGAGCTCG" => "RUNX3", "CCTACACGGCCCCACCTGCC" => "BCL6", "CCACAGAACTGAAACATCTT" => "IL2", "CCCAAGCTGAGAACCAAGAC" => "IL10", "AGACCTCTTTTATGATGGCC" => "IL12A", "GGTATGGAGCATCAACCTGA" => "IL13", "CAACCTGAACATCCATAACC" => "IL17A", "GGGTTCTCTTGGCTGTTACT" => "IFNG", "GGAGGCGCTCCCCAAGAAGA" => "TNFA", "CCGAGAAGCGGTACCTGAAC" => "TGFB", "GCCAACTTTGCAGCCCAGAA" => "PRF1", "CCACAATATCAAAGAACAGG" => "GZMB", ); foreach $plateID (sort (keys(%plate))) { foreach $rowID (sort (keys(%row))) { foreach $colID (sort (keys(%col))) { $fh = $plate{$plateID}.$row{$rowID}.$col{$colID}; open(F1,$fh."R1.fastq"); open $fh, '>', $fh."R1.count"; print $fh "\t$fh\n"; #print header # zero out counters foreach $key (keys(%cyt)) {$count{$cyt{$key}} = 0}; while($A1 = <F1>) { #read 4 lines from R1 and 4 lines from R2 $A2 = <F1>; $A3 = <F1>; $A4 = <F1>; # now find out if the bar codes make sense $seq = substr($A2, 36, 20); if (exists $cyt{$seq}) {$count{$cyt{$seq}}++}; #add to count }; foreach $key (keys(%cyt)) { print $fh $cyt{$key}."\t".$count{$cyt{$key}}."\n" }; close(F1); close($fh); } } } ###Output _____no_output_____ ###Markdown Cleanup after exercize: ###Code !rm 0* ###Output _____no_output_____
titanic/in-depth-visualisations-simple-methods.ipynb
###Markdown *Women and kids first! (c) Titanic* ![Titanic](https://www.usnews.com/dims4/USNEWS/4f3cd50/2147483647/thumbnail/970x647/quality/85/?url=http%3A%2F%2Fmedia.beam.usnews.com%2F0e%2Fe187dd2f8f1fe5be9058fa8eef419e%2F7018FE_DA_080929titanic.jpg) Visualization of titanic datasetThis notebook presents a profound exploratory analysis of the dataset in order to demonstrate different visualization techniques as well as provide understanding of the dependencies and interesting facts. Four ML techniques are used to do prediction: RandomForest, LogisticRegression, KNeighbours and the Ensemble.Logistic Regression performed the best with a score of 0.799.UPDATE1: XGBoost was addedUPDATE2: The calculation of the values to be imputed should ONLY be done on train set and not on test set or both. *******************I will happy to hear some remarks or suggestions and feel free to upvote if you like it :)****Have fun with the data!******************* ###Code import warnings warnings.filterwarnings("ignore") import pandas as pd import numpy as np import collections import re import copy from pandas.tools.plotting import scatter_matrix import seaborn as sns import matplotlib.pyplot as plt plt.style.use('bmh') %matplotlib inline from sklearn.ensemble import RandomForestClassifier from sklearn.linear_model import LogisticRegression from sklearn.neighbors import KNeighborsClassifier from xgboost import XGBClassifier, plot_importance from sklearn.model_selection import cross_val_score from sklearn.model_selection import GridSearchCV pd.set_option('display.max_columns', 500) train = pd.read_csv('../input/train.csv') test = pd.read_csv('../input/test.csv') train.info() ###Output _____no_output_____ ###Markdown 1. Exploratory analysis Basic Information about the table ###Code train.head(2) train.describe() ###Output _____no_output_____ ###Markdown Average Age is 29 years and ticket price is 32.As there are 681 unique tickets and there is no way to extract less detailed information we exclude this variable. There are 891 unique names but we could take a look on the title of each person to understand if the survival rate of people from high society was higher ###Code train.describe(include=['O']) ## exctract cabin letter def extract_cabin(x): return x!=x and 'other' or x[0] train['Cabin_l'] = train['Cabin'].apply(extract_cabin) ###Output _____no_output_____ ###Markdown 1.1 Superficial overview of each variable Just a quick look on variables we are dealing with. ###Code plain_features = ['Pclass', 'Sex', 'SibSp', 'Parch', 'Embarked', 'Cabin_l'] fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(20, 10)) start = 0 for j in range(2): for i in range(3): if start == len(plain_features): break sns.barplot(x=plain_features[start], y='Survived', data=train, ax=ax[j, i]) start += 1 ###Output _____no_output_____ ###Markdown A citate from a movie: 'Children and women first'. * Sex: Survival chances of women are higher.* Pclass: Having a first class ticket is beneficial for the survival.* SibSp and Parch: middle size families had higher survival rate than the people who travelled alone or big families. The reasoning might be that alone people would want to sacrifice themselves to help others. Regarding the big families I would explain that it is hard to manage the whole family and therefore people would search for the family members insetad of getting on the boat.* Embarked C has a higher survival rate. It would be interesting to see if, for instance, the majority of Pclass 1 went on board in embarked C. 1.2 Survival by Sex and Age ###Code sv_lab = 'survived' nsv_lab = 'not survived' fig, ax = plt.subplots(figsize=(5, 3)) ax = sns.distplot(train[train['Survived'] == 1].Age.dropna(), bins=20, label=sv_lab, ax=ax) ax = sns.distplot(train[train['Survived'] == 0].Age.dropna(), bins=20, label=nsv_lab, ax=ax) ax.legend() ax.set_ylabel('KDE'); fig, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4)) females = train[train['Sex'] == 'female'] males = train[train['Sex'] == 'male'] ax = sns.distplot(females[females['Survived'] == 1].Age.dropna( ), bins=30, label=sv_lab, ax=axes[0], kde=False) ax = sns.distplot(females[females['Survived'] == 0].Age.dropna( ), bins=30, label=nsv_lab, ax=axes[0], kde=False) ax.legend() ax.set_title('Female') ax = sns.distplot(males[males['Survived'] == 1].Age.dropna(), bins=30, label=sv_lab, ax=axes[1], kde=False) ax = sns.distplot(males[males['Survived'] == 0].Age.dropna(), bins=30, label=nsv_lab, ax=axes[1], kde=False) ax.legend() ax.set_title('Male'); ###Output _____no_output_____ ###Markdown * Survival rate of boys is higher than of the adult men. However, the same fact does not hold for the girls. and between 13 and 30 is lower. Take it into consideration while engineering the variable: we could specify a categorical variable as young and adult.* For women the survival chances are higher between 14 and 40 age. For men of the same age the survival chances are flipped. 1.3 Survival by Class, Embarked and Fare. 1.3.1 Survival by Class and Embarked ###Code sns.catplot('Pclass', 'Survived', hue='Sex', col = 'Embarked', data=train, kind='point'); sns.catplot('Pclass', 'Survived', col = 'Embarked', data=train, kind='point'); ###Output _____no_output_____ ###Markdown * As noticed already before, the class 1 passangers had a higher survival rate.* All women who died were from the 3rd class. * Embarked in Q as a 3rd class gave you slighly better survival chances than embarked in S for the same class.* In fact, there is a very high variation in survival rate in embarked Q among 1st and 2nd class. The third class had the same survival rate as the 3rd class embarked C. We will exclude this variable embarked Q. From crosstab we see that there were only 5 passengers in embarked Q with the 1st and 2nd class. That explains large variation in survival rate and a perfect separation of men and women in Q. ###Code tab = pd.crosstab(train['Embarked'], train['Pclass']) print(tab) tab_prop = tab.div(tab.sum(1).astype(float), axis=0) tab_prop.plot(kind="bar", stacked=True) ###Output _____no_output_____ ###Markdown 1.3.2 Fare and class distribution ###Code ax = sns.boxplot(x="Pclass", y="Fare", hue="Survived", data=train) ax.set_yscale('log') ###Output _____no_output_____ ###Markdown * It appears that the higher the fare was in the first class the higher survival chances a person from the 1st had. 1.3.3 Class and age distribution ###Code sns.violinplot(x='Pclass', y='Age', hue='Survived', data=train, split=True); ###Output _____no_output_____ ###Markdown * Interesting note that Age decreases proportionally with the Pclass, meaning most old passangers are from 1st class. We will construct a new feature Age*Class to intefere the this findig. * The younger people from 1st had higher survival chanches than older from the same class.* Majority (from the 3rd class) and most children from the 2nd class survived. 1.4 Survival rate regarding the family members ###Code # To get the full family size of a person, added siblings and parch. train['family_size'] = train['SibSp'] + train['Parch'] + 1 test['family_size'] = test['SibSp'] + test['Parch'] + 1 axes = sns.catplot('family_size', 'Survived', hue='Sex', data=train, aspect=4, kind='point') ###Output _____no_output_____ ###Markdown Assumption: the less people was in your family the faster you were to get to the boat. The more people they are the more managment is required. However, if you had no family members you might wanted to help others and therefore sacrifice.* The females traveling with up to 2 more family members had a higher chance to survive. However, a high variation of survival rate appears once family size exceeds 4 as mothers/daughters would search longer for the members and therefore the chanes for survival decrease.* Alone men might want to sacrifice and help other people to survive. 1.5 Survival rate by the title* Barplots show that roalties had normally 1st or 2nd class tickets. However, people with the title Master had mostly 3rd class. In fact, a title 'Master' was given to unmarried boys. You can see that the age of of people with this title is less than 13.* Women and roalties had higher survival rate. (There are only two titlted women in the train class and both have survived, I would put them into Mrs class)* The civils and reverends a lower one due to the fact that they had/wanted to help people. ###Code train['Title'] = train['Name'].str.extract(' ([A-Za-z]+)\.', expand=False) print(collections.Counter(train['Title']).most_common()) test['Title'] = test['Name'].str.extract(' ([A-Za-z]+)\.', expand=False) print() print(collections.Counter(test['Title']).most_common()) tab = pd.crosstab(train['Title'],train['Pclass']) print(tab) tab_prop = tab.div(tab.sum(1).astype(float), axis=0) tab_prop.plot(kind="bar", stacked=True) ###Output _____no_output_____ ###Markdown Investigate who were masters. The age is less than 12. ###Code max(train[train['Title'] == 'Master'].Age) sns.catplot('Title', 'Survived', data=train, aspect=3, kind='point'); ###Output _____no_output_____ ###Markdown We will group the roalties and assign masters to Mr and due to the fact that there were not so many roaly women, we will assign then to Mrs. ###Code #train['Title'].replace(['Master','Major', 'Capt', 'Col', 'Countess','Dona','Lady', 'Don', 'Sir', 'Jonkheer', 'Dr'], 'titled', inplace = True) train['Title'].replace(['Master', 'Major', 'Capt', 'Col', 'Don', 'Sir', 'Jonkheer', 'Dr'], 'titled', inplace=True) #train['Title'].replace(['Countess','Dona','Lady'], 'titled_women', inplace = True) #train['Title'].replace(['Master','Major', 'Capt', 'Col','Don', 'Sir', 'Jonkheer', 'Dr'], 'titled_man', inplace = True) train['Title'].replace(['Countess', 'Dona', 'Lady'], 'Mrs', inplace=True) #train['Title'].replace(['Master'], 'Mr', inplace = 'True') train['Title'].replace(['Mme'], 'Mrs', inplace=True) train['Title'].replace(['Mlle', 'Ms'], 'Miss', inplace=True) sns.catplot('Title', 'Survived', data=train, aspect=3, kind='point'); ###Output _____no_output_____ ###Markdown 1.6 Survival rate by cabinCabin is supposed to be less distingushing, also taking into consideration that most of the values are missing. ###Code def extract_cabin(x): return x != x and 'other' or x[0] train['Cabin_l'] = train['Cabin'].apply(extract_cabin) print(train.groupby('Cabin_l').size()) sns.catplot('Cabin_l', 'Survived', order=['other', 'A', 'B', 'C', 'D', 'E', 'F', 'T'], aspect=3, data=train, kind='point') ###Output _____no_output_____ ###Markdown 1.7 Correlation of the variables* Pclass is slightly correlated with Fare as logically, 3rd class ticket would cost less than the 1st class.* Pclass is also slightly correlated with Survived* SibSp and Parch are weakly correlated as basically they show how big the family size is. ###Code plt.figure(figsize=(8, 8)) corrmap = sns.heatmap(train.drop('PassengerId',axis=1).corr(), square=True, annot=True) ###Output _____no_output_____ ###Markdown 2. FEATURE SELECTION AND ENGINEERING 2.1 Impute valuesNB: The calculation of values to impute should only be done on train set. For example, you want to impute the mean of age in the mussing values in test set. The mean of age should only be calculated on train set to avoid data leakage.First, we check how many nas there is in general. If there is only small amount then we can just exclude those individuals. Considering that there are 891 training samples, 708 do not have missing values. 183 samples have na values. It is better to impute. There are different techniques one can impute the values. ###Code train.shape[0] - train.dropna().shape[0] ###Output _____no_output_____ ###Markdown Check wich columns to impute in which set. It shows the number of na-values in each column. ###Code train.isnull().sum() test.isnull().sum() ###Output _____no_output_____ ###Markdown Embarked: fill embarked with a major class ###Code max_emb = np.argmax(train['Embarked'].value_counts()) train['Embarked'].fillna(max_emb, inplace=True) ###Output _____no_output_____ ###Markdown Pclass: because there is only one missing value in Fare we will fill it with a median of the corresponding Pclass ###Code indz = test[test['Fare'].isna()].index.tolist() print(indz) pclass = test['Pclass'][indz].values[0] fare_train = train[train['Pclass']==pclass].Fare fare_med = fare_train.median() print(fare_med) test.loc[indz,'Fare'] = fare_med ###Output _____no_output_____ ###Markdown There are several imputing techniques, we will use the random number from the range mean +- std ###Code ages = train['Age'].dropna() std_ages = ages.std() mean_ages = ages.mean() train_nas = np.isnan(train["Age"]) test_nas = np.isnan(test["Age"]) np.random.seed(122) impute_age_train = np.random.randint(mean_ages - std_ages, mean_ages + std_ages, size = train_nas.sum()) impute_age_test = np.random.randint(mean_ages - std_ages, mean_ages + std_ages, size = test_nas.sum()) train["Age"][train_nas] = impute_age_train test["Age"][test_nas] = impute_age_test ages_imputed = np.concatenate((test["Age"],train["Age"]), axis = 0) train['Age*Class'] = train['Age']*train['Pclass'] test['Age*Class'] = test['Age']*test['Pclass'] ###Output _____no_output_____ ###Markdown Check if we disrupted the distribution somehow. ###Code sns.kdeplot(ages_imputed, label = 'After imputation'); sns.kdeplot(ages, label = 'Before imputation'); ###Output _____no_output_____ ###Markdown 2.2 ENGENEER VALUES Integrate into test the title feature ###Code test['Title'] = test['Name'].str.extract(' ([A-Za-z]+)\.', expand=False) test['Title'].replace(['Master', 'Major', 'Capt', 'Col', 'Don', 'Sir', 'Jonkheer', 'Dr'], 'titled', inplace=True) test['Title'].replace(['Countess', 'Dona', 'Lady'], 'Mrs', inplace=True) #test['Title'].replace(['Master'], 'Mr', inplace = True) test['Title'].replace(['Mme'], 'Mrs', inplace=True) test['Title'].replace(['Mlle', 'Ms'], 'Miss', inplace=True) ###Output _____no_output_____ ###Markdown Seperate young and adult people ###Code train['age_cat'] = None train.loc[(train['Age'] <= 13), 'age_cat'] = 'young' train.loc[(train['Age'] > 13), 'age_cat'] = 'adult' test['age_cat'] = None test.loc[(test['Age'] <= 13), 'age_cat'] = 'young' test.loc[(test['Age'] > 13), 'age_cat'] = 'adult' ###Output _____no_output_____ ###Markdown Drop broaden variables. As we have seen from describe there are too many unique values for Ticket and missing values for Cabin ###Code train_label = train['Survived'] test_pasId = test['PassengerId'] drop_cols = ['Name', 'Ticket', 'Cabin', 'SibSp', 'Parch', 'PassengerId'] train.drop(drop_cols + ['Cabin_l'], 1, inplace=True) test.drop(drop_cols, 1, inplace=True) ###Output _____no_output_____ ###Markdown Convert Pclass into categorical variable ###Code train['Pclass'] = train['Pclass'].apply(str) test['Pclass'] = test['Pclass'].apply(str) ###Output _____no_output_____ ###Markdown Create dummy variables for categorical data. ###Code train.drop(['Survived'], 1, inplace=True) train_objs_num = len(train) dataset = pd.concat(objs=[train, test], axis=0) dataset = pd.get_dummies(dataset) train = copy.copy(dataset[:train_objs_num]) test = copy.copy(dataset[train_objs_num:]) droppings = ['Embarked_Q', 'Age'] #droppings += ['Sex_male', 'Sex_female'] test.drop(droppings, 1, inplace=True) train.drop(droppings, 1, inplace=True) train.head(5) ###Output _____no_output_____ ###Markdown CLASSIFICATION ###Code def prediction(model, train, label, test, test_pasId): model.fit(train, label) pred = model.predict(test) accuracy = cross_val_score(model, train, label, cv=5) sub = pd.DataFrame({ "PassengerId": test_pasId, "Survived": pred }) return [accuracy, sub] ###Output _____no_output_____ ###Markdown 1. Random ForestThere are many categorical features, so I have chosen random forest to do the classification. ###Code rf = RandomForestClassifier( n_estimators=80, min_samples_leaf=2, min_samples_split=2, random_state=110) acc_random_forest, sub = prediction(rf, train, train_label, test, test_pasId) importances = pd.DataFrame( {'feature': train.columns, 'importance': np.round(rf.feature_importances_, 3)}) importances = importances.sort_values( 'importance', ascending=False).set_index('feature') print(importances) importances.plot.bar() print(acc_random_forest) sub.to_csv("titanic_submission_randomforest.csv", index=False) ###Output _____no_output_____ ###Markdown 2. Logistic Regression ###Code from sklearn.preprocessing import StandardScaler scaler = StandardScaler().fit(train['Fare'].values.reshape(-1, 1)) train['Fare'] = scaler.transform(train['Fare'].values.reshape(-1, 1)) test['Fare'] = scaler.transform(test['Fare'].values.reshape(-1, 1)) scaler = StandardScaler().fit(train['Age*Class'].values.reshape(-1, 1)) train['Age*Class'] = scaler.transform(train['Age*Class'].values.reshape(-1, 1)) test['Age*Class'] = scaler.transform(test['Age*Class'].values.reshape(-1, 1)) lr = LogisticRegression(random_state=110) lr_acc, sub = prediction(lr, train, train_label, test, test_pasId) sub.to_csv("titanic_submission_logregres.csv", index=False) # train.columns.tolist() print(list(zip(lr.coef_[0], train.columns.tolist()))) ###Output _____no_output_____ ###Markdown 3. KNeighbours ###Code kn = KNeighborsClassifier() kn_acc, sub = prediction(kn, train, train_label, test, test_pasId) print(kn_acc) sub.to_csv("titanic_submission_kn.csv", index=False) ###Output _____no_output_____ ###Markdown 4. Ensemble ###Code from sklearn.ensemble import VotingClassifier eclf1 = VotingClassifier(estimators=[ ('lr', lr), ('rf', rf)], voting='soft') eclf1 = eclf1.fit(train, train_label) test_predictions = eclf1.predict(test) test_predictions = test_predictions.astype(int) submission = pd.DataFrame({ "PassengerId": test_pasId, "Survived": test_predictions }) submission.to_csv("titanic_submission_ensemble.csv", index=False) ###Output _____no_output_____ ###Markdown 5. XGBoost ###Code xgb = XGBClassifier(n_estimators=200) acc_xgb, sub = prediction(xgb, train, train_label, test, test_pasId) print(acc_xgb) plot_importance(xgb) sub.to_csv("titanic_submission_xgboost.csv", index=False) ###Output _____no_output_____
Titanic_Survival_v2.ipynb
###Markdown Predict survival on the Titanic ###Code #import libraries for data visualisation import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline # Read train data using pandas train = pd.read_csv('train.csv',index_col = 'PassengerId') # Read test data using pandas test = pd.read_csv('test.csv',index_col = 'PassengerId') full_data = pd.concat([train.drop('Survived',axis=1),test],axis = 0,sort = False) # check the first 5 rows full_data.head() #cheaking for null train[train['Embarked'].isnull() == True] ###Output _____no_output_____ ###Markdown Data Visualization Use heatmap to check for missing values. ###Code sns.heatmap(train.corr(), annot=True,cmap = 'viridis') def missing_values(data, cmap = 'viridis'): """ Given the data, this function will return a graph for missing values Parameters ---------- data : Pandas dataframe. cmap : matplotlib colormap name or object, or list of colors, optional The mapping from data values to color space. If not provided, the default is 'viridis'. """ return sns.heatmap(data.isnull(),yticklabels=False,cbar=False,cmap='viridis') missing_values(full_data) sns.set_style('whitegrid') sns.countplot(x='Survived',data=train,palette='RdBu_r') ###Output _____no_output_____ ###Markdown Check the ratio for male and female who survived ###Code sns.set_style('whitegrid') sns.countplot(x='Survived',hue='Sex',data=train,palette='RdBu_r') ###Output _____no_output_____ ###Markdown In terms of class ###Code sns.set_style('whitegrid') sns.countplot(x='Survived',hue='Pclass',data=train,palette='rainbow') sns.distplot(train['Age'].dropna(),kde=False,color='darkred',bins=30) sns.countplot(x='SibSp',data=train) train['Fare'].hist(color='green',bins=40,figsize=(8,4)) ###Output _____no_output_____ ###Markdown How many unique tickets are there? ###Code full_data['Ticket'].nunique() ###Output _____no_output_____ ###Markdown Create a new feature with the titles ###Code full_data['title'] = full_data['Name'].apply(lambda myString: myString[myString.find(",")+2:myString.find(".")]) full_data['title'].value_counts() ###Output _____no_output_____ ###Markdown Data Cleaning ###Code plt.figure(figsize=(12, 7)) sns.boxplot(x='Pclass',y='Age',data=train,palette='winter') def impute_age(cols): Age = cols[0] Pclass = cols[1] if pd.isnull(Age): if Pclass == 1: return 37 elif Pclass == 2: return 29 else: return 24 else: return Age full_data['Age'] = full_data[['Age','Pclass']].apply(impute_age,axis=1) ###Output _____no_output_____ ###Markdown Let's check the heatmap again ###Code missing_values(full_data) ###Output _____no_output_____ ###Markdown Let's convert categorical features to dummy variables using pandas! **There are so many missing values in "cabin" column, that it's better to drop it** ###Code full_data.drop('Cabin',axis=1,inplace=True) #checking for the missing values again missing_values(full_data) full_data[full_data['Fare'].isna() == True] = full_data['Fare'].mean() full_data[full_data['Embarked'].isna() == True] full_data["Embarked"] = full_data["Embarked"].fillna('C') sex = pd.get_dummies(full_data['Sex'],drop_first=True) embark = pd.get_dummies(full_data['Embarked'],drop_first=True) title = pd.get_dummies(full_data['title'],drop_first=True) #drop the categorical features full_data.drop(['Sex','Embarked','Name','Ticket','title'],axis=1,inplace=True) # replace them with the nummeric features full_data = pd.concat([full_data,sex,embark,title],axis=1) full_data.head() #split train and test again def split_data(data,nrow): """ split data along the row Paranmeters -------------- data : pandas dataframe nrow : split Returns -------------- Tuple of top and bottom part of the data """ top = data.iloc[:nrow] bottom = data.iloc[nrow:] return (top,bottom) train_new,test_new = split_data(full_data,nrow = 891) train_new.shape,test.shape, full_data.shape correlation = pd.concat([train["Survived"],train_new],axis = 1).corr() print(correlation['Survived']) plt.figure(figsize = (20,20),dpi = 60) sns.heatmap(pd.concat([train["Survived"],train_new],axis = 1).corr(), annot=True,cmap = 'PuRd',cbar=False) ###Output _____no_output_____ ###Markdown Building models**We will be testing Logistic regression and Random forest for now. More models can be used depending on the accuracy** ###Code #import libraries from sklearn.model_selection import train_test_split #for train test split #We can check precision,recall,f1-score using classification report! from sklearn.metrics import classification_report,accuracy_score #import models from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier ###Output _____no_output_____ ###Markdown Train Test split ###Code X_train, X_test, y_train, y_test = train_test_split(train_new, train['Survived'], test_size=0.30, random_state=142) X_train.head() logmodel = LogisticRegression() logmodel.fit(X_train,y_train) predict_log = logmodel.predict(X_test) print(classification_report(y_test,predict_log)) print (accuracy_score(y_test,predict_log)) y_train = np.asarray(y_train).ravel() regmodel = RandomForestClassifier(n_estimators=100,max_features='auto', min_samples_split=0.05) regmodel.fit(X_train,y_train) predict_reg = regmodel.predict(X_test) print(classification_report(y_test,predict_reg)) print (accuracy_score(y_test,predict_reg)) predict_final = regmodel.predict(test_new) submission = pd.DataFrame( { 'PassengerId': test_new.index, 'Survived': predict_final } ) submission.to_csv("submission_final.csv", index=False) ###Output _____no_output_____
import data in python part 2/1.1 Importing flat files from the web.ipynb
###Markdown Import the function urlretrieve from the subpackage urllib.request ###Code # Import package from urllib.request import urlretrieve import pandas as pd ###Output _____no_output_____ ###Markdown Assign the URL of the file to the variable url. ###Code # Assign url of file: url url=('https://s3.amazonaws.com/assets.datacamp.com/production/course_1606/datasets/winequality-red.csv') ###Output _____no_output_____ ###Markdown Use the function urlretrieve() to save the file locally as 'winequality-red.csv'. ###Code # Save file locally urlretrieve(url,'winequality-red.csv') # Read file into a DataFrame and print its head df = pd.read_csv('winequality-red.csv', sep=';') print(df.head()) ###Output fixed acidity volatile acidity citric acid residual sugar chlorides \ 0 7.4 0.70 0.00 1.9 0.076 1 7.8 0.88 0.00 2.6 0.098 2 7.8 0.76 0.04 2.3 0.092 3 11.2 0.28 0.56 1.9 0.075 4 7.4 0.70 0.00 1.9 0.076 free sulfur dioxide total sulfur dioxide density pH sulphates \ 0 11.0 34.0 0.9978 3.51 0.56 1 25.0 67.0 0.9968 3.20 0.68 2 15.0 54.0 0.9970 3.26 0.65 3 17.0 60.0 0.9980 3.16 0.58 4 11.0 34.0 0.9978 3.51 0.56 alcohol quality 0 9.4 5 1 9.8 5 2 9.8 5 3 9.8 6 4 9.4 5
examples/advanced-tour.ipynb
###Markdown Advanced tour of the Bayesian Optimization package ###Code from bayes_opt import BayesianOptimization ###Output _____no_output_____ ###Markdown 1. Suggest-Evaluate-Register ParadigmInternally the `maximize` method is simply a wrapper around the methods `suggest`, `probe`, and `register`. If you need more control over your optimization loops the Suggest-Evaluate-Register paradigm should give you that extra flexibility.For an example of running the `BayesianOptimization` in a distributed fashion (where the function being optimized is evaluated concurrently in different cores/machines/servers), checkout the `async_optimization.py` script in the examples folder. ###Code # Let's start by definying our function, bounds, and instanciating an optimization object. def black_box_function(x, y): return -x ** 2 - (y - 1) ** 2 + 1 ###Output _____no_output_____ ###Markdown Notice that the evaluation of the blackbox function will NOT be carried out by the optimizer object. We are simulating a situation where this function could be being executed in a different machine, maybe it is written in another language, or it could even be the result of a chemistry experiment. Whatever the case may be, you can take charge of it and as long as you don't invoke the `probe` or `maximize` methods directly, the optimizer object will ignore the blackbox function. ###Code optimizer = BayesianOptimization( f=None, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) ###Output _____no_output_____ ###Markdown One extra ingredient we will need is an `UtilityFunction` instance. In case it is not clear why, take a look at the literature to understand better how this method works. ###Code from bayes_opt import UtilityFunction utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0) ###Output _____no_output_____ ###Markdown The `suggest` method of our optimizer can be called at any time. What you get back is a suggestion for the next parameter combination the optimizer wants to probe.Notice that while the optimizer hasn't observed any points, the suggestions will be random. However, they will stop being random and improve in quality the more points are observed. ###Code next_point_to_probe = optimizer.suggest(utility) print("Next point to probe is:", next_point_to_probe) ###Output Next point to probe is: {'y': 1.3219469606529488, 'x': -0.331911981189704} ###Markdown You are now free to evaluate your function at the suggested point however/whenever you like. ###Code target = black_box_function(**next_point_to_probe) print("Found the target value to be:", target) ###Output Found the target value to be: 0.7861845912690542 ###Markdown Last thing left to do is to tell the optimizer what target value was observed. ###Code optimizer.register( params=next_point_to_probe, target=target, ) ###Output _____no_output_____ ###Markdown 1.1 The maximize loopAnd that's it. By repeating the steps above you recreate the internals of the `maximize` method. This should give you all the flexibility you need to log progress, hault execution, perform concurrent evaluations, etc. ###Code for _ in range(5): next_point = optimizer.suggest(utility) target = black_box_function(**next_point) optimizer.register(params=next_point, target=target) print(target, next_point) print(optimizer.max) ###Output -19.0 {'y': -3.0, 'x': 2.0} -12.194801029414048 {'y': -2.412527795983739, 'x': -1.2447710918286998} 0.6381713808008993 {'y': 1.4965397889559267, 'x': -0.3395244574146384} 0.5052897389362041 {'y': 1.2837707069731576, 'x': -0.6435716330974743} 0.9493808230928116 {'y': 1.2241444765020055, 'x': -0.019453291773639306} {'target': 0.9493808230928116, 'params': {'y': 1.2241444765020055, 'x': -0.019453291773639306}} ###Markdown 2. Dealing with discrete parameters**There is no principled way of dealing with discrete parameters using this package.**Ok, now that we got that out of the way, how do you do it? You're bound to be in a situation where some of your function's parameters may only take on discrete values. Unfortunately, the nature of bayesian optimization with gaussian processes doesn't allow for an easy/intuitive way of dealing with discrete parameters - but that doesn't mean it is impossible. The example below showcases a simple, yet reasonably adequate, way to dealing with discrete parameters. ###Code def func_with_discrete_params(x, y, d): # Simulate necessity of having d being discrete. assert type(d) == int return ((x + y + d) // (1 + d)) / (1 + (x + y) ** 2) def function_to_be_optimized(x, y, w): d = int(w) return func_with_discrete_params(x, y, d) optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (0, 5)}, verbose=2, random_state=1, ) optimizer.maximize(alpha=1e-3) ###Output | iter | target | w | x | y | ------------------------------------------------------------- |  1  | -0.06199  |  2.085  |  4.406  | -9.998  | |  2  | -0.0344  |  1.512  | -7.065  | -8.153  | |  3  | -0.2177  |  0.9313  | -3.089  | -2.065  | |  4  |  0.1865  |  2.694  | -1.616  |  3.704  | |  5  | -0.2187  |  1.022  |  7.562  | -9.452  | |  6  |  0.009975 |  5.0  |  10.0  |  10.0  | |  7  |  0.0  |  5.0  | -10.0  |  10.0  | |  8  |  0.09003  |  0.0  |  0.4916  |  10.0  | |  9  | -0.007481 |  5.0  | -10.0  | -10.0  | |  10  |  0.01989  |  5.0  | -0.02203  |  10.0  | |  11  |  0.0189  |  5.0  |  10.0  |  0.238  | |  12  | -0.2149  |  0.0  | -10.0  |  5.282  | |  13  |  0.05995  |  0.0  |  10.0  |  5.786  | |  14  | -0.01299  |  5.0  | -2.367  | -10.0  | |  15  |  0.03637  |  5.0  |  3.773  |  3.575  | |  16  | -0.01214  |  5.0  | -10.0  |  0.9779  | |  17  |  0.0  |  5.0  |  10.0  | -10.0  | |  18  |  0.0  |  5.0  | -4.58  |  5.518  | |  19  | -0.04988  |  0.0  | -10.0  | -10.0  | |  20  |  0.1246  |  0.0  |  2.311  |  5.116  | |  21  |  0.04988  |  0.0  |  10.0  |  10.0  | |  22  |  0.04567  |  2.029  |  0.1434  |  6.398  | |  23  |  0.0  |  5.0  |  4.685  | -4.937  | |  24  |  0.06466  |  0.0  |  5.198  |  10.0  | |  25  |  0.3751  |  5.0  | -0.6795  |  1.97  | |  26  |  0.0  |  5.0  | -2.001  | -0.5515  | |  27  |  0.1072  |  0.0  |  10.0  | -1.419  | |  28  | -0.08895  |  0.0  | -2.048  | -10.0  | |  29  |  0.1907  |  0.0  |  3.994  | -0.1557  | |  30  | -0.0  |  0.0  | -10.0  |  10.0  | ============================================================= ###Markdown 3. Tuning the underlying Gaussian ProcessThe bayesian optimization algorithm works by performing a gaussian process regression of the observed combination of parameters and their associated target values. The predicted parameter$\rightarrow$target hyper-surface (and its uncertainty) is then used to guide the next best point to probe. 3.1 Passing parameter to the GPDepending on the problemn it could be beneficial to change the default parameters of the underlying GP. You can simply pass GP parameters to the maximize method directly as you can see below: ###Code optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) optimizer.maximize( init_points=1, n_iter=5, # What follows are GP regressor parameters alpha=1e-3, n_restarts_optimizer=5 ) ###Output | iter | target | x | y | ------------------------------------------------- |  1  |  0.7862  | -0.3319  |  1.322  | |  2  | -18.96  |  1.993  | -2.998  | |  3  |  0.7858  | -0.3333  |  1.321  | |  4  |  0.5787  | -0.429  |  1.487  | |  5  |  0.7798  |  0.02543  |  1.469  | |  6  |  0.9779  |  0.1301  |  0.9282  | ================================================= ###Markdown Another alternative, specially useful if you're calling `maximize` multiple times or optimizing outside the `maximize` loop, is to call the `set_gp_params` method. ###Code optimizer.set_gp_params(normalize_y=True) ###Output _____no_output_____ ###Markdown 3.2 Tuning the `alpha` parameterWhen dealing with functions with discrete parameters,or particularly erratic target space it might be beneficial to increase the value of the `alpha` parameter. This parameters controls how much noise the GP can handle, so increase it whenever you think that extra flexibility is needed. 3.3 Changing kernelsBy default this package uses the Mattern 2.5 kernel. Depending on your use case you may find that tunning the GP kernel could be beneficial. You're on your own here since these are very specific solutions to very specific problems. Observers ContinuedObservers are objects that subscribe and listen to particular events fired by the `BayesianOptimization` object. When an event gets fired a callback function is called with the event and the `BayesianOptimization` instance passed as parameters. The callback can be specified at the time of subscription. If none is given it will look for an `update` method from the observer. ###Code from bayes_opt.event import DEFAULT_EVENTS, Events optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) class BasicObserver: def update(self, event, instance): """Does whatever you want with the event and `BayesianOptimization` instance.""" print("Event `{}` was observed".format(event)) my_observer = BasicObserver() optimizer.subscribe( event=Events.OPTMIZATION_STEP, subscriber=my_observer, callback=None, # Will use the `update` method as callback ) ###Output _____no_output_____ ###Markdown Alternatively you have the option to pass a completely different callback. ###Code def my_callback(event, instance): print("Go nuts here!") optimizer.subscribe( event=Events.OPTMIZATION_START, subscriber="Any hashable object", callback=my_callback, ) optimizer.maximize(init_points=1, n_iter=2) ###Output Go nuts here! Event `optmization:step` was observed Event `optmization:step` was observed Event `optmization:step` was observed ###Markdown For a list of all default events you can checkout `DEFAULT_EVENTS` ###Code DEFAULT_EVENTS ###Output _____no_output_____ ###Markdown Advanced tour of the Bayesian Optimization package ###Code from bayes_opt import BayesianOptimization ###Output _____no_output_____ ###Markdown 1. Suggest-Evaluate-Register ParadigmInternally the `maximize` method is simply a wrapper around the methods `suggest`, `probe`, and `register`. If you need more control over your optimization loops the Suggest-Evaluate-Register paradigm should give you that extra flexibility.For an example of running the `BayesianOptimization` in a distributed fashion (where the function being optimized is evaluated concurrently in different cores/machines/servers), checkout the `async_optimization.py` script in the examples folder. ###Code # Let's start by definying our function, bounds, and instanciating an optimization object. def black_box_function(x, y): return -x ** 2 - (y - 1) ** 2 + 1 optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) ###Output _____no_output_____ ###Markdown One extra ingredient we will need is an `UtilityFunction` instance. In case it is not clear why, take a look at the literature to understand better how this method works. ###Code from bayes_opt import UtilityFunction utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0) ###Output _____no_output_____ ###Markdown The `suggest` method of our optimizer can be called at any time. What you get back is a suggestion for the next parameter combination the optimizer wants to probe.Notice that while the optimizer hasn't observed any points, the suggestions will be random. However, they will stop being random and improve in quality the more points are observed. ###Code next_point_to_probe = optimizer.suggest(utility) print("Next point to probe is:", next_point_to_probe) ###Output Next point to probe is: {'x': -0.331911981189704, 'y': 1.3219469606529488} ###Markdown You are now free to evaluate your function at the suggested point however/whenever you like. ###Code target = black_box_function(**next_point_to_probe) print("Found the target value to be:", target) ###Output Found the target value to be: 0.7861845912690542 ###Markdown Last thing left to do is to tell the optimizer what target value was observed. ###Code optimizer.register( params=next_point_to_probe, target=target, ) ###Output _____no_output_____ ###Markdown 1.1 The maximize loopAnd that's it. By repeating the steps above you recreate the internals of the `maximize` method. This should give you all the flexibility you need to log progress, hault execution, perform concurrent evaluations, etc. ###Code for _ in range(5): next_point = optimizer.suggest(utility) target = black_box_function(**next_point) optimizer.register(params=next_point, target=target) print(target, next_point) print(optimizer.max) ###Output -19.0 {'x': 2.0, 'y': -3.0} -12.194801029414048 {'x': -1.2447710918286998, 'y': -2.412527795983739} 0.6381713808008993 {'x': -0.3395244574146384, 'y': 1.4965397889559267} 0.5052897389362041 {'x': -0.6435716330974743, 'y': 1.2837707069731576} 0.9493808230928116 {'x': -0.019453291773639306, 'y': 1.2241444765020055} {'target': 0.9493808230928116, 'params': {'x': -0.019453291773639306, 'y': 1.2241444765020055}} ###Markdown 2. Dealing with discrete parameters**There is no principled way of dealing with discrete parameters using this package.**Ok, now that we got that out of the way, how do you do it? You're bound to be in a situation where some of your function's parameters may only take on discrete values. Unfortunately, the nature of bayesian optimization with gaussian processes doesn't allow for an easy/intuitive way of dealing with discrete parameters - but that doesn't mean it is impossible. The example below showcases a simple, yet reasonably adequate, way to dealing with discrete parameters. ###Code def func_with_discrete_params(x, y, d): # Simulate necessity of having d being discrete. assert type(d) == int return ((x + y + d) // (1 + d)) / (1 + (x + y) ** 2) def function_to_be_optimized(x, y, w): d = int(w) return func_with_discrete_params(x, y, d) optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (0, 5)}, verbose=2, random_state=1, ) optimizer.maximize(alpha=1e-3) ###Output | iter | target | w | x | y | ------------------------------------------------------------- |  1  | -0.06199  |  2.085  |  4.406  | -9.998  | |  2  | -0.0344  |  1.512  | -7.065  | -8.153  | |  3  | -0.2177  |  0.9313  | -3.089  | -2.065  | |  4  |  0.1865  |  2.694  | -1.616  |  3.704  | |  5  | -0.2187  |  1.022  |  7.562  | -9.452  | |  6  |  0.009975 |  5.0  |  10.0  |  10.0  | |  7  |  0.0  |  5.0  | -10.0  |  10.0  | |  8  |  0.09003  |  0.0  |  0.4916  |  10.0  | |  9  | -0.007481 |  5.0  | -10.0  | -10.0  | |  10  |  0.01989  |  5.0  | -0.02203  |  10.0  | |  11  |  0.0189  |  5.0  |  10.0  |  0.238  | |  12  | -0.2149  |  0.0  | -10.0  |  5.282  | |  13  |  0.05995  |  0.0  |  10.0  |  5.786  | |  14  | -0.01299  |  5.0  | -2.367  | -10.0  | |  15  |  0.03637  |  5.0  |  3.773  |  3.575  | |  16  | -0.01214  |  5.0  | -10.0  |  0.9779  | |  17  |  0.0  |  5.0  |  10.0  | -10.0  | |  18  |  0.0  |  5.0  | -4.58  |  5.518  | |  19  | -0.04988  |  0.0  | -10.0  | -10.0  | |  20  |  0.1246  |  0.0  |  2.311  |  5.116  | |  21  |  0.04988  |  0.0  |  10.0  |  10.0  | |  22  |  0.04567  |  2.029  |  0.1434  |  6.398  | |  23  |  0.0  |  5.0  |  4.685  | -4.937  | |  24  |  0.06466  |  0.0  |  5.198  |  10.0  | |  25  |  0.3751  |  5.0  | -0.6795  |  1.97  | |  26  |  0.0  |  5.0  | -2.001  | -0.5515  | |  27  |  0.1072  |  0.0  |  10.0  | -1.419  | |  28  | -0.08895  |  0.0  | -2.048  | -10.0  | |  29  |  0.1907  |  0.0  |  3.994  | -0.1557  | |  30  | -0.0  |  0.0  | -10.0  |  10.0  | ============================================================= ###Markdown 3. Tuning the underlying Gaussian ProcessThe bayesian optimization algorithm works by performing a gaussian process regression of the observed combination of parameters and their associated target values. The predicted parameter$\rightarrow$target hyper-surface (and its uncertainty) is then used to guide the next best point to probe. 3.1 Passing parameter to the GPDepending on the problemn it could be beneficial to change the default parameters of the underlying GP. You can simply pass GP parameters to the maximize method directly as you can see below: ###Code optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) optimizer.maximize( init_points=1, n_iter=5, # What follows are GP regressor parameters alpha=1e-3, n_restarts_optimizer=5 ) ###Output | iter | target | x | y | ------------------------------------------------- |  1  |  0.7862  | -0.3319  |  1.322  | |  2  | -18.96  |  1.993  | -2.998  | |  3  |  0.7858  | -0.3333  |  1.321  | |  4  |  0.5787  | -0.429  |  1.487  | |  5  |  0.7798  |  0.02543  |  1.469  | |  6  |  0.9779  |  0.1301  |  0.9282  | ================================================= ###Markdown Another alternative, specially useful if you're calling `maximize` multiple times or optimizing outside the `maximize` loop, is to call the `set_gp_params` method. ###Code optimizer.set_gp_params(normalize_y=True) ###Output _____no_output_____ ###Markdown 3.2 Tuning the `alpha` parameterWhen dealing with functions with discrete parameters,or particularly erratic target space it might be beneficial to increase the value of the `alpha` parameter. This parameters controls how much noise the GP can handle, so increase it whenever you think that extra flexibility is needed. 3.3 Changing kernelsBy default this package uses the Mattern 2.5 kernel. Depending on your use case you may find that tunning the GP kernel could be beneficial. You're on your own here since these are very specific solutions to very specific problems. Observers ContinuedObservers are objects that subscribe and listen to particular events fired by the `BayesianOptimization` object. When an event gets fired a callback function is called with the event and the `BayesianOptimization` instance passed as parameters. The callback can be specified at the time of subscription. If none is given it will look for an `update` method from the observer. ###Code from bayes_opt.event import DEFAULT_EVENTS, Events optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) class BasicObserver: def update(self, event, instance): """Does whatever you want with the event and `BayesianOptimization` instance.""" print("Event `{}` was observed".format(event)) my_observer = BasicObserver() optimizer.subscribe( event=Events.OPTMIZATION_STEP, subscriber=my_observer, callback=None, # Will use the `update` method as callback ) ###Output _____no_output_____ ###Markdown Alternatively you have the option to pass a completely different callback. ###Code def my_callback(event, instance): print("Go nuts here!") optimizer.subscribe( event=Events.OPTMIZATION_START, subscriber="Any hashable object", callback=my_callback, ) optimizer.maximize(init_points=1, n_iter=2) ###Output Go nuts here! Event `optmization:step` was observed Event `optmization:step` was observed Event `optmization:step` was observed ###Markdown For a list of all default events you can checkout `DEFAULT_EVENTS` ###Code DEFAULT_EVENTS ###Output _____no_output_____ ###Markdown Advanced tour of the Bayesian Optimization package ###Code from bayes_opt import BayesianOptimization ###Output _____no_output_____ ###Markdown 1. Suggest-Evaluate-Register ParadigmInternally the `maximize` method is simply a wrapper around the methods `suggest`, `probe`, and `register`. If you need more control over your optimization loops the Suggest-Evaluate-Register paradigm should give you that extra flexibility.For an example of running the `BayesianOptimization` in a distributed fashion (where the function being optimized is evaluated concurrently in different cores/machines/servers), checkout the `async_optimization.py` script in the examples folder. ###Code # Let's start by definying our function, bounds, and instanciating an optimization object. import numpy as np from scipy.stats import norm def f(x): """Function with unknown internals we wish to maximize. This is just serving as an example, for all intents and purposes think of the internals of this function, i.e.: the process which generates its output values, as unknown. """ r = x * np.sin(x) + norm.pdf(x,loc=5,scale=0.35)*10 return r ###Output _____no_output_____ ###Markdown Notice that the evaluation of the blackbox function will NOT be carried out by the optimizer object. We are simulating a situation where this function could be being executed in a different machine, maybe it is written in another language, or it could even be the result of a chemistry experiment. Whatever the case may be, you can take charge of it and as long as you don't invoke the `probe` or `maximize` methods directly, the optimizer object will ignore the blackbox function. ###Code pbounds = {'x': (-10,10)} #bounds of input = (-3,8) # expected range of the output (can also take single number to specify rance, (-3,8) is equivalent to 11) optimizer = BayesianOptimization( f=None, pbounds=pbounds, yrange=expectedYbounds, verbose=2, random_state=1, ) ###Output _____no_output_____ ###Markdown One extra ingredient we will need is an `UtilityFunction` instance. In case it is not clear why, take a look at the literature to understand better how this method works. ###Code from bayes_opt import UtilityFunction utility = UtilityFunction(kind="ei") ###Output _____no_output_____ ###Markdown The `suggest` method of our optimizer can be called at any time. What you get back is a suggestion for the next parameter combination the optimizer wants to probe.Notice that while the optimizer hasn't observed any points, the suggestions will be random. However, they will stop being random and improve in quality the more points are observed. ###Code next_point_to_probe = optimizer.suggest(utility) print("Next point to probe is:", next_point_to_probe) ###Output Next point to probe is: {'y': 1.3219469606529488, 'x': -0.331911981189704} ###Markdown You are now free to evaluate your function at the suggested point however/whenever you like. ###Code target = f(**next_point_to_probe) print("Found the target value to be:", target) ###Output Found the target value to be: 0.7861845912690542 ###Markdown Last thing left to do is to tell the optimizer what target value was observed. ###Code optimizer.register( params=next_point_to_probe, target=target, ) ###Output _____no_output_____ ###Markdown 1.1 The maximize loopAnd that's it. By repeating the steps above you recreate the internals of the `maximize` method. This should give you all the flexibility you need to log progress, hault execution, perform concurrent evaluations, etc. ###Code for _ in range(5): next_point = optimizer.suggest(utility) target = f(**next_point) optimizer.register(params=next_point, target=target) print(target, next_point) print(optimizer.max) ###Output -19.0 {'y': -3.0, 'x': 2.0} -12.194801029414048 {'y': -2.412527795983739, 'x': -1.2447710918286998} 0.6381713808008993 {'y': 1.4965397889559267, 'x': -0.3395244574146384} 0.5052897389362041 {'y': 1.2837707069731576, 'x': -0.6435716330974743} 0.9493808230928116 {'y': 1.2241444765020055, 'x': -0.019453291773639306} {'target': 0.9493808230928116, 'params': {'y': 1.2241444765020055, 'x': -0.019453291773639306}} ###Markdown 2.1: dealing with discrete parametesIn the section below you can see an example of a function that would require a discrete parameter (only accepting integers).this package has a simple way to deal with these ###Code def func_with_discrete_params(x, y, d): # Simulate necessity of having d being discrete. assert type(d) == int return ((x + y + d) // (1 + d)) / (1 + (x + y) ** 2) def function_to_be_optimized(x, y, w): d = int(w) return func_with_discrete_params(x, y, d) ###Output _____no_output_____ ###Markdown The way you tell the optimizer that 'd' is an integer is by giving only one element of the boundary. by doing so you are saying it can take any value from 1 to n (n=5 in this case) ###Code optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (5)}, verbose=2, yrange=(-3,8), random_state=1, ) optimizer.maximize(alpha=1e-3) ###Output | iter | target | w | x | y | ------------------------------------------------------------- |  1  | -0.06199  |  2.085  |  4.406  | -9.998  | |  2  | -0.0344  |  1.512  | -7.065  | -8.153  | |  3  | -0.2177  |  0.9313  | -3.089  | -2.065  | |  4  |  0.1865  |  2.694  | -1.616  |  3.704  | |  5  | -0.2187  |  1.022  |  7.562  | -9.452  | |  6  |  0.009975 |  5.0  |  10.0  |  10.0  | |  7  |  0.0  |  5.0  | -10.0  |  10.0  | |  8  |  0.09003  |  0.0  |  0.4916  |  10.0  | |  9  | -0.007481 |  5.0  | -10.0  | -10.0  | |  10  |  0.01989  |  5.0  | -0.02203  |  10.0  | |  11  |  0.0189  |  5.0  |  10.0  |  0.238  | |  12  | -0.2149  |  0.0  | -10.0  |  5.282  | |  13  |  0.05995  |  0.0  |  10.0  |  5.786  | |  14  | -0.01299  |  5.0  | -2.367  | -10.0  | |  15  |  0.03637  |  5.0  |  3.773  |  3.575  | |  16  | -0.01214  |  5.0  | -10.0  |  0.9779  | |  17  |  0.0  |  5.0  |  10.0  | -10.0  | |  18  |  0.0  |  5.0  | -4.58  |  5.518  | |  19  | -0.04988  |  0.0  | -10.0  | -10.0  | |  20  |  0.1246  |  0.0  |  2.311  |  5.116  | |  21  |  0.04988  |  0.0  |  10.0  |  10.0  | |  22  |  0.04567  |  2.029  |  0.1434  |  6.398  | |  23  |  0.0  |  5.0  |  4.685  | -4.937  | |  24  |  0.06466  |  0.0  |  5.198  |  10.0  | |  25  |  0.3751  |  5.0  | -0.6795  |  1.97  | |  26  |  0.0  |  5.0  | -2.001  | -0.5515  | |  27  |  0.1072  |  0.0  |  10.0  | -1.419  | |  28  | -0.08895  |  0.0  | -2.048  | -10.0  | |  29  |  0.1907  |  0.0  |  3.994  | -0.1557  | |  30  | -0.0  |  0.0  | -10.0  |  10.0  | ============================================================= ###Markdown 2.2 Dealing with categorical datain the example below 'w' is a categorical variable. this means that it has no numerical meaning and the possible classes do not have any sense of order. ###Code optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (5,'d')}, verbose=2, yrange=(-3,8), random_state=1, ###Output _____no_output_____ ###Markdown 3. Tuning the underlying Gaussian ProcessThe bayesian optimization algorithm works by performing a gaussian process regression of the observed combination of parameters and their associated target values. The predicted parameter$\rightarrow$target hyper-surface (and its uncertainty) is then used to guide the next best point to probe. 3.1 Passing parameter to the GPDepending on the problemn it could be beneficial to change the default parameters of the underlying GP. You can simply pass GP parameters to the maximize method directly as you can see below: ###Code optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) optimizer.maximize( init_points=1, n_iter=5, # What follows are GP regressor parameters alpha=1e-3, n_restarts_optimizer=5 ) ###Output | iter | target | x | y | ------------------------------------------------- |  1  |  0.7862  | -0.3319  |  1.322  | |  2  | -18.96  |  1.993  | -2.998  | |  3  |  0.7858  | -0.3333  |  1.321  | |  4  |  0.5787  | -0.429  |  1.487  | |  5  |  0.7798  |  0.02543  |  1.469  | |  6  |  0.9779  |  0.1301  |  0.9282  | ================================================= ###Markdown Another alternative, specially useful if you're calling `maximize` multiple times or optimizing outside the `maximize` loop, is to call the `set_gp_params` method. ###Code optimizer.set_gp_params(normalize_y=True) ###Output _____no_output_____ ###Markdown 3.2 Tuning the `alpha` parameterWhen dealing with functions with discrete parameters,or particularly erratic target space it might be beneficial to increase the value of the `alpha` parameter. This parameters controls how much noise the GP can handle, so increase it whenever you think that extra flexibility is needed. 3.3 Changing kernelsBy default this package uses the Mattern 2.5 kernel. Depending on your use case you may find that tunning the GP kernel could be beneficial. You're on your own here since these are very specific solutions to very specific problems. Observers ContinuedObservers are objects that subscribe and listen to particular events fired by the `BayesianOptimization` object. When an event gets fired a callback function is called with the event and the `BayesianOptimization` instance passed as parameters. The callback can be specified at the time of subscription. If none is given it will look for an `update` method from the observer. ###Code from bayes_opt.event import DEFAULT_EVENTS, Events optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) class BasicObserver: def update(self, event, instance): """Does whatever you want with the event and `BayesianOptimization` instance.""" print("Event `{}` was observed".format(event)) my_observer = BasicObserver() optimizer.subscribe( event=Events.OPTMIZATION_STEP, subscriber=my_observer, callback=None, # Will use the `update` method as callback ) ###Output _____no_output_____ ###Markdown Alternatively you have the option to pass a completely different callback. ###Code def my_callback(event, instance): print("Go nuts here!") optimizer.subscribe( event=Events.OPTMIZATION_START, subscriber="Any hashable object", callback=my_callback, ) optimizer.maximize(init_points=1, n_iter=2) ###Output Go nuts here! Event `optmization:step` was observed Event `optmization:step` was observed Event `optmization:step` was observed ###Markdown For a list of all default events you can checkout `DEFAULT_EVENTS` ###Code DEFAULT_EVENTS ###Output _____no_output_____ ###Markdown Advanced tour of the Bayesian Optimization package ###Code import os import sys module_path = os.path.abspath(os.path.join('../')) if module_path not in sys.path: print(module_path) sys.path.append(module_path) from bayes_opt import BayesianOptimization ###Output /Users/uknowit/DSML/BayesianOptimization ###Markdown 1. Suggest-Evaluate-Register ParadigmInternally the `maximize` method is simply a wrapper around the methods `suggest`, `probe`, and `register`. If you need more control over your optimization loops the Suggest-Evaluate-Register paradigm should give you that extra flexibility.For an example of running the `BayesianOptimization` in a distributed fashion (where the function being optimized is evaluated concurrently in different cores/machines/servers), checkout the `async_optimization.py` script in the examples folder. ###Code # Let's start by definying our function, bounds, and instanciating an optimization object. def black_box_function(x, y): return -x ** 2 - (y - 1) ** 2 + 1 ###Output _____no_output_____ ###Markdown Notice that the evaluation of the blackbox function will NOT be carried out by the optimizer object. We are simulating a situation where this function could be being executed in a different machine, maybe it is written in another language, or it could even be the result of a chemistry experiment. Whatever the case may be, you can take charge of it and as long as you don't invoke the `probe` or `maximize` methods directly, the optimizer object will ignore the blackbox function. ###Code optimizer = BayesianOptimization( f=None, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) ###Output _____no_output_____ ###Markdown One extra ingredient we will need is an `UtilityFunction` instance. In case it is not clear why, take a look at the literature to understand better how this method works. ###Code from bayes_opt import UtilityFunction utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0) ###Output _____no_output_____ ###Markdown The `suggest` method of our optimizer can be called at any time. What you get back is a suggestion for the next parameter combination the optimizer wants to probe.Notice that while the optimizer hasn't observed any points, the suggestions will be random. However, they will stop being random and improve in quality the more points are observed. ###Code next_point_to_probe = optimizer.suggest(utility) print("Next point to probe is:", next_point_to_probe) ###Output Next point to probe is: {'x': -0.331911981189704, 'y': 1.3219469606529488} ###Markdown You are now free to evaluate your function at the suggested point however/whenever you like. ###Code target = black_box_function(**next_point_to_probe) print("Found the target value to be:", target) ###Output Found the target value to be: 0.7861845912690542 ###Markdown Last thing left to do is to tell the optimizer what target value was observed. ###Code optimizer.register( params=next_point_to_probe, target=target, ) ###Output _____no_output_____ ###Markdown 1.1 The maximize loopAnd that's it. By repeating the steps above you recreate the internals of the `maximize` method. This should give you all the flexibility you need to log progress, hault execution, perform concurrent evaluations, etc. ###Code import numpy as np xs = np.random.uniform(0, 6, size = (5,2)) for _ in range(5): next_point2 = optimizer.suggest(utility) next_point = xs[_] target = black_box_function(*next_point) optimizer.register(params=next_point, target=target) print(target, next_point) # print(optimizer._gp.predict(np.array(list(next_point.values())).reshape(1,-1))) print(optimizer._gp.predict((next_point.reshape(1,-1)))) print(optimizer.max) ###Output -30.30918766760489 [5.53819505 1.7984881 ] [-23.07072596] -18.413723331269715 [4.38564231 0.57589527] [-21.67642756] -3.784117126553028 [0.93162704 2.97893613] [-3.38397356] -1.0022061687665516 [0.25064864 2.39261676] [-2.30602992] -21.856357065349346 [2.28173986 5.20119272] [-22.0625289] {'target': -1.0022061687665516, 'params': {'x': 0.25064863868183984, 'y': 2.3926167558569342}} ###Markdown 2. Dealing with discrete parameters**There is no principled way of dealing with discrete parameters using this package.**Ok, now that we got that out of the way, how do you do it? You're bound to be in a situation where some of your function's parameters may only take on discrete values. Unfortunately, the nature of bayesian optimization with gaussian processes doesn't allow for an easy/intuitive way of dealing with discrete parameters - but that doesn't mean it is impossible. The example below showcases a simple, yet reasonably adequate, way to dealing with discrete parameters. ###Code def func_with_discrete_params(x, y, d): # Simulate necessity of having d being discrete. assert type(d) == int return ((x + y + d) // (1 + d)) / (1 + (x + y) ** 2) def function_to_be_optimized(x, y, w): d = int(w) return func_with_discrete_params(x, y, d) optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (0, 5)}, verbose=2, random_state=1, ) optimizer.maximize(alpha=1e-3) ###Output | iter | target | w | x | y | ------------------------------------------------------------- |  1  | -0.06199  |  2.085  |  4.406  | -9.998  | |  2  | -0.0344  |  1.512  | -7.065  | -8.153  | |  3  | -0.2177  |  0.9313  | -3.089  | -2.065  | |  4  |  0.1865  |  2.694  | -1.616  |  3.704  | |  5  | -0.2187  |  1.022  |  7.562  | -9.452  | |  6  |  0.009975 |  5.0  |  10.0  |  10.0  | |  7  |  0.0  |  5.0  | -10.0  |  10.0  | |  8  |  0.09003  |  0.0  |  0.4916  |  10.0  | |  9  | -0.007481 |  5.0  | -10.0  | -10.0  | |  10  |  0.01989  |  5.0  | -0.02203  |  10.0  | |  11  |  0.0189  |  5.0  |  10.0  |  0.238  | |  12  | -0.2149  |  0.0  | -10.0  |  5.282  | |  13  |  0.05995  |  0.0  |  10.0  |  5.786  | |  14  | -0.01299  |  5.0  | -2.367  | -10.0  | |  15  |  0.03637  |  5.0  |  3.773  |  3.575  | |  16  | -0.01214  |  5.0  | -10.0  |  0.9779  | |  17  |  0.0  |  5.0  |  10.0  | -10.0  | |  18  |  0.0  |  5.0  | -4.58  |  5.518  | |  19  | -0.04988  |  0.0  | -10.0  | -10.0  | |  20  |  0.1246  |  0.0  |  2.311  |  5.116  | |  21  |  0.04988  |  0.0  |  10.0  |  10.0  | |  22  |  0.04567  |  2.029  |  0.1434  |  6.398  | |  23  |  0.0  |  5.0  |  4.685  | -4.937  | |  24  |  0.06466  |  0.0  |  5.198  |  10.0  | |  25  |  0.3751  |  5.0  | -0.6795  |  1.97  | |  26  |  0.0  |  5.0  | -2.001  | -0.5515  | |  27  |  0.1072  |  0.0  |  10.0  | -1.419  | |  28  | -0.08895  |  0.0  | -2.048  | -10.0  | |  29  |  0.1907  |  0.0  |  3.994  | -0.1557  | |  30  | -0.0  |  0.0  | -10.0  |  10.0  | ============================================================= ###Markdown 3. Tuning the underlying Gaussian ProcessThe bayesian optimization algorithm works by performing a gaussian process regression of the observed combination of parameters and their associated target values. The predicted parameter$\rightarrow$target hyper-surface (and its uncertainty) is then used to guide the next best point to probe. 3.1 Passing parameter to the GPDepending on the problemn it could be beneficial to change the default parameters of the underlying GP. You can simply pass GP parameters to the maximize method directly as you can see below: ###Code optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) optimizer.maximize( init_points=1, n_iter=5, # What follows are GP regressor parameters alpha=1e-3, n_restarts_optimizer=5 ) ###Output | iter | target | x | y | ------------------------------------------------- |  1  |  0.7862  | -0.3319  |  1.322  | |  2  | -18.96  |  1.993  | -2.998  | |  3  |  0.7858  | -0.3333  |  1.321  | |  4  |  0.5787  | -0.429  |  1.487  | |  5  |  0.7798  |  0.02543  |  1.469  | |  6  |  0.9779  |  0.1301  |  0.9282  | ================================================= ###Markdown Another alternative, specially useful if you're calling `maximize` multiple times or optimizing outside the `maximize` loop, is to call the `set_gp_params` method. ###Code optimizer.set_gp_params(normalize_y=True) ###Output _____no_output_____ ###Markdown 3.2 Tuning the `alpha` parameterWhen dealing with functions with discrete parameters,or particularly erratic target space it might be beneficial to increase the value of the `alpha` parameter. This parameters controls how much noise the GP can handle, so increase it whenever you think that extra flexibility is needed. 3.3 Changing kernelsBy default this package uses the Mattern 2.5 kernel. Depending on your use case you may find that tunning the GP kernel could be beneficial. You're on your own here since these are very specific solutions to very specific problems. Observers ContinuedObservers are objects that subscribe and listen to particular events fired by the `BayesianOptimization` object. When an event gets fired a callback function is called with the event and the `BayesianOptimization` instance passed as parameters. The callback can be specified at the time of subscription. If none is given it will look for an `update` method from the observer. ###Code from bayes_opt.event import DEFAULT_EVENTS, Events optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) class BasicObserver: def update(self, event, instance): """Does whatever you want with the event and `BayesianOptimization` instance.""" print("Event `{}` was observed".format(event)) my_observer = BasicObserver() optimizer.subscribe( event=Events.OPTIMIZATION_STEP, subscriber=my_observer, callback=None, # Will use the `update` method as callback ) ###Output _____no_output_____ ###Markdown Alternatively you have the option to pass a completely different callback. ###Code def my_callback(event, instance): print("Go nuts here!") optimizer.subscribe( event=Events.OPTIMIZATION_START, subscriber="Any hashable object", callback=my_callback, ) optimizer.maximize(init_points=1, n_iter=2) ###Output Go nuts here! Event `optimization:step` was observed Event `optimization:step` was observed Event `optimization:step` was observed ###Markdown For a list of all default events you can checkout `DEFAULT_EVENTS` ###Code DEFAULT_EVENTS ###Output _____no_output_____ ###Markdown Advanced tour of the Bayesian Optimization package ###Code from bayes_opt import BayesianOptimization ###Output _____no_output_____ ###Markdown 1. Suggest-Evaluate-Register ParadigmInternally the `maximize` method is simply a wrapper around the methods `suggest`, `probe`, and `register`. If you need more control over your optimization loops the Suggest-Evaluate-Register paradigm should give you that extra flexibility.For an example of running the `BayesianOptimization` in a distributed fashion (where the function being optimized is evaluated concurrently in different cores/machines/servers), checkout the `async_optimization.py` script in the examples folder. ###Code # Let's start by defining our function, bounds, and instanciating an optimization object. def black_box_function(x, y): return -x ** 2 - (y - 1) ** 2 + 1 ###Output _____no_output_____ ###Markdown Notice that the evaluation of the blackbox function will NOT be carried out by the optimizer object. We are simulating a situation where this function could be being executed in a different machine, maybe it is written in another language, or it could even be the result of a chemistry experiment. Whatever the case may be, you can take charge of it and as long as you don't invoke the `probe` or `maximize` methods directly, the optimizer object will ignore the blackbox function. ###Code optimizer = BayesianOptimization( f=None, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) ###Output _____no_output_____ ###Markdown One extra ingredient we will need is an `UtilityFunction` instance. In case it is not clear why, take a look at the literature to understand better how this method works. ###Code from bayes_opt import UtilityFunction utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0) ###Output _____no_output_____ ###Markdown The `suggest` method of our optimizer can be called at any time. What you get back is a suggestion for the next parameter combination the optimizer wants to probe.Notice that while the optimizer hasn't observed any points, the suggestions will be random. However, they will stop being random and improve in quality the more points are observed. ###Code next_point_to_probe = optimizer.suggest(utility) print("Next point to probe is:", next_point_to_probe) ###Output Next point to probe is: {'y': 1.3219469606529488, 'x': -0.331911981189704} ###Markdown You are now free to evaluate your function at the suggested point however/whenever you like. ###Code target = black_box_function(**next_point_to_probe) print("Found the target value to be:", target) ###Output Found the target value to be: 0.7861845912690542 ###Markdown Last thing left to do is to tell the optimizer what target value was observed. ###Code optimizer.register( params=next_point_to_probe, target=target, ) ###Output _____no_output_____ ###Markdown 1.1 The maximize loopAnd that's it. By repeating the steps above you recreate the internals of the `maximize` method. This should give you all the flexibility you need to log progress, hault execution, perform concurrent evaluations, etc. ###Code for _ in range(5): next_point = optimizer.suggest(utility) target = black_box_function(**next_point) optimizer.register(params=next_point, target=target) print(target, next_point) print(optimizer.max) ###Output -19.0 {'y': -3.0, 'x': 2.0} -12.194801029414048 {'y': -2.412527795983739, 'x': -1.2447710918286998} 0.6381713808008993 {'y': 1.4965397889559267, 'x': -0.3395244574146384} 0.5052897389362041 {'y': 1.2837707069731576, 'x': -0.6435716330974743} 0.9493808230928116 {'y': 1.2241444765020055, 'x': -0.019453291773639306} {'target': 0.9493808230928116, 'params': {'y': 1.2241444765020055, 'x': -0.019453291773639306}} ###Markdown 2. Dealing with discrete parameters**There is no principled way of dealing with discrete parameters using this package.**Ok, now that we got that out of the way, how do you do it? You're bound to be in a situation where some of your function's parameters may only take on discrete values. Unfortunately, the nature of bayesian optimization with gaussian processes doesn't allow for an easy/intuitive way of dealing with discrete parameters - but that doesn't mean it is impossible. The example below showcases a simple, yet reasonably adequate, way to dealing with discrete parameters. ###Code def func_with_discrete_params(x, y, d): # Simulate necessity of having d being discrete. assert type(d) == int return ((x + y + d) // (1 + d)) / (1 + (x + y) ** 2) def function_to_be_optimized(x, y, w): d = int(w) return func_with_discrete_params(x, y, d) optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (0, 5)}, verbose=2, random_state=1, ) optimizer.maximize(alpha=1e-3) ###Output | iter | target | w | x | y | ------------------------------------------------------------- |  1  | -0.06199  |  2.085  |  4.406  | -9.998  | |  2  | -0.0344  |  1.512  | -7.065  | -8.153  | |  3  | -0.2177  |  0.9313  | -3.089  | -2.065  | |  4  |  0.1865  |  2.694  | -1.616  |  3.704  | |  5  | -0.2187  |  1.022  |  7.562  | -9.452  | |  6  |  0.009975 |  5.0  |  10.0  |  10.0  | |  7  |  0.0  |  5.0  | -10.0  |  10.0  | |  8  |  0.09003  |  0.0  |  0.4916  |  10.0  | |  9  | -0.007481 |  5.0  | -10.0  | -10.0  | |  10  |  0.01989  |  5.0  | -0.02203  |  10.0  | |  11  |  0.0189  |  5.0  |  10.0  |  0.238  | |  12  | -0.2149  |  0.0  | -10.0  |  5.282  | |  13  |  0.05995  |  0.0  |  10.0  |  5.786  | |  14  | -0.01299  |  5.0  | -2.367  | -10.0  | |  15  |  0.03637  |  5.0  |  3.773  |  3.575  | |  16  | -0.01214  |  5.0  | -10.0  |  0.9779  | |  17  |  0.0  |  5.0  |  10.0  | -10.0  | |  18  |  0.0  |  5.0  | -4.58  |  5.518  | |  19  | -0.04988  |  0.0  | -10.0  | -10.0  | |  20  |  0.1246  |  0.0  |  2.311  |  5.116  | |  21  |  0.04988  |  0.0  |  10.0  |  10.0  | |  22  |  0.04567  |  2.029  |  0.1434  |  6.398  | |  23  |  0.0  |  5.0  |  4.685  | -4.937  | |  24  |  0.06466  |  0.0  |  5.198  |  10.0  | |  25  |  0.3751  |  5.0  | -0.6795  |  1.97  | |  26  |  0.0  |  5.0  | -2.001  | -0.5515  | |  27  |  0.1072  |  0.0  |  10.0  | -1.419  | |  28  | -0.08895  |  0.0  | -2.048  | -10.0  | |  29  |  0.1907  |  0.0  |  3.994  | -0.1557  | |  30  | -0.0  |  0.0  | -10.0  |  10.0  | ============================================================= ###Markdown 3. Tuning the underlying Gaussian ProcessThe bayesian optimization algorithm works by performing a gaussian process regression of the observed combination of parameters and their associated target values. The predicted parameter$\rightarrow$target hyper-surface (and its uncertainty) is then used to guide the next best point to probe. 3.1 Passing parameter to the GPDepending on the problem it could be beneficial to change the default parameters of the underlying GP. You can simply pass GP parameters to the maximize method directly as you can see below: ###Code optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) optimizer.maximize( init_points=1, n_iter=5, # What follows are GP regressor parameters alpha=1e-3, n_restarts_optimizer=5 ) ###Output | iter | target | x | y | ------------------------------------------------- |  1  |  0.7862  | -0.3319  |  1.322  | |  2  | -18.96  |  1.993  | -2.998  | |  3  |  0.7858  | -0.3333  |  1.321  | |  4  |  0.5787  | -0.429  |  1.487  | |  5  |  0.7798  |  0.02543  |  1.469  | |  6  |  0.9779  |  0.1301  |  0.9282  | ================================================= ###Markdown Another alternative, specially useful if you're calling `maximize` multiple times or optimizing outside the `maximize` loop, is to call the `set_gp_params` method. ###Code optimizer.set_gp_params(normalize_y=True) ###Output _____no_output_____ ###Markdown 3.2 Tuning the `alpha` parameterWhen dealing with functions with discrete parameters,or particularly erratic target space it might be beneficial to increase the value of the `alpha` parameter. This parameters controls how much noise the GP can handle, so increase it whenever you think that extra flexibility is needed. 3.3 Changing kernelsBy default this package uses the Mattern 2.5 kernel. Depending on your use case you may find that tunning the GP kernel could be beneficial. You're on your own here since these are very specific solutions to very specific problems. Observers ContinuedObservers are objects that subscribe and listen to particular events fired by the `BayesianOptimization` object. When an event gets fired a callback function is called with the event and the `BayesianOptimization` instance passed as parameters. The callback can be specified at the time of subscription. If none is given it will look for an `update` method from the observer. ###Code from bayes_opt.event import DEFAULT_EVENTS, Events optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) class BasicObserver: def update(self, event, instance): """Does whatever you want with the event and `BayesianOptimization` instance.""" print("Event `{}` was observed".format(event)) my_observer = BasicObserver() optimizer.subscribe( event=Events.OPTIMIZATION_STEP, subscriber=my_observer, callback=None, # Will use the `update` method as callback ) ###Output _____no_output_____ ###Markdown Alternatively you have the option to pass a completely different callback. ###Code def my_callback(event, instance): print("Go nuts here!") optimizer.subscribe( event=Events.OPTIMIZATION_START, subscriber="Any hashable object", callback=my_callback, ) optimizer.maximize(init_points=1, n_iter=2) ###Output Go nuts here! Event `optimization:step` was observed Event `optimization:step` was observed Event `optimization:step` was observed ###Markdown For a list of all default events you can checkout `DEFAULT_EVENTS` ###Code DEFAULT_EVENTS ###Output _____no_output_____ ###Markdown Advanced tour of the Bayesian Optimization package ###Code from bayes_opt import BayesianOptimization ###Output _____no_output_____ ###Markdown 1. Suggest-Evaluate-Register ParadigmInternally the `maximize` method is simply a wrapper around the methods `suggest`, `probe`, and `register`. If you need more control over your optimization loops the Suggest-Evaluate-Register paradigm should give you that extra flexibility.For an example of running the `BayesianOptimization` in a distributed fashion (where the function being optimized is evaluated concurrently in different cores/machines/servers), checkout the `async_optimization.py` script in the examples folder. ###Code # Let's start by definying our function, bounds, and instanciating an optimization object. def black_box_function(x, y): return -x ** 2 - (y - 1) ** 2 + 1 ###Output _____no_output_____ ###Markdown Notice that the evaluation of the blackbox function will NOT be carried out by the optimizer object. We are simulating a situation where this function could be being executed in a different machine, maybe it is written in another language, or it could even be the result of a chemistry experiment. Whatever the case may be, you can take charge of it and as long as you don't invoke the `probe` or `maximize` methods directly, the optimizer object will ignore the blackbox function. ###Code optimizer = BayesianOptimization( f=None, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) ###Output _____no_output_____ ###Markdown One extra ingredient we will need is an `UtilityFunction` instance. In case it is not clear why, take a look at the literature to understand better how this method works. ###Code from bayes_opt import UtilityFunction utility = UtilityFunction(kind="ucb", kappa=2.5, xi=0.0) ###Output _____no_output_____ ###Markdown The `suggest` method of our optimizer can be called at any time. What you get back is a suggestion for the next parameter combination the optimizer wants to probe.Notice that while the optimizer hasn't observed any points, the suggestions will be random. However, they will stop being random and improve in quality the more points are observed. ###Code next_point_to_probe = optimizer.suggest(utility) print("Next point to probe is:", next_point_to_probe) ###Output Next point to probe is: {'y': 1.3219469606529488, 'x': -0.331911981189704} ###Markdown You are now free to evaluate your function at the suggested point however/whenever you like. ###Code target = black_box_function(**next_point_to_probe) print("Found the target value to be:", target) ###Output Found the target value to be: 0.7861845912690542 ###Markdown Last thing left to do is to tell the optimizer what target value was observed. ###Code optimizer.register( params=next_point_to_probe, target=target, ) ###Output _____no_output_____ ###Markdown 1.1 The maximize loopAnd that's it. By repeating the steps above you recreate the internals of the `maximize` method. This should give you all the flexibility you need to log progress, hault execution, perform concurrent evaluations, etc. ###Code for _ in range(5): next_point = optimizer.suggest(utility) target = black_box_function(**next_point) optimizer.register(params=next_point, target=target) print(target, next_point) print(optimizer.max) ###Output -19.0 {'y': -3.0, 'x': 2.0} -12.194801029414048 {'y': -2.412527795983739, 'x': -1.2447710918286998} 0.6381713808008993 {'y': 1.4965397889559267, 'x': -0.3395244574146384} 0.5052897389362041 {'y': 1.2837707069731576, 'x': -0.6435716330974743} 0.9493808230928116 {'y': 1.2241444765020055, 'x': -0.019453291773639306} {'target': 0.9493808230928116, 'params': {'y': 1.2241444765020055, 'x': -0.019453291773639306}} ###Markdown 2. Dealing with discrete parameters**There is no principled way of dealing with discrete parameters using this package.**Ok, now that we got that out of the way, how do you do it? You're bound to be in a situation where some of your function's parameters may only take on discrete values. Unfortunately, the nature of bayesian optimization with gaussian processes doesn't allow for an easy/intuitive way of dealing with discrete parameters - but that doesn't mean it is impossible. The example below showcases a simple, yet reasonably adequate, way to dealing with discrete parameters. ###Code def func_with_discrete_params(x, y, d): # Simulate necessity of having d being discrete. assert type(d) == int return ((x + y + d) // (1 + d)) / (1 + (x + y) ** 2) def function_to_be_optimized(x, y, w): d = int(w) return func_with_discrete_params(x, y, d) optimizer = BayesianOptimization( f=function_to_be_optimized, pbounds={'x': (-10, 10), 'y': (-10, 10), 'w': (0, 5)}, verbose=2, random_state=1, ) optimizer.maximize(alpha=1e-3) ###Output | iter | target | w | x | y | ------------------------------------------------------------- |  1  | -0.06199  |  2.085  |  4.406  | -9.998  | |  2  | -0.0344  |  1.512  | -7.065  | -8.153  | |  3  | -0.2177  |  0.9313  | -3.089  | -2.065  | |  4  |  0.1865  |  2.694  | -1.616  |  3.704  | |  5  | -0.2187  |  1.022  |  7.562  | -9.452  | |  6  |  0.009975 |  5.0  |  10.0  |  10.0  | |  7  |  0.0  |  5.0  | -10.0  |  10.0  | |  8  |  0.09003  |  0.0  |  0.4916  |  10.0  | |  9  | -0.007481 |  5.0  | -10.0  | -10.0  | |  10  |  0.01989  |  5.0  | -0.02203  |  10.0  | |  11  |  0.0189  |  5.0  |  10.0  |  0.238  | |  12  | -0.2149  |  0.0  | -10.0  |  5.282  | |  13  |  0.05995  |  0.0  |  10.0  |  5.786  | |  14  | -0.01299  |  5.0  | -2.367  | -10.0  | |  15  |  0.03637  |  5.0  |  3.773  |  3.575  | |  16  | -0.01214  |  5.0  | -10.0  |  0.9779  | |  17  |  0.0  |  5.0  |  10.0  | -10.0  | |  18  |  0.0  |  5.0  | -4.58  |  5.518  | |  19  | -0.04988  |  0.0  | -10.0  | -10.0  | |  20  |  0.1246  |  0.0  |  2.311  |  5.116  | |  21  |  0.04988  |  0.0  |  10.0  |  10.0  | |  22  |  0.04567  |  2.029  |  0.1434  |  6.398  | |  23  |  0.0  |  5.0  |  4.685  | -4.937  | |  24  |  0.06466  |  0.0  |  5.198  |  10.0  | |  25  |  0.3751  |  5.0  | -0.6795  |  1.97  | |  26  |  0.0  |  5.0  | -2.001  | -0.5515  | |  27  |  0.1072  |  0.0  |  10.0  | -1.419  | |  28  | -0.08895  |  0.0  | -2.048  | -10.0  | |  29  |  0.1907  |  0.0  |  3.994  | -0.1557  | |  30  | -0.0  |  0.0  | -10.0  |  10.0  | ============================================================= ###Markdown 3. Tuning the underlying Gaussian ProcessThe bayesian optimization algorithm works by performing a gaussian process regression of the observed combination of parameters and their associated target values. The predicted parameter$\rightarrow$target hyper-surface (and its uncertainty) is then used to guide the next best point to probe. 3.1 Passing parameter to the GPDepending on the problemn it could be beneficial to change the default parameters of the underlying GP. You can simply pass GP parameters to the maximize method directly as you can see below: ###Code optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) optimizer.maximize( init_points=1, n_iter=5, # What follows are GP regressor parameters alpha=1e-3, n_restarts_optimizer=5 ) ###Output | iter | target | x | y | ------------------------------------------------- |  1  |  0.7862  | -0.3319  |  1.322  | |  2  | -18.96  |  1.993  | -2.998  | |  3  |  0.7858  | -0.3333  |  1.321  | |  4  |  0.5787  | -0.429  |  1.487  | |  5  |  0.7798  |  0.02543  |  1.469  | |  6  |  0.9779  |  0.1301  |  0.9282  | ================================================= ###Markdown Another alternative, specially useful if you're calling `maximize` multiple times or optimizing outside the `maximize` loop, is to call the `set_gp_params` method. ###Code optimizer.set_gp_params(normalize_y=True) ###Output _____no_output_____ ###Markdown 3.2 Tuning the `alpha` parameterWhen dealing with functions with discrete parameters,or particularly erratic target space it might be beneficial to increase the value of the `alpha` parameter. This parameters controls how much noise the GP can handle, so increase it whenever you think that extra flexibility is needed. 3.3 Changing kernelsBy default this package uses the Mattern 2.5 kernel. Depending on your use case you may find that tunning the GP kernel could be beneficial. You're on your own here since these are very specific solutions to very specific problems. Observers ContinuedObservers are objects that subscribe and listen to particular events fired by the `BayesianOptimization` object. When an event gets fired a callback function is called with the event and the `BayesianOptimization` instance passed as parameters. The callback can be specified at the time of subscription. If none is given it will look for an `update` method from the observer. ###Code from bayes_opt.event import DEFAULT_EVENTS, Events optimizer = BayesianOptimization( f=black_box_function, pbounds={'x': (-2, 2), 'y': (-3, 3)}, verbose=2, random_state=1, ) class BasicObserver: def update(self, event, instance): """Does whatever you want with the event and `BayesianOptimization` instance.""" print("Event `{}` was observed".format(event)) my_observer = BasicObserver() optimizer.subscribe( event=Events.OPTIMIZATION_STEP, subscriber=my_observer, callback=None, # Will use the `update` method as callback ) ###Output _____no_output_____ ###Markdown Alternatively you have the option to pass a completely different callback. ###Code def my_callback(event, instance): print("Go nuts here!") optimizer.subscribe( event=Events.OPTIMIZATION_START, subscriber="Any hashable object", callback=my_callback, ) optimizer.maximize(init_points=1, n_iter=2) ###Output Go nuts here! Event `optimization:step` was observed Event `optimization:step` was observed Event `optimization:step` was observed ###Markdown For a list of all default events you can checkout `DEFAULT_EVENTS` ###Code DEFAULT_EVENTS ###Output _____no_output_____
other_stuff/Minkowski_Lorentz.ipynb
###Markdown Lorentz Transformations ###Code from __future__ import (division, print_function, absolute_import) import matplotlib.pyplot as plt import numpy as np import math ###Output _____no_output_____ ###Markdown We are looking for a linear transformation between the coordinates of events in the unprimed system and their counterparts in the primed coordinate system. And we assume that the required four parameters of this transformation are themselves functions of the relative velocity $v$.We call that transformation a Lorentz-Transformation and denote it with $L_v(t, x)$.$$L_v(t, x) =\left( \begin{array}{c c}a_1(v) & a_2(v) \\b_1(v) & b_2(v)\end{array}\right) \cdot \left( \begin{array}{c c}t \\x\end{array}\right) =\left( \begin{array}{c c}t^\prime \\x^\prime\end{array}\right)$$If we find four different situations with known $x, t, x^\prime, t^\prime$, then we can hope to end up with a system of four equations for four unknowns, and hopefully that system is actually solvable. It turns out it is. Here are the four known situations:- We know what the origin of the moving system looks like in both coordinate systems- We know what the origin of the resting system looks like in both coordinate systems, since it must appear to move with $v^\prime=-v$ in the primed system.- We know that the speed of light is the same in both systems.- And finally we demand that the net result of consecutively applying a transformation $L_v(t,x)$ and its counterpart $L_{-v}(t,x)$ reproduces the original coordinates. Transforming into any system and back should have no net result. 1) Knowing that the origin of the primed system has $x^\prime=0$ in its own coordinate system and $x=vt$ in the resting observer's system we get$$\left( \begin{array}{c c}a_1 & a_2 \\b_1 & b_2\end{array}\right) \cdot \left( \begin{array}{c c}t \\v t\end{array}\right) =\left( \begin{array}{c c}t^\prime \\0\end{array}\right)$$$$\Rightarrow b_1 + b_2 v = 0 \text{ (from the x-component)}$$ 2) Knowing that the origin of the resting system $x=0$ is viewed as moving with $v^\prime = -v$ from the moving system we conclude:$$\left( \begin{array}{c c}a_1 & a_2 \\b_1 & b_2\end{array}\right) \cdot \left( \begin{array}{c c}t \\0\end{array}\right) =\left( \begin{array}{c c}a_1 t \\b_1 t\end{array}\right)$$$$ \Rightarrow v^\prime \equiv \frac{b_1}{a_1}=-v$$ We can already eliminate one parameter from these two results: $a_1 = b_2$ and for historical reasons we give them the new name $\gamma$:$$\gamma \equiv a_1 = b_2$$$$ b_1 = -\gamma v$$ 3) Knowing that the speed of light $c$ will be the same independent of the motion of the observer, we get$$\left( \begin{array}{c c}\gamma & a_2 \\-\gamma v & \gamma\end{array}\right) \cdot \left( \begin{array}{c c}t \\ct\end{array}\right) =\left( \begin{array}{c c}t^\prime \\ct^\prime\end{array}\right)$$Which leaves us with the two independent equations$$ \gamma t + a_2ct = t^\prime $$$$ -\gamma vt + \gamma ct = ct^\prime $$Replacing $t^\prime$ in the second equation by the left side of the first equation we get:$$-\gamma vt + \gamma ct = c(\gamma t + a_2ct)$$$$\Rightarrow a_2 = \frac{-\gamma v}{c^2}$$ We're almost done. We have it all apart from a *scaling* factor $\gamma$$$\gamma \cdot \left( \begin{array}{c c} 1 & -\frac{v}{c^2} \\-v & 1\end{array}\right) \cdot\left( \begin{array}{c} t \\x \end{array}\right) =\left( \begin{array}{c} t^\prime \\x^\prime\end{array}\right) $$ 4) Any consecutive pair of transformations $L_v$ and $L_{-v}$ must leave the coordinates unchanged. That's straight-forward to express in mathematical terms:$$\gamma \cdot \left( \begin{array}{c c} 1 & -\frac{v}{c^2} \\-v & 1\end{array}\right) \cdot\gamma \cdot \left( \begin{array}{c c} 1 & +\frac{v}{c^2} \\+v & 1\end{array}\right) =\left( \begin{array}{c c} 1 & 0 \\0 & 1\end{array}\right) $$which yields:$$\gamma = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}}$$and thus concludes our derivation of the Lorentz transformation. The Lorentz transformation$$L_v(t, x) = \frac{1}{\sqrt{1-\frac{v^2}{c^2}}} \left( \begin{array}{c c} 1 & -\frac{v}{c^2} \\-v & 1\end{array}\right) \cdot\left( \begin{array}{c} t \\x \end{array}\right) $$Now it's time to face the often-times unintuitive consequences by visualizing the effect of such a transformation. Visualizing Lorentz transformationsIn the following demonstration we measure distances in light seconds, which computationally amounts to setting $c=1$. ###Code class LorentzTrafo: def __init__(self, v): self.v = v self.gamma = 1/np.sqrt(1-v*v) self.matrix = self.gamma * np.array([[1, -v], [-v, 1]]) def __call__(self, obj): """ Takes a single spacetime coordinates (t1, x1), or an array of spacetime coordinates [(t1, x1), (t2, x2), ...] or pairs of coordinates representing lines [[(t1, x1), (t2, x2)], [...]] and returns their respective Lorentz-boosted image """ if len(np.shape(obj)) == 3 and np.shape(obj)[1:3] == (2,2): return self.transform_lines(obj) elif len(np.shape(obj)) == 1 and np.shape(obj)[0] == 2: return np.matmul(self.matrix, np.transpose(obj)).T elif len(np.shape(obj)) == 2 and np.shape(obj)[1] == 2: return np.matmul(self.matrix, np.transpose(obj)).T else: raise ValueError("Can't transform this object") def transform_lines(self, lines): """transform a set of pair of points (in one go)""" points = np.reshape(lines, [-1, 2]) transformed = self.__call__(points) return np.reshape(transformed, [-1, 2, 2]) # Verifying: v=.5 lt = LorentzTrafo(v) res = lt([[4,2], [6,3]]) res[0], res[1], lt([[[4,2], [6,3]]]) class MinkowskiGrid: """A class to hold a grid of space time events and the characteristic world lines""" def __init__(self, first, last, left, right, step, v=0.5): N_wl = 10 self.line_color = '#F0C0C0' self.left = left self.right = right self.first = first self.last = last self.step = step self.v = v self.events=[] tr = range(first, last+1) self.xlines = [[[t, left], [t, right]] for t in range(first, last+1)] xr = range(left, right+1) self.tlines = [[[first, x], [last, x]] for x in range(left, right+1)] self.lines = np.append(self.xlines, self.tlines) self.points = np.array([(t, x) for x in range(left, right+1) for t in range(first, last+1)]) self.other = list(zip(np.linspace(first, last, N_wl), np.linspace(first*v, last*v, N_wl))) self.mytime = [(t, 0) for t in np.linspace(0, last, N_wl)] r = list(zip(np.linspace(0, last, N_wl), np.linspace(0, last, N_wl))) l = list(zip(np.linspace(0, last, N_wl), np.linspace(0, -last, N_wl))) self.light_cone = np.append(r, l, axis=0) def record_events(self, events): self.events = events def boost(self, events): return LorentzTrafo(self.v)(events) class MinkowskiPlot(): def __init__(self, grid): self.grid = grid self.psize=60 @staticmethod def to_mpl_lines(minkowski_lines, color): return np.array([[ [p[0][1], p[1][1]], [p[0][0], p[1][0]], color] for p in minkowski_lines]).reshape(-1) @staticmethod def to_mpl(tx): return np.transpose(zip(np.transpose(tx)[1],np.transpose(tx)[0])) def points_xy(self): return np.array(list(zip(self.grid.points.T[1], self.grid.points.T[0]))).T def mytime_xy(self, primed=False): mytime = LorentzTrafo(grid.v)(grid.mytime) if primed else grid.mytime return self.to_mpl(mytime) def light_xy(self, primed=False): light_cone = grid.boost(grid.light_cone) if primed else grid.light_cone return self.to_mpl(light_cone) def other_xy(self, primed): other = grid.boost(grid.other) if primed else grid.other return self.to_mpl(other) def events_xy(self, primed): events = grid.boost(grid.events) if primed else grid.events return self.to_mpl(events) def tlines_xy(self, color): return self.to_mpl_lines(self.grid.tlines, color) def xlines_xy(self, color): return self.to_mpl_lines(self.grid.xlines, color) def any_xy(self): return np.array([p for p in self.points_xy().T if not self.grid.is_light(p) and not self.grid.is_other(p) and not self.grid.is_mytime(p)]) def plot_grid(self, axis, color='#FFC0C0'): #axis.plot([self.grid.left, self.grid.right], [0, 0], 'k'); axis.plot(*self.tlines_xy(color)); axis.plot(*self.xlines_xy(color)); def plot_mytime(self, axis, color='r', primed=False): axis.scatter(*self.mytime_xy(primed), color=color, marker='o', s=self.psize); axis.plot([0,0], [self.grid.first, self.grid.last], color); def plot_lightcone(self, axis, color='y', primed=False): axis.plot([self.grid.left, 0, self.grid.right], [self.grid.last, 0, self.grid.last], 'y'); axis.scatter(*self.light_xy(primed), color='y', marker='o', s=self.psize); def plot_other(self, axis, color='b', primed=False): axis.plot([0,self.grid.v*self.grid.right], [0, self.grid.right], color); axis.scatter(*self.other_xy(primed), color=color, marker='o', s=self.psize); def plot_events(self, axis, color='k', primed=False): axis.scatter(*self.events_xy(primed), color=color, marker='o', s=2.0*self.psize); def display(self, axis, primed=False): if primed: tlines_d=self.to_mpl_lines(grid.boost(grid.tlines), '#FFC0C0') xlines_d=self.to_mpl_lines(grid.boost(grid.xlines), '#FFC0C0') self.plot_grid(axis, color='#A0A0FF') axis.plot(*xlines_d, color='#FFD0D0'); axis.plot(*tlines_d, color='#FFD0D0'); else: self.plot_grid(axis, '#FFC0C0') self.plot_mytime(axis, 'r', primed) self.plot_lightcone(axis, 'y', primed) self.plot_other(axis, 'b', primed) if (grid.events): self.plot_events(axis, 'k', primed) v=.5 grid = MinkowskiGrid(-1, 8, -8, 8, 1, v) events=[[4, -2], [4, -3], [4, -4]] grid.record_events(events) plotter = MinkowskiPlot(grid) _, plots = plt.subplots(2, figsize=(10,13)) for i in range(2): plots[i].set_xlim([-8, 8]) plots[i].set_ylim([-1, 8]) plotter.display(plots[0], primed=False) plotter.display(plots[1], primed=True) ###Output _____no_output_____ ###Markdown We observe the following characteristics:- Events that appear simultaneous in one reference frame (black dots) will not be observed as simultaneous from within a reference frame moving relative to the former.- The light cones get stretched or squished but they are observed at the sample angle in space time, i.e the speed of light is constant, independent of the movement of the observer.- The distance between the outer events (2 light seconds in the upper plot) after the boost is slightly longer than from the perspective of the moving observer ###Code lt=LorentzTrafo(v) lt(events) lt(events)[2][1]-lt(events)[0][1]- v=.2 lt=LorentzTrafo(v) i_see_him_at=[2, 1] i_see_me_at=[2,0] he_sees_me_at=lt(i_see_me_at) he_got_my_speed_at=he_sees_me_at[1]/he_sees_me_at[0] he_got_my_speed_at # hopefully -v v=.5 #any lt=LorentzTrafo(v) i_see_light_at=[2, 2] he_sees_light_at=lt(i_see_light_at) he_got_light_speed_at=he_sees_light_at[1]/he_sees_light_at[0] he_got_light_speed_at # hopefully 1 lv = LorentzTrafo(.5).matrix lmv = LorentzTrafo(-.5).matrix np.matmul(lmv, lv) ###Output _____no_output_____
analysis.ipynb
###Markdown Table of Contents1&nbsp;&nbsp;Imports2&nbsp;&nbsp;Load Data (Gather)3&nbsp;&nbsp;Data understanding - EDA3.1&nbsp;&nbsp;Overview3.2&nbsp;&nbsp;Missing values3.2.1&nbsp;&nbsp;Per Feature3.3&nbsp;&nbsp;Per Row4&nbsp;&nbsp;Data Preparation (Preprocessing)4.0.1&nbsp;&nbsp;Create data flag column5&nbsp;&nbsp;Questions (Modelling and Evaluation)5.1&nbsp;&nbsp;Which proportion of developers works with data?5.2&nbsp;&nbsp;Any differences in working habits?5.2.1&nbsp;&nbsp;Difference in remote working habits5.2.2&nbsp;&nbsp;Difference in working hours5.3&nbsp;&nbsp;Difference in job satisfaction6&nbsp;&nbsp;References - Sources Imports ###Code # import libraries here; add more as necessary import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from collections import defaultdict from IPython.core.display import HTML from sklearn.preprocessing import Imputer from sklearn.preprocessing import StandardScaler from sklearn.decomposition import PCA from sklearn.cluster import KMeans from helper_functions import * # Set base plotting style plt.style.use('seaborn-ticks') # # Set base plotting size plt.rcParams['figure.figsize'] = 14, 9 # Magic word for producing visualizations in notebook %matplotlib inline # Increase figure resolution for high dpi screens %config InlineBackend.figure_format = 'retina' # Autoreload modules %load_ext autoreload %autoreload 2 ###Output _____no_output_____ ###Markdown Load Data (Gather) ###Code df = pd.read_csv('data/survey-results-public.csv') schema = pd.read_csv('data/survey-results-schema.csv')## Load Data (Gather) ###Output _____no_output_____ ###Markdown Data understanding - EDA Overview ###Code df.head() df.shape schema.head() ###Output _____no_output_____ ###Markdown Missing values ###Code # How many nans? print('Total percentage of Nans: ', round(df.isnull().sum().sum() / np.product(df.shape) * 100, 2), '%') ###Output Total percentage of Nans: 45.32 % ###Markdown Per Feature ###Code feat_nan_perc = df.isnull().mean() hist_box_plot(feat_nan_perc, x_label='Proportion of missing values', y_label='No. of features', bin_incr=0.05); ###Output _____no_output_____ ###Markdown The biggest percentage of columns has 30 - 60 % missing values with two peaks at around 40% and just below 60%. There is also a spike of features with a percentage of missing values close to 100 %. Features with a percentage of missing values above 80% ca be considered outliers and not containing enough usefull infomation and will be dropped for this analysis. ###Code df.isnull().mean().sort_values()[-20::] df.isnull().mean().sort_values()[-20::].plot(kind='barh', color='b'); high_nan_features = df.columns[df.isnull().mean() > 0.8] high_nan_features len(high_nan_features) ###Output _____no_output_____ ###Markdown There are 13 features with NaNs above 80% - 6 of them refer to the `Excoder` category. `ExpectedSalary` has 95% missing values. Per Row ###Code row_nan_perc = df.isnull().mean(axis=1) hist_box_plot(row_nan_perc, x_label='Proportion of missing values', y_label='No. of rows', bin_incr=0.01); ###Output _____no_output_____ ###Markdown Looks like a bimodal distribution with one distribution centered around the median of 30% missing values and the smaller one around 90% of missing values Data Preparation (Preprocessing) We will drop the features with a percentage of NaNs over 80% and keep the rows treating each feature we exam below individually. ###Code # Drop the high NaN features high_nan_features = df.columns[df.isnull().mean() > 0.8] df = df.drop(columns=high_nan_features) df.shape ###Output _____no_output_____ ###Markdown Create data flag column ###Code df.Professional.unique() get_description('DeveloperType', schema=schema) ###Output _____no_output_____ ###Markdown The `DeveloperType` is the column of interest here. We will filter all the entries that contaiin the word Data or Machine to get the data professionals of all types. It could be interesting to see the following:- What kind of jobs do data professionals do and at which percentages?- Which are the most common job descriptons that they declare along with their data proffesion? - Is there a special meaning to which job is mentioned first? ###Code devtypes = [] for dev in df.DeveloperType.str.split(';').dropna(): for devtype in dev: devtype = devtype.strip() if devtype not in devtypes: devtypes.append(devtype) devtypes ###Output _____no_output_____ ###Markdown Let's first see which are the possible values here by slitting the strings ###Code data_devtypes = set([dev.strip() for dev in devtypes if 'Data scientist' in dev or 'Machine' in dev or 'statistics' in dev]) data_devtypes ###Output _____no_output_____ ###Markdown Replace all the Nones with np.nan for consistency ###Code dev_types = df.DeveloperType.str.split(';', expand = True).apply(lambda x: x.str.strip()).replace({None: np.nan}) ###Output _____no_output_____ ###Markdown Let's create a flag for `data scientists/machine learning specialists/Developer with a statistics or mathematics background` ###Code # Create a flag column for data professionals df['is_data'] = 0 for col in dev_types.columns: df.loc[dev_types[col].isin(data_devtypes), 'is_data'] = 1 ###Output _____no_output_____ ###Markdown Questions (Modelling and Evaluation) Which proportion of developers works with data? ###Code df.is_data.value_counts() ###Output _____no_output_____ ###Markdown Look like we have found 6353 individuals that have put data jobs in any position. ###Code # Sanity Test df[['DeveloperType', 'is_data']].sample(10) # Rename for better plotting df['is_data'] = df.is_data.map({0:'Other Developer', 1: 'Data Science Developer'}) Groupby_OneCol_comp_plot(df, 'is_data', plt_style = 'seaborn-ticks', color_palette = ['darkcyan','darkgrey'], title='') # Create a developer and a data science dataset df_dev = df[df.is_data == 'Other Developer'] df_ds = df[df.is_data != 'Other Developer'] df.columns ###Output _____no_output_____ ###Markdown Any differences in working habits? Difference in remote working habits ###Code get_description('HomeRemote', schema=schema) print_perc_nans(df, 'HomeRemote') ###Output Percentage of NaNs in HomeRemote: 14.37 % ###Markdown We will not use the rows with missing data as they are not included in the `groupby` operations. ###Code df.HomeRemote.value_counts() group(df, 'is_data', 'HomeRemote') group_plot(df, 'is_data', 'HomeRemote', prop=True, orient='h') plt.xlabel('Percentage %') plt.ylabel(''); ###Output _____no_output_____ ###Markdown Data scientists seem to have slightly better working habits with 5% more working remotely a few days per month and 5 % less that respond never. Let's see if that has something to do with job satisfaction. Difference in working hours ###Code get_description('ProgramHobby', schema=schema) print_perc_nans(df, 'ProgramHobby') df.ProgramHobby.value_counts() group(df, 'is_data', 'ProgramHobby') # Tota; number of ds devs that program out of work group(df, 'is_data', 'ProgramHobby').iloc[:, -1][::2][1:].sum() # Tota; number of other devs that program out of work group(df, 'is_data', 'ProgramHobby').iloc[:, -1][1:][::2][1:].sum() group_plot(df, 'is_data', 'ProgramHobby', prop=True, orient='h') plt.xlabel('Percentage %') plt.ylabel(''); ###Output _____no_output_____ ###Markdown Difference in job satisfaction ###Code get_description('JobSatisfaction', schema=schema) print_perc_nans(df, 'ProgramHobby') df.JobSatisfaction.value_counts() group(df, 'is_data', 'JobSatisfaction') group_plot(df, 'is_data', 'JobSatisfaction', orient='v') plt.xlabel('Job Satisfaction Rating ') plt.ylabel('Percentage % ') plt.legend(title='', loc='upper left'); av_job_sat = df.groupby(['is_data'])['JobSatisfaction'].mean() av_job_sat (av_job_sat.diff()[-1] / av_job_sat[1]) * 100 ###Output _____no_output_____ ###Markdown Average job satisfaction is 7.11 for DS developers, compared to 6.93 to other developers which is a small difference of 2.67 %. Let's check for significance in this results. ###Code from scipy.stats import chi2_contingency cont_table = np.array([df_dev.JobSatisfaction.value_counts(), df_ds.JobSatisfaction.value_counts()] ) chi2, p, dof, ex = chi2_contingency(cont_table) print(f' chi2: {chi2}\n p: {p}\n dof: {dof}\n ex: {ex}') ###Output chi2: 47.80191282167782 p: 6.745505774525362e-07 dof: 10 ex: [[7632.52422231 6770.96577175 4735.17282544 4089.4288191 3450.48211809 3185.38721022 1584.62180503 1389.1992768 754.50089162 396.79269863 316.92436101] [1350.47577769 1198.03422825 837.82717456 723.5711809 610.51788191 563.61278978 280.37819497 245.8007232 133.49910838 70.20730137 56.07563899]] ###Markdown Connecting to the datasetThe dataset was downloaded here https://www.kaggle.com/nolanbconaway/pitchfork-data. The link provides more information on the dataset and it's tables ###Code con = sqlite3.connect('database.sqlite') query = """ SELECT r.reviewid, title, artist, year, score, best_new_music, pub_date, pub_year, genre, label FROM reviews r LEFT JOIN genres g ON r.reviewid = g.reviewid LEFT JOIN labels l ON r.reviewid = l.reviewid LEFT JOIN years y ON r.reviewid = y.reviewid """ df = pd.read_sql_query(query, con) ###Output _____no_output_____ ###Markdown Exploration of the data setThe analysis we want to run will be around the a potential bias pitchfork has towards any particular genres.The questions we want to ask ourselves are: _"What genre does Pitchfork review the most"__"What genre does Pitchfork review the highest"_We'll only need a specific subset of columns for this. ###Code #Selecting relevant columns and visualizing first rows df = df[['reviewid','score','best_new_music','pub_year','genre']] df.head() #Checking for nulls df.info() #Seems like the genre column has some missing values, let's drop them df.dropna(subset=['genre'], inplace=True) df.info() #since we'll want to run analysis of reviews throughout the years, let's check whether all years have enough data df.pub_year.value_counts() #seems like we can drop 2017 which only has 18 reviews df = df[df.pub_year < 2017] ###Output _____no_output_____ ###Markdown Data Modeling & ResultsNow that the data is ready, we can transform it in a way that makes it easy for us to answer the business questions we have. The dataset is at the individual review level, we want to aggregate it across the review years and the genres, aggregating the relevant metrics. ###Code #group by the relevant columns and aggregate the metrics we're interested in df_genre_year = ( df.groupby(['pub_year','genre']) #we take the mean of the score (since it's at review level we don't have to weight it) #the count of the reviews to get the total number of reviews per year and genre #and the mean of the best_new_music column which was a binary column, hence returning its frequency .agg({'score':'mean', 'reviewid':'count', 'best_new_music':'mean'}) .reset_index() .sort_values(by=['pub_year','genre']) ) #let's rename the reviewid column to something more relatable df_genre_year.rename(columns={'reviewid':'n_of_reviews'}, inplace=True) #visualize first rows df_genre_year.head() ###Output _____no_output_____ ###Markdown Let's visualize the first question we had _"Is there a genre Pitchfork reviews the most?"_ ###Code #We have to pivot the table in order to get a 100% stacked chart of the different genres per year perc_values = df.pivot_table( values=['reviewid'], index='pub_year', columns='genre', aggfunc='sum' ) perc_values = tps.div(tps.sum(1), axis=0) #plotting stacked column to get a sense of the relative development of the genres reviewed perc_values.plot(kind='bar', stacked=True, title='Percentage of Genres Reviewed', figsize=(15,10)); ###Output _____no_output_____ ###Markdown Seems like Rock and Electronic are the two genres Pitchfork reviews the most, with Rap becoming a popular one in most recent years! Let's now see if there are any differences across the scores. ###Code #Let's group by genre and avreage out the results across all the years data = df.groupby('genre')['score'].mean().reset_index().sort_values(by='score', ascending=False) #We use seaborn to plot the data sns.barplot(data=data, x='genre', y='score', linewidth=1.5,).set_title('Average Score 1999-2016') #zooming in so the differences are clearer plt.ylim(6.5,7.5) #making the plot bigger sns.set(rc={'figure.figsize':(13,8)}); ###Output _____no_output_____ ###Markdown Seems like Global, Experimental, Jazz and Folk/Country are the most favoured by the website, scoring consistently higher than the other genres. Another thing we could look at is the frequency with which an album is labeled as Best New Music ###Code #The best new music column is a binary for each album row. By taking the mean we directly compute the frequency! data = df_genre_year.groupby('genre')['best_new_music'].mean().reset_index().sort_values(by='best_new_music', ascending=False) #visualizing the results sns.barplot(data=data, x='genre', y='best_new_music', linewidth=1.5).set_title('Percentage Albums categorized as Best New Music') #setting figure size sns.set(rc={'figure.figsize':(13,8)}); ###Output _____no_output_____ ###Markdown Import Libraries ###Code import matplotlib.pyplot as plt import pandas as pd from io import StringIO import statsmodels.api as sm from sklearn.model_selection import train_test_split import numpy as np from final_data import final_df as df ###Output 'Loading Final DataFrame' ###Markdown Import Data ###Code df = final_df.copy() df df.columns ###Output _____no_output_____ ###Markdown Define x and y ###Code variables_df = df.copy() independents = ['Lead (TSP) LC', 'Carbon monoxide', 'Sulfur dioxide', 'Nitrogen dioxide (NO2)', 'Ozone', 'PM10 - LC', 'PM2.5 - Local Conditions', 'Percent of adults with less than a high school diploma, 2015-19', 'Percent of adults with a high school diploma only, 2015-19', "Percent of adults completing some college or associate's degree, 2015-19", "Percent of adults with a bachelor's degree or higher, 2015-19", 'PCTPOVALL_2019', 'PCTPOV017_2019', 'PCTPOV517_2019', 'Total Pop', 'Pop Pct 0-4', 'Pop Pct 5-9', 'Pop Pct 10-14', 'Pop Pct 15-19', 'Pop Pct 20-24', 'Pop Pct 25-29', 'Pop Pct 30-34', 'Pop Pct 35-39', 'Pop Pct 40-44', 'Pop Pct 45-49', 'Pop Pct 50-54', 'Pop Pct 55-59', 'Pop Pct 60-64', 'Pop Pct 65-69', 'Pop Pct 70-74', 'Pop Pct 75-79', 'Pop Pct 80-84', 'Pop Pct 85+', 'avgtempC', 'maxtempC', 'mintempC', 'sunHour', 'uvIndex', 'windspeedKmph', 'humidity', 'pressure', 'precipMM', 'cloudcover', 'distance', 'Series_Complete_Pop_Pct', 'Series_Complete_12PlusPop_Pct', 'Series_Complete_18PlusPop_Pct', 'Series_Complete_65PlusPop_Pct', 'Administered_Dose1_Pop_Pct', 'Administered_Dose1_Recip_12PlusPop_Pct', 'Administered_Dose1_Recip_18PlusPop_Pct'] # variables_df.drop(['Lead (TSP) LC'], axis=1, inplace=True) remove = ['Ozone'] independents = [i for i in independents if i not in remove] dependent = 'percentage_new' # variables_df = variables_df[independents + [dependent]].copy() variables_df.dropna(inplace=True) x = sm.add_constant(variables_df[independents]) # x = variables_df[independents] y = variables_df[dependent] np.seterr(divide='ignore', invalid='ignore') pollutants = ['lead', 'carbon monoxide', 'sulfur dioxide', 'nitrogen dioxide', 'ozone', 'PM10', 'PM2.5'] independent = pollutants[0] dependent = 'percentage_new' variables_df = df[[independent, dependent]] variables_df.dropna(inplace=True) x = sm.add_constant(variables_df[independent]) y = variables_df[dependent] x = list(x) y = list(y) x = sm.add_constant(variables_df[independent].tolist()) y ###Output _____no_output_____ ###Markdown Split into Training and Test Sets ###Code list_to_remove = ['date', 'fips'] x_columns = [x for x in df.columns if x not in list_to_remove] x_columns x_train.shape, y_train.shape ###Output _____no_output_____ ###Markdown Train the Model ###Code # model = sm.OLS(y_train, x_train) x = [1, 2, 3] y = [2, 4, 6] model = sm.OLS(y, x) result = model.fit() ###Output _____no_output_____ ###Markdown Summary ###Code result.summary() ###Output C:\Users\natha\AppData\Local\Programs\Python\Python39\lib\site-packages\statsmodels\stats\stattools.py:74: ValueWarning: omni_normtest is not valid with less than 8 observations; 3 samples were given. warn("omni_normtest is not valid with less than 8 observations; %i " ###Markdown TODO:* error bars for the "by month" plots* top_x authors over time - all months not just top months* top_x_all authors over time* make by-month and per-month graphs more smooth ###Code FILE_NAME = 'all' # FILE_NAME = 'test' OUTPUT_DATA_FILE = os.path.join('data', f'{FILE_NAME}_data.parquet') OUTPUT_METADATA_FILE = os.path.join('data', f'{FILE_NAME}_meta.parquet') AGGREGATION_MIN = 5 os.makedirs('pngs', exist_ok=True) def plot_dataframe(dfs_to_plot, xvalues=None, title=None, xlabel=None, ylabel=None, ylim_bottom=0, yscale=None, lables=None, override_font=False, show_plot=True, output_file_name=None): with plt.xkcd(scale=0.5): # Make it into a list if it isn't dfs_to_plot = [dfs_to_plot] if type(dfs_to_plot) is not list else dfs_to_plot # The styalized font XKCD uses doesn't have very much unicode coverage, override font if you need to use unicode text if override_font: matplotlib.rc('font', family='Arial') # Set fig size plt.figure(figsize=(1920/80, 1080/80)) for df_to_plot in dfs_to_plot: # Plot with labels if provided, else without if xvalues is not None: plt.plot(xvalues, df_to_plot) else: plt.plot(df_to_plot) if ylim_bottom is not None: plt.ylim(bottom=ylim_bottom) # Style plot and add text plt.grid(True, lw=0.5, zorder=0) plt.title(title) plt.xlabel(xlabel) plt.ylabel(ylabel) # Semilog-y plots # TODO: is this working? if yscale is not None: plt.yscale(yscale) # Add lables if provided if lables is not None: plt.legend(lables) # Save and plot! if output_file_name is not None: plt.savefig(output_file_name) if show_plot: plt.show() def plot_windowed_msg_per_min(msg_per_min, window_length=10, show_plot=True, output_file_name='test.png'): # Pad with zeros before the start of the server for filtering pad_length = int(math.ceil(window_length/2.0)) pre_pad = msg_per_min[:pad_length] pre_pad = pre_pad.tshift(-pad_length) pre_pad[:] = 0 post_pad = msg_per_min[-pad_length:] post_pad = post_pad.tshift(pad_length) post_pad[:] = msg_per_min[-pad_length:].mean() # Filter with centered blackman-harris window function and slice off the pad data filtered_msg_per_min = pd.concat([pre_pad, msg_per_min, post_pad]) filtered_msg_per_min = filtered_msg_per_min.rolling(window_length, center=True, win_type='blackmanharris').mean()[pad_length:-pad_length] # Plot filtered data plot_dataframe( filtered_msg_per_min, title=f'Averaged Smoothed Message Rate Over History ({window_length*AGGREGATION_MIN/60/24} day window)', xlabel='Datetime (ref:UTC)', ylabel='msg/min (avg)', show_plot=show_plot, output_file_name=output_file_name ) def plot_windowed_msg_per_min2(msg_per_min, window_days=7, show_plot=True, output_file_name='test.png', lables=None): # Pad with zeros before the start of the server, and mean of half the window after the last data point, for filtering window_lengths = np.atleast_1d(window_days)*np.timedelta64(1, 'D').astype('timedelta64[m]')/np.timedelta64(AGGREGATION_MIN, 'm') pad_lengths = list(np.round(np.ceil(np.array(window_lengths)/2.0)).astype('int')) filtered_msg_per_min_list = [] for i in range(len(window_lengths)): window_length = int(window_lengths[i]) pad_length = pad_lengths[i] pre_pad = msg_per_min[:pad_length] pre_pad = pre_pad.tshift(-pad_length) pre_pad[:] = 0 post_pad = msg_per_min[-pad_length:] post_pad = post_pad.tshift(pad_length) post_pad[:] = msg_per_min[-pad_length:].mean() # Filter with centered blackman-harris window function and slice off the pad data filtered_msg_per_min = pd.concat([pre_pad, msg_per_min, post_pad]) filtered_msg_per_min = filtered_msg_per_min.rolling(window_length, center=True, win_type='blackmanharris').mean()[pad_length:-pad_length] filtered_msg_per_min_list.append(filtered_msg_per_min) # Plot filtered data plot_dataframe( filtered_msg_per_min_list, # title=f'Averaged Smoothed Message Rate Over History ({[str(i*AGGREGATION_MIN/60/24) + " " for i in window_lengths]} day window)', title=f'Averaged Smoothed Message Rate Over History ({window_lengths*AGGREGATION_MIN/60/24} day window)', xlabel='Datetime (ref:UTC)', ylabel='msg/min (avg)', show_plot=show_plot, output_file_name=output_file_name, lables=lables, ) data = pd.read_parquet(f'{OUTPUT_DATA_FILE}') metadata = pd.read_parquet(f'{OUTPUT_METADATA_FILE}') data metadata print(f'Number of messages per channel out of {len(data)} total messages:') msgs_by_user = data['channel_name'].value_counts() msgs_by_user msg_per_min = pd.Series(1, index=data['creation_datetime']).resample(f'{AGGREGATION_MIN}min').count()/AGGREGATION_MIN # msg_per_min # window_length_7 = int(round(datetime.timedelta(days=7).total_seconds()/60/AGGREGATION_MIN)) # plot_windowed_msg_per_min(msg_per_min, window_length_7, output_file_name='pngs/msg_rate_7day_window.png') plot_windowed_msg_per_min2(msg_per_min, window_days=7, output_file_name='pngs/msg_rate_7day_window.png') # window_length_30 = int(round(datetime.timedelta(days=30).total_seconds()/60/AGGREGATION_MIN)) # plot_windowed_msg_per_min(msg_per_min, window_length_30, output_file_name='pngs/msg_rate_30day_window.png') plot_windowed_msg_per_min2(msg_per_min, window_days=30, output_file_name='pngs/msg_rate_30day_window.png') # window_length_365 = int(round(datetime.timedelta(days=365).total_seconds()/60/AGGREGATION_MIN)) # plot_windowed_msg_per_min(msg_per_min, window_length_365, output_file_name='pngs/msg_rate_365day_window.png') plot_windowed_msg_per_min2(msg_per_min, window_days=365, output_file_name='pngs/msg_rate_365day_window.png') plot_windowed_msg_per_min2(msg_per_min, [7, 30, 365], lables=['7 Day Window', '30 Day Window', '365 Day Window'], output_file_name='pngs/msg_rate_7_30_365day_window.png') # Message rate over hours of the day plot_dataframe( msg_per_min.groupby(msg_per_min.index.hour).mean(), title='Average message rate over hour of the day', xlabel='Hour of the day (ref:UTC)', ylabel='msg/min (avg)', # yscale='log' output_file_name='pngs/hour_of_day.png', ) # Message rate over day of the week plot_dataframe( msg_per_min.groupby(msg_per_min.index.dayofweek).mean(), xvalues=list(calendar.day_name), title='Average message rate over day of the week', xlabel='Day of the week (ref:UTC)', ylabel='msg/min (avg)', # yscale='log' output_file_name='pngs/day_of_week.png', ) # Message rate over day of the week plot_dataframe( msg_per_min.groupby(msg_per_min.index.weekofyear).mean(), title='Message rate over week of the year', xlabel='Week of the Year (ref:UTC)', ylabel='msg/min (avg)', # yscale='log' output_file_name='pngs/week_of_year.png', ) # comulitive sum of messages across users plot_dataframe( data['author'].value_counts().to_numpy()/len(data), title='Fraction of total messages by user', xlabel='Users', ylabel='Fraction of total messages', # yscale='log' output_file_name='pngs/msg_by_user_fraction.png', ) # comulitive sum of messages across users, reverse-sorted plot_dataframe( data['author'].value_counts()[::-1].cumsum().to_numpy()/len(data), title='Cumsum of fraction of total messages by user', xlabel='Users', ylabel='Fraction of total messages', # yscale='log' output_file_name='pngs/msg_by_user_cumsum.png', ) author_counts_by_month = [(n, g['author'].value_counts()) for n, g in data.groupby(pd.Grouper(key='creation_datetime', freq='M'))] mean_msgs_per_author_counts_by_month = pd.Series([i[1].mean() for i in author_counts_by_month], [i[0] for i in author_counts_by_month]) active_users_by_month = pd.Series([i[1].count() for i in author_counts_by_month], [i[0] for i in author_counts_by_month]) print('% of total messages for the top 10 most prolific authors:') msgs_by_user = data['author'].value_counts() print(msgs_by_user[:10]/len(data)*100) # print('') # # Replace "author" with the author string of your choice, the format is "name#1234" # print(f'msgs by "author": {msgs_by_user["author"]/len(data)*100}% #{msgs_by_user.index.get_loc("author")+1} on the server') # Average msgs per active user per month plot_dataframe( active_users_by_month, title='Active users per month', xlabel='Datetime (ref:UTC)', ylabel='Active Users', # yscale='log' output_file_name='pngs/active_users_per_month.png', ) # Average msgs per active user by month plot_dataframe( active_users_by_month.groupby(active_users_by_month.index.month).mean(), title='Active users', xlabel='Month (ref:UTC)', ylabel='Active users/month', # yscale='log' output_file_name='pngs/active_users_by_month.png', ) # Average msgs per active user per month plot_dataframe( mean_msgs_per_author_counts_by_month, title='Average messages per active user per month', xlabel='Datetime (ref:UTC)', ylabel='Average messages/user', # yscale='log' output_file_name='pngs/msg_per_user_per_month.png', ) # Average msgs per active user by month plot_dataframe( mean_msgs_per_author_counts_by_month.groupby(mean_msgs_per_author_counts_by_month.index.month).mean(), title='Average msgs per active user by month', xlabel='Month (ref:UTC)', ylabel='Average messages/user', # yscale='log' output_file_name='pngs/msg_per_user_by_month.png', ) TOP_N_PER_MONTH = 1 top_author_counts_by_month = [(i, j[0:TOP_N_PER_MONTH]) for i, j in author_counts_by_month] all_top_authors = set() for i, j in top_author_counts_by_month: [all_top_authors.add(i) for i in j.index.to_list()] print(f'All users that have been in the top {TOP_N_PER_MONTH} authors in any given month in the history of the server:') pprint(sorted(list(all_top_authors))) # Init the dataframe top_authors_across_months_count = pd.DataFrame(index=[i for i, j in top_author_counts_by_month]) for i in all_top_authors: top_authors_across_months_count[i] = 0.0 # over all months and the top authors of all time, calculate the number of messages send, zero if they had no messages that month for i, j in author_counts_by_month: for k in all_top_authors: top_authors_across_months_count.at[i, k] = j.get(k, 0) # Average msgs per active user by month plot_dataframe( top_authors_across_months_count/(30*24), title=f'Average msgs per hour for each of the top {TOP_N_PER_MONTH} users in any month', xlabel='Datetime (ref:UTC)', ylabel='messages/hour', # yscale='log' output_file_name='pngs/rate_top_bymonth_users.png', lables=all_top_authors, override_font=True, ) # Init the dataframe top_authors_across_months_perc = pd.DataFrame(index=[i for i, j in top_author_counts_by_month]) for i in all_top_authors: top_authors_across_months_perc[i] = 0.0 # over all months and the top authors of all time, calculate the percentage of messages sent by a particular user, zero if they had no messages that month for i, j in author_counts_by_month: for k in all_top_authors: top_authors_across_months_perc.at[i, k] = 100*j.get(k, 0)/j.sum() # Average msgs per active user by month plot_dataframe( top_authors_across_months_perc, title=f'Percentage of total msgs per month for each of the top {TOP_N_PER_MONTH} users in any month', xlabel='Datetime (ref:UTC)', ylabel='Percent of total messages/month', # yscale='log' output_file_name='pngs/perc_top_bymonth_users.png', lables=all_top_authors, override_font=True, ) TOP_N_EVER = 5 top_n_users = msgs_by_user[:TOP_N_EVER].index.to_list() # Init the dataframe top_authors_count = pd.DataFrame(index=[i for i, j in top_author_counts_by_month]) for i in top_n_users: top_authors_count[i] = 0 # over all months and the top authors of all time, calculate the number of messages send, zero if they had no messages that month for i, j in author_counts_by_month: for k in top_n_users: top_authors_count.at[i, k] = j.get(k, 0) # Average msgs per active user by month plot_dataframe( top_authors_count/(30*24), title=f'Average msgs per hour for each of the top {TOP_N_EVER} authors ever', xlabel='Datetime (ref:UTC)', ylabel='messages/hour', # yscale='log' output_file_name='pngs/perc_top_users.png', lables=msgs_by_user[:TOP_N_EVER].index.to_list(), override_font=True, ) # Init the dataframe top_authors_perc = pd.DataFrame(index=[i for i, j in top_author_counts_by_month]) for i in top_n_users: top_authors_perc[i] = 0.0 # over all months and the top authors of all time, calculate the percentage of messages sent by a particular user, zero if they had no messages that month for i, j in author_counts_by_month: for k in top_n_users: top_authors_perc.at[i, k] = 100.0*j.get(k, 0)/float(j.sum()) # Average msgs per active user by month plot_dataframe( top_authors_perc, title=f'Percent of total msgs per month for each of the top {TOP_N_EVER} users of all time', xlabel='Datetime (ref:UTC)', ylabel='Percentage of messages/month', # yscale='log' output_file_name='pngs/rate_top_users.png', lables=msgs_by_user[:TOP_N_EVER].index.to_list(), override_font=True, ) ###Output _____no_output_____ ###Markdown FASTGenomics Scanpy + R Analysis You might want to describe your analysis briefly here, if you are planning to share it. ###Code # Place all your Python imports here. import logging import fgread import scanpy as sc import scipy.sparse as spsp # do not delete these imports as they are required for R support import rpy2.rinterface_lib.callbacks from rpy2.robjects import pandas2ri import anndata2ri %load_ext rpy2.ipython %%R # Place all your R library imports here suppressPackageStartupMessages({ library(scran) }) # Place all your parameter values here. sc.settings.verbosity = 1 # scanpy verbosity: errors (0), warnings (1), info (2), hints (3) rpy2.rinterface_lib.callbacks.logger.setLevel(logging.ERROR) # Ignore R warning messages # Automatically convert rpy2 outputs to pandas dataframes pandas2ri.activate() anndata2ri.activate() ###Output _____no_output_____ ###Markdown Raw DataFirst, the raw dataset(s) will be read into an AnnData object(s). You can describe your data here using markdown or delete this text. ###Code # Print metadata of all attached datasets ds_info = fgread.ds_info() ds_info # Load the attached dataset data = fgread.load_data() # If multiple datasets are attached, you have to select one by its id or tile data ###Output _____no_output_____ ###Markdown PreprocessingYou can describe your preprocessing here or delete this text.If this is your first analysis, you might want to have a look at our tutorials onGetting Started with FASTGenomics Lab,the data loading (How to Load Data in FASTGenomics (Python)),Scanpy with R support (Advanced Scanpy with R Support (rpy2)), or theBest Practices Preprocessing Notebook. ###Code # This is an example of how to prepare AnnData matrices for processing with R if spsp.issparse(data.X): data = data.X.T.todense() # if X in anndata is sparse %%R -i data -o clusters # You can use R code in cells with specified inputs and outputs clusters <- quickCluster(data) # The outputs are then available in Python clusters ###Output _____no_output_____ ###Markdown ContextThis is one of the dataset provided by the National Cardiovascular Disease Surveillance System.The system is designed to integrate multiple indicators from many data sources to provide a comprehensive picture of the public health burden of CVDs and associated risk factors in the United States. ContentThe data are organized by location (national, regional, state, and selected sites) and indicator, and they include CVDs (e.g., heart failure) and risk factors (e.g., hypertension). The data can be plotted as trends and stratified by age group, sex, and race/ethnicity.2011 to present. BRFSS is a continuous, state-based surveillance system that collects information about modifiable risk factors for chronic diseases and other leading causes of death. ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt from textwrap import wrap %matplotlib inline from subprocess import check_output print(check_output(["ls", "data/"]).decode("utf8")) from IPython.display import display df = pd.read_csv('data/dataset.csv') pd.options.display.max_columns = None df.head() # looking at the unique values for the columns df['LocationID'].unique() # looking at the column names df.columns # LocationAbbr: Abbreviation of the State # LocationDesc: Name of the State # (drop) Datasource: Just BRFSS - can drop this since all the same # PriorityArea1: Contains 'None' and 'Million Hearts' # PriorityArea2: Contains 'None' and 'ABCS' # PriorityArea3: Contains 'None' and 'Healthy People 2020' # PriorityArea4: Contains only 'None' # Category: Contains 'Cardiovascular Diseases' and 'Risk Factors' # Topic: Topics of diagnosis of the person? # Indicator: 'Prevalence of' blah blah blah with similar to topics? - have to check # Data_Value_Type: Contains 'Age-Standardized' and 'Crude' # Data_Value_Unit: Contains only 'Percent (%)' # Data_Value: Numeric value (not sure what it stands for) # Data_Value_Alt: Slight different to 'Data_Value', negative values here but 'nan' for 'Data_Value' # Data_Value_Footnote_Symbol: Contains 'nan', '~', and '-' # Data_Value_Footnote: Contains 'nan', 'Statistically unstable...', and 'Data not available' # Confidence_Limit_Low: Numeric, similar to 'Data_Value' # Confidence_Limit_High: Numeric # Break_Out_Category: Contains 'Overall', 'Gender', 'Age', and 'Race' # Break_out: Contains 'Overall', 'Male', 'Female', '18-24', '25-44', '45-64', '65+', '35+', '75+', 'Non-Hispanic White', 'Non-Hispanic Black', 'Non-Hispanic Asian', 'Hispanic', 'Other', and '20-24' # CategoryID: Contains 'C1' and 'C2', not sure what it means # TopicID: Contains T values, not sure what it means # IndicatorID: Contains BR numbers, not sure what it means # Data_Value_TypeID: Contains 'AgeStdz' and 'Crude' - same as 'Data_Value_Type' # BreakoutCategoryID: Contains BOC values, not sure what it means # BreakOutID: Abbreviation of Breakout # LocationID: Corresponds to location # Geolocation: Coordinates df.describe() from matplotlib import style style.use('dark_background') plt.figure(figsize=(12,6)) sns.heatmap(df.isnull(), yticklabels=False, cbar=False, cmap='viridis') ###Output _____no_output_____ ###Markdown 流距离嵌入- window:5, 一句话中,两个词最远距离为5。- 考虑到了词序,例如:“We may encounter many defeats, but we must not be defeated.”, encounter-defeats 词对会+1,而defeats-encounter 词对不会+1 ###Code import numpy as np import matplotlib.pyplot as plt %matplotlib inline avgdist_file = './data/dist_avg.npy' count_file = './data/count.npy' avgdist = np.load(avgdist_file) count = np.load(count_file) avgdist_flat = avgdist.flatten() avgdist_flat_nonz = np.sort(avgdist_flat[avgdist_flat.nonzero()]) plt.plot(avgdist_flat_nonz) plt.title('sorted data sequence') plt.ylabel('value') plt.show() bins = np.linspace(np.ceil(np.min(avgdist_flat_nonz)), np.floor(np.max(avgdist_flat_nonz)), 30) plt.hist(avgdist_flat_nonz, bins=bins, alpha=0.5) plt.title('Histogram') plt.xlabel('Value (30 evenly spaced bins)') plt.ylabel('Count') plt.show() avgdist_var = np.var(avgdist_flat_nonz) avgdist_mean = np.mean(avgdist_flat_nonz) print '均值: %f' % avgdist_mean print '方差: %f' % avgdist_var avgdist_min = np.min(avgdist_flat_nonz) min_idx = np.where(avgdist == 1.0) print '最小值:%f' % avgdist_min print '平均距离是:%f 的词对个数:%d' % (avgdist_min, len(min_idx[0])) ###Output 最小值:1.000000 平均距离是:1.000000 的词对个数:12814 ###Markdown 结果分析avg_dist 值小的,可能是出现的频次不高,但是都是在一起出现的用 counts 大的排序,更有实际意义 ###Code from train import Vocabulary vocab = Vocabulary() words = [] for i, val in enumerate(zip(min_idx[0], min_idx[1])): key_word = '%s-%s' % (vocab.get_word(val[0]), vocab.get_word(val[1])) count_word = count[val[0], val[1]] words.append({'key':key_word, 'cnt':count_word}) words.sort(key=lambda x:x['cnt'], reverse=True) for i in words[:100]: print i count_flat = count.flatten() val = np.partition(count_flat, -100)[-100:] words_cnt = [] for i in val[::-1]: idx_0, idx_1 = np.where(i==count) key_word = '%s-%s' % (vocab.get_word(idx_0[0]), vocab.get_word(idx_1[0])) avgdist_word = avgdist[idx_0[0], idx_1[0]] words_cnt.append({'key':key_word, 'cnt':i, 'avgdist': avgdist_word}) words_cnt.sort(key=lambda x:x['cnt'], reverse=True) for i in words_cnt: print i ###Output {'cnt': 1102693.0, 'key': 'united-states', 'avgdist': 1.0093471165591874} {'cnt': 760376.0, 'key': 'new-york', 'avgdist': 1.0403366229339168} {'cnt': 468649.0, 'key': 'high-school', 'avgdist': 1.0688297638531181} {'cnt': 392738.0, 'key': 'world-war', 'avgdist': 1.0189693892620526} {'cnt': 276908.0, 'key': 'may-refer', 'avgdist': 1.1273744348303407} {'cnt': 265955.0, 'key': 'also-known', 'avgdist': 1.0779455170987573} {'cnt': 211612.0, 'key': 'new-zealand', 'avgdist': 1.0130852692663932} {'cnt': 201213.0, 'key': 'war-ii', 'avgdist': 1.0226227927618992} {'cnt': 200990.0, 'key': 'los-angeles', 'avgdist': 1.0055077367033185} {'cnt': 196407.0, 'key': 'world-ii', 'avgdist': 2.0065985428217936} {'cnt': 195522.0, 'key': 'new-city', 'avgdist': 2.0166477429649858} {'cnt': 192153.0, 'key': 'first-time', 'avgdist': 1.0718802204493294} {'cnt': 190443.0, 'key': 'took-place', 'avgdist': 1.0701942313448118} {'cnt': 187915.0, 'key': 'york-city', 'avgdist': 1.0241864672857408} {'cnt': 177112.0, 'key': 'two-years', 'avgdist': 1.1502100365870185} {'cnt': 165171.0, 'key': 'united-kingdom', 'avgdist': 1.0456496600492822} {'cnt': 156134.0, 'key': 'made-debut', 'avgdist': 2.7813800965837037} {'cnt': 147599.0, 'key': 'years-later', 'avgdist': 1.0655695499292002} {'cnt': 144342.0, 'key': 'air-force', 'avgdist': 1.0444846267891534} {'cnt': 135557.0, 'key': 'national-team', 'avgdist': 1.6866779288417419} {'cnt': 130534.0, 'key': 'football-league', 'avgdist': 1.0818024422755756} {'cnt': 128255.0, 'key': 'prime-minister', 'avgdist': 1.0330045612256833} {'cnt': 122196.0, 'key': 'summer-olympics', 'avgdist': 1.0257373400111296} {'cnt': 122174.0, 'key': 'world-cup', 'avgdist': 1.0515412444546304} {'cnt': 120763.0, 'key': 'new-jersey', 'avgdist': 1.1022829840265644} {'cnt': 119705.0, 'key': 'years-age', 'avgdist': 2.0365732425546135} {'cnt': 119549.0, 'key': 'de-la', 'avgdist': 1.1842591740625183} {'cnt': 118006.0, 'key': 'median-income', 'avgdist': 1.0587004050641493} {'cnt': 117101.0, 'key': 'san-francisco', 'avgdist': 1.0201193841213996} {'cnt': 114191.0, 'key': 'three-years', 'avgdist': 1.1805045931815992} {'cnt': 112655.0, 'key': 'south-africa', 'avgdist': 1.0598553104611423} {'cnt': 110945.0, 'key': 'civil-war', 'avgdist': 1.0329081977556447} {'cnt': 110460.0, 'key': 'north-america', 'avgdist': 1.1023085279739273} {'cnt': 110385.0, 'key': 'rural-district', 'avgdist': 1.6351315849073698} {'cnt': 109746.0, 'key': 'village-district', 'avgdist': 3.8112915277094381} {'cnt': 109451.0, 'key': 'hong-kong', 'avgdist': 1.015312788371052} {'cnt': 109029.0, 'key': 'railway-station', 'avgdist': 1.1718533601151988} {'cnt': 108805.0, 'key': 'head-coach', 'avgdist': 1.1326685354533339} {'cnt': 108643.0, 'key': 'best-known', 'avgdist': 1.0095818414439954} {'cnt': 106882.0, 'key': 'football-team', 'avgdist': 1.1508579555023297} {'cnt': 103638.0, 'key': 'following-year', 'avgdist': 1.0483992358015399} {'cnt': 102599.0, 'key': 'world-championships', 'avgdist': 1.6250060916773068} {'cnt': 100959.0, 'key': 'state-university', 'avgdist': 1.1624223694767182} {'cnt': 100894.0, 'key': 'national-historic', 'avgdist': 2.6839653497730289} {'cnt': 100845.0, 'key': 'census-population', 'avgdist': 2.4456839704497} {'cnt': 100527.0, 'key': 'studio-album', 'avgdist': 1.0718016055388104} {'cnt': 99717.0, 'key': 'became-first', 'avgdist': 2.1817343080919001} {'cnt': 99680.0, 'key': 'supreme-court', 'avgdist': 1.0484249598715891} {'cnt': 99118.0, 'key': 'years-older', 'avgdist': 3.8679250993765009} {'cnt': 99025.0, 'key': 'average-size', 'avgdist': 1.9921938904317091} {'cnt': 98915.0, 'key': 'school-school', 'avgdist': 3.4493858363241165} {'cnt': 98811.0, 'key': 'can-also', 'avgdist': 1.0773598081185294} {'cnt': 98530.0, 'key': 'also-used', 'avgdist': 1.4339186034710241} {'cnt': 97546.0, 'key': 'school-district', 'avgdist': 1.1931191437885715} {'cnt': 97451.0, 'key': 'district-county', 'avgdist': 3.0161619685790808} {'cnt': 97159.0, 'key': 'one-two', 'avgdist': 2.6380880824215978} {'cnt': 96703.0, 'key': 'film-directed', 'avgdist': 1.5585038726823366} {'cnt': 96575.0, 'key': 'may-also', 'avgdist': 1.1641729225990163} {'cnt': 95517.0, 'key': 'age-older', 'avgdist': 2.0184888553869991} {'cnt': 94680.0, 'key': 'north-carolina', 'avgdist': 1.0608259400084494} {'cnt': 94484.0, 'key': 'years-old', 'avgdist': 1.0466322340290419} {'cnt': 93606.0, 'key': 'national-register', 'avgdist': 1.0252334252077859} {'cnt': 91420.0, 'key': 'african-american', 'avgdist': 1.9708160140013127} {'cnt': 91377.0, 'key': 'film-festival', 'avgdist': 1.0901211464591747} {'cnt': 90195.0, 'key': 'one-first', 'avgdist': 3.062486834081712} {'cnt': 89197.0, 'key': 'album-released', 'avgdist': 2.5591443658419006} {'cnt': 87747.0, 'key': 'district-district', 'avgdist': 3.2255461725187184} {'cnt': 85007.0, 'key': 'two-later', 'avgdist': 2.0740527250697003} {'cnt': 84918.0, 'key': 'national-league', 'avgdist': 1.7398666949292259} {'cnt': 84478.0, 'key': 'historic-places', 'avgdist': 1.0030303747721301} {'cnt': 84372.0, 'key': 'register-historic', 'avgdist': 2.0008652159484188} {'cnt': 84282.0, 'key': 'television-series', 'avgdist': 1.1532474312427328} {'cnt': 84107.0, 'key': 'first-season', 'avgdist': 1.7450866158583709} {'cnt': 83373.0, 'key': 'new-south', 'avgdist': 1.2435200844398067} {'cnt': 83246.0, 'key': 'register-places', 'avgdist': 2.9999639622324197} {'cnt': 83244.0, 'key': 'general-election', 'avgdist': 1.0228364807073183} {'cnt': 82775.0, 'key': 'national-places', 'avgdist': 3.9974267592872246} {'cnt': 81946.0, 'key': 'south-wales', 'avgdist': 1.0285797964513217} {'cnt': 81269.0, 'key': 'early-century', 'avgdist': 2.1853105120033467} {'cnt': 80301.0, 'key': 'music-video', 'avgdist': 1.0784797200532994} {'cnt': 79868.0, 'key': 'world-championship', 'avgdist': 1.6569840236390043} {'cnt': 79737.0, 'key': 'first-two', 'avgdist': 1.5420193887404843} {'cnt': 79282.0, 'key': 'first-round', 'avgdist': 1.1063797583310209} {'cnt': 78219.0, 'key': 'four-years', 'avgdist': 1.1289456525908028} {'cnt': 77397.0, 'key': 'can-used', 'avgdist': 2.2278512087031799} {'cnt': 77107.0, 'key': 'soviet-union', 'avgdist': 1.0200241223235245} {'cnt': 77043.0, 'key': 'washington-dc', 'avgdist': 1.0245966538166997} {'cnt': 75994.0, 'key': 'human-rights', 'avgdist': 1.0461483801352738} {'cnt': 75987.0, 'key': 'debut-album', 'avgdist': 1.2821403661152566} {'cnt': 75756.0, 'key': 'two-one', 'avgdist': 2.9820740271397645} {'cnt': 74052.0, 'key': 'every-females', 'avgdist': 2.0007832334035545} {'cnt': 73820.0, 'key': 'can-found', 'avgdist': 2.1565564887564346} {'cnt': 73732.0, 'key': 'many-years', 'avgdist': 1.1092470026582759} {'cnt': 73710.0, 'key': 'roman-catholic', 'avgdist': 1.0117351784018451} {'cnt': 73566.0, 'key': 'second-war', 'avgdist': 2.0189897507000518} {'cnt': 73307.0, 'key': 'hall-fame', 'avgdist': 2.0010230946567176} {'cnt': 72635.0, 'key': 'award-best', 'avgdist': 2.1954567357334618} {'cnt': 72531.0, 'key': 'took-part', 'avgdist': 1.1381478264466227} {'cnt': 71868.0, 'key': 'several-including', 'avgdist': 2.7977959592586408} {'cnt': 71749.0, 'key': 'five-years', 'avgdist': 1.1184128001783997} ###Markdown Microsoft Movie Studios Analysis**Authors:** Armun Shakeri*** OverviewThis project analyzes current movie trends, budgets, gross income, and ratings in order to help Microsoft Studios best decide which movies to produce in its new upcoming studio. Analysis will show that if Microsoft studios produces movies that are in high demand positive gross profit will be reflected. Business ProblemMicrosoft is seeking to enter into the movie industry and does not know what movies to create. We need to analyze what types of movies are currently trending, most popular movie genres, highest grossing movies of all time, highest budgeted movies, and movie title basics. For Microsoft's new movie studio to be profitable we need to pick a movie genre that is currently in demand and which movies had highest gross incomes, doing this ensures that the movie will have a positive inception and be profitable. Data Understanding The following files imported are from various film rating institutions that will help identify what type of movieMicrosoft Studios should create next. These files include information on income, genres, ratings, and movie budgets. We intend to use variables mostly related to domestic gross income since we want Microsoft's first film to be profitable within the United States. ###Code # Import standard packages import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns import sqlite3 %matplotlib inline # Here we run code to explore the data income = pd.read_csv('zippedData/bom.movie_gross.csv.gz', compression='gzip', error_bad_lines=False) basics = pd.read_csv('zippedData/imdb.title.basics.csv', error_bad_lines=False) ratings = pd.read_csv('zippedData/imdb.title.ratings.csv.gz', compression='gzip', error_bad_lines=False) budgets = pd.read_csv('zippedData/tn.movie_budgets.csv.gz', compression='gzip', error_bad_lines=False) info = pd.read_csv('zippedData/rt.movie_info.tsv.gz', compression='gzip', sep='\t', error_bad_lines=False) # the target variables here are title and domestic_gross income.info() #the target variables are primary title and genre basics.head() ratings.head() budgets.info() #the target variables are movie, production_budget, and domestic_gross info.head() ###Output _____no_output_____ ###Markdown Data Preparation We are going to drop studio since microsoft will be using their own, year, and foreign_gross(income) since it is irrelevant in analyzing gross profit for a new movie within the United States. ###Code income.drop(['studio', 'year', 'foreign_gross'], axis=1, inplace=True) income.sort_values('domestic_gross', ascending=False).head(20) ###Output _____no_output_____ ###Markdown The new film will be focusing on the domestic US market so for the budgets data release_date and worldwide_gross will be the dropped variables. Domestic_gross income will also be dropped since we are going to combine budgets and income. ###Code info.drop(['id','synopsis','genre','director','writer','theater_date','dvd_date','currency','runtime', 'studio'],axis=1, inplace=True) ###Output _____no_output_____ ###Markdown For the info data fram we will drop 'synopsis','genre','director','writer','theater_date','dvd_date','currency','runtime', 'studio', and we will drop all NA values. These are irrelevant for analysis. ###Code info=info.dropna() info.sort_values(by='rating', ascending=True).head(20) info.info() info.box_office=info.box_office.str.replace(",","") info.box_office=info.box_office.astype(int) info.info() budgets.drop(['id','release_date', 'domestic_gross', 'worldwide_gross'], axis=1, inplace=True) budgets.head() ###Output _____no_output_____ ###Markdown In budgets we will drop id, realease_date, domestic_gross, and worldwide_gross since they are irrelevant for analysis. ###Code #rename 'movie' columns to title to merge income and budgets budgets = budgets.rename(columns={'movie':'title'}) budgets.head() #merge income and budgets by movie titles movie_income_df = pd.merge(income, budgets, on=['title'], how='left') movie_income_df.dropna().head() #-convert production budget to integer. #remove "$" and commas using str.replace method #sort new dataframe by highest domestic gross income movie_income_df.sort_values(by='domestic_gross', ascending=False).dropna().head(20) ###Output _____no_output_____ ###Markdown We will need to combine basics and ratings using the common variable 'tconst'. Doing so we will be able to analyze ratings of different movies in specific genres. This will allow us to decide what type of genre Microsoftstudios should focus on when creating the new movie. ###Code basics.drop(['start_year', 'runtime_minutes', 'original_title'], axis=1, inplace=True) ratings.drop(['numvotes'], axis=1, inplace=True) #renamed 'primary_title' to 'title' basics = basics.rename(columns={'primary_title':'title'}) basics.head() ratings.head() ###Output _____no_output_____ ###Markdown In order to accurately understand the ratings of each title we will need to combine basics and ratings by tconst. ###Code #merge movie ratings and basics, and drop all NaN values in average rating movie_basics_df = pd.merge(basics, ratings, on=['tconst'], how='left') movie_basics_df.sort_values(by='averagerating', ascending=False).dropna().head(20) ###Output _____no_output_____ ###Markdown Finally we will combine movie_income_df and movie_basics_df. This gives us a final dataframe with all the data we will need included within a central data set. ###Code movie_combined_df = pd.merge(movie_income_df, movie_basics_df, on=['title'], how='left') movie_combined_df.drop(['tconst'], axis=1, inplace=True) movie_combined_df = movie_combined_df.sort_values(by='domestic_gross', ascending=False).dropna().head(30) movie_combined_df ###Output _____no_output_____ ###Markdown In order to make modeling this data easier, we will remove all "$" and "," from production_budget. We will also change the variable type of production_budget from string to integer. ###Code movie_combined_df.production_budget=movie_combined_df.production_budget.str.replace("$","") movie_combined_df.production_budget=movie_combined_df.production_budget.str.replace(",","") movie_combined_df.production_budget=movie_combined_df.production_budget.astype(int) movie_combined_df.head(30) ###Output _____no_output_____ ###Markdown The above data set is the finished data set we will use in modeling. It has been arranged from highest grossing film to lowest and also shows the film's production budget, genre and average rating. Data Modeling ###Code movie_combined_df.describe() ###Output _____no_output_____ ###Markdown Calculating the statistical methods (mean, median, mode...etc) will help create a general idea of where the movie industry is currently at in todays market. This is a good baseline to start analysis. ###Code productionbudgetloop = [] for production_budget in movie_combined_df['production_budget']: if production_budget <= 150000000: productionbudgetloop.append(1) elif production_budget <= 175000000: productionbudgetloop.append(2) elif production_budget <= 200000000: productionbudgetloop.append(3) else: productionbudgetloop.append(4) movie_combined_df['production1'] = productionbudgetloop movie_combined_df.head() #Figure 1 #in this figure we are comparing production budgets to ratings. Production budgets have been separated the amount #film's production budgets were. From 25th, 50th, 75th and max. g = movie_combined_df.groupby('production1').mean() sns.barplot(x=g.index, y= "averagerating", data=g, color= 'blue') plt.title("production budgets compared to ratings") ###Output _____no_output_____ ###Markdown As shown by figure one, the higher the film's production budget the higher rating the film will recieve. ###Code movie_combined_df.describe() #Figure 2 #movie_combined_df.groupby('title').sum().plot(kind='bar') sns.barplot(y="title", x="production_budget", data=movie_combined_df[:20], color= 'blue') plt.title("Film(s) Production Budget") ###Output _____no_output_____ ###Markdown Figure 1 shows the average production budget of top 20 films. In figure 2 movies that are geared more towards the family demographic seem to have the highest domestic gross profits. ###Code #Figure 3 new_movie=movie_combined_df.groupby("genres").agg('mean') new_movie ###Output _____no_output_____ ###Markdown In figure 4 action, adventure, and animation genre has the highest domestic gross income among all the genres presented and also has the highest rating. ###Code new_movie.reset_index(inplace=True) new_movie.info() #Figure 4 sns.barplot(y="genres", x="domestic_gross", data=new_movie, color= 'blue') plt.title("Genres and Their Respective Domestic Gross Profit") ###Output _____no_output_____ ###Markdown Figure 4 shows the domestic gross profit among all the genres presented. We also see in this figure that action, adventure, and animation has the highest domestic gross profit by a fairly wide margin. ###Code #Figure 5 sns.countplot(y="genres", data=movie_combined_df[:100], color= 'blue') plt.xlabel("Count of Films") plt.ylabel("Genres") plt.title("Count of Film Genres") #this basic scatter plot will also help us determine the genres. Will need to spread the x axis further apart. Also #right off the bat we see that the majority of films have some sort of action aspect. #50% of top 20 films fall under Action, Adventure, Scifi category ###Output _____no_output_____ ###Markdown Figure 3 is a scatter plot that shows the genres of top 20 films. Currently in today's movie market there is a saturation of action, adventure and scifi movies. Microsoft should try to differentiate themselves by creating a movie that falls within a different genre. ###Code #Figure 6 #We are trying to create 2 histograms, one with movie ratings of 7.0< and related production budgets, the other ratings of #7.0> and production budgets. budget_profit_fig, budget_profit_axis = plt.subplots(nrows=1, ncols=2, figsize=(30,6)) budget_profit_axis[0].set_title('Movies with ratings of 7.0<' ) budget_profit_axis[0].set_ylabel('production_budget') budget_profit_axis[0].set_xlabel('title') budget_profit_axis[1].set_title('Movies with ratings of 7.0>') budget_profit_axis[1].set_ylabel('production_budget') budget_profit_axis[1].set_xlabel('title') budget_profits_high = movie_combined_df['title'][movie_combined_df['averagerating'] > 7.0] budget_profits_low = movie_combined_df['title'][movie_combined_df['averagerating'] < 7.0] budget_profit_axis[0].hist(budget_profits_high, bins=10) budget_profit_axis[1].hist(budget_profits_low, bins=30) budget_profit_axis[0].tick_params(labelrotation=90) budget_profit_axis[1].tick_params(labelrotation=90) plt.show() ###Output _____no_output_____ ###Markdown Figure 4 allows us to see if having a higher budget will reflect in the movie's rating. ###Code #Figure 7 sns.barplot(y="rating", x="box_office", data=info, color= 'blue') plt.title("Ratings and Their Total Box Office Returns") ###Output _____no_output_____ ###Markdown Summer Data Scientist Data Assessment Crime and Education Lab New York*Jesica Maria Ramirez Toscano* Part 1: Variable Creation ###Code import pandas as pd import numpy as np arrests = pd.read_csv('arrests.csv') demo = pd.read_csv('demo.csv') demo['bdate'] = pd.to_datetime(demo['bdate'], utc=False) arrests['arrest_date'] = pd.to_datetime(arrests['arrest_date'], utc=False) ###Output _____no_output_____ ###Markdown 1. We filter the arrest to the ones that occurred post-implementation. 2. Since we need information about past arrests and potential felony re-arrests, we merge the post-arrests with the total arrests by person_id. So each arrest will be linked to a post-arrest of the same individual.> Note: **arrest_post** refers to the data of arrests post-implementation. **tr** refers to the merged data of arrests_post with all the arrests. So each arrest in this data set is linked to a post-arrest of the same individual. ###Code arrests_post = arrests[arrests['arrest_date'] >= '2010-01-01'].copy() tr = pd.merge(arrests, arrests_post.rename(columns={'arrest_date':'date_post', 'arrest_id':'aid_post', 'law_code':'code_post'}), on='person_id') ###Output _____no_output_____ ###Markdown 3. We create different tables to obtain the number of prior misdemeanor arrests and felony arrests in the last 2 years and 6 months. ###Code twoyear = tr[(tr['arrest_date'] >= tr['date_post']-pd.DateOffset(years=2)) & (tr['arrest_id'] != tr['aid_post'])] sixmonth = tr[(tr['arrest_date'] >= tr['date_post'] - pd.DateOffset(months=6)) & (tr['arrest_id'] != tr['aid_post'])] twoyear = twoyear.groupby(['aid_post', 'law_code']).size().unstack().reset_index().fillna(0) twoyear.rename(columns = {'aid_post':'arrest_id', 'felony': 'fel_2y', 'misdemeanor': 'mis_2y'}, inplace=True) sixmonth = sixmonth.groupby(['aid_post', 'law_code']).size().unstack().reset_index().fillna(0) sixmonth.rename(columns = {'aid_post':'arrest_id', 'felony': 'fel_6m', 'misdemeanor': 'mis_6m'}, inplace=True) ###Output _____no_output_____ ###Markdown >So for the table **twoyear**, we have the post_arrests variable with the number of prior felony and misdemeanor arrests in the last two years. ###Code twoyear ###Output _____no_output_____ ###Markdown 4. To create the felony re-arrest binary variable, we need information about the potential future felony arrest of that individual. So first, we create a table called **year_ahead** using the **tr** dataset. ###Code year_ahead = tr[(tr['arrest_date'] >= tr['date_post']) & (tr['arrest_id'] != tr['aid_post'])] year_ahead = year_ahead[year_ahead['arrest_date'] <= year_ahead['date_post'] + pd.DateOffset(years=1)] year_ahead = year_ahead.groupby(['aid_post', 'law_code']).size().unstack().reset_index().fillna(0) year_ahead.rename(columns = {'aid_post':'arrest_id', 'felony': 'felony_arrests' }, inplace=True) year_ahead[['arrest_id', 'felony_arrests']] ###Output _____no_output_____ ###Markdown >With this table, we can create a binary variable of re_arrest (1 if the individual has one or more felony arrests during one year following the arrest, 0 if the individual has no felony re-arrest) ###Code year_ahead['re_arrest'] = np.where(year_ahead['felony_arrests'] > 0,1,0) ###Output _____no_output_____ ###Markdown 5. With twoyear, sixmonth, year_ahead tables, we can now fill the data in arrests_post about the number of prior felony arrests and misdemeanor arrests in the last 2 years and 6 months, and the binary variable re_arrest (felony re-arrest). ###Code arrests_post = arrests_post.merge(twoyear, on='arrest_id', how='left').fillna(0) arrests_post = arrests_post.merge(sixmonth, on='arrest_id', how='left').fillna(0) arrests_post = arrests_post.merge(year_ahead[['arrest_id', 're_arrest']], on='arrest_id', how='left').fillna(0) arrests_post ###Output _____no_output_____ ###Markdown 6. Finally, we include data about the home precinct, age, and gender of the individual in each arrest.>For the age variable, we obtain the difference in the arrest date and the birthdate (the result is in days, we convert it to years.) For the gender variable, we noticed it has four unique values: M, F, male, female. So we changed male and female values as M and F. ###Code final = pd.merge(arrests_post, demo, on='person_id') final['age'] = ((final['arrest_date'] - final['bdate']) / np.timedelta64(1, 'Y')).round().astype(int) final.drop(['bdate', 'arrest_id',], axis=1, inplace=True) final.gender.unique() final.loc[final['gender'] == 'male', 'gender'] = 'M' final.loc[final['gender'] == 'female', 'gender'] = 'F' print(final.gender.unique()) final ###Output ['M' 'F'] ###Markdown Part 2: Statistical Analysis >> Program Evaluation ###Code import matplotlib.pyplot as plt import statsmodels.api as sm import seaborn as sns from statsmodels.discrete.discrete_model import Probit ###Output _____no_output_____ ###Markdown 1. First, we import data about the treatment and control precincts2. Then, we are only interested in measuring the effect of the program for the first time an individual receives treatment, we filter the data to the first arrest of each individual in the post-implementation period. ###Code treat = pd.read_csv('treatment_assignment.csv') treat.rename(columns={'precinct' : 'home_precinct'}, inplace=True) first = final.groupby('person_id').agg({'arrest_date':min}).reset_index() first = first.merge(final, on=['person_id', 'arrest_date']) ###Output _____no_output_____ ###Markdown > If we look at the data in the treatment_assignment data set, there are 30 precincts (control and treatment precincts), whereas in the data set of first arrests post-implementation period, there are 77 different precincts. ###Code print('Treatment-control precincts: {}'.format(len(treat.home_precinct.unique()))) print('Arrests post-implementation precincts: {}'.format(len(first.home_precinct.unique()))) ###Output Treatment-control precincts: 30 Arrests post-implementation precincts: 77 ###Markdown >In this sense, we have two options: a) Assume that the precincts not included in the treatment_assignment data set are also CONTROL. b) Assume that the treatment_assignment is complete and those precincts were chosen to study because they are similar to each other. I'm going to follow the option b), and drop the observations that don't fall in the control and treatment precincts. ###Code data_eval = first.merge(treat, on=['home_precinct'], how='right') data_eval.drop(['person_id', 'arrest_date'], axis=1, inplace=True) data_eval ###Output _____no_output_____ ###Markdown 3. Before evaluating the success of the program, we change the values of the following variables: -gender to 1 for Men and 0 for Female -treatment_status to 1 for treatment and 0 for control -law_code to 1 for felony and 0 for misdemeanor ###Code data_eval['gender'] = np.where(data_eval['gender']== 'M', 1, 0) data_eval['treatment_status'] = np.where(data_eval['treatment_status']== 'control', 0, 1) data_eval['law_code'] = np.where(data_eval['law_code']== 'felony', 1, 0) ###Output _____no_output_____ ###Markdown 4. To analyze the effectiveness of this program, we regress the re_arrest variable on the rest of the covariates.> Since the dependent variable is binary, we must estimate heteroscedasticity robust standard errors ###Code IND_VARS = ['treatment_status', 'age', 'gender', 'law_code', 'fel_2y', 'mis_2y', 'fel_6m', 'mis_6m'] all_ = sm.add_constant(data_eval[IND_VARS]) model1 = sm.OLS(data_eval['re_arrest'], all_).fit(cov_type='HC1') model1.summary() ###Output _____no_output_____ ###Markdown *In this linear probability model, we observe that the treatment_status is not statistically significant, which may imply that there is no evidence to say that the program reduced or even affected the probability of felony re-arrest. In fact, the only variable that signifincantly explains the variation in the re_arrest probability is the recent-history (prior 6 months) of felony arrests. We plot this variable (prior felony arrests in the last 6 months) with the binary variable re_arrest and the estimated probability values of this model. In the graph above, we observe that the some estimated values are above one, and below zero (which makes no sense in probability).* ###Code plt.figure(figsize=(10,6)) sns.scatterplot(data_eval['fel_6m'],data_eval['re_arrest'], label='Real values') sns.scatterplot(data_eval['fel_6m'],model1.fittedvalues, label='Estimated values') plt.xlabel("Prior felony arrests (in the last 6 months)") plt.ylabel("Felony re-arrest") plt.show() ###Output _____no_output_____ ###Markdown *Looking to the graph above, we might agree that the independent variables and re-arrest appropriate model may not be linear. In this sense, we can use a probit model to estimate the effects of the independent variables on re-arrest probability.* ###Code probitm = Probit(data_eval['re_arrest'], all_).fit() probitm.summary() ###Output Optimization terminated successfully. Current function value: 0.148459 Iterations 8 ###Markdown *In this probit model, again, the treatment_status has no impact on the re-arrest variable. In this sense, there is no evidence that the program had an impact on the felony re-arrest probability. Most of the variation of the re-arrest probability is explained by past felony arrests in the last 6 months, which in this model specification also shows significance. Now, in the graph above, we look at prior felony arrests in the last 6 months with the binary variable re_arrest and the estimated probability values of the OLS and probit models. The estimated probability with the probit model is bounded within 1 and 0.* ###Code plt.figure(figsize=(10,6)) sns.scatterplot(data_eval['fel_6m'],data_eval['re_arrest'], label='Real values') sns.scatterplot(data_eval['fel_6m'],model1.fittedvalues, label='Estimated values with OLS') sns.scatterplot(data_eval['fel_6m'],probitm.predict(all_), label='Estimated values with Probit') plt.xlabel("Prior felony arrests (in the last 6 months)") plt.ylabel("Felony re-arrest") plt.show() ###Output _____no_output_____ ###Markdown Load module ###Code import os import numpy as np import pandas as pd from matplotlib import pyplot as plt import matplotlib import copy plt.rc('text', usetex=True) ###Output _____no_output_____ ###Markdown big picture Attributes that we want to include+ acc: - TIME; - WEEKDAY; (category) - RDSURF; (category) - LIGHT; (category) - WEATHER; (category)+ curv: - deg_curv;+ grad: - pct_grad;+ road: - AADT; - trkpcts; - mvmt; - RURURB; (category) - MED_TYPE, MEDWID; - LSHL_TYP, LSHL_TY2, LSHLDWID, LSHL_WD2; (2 represents decreasing direction) - RSHL_TYP, RSHL_TY2, RSHLDWID, RSHL_WD2; - SURF_TYP, SURF_TY2; (The composition of the driving surfacein two directions) - lanewid, rdwy_wid; (on average, need filter > 0) - FUNC_CLS; (? this might be an summary variable that includes info of all previous variables)(category)+ occ: &nbsp;&nbsp;&nbsp;&nbsp;None;+ peds: &nbsp;&nbsp;&nbsp;&nbsp;None;+ veh: - DRV_SEX; (need to summarize) - DRV_AGE; (need to summarize) - vehtype; (>4 is big ones?) - surf_typ; (Roadway surface type at the crash location? redundant info? No they do not agree) - drv_actn; (difficult) - intox; (need to summarize) functions and pre-test read function - everybody needs ###Code def detect_files(directory, keyword): """ detect files in specified directory with specified keyword input ----- directory : string dir to search keyword : string keyword to look for output ----- sorted list of file names test ----- (1) if output has larger than length; """ file_list = [] for file in os.listdir(directory): if not (keyword is None): if keyword in file: file_list.append(file) else: file_list.append(file) return sorted(file_list) def read_files(directory, keyword): """ read files with specified keyword input ----- directory : string directory to read files from keyword : string keyword to search for output ----- output_dic : dic dictionary of datasets test ----- (1) output_dic should have length 5, for 2013 - 2017; (2) keyword should not be empty; """ output_dic = {} file_list = detect_files(directory, keyword) for yr in range(2013, 2018): output_dic[yr] = pd.read_csv(os.path.join(directory, file_list[yr-2013])) return output_dic ###Output _____no_output_____ ###Markdown test on veh aggregationThis function will be used in s3_merge.py ###Code def veh_agg(df, crash_year): """ aggregate vehicle info input ----- df : pandas dataframe df to be summarized output ----- df: pandas dataframe aggregated df """ def sex(series): for ele in series.tolist(): if ele > 1: return True return False def young(series): for ele in series.tolist(): if ele < 25: return True return False def old(series): for ele in series.tolist(): if ele > 65: return True return False def drink(series): for ele in series.tolist(): if ele == 1.0 or ele == 5.0: return True return False def truck(series): for ele in series.tolist(): if ele > 4: return True return False def old_car(series): for ele in series.tolist(): model_year = 1900 if ele < 10: model_year += (100 + ele) elif ele < 20: model_year += (100 + ele) else: model_year += (ele) if crash_year - model_year >= 15: return True return False df = df.groupby(['CASENO']).agg({'DRV_SEX': [sex], 'DRV_AGE': [young, old], 'vehtype': [truck], 'vehyr': [old_car], # 'surf_typ': , # 'drv_actn': , 'intox': [drink] }) df.columns = df.columns.get_level_values(1) df = df.reset_index() return df veh_agg(veh[2017], 2017) ###Output _____no_output_____ ###Markdown analysis read, extract, combine ###Code crash = read_files("./merged", '20') columns = [ 'REPORT', 'ACCTYPE', 'TIME', 'WEEKDAY', 'RDSURF', 'LIGHT', 'weather', 'deg_curv', 'pct_grad', 'AADT', 'trkpcts', 'mvmt', 'RURURB', 'MED_TYPE', 'MEDWID', 'LSHL_TYP', 'LSHL_TY2', 'LSHLDWID', 'LSHL_WD2', 'RSHL_TYP', 'RSHL_TY2', 'RSHLDWID', 'RSHL_WD2', 'SURF_TYP', 'SURF_TY2', 'lanewid', 'rdwy_wid', 'FUNC_CLS', 'sex', 'young', 'old', 'drink', 'truck', 'old_car' ] for year in crash: df = crash[year] crash[year] = df[columns] crash[2017] pd.unique(crash[2017]['weather']) ###Output _____no_output_____ ###Markdown focus on type 33***Strikes Appurtenance***Need to drop NA values. + Notice, **AADT**, **trkpcts**, **mvmt** have NA values. This is strongly undesirable;+ We drop rows with NA in those rows and thus retrieve 4,658 rows from 4,694 rows. That's not much loss; ###Code df = crash[2017] df = df[df.ACCTYPE == 33] # df = df.dropna() df df.isna().any() df.dropna(subset=['AADT', 'trkpcts', 'mvmt']) ###Output _____no_output_____ ###Markdown append and obtain the final large dataset ###Code df = crash[2013] df = df[df.ACCTYPE == 33] for year in range(2014, 2018): tmp = crash[year] tmp.weather = tmp.weather.replace({'.': '10'}) df = df.append(tmp[tmp.ACCTYPE == 33]) print("Before dropping, has {} rows.".format(df.shape[0])) df = df.dropna(subset=['AADT', 'trkpcts', 'mvmt']) print("After dropping, has {} rows.".format(df.shape[0])) ###Output _____no_output_____ ###Markdown write out ###Code df.to_csv('./merged/final.csv', index=False) ###Output _____no_output_____ ###Markdown Clearly we can see now the missing are in the types, of mdium, left shoulder, right shoulder.Interestingly, + *MEDWID* is non-zero but *MED_TYPE* is missing;+ and are missing for many cases;+ also have a lot of missings; Maybe we remove the type attributes?We just keep the width info and don't care about the types of materials. further delete type attributes ###Code df = pd.read_csv('./merged/final.csv') df.isna().any() df.isna().sum() df = df.drop(columns=['MED_TYPE', 'LSHL_TYP', 'LSHL_TY2', 'RSHL_TYP', 'RSHL_TY2', 'SURF_TY2']) df = df.dropna() df.to_csv('./merged/final_no_na.csv', index=False) ###Output _____no_output_____ ###Markdown convert numerical to categorical and then create dummy variables The variables to be converted are:+ WEEKDAY;+ RDSURF;+ LIGHT;+ weather;+ RURURB;+ SURF_TYP;+ FUNC_CLS; ###Code df = pd.read_csv('./merged/final_no_na.csv') ###Output _____no_output_____ ###Markdown look at their unique values**Weather** needs some special attention. ###Code pd.unique(df.WEEKDAY) pd.unique(df.RDSURF) pd.unique(df.LIGHT) pd.unique(df.weather) pd.unique(df.RURURB) pd.unique(df.SURF_TYP) pd.unique(df.FUNC_CLS) ###Output _____no_output_____ ###Markdown convert some to integers ###Code df = df.astype( {'WEEKDAY':'int64', 'RDSURF':'int64', 'LIGHT':'int64', 'weather':'int64', 'FUNC_CLS':'int64'}) df['peak-hour'] = df['TIME'].apply(lambda x: 1 if (700 <= x <= 1000) or (1700 <= x <= 2000) else 0) df['WEEKDAY'] = df['WEEKDAY'].apply(lambda x: 1 if x < 6 else 0) df = df[df['LIGHT'].isin([1,2,3,4,5,6])] df['LIGHT'] = df['LIGHT'].replace({5:4, 6:4}) df = df[df['AADT'] > 0] df = df.drop(columns=['TIME']) df = df.astype( {'WEEKDAY':'category', 'RDSURF':'category', 'LIGHT':'category', 'weather':'category', 'RURURB':'category', 'SURF_TYP':'category', 'FUNC_CLS':'category', 'sex':'category', 'young':'category', 'old':'category', 'drink':'category', 'truck':'category', 'old_car':'category', 'peak-hour':'category' }) df.to_csv('./merged/final_type_correct.csv', index=False) ###Output _____no_output_____ ###Markdown SMOTE ###Code from imblearn.over_sampling import SMOTENC from sklearn.utils import resample from collections import Counter # Separate majority and minority classes crash_1 = df[df.REPORT==1] crash_23 = df[df.REPORT!=1] # Downsample majority class crash_1_downsampled = resample(crash_1, replace=False, # sample without replacement n_samples=4843, # to match minority class random_state=123) # reproducible results # Combine minority class with downsampled majority class crash_d = pd.concat([crash_1_downsampled, crash_23]) crash_d.columns reg_data = crash_d[['WEEKDAY','RDSURF','LIGHT','weather','RURURB','SURF_TYP', 'FUNC_CLS','sex','young','old','drink','truck','old_car', 'peak-hour', 'MEDWID','LSHLDWID','LSHL_WD2','RSHLDWID','RSHL_WD2','lanewid','rdwy_wid', 'deg_curv', 'pct_grad', 'AADT', 'trkpcts', 'mvmt']] y = crash_d['REPORT'] sm = SMOTENC(random_state=42, categorical_features=[0,1,2,3,4,5,6,7,8,9,10,11,12,13]) reg_data_res, y_res = sm.fit_resample(reg_data, y) C = Counter(y_res) print(C) print(reg_data_res.shape) print(y_res.shape) reg_data_x = pd.DataFrame(data=reg_data_res) reg_data_y = pd.DataFrame(data=y_res) print(reg_data_x.shape) print(reg_data_y) reg_data = pd.concat([reg_data_x, reg_data_y], axis=1, sort=False) reg_data.to_csv('./merged/final_smote.csv', index = False) ###Output _____no_output_____ ###Markdown create dummy and regression ###Code df = pd.read_csv('./merged/final_type_correct.csv') df df_log = pd.get_dummies(df, columns=['WEEKDAY', 'RDSURF', 'LIGHT', 'weather', 'RURURB', 'SURF_TYP', 'FUNC_CLS']) ###Output _____no_output_____ ###Markdown learningI think the sklearn logistic regression can handle this by specifying the **class_weight** as **balanced**.+ [sklarn logistic regression](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html)+ [a blog](https://towardsdatascience.com/machine-learning-multiclass-classification-with-imbalanced-data-set-29f6a177c1a)+ [blog code](https://github.com/javaidnabi31/Multi-class-with-imbalanced-dataset-classification/blob/master/20-news-group-classification.ipynb)+ [get dummies](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.get_dummies.html) ###Code from sklearn.linear_model import LogisticRegression from sklearn.linear_model import LogisticRegressionCV y = df_log['REPORT'] X = df_log.drop(columns=['REPORT', 'ACCTYPE']) msk = np.random.rand(len(df)) < 0.8 X_train = X[msk] X_test = X[~msk] y_train = y[msk] y_test = y[~msk] ###Output _____no_output_____ ###Markdown multinomial logistic ###Code clf = LogisticRegression(multi_class='multinomial', class_weight='balanced',solver='newton-cg', penalty='none' ).fit(X_train, y_train) clf.score(X_train, y_train) prediction = clf.predict(X_test) ###Output _____no_output_____ ###Markdown confusion matrix ###Code from sklearn.metrics import confusion_matrix import itertools cnf_matrix = confusion_matrix(y_test, prediction) fig = plt.figure(figsize=(6,6)) # fig.set_size_inches(14, 12, forward=True) # fig.align_labels() # fig.subplots_adjust(left=0.0, right=1.0, bottom=0.0, top=1.0) cm = cnf_matrix normalize = True classes = ['PDO','INJ','FAT'] if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') plt.imshow(cm, interpolation='nearest', cmap=plt.cm.Blues) plt.xlim(-0.5, 2.5) plt.ylim(-0.5, 2.5) plt.xticks([0,1,2], classes, fontsize=15) plt.yticks([0,1,2], classes, fontsize=15) fmt = '.2f' if normalize else 'd' thresh = cm.max() / 2. for i, j in itertools.product(range(cm.shape[0]), range(cm.shape[1])): plt.text(j, i, format(cm[i, j], fmt), horizontalalignment="center", color="white" if cm[i, j] > thresh else "black", fontsize=20 ) # plt.tight_layout() plt.ylabel('True label', fontsize=18) plt.xlabel('Predicted label', fontsize=18) plt.title('Confusion matrix of multinomial logistic modelling', fontsize=22) plt.show() ###Output _____no_output_____ ###Markdown multinomial logistic cv ###Code clf_cv = LogisticRegressionCV(cv=5,multi_class='multinomial', random_state=0, class_weight='balanced',solver='newton-cg', max_iter=200 ).fit(X, y) clf_cv.score(X, y) ###Output _____no_output_____ ###Markdown roc curve[When to use ROC: balance](https://machinelearningmastery.com/roc-curves-and-precision-recall-curves-for-classification-in-python/) ###Code pd.unique(y_train) from sklearn.preprocessing import label_binarize from sklearn.multiclass import OneVsRestClassifier y_train_bin = label_binarize(y_train, classes=[1, 2, 3]) y_test_bin = label_binarize(y_test, classes=[1, 2, 3]) ###Output _____no_output_____ ###Markdown [sklearn logistic](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html) ###Code n_classes = 3 # Learn to predict each class against the other classifier = OneVsRestClassifier( LogisticRegression( class_weight='balanced',solver='liblinear',penalty='l2')) y_score = classifier.fit(X_train, y_train_bin).decision_function(X_test) from sklearn.metrics import roc_curve, auc from scipy import interp from itertools import cycle # Compute ROC curve and ROC area for each class fpr = dict() tpr = dict() roc_auc = dict() for i in range(n_classes): fpr[i], tpr[i], _ = roc_curve(y_test_bin[:, i], y_score[:, i]) roc_auc[i] = auc(fpr[i], tpr[i]) # Compute micro-average ROC curve and ROC area fpr["micro"], tpr["micro"], _ = roc_curve(y_test_bin.ravel(), y_score.ravel()) roc_auc["micro"] = auc(fpr["micro"], tpr["micro"]) lw = 4 # First aggregate all false positive rates all_fpr = np.unique(np.concatenate([fpr[i] for i in range(n_classes)])) # Then interpolate all ROC curves at this points mean_tpr = np.zeros_like(all_fpr) for i in range(n_classes): mean_tpr += interp(all_fpr, fpr[i], tpr[i]) # Finally average it and compute AUC mean_tpr /= n_classes fpr["macro"] = all_fpr tpr["macro"] = mean_tpr roc_auc["macro"] = auc(fpr["macro"], tpr["macro"]) # Plot all ROC curves plt.figure(figsize=(14,10)) plt.plot(fpr["micro"], tpr["micro"], label='micro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["micro"]), color='deeppink', linestyle=':', linewidth=4) plt.plot(fpr["macro"], tpr["macro"], label='macro-average ROC curve (area = {0:0.2f})' ''.format(roc_auc["macro"]), color='navy', linestyle=':', linewidth=4) colors = cycle(['aqua', 'darkorange', 'cornflowerblue']) for i, color in zip(range(n_classes), colors): plt.plot(fpr[i], tpr[i], color=color, lw=lw, label='ROC curve of class {0} (area = {1:0.2f})' ''.format(i, roc_auc[i])) plt.plot([0, 1], [0, 1], 'k--', lw=lw) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.xlabel('False Positive Rate', fontsize=18) plt.ylabel('True Positive Rate', fontsize=18) plt.title('Some extension of Receiver operating characteristic to multi-class', fontsize=22) plt.legend(loc="lower right",fontsize=22) plt.show() ###Output _____no_output_____ ###Markdown precision-recall[Desicion-recall](https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.htmlsphx-glr-auto-examples-model-selection-plot-precision-recall-py) ###Code from sklearn.metrics import precision_recall_curve from sklearn.metrics import average_precision_score ###Output _____no_output_____ ###Markdown ‘newton-cg’, ‘lbfgs’, ‘liblinear’, ‘sag’, ‘saga’ ###Code clf = LogisticRegression(multi_class='multinomial',solver='newton-cg', penalty='none', max_iter=200 ).fit(X_train, y_train) y_score_log = clf.decision_function(X_test) y_score_log # For each class precision = dict() recall = dict() average_precision = dict() for i in range(3): precision[i], recall[i], _ = precision_recall_curve(y_test_bin[:, i], y_score_log[:, i]) average_precision[i] = average_precision_score(y_test_bin[:, i], y_score_log[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = precision_recall_curve(y_test_bin.ravel(), y_score_log.ravel()) average_precision["micro"] = average_precision_score(y_test_bin, y_score_log, average="micro") print('Average precision score, micro-averaged over all classes: {0:0.2f}' .format(average_precision["micro"])) plt.figure(figsize=(14,10)) plt.step(recall['micro'], precision['micro'], color='b', alpha=0.2, where='post') plt.fill_between(recall["micro"], precision["micro"], alpha=0.2, color='b')#, #**step_kwargs) plt.xlabel(r'Recall', fontsize=18) plt.ylabel(r'Precision', fontsize=18) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title(r'Average precision score, micro-averaged over all classes: AP={0:0.2f}'.format(average_precision["micro"]), fontsize=22) plt.show() from itertools import cycle # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(12,10)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.1) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall', fontsize=18) plt.ylabel('Precision', fontsize=18) plt.title('Extension of Precision-Recall curve to multi-class',fontsize=22) plt.legend(lines, labels, loc=(0.1, -0.4), prop=dict(size=22)) plt.show() clf = LogisticRegression(multi_class='multinomial',solver='newton-cg', penalty='none', max_iter=200,class_weight='balanced' ).fit(X_train, y_train) y_score_log = clf.decision_function(X_test) # For each class precision = dict() recall = dict() average_precision = dict() for i in range(3): precision[i], recall[i], _ = precision_recall_curve(y_test_bin[:, i], y_score_log[:, i]) average_precision[i] = average_precision_score(y_test_bin[:, i], y_score_log[:, i]) # A "micro-average": quantifying score on all classes jointly precision["micro"], recall["micro"], _ = precision_recall_curve(y_test_bin.ravel(), y_score_log.ravel()) average_precision["micro"] = average_precision_score(y_test_bin, y_score_log, average="micro") print('Average precision score, micro-averaged over all classes: {0:0.2f}' .format(average_precision["micro"])) plt.figure(figsize=(14,10)) plt.step(recall['micro'], precision['micro'], color='b', alpha=0.2, where='post') plt.fill_between(recall["micro"], precision["micro"], alpha=0.2, color='b')#, #**step_kwargs) plt.xlabel(r'Recall', fontsize=18) plt.ylabel(r'Precision', fontsize=18) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.title(r'Average precision score, micro-averaged over all classes: AP={0:0.2f}'.format(average_precision["micro"]), fontsize=22) plt.show() from itertools import cycle # setup plot details colors = cycle(['navy', 'turquoise', 'darkorange', 'cornflowerblue', 'teal']) plt.figure(figsize=(12,10)) f_scores = np.linspace(0.2, 0.8, num=4) lines = [] labels = [] for f_score in f_scores: x = np.linspace(0.01, 1) y = f_score * x / (2 * x - f_score) l, = plt.plot(x[y >= 0], y[y >= 0], color='gray', alpha=0.2) plt.annotate('f1={0:0.1f}'.format(f_score), xy=(0.9, y[45] + 0.02)) lines.append(l) labels.append('iso-f1 curves') l, = plt.plot(recall["micro"], precision["micro"], color='gold', lw=2) lines.append(l) labels.append('micro-average Precision-recall (area = {0:0.2f})' ''.format(average_precision["micro"])) for i, color in zip(range(n_classes), colors): l, = plt.plot(recall[i], precision[i], color=color, lw=2) lines.append(l) labels.append('Precision-recall for class {0} (area = {1:0.2f})' ''.format(i, average_precision[i])) fig = plt.gcf() fig.subplots_adjust(bottom=0.1) plt.xticks(fontsize=15) plt.yticks(fontsize=15) plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.05]) plt.xlabel('Recall', fontsize=18) plt.ylabel('Precision', fontsize=18) plt.title('Extension of Precision-Recall curve to multi-class',fontsize=22) plt.legend(lines, labels, loc=(0.1, -0.4), prop=dict(size=22)) plt.show() ###Output _____no_output_____ ###Markdown Analysis This code analyzes tables with the following removed:* **Multi** terrain type* Any row that has null entries which was a consequence of scraping thousands of webpages with sometimes different table structures; this killed about 27% of the scraped data* Chip time and gun time have been combined to form a minimum time in mins* Deleted **ALL** races without the corresponding GPX file therefore this is the cross-referenced output* Some GPX information has been added to tables, e.g. elevation and sigma ###Code race_type = 'Mar' import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import matplotlib.mlab as mlab from sklearn import metrics from sklearn import linear_model from sklearn import preprocessing from sklearn import utils import warnings warnings.filterwarnings('ignore') # Important maps conversion_map = {'1M':1.0, '3K':1.86, '2M':2.0, '5K':3.1, '4M':4.0, '5M':5.0, '6M':6.0, '10K':6.2, 'QM':6.55, '7M':7.0, '10M':10.0, 'HM':13.1, 'Mar':26.2} race_order= ['1M', '3K', '2M', '5K', '4M','5M', '6M', '10K', 'QM', '7M', '10M', 'HM', 'Mar'] age_order = ['U15','U17','U20','U23','SEN','V35','V40','V45', 'V50','V55','V60','V65','V70','V75','V80','V85'] #age_map = {'U11':0,'U13':0,'U15':0,'U17':0,'U20':0,'U23':0, # 'SEN':1,'V35':2,'V40':2,'V45':3,'V50':3,'V55':4, # 'V60':4,'V65':5,'V70':5,'V75':5,'V80':5,'V85':5} age_map = {'U11':0,'U13':1,'U15':2,'U17':3,'U20':4,'U23':5, 'SEN':6,'V35':7,'V40':8,'V45':9,'V50':10,'V55':11, 'V60':12,'V65':13,'V70':14,'V75':15,'V80':16,'V85':17} dist_map = {'1M':1, '3K':2, '2M':3, '5K':4, '4M':5, '5M':6, '6M':7, '10K':8, 'QM':9, '7M':10, '10M':11, 'HM':12, 'Mar':13} speed = 3.1*1.6 #mph if race_type == 'Mar': speed = 3.1*1.4 dist = conversion_map[race_type] walk_time = (dist / speed)* 60 print('60%% faster than walking is expected to take %1.1f minutes' % walk_time) print('TIME CUT = %1.3f' % walk_time) TIME_CUT = walk_time datadir = '/home/freddy/insight/data/' filename = datadir + 'data_overlaps_with_gpx_cleaned.csv' df = pd.read_csv(filename) print('rows, cols = {0}, {1}'.format(df.shape[0], df.shape[1])) df=df.drop(columns=['Unnamed: 0'], axis=1) df=df[df.age_group != 'V115'] df_old = df df_old.groupby(['race_title'],as_index=False).size() #df_old.groupby(['age_group'],as_index=False).size() df=df[df.race_title==race_type] subdf=df[df.race_title==race_type].groupby(['meeting_id','sex','age_group','race_title'],as_index=False)['min_time'].median() if race_type == '10K': f, ax = plt.subplots(1,1, figsize=(12,4)) A=df.groupby(['event_title','min_time'], as_index=False).count() Ar = A[A.event_title=='RunThrough Olympic Park 10K'] Al = A[A.event_title=='RunThrough Chase The Moon Olympic Park 10K'] plt.hist(list(Al.min_time.values), 50, alpha=0.5, label='Day', facecolor='g') plt.hist(list(Ar.min_time.values), 50, alpha=0.5, label='Night',facecolor='b') plt.legend(loc='upper right',frameon=False, prop={'size':20}) plt.grid(True) plt.xlabel('Median Finish Time (min)') plt.show() location_df = df.groupby(['meeting_id','race_location','event_title'],as_index=False).count() events = set(list(location_df['event_title'].values)) event_map = {} for i in events: subdf = location_df.loc[location_df['event_title']==i] subdf_map = {} for index, row in subdf.iterrows(): ID = row.meeting_id loc = row.race_location subdf_map[ID] = loc event_map[i] = subdf_map temp = dict(zip(location_df.meeting_id,location_df.event_title)) id_avgtime = df.groupby(['meeting_id'], as_index=False)['min_time'].median() times = dict(zip(id_avgtime.meeting_id, id_avgtime.min_time)) time_bar = 0.0 for i in list(times.values()): time_bar += i time_bar /= float(len(list(times.values()))) id_avgtime_sex = df.groupby(['meeting_id','sex'], as_index=False)['min_time'].mean() ids,sex,time=[],[],[] for index,row in id_avgtime_sex.iterrows(): ids.append(row.meeting_id) sex.append(row.sex) time.append(row.min_time) times_sex = {} for idx in range(0,len(sex),2): tempsex = {} tempsex[sex[idx]] = time[idx] tempsex[sex[idx+1]] = time[idx+1] times_sex[ids[idx]] = tempsex fast=(df.sort_values('min_time').groupby(['meeting_id'],as_index=False).first())['min_time'].values n, bins, patches = plt.hist(fast, 20, facecolor='g', alpha=0.75) plt.grid(True) plt.xlabel('Fastest Run Times for %s' % race_type) plt.show() n, bins, patches = plt.hist(times.values(), 20, facecolor='g', alpha=0.75) plt.grid(True) plt.xlabel('Median Time For %s Races (min)' % race_type) plt.show() def get_dt(row): time = row.min_time med_time = times[row.meeting_id] return float(time-med_time) df['dt'] = df.apply(get_dt,axis=1) print(df.shape) df = df.drop(df[df.min_time > TIME_CUT].index) print(df.shape) Y = [] for index,row in df.iterrows(): sex = row.sex age = row.age_group time = row.min_time ID = row.meeting_id avg_time = times[ID] #avg_time = times_sex[ID][sex] Y.append(0 if (time<=avg_time) else 1) Y_dt = list(df['dt']) from scipy.stats import norm n, bins, patches = plt.hist(Y_dt, 100, density=True, facecolor='g', alpha=0.75) #plt.axis([10, 35, 0.0, 0.175]) plt.grid(True) plt.xlabel('t - <t> (min)') (mu,sig) = norm.fit(Y_dt) y = mlab.normpdf(bins, mu, sig) l = plt.plot(bins, y, 'r--', linewidth=2) plt.show() print('Mu,sigma = %1.3f, %1.3f' % (mu,sig)) X = df norm = conversion_map[race_type] X['sum_up'] = X['sum_up']/norm X['sigma'] = X['sigma']/norm print('Normalization = %1.4f miles' % norm ) gpx = X.groupby(['meeting_id'],as_index=False).mean() gpx = gpx.drop(['position', 'race_dist', 'min_time'], axis=1) X = X.drop(['position','meeting_id', 'race_title', 'race_dist', 'event_title','race_location', 'dt'], axis=1) for xrow in [X]: xrow['sex'] = xrow['sex'].map( {'W': 1, 'M': 2} ).astype(int) xrow['age_group'] = xrow['age_group'].map( age_map ) ###Output _____no_output_____ ###Markdown Split into training and testing ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = \ train_test_split(X, Y_dt, test_size=0.2, random_state=42) from sklearn.preprocessing import StandardScaler stdsc = StandardScaler() X_train_std = stdsc.fit_transform(X_train) X_test_std = stdsc.fit_transform(X_test) ###Output _____no_output_____ ###Markdown Logistic RegressionThis was attempt number 1 and too simple as the output has been forced to be binary ###Code clf = linear_model.LogisticRegression() clf.fit(X, Y) beta = pd.concat([pd.DataFrame(X.columns),pd.DataFrame(np.transpose(clf.coef_))], axis = 1) print('Logistic Regression Results:') print(beta) X.head() reg = linear_model.LinearRegression().fit(X, Y_dt) lr = reg.coef_ beta_dict = {'age_group': lr[0], 'sex':lr[1], 'min_time':lr[2], 'sum_up':lr[3], 'sigma':lr[4], 'diff':lr[5]} beta = pd.DataFrame(list(beta_dict.items())) print('Linear Regression Results:') print(beta) reg_v2 = linear_model.LinearRegression().fit(X_train, y_train) y_pred = reg_v2.predict(X_test) score = reg_v2.score(X_test,y_test) print('Score = {0}'.format(score)) print(np.sqrt(metrics.mean_squared_error(y_test, y_pred))) from sklearn.metrics import mean_squared_error ridge = linear_model.Ridge(alpha=0.5, copy_X=True, fit_intercept=True, max_iter=None, normalize=False, random_state=None, solver='auto', tol=0.001) ridge.fit(X_train, y_train) # calculate errors new_train_error = mean_squared_error(y_train, ridge.predict(X_train)) new_test_error = mean_squared_error(y_test, ridge.predict(X_test)) print(new_train_error, new_test_error) ridge.coef_ d = [] for index, row in X.iterrows(): rowidx=0 sum = 0.0 for i in row: sum += i*beta.values[rowidx][1] rowidx+=1 d.append(sum) from scipy.stats import norm n, bins, patches = plt.hist(d, 100, density=True, facecolor='black', alpha=0.75) #plt.axis([20, 120, 0.1, 200]) plt.grid(True) plt.xlabel('Score Distribution for Marathon Courses') (mu,sig) = norm.fit(d) y = mlab.normpdf(bins, mu, sig) #l = plt.plot(bins, y, 'r--', linewidth=4) #plt.yscale('log') print('Mu,sigma = %1.3f, %1.3f' % (mu,sig)) plt.show() def integrate(lo, hi, n, bins): integral = 0.0 for idx in range(lo,hi): integral += n[idx] * (bins[idx+1]-bins[idx]) return integral xvals, yvals, dx = [],[],[] for idx in range(0,len(n)): integral = integrate(0, idx, n, bins) binpos = 0.5*(bins[idx+1] + bins[idx]) dx.append(bins[idx+1] - bins[idx]) success = False if integral > 0.995: success = True integral = 1.0 xvals.append(binpos) yvals.append(integral) if success: break plt.scatter(xvals,yvals,color='black') plt.xlabel('Score Distribution for Marathons') plt.ylabel('Difficulty Index') plt.show() dump_output = 'inputs/{0}/'.format(race_type) #dump_output = 'inputs/testing/10K/' # Print out age and sex map f1 = open('{0}age_map_{1}.csv'.format(dump_output,race_type), 'w') for key, val in age_map.items(): f1.write('%s,%d\n'%(key,val)) f1.close() # save the betas beta.to_csv('{0}beta_{1}.csv'.format(dump_output,race_type),sep=',', index=False, header=False) # Write out the integral plot f = open('{0}d_dist_{1}.csv'.format(dump_output,race_type), 'w') f.write('bin,xval,yval,dx\n') for idx in range(0,len(xvals)): f.write('%d,%1.5f,%1.5f,%1.5f\n' % (idx,xvals[idx],yvals[idx], dx[idx])) f.close() id_avgtime.to_csv('{0}avg_times_{1}.csv'.format(dump_output,race_type),sep=',', index=False) # Write out the GPX information used gpx.to_csv('{0}gpx_info_{1}.csv'.format(dump_output,race_type),sep=',', index=False) # Print out the event list f2 = open('{0}event_title_list_{1}.csv'.format(dump_output,race_type), 'w') f2.write('event\n') for key, val in event_map.items(): f2.write('%s\n'%key) f2.close() f3 = open('{0}event_title_list_v2_{1}.csv'.format(dump_output,race_type), 'w') f3.write('ID,event\n') for key, val in temp.items(): f3.write('%d,%s\n'%(key,val)) f3.close() # LETS MERGE ANYTHING USEFUL FOR LATER CALCULATIONS frame2sql_temp = id_avgtime frame2sql = pd.merge(frame2sql_temp,gpx,on='meeting_id') evt_temp = pd.DataFrame.from_dict(temp,orient='index') output = frame2sql.merge(evt_temp,left_on='meeting_id',right_index=True) output['race_type'] = race_type output.to_csv('{0}OUTPUT_{1}.csv'.format(dump_output,race_type),sep=',', index=False) ###Output _____no_output_____ ###Markdown Initial / Personalized Accuracy ###Code model = 'mobile' # cnn, mobile dataset = 'cifar100' # cifar10, cifar100 num_classes = 100 # 10, 100 momentum = 0.90 wd = 0.0 personalization_epoch = 5 # fine-tuning epochs for personalization server_data_ratio = 0.00 for shard_per_user in [100, 50, 10]: for frac in [1.0, 0.1]: for local_ep in [1, 4, 10]: for local_upt_part, aggr_part in [('full', 'full'), ('body', 'body')]: args = easydict.EasyDict({'epochs': local_ep, 'num_users': 100, 'shard_per_user': shard_per_user, 'server_data_ratio': server_data_ratio, 'frac': frac, 'local_ep': local_ep, 'local_bs': 50, 'bs': 128, 'lr': 1e-3, 'momentum': momentum, 'wd': wd, 'split': 'user', 'grad_norm': False, 'local_ep_pretrain': 0, 'lr_decay': 1.0, 'model': model, 'kernul_num': 9, 'kernul_sizes': '3,4,5', 'norm': 'batch_norm', 'num_filters': 32, 'max_pool': 'True', 'num_layers_keep': 1, 'dataset': dataset, 'iid': False, 'num_classes': num_classes, 'num_channels': 3, 'gpu': 1, 'stopping_rounds': 10, 'verbose': False, 'print_freq': 100, 'seed': 1, 'test_freq': 1, 'load_fed': '', 'results_save': 'run1', 'start_saving': 0, 'local_upt_part': local_upt_part, 'aggr_part': aggr_part, 'unbalanced': False }) # parse args args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}_m{}_wd{}/shard{}_sdr{}/{}/'.format( args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.momentum, args.wd, args.shard_per_user, args.server_data_ratio, args.results_save) algo_dir = 'local_upt_{}_aggr_{}'.format(args.local_upt_part, args.aggr_part) dataset_train, dataset_test, dict_users_train, dict_users_test = get_data(args) dict_save_path = os.path.join(base_dir, algo_dir, 'dict_users.pkl') with open(dict_save_path, 'rb') as handle: dict_users_train, dict_users_test = pickle.load(handle) # build model net_glob = get_model(args) net_glob.train() net_local_list = [] for user_ix in range(args.num_users): net_local_list.append(copy.deepcopy(net_glob)) criterion = nn.CrossEntropyLoss() before_acc_results = [] after_acc_results = [] for user, net_local in enumerate(net_local_list): model_save_path = os.path.join(base_dir, algo_dir, 'best_model.pt') net_local.load_state_dict(torch.load(model_save_path), strict=True) acc_test, loss_test = test_img_local(net_local, dataset_test, args, user_idx=user, idxs=dict_users_test[user]) before_acc_results.append(acc_test) net_local.train() ldr_train = DataLoader(DatasetSplit(dataset_train, dict_users_train[user]), batch_size=args.local_bs, shuffle=True) body_params = [p for name, p in net_local.named_parameters() if 'linear' not in name] head_params = [p for name, p in net_local.named_parameters() if 'linear' in name] optimizer = torch.optim.SGD([{'params': body_params, 'lr': args.lr}, {'params': head_params, 'lr': args.lr}], momentum=args.momentum) for iter in range(personalization_epoch): for batch_idx, (images, labels) in enumerate(ldr_train): images, labels = images.to(args.device), labels.to(args.device) net_local.zero_grad() logits = net_local(images) loss = criterion(logits, labels) loss.backward() optimizer.step() acc_test, loss_test = test_img_local(net_local, dataset_test, args, user_idx=user, idxs=dict_users_test[user]) after_acc_results.append(acc_test) print ("-----------------------------------------------------") print ("local update part: {}, aggregation part: {}".format(local_upt_part, aggr_part)) print ("shard: {}, frac: {}, local_ep: {}".format(shard_per_user, frac, local_ep)) print ("Before min/max/mean/std of accuracy") print (np.min(before_acc_results), np.max(before_acc_results), np.mean(before_acc_results), round(np.std(before_acc_results), 2)) print ("After min/max/mean/std of accuracy") print (np.min(after_acc_results), np.max(after_acc_results), np.mean(after_acc_results), round(np.std(after_acc_results), 2)) print ("-----------------------------------------------------") ###Output _____no_output_____ ###Markdown without classifier accuracy ###Code odel = 'mobile' # cnn, mobile dataset = 'cifar100' # cifar10, cifar100 num_classes = 100 # 10, 100 momentum = 0.90 wd = 0.0 personalization_epoch = 5 # fine-tuning epochs for personalization server_data_ratio = 0.00 for shard_per_user in [100, 50, 10]: for frac in [1.0, 0.1]: for local_ep in [1, 4, 10]: for local_upt_part, aggr_part in [('full', 'full'), ('body', 'body')]: args = easydict.EasyDict({'epochs': local_ep, 'num_users': 100, 'shard_per_user': shard_per_user, 'server_data_ratio': server_data_ratio, 'frac': frac, 'local_ep': local_ep, 'local_bs': 50, 'bs': 128, 'lr': 1e-3, 'momentum': momentum, 'wd': wd, 'split': 'user', 'grad_norm': False, 'local_ep_pretrain': 0, 'lr_decay': 1.0, 'model': model, 'kernul_num': 9, 'kernul_sizes': '3,4,5', 'norm': 'batch_norm', 'num_filters': 32, 'max_pool': 'True', 'num_layers_keep': 1, 'dataset': dataset, 'iid': False, 'num_classes': num_classes, 'num_channels': 3, 'gpu': 1, 'stopping_rounds': 10, 'verbose': False, 'print_freq': 100, 'seed': 1, 'test_freq': 1, 'load_fed': '', 'results_save': 'run1', 'start_saving': 0, 'local_upt_part': local_upt_part, 'aggr_part': aggr_part, 'unbalanced': False }) # parse args args.device = torch.device('cuda:{}'.format(args.gpu) if torch.cuda.is_available() and args.gpu != -1 else 'cpu') base_dir = './save/{}/{}_iid{}_num{}_C{}_le{}_m{}_wd{}/shard{}_sdr{}/{}/'.format( args.dataset, args.model, args.iid, args.num_users, args.frac, args.local_ep, args.momentum, args.wd, args.shard_per_user, args.server_data_ratio, args.results_save) algo_dir = 'local_upt_{}_aggr_{}'.format(args.local_upt_part, args.aggr_part) dataset_train, dataset_test, dict_users_train, dict_users_test = get_data(args) dict_save_path = os.path.join(base_dir, algo_dir, 'dict_users.pkl') with open(dict_save_path, 'rb') as handle: dict_users_train, dict_users_test = pickle.load(handle) # build model net_glob = get_model(args) net_glob.eval() # build template net_local_list = [] for user_ix in range(args.num_users): net_local_list.append(copy.deepcopy(net_glob)) before_acc_results = [] for user, net_local in enumerate(net_local_list): model_save_path = os.path.join(base_dir, algo_dir, 'best_model.pt') net_local.load_state_dict(torch.load(model_save_path), strict=True) acc_test = distance_test_img_local(net_local, dataset_train, dataset_test, args, user_idx=user, train_idxs=dict_users_train[user], test_idxs=dict_users_test[user]) before_acc_results.append(acc_test) net_local.cpu() print ("-----------------------------------------------------") print ("local update part: {}, aggregation part: {}".format(local_upt_part, aggr_part)) print ("shard: {}, frac: {}, local_ep: {}".format(shard_per_user, frac, local_ep)) print ("Before min/max/mean/std of accuracy") print (np.min(before_acc_results), np.max(before_acc_results), np.mean(before_acc_results), round(np.std(before_acc_results), 2)) print ("-----------------------------------------------------") ###Output _____no_output_____ ###Markdown Get the amount of points received by experiment, execution and episode ###Code cols = ['experiment', 'execution', 'episode', 'point'] result = pd.DataFrame(columns=cols) for f in glob.glob("./execution/*/*/total_point.npy"): path = f.split('/') exp = path[2].split('_')[1] exec = path[3].split('_')[1] points = np.load(f) episodes = range(1, 1000+1) experiment = pd.DataFrame({ 'experiment': [int(exp) for _ in episodes], 'execution': [int(exec) for _ in episodes], 'episode': [i for i in episodes], 'point': points, }) result = pd.concat([result, experiment]) result = result.sort_values(by=cols).reset_index(drop=True) result.tail() ###Output _____no_output_____ ###Markdown Point average by experiment ###Code result[['experiment','point']].groupby(['experiment']).mean() ###Output _____no_output_____ ###Markdown Point average by experiment and execution ###Code result[['experiment','execution','point']].groupby(['experiment', 'execution']).mean() ###Output _____no_output_____ ###Markdown Point average by experiment for the last hundred episodes ###Code result.loc[result['episode'] > 900][['experiment','execution','point']] result.loc[result['episode'] > 900]\ [['experiment','execution','point']].\ groupby(['experiment', 'execution']).mean() ###Output _____no_output_____ ###Markdown Get confidence of intervals each 50 episodes ###Code result_ci = pd.DataFrame(columns=['experiment','mean','ci95_hi','ci95_lo','percentile']) split = 50 experiment_total = 5 for k in range (0, int(1000/split)): stats = result.loc[(result['episode'] >= split*k) & (result['episode'] < split*k+split)]\ [['experiment', 'execution','point']].\ groupby(['experiment', 'execution']).agg(['mean', 'count']).sort_values(['experiment']) ci95_hi = [] ci95_lo = [] means = [] for exp in range(1,experiment_total): m = np.average(stats.loc[exp]['point']['mean']) c = experiment_total s = np.std(stats.loc[exp]['point']['mean']) ci95_hi.append(m + 1.96*s/math.sqrt(c)) ci95_lo.append(m - 1.96*s/math.sqrt(c)) means.append(m) obs = pd.DataFrame({ 'experiment': range(1,experiment_total), 'mean': means, 'ci95_hi': ci95_hi, 'ci95_lo': ci95_lo, 'percentile': (k+1)*split }) result_ci = pd.concat([result_ci, obs]) result_ci = result_ci.sort_values(['experiment','percentile']) result_ci.sort_values(['percentile'],ascending=False) ###Output _____no_output_____ ###Markdown Plot the Confidence intervals each 50 episodes ###Code # Plot the sinus function exp1 = result_ci.loc[result_ci['experiment']==1] exp2 = result_ci.loc[result_ci['experiment']==2] exp3 = result_ci.loc[result_ci['experiment']==3] exp4 = result_ci.loc[result_ci['experiment']==4] plt.plot(exp1['percentile'], exp1['mean'], c='red', marker='o', label='No punish, No Norm') plt.fill_between([i for i in exp1['percentile']], [i for i in exp1['ci95_lo']], [i for i in exp1['ci95_hi']], color='red', alpha=.3) plt.plot(exp2['percentile'], exp2['mean'], c='yellow', marker='v', label='Yes punish, No Norm') # plt.fill_between([i for i in exp2['percentile']], [i for i in exp2['ci95_lo']], [i for i in exp2['ci95_hi']], color='yellow', alpha=.1) plt.plot(exp3['percentile'], exp3['mean'], c='green', marker='+', label='No punish, Yes Norm') # plt.fill_between([i for i in exp3['percentile']], [i for i in exp3['ci95_lo']], [i for i in exp3['ci95_hi']], color='green', alpha=.1) plt.plot(exp4['percentile'], exp4['mean'], c='blue', marker='s', label='Yes punish, Yes Norm') plt.fill_between([i for i in exp4['percentile']], [i for i in exp4['ci95_lo']], [i for i in exp4['ci95_hi']], color='blue', alpha=.3) plt.legend(loc='upper left') plt.show() ###Output _____no_output_____ ###Markdown Predicting the price of Bitcoin, intro to LSTM ###Code import numpy as np import pandas as pd from matplotlib import pyplot as plt import seaborn as sns ###Output _____no_output_____ ###Markdown Data Exploration ###Code data = pd.read_csv("data/bitcoin.csv") data = data.sort_values('Date') data.head() price = data[['Close']] plt.figure(figsize = (15,9)) plt.plot(price) plt.xticks(range(0, data.shape[0],50), data['Date'].loc[::50],rotation=45) plt.title("Bitcoin Price",fontsize=18, fontweight='bold') plt.xlabel('Date',fontsize=18) plt.ylabel('Close Price (USD)',fontsize=18) plt.show() price.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 2001 entries, 2000 to 0 Data columns (total 1 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Close 2001 non-null float64 dtypes: float64(1) memory usage: 31.3 KB ###Markdown Data Preparation Normalization ###Code from sklearn.preprocessing import MinMaxScaler min_max_scaler = MinMaxScaler() norm_data = min_max_scaler.fit_transform(price.values) print(f'Real: {price.values[0]}, Normalized: {norm_data[0]}') print(f'Real: {price.values[500]}, Normalized: {norm_data[500]}') print(f'Real: {price.values[1200]}, Normalized: {norm_data[1200]}') ###Output Real: [370.], Normalized: [0.01280082] Real: [426.1], Normalized: [0.01567332] Real: [8259.99], Normalized: [0.41679416] ###Markdown Data split ###Code def univariate_data(dataset, start_index, end_index, history_size, target_size): data = [] labels = [] start_index = start_index + history_size if end_index is None: end_index = len(dataset) - target_size for i in range(start_index, end_index): indices = range(i-history_size, i) # Reshape data from (history_size,) to (history_size, 1) data.append(np.reshape(dataset[indices], (history_size, 1))) labels.append(dataset[i+target_size]) return np.array(data), np.array(labels) past_history = 5 future_target = 0 TRAIN_SPLIT = int(len(norm_data) * 0.8) x_train, y_train = univariate_data(norm_data, 0, TRAIN_SPLIT, past_history, future_target) x_test, y_test = univariate_data(norm_data, TRAIN_SPLIT, None, past_history, future_target) ###Output _____no_output_____ ###Markdown Build the model ###Code from keras.models import Sequential from keras.optimizers import Adam from keras.layers import Dense, LSTM, LeakyReLU, Dropout num_units = 64 learning_rate = 0.0001 activation_function = 'sigmoid' adam = Adam(lr=learning_rate) loss_function = 'mse' batch_size = 5 num_epochs = 50 # Initialize the RNN model = Sequential() model.add(LSTM(units = num_units, activation=activation_function, input_shape=(None, 1))) model.add(LeakyReLU(alpha=0.5)) model.add(Dropout(0.1)) model.add(Dense(units = 1)) # Compiling the RNN model.compile(optimizer=adam, loss=loss_function) model.summary() ###Output Model: "sequential_13" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= lstm_6 (LSTM) (None, 64) 16896 _________________________________________________________________ leaky_re_lu_4 (LeakyReLU) (None, 64) 0 _________________________________________________________________ dropout_4 (Dropout) (None, 64) 0 _________________________________________________________________ dense_6 (Dense) (None, 1) 65 ================================================================= Total params: 16,961 Trainable params: 16,961 Non-trainable params: 0 _________________________________________________________________ ###Markdown Train the model ###Code # Using the training set to train the model history = model.fit( x_train, y_train, validation_split=0.1, batch_size=batch_size, epochs=num_epochs, shuffle=False ) loss = history.history['loss'] val_loss = history.history['val_loss'] epochs = range(len(loss)) plt.figure() plt.plot(epochs, loss, 'b', label='Training loss') plt.plot(epochs, val_loss, 'r', label='Validation loss') plt.title("Training and Validation Loss") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown PredictionFor each of the items we used for the validation, let's now predict them so we can compare how well we did. ###Code original = pd.DataFrame(min_max_scaler.inverse_transform(y_test)) predictions = pd.DataFrame(min_max_scaler.inverse_transform(model.predict(x_test))) ax = sns.lineplot(x=original.index, y=original[0], label="Test Data", color='royalblue') ax = sns.lineplot(x=predictions.index, y=predictions[0], label="Prediction", color='tomato') ax.set_title('Bitcoin price', size = 14, fontweight='bold') ax.set_xlabel("Days", size = 14) ax.set_ylabel("Cost (USD)", size = 14) ax.set_xticklabels('', size=10) ###Output _____no_output_____ ###Markdown Federal gun cases in Illinois Northern DistrictA tiny rig to generate graphics for Mick Dumke's [Why (Almost) No One Is Charged With Gun Trafficking in Illinois](https://www.propublica.org/article/gun-trafficking-charges-illinois).Notes:* Three cases filed prior to 2007 but later reopened are omitted from the analysis.* I used the [only Pacer bulk-data schema guide](https://www.pacer.gov/documents/bulk_data.pdf) I could find to understand the fields. I also talked with Mike Lissner of the Free Law project, who pointed me to documentation at https://free.law/pdf/PACER-API-Documentation.pdf and https://www.fjc.gov/research/idb to help clarify the meaning of key fields.* Because the field definitions are somewhat ambiguous and the existing documentation is not clear about how to use the fields for an analysis of this type, I tried three defendant counting methods to validate the work. Each method creates a different compound identifier out of partially unique fields that represent a distinct defendant and his or her charges. Every value of the results of these different counting methods precisely match.* This counts defendants, not discrete cases. For example, if John Doe was charged with 18:924C.F and 18:922G.F in the same year, he would be reflected in both categories. (This is the fundamental difference between the `cs_caseid` column, which, when grouped, aggregates charges for a given defendant, and `cs_casenumber`, which represents a given party and charges brought against them). Setup ###Code df = pd.read_csv('processed/federal-gun-cases.csv', parse_dates=[ 'cs_date_filed', 'cs_date_term', 'cs_date_reopen', 'lead_date_term', 'loc_date_end', 'loc_date_start', 'party_start_date', 'party_end_date']) ###Output _____no_output_____ ###Markdown We also need to synthesize some columns. ###Code df['year_filed'] = df.cs_date_filed.dt.year.astype(int) df['month_filed'] = df.cs_date_filed.dt.month.astype(int) df['year_month_filed'] = df['cs_date_filed'].dt.strftime('%Y-%m') df['defendant_case_id'] = df.apply(lambda row: slugify(str(row['cs_caseid']) + row['party']) + '-' + slugify(row['charges']), axis=1) ###Output _____no_output_____ ###Markdown 18:922G.F (felon in possession) as percent (single bar chart) ###Code charges = '18:922G.F' df['defendant_case_id'] = df.apply(lambda row: slugify(str(row['cs_caseid']) + row['party']) + '-' + slugify(row['charges']), axis=1) all_grouped = df[df['year_filed'] > 2006].groupby(['year_filed'])['defendant_case_id'].agg(['count']) filtered = df[(df['charges'] == '18:922G.F') & (df['year_filed'] > 2006)] grouped = filtered.groupby(['year_filed'])['defendant_case_id'].agg(['count']) grouped['pct'] = grouped['count'] / all_grouped['count'] * 100 ax = grouped.plot(y='pct', kind="bar", figsize=[9,4], legend=False, width=0.7, color=['#B95949'], fontsize=11) ax.set_ylim(0, 100) ax.yaxis.set_visible(False) ax.xaxis.grid(False) xvals = ax.get_xticks() xlabels = [str(x) for x in range(2007, 2018)] # xlabels[-1] = '{0}*'.format(xlabels[-1]) ax.set_xticklabels(xlabels, rotation=0, fontproperties=font_regular, fontsize=11) ax.xaxis.label.set_visible(False) for spine in plt.gca().spines.values(): spine.set_visible(False) rects = ax.patches # Now make some labels labels = [] for index, row in grouped.iterrows(): labels.append('{0}'.format(int(row['pct']))) for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height + 3, '{0}%'.format(label), ha='center', va='bottom', color='black', fontsize=12, fontproperties=font_regular) ax.tick_params(labelsize=14) plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off' # ticks along the top edge are off ) plt.savefig('image/%s-pct.svg' % slugify(charges), transparent=True) ###Output _____no_output_____ ###Markdown Defendants per statute per year for most common charges (Grouped bar) ###Code statutes = ['18:922G.F', '18:924C.F'] colors = ['#B95949', '#525254'] legend = ["Possession of a firearm by a felon", "Use of a gun in drug trafficking"] filtered = df[(df['charges'].isin(statutes)) & (df['year_filed'] > 2006)] pivoted = filtered.pivot_table(index=['year_filed'], columns=['charges'], values='defendant_case_id', aggfunc=lambda x: len(x.unique())) ax = pivoted.plot(kind="bar", figsize=[10,3.2], width=0.6, color=colors, fontsize=14, rot=0) ax.set_ylim(0, 120) ax.yaxis.set_visible(False) ax.xaxis.grid(False) ax.xaxis.label.set_visible(False) for spine in plt.gca().spines.values(): spine.set_visible(False) rects = ax.patches # Now make some labels labels = [str(value) for index, value in pivoted.unstack().iteritems()] for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2.9, height + 3, label, ha='center', va='bottom', color='#000000', fontsize=9.5, fontproperties=font_regular) rect.set_width(0.2) ax.tick_params(labelsize=13) ax.legend(legend, prop=font_regular).get_frame().set_linewidth(0.0) ax.patches[-12].set_facecolor('#B97A6F') ax.patches[-1].set_facecolor('#999999') for label in ax.xaxis.get_majorticklabels(): label.customShiftValue = 0.075 label.set_x = types.MethodType( lambda self, x: matplotlib.text.Text.set_x(self, x-self.customShiftValue ), label, matplotlib.text.Text ) plt.tick_params( axis='x', # changes apply to the x-axis which='both', # both major and minor ticks are affected bottom='off', # ticks along the bottom edge are off top='off' # ticks along the top edge are off ) plt.savefig('image/grouped-bar.svg', transparent=True) pivoted ###Output _____no_output_____ ###Markdown Defendants per statute per month for most common charges (grouped bar) ###Code ym_pivoted = filtered.pivot_table(index=['year_month_filed'], columns=['charges'], values='defendant_case_id', aggfunc=lambda x: len(x.unique())) ym_pivoted.plot(kind="bar", figsize=[160, 20], color=colors, fontsize=11, rot=0) ym_pivoted ###Output _____no_output_____ ###Markdown 3 ways of counting defendantsI did these counts three different ways to validate my methodology. The following section compares the three methods. ###Code # validate later methods = {'method1': [], 'method2': [], 'method3': []} ###Output _____no_output_____ ###Markdown Counting method 1 (caseid, party, charges) ###Code df['defendant_case_id'] = df.apply(lambda row: slugify(str(row['cs_caseid']) + row['party']) + '-' + slugify(row['charges']), axis=1) all_grouped = df[df['year_filed'] > 2006].groupby(['year_filed'])['defendant_case_id'].agg(['count']) for charge in ['18:924C.F', '18:922G.F']: filtered = df[(df['charges'] == charge) & (df['year_filed'] > 2006)] grouped = filtered.groupby(['year_filed'])['defendant_case_id'].agg(['count']) grouped['pct'] = grouped['count'] / all_grouped['count'] * 100 methods['method1'].append(grouped) ax = grouped.plot(y='count', kind="bar", figsize=[7,4], legend=False, width=0.8, color=['#B95949'], fontsize=11) ax.set_ylim(0, 120) yvals = ax.get_yticks() ax.xaxis.grid(False) xvals = ax.get_xticks() xlabels = [str(x) for x in range(2007, 2018)] xlabels[-1] = '{0}*'.format(xlabels[-1]) ax.set_xticklabels(xlabels, rotation=0, fontproperties=font_regular, fontsize=11) ax.xaxis.label.set_visible(False) for spine in plt.gca().spines.values(): spine.set_visible(False) rects = ax.patches # Now make some labels labels = [] for index, row in grouped.iterrows(): labels.append('{0}'.format(int(row['count']), row['pct'])) for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height - 8, label, ha='center', va='bottom', color='white', fontsize=11, fontproperties=font_medium) ax.tick_params(labelsize=11) ax.patches[-1].set_facecolor('#B97A6F') print(charge) print(grouped) print('') ###Output 18:924C.F count pct year_filed 2007 35 34.653465 2008 59 39.072848 2009 39 38.235294 2010 48 30.379747 2011 28 22.580645 2012 49 29.878049 2013 48 30.188679 2014 32 27.826087 2015 27 29.347826 2016 28 18.181818 2017 27 16.875000 18:922G.F count pct year_filed 2007 37 36.633663 2008 54 35.761589 2009 35 34.313725 2010 80 50.632911 2011 59 47.580645 2012 92 56.097561 2013 79 49.685535 2014 63 54.782609 2015 58 63.043478 2016 106 68.831169 2017 117 73.125000 ###Markdown Counting method 2 (case id + party) ###Code df['defendant_case_id'] = df.apply(lambda row: slugify(str(row['cs_caseid'])) + '-' + slugify(row['charges']), axis=1) all_grouped = df[df['year_filed'] > 2006].groupby(['year_filed'])['defendant_case_id'].agg(['count']) for charge in ['18:924C.F', '18:922G.F']: filtered = df[(df['charges'] == charge) & (df['year_filed'] > 2006)] grouped = filtered.groupby(['year_filed'])['defendant_case_id'].agg(['count']) grouped['pct'] = grouped['count'] / all_grouped['count'] * 100 methods['method2'].append(grouped) ax = grouped.plot(y='count', kind="bar", figsize=[7,4], legend=False, width=0.8, color=['#B95949'], fontsize=11) ax.set_ylim(0, 120) yvals = ax.get_yticks() ax.xaxis.grid(False) xvals = ax.get_xticks() ax.set_xticklabels([str(x) for x in range(2007, 2018)], rotation=0, fontproperties=font_regular, fontsize=11) ax.xaxis.label.set_visible(False) for spine in plt.gca().spines.values(): spine.set_visible(False) rects = ax.patches # Now make some labels labels = [] for index, row in grouped.iterrows(): labels.append('{0}'.format(int(row['count']), row['pct'])) for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height - 8, label, ha='center', va='bottom', color='white', fontsize=9, fontproperties=font_medium) ax.tick_params(labelsize=11) print(charge) print(grouped) print('') ###Output 18:924C.F count pct year_filed 2007 35 34.653465 2008 59 39.072848 2009 39 38.235294 2010 48 30.379747 2011 28 22.580645 2012 49 29.878049 2013 48 30.188679 2014 32 27.826087 2015 27 29.347826 2016 28 18.181818 2017 27 16.875000 18:922G.F count pct year_filed 2007 37 36.633663 2008 54 35.761589 2009 35 34.313725 2010 80 50.632911 2011 59 47.580645 2012 92 56.097561 2013 79 49.685535 2014 63 54.782609 2015 58 63.043478 2016 106 68.831169 2017 117 73.125000 ###Markdown Counting method 3 (just case number, which _should_ refer to unique defendants) ###Code df['defendant_case_id'] = df.apply(lambda row: slugify(str(row['cs_case_number'])), axis=1) all_grouped = df[df['year_filed'] > 2006].groupby(['year_filed'])['defendant_case_id'].agg(['count']) for charge in ['18:924C.F', '18:922G.F']: filtered = df[(df['charges'] == charge) & (df['year_filed'] > 2006)] grouped = filtered.groupby(['year_filed'])['defendant_case_id'].agg(['count']) grouped['pct'] = grouped['count'] / all_grouped['count'] * 100 methods['method3'].append(grouped) ax = grouped.plot(y='count', kind="bar", figsize=[7,4], legend=False, width=0.8, color=['#B95949'], fontsize=11) ax.set_ylim(0, 120) yvals = ax.get_yticks() ax.xaxis.grid(False) xvals = ax.get_xticks() ax.set_xticklabels([str(x) for x in range(2007, 2018)], rotation=0, fontproperties=font_regular, fontsize=11) ax.xaxis.label.set_visible(False) for spine in plt.gca().spines.values(): spine.set_visible(False) rects = ax.patches # Now make some labels labels = [] for index, row in grouped.iterrows(): labels.append('{0}'.format(int(row['count']), row['pct'])) for rect, label in zip(rects, labels): height = rect.get_height() ax.text(rect.get_x() + rect.get_width()/2, height - 8, label, ha='center', va='bottom', color='white', fontsize=9, fontproperties=font_medium) ax.tick_params(labelsize=11) print(charge) print(grouped) print('') ###Output 18:924C.F count pct year_filed 2007 35 34.653465 2008 59 39.072848 2009 39 38.235294 2010 48 30.379747 2011 28 22.580645 2012 49 29.878049 2013 48 30.188679 2014 32 27.826087 2015 27 29.347826 2016 28 18.181818 2017 27 16.875000 18:922G.F count pct year_filed 2007 37 36.633663 2008 54 35.761589 2009 35 34.313725 2010 80 50.632911 2011 59 47.580645 2012 92 56.097561 2013 79 49.685535 2014 63 54.782609 2015 58 63.043478 2016 106 68.831169 2017 117 73.125000 ###Markdown Validate counting methods ###Code methods['method1'][0] == methods['method2'][0] methods['method2'][0] == methods['method3'][0] methods['method1'][1] == methods['method2'][1] methods['method2'][1] == methods['method3'][1] ###Output _____no_output_____ ###Markdown All charges pct/count ###Code all_grouped = df[df['year_filed'] > 2006].groupby(['year_filed'])['defendant_case_id'].agg(['count']) for charge in df['charges'].unique(): filtered = df[(df['charges'] == charge) & (df['year_filed'] > 2006)] grouped = filtered.groupby(['year_filed'])['defendant_case_id'].agg(['count']) grouped['pct'] = grouped['count'] / all_grouped['count'] * 100 print(charge) print(grouped) print('') ###Output 18:922A.F count pct year_filed 2007 4 3.960396 2008 9 5.960265 2009 4 3.921569 2010 13 8.227848 2011 10 8.064516 2012 13 7.926829 2013 7 4.402516 2014 12 10.434783 2015 7 7.608696 2016 14 9.090909 2017 13 8.125000 18:922C.F count pct year_filed 2007 4 3.960396 2008 5 3.311258 2009 2 1.960784 2010 1 0.632911 2011 3 2.419355 2013 1 0.628931 18:922E.F count pct year_filed 2007 5 4.950495 2008 8 5.298013 2009 6 5.882353 2010 7 4.430380 2011 10 8.064516 2012 7 4.268293 2013 7 4.402516 2014 1 0.869565 18:922G.F count pct year_filed 2007 37 36.633663 2008 54 35.761589 2009 35 34.313725 2010 80 50.632911 2011 59 47.580645 2012 92 56.097561 2013 79 49.685535 2014 63 54.782609 2015 58 63.043478 2016 106 68.831169 2017 117 73.125000 18:924A.F count pct year_filed 2007 16 15.841584 2008 16 10.596026 2009 16 15.686275 2010 9 5.696203 2011 14 11.290323 2012 3 1.829268 2013 17 10.691824 2014 7 6.086957 2016 6 3.896104 2017 3 1.875000 18:924C.F count pct year_filed 2007 35 34.653465 2008 59 39.072848 2009 39 38.235294 2010 48 30.379747 2011 28 22.580645 2012 49 29.878049 2013 48 30.188679 2014 32 27.826087 2015 27 29.347826 2016 28 18.181818 2017 27 16.875000 ###Markdown Analysis ###Code import numpy as np import matplotlib.pyplot as plt import torch import h5py from resnet import ResidualBlock, ResNet from sklearn.metrics import mean_squared_error as MSE from scipy.stats import norm from tensorflow.compat.v1.train import summary_iterator from collections import defaultdict ###Output cuda:0 dataset loaded train test split finished ###Markdown Load data and create model ###Code with h5py.File('data/uci_ml_hackathon_fire_dataset_2012-05-09_2013-01-01_30k_train_v2.hdf5', 'r') as f: train_data = {} for k in list(f): train_data[k] = f[k][:] with h5py.File('data/uci_ml_hackathon_fire_dataset_2013-01-01_2014-01-01_5k_test_v2.hdf5', 'r') as f: test_data = {} for k in list(f): test_data[k] = f[k][:] model0 = ResNet(ResidualBlock, [2, 2, 2]) model12 = ResNet(ResidualBlock, [2, 2, 2]) ###Output _____no_output_____ ###Markdown Training loss evaluation ###Code resnet0_values = defaultdict(list) for e in summary_iterator('log/resnet_0/events.out.tfevents.1590213759.LI-Desktop.12904.0'): for v in e.summary.value: resnet0_values[v.tag].append(v.simple_value) resnet12_values = defaultdict(list) for e in summary_iterator('log/resnet_12/events.out.tfevents.1590219309.LI-Desktop.28296.0'): for v in e.summary.value: resnet12_values[v.tag].append(v.simple_value) ###Output _____no_output_____ ###Markdown ***Note***: IoU compute during the training set the threshold as 0. That says for any pixel predicted with value greater than 0 is considered as the positive fireplace. +12 evaluation ###Code fig = plt.figure(figsize=(10,10)) plt.plot(range(50), np.array(resnet0_values['Train/Loss']), label='training loss') plt.plot(range(50), np.array(resnet0_values['Valid/Loss']), label='validation loss') plt.title('Loss through epoch') plt.xlabel('epoch') plt.ylabel('Loss') plt.legend() # plt.savefig('fig/12loss') plt.show() plt.figure(figsize=(10,10)) plt.plot(range(50), np.array(resnet0_values['Train/Mean IoU'])) plt.title('Training Mean IoU through epoch') plt.xlabel('epoch') plt.ylabel('Mean IoU') # plt.savefig('fig/12trainiou') plt.show() plt.figure(figsize=(10,10)) plt.plot(range(50), np.array(resnet0_values['Valid/Mean IoU'])) plt.title('Validation Mean IoU through epoch') plt.xlabel('epoch') plt.ylabel('Mean IoU') # plt.savefig('fig/12validiou') plt.show() ###Output _____no_output_____ ###Markdown +24 evaluation ###Code fig = plt.figure(figsize=(10,10)) plt.plot(range(50), np.array(resnet12_values['Train/Loss']), label='training loss') plt.plot(range(50), np.array(resnet12_values['Valid/Loss']), label='validation loss') plt.title('Loss through epoch') plt.xlabel('epoch') plt.ylabel('Loss') plt.legend() # plt.savefig('fig/24loss') plt.show() plt.figure(figsize=(10,10)) plt.plot(range(50), np.array(resnet12_values['Train/Mean IoU'])) plt.title('Training Mean IoU through epoch') plt.xlabel('epoch') plt.ylabel('Mean IoU') # plt.savefig('fig/24trainiou') plt.show() plt.figure(figsize=(10,10)) plt.plot(range(50), np.array(resnet12_values['Valid/Mean IoU'])) plt.title('Validation Mean IoU through epoch') plt.xlabel('epoch') plt.ylabel('Mean IoU') # plt.savefig('fig/24validiou') plt.show() ###Output _____no_output_____ ###Markdown Load desired model ###Code model0.load_state_dict(torch.load('model/resnet_0/best_valid_loss')['model_state_dict']) model12.load_state_dict(torch.load('model/resnet_12/best_valid_loss')['model_state_dict']) model0.eval() model12.eval() print() ###Output ###Markdown Evaluation on test datasets MSE ###Code ypred0 = model0(torch.Tensor(test_data['observed'])).detach() ypred12 = model12(torch.Tensor(test_data['observed'])).detach() ytrue0 = test_data['target'][:,0,...].reshape((-1,900)) ytrue12 = test_data['target'][:,1,...].reshape((-1,900)) print('MSE for +12 is:', MSE(ytrue0, ypred0)) print('MSE for +24 is:', MSE(ytrue12, ypred12)) ###Output MSE for +24 is: 0.042786136 ###Markdown `visualization when doing presentation` IoU for different threshold ###Code def IoU(predict, target, smooth=1e-6, thres=0): intersection = ((predict > thres) & (target > 0)).sum(1) union = ((predict > thres) | (target > 0)).sum(1) iou = (intersection + smooth) / (union + smooth) return iou.numpy() thres = np.linspace(0,1,101) mean_iou0 = np.array([np.mean(IoU(ypred0, ytrue0, thres=t)) for t in thres]) mean_iou12 = np.array([np.mean(IoU(ypred12, ytrue12, thres=t)) for t in thres]) std_iou0 = np.array([np.std(IoU(ypred0, ytrue0, thres=t)) for t in thres]) std_iou12 = np.array([np.std(IoU(ypred12, ytrue12, thres=t)) for t in thres]) x = np.linspace(norm.ppf(0.01,loc=mean_iou0[0], scale=std_iou0[0]), norm.ppf(0.99,loc=mean_iou0[0], scale=std_iou0[0]),100) norm.pdf(x, loc=mean_iou0[0], scale=std_iou0[0]) np.where(thres==0.5) plt.figure(figsize=(10,10)) x = np.linspace(norm.ppf(0.01,loc=mean_iou0[0], scale=std_iou0[0]), norm.ppf(0.99,loc=mean_iou0[0], scale=std_iou0[0]),100) plt.plot(x, norm.pdf(x, loc=mean_iou0[0], scale=std_iou0[0]), label='threshold 0') x = np.linspace(norm.ppf(0.01,loc=mean_iou0[20], scale=std_iou0[20]), norm.ppf(0.99,loc=mean_iou0[20], scale=std_iou0[20]),100) plt.plot(x, norm.pdf(x, loc=mean_iou0[20], scale=std_iou0[20]), label='threshold 0.2') x = np.linspace(norm.ppf(0.01,loc=mean_iou0[60], scale=std_iou0[60]), norm.ppf(0.99,loc=mean_iou0[60], scale=std_iou0[60]),100) plt.plot(x, norm.pdf(x, loc=mean_iou0[60], scale=std_iou0[60]), label='threshold 0.6') plt.legend() plt.xlabel('iou range') plt.ylabel('pdf') plt.title('gaussian distribution of IoU for different threshold for +12 prediction') # plt.savefig('fig/12gaussainiou') plt.show() plt.figure(figsize=(10,10)) x = np.linspace(norm.ppf(0.01,loc=mean_iou12[0], scale=std_iou12[0]), norm.ppf(0.99,loc=mean_iou12[0], scale=std_iou12[0]),100) plt.plot(x, norm.pdf(x, loc=mean_iou12[0], scale=std_iou12[0]), label='threshold 0') x = np.linspace(norm.ppf(0.01,loc=mean_iou12[20], scale=std_iou12[20]), norm.ppf(0.99,loc=mean_iou12[20], scale=std_iou12[20]),100) plt.plot(x, norm.pdf(x, loc=mean_iou12[20], scale=std_iou12[20]), label='threshold 0.2') x = np.linspace(norm.ppf(0.01,loc=mean_iou12[60], scale=std_iou12[60]), norm.ppf(0.99,loc=mean_iou12[60], scale=std_iou12[60]),100) plt.plot(x, norm.pdf(x, loc=mean_iou12[60], scale=std_iou12[60]), label='threshold 0.6') plt.legend() plt.xlabel('iou range') plt.ylabel('pdf') plt.title('gaussian distribution of IoU for different threshold for +24 prediction') # plt.savefig('fig/24gaussainiou') plt.show() plt.figure(figsize=(10,10)) plt.plot(thres, mean_iou0, label='+12 prediction') plt.plot(thres, mean_iou12, label='+24 prediction') plt.legend() plt.xlabel('iou threshold range') plt.ylabel('Mean IoU') plt.title('Mean IoU over different threshold for +12/+24 prediction') # plt.savefig('fig/testmeaniou') plt.show() fig, ax = plt.subplots(2,2, figsize=(10,10)) # ind = np.random.choice(range(test_data['target'].shape[0])) ax[0,0].imshow(ypred0[ind].reshape((30,30)), cmap='gray') ax[0,0].set_title('predicted +12 hour') ax[0,0].axis('off') ax[0,1].imshow(ypred12[ind].reshape((30,30)), cmap='gray') ax[0,1].set_title('predicted +24 hour') ax[0,1].axis('off') ax[1,0].imshow(ytrue0[ind].reshape((30,30)), cmap='gray') ax[1,0].set_title('true +12 hour') ax[1,0].axis('off') ax[1,1].imshow(ytrue12[ind].reshape((30,30)), cmap='gray') ax[1,1].set_title('true +24 hour') ax[1,1].axis('off') plt.show() large_fire_inds = np.where( (np.sum(test_data['observed'][:,0],axis=(1,2)) > 50) & (np.sum(test_data['observed'][:,1],axis=(1,2)) > 50) & (np.sum(test_data['observed'][:,2],axis=(1,2)) > 50) & (np.sum(test_data['observed'][:,3],axis=(1,2)) > 50) & (np.sum(test_data['observed'][:,4],axis=(1,2)) > 50) & (np.sum(test_data['target'][:,0],axis=(1,2)) > 50) )[0] fig, ax = plt.subplots(2,2, figsize=(10,10)) ind = np.random.choice(large_fire_inds) ax[0,0].imshow(ypred0[ind].reshape((30,30)), cmap='gray') ax[0,0].set_title('predicted +12 hour') ax[0,0].axis('off') ax[0,1].imshow(ypred12[ind].reshape((30,30)), cmap='gray') ax[0,1].set_title('predicted +24 hour') ax[0,1].axis('off') ax[1,0].imshow(ytrue0[ind].reshape((30,30)), cmap='gray') ax[1,0].set_title('true +12 hour') ax[1,0].axis('off') ax[1,1].imshow(ytrue12[ind].reshape((30,30)), cmap='gray') ax[1,1].set_title('true +24 hour') ax[1,1].axis('off') plt.show() ###Output _____no_output_____ ###Markdown 导入数据集 [TOC] ###Code import json import pandas as pd import numpy as np import matplotlib.pyplot as plt import bokeh import pylab data1 = pd.read_csv('./data/covid19.csv') data2 = data1.set_index('Observation Date') data3 = data2.loc['15-03-2020'] ###Output _____no_output_____ ###Markdown 分省份分析(湖北省单独分析)- 分省份的总感染人数、分省份的总死亡人数、分省份的总治愈人数- 分省份的平均每日新增感染人数、平均每日新增死亡人数、平均每日新增治愈人数- 分省份的治愈率、死亡率- 分省份的变化趋势- 高感染省份(TOP3)的变化趋势、高治愈率省份的变化趋势 - 分省份的总感染人数、分省份的总死亡人数、分省份的总治愈人数 ###Code confirmed = data3['Confirmed'] deaths = data3['Deaths'] recover = data3['Recovered'] region = data3['Province/State'] data_conf = pd.concat([region, confirmed], axis = 1) data_death = pd.concat([region, deaths], axis = 1) data_rec = pd.concat([region, recover], axis = 1) data_conf2 = data_conf.reset_index().drop('Observation Date', axis = 1) data_death2 = data_death.reset_index().drop('Observation Date', axis = 1) data_rec2 = data_rec.reset_index().drop('Observation Date', axis = 1) hb_conf = data_conf2[data_conf2['Province/State'] == 'Hubei'] hb_death = data_death2[data_death2['Province/State'] == 'Hubei'] hb_rec = data_rec2[data_rec2['Province/State'] == 'Hubei'] data_death3 = data_death2.drop(12, axis = 0) data_rec3 = data_rec2.drop(12, axis = 0) data_conf3 = data_conf2.drop(12, axis = 0) all_data = pd.concat([data_conf3, data_death3, data_rec3], axis = 1, ).drop('Province/State', axis = 1) all_data['Province'] = data_death3['Province/State'] ###Output _____no_output_____ ###Markdown Matplotlib分析: ###Code fig1 = plt.figure(figsize = (20,15)) ax1 = fig1.add_subplot(311) ax1.bar(data_conf3['Province/State'], data_conf3['Confirmed']) pylab.xticks(rotation = 60) ax2 = fig1.add_subplot(312) ax2.bar(data_death3['Province/State'], data_death3['Deaths']) pylab.xticks(rotation = 60) ax3 = fig1.add_subplot(313) ax3.bar(data_rec3['Province/State'], data_rec3['Recovered']) pylab.xticks(rotation = 60) fig1.show() ###Output C:\Users\Administrator\anaconda3\lib\site-packages\ipykernel_launcher.py:14: UserWarning: Matplotlib is currently using module://ipykernel.pylab.backend_inline, which is a non-GUI backend, so cannot show the figure. ###Markdown bokeh展示: ###Code from bokeh.plotting import figure, show from bokeh.io import output_notebook from bokeh.models import Legend, LegendItem, ColumnDataSource, HoverTool output_notebook() p = figure(title = 'All Confirmed in China(Except Hubei)', plot_width = 800, plot_height = 500, x_range = all_data['Province'].tolist()) hover_tool = HoverTool( tooltips = [ ("Province", "@Province"), ("Confirmed", "@Confirmed"), ("Deaths", "@Deaths"), ("Recovered", "@Recovered") ], #mode = 'vline' ) p.add_tools(hover_tool) source = ColumnDataSource(data = all_data) bar1 = p.vbar(x = 'Province', top = 'Confirmed', source = source,width = 0.9, color = 'navy', alpha = 0.6, legend_label = 'Confirmed') bar2 = p.vbar(x = 'Province', top = 'Deaths', source = source, width = 0.9, color = 'firebrick', alpha = 0.8, legend_label = 'Deaths') bar3 = p.vbar(x = 'Province', top = 'Recovered', source = source, width = 0.9, color = '#a6cee3', alpha = 0.6, legend_label = 'Recovered') p.legend.orientation = "horizontal" p.x_range.range_padding = 0.1 p.legend.location = "top_right" p.legend.click_policy = 'hide' p.xaxis.major_label_orientation = 1.2 show(p) ###Output _____no_output_____ ###Markdown - 分省份的平均每日新增感染人数、新增死亡人数、新增治愈人数 ###Code def added(x): y = [] for i in range(1,len(x)): y.append(x[i] - x[i-1]) y = np.array(y) aver = np.mean(y) return aver data1.head() data_prov = data1.set_index('Province/State') Province = data1['Province/State'].unique() conf_aver, death_aver, recov_aver = [], [], [] for prov in Province: data = data_prov.loc[prov] conf_aver.append(added(data['Confirmed'].values)) death_aver.append(added(data['Deaths'].values)) recov_aver.append(added(data['Recovered'].values)) Province = pd.DataFrame(Province) hb_data = [] def return_df(x, name): dir_df = pd.DataFrame(x) dir_aver = pd.concat([Province, dir_df], axis = 1) dir_aver.columns = ['Province', name] hb_data.append(dir_aver[dir_aver['Province'] == 'Hubei']) dir_aver.drop(12, axis = 0, inplace = True) return dir_aver conf_aver = return_df(conf_aver, 'confirmed') death_aver = return_df(death_aver, 'deaths') recov_aver = return_df(recov_aver, 'recovered') all_data2 = pd.merge(conf_aver, death_aver, on = 'Province') all_data2 = pd.merge(all_data2, recov_aver, on = 'Province') #data1.groupby('Province/State').apply(added) all_data2 ###Output _____no_output_____ ###Markdown Bokeh展示: ###Code from bokeh.plotting import figure, show from bokeh.io import output_notebook from bokeh.models import Legend, LegendItem, ColumnDataSource, HoverTool #output_notebook() p2 = figure(title = 'Average Increase in Confirmed/Deaths/Recovered in China(Except Hubei)', plot_width = 800, plot_height = 500, x_range = all_data2['Province'].tolist()) source = ColumnDataSource(data = all_data2) hover_tool = HoverTool( tooltips = [ ("Province", "@Province"), ("Confirmed", "@confirmed"), ("Deaths", "@deaths"), ("Recovered", "@recovered") ], #mode = 'vline' ) p2.add_tools(hover_tool) bar1 = p2.vbar(x = 'Province', top = 'confirmed', source = source,width = 0.9, color = 'navy', alpha = 0.6, legend_label = 'confirmed') bar2 = p2.vbar(x = 'Province', top = 'deaths', source = source, width = 0.9, color = 'firebrick', alpha = 0.8, legend_label = 'deaths') bar3 = p2.vbar(x = 'Province', top = 'recovered', source = source, width = 0.9, color = '#a6cee3', alpha = 0.6, legend_label = 'recovered') p2.legend.orientation = "horizontal" p2.x_range.range_padding = 0.1 p2.legend.location = "top_right" p2.legend.click_policy = 'hide' p2.xaxis.major_label_orientation = 1.2 show(p2) ###Output _____no_output_____ ###Markdown - 分省份的治愈率、死亡率、治愈死亡比治愈率($Rec_1$): $Rec_1 = \frac{总治愈人数}{总感染人数}$死亡率($Dea_1$): $Dea_1 = \frac{总死亡人数}{总感染人数}$ ###Code #data_death2,data_rec2, data_conf2 recrate = pd.concat([data_rec2['Province/State'],data_rec2['Recovered']/data_conf2['Confirmed']], axis = 1) recrate.columns = ['Province', 'Recover'] dearate = pd.concat([data_death2['Province/State'],data_death2['Deaths']/data_conf2['Confirmed']], axis = 1) dearate.columns = ['Province', 'Deaths'] Rates = pd.merge(recrate, dearate, on = 'Province') Rates ###Output _____no_output_____ ###Markdown Bokeh展示: ###Code from bokeh.layouts import column #output_notebook() p3_1 = figure(title = 'Recover Rate in China', x_range = Rates['Province'].tolist(), plot_width = 800, plot_height = 200) source = ColumnDataSource(data = Rates) hover_tool = HoverTool( tooltips = [ ("Province", "@Province"), ("Death Rate", "@Deaths"), ("Recover Rate", "@Recover") ], #mode = 'vline' ) p3_1.add_tools(hover_tool) bar1 = p3_1.vbar(x = 'Province', top = 'Recover', source = source,width = 0.9, color = 'navy', alpha = 0.6) p3_1.x_range.range_padding = 0.1 p3_1.y_range.start = 0.5 p3_1.xaxis.major_label_orientation = 1.2 p3_2 = figure(title = 'Death Rate in China',x_range = Rates['Province'].tolist(), plot_width = 800, plot_height = 200) bar2 = p3_2.vbar(x = 'Province', top = 'Deaths', source = source, width = 0.9, color = 'firebrick', alpha = 0.6) p3_2.add_tools(hover_tool) p3_2.x_range.range_padding = 0.1 p3_2.xaxis.major_label_orientation = 1.2 show(column(p3_1, p3_2)) ###Output _____no_output_____ ###Markdown - 分省份的变化趋势 ###Code #这部分可以直接复制 ###Output _____no_output_____ ###Markdown - 高感染省份(TOP3)的变化趋势、高治愈率省份的变化趋势 ###Code #Top3 Infection: print('Top3 Infection:\n', data_conf3.sort_values('Confirmed', ascending = False)[:3]) print('Top3 Recovered:\n',data_rec3.sort_values('Recovered', ascending = False)[:3]) print('Top3 Death Rate:\n', dearate.sort_values('Deaths', ascending = False)[:3]) print('Top5 Recover Rate:\n', recrate.sort_values('Recover', ascending = False)[:5]) ###Output Top3 Infection: Province/State Confirmed 5 Guangdong 1360 11 Henan 1273 30 Zhejiang 1231 Top3 Recovered: Province/State Recovered 5 Guangdong 1304 11 Henan 1250 30 Zhejiang 1211 Top3 Death Rate: Province Deaths 12 Hubei 0.045506 28 Xinjiang 0.039474 8 Hainan 0.035714 Top5 Recover Rate: Province Recover 15 Jiangsu 1.00000 27 Tibet 1.00000 24 Shanxi 1.00000 20 Qinghai 1.00000 16 Jiangxi 0.99893 ###Markdown - 对广东、河南、浙江、江苏作出每日新增、每日确诊、每日治愈趋势图数据提取: ###Code data4 = data1.set_index('Province/State') gd = data4.loc['Guangdong'].drop(['Latitude', 'Longitude', 'Country/Region'], axis = 1) hn = data4.loc['Henan'].drop(['Latitude', 'Longitude', 'Country/Region'], axis = 1) zj = data4.loc['Zhejiang'].drop(['Latitude', 'Longitude', 'Country/Region'], axis = 1) js = data4.loc['Jiangsu'].drop(['Latitude', 'Longitude', 'Country/Region'], axis = 1) def get_column(x): conf = x.Confirmed.diff(1) deat = x.Deaths.diff(1) rec = x.Recovered.diff(1) df = pd.concat([conf, deat, rec, x['Observation Date']], axis = 1).dropna() df = df.reset_index() df.columns = ['Province','Confirmed', 'Deaths', 'Recovered', 'Date'] df['Date'] = pd.to_datetime(df['Date'], format = '%d-%m-%Y') return df gd_added = get_column(gd) hn_added = get_column(hn) zj_added = get_column(zj) js_added = get_column(js) all_added = [gd_added, hn_added, zj_added, js_added] js_added.head() ###Output _____no_output_____ ###Markdown Bokeh展示:该图分为三个Part:1. 每日新增感染,新增感染的四条线颜色一样。2. 每日新增死亡,新增死亡的四条线颜色一样。3. 每日新增治愈,新增治愈的四条线颜色一样。4. 可以按照城市来筛选。 ###Code from bokeh.layouts import column, layout from bokeh.models import ColumnDataSource as CDS from bokeh.models import Toggle hover_tool = HoverTool( tooltips = [ ("Province", '@Province'), ("Confirmed", "@Confirmed"), ("Deaths", "@Deaths"), ("Recovered", "@Recovered"), ("Date", "@Date{%F}") ], formatters = { "@Date":"datetime", }, #mode = 'vline' ) plot = figure(x_axis_type = "datetime",title = 'Recover Rate in China',plot_width = 800, plot_height = 500) plot.add_tools(hover_tool) toggles = [] for data in all_added: source = CDS(data = data) p1 = plot.line(y = data['Confirmed'], x = data['Date'], line_color = 'Firebrick',line_alpha = 0.6, line_width = 2, legend_label = 'Confirmed') p2 = plot.line(y = 'Deaths', x = 'Date', source = source, line_color = 'Navy',line_alpha = 0.6, line_width = 2,legend_label = 'Deaths') p3 = plot.line(y = 'Recovered', x = 'Date', source = source, line_color = '#a6cee3',line_alpha = 0.6, line_width = 2,legend_label = 'Recovered') toggle2 = Toggle(label = data['Province'][0], button_type = 'default', active = True, width_policy = 'max', background = 'grey') toggle2.js_link('active', p1, 'visible') toggle2.js_link('active', p2, 'visible') toggle2.js_link('active', p3, 'visible') toggles.append(toggle2) plot.legend.location = "top_right" plot.legend.click_policy = 'hide' layouts = layout([plot, toggles]) show(layouts) ###Output _____no_output_____ ###Markdown 全国形势分析- 全国总感染趋势、总感染人口、总死亡人口、总治愈人口- 全国死亡率、治愈率- 全国净增加趋势- 全国数据建模 - 全国总感染趋势、总感染人口、死亡、治愈人口以及净增加趋势 ###Code f = open('./data/timeseries.json', 'r') content = f.read() a = json.loads(content) chdata = pd.DataFrame(a['China']) chdata['date'] = pd.to_datetime(chdata['date'], format = '%Y-%m-%d') chdata_add = pd.concat([chdata['date'], chdata['confirmed'].diff(1), chdata['deaths'].diff(1), chdata['recovered'].diff(1)], axis = 1).dropna() p4_1 = figure(x_axis_type = 'datetime', plot_width = 800, plot_height = 250) source1 = ColumnDataSource(data = chdata) source2 = ColumnDataSource(data = chdata_add) hover_tool1 = HoverTool( tooltips = [ ("Confirmed", "@confirmed{0}"), ("Deaths", "@deaths{0}"), ("Recovered", "@recovered{0}"), ("Date", "@date{%F}") ], formatters = { "@date":"datetime", }, #mode = 'vline' ) p4_1.add_tools(hover_tool1) area1 = p4_1.varea(y2 = 'confirmed',y1 = 0, x = 'date', source = source1, color = 'firebrick', alpha = 0.5, legend_label = 'Confirmed') line1 = p4_1.line(y = 'confirmed',x = 'date', source = source1, color = 'firebrick', alpha = 0.8, line_width = 2, legend_label = 'Confirmed') area2 = p4_1.varea(y2 = 'deaths', y1 = 0, x = 'date', source = source1, color = 'navy', alpha = 0.5, legend_label = 'Deaths') line2 = p4_1.line(y = 'deaths',x = 'date', source = source1, color = 'navy', alpha = 0.8, line_width = 2, legend_label = 'Deaths') area3 = p4_1.varea(y2 = 'recovered', y1 = 0, x = 'date', source = source1, color = '#a6cee3', alpha = 0.5, legend_label = 'Recovered') line3 = p4_1.line(y = 'recovered', x = 'date', source = source1, color = '#a6cee3', alpha = 0.8, line_width = 2, legend_label = 'Recovered') p4_1.legend.location = "top_right" p4_1.legend.click_policy = 'hide' #show(p4_1) p4_2 = figure(x_axis_type = 'datetime', plot_width = 800, plot_height = 250) p4_2.add_tools(hover_tool1) l1 = p4_2.line(y = 'confirmed', x = 'date', source = source2, color = 'firebrick', line_width = 3, legend_label = 'Confirmed') l2 = p4_2.line(y = 'deaths', x = 'date', source = source2, color = 'navy', line_width = 3, legend_label = 'Deaths') l3 = p4_2.line(y = 'recovered',x = 'date', source = source2, color = '#a6cee3', line_width = 3, legend_label = 'Recovered') p4_2.legend.location = "top_right" p4_2.legend.click_policy = 'hide' layouts = layout([p4_1, p4_2]) show(layouts) ###Output _____no_output_____ ###Markdown - 全国死亡率、治愈率死亡率($Dea_2$): $Dea_2 = \frac{全国总死亡人口}{全国总感染人口}$治愈率($Rec_2$):$Rec_2 = \frac{全国总治愈人口}{全国总感染人口}$ ###Code total_conf = chdata['confirmed'].iloc[-1] total_death = chdata['deaths'].iloc[-1] total_rec = chdata['recovered'].iloc[-1] print('Death Rate:\t', total_death/total_conf) print('Recover Rate:\t', total_rec/total_conf) ###Output Death Rate: 0.054738456094828095 Recover Rate: 0.9392227398714396 ###Markdown - 全国时间序列数据建模 Bokeh建模: ###Code from bokeh.layouts import column from bokeh.models import CustomJS, ColumnDataSource, Slider x = np.linspace(0, 161, 2000) y = 1/(np.exp(1)**(-x)+1) source1 = ColumnDataSource(data = dict(x = range(0,161), y = chdata['confirmed'])) source2 = ColumnDataSource(data = dict(x = x, y = y)) plot = figure(plot_width = 400, plot_height = 400) plot.line('x', 'y', source = source1, line_width = 3, line_alpha = 0.6) plot.line('x', 'y', source = source2, line_width = 3, line_alpha = 0.6, line_color = 'firebrick') slider1 = Slider(start = 0, end = 1, value = 0, step = 0.01) #slider2 = Slider(start = 0, end = 10, value = 1,step = 0.1) slider3 = Slider(start = -10, end = 10, value = 2 , step = 0.1) callback = CustomJS(args = dict(source = source2, slider1 = slider1, slider3 = slider3), code = """ var data = source.data; var f1 = slider1.value; var f3 = slider3.value; var x = data['x']; var y = data['y']; for (var i = 0; i < x.length; i++){ y[i] = 84000*(Math.pow(Math.exp(1), f1*x[i])-1)/(f3+Math.pow(Math.exp(1), f1*x[i])) } source.change.emit(); """) slider1.js_on_change('value', callback) #slider2.js_on_change('value', callback) slider3.js_on_change('value', callback) show(column(slider1, slider3, plot)) ###Output _____no_output_____ ###Markdown Assessing the representativity of the UK Parliament following the 2017 General ElectionOr: how Theresa May came into power with less than a third of the UK casting a vote for her party.TL-DR: FPTP + abstention Background and definitionsThe UK (like many western democracies) is a representative democracy, meaning it elects people to represent them and make decisions.The basic idea is as follow: the UK is geographically divided into 650 **constituencies** of roughly the same number of voters, each of which holds a mini-election for one **seat** in the House of Commons.These mini-elections are done using what is called a **First-Past the Post** (FPTP) system, meaning all voters cast one vote for one of the candidate, and the candidate with the more votes wins the seat. This system has the advantage of being easy to understand and put in place, but also has several drawbacks. For example, a candidate does not need 50% support to win, just having the highest score (votes might be split e.g. 45-40-15).The population legally allowed to cast a vote is called the **electorate**. The number of **valid votes** (votes which are counted to determine seats) is however smaller than the number of people in the electorate, as voting is not mandatory and some votes might be spoiled (i.e. made unvalid for a variety of reasons). The ratio of valid votes against the electorate is called the **turnout**.After the election, the **government** is elected based on a majority of seats in the House of Commons. The government can then propose all sort of ideas to improve the country, in the form of laws that are voted in the House of Commons by their majority.To simplify the whole process, candidates are organized into **parties**, which publish a political **manifesto** prior to the election. When you are deciding which candidate to vote for, you can refer to the manifesto to know what are the laws they are planning to pass if they take part in a government.There are many additional subtleties to consider (electoral pacts, majority or coalitions governments, the official opposition, party leaders, the Monarch's role, etc.) but we will ignore them here. 2017 ResultSee https://www.bbc.com/news/election/2017/resultsTurnout was 68.7%.Following the election, a government was formed by the *Conservative* party, with support from the *Democratic Unionist Party*. Problem definitionWe will look at how well the parliament, and the government, actually represent the electorate, using two metrics:1) how many eligible voters have voted for an actual member of the House of Commons2) how many eligible voters have actually voted for the government's manifesto.Some hypotheses:- We assume voters vote for a party, not a candidate- We assume voters vote for their preferred choice- We assume non-voters were not satisfied with any of the choicesAbout the 2nd hypothesis, we know that it is not exactly the case: as a consequence of FPTP, some people will vote "tactically" for a less-liked but better-placed candidate. This means our analysis will be optimistic relating to the representativity of Parliament. DataThe data is from the Electoral Commission website and can be found here : https://www.electoralcommission.org.uk/who-we-are-and-what-we-do/elections-and-referendums/past-elections-and-referendums/uk-general-elections/results-and-turnout-2017-uk-general-election Analysis Before we do anything, let's import some libraries. ###Code import csv ###Output _____no_output_____ ###Markdown Let's load some administrative data about each constituency ###Code constituencies_info = {} with open("2017-UKPGE-Electoral-Data - Administrative data.csv", encoding='utf8') as f: # Note: there's a typo in the CSV file # Party Identifer => Party Identifier reader = csv.DictReader(f) for row in reader: ons = row["ONS Code"] name = row["Constituency"] electorate_nb = row["Electorate "] # extra space because why not valid_vote_nb = row["Total number of valid votes counted"] assert ons not in constituencies_info constituencies_info[ons] = { 'name': name, 'electorate_nb': int(electorate_nb.replace(',', '')), 'valid_vote_nb': int(valid_vote_nb.replace(',', '')) } print("Loaded administrative data for", len(constituencies_info.keys()), "constituencies") ###Output Loaded administrative data for 650 constituencies ###Markdown Now let's load the election results. ###Code results_by_constituencies = {} with open("2017-UKPGE-Electoral-Data - Results.csv", encoding='utf8') as f: reader = csv.DictReader(f) for row in reader: ons = row["ONS Code"] party = row["Party Identifer"] # typo in the data because why not result = int(row["Valid votes"]) if ons not in results_by_constituencies: results_by_constituencies[ons] = {} # if party.startswith("Independent"): # party += row["Surname"] results_by_constituencies[ons][party] = result print("Loaded results for ", len(results_by_constituencies.keys()), "constituencies") ###Output Loaded results for 650 constituencies ###Markdown We can check that we reproduce the election results: ###Code seats = {} for ons in results_by_constituencies.keys(): winner = max(results_by_constituencies[ons], key=results_by_constituencies[ons].get) if winner not in seats: seats[winner] = 0 seats[winner] += 1 print("== Party seats ==") for party in seats.keys(): print("\t", party, seats[party]) ###Output == Party seats == Conservative 317 Labour 262 Liberal Democrats 12 Green Party 1 Speaker 1 DUP 10 Sinn Féin 7 Independent 1 SNP 35 Plaid Cymru 4 ###Markdown There are indeed the results reported by the BBC : https://www.bbc.com/news/election/2017/results(Note that the BBC counts the Speaker as a Conservative) Let's also calculate the total number of voters: ###Code electorate_total = 0 for ons in results_by_constituencies.keys(): electorate = constituencies_info[ons]["electorate_nb"] electorate_total += electorate print("There were", electorate_total, "voters in the election") ###Output There were 46835433 voters in the election ###Markdown Let's look at our first point: how many people have voted for the candidate which ended up winning their seat?We call them "happy voters". ###Code happy_total = 0 for ons in results_by_constituencies.keys(): winner = max(results_by_constituencies[ons], key=results_by_constituencies[ons].get) nb_of_happy_voters = results_by_constituencies[ons][winner] happy_total += nb_of_happy_voters print("There were", happy_total, "happy voters in the election") print("These represent", 100 * round(happy_total / electorate_total, 2), "% of the electorate.") ###Output There were 17990241 happy voters in the election These represent 38.0 % of the electorate. ###Markdown And now let's look at the second point: how many people have voted for parties which eventually became part of the government?We call them "majority voters". ###Code majority_total = 0 for ons in results_by_constituencies.keys(): nb_of_majority_voters = 0 if "Conservative" in results_by_constituencies[ons]: nb_of_majority_voters += results_by_constituencies[ons]["Conservative"] if "DUP" in results_by_constituencies[ons]: nb_of_majority_voters += results_by_constituencies[ons]["DUP"] majority_total += nb_of_majority_voters print("There were", majority_total, "majority voters in the election") print("These represent", 100 * round(majority_total / electorate_total, 2), "% of the electorate.") ###Output There were 13929000 majority voters in the election These represent 30.0 % of the electorate. ###Markdown Tesla Energy Time Series Data Challenge > 💁‍ Author: Mei Mei > 📧 Email: [email protected] > 📌 GitHub Link: https://github.com/vickymei/tesla_energy_project Summary This project focuses on solving the problem of identifying malfunctioning Energy Production Sites by 1. Built a ETL pipeline to collect signal data through 2 Energy Realtime Data API Endpoints2. Collected 29 hours historical data 3. Provided a Plotly Dash dashboard for visualizing data from 42 sites4. Proposed solutions for more in-depth Anomaly Detection This Notebook will explain this project in the following order: Part 1. ETL Pipeline Building Part 2. Data Processing & Plotly VisualizationPart 3. Analysis and Insights on Malfunctioning SitesPart 4. More Anomaly Detection Thoughts Part 1. ETL Pipeline Building This section aims at building data pipeline and collecting signal data using pipelinel. 1. There will be one json file generated every minute. After running the script for roughly 29 hours, there are 29 hours * 60 = 1740 files in data/ directory2. Json files are named by timestamp of generation time3. Try Except is utilized for possible api call failure ![jsons.JPG](attachment:jsons.JPG) ```pythondef get_sites_from_api(): """Return list of all existing sites.""" load_dotenv() json_data = requests.get( "https://te-data-test.herokuapp.com/api/sites?token="+os.environ.get("api-token")).json() sites = json_data["sites"] return sitesdef get_signals_from_api(site): """Return site signal data.""" load_dotenv() json_data = requests.get( "https://te-data-test.herokuapp.com/api/signals?token="+os.environ.get("api-token")+f"&site={site}").json() return json_data``` ```pythondef main(): """Write signal data to local file system in json format every minute. """ sites = get_sites_from_api() site_data = [] timestamp_now = datetime.now() timestamp_file_name = f"signal-{timestamp_now.year}-{timestamp_now.month}-{timestamp_now.day}-{timestamp_now.hour}-{timestamp_now.minute}-{timestamp_now.second}.json" for site in sites: try: site_data.append(get_signals_from_api(site)) except: error_data = { 'signals': {'SITE_SM_batteryInstPower': None, 'SITE_SM_siteInstPower': None, 'SITE_SM_solarInstPower': None}, 'site': site, 'timestamp': None} site_data.append(error_data) with open(f"data/{timestamp_file_name}", 'w') as f: json.dump(site_data, f) return 'success'``` Note: By setting sleeping time and calling api at a relatively low frequency (per minute), I didn't notice data loss due to API issues during data collection. Part 2. Data Processing & Plotly Visualization Data Processing ###Code import json import pandas as pd import os import missingno as msno import seaborn as sns import warnings import numpy as np import pandas as pd from pandas.core.common import SettingWithCopyWarning warnings.simplefilter(action="ignore", category=SettingWithCopyWarning) %matplotlib inline pd.set_option('display.max_rows', 20) # Read all json files and print statements about number of records path_to_json = 'data/' json_files = [f'data/{pos_json}' for pos_json in os.listdir(path_to_json) if pos_json.endswith('.json')] print(f"There are {len(json_files)} json files in total.") js = [] for fn in json_files: with open(fn, 'r') as f: js = js + json.load(f) print(f"There are {len(js)} signal from 42 sites in total.") # Transform dataframe for later analysis df = pd.DataFrame(js) df.head(5) # Transform dataframe for later analysis df_main = pd.concat([df.drop(['signals'], axis=1), df['signals'].apply(pd.Series)], axis=1) df_main = df_main[['site', 'timestamp', 'SITE_SM_solarInstPower']] df_main['timestamp'] = pd.to_datetime(df_main['timestamp']) df_main.head(5) # Put all sites' name into a list sites =['134a3fa6', '8d9fed87', '5688ed10', '2b33a48d', '07333ad0', '38c8ae33', 'adc42b19', 'e9ba8cec', 'e12c2148', '4b78aae6', 'e724ca65', '135433c1', '90606897', '02ebf5c7', 'c8eb2d3d', '2b98cbdd', '39146e59', '55af2f9b', '28731623', '3193e230', 'e6bcf7cf', '7da0acb7', 'c18b6195', '20abb173', 'f34b386a', 'f7f9ac09', '5fc96249', '82c74b9e', 'b255f7ad', '61bff705', '619fd2b9', '260f359a', '4faff963', '499a251d', 'dfc6fdf5', '64e1616f', '93c8a2c1', 'eec02ec5', '90791ae9', '49b6c0dd', 'd0926969', '7435e9d3'] # Ignore the minor 1 or 2 sec difference for all sites signal from one api call, using timestamp of site 134a3fa6 df_timestamp = df_main[df_main['site']=="134a3fa6"].reset_index(drop=True)[['timestamp']] # We are investigating solar production signals, so variable 'SITE_SM_solarInstPower' is the target variable for site in sites: df_site = df_main[df_main['site']==site].reset_index(drop=True) df_timestamp.loc[:, site] = df_site['SITE_SM_solarInstPower'].tolist() # timestamp dataframe is saved in csv format for plotly dashboard building df_timestamp.to_csv('timestamp.csv') df_timestamp.head(5) ###Output _____no_output_____ ###Markdown Plotly Visualization The screenshot below is a simple plotly dashboard to visualize all sites signals. You could select different site code to see data coming from any of the 42 sites. In order to run the app on your local machine, you need to run `python viz.py` in your terminal and visit http://127.0.0.1:8050/ in your web browser. ![2.JPG](attachment:2.JPG) >The Code snippet below creates the simple dashboard above. ```pythonapp = dash.Dash(__name__)sites = ['134a3fa6', '8d9fed87', '5688ed10', '2b33a48d', '07333ad0', '38c8ae33', 'adc42b19', 'e9ba8cec', 'e12c2148', '4b78aae6', 'e724ca65', '135433c1', '90606897', '02ebf5c7', 'c8eb2d3d', '2b98cbdd', '39146e59', '55af2f9b', '28731623', '3193e230', 'e6bcf7cf', '7da0acb7', 'c18b6195', '20abb173', 'f34b386a', 'f7f9ac09', '5fc96249', '82c74b9e', 'b255f7ad', '61bff705', '619fd2b9', '260f359a', '4faff963', '499a251d', 'dfc6fdf5', '64e1616f', '93c8a2c1', 'eec02ec5', '90791ae9', '49b6c0dd', 'd0926969', '7435e9d3']app.layout = dash.html.Div([ dash.html.H4('Tesla Energy - Solar Power Production Daily Monitor'), dash.dcc.Graph(id="time-series-chart"), dash.html.P("Select Site Code: "), dash.dcc.Dropdown( id="ticker", options=sites, value="134a3fa6", clearable=False, ),])@app.callback( dash.Output("time-series-chart", "figure"), dash.Input("ticker", "value"))def display_time_series(ticker): df1 = pd.read_csv('timestamp.csv') fig = px.bar(df1, x='timestamp', y=ticker) return fig``` Part 3. Analysis and Insights on Malfunctioning Sites Sites return No Signals (Missing Values) ###Code df_missing = df_timestamp.drop('timestamp', axis=1) msno.matrix(df_missing, color=(1, 0.38, 0.27)) ###Output _____no_output_____ ###Markdown Sites return negative signals (Solar Production should always be positive) ###Code df_negative = df_missing.fillna(0) df_negative[df_negative < 0] = np.nan msno.matrix(df_negative, color=(0.27, 0.52, 1.0)) ###Output _____no_output_____ ###Markdown GitHub Community Health ###Code from scipy.io import arff import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.feature_selection import SequentialFeatureSelector from sklearn.preprocessing import LabelEncoder, MinMaxScaler from sklearn.impute import SimpleImputer from sklearn.metrics import mean_squared_error, mean_absolute_error from sklearn.decomposition import PCA from sklearn.metrics import silhouette_score from sklearn import tree import graphviz # Models from sklearn.neighbors import KNeighborsRegressor from sklearn.neural_network import MLPRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.cluster import AgglomerativeClustering, KMeans # Apply label encoder to categorical columns # Return indices of those columns def categorical_to_numberic(df): cols, indices = [], [] for i, col in enumerate(df): if isinstance(df[col][0], bytes): cols.append(col) indices.append(i) atts = [col for col in df if isinstance(df[col][0], bytes)] df[cols] = df[cols].apply(LabelEncoder().fit_transform) return indices # Load arff file into pandas dataframe data = arff.loadarff("github.arff") df = pd.DataFrame(data[0]) # Delete features # del df["forks_count"] del df["seconds_since_updated"] del df["seconds_since_pushed"] # Convert categorical data to numeric cat_cols = categorical_to_numberic(df) # Impute missing values df.replace("?", np.NaN, inplace=True) imputer = SimpleImputer(missing_values=np.nan, strategy="mean") idf = pd.DataFrame(imputer.fit_transform(df)) idf.columns = df.columns idf.index = df.index # Split off collumn we want to predict predict_attribute = "contributor_count" X_df = idf.drop(predict_attribute, axis=1) y_df = idf[predict_attribute] # Normalize inputs, convert to numpy X = MinMaxScaler().fit_transform(X_df) y = y_df.to_numpy() y_log = np.log(y) print("Contributor count statistics") print(pd.DataFrame(y).describe()) print("\nContributor count (logged) statistics") print(pd.DataFrame(y_log).describe()) ###Output Contributor count statistics 0 count 10000.000000 mean 27.007700 std 85.154676 min 1.000000 25% 1.000000 50% 1.000000 75% 13.000000 max 988.000000 Contributor count (logged) statistics 0 count 10000.000000 mean 1.360771 std 1.734924 min 0.000000 25% 0.000000 50% 0.000000 75% 2.564949 max 6.895683 ###Markdown Split into trainig and testing datasets ###Code # Split into train and test sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.15) print(X_train.shape, X_test.shape, y_train.shape, y_test.shape) ###Output (8500, 36) (1500, 36) (8500,) (1500,) ###Markdown Taking log10 of data makes regressions a much easier task ###Code y_log_train, y_log_test = np.log10(y_train), np.log10(y_test) ###Output _____no_output_____ ###Markdown Split off a sample of the data set to speed up feature analysis ###Code # Randomly sample from the data set selection = np.random.randint(1, len(X), 500) X_sample = X[selection] y_sample = y_log[selection] # Split sample into train and test sets X_sample_train, X_sample_test, y_sample_train, y_sample_test = train_test_split(X_sample, y_sample, test_size=0.3) print(X_sample_train.shape, X_sample_test.shape, y_sample_train.shape, y_sample_test.shape) ###Output (350, 36) (150, 36) (350,) (150,) ###Markdown Feature Analysis Compute the mean and the baseline error for contributor count and the log of it ###Code mean = np.mean(y) print(f"Baseline error: {mean_absolute_error(np.full_like(y, mean), y)}") mean_log = np.mean(y_log) print(f"Log baseline error: {mean_absolute_error(np.full_like(y_log, mean_log), y_log)}") # Plot with n best features def view_pred(n, n_pred, n_feats): pred = n_pred[n] print(*[col for col in df.columns[:-1][n_feats[n]]], sep=" ") plt.plot(pred, label="Prediction") plt.plot(y_sample_test, label="True") plt.title(f"{n} best features") plt.legend() plt.show() # Sequential feature selection # Define custom distance metric to handle numeric and categorical data def my_dist(x, y, cat_cols=[]): total = 0 for i, feature in enumerate(x): if i not in cat_cols: total += np.abs(feature - y[i]) elif feature != y[i]: total += 0.5 return total # regr = KNeighborsRegressor(metric=my_dist, metric_params={"cat_cols": cat_cols}) # regr = MLPRegressor(max_iter=10000) regr = DecisionTreeRegressor(max_depth=10) domain = np.arange(1, 35, 2) n_err = {} n_pred = {} n_feats = {} for i, n in enumerate(domain): sfs = SequentialFeatureSelector(regr, n_features_to_select=int(n), direction="forward") sfs.fit(X_sample_train, y_sample_train) feats = sfs.get_support() n_feats[n] = feats X_reduce = X_sample_test.T[feats].T regr.fit(X_reduce, y_sample_test) pred = regr.predict(X_reduce) n_pred[n] = pred err = mean_absolute_error(y_sample_test, pred) n_err[n] = err # Plot n vs err plt.rcParams["figure.dpi"] = 120 plt.plot(domain, n_err.values()) plt.xlabel("# of features") plt.ylabel("Mean Absolute Error") plt.savefig("feature_selection.png", dpi=300) plt.show() ###Output _____no_output_____ ###Markdown View how well the best prediction did ###Code view_pred(13, n_pred, n_feats) ###Output has_issues has_projects has_downloads has_pages topics_count has_contributing has_support_file has_funding_file has_codeowners has_changelog has_codespaces has_discussions labels_count ###Markdown Reduce our dataset to the features these features that preformed best ###Code feats = n_feats[27] X_train = X_train.T[feats].T X_test = X_test.T[feats].T print(X_train.shape, X_test.shape) ###Output (8500, 27) (1500, 27) ###Markdown Regression PCAMost of the variation in the data can be compressed to ~6 dimentions/features. ###Code pca = PCA(n_components=35) pca.fit(X) plt.plot(pca.explained_variance_ratio_) plt.savefig("pca.png", dpi=300) plt.plot() pca = PCA(n_components=5) X_pca_train = pca.fit_transform(X_train) X_pca_test = pca.fit_transform(X_test) ###Output _____no_output_____ ###Markdown K-Nearest Neighbors ###Code knn = KNeighborsRegressor(metric=my_dist, metric_params={"cat_cols": cat_cols}) knn.fit(X_pca_train, y_log_train) pred = knn.predict(X_pca_test) err = mean_absolute_error(y_log_test, pred) print(f"Error: {err}") plt.figure(figsize=(12,6)) selection = np.random.randint(1, len(pred), 80) plt.plot(pred[selection], label="Prediction") plt.plot(y_log_test[selection], label="True") plt.legend() plt.savefig("knn.png", dpi=300) plt.show() ###Output Error: 0.6138631269503059 ###Markdown Multilayer Perceptron Decision TreeThe decision tree starts to overfit after 7 layers. It does much better then Knn. ###Code # max_features <- The number of features to consider when looking for the best split dom = np.arange(2, 40) errs = [] for i in dom: decisionTree = DecisionTreeRegressor(max_depth=i, max_features=1) decisionTree.fit(X_train, y_log_train) pred = decisionTree.predict(X_test) err = mean_absolute_error(y_log_test, pred) errs.append(err) plt.plot(dom, errs) plt.xlabel("Depth") plt.ylabel("Mean Absolute Err") plt.savefig("depth_error.png", dpi=300) plt.show() decisionTree = DecisionTreeRegressor(max_depth=10) decisionTree.fit(X_train, y_log_train) pred = decisionTree.predict(X_test) err = mean_absolute_error(y_log_test, pred) print(f"Error: {err}") plt.figure(figsize=(12,6)) plt.plot(pred[selection], label="Prediction") plt.plot(y_log_test[selection], label="True") plt.legend() plt.savefig("decision_tree.png", dpi=300) plt.show() tree_data = tree.export_graphviz(decisionTree, feature_names=X_df.T[feats].T.columns, out_file=None, filled=True, max_depth=3) graphviz.Source(tree_data, format="png").render("tree.png") ###Output _____no_output_____ ###Markdown Clustering Kmeans, HACThe Silhouette score is quite good, especially for k=2. The cluster sizes are also somewhat reasonable. My guess is that it basically partitioned the ~2.5% of the repos with > 100 contributors. ###Code kmeans_sil, single_sil, complete_sil = [], [], [] data = np.column_stack((X, y)) dom = np.arange(2, 6) for k in dom: # K-means kmeans = KMeans(n_clusters=k) kmeans_clusters = kmeans.fit_predict(data) print(f"{k} k-means cluster sizes: {np.unique(kmeans_clusters, return_counts=True)[1]}") kmeans_sil.append(silhouette_score(data, kmeans_clusters)) # HAC single hac_single = AgglomerativeClustering(n_clusters=k, linkage="single") hac_single_clusters = hac_single.fit_predict(data) print(f"{k} HAC single cluster sizes: {np.unique(hac_single_clusters, return_counts=True)[1]}") single_sil.append(silhouette_score(data, hac_single_clusters)) # HAC complete hac_complete = AgglomerativeClustering(n_clusters=k, linkage="complete") hac_complete_clusters = hac_complete.fit_predict(data) print(f"{k} HAC complete cluster sizes: {np.unique(hac_complete_clusters, return_counts=True)[1]}") complete_sil.append(silhouette_score(data, hac_complete_clusters)) plt.figure(figsize=(12, 6)) plt.plot(dom, kmeans_sil, label="k-means silhouette") plt.plot(dom, single_sil, label="HAC single link silhouette") plt.plot(dom, complete_sil, label="HAC complete link silhouette") plt.legend() plt.savefig("clusters_silhouette.png", dpi=300) plt.show() ###Output 2 k-means cluster sizes: [9746 254] 2 HAC single cluster sizes: [ 15 9985] 2 HAC complete cluster sizes: [9925 75] 3 k-means cluster sizes: [9349 131 520] 3 HAC single cluster sizes: [ 14 9985 1] 3 HAC complete cluster sizes: [ 75 312 9613] 4 k-means cluster sizes: [9067 178 95 660] 4 HAC single cluster sizes: [9985 13 1 1] 4 HAC complete cluster sizes: [ 312 60 9613 15] 5 k-means cluster sizes: [8822 119 60 744 255] 5 HAC single cluster sizes: [ 13 9957 1 1 28] 5 HAC complete cluster sizes: [ 60 256 9613 15 56] ###Markdown Analysis regarding the k-means clusters for k=2 ###Code kmeans = KMeans(n_clusters=2) clusters = kmeans.fit_predict(data) unique, counts = np.unique(clusters, return_counts=True) for label in unique: cluster_points = data[clusters == label] avg_pd = pd.DataFrame(cluster_points) avg_pd.columns = df.columns print(f"\n\n\nCluster size: {counts[label]}\n") print(avg_pd.describe()) print(f"Silhouette: {silhouette_score(data, clusters)}") sorted_y = np.sort(y)[::-1] plt.figure(figsize=(12, 4)) plt.subplot(121) plt.plot(sorted_y) plt.subplot(122) plt.semilogy(sorted_y) plt.savefig("contributor_distribution.png", dpi=300) plt.show() ###Output _____no_output_____ ###Markdown Keep first response for each question ###Code answers_dict = {q: questions_df[questions_df['question_id']==q]['correct_answer'].to_numpy()[0] for q in questions_df['question_id']} df_resp = df[df['action_type']=='respond'] df_first_resp = df.drop_duplicates(['user_id', 'item_id'], keep='first') df_first_resp = df_first_resp[df_first_resp['action_type']=='respond'] df_first_resp['correct'] = 0 df_first_resp.head() df_resp df_first_resp.head(20) df_first_resp['user_answer']==questions_df[questions_df['question_id']==df_first_resp['item_id']]['correct_answer'] questions_df.loc[df_first_resp['item_id']] ###Output _____no_output_____ ###Markdown Data processing ###Code def process(data): df = data.copy() # create population-level model df = df.drop('id', axis=1) # extract possible predictive features from timestamp and make last start relative df['timestamp'] = df['timestamp'].astype('datetime64[ns]') df['lastStart'] = df['lastStart'].astype('datetime64[ns]') df['dayofweek'] = df['timestamp'].dt.dayofweek.astype('category') df['logLastStartH'] = np.log(((df['timestamp'] - df['lastStart']).dt.total_seconds() + 1) / 3600) df = df.drop('timestamp', axis=1) df = df.drop('lastStart', axis=1) # drop categorical columns that seem to have too many distinct values to be useful df = df.drop('sourceGameId', axis=1) df = df.drop('deviceType', axis=1) # drop categorical colums where distribution of labels doesn't match well between training and test data df = df.drop('campaignId', axis=1) df = df.drop('softwareVersion', axis=1) # logarithmic transforms df['logStartCount'] = np.log(df['startCount'] + 1) df = df.drop('startCount', axis=1) df['logViewCount'] = np.log(df['viewCount'] + 1) df = df.drop('viewCount', axis=1) df['logClickCount'] = np.log(df['clickCount'] + 1) df = df.drop('clickCount', axis=1) df['logInstallCount'] = np.log(df['installCount'] + 1) df = df.drop('installCount', axis=1) df['logStartCount1d'] = np.log(df['startCount1d'] + 1) df = df.drop('startCount1d', axis=1) df['logStartCount7d'] = np.log(df['startCount7d'] + 1) df = df.drop('startCount7d', axis=1) # set types df['platform'] = data['platform'].astype('category') df['country'] = data['country'].astype('category') df['connectionType'] = data['connectionType'].astype('category') # drop features with very little apparent predictive power df = df.drop('dayofweek', axis=1) df = df.drop('platform', axis=1) df = df.drop('connectionType', axis=1) # drop nan df = df.dropna() return df tr = process(training_data) te = process(test_data) tr.head(20) tr.info() print("Check stats for continuous variables") tr.describe() print("Check number of categories for categorical variables") for key in tr.select_dtypes(['category']).columns: print(key, len(tr[key].unique())) print("Compare marginal distributions of training and test data") for key in te.keys(): print(key) if key in ['campaignId', 'softwareVersion', 'country']: tr_set = set(tr[key].unique()) te_set = set(te[key].unique()) print("- Training {} keys of which {} also in test set".format( len(tr_set), len(tr_set.intersection(te_set)))) print("- Test {} keys of which {} not in training set".format( len(te_set), len(te_set.difference(tr_set)))) else: tr[key].hist() plt.show() te[key].hist() plt.show() ###Output _____no_output_____ ###Markdown Model definition and feature selection ###Code def joint_encode(data1, data2): # encode categorical variables as int # make sure training and test data use same encoding schema joint_data = pd.concat([data1, data2], axis=0) joint_data['country'] = joint_data['country'].astype('category') df1 = data1.copy() df2 = data2.copy() cat_columns = joint_data.select_dtypes(['category']).columns for cat_column in cat_columns: df1[cat_column] = joint_data[cat_column][:len(data1)].cat.codes df2[cat_column] = joint_data[cat_column][len(data1):].cat.codes return df1, df2 tre, tee = joint_encode(tr, te) from sklearn.naive_bayes import CategoricalNB, GaussianNB from sklearn.metrics import log_loss class Predictor: """Naive Bayes predictor as probability of install was requested""" def __init__(self, data, only_features=[], not_features=[], train_frac=0.8): # set weights as dataset is biased c0, c1 = data.install.value_counts().tolist() self.w0 = c1 / (c1 + c0) self.w1 = c0 / (c1 + c0) # split self.train = data.sample(frac=train_frac, random_state=200) self.test = data.drop(self.train.index) # features to use self.cat_features = tr.select_dtypes(['category']).columns self.con_features = tr.select_dtypes(['float64']).columns if only_features: self.cat_features = [c for c in self.cat_features if c in only_features] self.con_features = [c for c in self.con_features if c in only_features] if not_features: self.cat_features = [c for c in self.cat_features if c not in not_features] self.con_features = [c for c in self.con_features if c not in not_features] # fit models self._fit_categorical_model() self._fit_continuous_model() def _fit_categorical_model(self): if not any(self.cat_features): self.catm = None return self.catm = CategoricalNB() self.catm.fit(self.train[self.cat_features], self.train['install']) def _fit_continuous_model(self): if not any(self.con_features): self.conm = None return self.conm = GaussianNB() self.conm.fit(self.train[self.con_features], self.train['install']) def pred(self, data): if self.catm and self.conm: cat_pred = self.catm.predict_proba(data[self.cat_features])[:,1] con_pred = self.conm.predict_proba(data[self.con_features])[:,1] return (cat_pred + con_pred) / 2 # roughly equally accurate if self.catm: return self.catm.predict_proba(data[self.cat_features])[:,1] if self.conm: return self.conm.predict_proba(data[self.con_features])[:,1] assert False def pred_eval(self, data): pred = self.pred(data) weights = data['install'] * self.w1 - (data['install'] - 1) * self.w0 print("- Loss {:.3f}".format(log_loss(data['install'], pred, sample_weight=weights))) all_features = tr.select_dtypes(['category', 'float64']).columns print("All features") p = Predictor(tre) p.pred_eval(tre) print("Individual feature predictivity") for feature in all_features: print(feature) p = Predictor(tre, only_features=[feature]) p.pred_eval(tre) print("Effect of removing individual feature") for feature in all_features: print(feature) p = Predictor(tre, not_features=[feature]) p.pred_eval(tre) ###Output _____no_output_____ ###Markdown Generating predictions ###Code p = Predictor(tre) preds = p.pred(tee) print(preds[:10]) out_df = pd.DataFrame({'prob_install': preds}, index=te.index.values.tolist()) out_df.head(20) out_df.to_csv('test_preds.csv') ###Output _____no_output_____ ###Markdown Predicting Schizophrenia Diagnosis This notebooks contains an analysis of the COBRE dataset available on Nilearn. The dataset contains resting state fMRI data from 146 participants. Approximately half of the subjects are patients diagnosed with schizophrenia and the remainder are healthy controls. The anlaysis in this notebook attempt to predict schizophrenia diagnosis using resting state fMRI data. ###Code #import data from nilearn import datasets data = datasets.fetch_cobre(n_subjects=None) ###Output _____no_output_____ ###Markdown Phenotypic info for the subjects is included with the data ut requires some cleaning first. ###Code #import phenotypic data import pandas pheno = pandas.DataFrame(data.phenotypic) ###Output _____no_output_____ ###Markdown We'll extract subject ID from the niifti file names using index slicing and then merge the fMRI file paths to the phenotypic data. ###Code #extract participant id from file paths file_names = [] for path in data.func: file_names.append(path[40:45]) #create dataframe of file paths and ids files = pandas.DataFrame(data.func, columns = ['path']) files['id'] = file_names files['id'] = files.id.astype(int) #merge phenotypic data with file paths import pandas pheno = pandas.merge(pheno, files, on = 'id') #fix string decoding pheno['gender'] = pheno['gender'].map(lambda x: x.decode('utf-8')) pheno['handedness'] = pheno['handedness'].map(lambda x: x.decode('utf-8')) pheno['subject_type'] = pheno['subject_type'].map(lambda x: x.decode('utf-8')) pheno['diagnosis'] = pheno['diagnosis'].map(lambda x: x.decode('utf-8')) ###Output _____no_output_____ ###Markdown Let's take a look at what we have now. And also sve the cleaned phenotypic data to a csv. ###Code #pheno.to_csv('pheno.csv', index=False) pheno ###Output _____no_output_____ ###Markdown Now that we have the file paths matched with the phenotypic data, we can easily make subsets for patients and controls. ###Code #create lists of filepaths for patients and controls patients = [] controls = [] for i in pheno.index: if pheno.loc[i, 'subject_type']=='Patient': patients.append(pheno.loc[i, 'path']) else: controls.append(pheno.loc[i, 'path']) ###Output _____no_output_____ ###Markdown The code below generates an interactive app using plotly express that will plot a histogram of subject age. ###Code import plotly.express as px from jupyter_dash import JupyterDash import dash_core_components as dcc import dash_html_components as html from dash.dependencies import Input, Output # Load Data df = pheno # Build App app = JupyterDash(__name__) app.layout = html.Div([ html.H1("Age"), dcc.Graph(id='graph'), html.Label([ "Participant type", dcc.Dropdown( id='subject_type', clearable=False, value='Patient', options=[ {'label': c, 'value': c} for c in df.subject_type.unique() #get all unique values from column ]) ]), ]) # Define callback to update graph @app.callback( Output('graph', 'figure'), [Input("subject_type", "value")] ) def update_figure(subject_type): return px.histogram( df[df["subject_type"]==subject_type], x="current_age", color="gender" ) # Run app and display result inline in the notebook app.run_server(mode='inline') ###Output _____no_output_____ ###Markdown Connectivity This anlaysis uses the BASC atlas to defin ROIs. We'll focus on 64 ROIs for this analysis. ###Code #import atlas parcellations = datasets.fetch_atlas_basc_multiscale_2015(version='sym') atlas_filename = parcellations.scale064 # visualize atlas from nilearn import plotting plotting.plot_roi(atlas_filename, draw_cross = False) ###Output _____no_output_____ ###Markdown Let's generate correlation matrices for each subject and then merge them to the phenotypic data. ###Code from nilearn.input_data import NiftiLabelsMasker from nilearn.connectome import ConnectivityMeasure # create mask mask = NiftiLabelsMasker(labels_img=atlas_filename, standardize=True, memory='nilearn_cache', verbose=1) # initialize correlation measure correlation_measure = ConnectivityMeasure(kind='correlation', vectorize=True, discard_diagonal=True) import pandas as pd #initialize empty dataframe all_features = pd.DataFrame(columns=['features', 'file']) for i,sub in enumerate(data.func): # extract the timeseries from the ROIs in the atlas time_series = mask.fit_transform(sub, confounds=data.confounds[i]) # create a region x region correlation matrix correlation_matrix = correlation_measure.fit_transform([time_series])[0] # add features and file name to dataframe all_features = all_features.append({'features': correlation_matrix, 'file': data.func[i]}, ignore_index=True) # uncomment below to keep track of status #print('finished %s of %s'%(i+1,len(data.func))) # create pandas dataframe of features and phenotypic data full = pandas.merge(pheno, all_features, left_on = 'path', right_on = 'file') ###Output _____no_output_____ ###Markdown Now we have a Pandas dataframe with all of our demographic data and a column that contains the correlation matrix for each subject as an array. ###Code full ###Output _____no_output_____ ###Markdown Visualizing Connectivity ###Code import matplotlib.pyplot as plt from matplotlib.pyplot import figure, savefig patient_features = list(full.loc[full['subject_type']=='Patient']['features']) control_features = list(full.loc[full['subject_type']=='Control']['features']) figure(figsize=(16,6)) plt.subplot(1, 2, 1) plt.imshow(patient_features, aspect='auto') plt.colorbar() plt.title('Patients') plt.xlabel('features') plt.ylabel('subjects') plt.subplot(1, 2, 2) plt.imshow(control_features, aspect='auto') plt.colorbar() plt.title('Controls') plt.xlabel('features') plt.ylabel('subjects') savefig('features.png', transparent=True) ###Output _____no_output_____ ###Markdown Classification This section contains the main analysis of this notebook. Namely, predicting schizophrenia diagnosis. The features used are the correlation matrices generated previously, and diagnosis labels are contained in the `subject_type` column from our phenotypic data.We first split the data into training and validation sets, with a ratio of 80/20. ###Code from sklearn.model_selection import train_test_split # Split the sample to training/validation with a 80/20 ratio x_train, x_val, y_train, y_val = train_test_split( list(full['features']), # x full['subject_type'], # y test_size = 0.2, # 80%/20% split shuffle = True, # shuffle dataset stratify = full['subject_type'], random_state = 242 ) ###Output _____no_output_____ ###Markdown Our starting classifier with be a linear support vector machine, specified as `SVC()` in Nilearn. This is often the [first recommendation](https://scikit-learn.org/stable/tutorial/machine_learning_map/index.html) for clssification problems with small sample sizes. We'll be using 10-fold corss validation to get a rough benchmark of performance for each classifier. We'll use F1 as our performance metric. After each run we'll look at the preformance of the classifier across the folds as well as the average performance. ###Code # build SVC classifier from sklearn.svm import SVC svc = SVC(kernel='linear') # F1 score by averaging each fold from sklearn.model_selection import cross_val_score import numpy as np svc_score = cross_val_score(svc, x_train, y_train, cv=10, scoring = 'f1_macro') print(np.mean(svc_score)) print(svc_score) ###Output 0.7981132756132755 [0.82857143 0.74825175 0.74825175 0.74825175 1. 0.74825175 0.90598291 0.81666667 0.80357143 0.63333333] ###Markdown Linear SCV seems to perform very strongly, with an average F1 score of ~0.80We'll try gradient boosting next. The gradient boost model will use a greater number of estimators and a larger max depth than the defaults in order to try and improve performance. ###Code # build gradient boost classifier from sklearn.ensemble import GradientBoostingClassifier boost = GradientBoostingClassifier(n_estimators=500, max_depth=4, random_state=242 ) #train model boost.fit(x_train, y_train) # F1 score by averaging each fold from sklearn.model_selection import cross_val_score import numpy as np boost_score = cross_val_score(boost, x_train, y_train, cv=10, scoring = 'f1_macro') print(np.mean(boost_score)) print(boost_score) ###Output 0.5752838827838829 [0.48571429 0.5 0.74825175 0.625 0.24475524 0.82857143 0.60714286 0.71794872 0.54545455 0.45 ] ###Markdown The gradient boost model seems to be highly variable and doesn't come close to matching the performance of the SVC. We'll try K Nearest Neighbors next. ###Code # K Nearest Neighbours from sklearn.neighbors import KNeighborsClassifier knn = KNeighborsClassifier() knn_score = cross_val_score(knn, x_train, y_train, cv=10, scoring = 'f1_macro') print(np.mean(knn_score)) print(knn_score) ###Output 0.6219476356976357 [0.73333333 0.625 0.58041958 0.48571429 0.48571429 0.4375 0.71794872 0.71794872 0.71794872 0.71794872] ###Markdown K Nearest Neighbors performs poorly with default paramaters. Given the large difference between KNN and the other classifiers I won't try to tweak this alogrithm.Lastly we'll try a Random Forest classifier. We'll increase the numebr of estimators like we did with the gradient boost model. ###Code # Random Forest from sklearn.ensemble import RandomForestClassifier rfc = RandomForestClassifier(n_estimators = 500, random_state = 242) rfc_score = cross_val_score(rfc, x_train, y_train, cv=10, scoring = 'f1_macro') print(np.mean(rfc_score)) print(rfc_score) ###Output 0.7322227772227772 [0.83333333 0.73333333 0.65714286 0.58041958 0.74825175 0.91608392 0.68571429 0.81666667 0.63333333 0.71794872] ###Markdown The Random Forest model seems to perform well but not as well as the linear SVC. With some hyperparameter tweaking it might be possible to achieve the same performance but considering the random forest classifier is more complex, and takes longer to train, we'll use SVC as the final model. Hyperparameter Tuning Now that we've committed to a model, let's see if we can get a little more out of it by tweaking the hyperparameters. Unfortunately, the only option for a linear SVC is the `C` parameter.We can create a range of values for `C` and then compare each using cross validation. ###Code from sklearn.model_selection import validation_curve C_range = 10. ** np.arange(-3, 8) # A range of different values for C train_scores, valid_scores = validation_curve(svc, x_train, y_train, param_name= "C", param_range = C_range, cv=10, scoring='f1_macro') # Creating a Pandas dataframe of the results tScores = pandas.DataFrame(train_scores).stack().reset_index() tScores.columns = ['C','Fold','Score'] tScores.loc[:,'Type'] = ['Train' for x in range(len(tScores))] vScores = pandas.DataFrame(valid_scores).stack().reset_index() vScores.columns = ['C','Fold','Score'] vScores.loc[:,'Type'] = ['Validate' for x in range(len(vScores))] ValCurves = pandas.concat([tScores,vScores]).reset_index(drop=True) # Plotting the performance of different values of C import seaborn as sns g = sns.catplot(x='C', y='Score', hue='Type', data=ValCurves, kind='point') g.set_xticklabels(C_range, rotation=90) ###Output _____no_output_____ ###Markdown The best performance seems to be at a C value of 0.1 but it's a negligible difference. But there's one more thing to try.What if we changed the SVC kernel to the default 'rbf' which would let us adjust C and gamma? Let's use a grid search to see if optimizing an rbf kernel would perform better than a linear kernel. ###Code # RBF SVC model from sklearn.model_selection import GridSearchCV svc_rbf = SVC(kernel='rbf') C_range = 10. ** np.arange(-3, 8) gamma_range = 10. ** np.arange(-8, 3) param_grid = dict(gamma=gamma_range, C=C_range) grid = GridSearchCV(svc_rbf, param_grid=param_grid, cv=10) grid.fit(x_train, y_train) print(grid.best_params_) svc_rbf = SVC(kernel='rbf', C=100.0, gamma=0.001) svc_rbf_score = cross_val_score(svc_rbf, x_train, y_train, cv=10, scoring = 'f1_macro') print(np.mean(svc_rbf_score)) print(svc_rbf_score) ###Output 0.8061452436452436 [0.82857143 0.82857143 0.74825175 0.74825175 1. 0.74825175 0.90598291 0.81666667 0.80357143 0.63333333] ###Markdown It seems like SVC with an RBF kernel and tuned hyperparameters performs slightly better than linear SVC, so we'll use this as the final model. Testing The Model We can now run the model on the left out data and see how it performs. ###Code # Validation from sklearn.metrics import f1_score, accuracy_score svc_rbf.fit(x_train, y_train) final_pred = svc_rbf.predict(x_val) print('F1:', f1_score(y_val, final_pred, pos_label='Patient')) print('Accuracy:', accuracy_score(y_val, final_pred)) ###Output F1: 0.6875 Accuracy: 0.6666666666666666 ###Markdown An F1 score of .69 isn't too bad for a binary classification problem. Let's see how the model is handling the labels by taking a look at the confusion matrix. ###Code import matplotlib.pyplot as plt from sklearn.metrics import plot_confusion_matrix disp = plot_confusion_matrix(svc_rbf, x_val, y_val, cmap=plt.cm.Blues, normalize=None) disp.ax_.set_title('SVC Schizophrenia Labels') print(disp.confusion_matrix) ###Output [[ 9 6] [ 4 11]] ###Markdown The model seems to handle each class equally well. Predicting Schizophrenia Subtype The phenotypic data also includes the schizophrenia subtype that each patient was diagnosed with. Maybe we can predict subtype as well. Let's take a look at how they are distributed. ###Code full.diagnosis.value_counts() ###Output _____no_output_____ ###Markdown The distribution of schizohprenia subtypes seems highly unbalanced. Most of the patients were diagnosed with the label "295.3" which refers to paranoid schizophrenia. There are very few observations for the other subtypes and so it's unlikely that any model could predict these with so little data. Maybe we can predict paranoid schizophrenia from the other subtypes. ###Code # creating a new variable for subtype diagnosis=[] for i in full.index: if full.loc[i, 'diagnosis']=='295.3': diagnosis.append('Paranoid') elif full.loc[i, 'diagnosis']=='None': diagnosis.append('None') else: diagnosis.append('Other') full['type'] = diagnosis ###Output _____no_output_____ ###Markdown We'll split the data again. Stratified by our new subtype variable. ###Code from sklearn.model_selection import train_test_split # Split the sample to training/validation with a 80/20 ratio x_train2, x_val2, y_train2, y_val2 = train_test_split( list(full['features']), # x full['type'], # y test_size = 0.2, # 80%/20% split shuffle = True, # shuffle dataset stratify = full['type'], random_state = 242 ) ###Output _____no_output_____ ###Markdown Let's avoid running all of the models separately again. It would be much easier to compare a lot of models at once. The cell below defines several models and then loops over them to generate cross validated performance metrics. A more detailed example of this can be found [here](). ###Code import numpy as np import matplotlib.pyplot as plt from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.gaussian_process.kernels import RBF from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier from sklearn.naive_bayes import GaussianNB np.random.seed(242) names = ["Nearest Neighbors", "Linear SVM", "RBF SVM", "Gaussian Process", "Decision Tree", "Random Forest", "Neural Net", "AdaBoost", "Naive Bayes"] classifiers = [ KNeighborsClassifier(3), SVC(kernel="linear"), SVC(gamma=2, C=1), GaussianProcessClassifier(1.0 * RBF(1.0)), DecisionTreeClassifier(max_depth=5), RandomForestClassifier(max_depth=5, n_estimators=10, max_features=1), MLPClassifier(alpha=1, max_iter=1000), AdaBoostClassifier(), GaussianNB()] for name, clf in zip(names, classifiers): score = cross_val_score(clf, x_train2, y_train2, cv=10, scoring='f1_macro') print(name, np.mean(score)) ###Output Nearest Neighbors 0.39345543345543355 Linear SVM 0.4076200651200651 RBF SVM 0.21960784313725487 Gaussian Process 0.1431135531135531 Decision Tree 0.34980260480260483 Random Forest 0.36240516564045977 Neural Net 0.3840762723115664 AdaBoost 0.3908056540409482 Naive Bayes 0.41458892958892957 ###Markdown A Gaussian Naive Bayes model performs slightly better than linear SVC, so we'll use it in this case. But I think this is another example of how powerful SVM is as an approach. ###Code # Validation NB = GaussianNB() NB.fit(x_train2, y_train2) type_pred = NB.predict(x_val2) f1_score(y_val2, type_pred, average='macro') import matplotlib.pyplot as plt from sklearn.metrics import plot_confusion_matrix disp = plot_confusion_matrix(NB, x_val2, y_val2, #display_labels=class_names, cmap=plt.cm.Blues, normalize=None) disp.ax_.set_title('Naive Bayes: Schizophrenia Type') print(disp.confusion_matrix) ###Output [[10 3 2] [ 4 3 0] [ 4 2 2]] ###Markdown Spiegel historiael Preprocessing ###Code import glob import os import shutil import re import unidecode from itertools import product from collections import Counter import random import numpy as np RND = 12345 random.seed(RND) np.random.seed(RND) from scipy.spatial.distance import cdist, pdist import pandas as pd %matplotlib inline import matplotlib.pyplot as plt plt.style.use("seaborn-deep") from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.model_selection import train_test_split from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler from sklearn.neighbors import NearestCentroid from sklearn.preprocessing import normalize from sklearn.metrics import accuracy_score, confusion_matrix, f1_score, precision_recall_curve from tqdm import tqdm from inspect import signature DIRTY = re.compile(r'\s*\-\+') vocabulary = {} parts = {'P2':[], 'P3': [], 'P5': []} for part in sorted(os.listdir('data')): for fn in sorted(glob.glob(f'data/{part}/*.tag')): print(fn) with open(fn) as f: lines = f.readlines() chapter_rhymes = [] for line in lines: line = line.strip() if not line or line.startswith('###'): continue try: words, rhyme = line.split('|') word = words.strip().split()[-1] if word not in vocabulary: vocabulary[word] = Counter() vocabulary[word][rhyme] += 1 chapter_rhymes.append(rhyme) except ValueError: print(line) parts[part].extend(chapter_rhymes) lines = [line.strip() for line in open('data/fragment.txt')] with open('data/fragment.lemma.txt', 'w') as f: for line in lines: words = line.split() word = line.split()[-1] if '[…]' in word or '(…)' in word or '(.)' in word: continue words = [] for word in line.split(): words.append(''.join([c for c in word if c.isalpha()])) if words[-2] + '+' + words[-1] in vocabulary: rhyme_word = words[-2] + '+' + words[-1] else: rhyme_word = words[-1] try: lemma = vocabulary[rhyme_word].most_common(1)[0][0] except KeyError: try: rhyme_word = rhyme_word.replace('u', 'v') lemma = vocabulary[rhyme_word].most_common(1)[0][0] except KeyError: print(rhyme_word) lemma = 'XXX' f.write(' | '.join((line, lemma.upper())) + '\n') fragment = [line.strip().split('|')[-1].strip() for line in open('data/fragment.lemma_correct.txt')] fragment fragment = [l for l in fragment if l != 'XXX'] fragment size = len(fragment) print(size) fragment = ' '.join(fragment) fragment for k, v in parts.items(): print(k, len(v)) data = [] for part, rhymes in parts.items(): si, ei = 0, size while ei < len(rhymes): data.append([part, ' '.join(rhymes[si:ei])]) si += size ei += size import pandas as pd src = pd.DataFrame(data, columns=('part', 'rhymes')) src.head() p_word = {'use_idf': True, 'max_features': None, 'analyzer': 'word', 'min_df': 1, 'lowercase': False, 'norm': 'l1', 'ngram_range': (1, 1)} vectorizer = TfidfVectorizer(**p_word) scaler = StandardScaler() X = vectorizer.fit_transform(src['rhymes']).toarray() X = scaler.fit_transform(X) fragment = vectorizer.transform([fragment]).toarray() fragment = scaler.transform(fragment)[0] print(X.shape, fragment.shape) class Verifier(): def __init__(self, iters=100, rnd_prop=.5, random_state=1066, num_instances=30, metric='cosine', rnd_state=1234): assert (rnd_prop >= 0.0) and (rnd_prop <= 1.0) np.random.seed(rnd_state) self.iters = iters self.rnd_prop = rnd_prop self.num_instances = num_instances def predict_proba(self, target, source_X, imposter_X): """ target = (single) anonymous text source_X = candidate author imposter_X = imposter documents """ total_features = imposter_X.shape[1] total_imposters = imposter_X.shape[0] total_source = source_X.shape[0] target = np.array([target]) hits = np.zeros(self.iters) for it in range(self.iters): imposters_ = imposter_X[np.random.choice(total_imposters, self.num_instances, replace=False), :] source_ = source_X[np.random.choice(total_source, self.num_instances, replace=False), :] if self.rnd_prop < 1.0: idxs = np.random.choice(total_features, int(total_features * self.rnd_prop), replace=False) imposters_ = imposters_[:, idxs] source_ = source_[:, idxs] target_ = target[:, idxs] min_imp_dist = np.min(cdist(target_, imposters_, metric='cosine')) min_src_dist = np.min(cdist(target_, source_, metric='cosine')) if min_src_dist < min_imp_dist: hits[it] = 1 return np.mean(hits) authors = set(src['part']) authors for author in authors: src_X = X[src['part'] == author] imposters_X = X[src['part'] != author] verifier = Verifier(iters=1000, num_instances=5) proba = verifier.predict_proba(target=fragment, source_X=src_X, imposter_X=imposters_X) print(f'::: {author} > {proba} :::') train_parts, dev_parts, train_rhymes, dev_rhymes = train_test_split(src['part'], src['rhymes'], test_size=.25, stratify=src['part'], random_state=42) train_X = vectorizer.fit_transform(train_rhymes).toarray() train_X = scaler.fit_transform(train_X) dev_X = vectorizer.transform(dev_rhymes).toarray() dev_X = scaler.transform(dev_X) def experiment(candidate): source = train_X[train_parts == candidate] imposters = train_X[train_parts != candidate] targets = dev_X target_y = np.array([1 if a == candidate else 0 for a in dev_parts]) verifier = Verifier(iters=1000, num_instances=5) probas = [verifier.predict_proba(target=t, source_X=source, imposter_X=imposters) for t in tqdm(targets)] precision, recall, thresholds = precision_recall_curve(target_y, probas) f1s = [f1_score(target_y, (probas > th) * 1) for th in thresholds] max_idx = np.array(f1s).argmax() max_f1 = f1s[max_idx] max_th = thresholds[max_idx] print(max_f1, max_th) plt.figure(figsize=(10, 10)) step_kwargs = ({'step': 'post'} if 'step' in signature(plt.fill_between).parameters else {}) plt.step(recall, precision, color='b', alpha=0.2, where='post') plt.fill_between(recall, precision, alpha=0.2, color='b', **step_kwargs) plt.xlabel('Recall') plt.ylabel('Precision') plt.ylim([0.0, 1.05]) plt.xlim([0.0, 1.0]) plt.plot(recall[max_idx], precision[max_idx], 'o') plt.axhline(precision[max_idx]) plt.axvline(recall[max_idx]) plt.title(f'{candidate} | f1={round(max_f1, 4)} @ theta={round(max_th, 4)}') plt.savefig(f'{candidate}.pdf') for candidate in 'P2 P3 P5'.split(): experiment(candidate) ###Output 100%|██████████| 104/104 [00:42<00:00, 2.44it/s] /Users/mikekestemont/anaconda3/envs/py36/lib/python3.6/site-packages/sklearn/metrics/classification.py:1135: UndefinedMetricWarning: F-score is ill-defined and being set to 0.0 due to no predicted samples. 'precision', 'predicted', average, warn_for) 0%| | 0/104 [00:00<?, ?it/s] ###Markdown Dataset This project uses data scraped using the *New York Times* API. Due to the API's limitations, the dataset consists of headlines, dates, sections, subjects, and various other metadata but not the articles themselves. The majority of analysis, therefore, will be focused on the headline and abstract text. ###Code # Load data from GitHub df = pd.read_csv("https://raw.githubusercontent.com/vyoma-raman/nyt-disability/main/data.csv").fillna("") # Create columns for year of publication and a concatenation of the headline and abstract df["year"] = df["date"].apply(lambda d: int(d.split("/")[2])) df["full_text"] = df.apply(lambda row: " ".join(row[1:3]), axis=1) # Excluding data on articles published after 2020 df = df[df["year"] <= 2020] df.tail() # Split text data into 20-year publication bins ranges = range(1860, 2001, 20) data_bins = {} for r in ranges: data = df[(df["year"] > r) & (df["year"] <= r + 20)] data_bins["-".join([str(r), str(r + 20)])] = data["full_text"].tolist() # Get a list of all text data all_data = df["full_text"].tolist() ###Output _____no_output_____ ###Markdown Content Evolution This section examines how the *New York Times*' coverage of disability has topically changed over time.Let's start by looking at word embeddings, which represent the context around which words are used and provide insight into concepts that are related to those words. These embeddings are separately created for different 20-year bins of data. Comparing across bins can illustrate how different ideas are associated with each other in different time intervals. Word Embeddings ###Code # Load English stopwords stop_words = set(stopwords.words('english')) # Clean the data for this task def clean_wv(text): text = "".join(ch for ch in text if ch.isalnum() or ch == " ").lower() return [w for w in nltk.word_tokenize(text) if not w in stop_words] # Create a dictionary of words associated with disability-related words disability_similar = {} # Train a new model and collect similar words for each time interval for r, data in data_bins.items(): texts_wv = [clean_wv(t) for t in data] model = Word2Vec(sentences=texts_wv, size=300, window=5, min_count=1) dictionary = {} # These words were selected based on how NYTimes categorizes disability-related articles for word in ["disabilities", "blindness", "deafness", "amputee"]: try: similar_words = [w[0] for w in model.wv.most_similar(positive=[word], topn=10)] except: similar_words = [] dictionary[word] = similar_words disability_similar[r] = dictionary # Print the words most similar to the 4 terms of interest for bin in disability_similar: print(bin) for word in disability_similar[bin]: print(" ", word) print(" ", disability_similar[bin][word]) ###Output 1860-1880 disabilities ['per', 'case', 'royal', 'pierces', 'rigid', 'russells', 'policy', 'dull', '8', 'jeffriess'] blindness ['gleanings', 'family', 'eyes', 'lowell', 'becks', 'yesterday', 'life', 'elephant', 'republicans', 'road'] deafness ['8', 'examinations', 'tinkering', 'compensations', 'pierces', 'gleanings', 'mr', 'printing', 'foreign', 'anthonys'] amputee [] 1880-1900 disabilities [] blindness ['tests', 'persons', 'quakers', 'remedy', 'coached', 'pilot', 'protest', 'reading', 'educational', 'commission'] deafness ['central', 'examinations', 'paper', 'royal', 'dr', 'philadelphia', 'results', 'national', 'invention', 'addresses'] amputee [] 1900-1920 disabilities [] blindness ['entitled', 'father', 'exhibited', 'children', 'estranged', 'classics', 'scenes', 'watches', 'belasco', 'instrument'] deafness ['jewish', 'gathering', 'benefit', 'players', 'troops', 'doesnt', 'one', 'sleeping', 'endeavor', 'military'] amputee [] 1920-1940 disabilities [] blindness ['bedell', 'tests', 'longrange', 'westinghouse', 'children', 'add', 'risks', 'nerve', 'exhibited', 'father'] deafness ['gathering', 'jewish', 'benefit', 'holder', 'hearingcrosby', 'hard', 'fifty', 'expects', 'warm', 'romance'] amputee [] 1940-1960 disabilities [] blindness [] deafness [] amputee ['becomes', 'grant', 'wk', 'relieve', 'e', 'patients', 'avoid', '5', 'promote', 'hail'] 1960-1980 disabilities ['revs', 'grunberg', 'ama', 'system', 'named', 'leads', 'bid', 'case', 'contains', 'awaits'] blindness ['covered', 'children', '356000', 'amongst', 'fraud', 'heavyduty', 'mothers', 'parents', 'total', 'proposal'] deafness ['breastfed', 'iq', '356000', 'behavior', 'hr', 'many', 'bebe', 'sue', 'dr', 'mfrs'] amputee [] 1980-2000 disabilities ['blind', 'deaf', 'people', 'one', 'children', 'said', 'disabled', 'school', 'students', 'braille'] blindness ['blind', 'deaf', 'said', 'lead', 'one', 'children', 'people', 'two', 'help', 'years'] deafness ['one', 'blind', 'lead', 'mr', 'said', 'deaf', 'many', 'school', 'people', 'help'] amputee ['investigate', 'introduced', 'installed', 'orders', 'products', 'proved', 'becomes', 'reasonable', 'foreign', 'grant'] 2000-2020 disabilities ['disabled', 'blind', 'deaf', 'one', 'people', 'says', 'help', 'children', 'disability', 'new'] blindness ['blind', 'children', 'disabled', 'deaf', 'one', 'help', 'says', 'people', 'life', 'disability'] deafness ['one', 'many', 'blind', 'disabled', 'disabilities', 'deaf', 'disability', 'dr', 'school', 'vision'] amputee ['deaf', 'disability', 'life', 'says', 'blind', 'disabled', 'care', 'people', 'many', 'first'] ###Markdown The similarities found by Word2Vec word embeddings highlight a number of patterns in the kinds of topics disability has been historically associated with in the New York Times. In the 1860-1880 bin, disability words are associated with "policy" and "republicans," suggesting that disability is seen as a phenomenon that can be addressed through legislation. In contrast, the 1880-1900 bin finds intervention-related words such as "dr" (Dr.), "tests," "remedy," and "invention" (potentially implying a link to Alexander Graham Bell, an inventor and teacher of Dead and hard-of-hearing students who lived during that time). Interestingly, most disability words were not found in the 1940-1960 bin, with the exception of "amputee" -- this is potentially due to disability-related coverage being focused on war veterans. Starting in the 1960s, the term "disabilities"" began to be found more. Beginning in the 1980s, it became more closely associated with children and schools, suggesting a shift in journalistic interest or national focus. Around the same time, the four terms investigated ("disabilities," "deafness," "blindness," and "amputee") began to show more similarity with each other. These factors indicate that journalists have started reporting on disability more cohesively. Topic Modeling ###Code # Clean the data for this task def clean_tm(text): return "".join(ch for ch in text if ch.isalnum() or ch == " ").lower() # Process data through cleaning and vectorization texts_tm = [clean_tm(t) for t in all_data] count_vectorizer = CountVectorizer(stop_words='english', max_features=1000, min_df=0.05, max_df=0.9) vectorized = count_vectorizer.fit_transform(texts_tm) # Perform LDA analysis num_topics = 4 lda = LatentDirichletAllocation(n_components=num_topics) lda_topics = lda.fit_transform(vectorized) # Plot the occurrence of topics across the corpus pd.DataFrame(lda_topics).plot(figsize=(20, 5)) plt.title("Topcs Represented in New York Times Coverage of Disability Over Time") plt.xlabel("Article Number") plt.ylabel("Transformed LDA Value") plt.legend(); # To contextualize the x-axis, 2000 = March 6, 2011 df.iloc[2000, 0] # Print the top 5 words associated with each topic topic_words = pd.DataFrame(lda.components_, columns=count_vectorizer.get_feature_names()) for i in range(num_topics): print("Topic " + str(i) + ": " + " ".join(topic_words.loc[i].sort_values(ascending=False).head(5).index.tolist())) ###Output Topic 0: deaf hearing school students language Topic 1: blind blindness help lead says Topic 2: new york city says photo Topic 3: people disabled disabilities said years ###Markdown The four topics found using Latent Dirichlet Allocation appear to be as follows:0. Schools and deafness1. Blindness2. The city3. People with disabilities more generallyAs noted in the word similarity analysis, it is visually apparent that dialogue has shifted from blindness and deafness to become more encompassing of disability as a whole. The topic breakdown also suggests that there is a focus on young people with disabilities and people in the city. Subject Labeling Rather than examine the text itself, the graph below visualizes how the *New York Times* has self-labeled the subjects of its articles.The articles in this dataset were selected by filtering all articles by five subject keywords ("Disabilities," "Blindness," "Deafness," "Prostheses," and "Amputation") that comprise the "Disability" topic on their website. The volume of these keywords over time has been graphed here. ###Code # Plot change in NYTimes article subject labels over time plt.figure(figsize=(20, 5)) pd.to_datetime(df[df["subjects"].apply(lambda s: "Disabilities" in s)]["date"]).apply(lambda d: d.year).value_counts().sort_index().plot(label="Disabilities") pd.to_datetime(df[df["subjects"].apply(lambda s: "Blindness" in s)]["date"]).apply(lambda d: d.year).value_counts().sort_index().plot(label="Blindness") pd.to_datetime(df[df["subjects"].apply(lambda s: "Deafness" in s)]["date"]).apply(lambda d: d.year).value_counts().sort_index().plot(label="Deafness") pd.to_datetime(df[df["subjects"].apply(lambda s: "Prostheses" in s)]["date"]).apply(lambda d: d.year).value_counts().sort_index().plot(label="Prostheses") pd.to_datetime(df[df["subjects"].apply(lambda s: "AMPUTATION" in s)]["date"]).apply(lambda d: d.year).value_counts().sort_index().plot(label="Amputation") plt.title("New York Times Coverage of Disability, Content Volume Over Time") plt.xlabel("Year") plt.ylabel("Number of Articles") plt.legend(); ###Output _____no_output_____ ###Markdown A few notable patterns are apparent: Volume of coverage appears to increase significantly around 1980, though it is unclear whether this is due to archiving. In this peak, however, "Blindness" and "Deafness appear to be the most popular tags (as they are historically) until around 2010, when general disability coverage shoots up and those plateau. Finally, "Prostheses" becomes a tag around 2010.Interestingly, there is a spike in coverage of articles related to blindness in the mid-1920s. A manual revision of the articles from this time period confirms this finding but fails to pinpoint an event or other reason for this change. Lexical Evolution In the analysis of content in disability-related articles, a recurring theme has been the change in usage of different words. Let's take a look at word usage and variation more specifically. Type-Token Ratios ###Code # Clean the data for this task def clean_ttr(text): text = "".join(ch for ch in text if ch.isalnum() or ch == " ").lower() return [w for w in nltk.word_tokenize(text) if not w in stop_words] df_ttr = df[["date", "full_text"]].copy() df_ttr["cleaned"] = df_ttr["full_text"].apply(clean_ttr) # Evaluate the type-token ratio of the articles over time def type_token_ratio(ls): return len(set(ls))/len(ls) # Plot type-token ratios df_ttr["cleaned"].apply(type_token_ratio).plot(figsize=(20, 8)) plt.title("Type-Token Ratio of New York Times Articles on Disability Over Time") plt.xlabel("Article Number") plt.ylabel("Type-Token Ratio"); ###Output _____no_output_____ ###Markdown Type-token ratios divide the number of unique tokens by the total number of tokens in a text. They are commonly used to measure linguistic diversity. The above graph of type-token ratios across articles shows an upward slant, indicating that there has been an increase in this diversity over time. Individual Word Frequencies ###Code # Clean data for this task def clean_wf(text): text = "".join(ch for ch in text if ch.isalnum() or ch == " ").lower() return [w for w in nltk.word_tokenize(text) if not w in stop_words] # Get a list of all words in this all_words = set(clean_wf(" ".join(all_data))) # Calculate the frequency of a given word in a given document def get_freq(word, doc): return doc.count(word) / len(doc) # Create dataframe of frequencies of each word in each time interval freq = pd.DataFrame(index=all_words) for bin, texts_wf in data_bins.items(): joined_texts = clean_wf(" ".join(texts_wf)) freq[bin] = [get_freq(word, joined_texts) for word in all_words] # Calculate the largest difference for one word between frequencies in different time intervals freq["diff"] = freq.apply(lambda x: max(x) - min(x), axis=1) freq.head() # Plot frequencies of words with a change of over 0.02 freq[freq["diff"] > 0.02].iloc[:, :-1].transpose().plot(figsize=(20, 5)) plt.title("Word Frequency Over Time") plt.xlabel("Year Bin") plt.ylabel("Word Frequency") plt.legend(); ###Output _____no_output_____ ###Markdown Art DATIS: Data Analysis¶ ###Code import glob txts_path = '/ivi/ilps/projects/ArtDATIS/artdatis/tagging/OCRed/typed/' # check all paths are unique paths = [] for file_path in glob.glob(txts_path+'*_path.txt'): with open(file_path) as file: paths.append(file.read().strip()) print("Loaded %d paths"%len(paths)) # make sure there are no duplicate paths assert len(paths) == len(set(paths)) # 1. load OCRed texts into a corpus of documents text_corpus = [] # filter out and collect text files for file_path in glob.glob(txts_path+'*_text.txt'): with open(file_path, encoding="utf-8") as file: text = file.read() # filter duplicates if text not in text_corpus: text_corpus.append(text) print("Loaded %d documents"%len(text_corpus)) # 2. pre-processing: remove stopwords, split into words import urllib.request from pprint import pprint def load_word_list(lang='en'): url = 'https://raw.githubusercontent.com/stopwords-iso/stopwords-%s/master/stopwords-%s.txt' % (lang, lang) stopwords = urllib.request.urlopen(url).read().decode('UTF-8').split() print("Loaded %s stopwords, e.g. %s" % (lang, ", ".join(stopwords[:2]))) return set(stopwords) # load stopwords en_stoplist = load_word_list('en') de_stoplist = load_word_list('de') nl_stoplist = load_word_list('nl') fr_stoplist = load_word_list('fr') stoplist = en_stoplist | de_stoplist | nl_stoplist | fr_stoplist # Lowercase each document, split it by white space and filter out stopwords texts = [[word for word in document.lower().split() if word not in stoplist] for document in text_corpus] # Count word frequencies word_list = [word for text in texts for word in text if word.isalpha()] from collections import Counter Counter(word_list).most_common() # Visualise counter import seaborn as sns import matplotlib.pyplot as plt sns.set(style="darkgrid") %matplotlib inline labels, counts = [], [] for label, count in Counter(word_list).most_common(10): labels.append(label) counts.append(count) plt.figure(figsize=(10, 6)) ax = sns.barplot(x=labels, y=counts) # Count n-gram frequencies based on https://stackoverflow.com/questions/12488722/counting-bigrams-pair-of-two-words-in-a-file-using-python from itertools import tee, islice def ngrams(lst, n): tlst = lst while True: a, b = tee(tlst) l = tuple(islice(a, n)) if len(l) == n: yield l next(b) tlst = b else: break Counter(ngrams(word_list, 2)).most_common() Counter(ngrams(word_list, 3)).most_common() Counter(ngrams(word_list, 4)).most_common() Counter(ngrams(word_list, 5)).most_common() Counter(ngrams(word_list, 6)).most_common() # check docs keywords = ['verandering', 'brengt', 'orgaan', 'deelt', 'besluit', 'terstond'] results = [doc for doc in texts if set(keywords).issubset(set(doc))] print("%d results"%len(results)) print(results[4]) print(results[1]) print(set(results[4]) - set(results[1])) print("HELL YEAH") ###Output _____no_output_____ ###Markdown Analysis of Covid-19 dataIn this notebook, the Covid-19 time series should be analyzed. The data is provided by John Hopkins University on a github repository: https://github.com/CSSEGISandData/COVID-19The data will be linked with country information, taken from Kaggle user koryto: https://www.kaggle.com/koryto/countryinfoAdditional information about natinal restrictions in South Korea, Italy and Germany were taken from the following sources:https://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_South_Koreahttps://en.wikipedia.org/wiki/2020_coronavirus_pandemic_in_Italyhttps://www.bundesregierung.de/breg-de/themen/coronavirus/coronavirus-1725960 Business understandingAs the coronavirus pandemic is spreading, it becomes clearer, that we are facing the major thread in the current century, so far. Every country tackles the pandemic with meassures of highly varying intensity and reaction timing. In combination with different national conditions of economy and health care system, the numbers of confirmed cases and deaths are diverging as well. With this analysis, the publibly available data should be used to compare the spread in multiple countries and to check for influences on th mortality ratio.The analysis should answer the following questions:1. How long did it take in China and South Korea to reach the turning point of declining new infections or deaths?2. Are effects of national restrictions visible in the time series?3. Is there a correlation of national key figures (e.g. health care capacity) and mortality ratio? ###Code import os import numpy as np import pandas as pd from collections import defaultdict import matplotlib.pyplot as plt from matplotlib import cm import matplotlib.dates as mdates import seaborn as sns from datetime import datetime, timedelta from pandas.plotting import register_matplotlib_converters register_matplotlib_converters() from bokeh.plotting import ColumnDataSource, figure, output_file, show, save from bokeh.palettes import Viridis from bokeh.io import output_notebook sns.set() output_notebook() ###Output _____no_output_____ ###Markdown Data Understanding ###Code # Load all the data sets # Covid-19 time series source_covid_data = 'https://raw.githubusercontent.com/CSSEGISandData/COVID-19/master/csse_covid_19_data/csse_covid_19_time_series/' covid_conf = pd.read_csv(source_covid_data + 'time_series_covid19_confirmed_global.csv') covid_deaths = pd.read_csv(source_covid_data + 'time_series_covid19_deaths_global.csv') # Country data country_info = pd.read_csv(os.path.join('.', 'data', 'covid19countryinfo.csv')) # Restrictions restrictions = pd.read_csv(os.path.join('.', 'data', 'restrictions.csv'),sep=';') restrictions['date'] = pd.to_datetime(restrictions['date'], format='%d.%m.%Y') # List all present countries #for c in covid_conf.columns: # print(c) covid_conf.head() covid_conf['Country/Region'].value_counts() country_info.head() country_info['country'].value_counts() country_info.isnull().sum() restrictions.head() ###Output _____no_output_____ ###Markdown In the Covid-19 time series, each row contains a region or country, with the columns listing day values. The values doesn't contain Nan values, if no case or death was confirmed, the value is zero.For some countries, the data is provided on regional level, as seen with the value_counts() query.The meta data for each country is also partly given on regional level, but does not match with the time series data. Therefore the common level of detail is national. In the data preparation step, the regional data has to be combined to national.The country_info datasets contains many Nan values. Cleaning of those values will be carried out after combining to national data. Data PreparationClean time series data ###Code # transform data (date as index, country as column) def transform_covid_data(df): """ Description: This function transforms the Covid-19 dataset in the following steps: - removes unneccessary columns - removes breakdown to regions, only keeps values on country level (returns sum over national regions) - countries are moved to columns - date is moved to index as datetime format Arguments: df: pandas DataFrame directly loaded from John Hopkins University repository (Covid-19 time series) Returns: transformed pandas DataFrame """ df.drop(columns=['Province/State', 'Lat', 'Long'], inplace=True) df = df.groupby('Country/Region').sum() df = df.transpose() df.index = [datetime.strptime(d, '%m/%d/%y') for d in df.index] return df # transform time series data onto national level (only keep time series for each coutry) covid_conf = transform_covid_data(covid_conf) covid_deaths = transform_covid_data(covid_deaths) ###Output _____no_output_____ ###Markdown Clean country information ###Code # drop columns unused for correlation analysis: # - all columns used with sex ratio (not relevant for question) # - all restriction columns (are replaced by self researched restrictions) # - columns about virus tests (present for too few countries) country_info.drop(columns=['alpha3code','alpha2code','tests','testpop', 'quarantine','schools','publicplace','gatheringlimit', 'gathering','nonessential','sex0','sex14','sex25', 'sex54','sex64','sex65plus','sexratio'], inplace=True) # Convert numeral columns from string to float def convert_string(x): """ Description: This function converts a string with ',' as thousand seperator into a float. Arguments: x: string Returns: float """ try: return np.float(x.replace(',','')) except: return np.nan for c in ['pop', 'gdp2019', 'healthexp']: country_info[c] = country_info[c].apply(convert_string) # reduce to national level (only US and China is split up into regions) # only keep mainland China, data is filled for this row, not for regions country_info = country_info.loc[~country_info.region.isin(['Hong Kong', 'Wuhan', 'Hubei'])] # federal states of US don't contain any data, keep only US-row country_info = country_info.loc[~((country_info.country=='US') & (~country_info.region.isnull()))] # check for nan values of relevant countries (more than 50 deaths, mortality can be calculated) relevant_countries = [c for c in covid_deaths.columns if covid_deaths.iloc[-1][c]>=50] print(relevant_countries) country_info.loc[country_info.country.isin(relevant_countries)].isnull().sum() ###Output _____no_output_____ ###Markdown No nan values are present for the countries, where the mortality can be calculated. Therefore it's not neccessary to drop or impute data. Question 1: How long did it take in China and South Korea to reach the turning point of declining new infections or deaths? ###Code def get_time_series(df, country, min_value): """ Description: This function returns the time series of a specific country as DataSeries. The time series starts where min_value is reached. The index is the days since this value was reached. Arguments: df: pandas DataFrame containing Covid-19 time series on country level (output from function transform_covid_data) country: string with country name min_value: float, time series will be reduced to where country value is >= min_value Returns: pandas DataSeries with index as days, since min_value was reached """ s = df.loc[df[country]>=min_value, country] s.index = np.array([datetime.timestamp(x) for x in s.index])/(3600*24) s.index -= s.index[0] return s def plot_series(ax, s, xlabel, linelabel): """ Description: This function plots a time series and its gradient on a matplotlib Axis. The series and gradient are plotted on two seperate Y-axes. Arguments: ax: matplotlib Axis, on which the series should be plotted s: pandas DataSeries, to be plotted xlabel: string, label on the x-axis linelabel: string, label used in the legend Returns: None """ # display total values color = cm.viridis(100) ax.plot(s, color=color, label=linelabel+' (total)') ax.tick_params(axis='y', labelcolor=color) ax.set_xlabel(xlabel) # display daily gradient on second y-axis ax2 = ax.twinx() color = cm.viridis(150) ax2.plot(s.index, np.gradient(s, s.index), color=color, label=linelabel+' per day') ax2.tick_params(axis='y', labelcolor=color) # add legend lines, labels = ax.get_legend_handles_labels() lines2, labels2 = ax2.get_legend_handles_labels() ax2.legend(lines + lines2, labels + labels2, loc='upper left') ax2.grid(None) # Country to be plotted country = 'Korea, South' fig, ax = plt.subplots(nrows=1, ncols=2, sharex=True, figsize=(10,4.5)) # plot confirmed Covid-19 cases s = get_time_series(covid_conf, country, 100) plot_series(ax[0], s, xlabel='Days since 100 cases', linelabel='Cases') # plot confirmed Covid-19 deaths s = get_time_series(covid_deaths, country, 10) plot_series(ax[1], s, xlabel='Days since 10 deaths', linelabel='Deaths') # adjust figure plt.suptitle(country) fig.tight_layout() plt.subplots_adjust(top=0.92) ###Output _____no_output_____ ###Markdown Both China and South Korea showed success in reducing the number of new infections. From the time series, the duration until reaching the turning of declining new infections is visible. I will here count the days since 100 confirmed infections and 10 confirmed deaths, respectively.As the diagrams above are showing, China took around 10 days to reach the peak of new infections and 25 days to reach the peak of new deaths. The peak of new cases at 20 days is a result in updated counting procedure. In South Korea the number of new infections started to decline after 11 days, while deaths keep inclining (as of writing the article on 30.03.2020). Question 2: Are effects of national restrictions visible in the time series?South Korea managed to keep the number of new infections on a very low level. I will therefore compare the measures taken by South Korea with Italy and Germany, as two major European countries. ###Code def add_annotations(ax, df, s): """ Description: This function adds annotation to a plot of a time series. On the diagram area, the index of the restrictions is added, pointing to the time series on that specific date. Beside the diagram the description of the restriction is visualized as text. Arguments: ax: matplotlib Axis, on which the annotation should be added df: pandas DataFrame, listing the national restrictions in two columns: - date (datetime, date of restriction) - text (string, Description of the restriction) s: pandas DataSeries, containing Returns: None """ last_y = 0 df.reset_index(drop=True, inplace=True) for i, row in df.iterrows(): y = s.iloc[s.index.get_loc(row.date, method='nearest')] x_text = row.date - timedelta(days=10) y_text = y + s.max()/10 y_text = max(y_text, last_y+s.max()/12) last_y = y_text ann = ax.annotate(str(i+1), xy=(row.date, y), xycoords='data', xytext=(x_text, y_text), textcoords='data', size=15, va="center", ha="center", bbox=dict(boxstyle="round4", fc="w"), arrowprops=dict(arrowstyle="-|>", connectionstyle="arc3,rad=-0.2", fc="k", color='k'), ) plt.text(1.02, 0.92-i*0.06, '{:d}: {}'.format(i+1,row.text), horizontalalignment='left', verticalalignment='top', transform=ax.transAxes, fontsize=11) plt.text(1.02, 1, 'Restrictions / Actions:', horizontalalignment='left', verticalalignment='top', transform=ax.transAxes, fontsize=13, fontweight='bold') # Country to be plotted country = 'Italy' # Restrictions were identified for Italy, Germany, South Korea fig, ax = plt.subplots(figsize=(9,4)) s = covid_conf[country] plt.plot(s) # format axes ax.set_xlim((s.idxmin(),s.idxmax()+timedelta(days=5))) myFmt = mdates.DateFormatter('%m-%d') ax.xaxis.set_major_formatter(myFmt) ax.set_ylabel('Confirmed cases (total)') # format figure plt.suptitle(country) fig.tight_layout() plt.subplots_adjust(right=0.6, top=0.93) # Add restrictions as annotations add_annotations(ax, restrictions.loc[restrictions.country_region==country], s) ###Output _____no_output_____ ###Markdown Comparing the reactions, it is clearly visible, that South Korea took early measures like closing schools and universities, when only few cases were present. An early reaction of the public is also reported, as residents of Daegu avoided public places as from February 18th on. The early and comparably soft measures resulted in quickly declining new infections.European countries like Germany and Italy showed later, increasingly stricter reactions. Even after more than 10 days since their shut-downs, no declining of new cases is visible. Question 3: Is there a correlation of national key figures (e.g. health care capacity) and mortality ratio?So far, the disease caused by the corona virus shows a highly diverging mortality ratio of deaths per confirmed cases. I will therefore investigate how key figures of the national health care systems are correlated to the mortality. ###Code # ---------- Question 3: Correlation with death/cases ratio ------------ ratio = defaultdict(list) country_info['death_ratio'] = np.nan for c in covid_conf.columns: df = pd.concat([pd.Series(covid_conf[c], name='Cases'), pd.Series(covid_deaths[c], name='Deaths')],axis=1) # Keep only countries with relevant death count df = df.loc[df.Deaths>50] if len(df) == 0: continue death_ratio = pd.Series(df.Deaths / df.Cases, name=c) country_info.loc[country_info.country==c,'death_ratio'] = death_ratio.iloc[-1] ratio['date'].append(death_ratio.index) ratio['death_ratio'].append(np.array(death_ratio)) ratio['country'].append(c) # add line color for i in range(len(ratio['country'])): ratio['color'].append(Viridis[256][int(i/len(ratio['country'])*256)]) # clean dataframe country_info.dropna(subset=['death_ratio', 'healthperpop'], inplace=True) # drop very small countries country_info = country_info.loc[country_info['pop']>1E6] source = ColumnDataSource(ratio) TOOLTIPS = [("country", "@country")] p = figure(plot_width=600, plot_height=400, tooltips=TOOLTIPS, title="Covid-19 death ratio over time", x_axis_type='datetime') p.multi_line(xs='date', ys='death_ratio', line_width=5, line_color='color', line_alpha=0.6, hover_line_color='color', hover_line_alpha=1.0, source=source) p.xaxis.axis_label = "Date" p.yaxis.axis_label = "Covid-19 deaths / confirmed cases" show(p) ###Output _____no_output_____ ###Markdown The mortality ratio is not constant over time, as the diagram above shows. In almost all countries, the ratio is increasing. This might be caused by overload of the health care systems or the testing capacities. Only future analysis will show if the values are converging to one global constant. ###Code correlation_columns = ['pop', 'density', 'medianage', 'urbanpop', 'hospibed', 'smokers', 'lung', 'femalelung', 'malelung', 'gdp2019', 'healthexp', 'healthperpop'] correlation = [country_info['death_ratio'].corr(country_info[c]) for c in correlation_columns] fig, ax = plt.subplots(figsize=(7,4)) plt.bar(range(len(correlation)), correlation) plt.xticks(range(len(correlation)), correlation_columns, rotation=90) plt.ylabel('Correlation with mortality') fig.tight_layout() ###Output _____no_output_____ ###Markdown The correlation analysis shows slight correlation of the mortality with the number of hospital beds (hospibed), the percentage of smokers (smokers) and the health care expenses (healthexp and healthperpop). The following diagrams visualize the influnce of the health care capacity in more detail. ###Code source = ColumnDataSource(country_info) TOOLTIPS = [("country", "@country"), ("Mortality", "@death_ratio")] p = figure(plot_width=600, plot_height=400, tooltips=TOOLTIPS, title="Influence of hospital capacity") #, x_axis_type="log" p.circle('hospibed', 'death_ratio', size=10, source=source) p.xaxis.axis_label = "Hospital beds per 1000 people" p.yaxis.axis_label = "Covid-19 deaths / confirmed cases,\n as on {}".format(datetime.strftime(covid_conf.index[-1], "%Y-%m-%d")) show(p) source = ColumnDataSource(country_info) p = figure(plot_width=600, plot_height=400, tooltips=TOOLTIPS, title="Influence of health care expenses", x_axis_type="log") # p.circle('healthperpop', 'death_ratio', size=10, source=source) p.xaxis.axis_label = "Health care expenses per 1 Mio. people" p.yaxis.axis_label = "Covid-19 deaths / confirmed cases, as on {}".format(datetime.strftime(covid_conf.index[-1], "%Y-%m-%d")) show(p) ###Output _____no_output_____ ###Markdown - By: Harkishan Singh Baniya- Email: [email protected] Reference: Advances in Financial Machine Learning by Dr Marcos Lopez De Prado This notebook is a part of article series **Alternative Bars on Alpaca** . In first part of the article I have explained how to generate *Alternative Bars* i.e. `tick bar`, `volume bar` and `dollar bar` using Alpaca API. In this second part we will explore them and look at some of there statistical properties. The analysis will be performed on historical bars of AAPL (Apple) trades data from *Jan 1st 2018* to *Dec 31st 2019*. The sampling freqency/ thresholds of different bars are as follows.- Tick Bars: 5,000 (ticks)- Volume Bars: 700,000 (volume/qty)- Dollar Bars: 150,000,000 (dollar)- Time Bars: 5 (minute) ###Code #Imports import warnings warnings.filterwarnings('ignore') import numpy as np import pandas as pd import datetime as dt import seaborn as sns import matplotlib.pyplot as plt from matplotlib import style from scipy import stats from statsmodels.graphics.tsaplots import plot_acf style.use('ggplot') %matplotlib inline #trim the after market data if any def trim_df(df:pd.DataFrame): try: df = df.tz_localize('UTC').tz_convert('US/Eastern') except TypeError as e: df = df.tz_convert('US/Eastern') idx = df.index c1 = (idx.time < dt.time(9, 30)) c2 = (idx.time > dt.time(16, 0)) df=df[~(c1|c2)] return df #read data and store the bars in a dictionary def read_data(symbol:str): path = 'sample_datasets/analysis/' bars = {} bars['time_bar'] = trim_df(pd.read_csv(path+f'{symbol}_5minute_bars.csv', index_col=[0], parse_dates=True)) bars['tick_bar'] = trim_df(pd.read_csv(path+f'{symbol}_tick_bars.csv', index_col=[0], parse_dates=True)) bars['volume_bar'] = trim_df(pd.read_csv(path+f'{symbol}_volume_bars.csv', index_col=[0], parse_dates=True)) bars['dollar_bar'] = trim_df(pd.read_csv(path+f'{symbol}_dollar_bars.csv', index_col=[0], parse_dates=True)) return bars AAPL = read_data(symbol='AAPL') ###Output _____no_output_____ ###Markdown Bar Count ###Code #Bar Count Analysis and Plots def show_bar_count(bars:dict, time_group='1D'): counts = {} f,ax=plt.subplots(figsize=(16,9)) for bar in bars.keys(): if bar != 'time_bar': df = bars[bar] count = df.groupby(pd.Grouper(freq=time_group))['close'].count() counts[bar] = count count.plot(ax=ax, ls='-', label=bar, alpha=0.8) print(f'The bar count for {bar} with time group {time_group} has a mean count of {count.mean()} and a standard deviation of {count.std()}') ax.legend() show_bar_count(AAPL) ###Output The bar count for tick_bar with time group 1D has a mean count of 29.718792866941016 and a standard deviation of 25.044996663634983 The bar count for volume_bar with time group 1D has a mean count of 25.685871056241428 and a standard deviation of 21.890620465954125 The bar count for dollar_bar with time group 1D has a mean count of 23.403292181069958 and a standard deviation of 19.47185317502504 ###Markdown Bars are sample with threholds chossen arbitarily that gives a bar count between 25-30 bars per day. Overall bar counts are most stable for dollar bars since it has the least deviation from the mean count, while tick bars has a high deviation. Comparing with Time Bars Sampling ###Code def plot_bars(bars:dict, date:str='2019-08-07'): time_bar = bars['time_bar'].close.loc[date].tz_convert('UTC') tick_bar = bars['tick_bar'].close.loc[date] volume_bar = bars['volume_bar'].close.loc[date] dollar_bar = bars['dollar_bar'].close.loc[date] fig, ax = plt.subplots(figsize=(18,12)) no_lable = False for timestamp in time_bar.index: if not no_lable: plt.axvline(x=timestamp, label='time bar', color='blue', linestyle='--', linewidth=0.7) no_lable=True else: plt.axvline(x=timestamp, color='blue', linestyle='--', linewidth=0.7) tick_bar.plot(ax=ax, label='tick bar', ls='', marker='D', color='yellow', alpha=0.5) volume_bar.plot(ax=ax, label='volume bar', ls='', marker='o', color='purple', alpha=0.5) dollar_bar.plot(ax=ax, label='dollar bar', ls='', marker='*', color='red', alpha=0.5) ax.legend() plt.title(f'Bar plots for {date}') plot_bars(AAPL) ###Output _____no_output_____ ###Markdown I have randomly choosen a date from the sample and ploted the alternative bars over the time bar as a reference. We can see some clustering at the start and end of the market hours this was expected as more orders are executed during this periods as a result more information is available. But time bar have note captured it due to its constant sampling frequency. ###Code #Statistical Tests def get_statistics(bars:dict): res = [] for bar in bars.keys(): ret = bars[bar].close.pct_change()[1:] jb = stats.jarque_bera(ret)[0] kurt = stats.kurtosis(ret) skew = stats.skew(ret) mean = ret.mean() std = ret.std() res.append([mean, std, skew, kurt, jb]) return pd.DataFrame(res, index=bars.keys(), columns=['mean', 'std', 'skew', 'kurtosis','jarque-bera stats']) get_statistics(AAPL) ###Output _____no_output_____ ###Markdown Here we see some important statistics for different bars returns. The dollar bar has the best statistics among all, especially has the lowest Jarque Bera stats and kurtosis. Also, the time bars has least attractive stats among all. ###Code ##ACF Plots def plot_bar_acf(bars:dict, lags:int=120): fig, axes = plt.subplots(2, 2, figsize=(20,15)) loc = [(0,0), (0,1), (1,0), (1,1)] for i, bar in enumerate(bars.keys()): ret = bars[bar].close.pct_change()[1:] plot_acf(ret, lags=lags, zero=False, ax=axes[loc[i][0],loc[i][1]], title=f'{bar} Auto Correlation with {lags} lag') plot_bar_acf(AAPL) ##Serial Correlations/ Auto-Correlations def get_auto_corr(bars:dict): for bar in bars.keys(): ret = bars[bar].close.pct_change()[1:] auto_corr = ret.autocorr(lag=1) print(f'Auto-correlations for {bar} with lag=1 is {auto_corr} ') get_auto_corr(AAPL) ###Output Auto-correlations for time_bar with lag=1 is -0.01144566799717028 Auto-correlations for tick_bar with lag=1 is -0.028345363282703682 Auto-correlations for volume_bar with lag=1 is -0.027059486204423024 Auto-correlations for dollar_bar with lag=1 is -0.02654303523363807 ###Markdown There is no auto-correlation in any of the given bars. ###Code #Distribution Plot def plot_return_distributions(bars:dict): f,ax=plt.subplots(figsize=(14,10)) for bar in bars.keys(): ret = bars[bar].close.pct_change()[1:] #normalize the returns norm_ret = (ret - ret.mean()) / ret.std() sns.kdeplot(norm_ret, label=bar) sns.kdeplot(np.random.normal(size=100000), label="Normal", color='black', linestyle="--") plt.title('Bar Returns KDE Plots') plt.xticks(range(-5, 6)) plt.legend(loc=8, ncol=5) plt.xlim(-5, 5) plt.show() plot_return_distributions(AAPL) ###Output _____no_output_____ ###Markdown Como o número de épocas se relaciona com o learning_rate- complexidade do modelo - learning rate- época+complexidade -> mais épocas, learning rate menor (supondo que não ha minimos locais) -> menor épocas, learning rate maior **Explorando** ###Code # a complexidade do modelo é definida pelo número de parâmetros def model_complexity(x): lista = eval(x) lista.insert(0, 16) return sum(i*j for i, j in zip(lista, lista[1:])) df = df.assign(complexity = df.hidden_layers.apply(model_complexity)) df.hidden_layers = df.hidden_layers.apply(eval) df = df.assign(min_neuronio_layer = df.hidden_layers.apply(min), complexity_tier = pd.cut(df.complexity, 3).cat.codes.map({0:"baixo", 1:"médio", 2:"alto"})) plot_df = df.rename(columns={"accuracy":"Acurácia", "complexity_tier": "Rank de Complexidade", "learning_rate": "Taxa de Aprendizagem", "num_epochs":"Número de épocas", "min_neuronio_layer":"Menor Camada"}) g = sns.FacetGrid(plot_df, row="Rank de Complexidade", hue="Número de épocas", height=4, aspect=2,palette="bright") g.map(sns.stripplot, "Taxa de Aprendizagem", "Acurácia", # alpha=0.4, edgecolor="black", linewidth=0.8, jitter=0.15, order=[0.001, 0.01, 0.1, 0.15]) g.map(plt.axhline, y=0.8, ls='--', c='gray') g.map(plt.axhline, y=0.4, ls='--', c='gray') g.map(plt.axhline, y=0.2, ls='--', c='gray') g.map(plt.axhspan, ymin=.8, ymax=1, color='lightgray') g.map(plt.axhspan, ymin=.4, ymax=.8, color='beige') g.map(plt.axhspan, ymin=.2, ymax=.4, color='peachpuff') g.add_legend() sns.move_legend(g, "lower center", bbox_to_anchor=(.45, 1.01), ncol=4, title="Número de Épocas", frameon=False) for lh in g._legend.legendHandles: lh._sizes = [100] plt.savefig("figures/analysis.eps", format="eps", bbox_inches='tight') ###Output _____no_output_____ ###Markdown **Análise Imagem** ###Code metrics = [np.mean, np.std, min, max] plot_df.groupby("Menor Camada").agg({"Acurácia":metrics}) regiao3 = plot_df.query("0.2 < Acurácia & Acurácia < 0.4") camadas3 = regiao3["Menor Camada"].value_counts().sort_index() camadas3.name = "Região 3" regiao2 = plot_df.query("0.4 < Acurácia & Acurácia < 0.8") camadas2 = regiao2["Menor Camada"].value_counts().sort_index() camadas2.name = "Região 2" regiao1 = plot_df.query("Acurácia > 0.8") regiao1["Menor Camada"].value_counts().sort_index() camadas1 = regiao1["Menor Camada"].value_counts().sort_index() camadas1.name = "Região 1" camadas = pd.concat([camadas1, camadas2, camadas3], axis=1) camadas.round(3) ###Output _____no_output_____ ###Markdown Agent-Based Traffic Model BackgroundThis model is a looped implementation of the cellular automata (CA) described by Nagel and Schreckenberg (NaSch).The NaSch CA model splits agent (vehicle) actions into four stages:1. Acceleration2. Braking3. Randomisation4. Vehicle MovementIn this implementation the 4th action is separated from the other actions to simulate simultaneous activation of the agents.This isn't strictly necessary for non-multithreaded processes but ensures that vehicle positions wouldn't cause conflicts if it were multithreaded. ImplementationThe model is written in Python using the Mesa ABM framework which allows for easy visualisation.This is a demonstration of running a Mesa model in an IPython Notebook which is an alternative to running it using javascript visualisation in a webpage.The actual model and agent code are implemented in model.py, in the same directory as this notebook.Below, we will import the model class, instantiate it, run it, and plot the average speed of the agents. ###Code import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = [10, 6] plt.rcParams['figure.dpi'] = 100 from model import NaSchTraffic ###Output _____no_output_____ ###Markdown Now we instantiate a model instance: a 1x30 grid, with a 20% chance of an agent being placed in each cell, and a max vehicle speed of 4. ###Code model = NaSchTraffic(1, 60, 5, 4, seed=1) ###Output _____no_output_____ ###Markdown We want to run the model until it's settles, but it's hard to tell when that is so let's just run it for 100 steps: ###Code while model.running and model.schedule.steps < 100: model.step() print(model.schedule.steps) # Show how many steps have actually run ###Output 100 ###Markdown The model has a DataCollector object, which checks and stores the average speed of the agents at every step.It also collects the individual speed and position of each agent at each step.It can also generate a pandas DataFrame of the data it has collected. ###Code model_out = model.datacollector.get_model_vars_dataframe() ###Output _____no_output_____ ###Markdown The dataframe for the model: ###Code model_out.head() ###Output _____no_output_____ ###Markdown Finally, we can plot the 'AverageSpeed' series: ###Code plt.plot(model_out.AverageSpeed) plt.xlabel('Step Number') plt.ylabel('Average Speed') plt.show() ###Output _____no_output_____ ###Markdown For testing purposes, here is the dataframe for the agents giving each agent's x position and speed at each step. ###Code agent_out = model.datacollector.get_agent_vars_dataframe() agent_out.head() ###Output _____no_output_____ ###Markdown Effect of speed limit and traffic vehicle_quantity on traffic average speedNow, we can do a parameter sweep to see how speed changes against number of vehicles and the max speed.First we make a new function to collect the average speed during the second half of the simulation. ###Code from mesa.batchrunner import BatchRunner import itertools def get_averages(model): """ Find the average speed of all the agents over the last 30 steps. """ total_averages = 0 list_length = 0 selected_averages = itertools.islice(model.averages, 60) for average_speed in selected_averages: total_averages += average_speed list_length+=1 return total_averages / list_length model_reporters={"AverageSpeed": get_averages} ###Output _____no_output_____ ###Markdown Now, we set up the batch run, with a dictionary of fixed and changing parameters.Let's vary the maximum speed, and the number of vehicles. ###Code fixed_params = {"height": 1, "width": 60} variable_parms = {"general_max_speed": range(1, 6), "vehicle_quantity": range(1, 20+1)} ###Output _____no_output_____ ###Markdown Then we create a batch runner object to conduct the parameter sweep.The number of iterations is the number of runs it does of the whole parameter space. ###Code param_sweep = BatchRunner(NaSchTraffic, variable_parameters=variable_parms, fixed_parameters=fixed_params, iterations=10, max_steps=120, model_reporters=model_reporters) ###Output _____no_output_____ ###Markdown Then we run the parameter sweep (this can take a few minutes). ###Code param_sweep.run_all() ###Output 1000it [00:21, 45.57it/s] ###Markdown Now we create the dataframe for the data collected like we did for the single model run. ###Code df = param_sweep.get_model_vars_dataframe() df.head() ###Output _____no_output_____ ###Markdown A scatter plot can be used to show how the parameters affect each other.We have varied more than one parameter, so we should try to visualise the interactions.One way of achieving this is with coloured data points: ###Code plt.scatter(df.AverageSpeed, df.general_max_speed, c=df.vehicle_quantity, cmap=plt.cm.coolwarm) plt.xlabel('Average Speed') plt.ylabel('Max Speed') bar = plt.colorbar() bar.set_label('Number of Vehicles') plt.grid(True) ###Output _____no_output_____ ###Markdown If coloured data points aren't showing the trends clearly enough another option is a 3D scatter plot: ###Code from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() # fig.tight_layout(pad=4) ax = Axes3D(fig) ax.scatter(df.vehicle_quantity, df.general_max_speed, df.AverageSpeed, c=df.vehicle_quantity, cmap=plt.cm.coolwarm) ax.set_zlabel('Average Speed') plt.xlabel('Number of Vehicles') plt.ylabel('Max Speed') plt.show() ###Output _____no_output_____ ###Markdown Bikers on the Fremont bridgeExample adapted from the [Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html) Set up: Download (and load) data ###Code # Download data(you can download it by uncommenting and runing this line of code) # !curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import MinMaxScaler # scaling data from sklearn.model_selection import train_test_split # splitting data from sklearn.neighbors import KNeighborsRegressor # regressor from sklearn.model_selection import GridSearchCV # for grid search from sklearn.pipeline import make_pipeline # for making pipelines %matplotlib inline # Aggregate data to the daily level counts = pd.read_csv('data/FremontBridge.csv', index_col='Date', parse_dates=True) daily = counts.resample('d').sum() daily['Total'] = daily.sum(axis=1) daily = daily[['Total']] # remove other columns ###Output _____no_output_____ ###Markdown Data Prep: Adding Features ###Code # Load weather data (downloaded from: https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND) weather = pd.read_csv('data/weather.csv', index_col='DATE', parse_dates=True) # Create dry_day column weather['dry_day'] = (weather['PRCP'] == 0).astype(int) # Join selected weather columns daily = daily.join(weather[['PRCP', 'dry_day', 'TMIN', 'TMAX']]) # Compute hours of daylight def hours_of_daylight(date, axis=23.44, latitude=47.61): """Compute the hours of daylight for the given date""" days = (date - pd.datetime(2000, 12, 21)).days m = (1. - np.tan(np.radians(latitude)) * np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25))) return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180. daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index)) daily[['daylight_hrs']].plot() plt.ylim(8, 17) ###Output _____no_output_____ ###Markdown Feature Generation: Categorical Variable(s) ###Code # Get dummy variables from categorical columns (alternative: sklearn OneHotEncoding) ###Output _____no_output_____ ###Markdown Abbreviated EDA ###Code # What is the relationship between bikers and temperature? # What is the relationship between bikers and date? # What is the relationship between bikers and (min) temperature? # What is the distribution of bikers on dry/wet days? # How does the number of bikers vary by temperature and wet/dry? ###Output _____no_output_____ ###Markdown Modeling: KNN Regressor ###Code # Split data into training and testing data # Create a scaler and your classifier # Define a pipeline that uses your scaler and classifier # Define a grid to search through # Perform a grid search of your pipeline # Compare prediction to (test) data ###Output _____no_output_____ ###Markdown Feature Generation: Polynomial Transformations ###Code # Add a polynomial transformation to the pipeline # Define a pipeline that includes the polynomial transformation # Define a grid to search through (including the degree of polynomial) # Perform a grid search of your pipeline # Visualize time trends ###Output _____no_output_____ ###Markdown Error assessment: find systematic errors ###Code # Why are we getting this wrong? # Assess error by day of the week # Assess error by temperature and dry_day # Assess error by precipitation ###Output _____no_output_____ ###Markdown Feature Selection: Select best featuresAs a form of dimensionality reduction, only select the top percentile features that have a certain threshold of variance. ###Code # Create a percentile selector, add it to the pipeline # (alternatives a K selectors, PCA, or others) # Define a grid to search through (including the degree of polynomial AND percentile of best features) # Fit the model ###Output _____no_output_____ ###Markdown Classification of hazard in coal mines based on seismic data Load dependencies ###Code import matplotlib.pyplot as plt import numpy as np from scipy.io import arff import pandas as pd import seaborn as sns; from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split, cross_val_score, GridSearchCV from sklearn.metrics import roc_auc_score, f1_score from sklearn import preprocessing %matplotlib inline ###Output _____no_output_____ ###Markdown Load and clean data ###Code ## load data and clean data = arff.loadarff('./data/seismic-bumps.arff') df = pd.DataFrame(data[0]) df['seismic'] = df['seismic'].str.decode('utf-8') df['seismoacoustic'] = df['seismoacoustic'].str.decode('utf-8') df['shift'] = df['shift'].str.decode('utf-8') df['ghazard'] = df['ghazard'].str.decode('utf-8') df['class'] = df['class'].str.decode('utf-8') df['class'] = pd.to_numeric(df['class']) df.head() ###Output _____no_output_____ ###Markdown EDA ###Code ## EDA df1 = df[['genergy', 'gpuls', 'gdenergy', 'gdpuls', 'nbumps', 'nbumps2', 'energy', 'maxenergy']].copy() g = sns.pairplot(df1) ###Output _____no_output_____ ###Markdown The plots above show some colinearity between attributes (e.g. `genergy` and `gpuls`, `energy` and `maxenergy`). The following will use regularization to mitigate the problem. Build models ###Code df_x = df.loc[:,['shift', 'genergy', 'gpuls', 'gdenergy', 'gdpuls', 'nbumps', 'nbumps2', 'nbumps3', 'nbumps4', 'nbumps5', 'nbumps6', 'nbumps7', 'nbumps89', 'energy', 'maxenergy']] # true response df_y = df.loc[:,['class']] # responses from seismic theories df_y1 = df.loc[:, ['seismic']] df_y2 = df.loc[:, ['seismoacoustic']] df_y3 = df.loc[:, ['ghazard']] le = preprocessing.LabelEncoder() le.fit(['a', 'b', 'c', 'd']) df_y1['seismic'] = le.transform(df_y1['seismic']) df_y2['seismoacoustic'] = le.transform(df_y2['seismoacoustic']) df_y3['ghazard'] = le.transform(df_y3['ghazard']) le2 = preprocessing.LabelEncoder() le2.fit(['W', 'N']) df_x['shift'] = le2.transform(df_x['shift']) Xtrain, Xtest, ytrain, ytest = train_test_split(df_x, df_y, test_size=0.2, random_state=42) print("Xtrain shape: ", Xtrain.shape) print("Xtest shape: ", Xtest.shape) ## find the best regularization coefficient ## use ROC as the score C = [1e-4, 1e-3, 1e-2, 1e-1, 1, 10, 1e2] scores = [] for c in C: logit = LogisticRegression(penalty='l1', C=c, max_iter=500) logit.fit(Xtrain, ytrain.values.ravel()) scores.append(roc_auc_score(ytrain['class'].values, logit.predict(Xtrain))) C_best = C[scores.index(max(scores))] print("Best C: ", C_best) clf = LogisticRegression(penalty='l1', C=C_best, max_iter = 500) clf.fit(Xtrain, ytrain.values.ravel()) roc_train = roc_auc_score(ytrain['class'].values, clf.predict(Xtrain)) # print("training score: %.4f" % clf.score(Xtrain, ytrain)) print("training score: %.4f" % roc_train) # print("test score: ", clf.score(Xtest, ytest)) roc_test = roc_auc_score(ytest['class'].values, clf.predict(Xtest)) print("test score: %.4f" % roc_test) print("n_iter: ", clf.n_iter_) clf.coef_ ind = ytest.index.values # get the responses from the seismic, seismoacoustic and ghazard methods # that correspond to indices in ytest yseismic = df_y1.loc[ind, ['seismic']] yseismoacoustic = df_y2.loc[ind, ['seismoacoustic']] yghazard = df_y3.loc[ind, ['ghazard']] # responses as probabilies from the logit model yprob = clf.predict_proba(Xtest) ypred = yprob[:,1] > 0.2 # threshold ###Output _____no_output_____ ###Markdown From the plot below, to use the probabilites from the prediction, we need to set a threshold to determine if the response should be hazardous or not. The hard labels from the prediction will be mostly 0's._Note:_ setting the threshold requires further study. One way is to tune the threshold in training sets and test the performance in test sets. ###Code plt.plot([i for i in range(len(ytest))], ytest, 'x', yprob[:,1], '.') plt.ylabel('Probability') plt.title('Raw results from prediction') plt.plot([i for i in range(len(ytest))], ytest, 'o', ypred, '.') plt.ylabel('Probability') plt.title('Probabilities after cut-off') ###Output _____no_output_____ ###Markdown Results ###Code dy = { 'logit': pd.Series(ypred) } dfy = pd.DataFrame(dy) frames = [dfy, yseismic.reset_index(drop=True), yseismoacoustic.reset_index(drop=True), yghazard.reset_index(drop=True)] # build the responses data frame (each column is responses from one method) df_result = pd.concat(frames, axis = 1) df_result = df_result*1 # convert bool to int df_result.head() yvote = (df_result == 0).sum(axis=1) # number of zeros on each row yvote = (yvote <= 2)*1 # final results based on the vote from each of the four methods # 0 means no/low hazard, 1 means hazardous # if tie, assume response is 1 (hazardous) df_result['ensemble'] = yvote.values df_result['true'] = ytest.values df_result.head(20) # score from the ensemble method with logit regression roc_auc_score(ytest['class'].values, df_result['ensemble'].values) ## compare to the three methods already in the dataset frames = [yseismic.reset_index(drop=True), yseismoacoustic.reset_index(drop=True), yghazard.reset_index(drop=True)] df_result0 = pd.concat(frames, axis = 1) df_result0 = df_result0*1 yvote0 = (df_result0 == 0).sum(axis=1) yvote0 = (yvote0 <= 2)*1 df_result0['ensemble'] = yvote0.values df_result0['true'] = ytest.values df_result0.head(20) # score from the ensemble of the three methods in the original dataset roc_auc_score(ytest['class'].values, df_result0['ensemble'].values) # score from the seismic method (no ensemble) roc_auc_score(ytest['class'].values, yseismic['seismic'].values) # score from the seismoacoustic method (no ensemble) roc_auc_score(ytest['class'].values, yseismoacoustic['seismoacoustic'].values) ###Output _____no_output_____ ###Markdown Single run ###Code # setup parameters time_step = 0.4 n_steps = 1000 model = src.model.Model( length = 1000, n_lanes = 2, density = 30, # cars per 1km lane fraction_autonomous = 0, # autonomous vehicles have p_slowdown = 0 and mean values, no error in speed estimation max_speed_mu = 120, min_spacing = 2, min_distance_mu = 2, min_distance_min = 1, min_distance_max = 3, car_acc = 3.333, # m/s^2 car_dec = 5, # m/s^2 p_slowdown = 3, # frequency (per hour) of slowing down randomly bias_right_lane = 1, time_step = time_step, seed = None, verbose = 3 ) # run simulation for `n_steps` def run(): for i in range(n_steps): model.step() %time run() # plot the density over time df = model.data.get_model_vars_dataframe() plt.plot(df.index * time_step, df.Flow, "o") plt.xlabel("Time (s)") plt.ylabel("Flow $k$") ###Output _____no_output_____ ###Markdown Batch run Note that the `model_reporters` and `agent_reporters` of `BatchRunner` (unlike the `DataCollector`) won’t collect the data every step of the model, but only at the end of each run. Because of this the following function is used to extract the relevant data from the models datacollector. ###Code def get_density(model, initialisation_steps=0): """Extract density from model datacollector. Parameters ---------- model initialisation_steps -- number of initial steps to exclude from the mean. """ # time-evolution of density densities = model.data.get_model_vars_dataframe().Density # return the mean return densities[initialisation_steps:].mean() def get_flow(model, initialisation_steps=0, flow_per=10): """Extract flow from model datacollector. Parameters ---------- model initialisation_steps -- number of initial steps to exclude from the mean. flow_per -- return the flow per this number of time_steps. """ # time-evolution of flow flows = model.data.get_model_vars_dataframe().Flow # return the mean return flows[initialisation_steps:].mean() * flow_per # setup parameters n_lanes = [2, 3, 4] density = np.linspace(10, 35, 20).astype(int) #fraction_autonomous = np.linspace(0.10, 1, 20) n_steps = 500 # for analysis = 500 initialisation_steps = 100 # for analysis = 100 iterations = 2 # for analysis = 10 fixed_params = { "length": 1000, "fraction_autonomous": 0, # autonomous vehicles have p_slowdown = 0 and mean values, no error in speed estimation "max_speed_mu": 120, "min_spacing": 2, "min_distance_mu": 2, "min_distance_min": 1, "min_distance_max": 3, "car_acc": 3.333, # m/s^2 "car_dec": 5, # m/s^2 "p_slowdown": 3, # frequency (per hour) of slowing down randomly "bias_right_lane": 1, "time_step": 0.1, "seed" : None, "verbose": 3 } variable_params = { "n_lanes": n_lanes, "density": density, #"fraction_autonomous": fraction_autonomous } # create and run `BatchRunner` batch_run = BatchRunner(src.model.Model, fixed_parameters=fixed_params, variable_parameters=variable_params, iterations=iterations, max_steps=n_steps, model_reporters={ "flow": lambda x: get_flow(x, initialisation_steps) }, agent_reporters={}, display_progress=True) print("Total iterations: ", np.product([len(var) for var in batch_run.variable_parameters.values()]) * batch_run.iterations) sys.stdout.flush() batch_run.run_all() # get the dataframe and select the relevant columns df = batch_run.get_model_vars_dataframe() df = df[["length", "n_lanes", "density", "fraction_autonomous", "flow"]] df.head() df # plot flow rate versus vehicle density fig, ax = plt.subplots(1, 1) for n_lane in n_lanes: data = df[df.n_lanes == n_lane] ax.plot(data.density[::2], data.groupby(["n_lanes","density"])["flow"].mean(), label="{} lanes".format(n_lane)) ax.set_xlabel("Density $k$") ax.set_ylabel("Flow $q$") ax.legend() ###Output _____no_output_____ ###Markdown Sensitivity Analysis OFAT ###Code %matplotlib inline from SALib.sample import saltelli from src.model import Model from src.car import Car from mesa.batchrunner import BatchRunner from SALib.analyze import sobol import pandas as pd import numpy as np import matplotlib.pyplot as plt from itertools import combinations # Set the repetitions, the amount of steps, and the amount of distinct values per variable max_steps = 20 # for analysis = 500 initialisation_steps = 0 # for analysis = 100 distinct_samples = 5 # for analysis = 20 replicates = 10 # We define our variables and bounds problem = { 'num_vars': 5, 'names': ['p_slowdown', 'n_lanes', 'density', 'fraction_autonomous', "max_speed_mu"], 'bounds': [[1, 6], [2, 4], [10, 35], [0, 1], [100, 130]] } fixed_params = { "length": 1000, "n_lanes": 2, "density": 15, # cars per 1km lane "fraction_autonomous": 0, # autonomous vehicles have p_slowdown = 0 and mean values, no error in speed estimation "max_speed_mu": 120, "min_spacing": 2, "min_distance_mu": 2, "min_distance_min": 1, "min_distance_max": 3, "car_acc": 3.333, # m/s^2 "car_dec": 5, # m/s^2 "p_slowdown": 3, # frequency (per hour) of slowing down randomly "bias_right_lane": 1, "time_step": 0.4, "seed" : None, "verbose": 3 } # Set the outputs model_reporters = {"flow": lambda x: get_flow(x, initialisation_steps)} data = {} def make_var_param(params, var_name): new_params = params del new_params[var_name] return new_params for i, var in enumerate(problem['names']): # Get the bounds for this variable and get <distinct_samples> samples within this space (uniform) samples = np.linspace(*problem['bounds'][i], num=distinct_samples) # Keep in mind that wolf_gain_from_food should be integers. You will have to change # your code to acommidate for this or sample in such a way that you only get integers. if var == 'n_lanes': samples = np.linspace(*problem['bounds'][i], num=5, dtype=int) fixed_parameters_alt = make_var_param(fixed_params, var) batch = BatchRunner(Model, max_steps=max_steps, iterations=replicates, fixed_parameters=fixed_parameters_alt, variable_parameters={var: samples}, model_reporters=model_reporters, display_progress=True) batch.run_all() data[var] = batch.get_model_vars_dataframe() def plot_param_var_conf(ax, df, var, param, i): """ Helper function for plot_all_vars. Plots the individual parameter vs variables passed. Args: ax: the axis to plot to df: dataframe that holds the data to be plotted var: variables to be taken from the dataframe param: which output variable to plot """ x = df.groupby(var).mean().reset_index()[var] y = df.groupby(var).mean()[param] replicates = df.groupby(var)[param].count() err = (1.96 * df.groupby(var)[param].std()) / np.sqrt(replicates) ax.plot(x, y, c='k') ax.fill_between(x, y - err, y + err) ax.set_xlabel(var) ax.set_ylabel(param) def plot_all_vars(df, param): """ Plots the parameters passed vs each of the output variables. Args: df: dataframe that holds all data param: the parameter to be plotted """ f, axs = plt.subplots(len(problem['names']), figsize=(7, 20)) for i, var in enumerate(problem['names']): plot_param_var_conf(axs[i], data[var], var, param, i) ## Wat moet hier ... op de plek van 'flow' for param in model_reporters: plot_all_vars(data, param) plt.show() ###Output _____no_output_____ ###Markdown Global Sensitivity Analysis ###Code # Set the repetitions, the amount of steps, and the amount of distinct values per variable max_steps = 20 # for analysis = 500 initialisation_steps = 0 # for analysis = 100 distinct_samples = 5 # for analysis = 20 replicates = 10 # We get all our samples here param_values = saltelli.sample(problem, distinct_samples) from IPython.display import clear_output fixed_params = { "length": 1000, #"n_lanes": 2, #"density": 15, # cars per 1km lane #"fraction_autonomous": 0, # autonomous vehicles have p_slowdown = 0 and mean values, no error in speed estimation #"max_speed_mu": 120, "min_spacing": 2, "min_distance_mu": 2, "min_distance_min": 1, "min_distance_max": 3, "car_acc": 3.333, # m/s^2 "car_dec": 5, # m/s^2 #"p_slowdown": 3, # frequency (per hour) of slowing down randomly "bias_right_lane": 1, "time_step": 0.4, "seed" : None, "verbose": 3 } batch = BatchRunner(Model, max_steps=max_steps, fixed_parameters=fixed_params, variable_parameters={name:[] for name in problem['names']}, model_reporters=model_reporters) count = 0 for i in range(replicates): for vals in param_values: # Change parameters that should be integers vals = list(vals) vals[1] = int(vals[1]) # Transform to dict with parameter names and their values variable_parameters = {} for name, val in zip(problem['names'], vals): variable_parameters[name] = val batch.run_iteration(variable_parameters, tuple(vals), count) count += 1 clear_output() print(f'{count / (len(param_values) * (replicates)) * 100:.2f}% done') data = batch.get_model_vars_dataframe() Si_flow = sobol.analyze(problem, data['flow'].as_matrix(), print_to_console=False) def plot_index(s, params, i, title=''): """ Creates a plot for Sobol sensitivity analysis that shows the contributions of each parameter to the global sensitivity. Args: s (dict): dictionary {'S#': dict, 'S#_conf': dict} of dicts that hold the values for a set of parameters params (list): the parameters taken from s i (str): string that indicates what order the sensitivity is. title (str): title for the plot """ print(i) if i == '2': p = len(params) params = list(combinations(params, 2)) indices = s['S' + i].reshape((p ** 2)) indices = indices[~np.isnan(indices)] errors = s['S' + i + '_conf'].reshape((p ** 2)) errors = errors[~np.isnan(errors)] else: indices = s['S' + i] errors = s['S' + i + '_conf'] plt.figure() l = len(indices) plt.title(title) plt.ylim([-0.2, len(indices) - 1 + 0.2]) plt.yticks(range(l), params) plt.errorbar(indices, range(l), xerr=errors, linestyle='None', marker='o') plt.axvline(0, c='k') # First order plot_index({k: Si_flow[k] for k in list(Si_flow)[:2]}, problem['names'], '1', 'First order sensitivity') plt.show() # Second order plot_index({k: Si_flow[k] for k in list(Si_flow)[4:6]}, problem['names'], '2', 'Second order sensitivity') plt.show() # Total order plot_index({k: Si_flow[k] for k in list(Si_flow)[2:4]}, problem['names'], 'T', 'Total order sensitivity') plt.show() ###Output 1 ###Markdown FMA: A Dataset For Music AnalysisKirell Benzi, Michaël Defferrard, Pierre Vandergheynst, Xavier Bresson, EPFL LTS2. AnalysisTODO:* Figures and tables for the paper.* Genre tree with number of tracks per genre. ###Code %matplotlib inline import utils import librosa import matplotlib.pyplot as plt import pandas as pd import numpy as np import os.path from sklearn.preprocessing import MultiLabelBinarizer df = pd.read_json(os.path.join('..', 'fma_small', 'fma_small.json')) #df = pd.read_json(os.path.join('..', 'fma_medium.json')) #df = pd.read_json(os.path.join('..', 'fma_large.json')) ###Output _____no_output_____ ###Markdown 1 GenresAnalysis* Genre hierarchy* Top- and sub-genresTodo* First plateau should be flat, no cross-over top genresObservations* Genres appearing most are the ones selected in the dataset.* Most songs only have one genre. ###Code enc = MultiLabelBinarizer() genres_indicator = enc.fit_transform(df['genres']) genres_names = enc.classes_ cross_correlation = genres_indicator.T @ genres_indicator genres_count = cross_correlation.diagonal() sort = np.argsort(genres_count)[::-1] genres_count = genres_count[sort] plt.figure(figsize=(25, 10)) plt.plot(genres_count) plt.xticks(range(len(genres_names)), genres_names[sort], rotation=90); plt.xlim((0, len(genres_names))) plt.figure(figsize=(17, 5)) plt.hist(genres_count, bins=100); plt.figure(figsize=(17, 5)) tmp = genres_indicator.sum(axis=1) plt.hist(tmp, bins=range(0, tmp.max())) plt.yscale('log') plt.xlim((1, tmp.max()+1)) plt.xticks(np.arange(tmp.max())+1.5, np.arange(tmp.max())+1); np.fill_diagonal(cross_correlation, 0) plt.figure(figsize=(28, 28)) plt.imshow(np.log(cross_correlation)) plt.yticks(range(len(genres_names)), genres_names); plt.xticks(range(len(genres_names)), genres_names, rotation=90); cross_correlation = np.tril(cross_correlation, k=-1) sort = np.argsort(cross_correlation.flatten()) tmp = cross_correlation.flatten()[sort] plt.figure(figsize=(17, 5)) plt.plot(tmp[tmp>0][::-1]); N = 20 indices = np.unravel_index(sort[:-N:-1], cross_correlation.shape) for i, j in zip(*indices): print('{}: {} | {}'.format(cross_correlation[i, j], genres_names[i], genres_names[j])) ###Output _____no_output_____ ###Markdown Data ###Code with open('1g-word-1m-benchmark-r13output/training-monolingual.tokenized.shuffled/news.en-00001-of-00100') as sentences: sentences = sentences.read().split('\n') sentences.remove('') len(sentences) ###Output _____no_output_____ ###Markdown Parsing time evaluation of Spacy models Case 1: en-core-web-sm ###Code df = pd.DataFrame(columns=['num_sentences', 'time']) # df_sm.append({'num_sentences': 400, 'time': 5}, ignore_index=True, inpl) spacy.require_gpu() nlp = spacy.load("en_core_web_sm") tic = time.time() for size in tqdm(range(60000)): sentence = sentences[size] nlp(sentence) tac = time.time() - tic data = {'num_sentences': size, 'time': tac} df = df.append(data, ignore_index=True) df.to_csv('log_2.csv', index=False) from matplotlib import pyplot as plt df_sm = pd.read_csv('log_2.csv') df_md = pd.read_csv('log_md_2.csv') df_lg = pd.read_csv('log_lg_2.csv') plt.plot(df_sm.num_sentences.to_list(), df_sm.time.to_list(), color='green', label='en_core_web_sm') plt.plot(df_md.num_sentences.to_list(), df_md.time.to_list(), color='blue', label='en_core_web_md') plt.plot(df_lg.num_sentences.to_list(), df_lg.time.to_list(), color='red', label='en_core_web_lg') plt.xlabel('Nombre de phrases') plt.ylabel('Temps d\'analyse (s)') plt.legend() plt.show() df_sm.time.to_list()[-1]/ df_sm.num_sentences.to_list()[-1] df_md.time.to_list()[-1] / df_md.num_sentences.to_list()[-1] df_lg.time.to_list()[-1]/ df_lg.num_sentences.to_list()[-1] ###Output _____no_output_____ ###Markdown Drop Rate in Fishing and Foraging DFK Quests Analysis and Visualization ###Code from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import os import pandas as pd import plotly.express as px import plotly.figure_factory as ff import plotly.graph_objects as go from plotly.subplots import make_subplots if not os.path.exists('imgs'): os.makedirs('imgs') IMG_SIZE = [1000,700] def plot2d(df,cols3, t, y, decimals=2, img_size = [700,500], img_name = None): df = pd.pivot_table(df, values=cols3[0], index=cols3[1], columns=[cols3[2]]) fig = ff.create_annotated_heatmap( z=df.to_numpy().round(decimals=decimals), x=df.columns.tolist(), y=df.index.tolist(), colorscale=['red', 'orange', 'yellow', 'green'], hoverongaps=True ) r = fig.update_layout(title_text=f'<i><b>{t}</b></i>', yaxis = dict(title=y), xaxis = dict(title='Profession Level') ) r =fig['layout']['xaxis']['side'] = 'bottom' r = fig.update_layout(width = img_size[0], height = img_size[1], margin=dict(t=50, l=100)) fig['data'][0]['showscale'] = True fig.show() if img_name: fig.write_image(img_name) def df_diff(df1,df2,col,min_cnt): d1 = df1.groupby(['stats','level'])[col].agg(['mean','count']).reset_index() d2 = df2.groupby(['stats','level'])[col].agg(['mean','count']).reset_index() d = pd.merge(d1,d2,on=['stats','level']) d[col] = d['mean_x']-d['mean_y'] return d[(d['count_x']>min_cnt) &(d['count_y']>min_cnt)] usecols = ['level', 'stats', 'stamina', 'DFKGOLD', 'DFKTEARS', 'DFKSHVAS', 'DFKEGG'] fo = pd.read_csv('./data/foraging.csv', usecols = usecols) fi = pd.read_csv('./data/fishing.csv', usecols = usecols) ###Output _____no_output_____ ###Markdown DFKGOLD ###Code for col in ['DFKGOLD']: min_cnt = 100 df = fi[fi['stamina'] == 5].groupby(['stats','level'])[col].agg(['mean','count']).reset_index() df = df[df['level']<=15] plot2d(df[df['count']>min_cnt], ['mean','stats','level'], f'<b>FISHING</b>: Average {col} per Quest for Fishers','Stats (AGI+LCK)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_fishing_fishers.png') df = fi[fi['stamina'] == 7].groupby(['stats','level'])[col].agg(['mean','count']).reset_index() df = df[df['level']<=15] plot2d(df[df['count']>min_cnt], ['mean','stats','level'], f'<b>FISHING</b>: Average {col} per Quest for Non Fishers','Stats (AGI+LCK)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_fishing_others.png') df = df_diff(fi[fi['stamina'] == 5],fi[fi['stamina'] == 7],col,min_cnt) df = df[df['level']<=15] plot2d(df,['DFKGOLD','stats','level'],f'FISHING: Fishers vs Non-Fishers: Difference in Average {col} per Quest','stats (AGI+LCK)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_fishers_vs_non_fishers.png') print(f"Fishers earn an average + {df[col].mean():.2} gold per quest in recpect to Non-Fishers") df = fo[fo['stamina'] == 5].groupby(['stats','level'])[col].agg(['mean','count']).reset_index() df = df[df['level']<=15] plot2d(df[df['count']>min_cnt], ['mean','stats','level'], f'<b>FORAGING</b>: Average {col} per Quest for Foragers','Stats (DEX+INT)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_foraging_foragers.png') df = fo[fo['stamina'] == 7].groupby(['stats','level'])[col].agg(['mean','count']).reset_index() df = df[df['level']<=15] plot2d(df[df['count']>min_cnt], ['mean','stats','level'], f'<b>FORAGING</b>: Average {col} per Quest for Non Foragers','Stats (DEX+INT)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_foraging_others.png') df = df_diff(fo[fo['stamina'] == 5],fo[fo['stamina'] == 7],col,min_cnt) df = df[df['level']<=15] plot2d(df,['DFKGOLD','stats','level'],f'FORAGING: Foragers vs Non-Foragers: Difference in Average {col} per Quest','stats (DEX+INT)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_foragers_vs_non_foragers.png') print(f"Foragers earn an average + {df[col].mean():.2} gold per quest in recpect to Non-Foragers") min_cnt = 100 df = df_diff(fo[(fo['stamina'] == 5)],fi[fi['stamina'] == 5],col,min_cnt) df = df[df['level']<=15] plot2d(df,['DFKGOLD','stats','level'],f'FORAGING Foragers vs FISHING Fishers: Difference in Average {col} per Quest','stats (DEX+INT for Foragers, AGI+LCK for Fishers)', decimals = 1, img_size = IMG_SIZE, img_name=f'./imgs/{col}_2d_fishing_vs_foraging.png') print(f"Foragers earn an average + {df[col].mean():.2} gold per quest in recpect to Fishers") ###Output _____no_output_____ ###Markdown Gaia's Tears, Shiva Runes, and Eggs ###Code def calc_means(d, main_prof, agg ): d['main_prof'] = d['stamina'].apply(lambda x: main_prof if x ==5 else 'other') d1 = d.groupby(['main_prof',agg])['DFKGOLD','DFKTEARS','DFKSHVAS','DFKEGG'].agg(['mean','std']).reset_index() d1.columns = [col[0] if (col[1] == '' or col[1] == 'mean') else '_'.join((col[0], str(col[1]))) for col in d1.columns] d2 = d.groupby(['main_prof',agg]).agg(count = pd.NamedAgg(column='DFKGOLD',aggfunc='count')) return pd.merge(d1,d2,on=[agg,'main_prof']) def plot(dfs,column,xaxis, title="T", img_size = [700,500], img_name = None): fig = make_subplots(specs=[[{"secondary_y": False}]]) profession = ['foraging','fishing'] colors=['red','blue'] line_dash = ['dot',None] i = 0 j = 0 for df in dfs: for x, tmp in df.groupby('main_prof'): r = fig.add_trace( go.Scatter(x=tmp[xaxis], y=tmp[column], name=f"{profession[i]}_{x}", line=dict(color=colors[i], dash=line_dash[(j+1)%2])), secondary_y=False, ) j+=1 i+=1 r = fig.update_layout(title_text=f"<b>{title}</b>") r = fig.update_xaxes(title_text=xaxis) r = fig.update_yaxes(title_text='Drop per Quest') fig.update_layout(legend=dict( orientation="h", yanchor="bottom", y=1, xanchor="left", x=0 )) r = fig.update_layout(width = img_size[0], height = img_size[1]) fig.show() if img_name: fig.write_image(img_name) fos = calc_means(fo, 'forager','stats') fos = fos[fos['stats']<=25] fis = calc_means(fi, 'fisher','stats') fis = fis[fis['stats']<=25] fol = calc_means(fo,'forager','level') fol = fol[fol['level']<=8] fil = calc_means(fi,'fisher','level') fil = fil[fil['level']<=8] for col,decimal in zip(['DFKTEARS','DFKSHVAS','DFKEGG'],[3,3,4]): min_cnt = 1000 plot([fos,fis], col, 'stats', title=col, img_name = f"./imgs/{col}_1d_stats.png") plot([fol,fil], col, 'level', title=col, img_name = f"./imgs/{col}_1d_level.png") # df = fo[fo['stamina'] == 5].groupby(['stats','level'])[col].agg(['mean','count']).reset_index() # plot2d(df[df['count']>min_cnt] ,['mean','stats','level'],f'Foragers Average {col} per Quest','Stats (DEX+INT)',decimal, img_size = IMG_SIZE, img_name = f"./imgs/{col}_2d_foragers.png") # df = fi[fi['stamina'] == 5].groupby(['stats','level'])[col].agg(['mean','count']).reset_index() # plot2d(df[df['count']>min_cnt] ,['mean','stats','level'],f'Fishers Average {col} per Quest','Stats (AGI+LCK)',decimal, img_size = IMG_SIZE, img_name = f"./imgs/{col}_2d_foragers.png") ###Output _____no_output_____ ###Markdown Colorful graph ###Code importlib.reload(lm) Vasc = [[],[],[],[]] NonResp = [[],[],[],[]] for lesion_id in lesions: P = lm.get_paths_dict(lesion_id, target_dir) M = masks.get_mask(P['ct24Tx']['crop']['tumor'], img_path=P['ct24Tx']['crop']['img'], overlaid=True) I,D = hf.nii_load(P['ct24Tx']['crop']['img']) if not exists(P['ct24Tx']['mrbl']['enh']+".off"): mrblM = np.zeros(M.shape) else: mrblM = masks.get_mask(P['ct24Tx']['mrbl']['enh'], D, I.shape) if not exists(P['ct24Tx']['mr30']['enh']+".off"): mr30M = np.zeros(M.shape) else: mr30M = masks.get_mask(P['ct24Tx']['mr30']['enh'], D, I.shape) Masks = [(M!=0) & (M<liplvls[1]), (M>liplvls[1]) & (M<liplvls[2]), (M>liplvls[2]) & (M<liplvls[3]), M>liplvls[3]] for ix,M in enumerate(Masks): if M.sum() > 0: Vasc[ix].append((M*mrblM!=0).sum()/M.sum()) NonResp[ix].append((M*mrblM*mr30M!=0).sum()/(M*mrblM!=0).sum()) else: Vasc[ix].append(np.nan) NonResp[ix].append(np.nan) #lm.reg_to_ct24(lesion_id, target_dir) np.isnan(Vasc[3]).sum() np.nanmean(Vasc,1) ###Output _____no_output_____ ###Markdown Vascularization statistics ###Code sum(master_df['selective=0']==1) vasc_depo_df = pd.read_excel(C.data_xls_path, "Perfusion-Deposition Data") def get_dvasc_df(vasc_depo_df, mode="density"): dvasc_df = copy.deepcopy(vasc_depo_df) if mode == "density": for l in ["N", "V", "A"]: for L_ix in range(3): dvasc_df[str(liplvls[L_ix])+l] = dvasc_df[str(liplvls[L_ix])+l] - dvasc_df[str(liplvls[L_ix+1])+l] elif mode == "V-N": dvasc_df["%ddVN"%liplvls[1]] = dvasc_df["%dV"%liplvls[1]] - dvasc_df["%dN"%liplvls[1]] return dvasc_df ###Output _____no_output_____ ###Markdown Upper graph ###Code dvasc_df = get_dvasc_df(vasc_depo_df) print(scipy.stats.wilcoxon(vasc_depo_df["%dV"%liplvls[1]], vasc_depo_df["%dN"%liplvls[1]])) for i in range(4): subset = (dvasc_df["%dV" % liplvls[i]] - dvasc_df["%dN" % liplvls[i]]).dropna() print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset)*100, np.std(subset)*100, np.std(subset)*100/(len(subset)**.5))) #DV = dvasc_df.dropna() #[scipy.stats.wilcoxon(DV["%dV" % liplvls[i]], DV["%dN" % liplvls[i]]) for i in range(4)] for i in range(4): subset = dvasc_df[["%dV" % liplvls[i], "%dN" % liplvls[i]]].dropna() print(scipy.stats.wilcoxon(subset["%dV" % liplvls[i]], subset["%dN" % liplvls[i]])) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") #dvasc_df = dvasc_df.join(master_df, how='inner') dvasc_df = vasc_depo_df.join(master_df, how='inner') i=1 subset1 = dvasc_df.loc[dvasc_df["0=well delineated, 1=infiltrative"] == 0, "%dA" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["0=well delineated, 1=infiltrative"] == 1, "%dA" % liplvls[i]].dropna() print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) i=1 subset1 = dvasc_df.loc[dvasc_df["selective=0"] == 0, "%dA" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["selective=0"] == 1, "%dA" % liplvls[i]].dropna() print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) i=1 subset1 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 0, "%dA" % liplvls[i]].dropna() subset3 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 1, "%dA" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 2, "%dA" % liplvls[i]].dropna() print(scipy.stats.kruskal(subset1, subset2, subset3).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) print_subset_stats(subset3) kwargs = {"data":dvasc_df, "size":3, "kind":"bar", "color":"#C3C3C3", "legend":False} #, "aspect":.8 g = sns.factorplot(x="0=well delineated, 1=infiltrative", y="%dA"%liplvls[1], aspect=1., **kwargs) set_g_bar(g, join(C.fig_dir, "Vascularization figures", "Upper graph", "well-del vs infilt.png")) g = sns.factorplot(x="selective=0", y="%dA"%liplvls[1], aspect=1., **kwargs) set_g_bar(g, join(C.fig_dir, "Vascularization figures", "Upper graph", "selective vs lobar.png")) g = sns.factorplot(x="HCC(0), ICC(1), other(2)", y="%dA"%liplvls[1], order=[0,2,1], aspect=1.5, **kwargs) set_g_bar(g, join(C.fig_dir, "Vascularization figures", "Upper graph", "tumor entity.png")) g = sns.factorplot(x="0A", y="%dA"%liplvls[1], aspect=.5, **kwargs) set_g_bar(g, join(C.fig_dir, "Vascularization figures", "Upper graph", "all tumors.png")) ###Output _____no_output_____ ###Markdown Middle Graph (Necro to Viable diff, no Lip breakdown) ###Code Vdf = vasc_depo_df.dropna() dvasc_df = get_dvasc_df(vasc_depo_df, "V-N") master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") #master_df = master_df.join(pattern_df) dvasc_df = dvasc_df.join(master_df) i = 1 subset1 = dvasc_df.loc[dvasc_df["0=well delineated, 1=infiltrative"] == 0, "%ddVN" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["0=well delineated, 1=infiltrative"] == 1, "%ddVN" % liplvls[i]].dropna() print("%.2f" % scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) i = 1 subset1 = dvasc_df.loc[dvasc_df["selective=0"] == 0, "%ddVN" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["selective=0"] == 1, "%ddVN" % liplvls[i]].dropna() print("%.2f" % scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) i = 1 subset1 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 0, "%ddVN" % liplvls[i]].dropna() subset3 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 1, "%ddVN" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 2, "%ddVN" % liplvls[i]].dropna() print("%.2f" % scipy.stats.kruskal(subset1, subset2, subset3).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) print_subset_stats(subset3) df = pd.DataFrame(columns=["Any Coverage", "Lesion_id", "Tissue Type", "Tumor Growth", "Tumor Type", "TACE Type"]) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") master_df = master_df.join(pattern_df) modality = "mrbl" importlib.reload(lvis) ix = 0 for lesion_id, row in Vdf.iterrows(): const = lvis.get_df_entry(lesion_id, master_df, modality) df.loc[ix] = [row["%dN"%liplvls[1]], lesion_id, "Necrosis"] + const df.loc[ix+1] = [row["%dV"%liplvls[1]], lesion_id, "Viable"] + const ix += 2 def set_g_bar(g, save_path): g.set(yticks=[0.,.2,.4,.6,.8,1.], ylim=(0.,1.)); for gax in g.axes[0]: gax.set_xlabel("") gax.set_ylabel("") #gax.tick_params('x',width=0) gax.set_xticks([], minor=False) gax.set_yticks([], minor=False) plt.setp(gax.patches, linewidth=1, edgecolor='k') g.set_titles(visible=False) #g.axes[0][0].set_yticklabels(["0%", "20%", "40%", "60%", "80%", "100%"]); sns.despine(top=True, right=True, left=True) g.fig.subplots_adjust(left=.2, top=.95) #g.fig.tight_layout(w_pad=1) #plt.setp(g.ax.lines,linewidth=1); g.fig.savefig(save_path, width=5, dpi=150, pad_inches=0, transparent=True) plt.close() kwargs = {"x":"Tissue Type", "data":df, "size":3, "aspect":.8, "kind":"bar", "legend":False}#, "ci":None g1 = sns.factorplot(y="Any Coverage", color="#D3D3D3", **kwargs) set_g_bar(g1, join(C.fig_dir, "Vascularization figures", "Mid graph", "Mean.png")) for category, order in [("Tumor Growth", None), ("Tumor Type", None), ("TACE Type", ["Selective", "Lobar"])]: #, ("Sparsity", ["Sparse", "Non"]) order = lan.get_actual_order(category, df, order) g1 = sns.factorplot(y="Any Coverage", col=category, color="#D3D3D3", col_order=order, **kwargs) set_g_bar(g1, join(C.fig_dir, "Vascularization figures", "Mid graph", "%s.png" % category)) ###Output _____no_output_____ ###Markdown Alternative Mid Graph (Lip density, no Necro/Viable separation) ###Code Vdf = vasc_depo_df.dropna() dvasc_df = get_dvasc_df(vasc_depo_df) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") #master_df = master_df.join(pattern_df) dvasc_df = dvasc_df.join(master_df) for i in range(4): print(liplvls[i]) subset1 = dvasc_df.loc[dvasc_df["0=well delineated, 1=infiltrative"] == 0, "%dA" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["0=well delineated, 1=infiltrative"] == 1, "%dA" % liplvls[i]].dropna() print(scipy.stats.mannwhitneyu(subset1, subset2)) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset1)*100, np.std(subset1)*100, np.std(subset1)*100/(len(subset1)**.5))) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset2)*100, np.std(subset2)*100, np.std(subset2)*100/(len(subset2)**.5))) for i in range(4): print(liplvls[i]) subset1 = dvasc_df.loc[dvasc_df["selective=0"] == 0, "%dA" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["selective=0"] == 1, "%dA" % liplvls[i]].dropna() print(scipy.stats.mannwhitneyu(subset1, subset2)) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset1)*100, np.std(subset1)*100, np.std(subset1)*100/(len(subset1)**.5))) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset2)*100, np.std(subset2)*100, np.std(subset2)*100/(len(subset2)**.5))) for i in range(4): subset1 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 0, "%dA" % liplvls[i]].dropna() subset3 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 1, "%dA" % liplvls[i]].dropna() subset2 = dvasc_df.loc[dvasc_df["HCC(0), ICC(1), other(2)"] == 2, "%dA" % liplvls[i]].dropna() print(scipy.stats.kruskal(subset1, subset2, subset3)) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset1)*100, np.std(subset1)*100, np.std(subset1)*100/(len(subset1)**.5))) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset2)*100, np.std(subset2)*100, np.std(subset2)*100/(len(subset2)**.5))) print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset3)*100, np.std(subset3)*100, np.std(subset3)*100/(len(subset3)**.5))) def get_row(row): char="A" return [row["%d%s"%(liplvls[1],char)], row["%d%s"%(liplvls[1],char)] - row["%d%s"%(liplvls[3],char)], row["%d%s"%(liplvls[1],char)] - row["%d%s"%(liplvls[2],char)]] df = pd.DataFrame(columns=["Any Coverage", "Low-Mid Coverage", "Low Coverage", "Lesion_id", "Tumor Growth", "Tumor Type", "TACE Type"]) importlib.reload(lvis) ix = 0 modality = "mrbl" for lesion_id, row in Vdf.iterrows(): const = lvis.get_df_entry(lesion_id, master_df, modality) df.loc[ix] = get_row(row) + [lesion_id] + const ix += 1 def set_g_bar(g, save_path): g.set(yticks=[0.,.2,.4,.6,.8,1.], ylim=(0.,1.)); for gax in g.axes[0]: gax.set_xlabel("") gax.set_ylabel("") #gax.tick_params('x',width=0) gax.set_xticks([], minor=False) gax.set_yticks([], minor=False) plt.setp(gax.patches, linewidth=1, edgecolor='k') g.set_titles(visible=False) #g.axes[0][0].set_yticklabels(["0%", "20%", "40%", "60%", "80%", "100%"]); sns.despine(top=True, right=True, left=True) g.fig.subplots_adjust(left=.2, top=.95) #g.fig.tight_layout(w_pad=1) #plt.setp(g.ax.lines,linewidth=1); g.fig.savefig(save_path, width=5, dpi=150, pad_inches=0, transparent=True) plt.close() kwargs = {"data":df, "size":3, "aspect":.8, "kind":"bar", "ci":None, "legend":False} g1 = sns.factorplot(y="Any Coverage", color="#D3D3D3", **kwargs) set_g_bar(g1, join(C.fig_dir, "Vascularization figures", "Mid graph", "Mean1.png")) g2 = sns.factorplot(y="Low-Mid Coverage", color="#939393", **kwargs) set_g_bar(g2, join(C.fig_dir, "Vascularization figures", "Mid graph", "Mean2.png")) g3 = sns.factorplot(y="Low Coverage", color="#333333", **kwargs) set_g_bar(g3, join(C.fig_dir, "Vascularization figures", "Mid graph", "Mean3.png")) for category, order in [("Tumor Growth", None), ("Tumor Type", None), ("TACE Type", ["Selective", "Lobar"])]: #, ("Sparsity", ["Sparse", "Non"]) order = lm.get_actual_order(category, df, order) g1 = sns.factorplot(y="Any Coverage", col=category, color="#D3D3D3", col_order=order, **kwargs) set_g_bar(g1, join(C.fig_dir, "Vascularization figures", "Mid graph", "%s1.png" % category)) g2 = sns.factorplot(y="Low-Mid Coverage", col=category, color="#939393", col_order=order, **kwargs) set_g_bar(g2, join(C.fig_dir, "Vascularization figures", "Mid graph", "%s2.png" % category)) g3 = sns.factorplot(y="Low Coverage", col=category, color="#333333", col_order=order, **kwargs) set_g_bar(g3, join(C.fig_dir, "Vascularization figures", "Mid graph", "%s3.png" % category)) ###Output _____no_output_____ ###Markdown Response statistics ###Code depo_resp_df = pd.read_excel(C.data_xls_path, "Deposition-Response Data") Rdf = depo_resp_df.dropna() scipy.stats.friedmanchisquare(*[Rdf[l] for l in liplvls]) for l in liplvls[1:]: print(0,l,scipy.stats.wilcoxon(Rdf[0], Rdf[l])) print(liplvls[1],liplvls[2],scipy.stats.wilcoxon(Rdf[liplvls[1]], Rdf[liplvls[2]])) print(liplvls[3],liplvls[2],scipy.stats.wilcoxon(Rdf[liplvls[3]], Rdf[liplvls[2]])) dresp_df = copy.deepcopy(Rdf) for L in liplvls[3:0:-1]: dresp_df[L] = dresp_df[L] - dresp_df[0] dresp_df[0] = 0 for l in liplvls: subset=dresp_df[l] print("%.1f%%+-%.1f%% (s.e.=%.1f%%)" % (np.mean(subset)*100, np.std(subset)*100, np.std(subset)*100/(len(subset)**.5))) ###Output 0.0%+-0.0% (s.e.=0.0%) 3.1%+-12.0% (s.e.=2.0%) 10.1%+-18.5% (s.e.=3.0%) 15.2%+-23.2% (s.e.=3.8%) ###Markdown Top graph ###Code pattern_df = pd.read_excel(C.data_xls_path, "Patterns") df = pd.DataFrame(columns=["Response", "Lesion_id", "Tumor Growth", "Tumor Type", "TACE Type", "Homogeneity", "Sparsity", "Rim Presence"]) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") master_df = master_df.join(pattern_df) modality = "ct24" master_df["lipcoverage_vol"] = master_df["lipcoverage_vol"].astype(float) master_df["high_lip"] = master_df["high_lip"].astype(float) master_df["rim_lipiodol"] = master_df["rim_lipiodol"].astype(float) master_df["low_peripheral"] = master_df["low_peripheral"].astype(float) master_df["mid_peripheral"] = master_df["mid_peripheral"].astype(float) importlib.reload(lvis) ix = 0 for lesion_id, row in depo_resp_df.iterrows(): const = lvis.get_df_entry(lesion_id, master_df, modality) df.loc[ix] = [row["Avg"], lesion_id] + const ix += 1 #master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") #dvasc_df = dvasc_df.join(master_df, how='inner') Rdf = depo_resp_df.join(master_df) subset1 = Rdf.loc[Rdf["0=well delineated, 1=infiltrative"] == 0, "Avg"].dropna() subset2 = Rdf.loc[Rdf["0=well delineated, 1=infiltrative"] == 1, "Avg"].dropna() print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") #dvasc_df = dvasc_df.join(master_df, how='inner') Rdf = depo_resp_df.join(master_df) subset1 = Rdf.loc[Rdf["selective=0"] == 0, "Avg"].dropna() subset2 = Rdf.loc[Rdf["selective=0"] == 1, "Avg"].dropna() print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") #dvasc_df = dvasc_df.join(master_df, how='inner') Rdf = depo_resp_df.join(master_df) subset1 = Rdf.loc[Rdf["HCC(0), ICC(1), other(2)"] == 0, "Avg"].dropna() subset3 = Rdf.loc[Rdf["HCC(0), ICC(1), other(2)"] == 1, "Avg"].dropna() subset2 = Rdf.loc[Rdf["HCC(0), ICC(1), other(2)"] == 2, "Avg"].dropna() print(scipy.stats.kruskal(subset1, subset2, subset3).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) print_subset_stats(subset3) subdf = df.dropna(subset=["Sparsity"]) subset1 = subdf.loc[subdf["Sparsity"].str.contains("Sparse"), "Response"] subset2 = subdf.loc[subdf["Sparsity"].str.contains("Non"), "Response"] print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) importlib.reload(lan) focal_df = df.dropna(subset=["Tumor Growth"]) focal_df = focal_df[focal_df["Tumor Growth"].str.contains("Well")] subdf = focal_df.dropna(subset=["Homogeneity"]) subset1 = subdf.loc[(subdf["Homogeneity"].str.contains("Homo")), "Response"] subset2 = subdf.loc[(subdf["Homogeneity"].str.contains("Hetero")), "Response"] print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) subdf = focal_df.dropna(subset=["Rim Presence"]) subset1 = subdf.loc[(subdf["Rim Presence"].str.contains("Rim")) & (subdf["Sparsity"].str.contains("Sparse")), "Response"] subset2 = subdf.loc[(subdf["Rim Presence"].str.contains("Non")) & (subdf["Sparsity"].str.contains("Sparse")), "Response"] print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) subdf = focal_df.dropna(subset=["Rim Presence"]) subset1 = subdf.loc[(subdf["Rim Presence"].str.contains("Rim")) & ~(subdf["Sparsity"].str.contains("Sparse")), "Response"] subset2 = subdf.loc[(subdf["Rim Presence"].str.contains("Non")) & ~(subdf["Sparsity"].str.contains("Sparse")), "Response"] print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) subdf = focal_df.dropna(subset=["Sparsity"]) subset1 = subdf.loc[subdf["Sparsity"].str.contains("Sparse"), "Response"] subset2 = subdf.loc[subdf["Sparsity"].str.contains("Non"), "Response"] print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) importlib.reload(lan) infil_df = df.dropna(subset=["Tumor Growth"]) infil_df = infil_df[infil_df["Tumor Growth"].str.contains("Infilt")] subdf = infil_df.dropna(subset=["Sparsity"]) subset1 = subdf.loc[subdf["Sparsity"].str.contains("Sparse"), "Response"] subset2 = subdf.loc[subdf["Sparsity"].str.contains("Non"), "Response"] print(scipy.stats.mannwhitneyu(subset1, subset2).pvalue) print_subset_stats(subset1) print_subset_stats(subset2) pattern_df = pd.read_excel(C.data_xls_path, "Patterns") df = pd.DataFrame(columns=["Response", "Lesion_id", "Tumor Growth", "Tumor Type", "TACE Type", "Homogeneity", "Sparsity", "Rim Presence"]) master_df = pd.read_excel(r"D:\Lipiodol\MASTER SOPHIE.xlsx", "Lesions analyzed", index_col="Lesion_ID")#"C:\Users\Clinton\Box\FOR CLINTON BOX FOLDER\MASTER SS SOPHIE.xlsx") master_df = master_df.join(pattern_df) modality = "ct24" master_df["lipcoverage_vol"] = master_df["lipcoverage_vol"].astype(float) master_df["high_lip"] = master_df["high_lip"].astype(float) master_df["rim_lipiodol"] = master_df["rim_lipiodol"].astype(float) master_df["low_peripheral"] = master_df["low_peripheral"].astype(float) master_df["mid_peripheral"] = master_df["mid_peripheral"].astype(float) importlib.reload(lvis) ix = 0 for lesion_id, row in depo_resp_df.iterrows(): const = lvis.get_df_entry(lesion_id, master_df, modality) df.loc[ix] = [row["Avg"], lesion_id] + const ix += 1 #kwargs = {"x":"Lipiodol Deposition", "y":"Response", "data":df, "size":3, "markers":["s", "o", "^"], "legend":False} kwargs = {"y":"Response", "data":df, "size":3, "kind":"bar", "legend":False} def set_g_bar(g, save_path): g.set(yticks=[0.,.2,.4,.6,.8,1.], ylim=(0.,1.)); #g.set(yticks=[-1.,-.8,-.6,-.4,-.2,0.], ylim=(-1.,0.)); for gax in g.axes[0]: gax.set_xlabel("") gax.set_ylabel("") #gax.tick_params('x',width=0) gax.set_xticks([], minor=False) gax.set_yticks([], minor=False) plt.setp(gax.patches, linewidth=1, edgecolor='k') g.set_titles(visible=False) #g.axes[0][0].set_yticklabels(["0%", "20%", "40%", "60%", "80%", "100%"]); sns.despine(top=True, right=True, left=True, bottom=False) g.fig.subplots_adjust(left=.2, top=.95) #g.fig.tight_layout(w_pad=1) #plt.setp(g.ax.lines,linewidth=1); g.fig.savefig(save_path, width=5, dpi=150, pad_inches=0, transparent=True) plt.close() df["Response"] = -df["Response"] importlib.reload(lan) for category, order in [("Tumor Growth", None), ("Tumor Type", None), ("TACE Type", ["Selective", "Lobar"]), ("Sparsity", ["Sparse", "Non"])]: g = sns.factorplot(x=category, order=lan.get_actual_order(category, df, order), **kwargs) set_g_bar(g, join(C.fig_dir, "Deposition figures", "Top graph", "%s.png" % category)); #for category, order in [("Tumor Growth", None)]: # g = sns.factorplot(x=category, order=lan.get_actual_order(category, df, order), **kwargs) # set_g_bar(g, join(C.fig_dir, "Deposition figures", "Top graph", "%s with percentage.png" % category)); importlib.reload(lan) focal_df = df.dropna(subset=["Tumor Growth"]) focal_df = focal_df[focal_df["Tumor Growth"].str.contains("Well")] for ix, row in focal_df.iterrows(): focal_df.loc[ix, "Tumor Type"] = lvis.check_column(row["Lesion_id"], master_df, "HCC(0), ICC(1), other(2)", {0: "HCCs", 1: "ICCs", 2: "Metastases"}, "WD") focal_df.loc[ix, "Sparsity"] = lvis.check_sparse(row["Lesion_id"], master_df, modality, "WD") kwargs["data"] = focal_df for category, order in [("Sparsity", ["Sparse", "Non"]), ("Homogeneity", ["Homo", "Hetero"])]: g = sns.factorplot(x=category, order=lan.get_actual_order(category, focal_df, order), **kwargs) set_g_bar(g, join(C.fig_dir, "Deposition figures", "Top graph", "Focal_%s.png" % category)); focal_df = focal_df.dropna(subset=["Sparsity"]) kwargs["data"] = focal_df[focal_df["Sparsity"].str.startswith("Sparse")] for category, order in [("Rim Presence", ["Rim", "Non"])]: g = sns.factorplot(x=category, order=lan.get_actual_order(category, focal_df, order), **kwargs) set_g_bar(g, join(C.fig_dir, "Deposition figures", "Top graph", "Focal_Sparse_%s.png" % category)); kwargs["data"] = focal_df[focal_df["Sparsity"].str.startswith("Non")] for category, order in [("Rim Presence", ["Rim", "Non"])]: g = sns.factorplot(x=category, order=lan.get_actual_order(category, focal_df, order), **kwargs) set_g_bar(g, join(C.fig_dir, "Deposition figures", "Top graph", "Focal_Non-Sparse_%s.png" % category)); ###Output _____no_output_____ ###Markdown infil_df = df.dropna(subset=["Tumor Growth"])infil_df = infil_df[infil_df["Tumor Growth"].str.contains("Infiltrative")]for ix, row in infil_df.iterrows(): infil_df.loc[ix, "Tumor Type"] = lvis.check_column(row["Lesion_id"], master_df, "HCC(0), ICC(1), other(2)", {0: "HCCs", 1: "ICCs", 2: "Metastases"}, "Infiltrative") infil_df.loc[ix, "Sparsity"] = lvis.check_sparse(row["Lesion_id"], master_df, modality, "Infiltrative")kwargs["data"] = infil_dffor category, order in [("Sparsity", ["Sparse", "Non"])]: g = sns.factorplot(x=category, order=lan.get_actual_order(category, infil_df, order), **kwargs) set_g_bar(g, join(C.fig_dir, "Deposition figures", "Top graph", "Infil_%s.png" % category)); Prediction of Lipiodol deposition ###Code pattern_df = pd.read_excel(C.data_xls_path, "Patterns") lesion_id, lesions.index(lesion_id) cols = ["T_art", "DICE_art", "T_sub", "DICE_sub"] T_df = pd.DataFrame(columns=cols) importlib.reload(lan) for lesion_id in lesions[0:]: print(lesion_id) T_df.loc[lesion_id] = lan.get_best_T_lip(lesion_id, target_dir, liplvls[2]) T_df["DICE_art"].mean(), T_df["DICE_sub"].mean() lesion_id = "BM-01" P = lm.get_paths_dict(lesion_id, target_dir) art.min() art = hf.nii_load(P['ct24Tx']['mrbl']['art'])[0] art[M != 0].min() img = masks.crop_img_to_mask_vicinity(P['ct24Tx']['mrbl']['art'], P['ct24Tx']['crop']['tumor']) img = masks.draw_mask(P['ct24Tx']['crop']['tumor'], P['ct24Tx']['mrbl']['art']); img.min() hf.draw_slices(img) ct = hf.nii_load(P['ct24Tx']['crop']['img'])[0] M = masks.get_mask(P['ct24Tx']['crop']['tumor'])[0] ct[M != 0] = np.nan ct_U = ct >= T_lip ct_L = ct < T_lip art = hf.nii_load(P['ct24Tx']['mrbl']['art'])[0].astype(int) sub = hf.nii_load(P['ct24Tx']['mrbl']['sub'])[0].astype(int) M.sum()/M.max() ct[M != 0] = np.nan (~np.isnan(ct)).sum() (ct < 99999).sum() T_df lm.reg_to_ct24(lesion_id, target_dir) lesion_id ###Output _____no_output_____ ###Markdown duplication err analysis ###Code df_dup %>% filter(target=="Hate", pred=="Neither") %>% sample_n(10) df_dup %>% filter(target=="Offensive", pred=="Hate") %>% sample_n(10) df_dup %>% filter(target=="Neither", pred=="Hate") %>% sample_n(10) df_dup %>% filter(target=="Neither", pred=="Offensive") %>% sample_n(10) ###Output _____no_output_____ ###Markdown SLEP 014 Benchmark results ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns plt.rcParams['font.size'] = 16 plt.rcParams['figure.figsize'] = [14, 8] plt.rcParams['lines.linewidth'] = 2.5 def plot_results(df, x, hue=None): fig, (ax1, ax2) = plt.subplots(1, 2, constrained_layout=True) sns.barplot(x=x, y='peak_memory', data=df, ax=ax1, hue=hue) ax1.set_title("Peak memory") sns.barplot(x=x, y='time', data=df, ax=ax2, hue=hue) ax2.set_title("Time") ###Output _____no_output_____ ###Markdown Custom sparse example```pyclass SillyVectorizer(TransformerMixin, BaseEstimator): def __init__(self, n_features_out=1_000, density=0.01): self.n_features_out = n_features_out self.density = density def fit(self, X, y=None): return self def transform(self, X): data_wrap = _DataTransformer(X, needs_feature_names_in=False) n_samples = len(X) X_output = sparse.rand(n_samples, self.n_features_out, density=self.density, random_state=0) output = data_wrap.transform(X_output, self.get_feature_names) return output def get_feature_names(self): return [f'col_{i}' for i in range(self.n_features_out)]class PassthroughTransformer(TransformerMixin, BaseEstimator): def fit(self, X, y=None): X = check_array(X, accept_sparse=True) do some fitting return self def transform(self, X): data_wrap = _DataTransformer(X) X = check_array(X, accept_sparse=True) typically does some math return data_wrap.transform(X) def main(density, array_out) set_config(array_out=array_out) n_samples = 100_000 X = [None] * n_samples pipe = make_pipeline(SillyVectorizer(density=density), PassthroughTransformer()) pipe.fit(X) output = pipe.transform(X)``` ###Code df = pd.read_json("results/bench_sparse_custom.json") df['density'] = (df['density'] * 10).astype(int) plot_results(df, x='density', hue='array_out') ###Output _____no_output_____ ###Markdown Simple sparse pipeline with chained scalers`maxabs_scalers` is the number of scalers to chain together in pipeline```pydata = fetch_20newsgroups(subset='train')set_config(array_out=array_out)estimators = ([CountVectorizer()] + [MaxAbsScaler() for _ in range(maxabs_scalers)])pipe = make_pipeline(*estimators)output = pipe.fit_transform(data.data)``` ###Code df = pd.read_json("results/bench_sparse_maxabsscaler.json") plot_results(df, x='maxabs_scalers', hue='array_out') ###Output _____no_output_____ ###Markdown Sparse pipeline with text input`max_features` is passed to `CountVectorizer````pydata = fetch_20newsgroups(subset='train')set_config(array_out=array_out)pipe = make_pipeline(CountVectorizer(max_features=max_features), TfidfTransformer(), SGDClassifier(random_state=42))pipe.fit(data.data, data.target)````array_out='pydata/sparse'` uses pydata.sparse (with no feature names). Without the feature names, it uses less memory than xarray. ###Code df = pd.read_json("results/bench_sparse_text_input.json") plot_results(df, x='max_features', hue='array_out') ###Output _____no_output_____ ###Markdown Simple dense pipeline```pyX, y = fetch_openml(data_id=1476, return_X_y=True, as_frame=True)set_config(array_out=array_out)pipe = make_pipeline(StandardScaler(), PCA(n_components=64), SelectKBest(k=30), Ridge())pipe.fit(X, y)output = pipe[:-1].transform(X)``` ###Code df = pd.read_json("results/bench_dense.json") plot_results(df, x='array_out') ###Output _____no_output_____ ###Markdown Dense pipeline with column transformer```pyX, y = fetch_openml(data_id=1590, return_X_y=True, as_frame=True)set_config(array_out=array_out)cat_prep = make_pipeline( SimpleImputer(fill_value='sk_missing', strategy='constant'), OneHotEncoder(handle_unknown='ignore', sparse=False))prep = make_column_transformer( (StandardScaler(), make_column_selector(dtype_include='number')), (cat_prep, make_column_selector(dtype_include='category')))pipe = make_pipeline(prep, SelectKBest(), DecisionTreeClassifier(random_state=42))pipe.fit(X, y)output = pipe[:-1].transform(X)``` ###Code df = pd.read_json("results/bench_column_transform.json") plot_results(df, x='array_out') ###Output _____no_output_____ ###Markdown Dense pipeline with many repeated transformations`minmax_scalers` is the number of MinMaxScalers in the pipeline```pyn_features = 200X, _ = make_regression(n_samples=300_000, n_features=n_features, random_state=42)df = pd.DataFrame(X, columns=[f"col_{i}" for i in range(n_features)])set_config(array_out=array_out)pipe = make_pipeline(*[MinMaxScaler() for _ in range(minmax_scalers)])output = pipe.fit_transform(df)```It is a little strange how the default uses more memory for `minmax_scalers>=3` ###Code df = pd.read_json("results/bench_dense_minmaxscaler.json") plot_results(df, x='minmax_scalers', hue='array_out') ###Output _____no_output_____ ###Markdown Nest Dataset Imports ###Code %matplotlib inline import pandas as pd import matplotlib.pyplot as plt import numpy as np from sklearn.neighbors import LocalOutlierFactor from sklearn.ensemble import IsolationForest ###Output _____no_output_____ ###Markdown Consider how you would analyze a real-time IoT dataset. We have a Nest device under normal conditions. How would detect malicious or anomalous events from this data using machine learning models? Questions to consider for your analysis include:1. What type of model(s) would you choose and why?2. What kind of feature engineering would you want to do? Is there additional data you would want to capture?3. What would be needed to integrate your approach into the product's overall architecture? Load Data ###Code df = pd.read_csv('data/DeviceTraffic.csv') pd.set_option('display.max_colwidth', None) print(df.shape) df.head() ###Output (5955, 7) ###Markdown Thoughts about data Features to engineer: - change in time - source port (first port in tcp header) - destination port (second port in tcp header) - Sequence number (Seq) - Acknowledgement number (Ack) - bytes in flight = Length - header (66 bytes for header in this case) resets when Ack == bytes in flight + previous Ack features I'd like to see captured: - Unique user id of some sort (i.p. is ok, but many people can have access to one i.p.) - UTC timestamps Feature Engineering ###Code # Instantiate lists and variables needed for feature engineering ack = [] seq = [] source_port = [] destination_port = [] client = '74.125.196.99' client_bytes = [] client_seq = 0 server = '10.0.0.169' server_bytes = [] server_seq = 0 df['Bytes'] = df['Length'] - 66 for i in range(df.shape[0]): # Extract relevant information from 'Info' column info_str = df.loc[i]['Info'] info_list = info_str.split(' ') seq_ack = [string for string in info_list if ('Seq=' in string) or ('Ack=' in string)] ports = [int(string) for string in info_list if string.isdigit()] # Build port lists if len(ports) > 1: source_port.append(ports[0]) destination_port.append(ports[1]) else: source_port.append(0) destination_port.append(0) # Build sequence and acknowledgement lists if len(seq_ack) == 0: seq.append(0) ack.append(0) if len(seq_ack) > 0: for string in seq_ack: break_down = string.split('=') if break_down[0] == 'Seq': seq.append(int(break_down[1])) if break_down[0] == 'Ack': ack.append(int(break_down[1])) if len(seq) < len(ack): seq.append(0) if len(ack) < len(seq): ack.append(0) # Calculate bytes in flight for client and server side, build those lists # Client side byte calculations if df['Source'].iloc[i] == client: prev_client_seq = client_seq if seq[i] != 0: client_seq = seq[i] if len(client_bytes) == 0: client_bytes.append(df['Bytes'].iloc[i]) else: if seq[i] == 1: client_bytes.append(df['Bytes'].iloc[i]) else: cbif = df['Bytes'].iloc[i] + client_bytes[i-1] if cbif + prev_client_seq == seq[i]: client_bytes.append(df['Bytes'].iloc[i]) else: client_bytes.append(cbif) else: client_bytes.append(0) # Server side byte calculations if df['Source'].iloc[i] == server: prev_server_seq = server_seq if seq[i] != 0: server_seq = seq[i] if len(server_bytes) == 0: server_bytes.append(df['Bytes'].iloc[i]) else: if seq[i] == 1: server_bytes.append(df['Bytes'].iloc[i]) else: sbif = df['Bytes'].iloc[i] + server_bytes[i-1] if sbif + prev_server_seq == seq[i]: server_bytes.append(df['Bytes'].iloc[i]) else: server_bytes.append(sbif) else: server_bytes.append(0) # Create dataframe columns from lists df['Source_port'] = source_port df['Destination_port'] = destination_port df['Seq'] = seq df['Ack'] = ack df['Server_bytes'] = server_bytes df['Client_bytes'] = client_bytes df['Bytes_in_flight'] = df['Server_bytes'] + df['Client_bytes'] df['Time_change'] = df['Time'].diff() df['Time_change'].iloc[0] = 0 #remove NaN value from first row df.head() ###Output c:\users\jon_9\.virtualenvs\perigee-example-udd_95il\lib\site-packages\pandas\core\indexing.py:670: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy iloc._setitem_with_indexer(indexer, value) ###Markdown Data Analysis ###Code plt.rcParams["figure.figsize"] = (20,10) fig, (ax1, ax2, ax3) = plt.subplots(3, 1) fig.suptitle('Data Packets Over Time') ax1.plot(df['Time'], df['Bytes_in_flight'], '-') ax1.set_ylabel('All Bytes in Flight') ax2.plot(df['Time'], df['Client_bytes'], '.') ax2.set_ylabel('Client Bytes') ax3.plot(df['Time'], df['Server_bytes'], '.') ax3.set_ylim(top = 40000) ax3.set_xlabel('Time') ax3.set_ylabel('Server bytes') plt.show() ###Output _____no_output_____ ###Markdown As expected, the server consists of the majority of the traffic observed in this set. A nest device will frequently be pinging the user or google servers to provide updates about its status and other meta-data. For the client-side, there is very little traffic, but there does appear to be an anomaly at the start of the service, indicated by a high data transfer rate. We can explore several techniques to see if this type of anomaly can be detected. Anomalies to consider may include: - Rate of data transfer - Size of data transfer - Frequency of queries - Types of queries - Time of queries Most of the anomalies may come from observing the client-side activity, but it would be wise to monitor the server-side activity to make sure its not exposing sensitive data to unauthorized users. There are a wide array of models which would be useful for detecting these types of anomalies, some of those are: - Neural networks (PyTorch or Tensorflow architechtures) - Decision trees - Clustering - Time-series analysis - Facebook Prophet Using unsupervised models may be best for the task, until there is enough labeled data to begin using supervised models. Decision trees tend to be good baseline models, which we can use to evaluate the performance-cost tradeoff of the more expensive models. (i.e. neural network models can be time, computationally, and ultimately, financially expensive.) Local Outlier Factor (Clustering) Using the Local Outlier Factor model, we can take advantage of the k-nearest neighbors algorithm. This gives us a measure of how closely related one point is to its k number of neighbors. Applying a threshold of 1200 bytes, I was able to leverage the model and isolate the anomalous data transaction. ###Code clf = LocalOutlierFactor(n_neighbors=20, contamination=0.01) y_pred = clf.fit_predict(df[['Client_bytes']]) lof = pd.DataFrame(y_pred) plt.rcParams["figure.figsize"] = (10,5) plt.scatter(df[(lof[0] < 0)&(df['Bytes_in_flight'] > 1200)]['Time'], df[(lof[0] < 0)&(df['Bytes_in_flight'] > 1200)]['Bytes_in_flight']) plt.xlabel('Time') plt.ylabel('Bytes') plt.title('Anomalous Bytes in Flight (Local Outlier Factor)') plt.ylim(bottom = 0) plt.xlim(left = 0, right = 10) plt.show() ###Output _____no_output_____ ###Markdown Isolation Forest (Decision Trees) Using the Isolation Forest decision tree ensemble method, we are able to obtain a cleaner set of anomaly predictions, requiring no post-processing. This model can be further refined, by using a permutation of Isolation Forest, called Extended Isolation forest. ###Code isoforest = IsolationForest(random_state=42, n_jobs=-1, contamination = 0.003) anomaly_pred = isoforest.fit_predict(df[['Client_bytes']]) iso_df = pd.DataFrame(anomaly_pred) plt.rcParams["figure.figsize"] = (10,5) plt.scatter(df[iso_df[0] < 0]['Time'], df[iso_df[0] < 0]['Bytes_in_flight']) plt.xlabel('Time') plt.ylabel('Bytes') plt.title('Anomalous Bytes in Flight (Isolation Forest)') plt.ylim(bottom = 0) plt.xlim(left = 0, right = 10) plt.show() ###Output _____no_output_____ ###Markdown Profitable App Profiles for the App Store and Google Play MarketsOur aim in this project is to find mobile app profiles that are profitable for the App Store and Google Play markets. We're working as data analysts for a company that builds Android and iOS mobile apps, and our job is to enable our team of developers to make data-driven decisions with respect to the kind of apps they build.At our company, we only build apps that are free to download and install, and our main source of revenue consists of in-app ads. This means that our revenue for any given app is mostly influenced by the number of users that use our app. Our goal for this project is to analyze data to help our developers understand what kinds of apps are likely to attract more users. Opening and Exploring the DataAs of September 2018, there were approximately 2 million iOS apps available on the App Store, and 2.1 million Android apps on Google Play.Collecting data for over four million apps requires a significant amount of time and money, so we'll try to analyze a sample of data instead. To avoid spending resources with collecting new data ourselves, we should first try to see whether we can find any relevant existing data at no cost. Luckily, these are two data sets that seem suitable for our purpose:* [A data set](https://www.kaggle.com/lava18/google-play-store-apps/home) containing data about approximately ten thousand Android apps from Google Play* [A data set](https://www.kaggle.com/ramamet4/app-store-apple-data-set-10k-apps/home) containing data about approximately seven thousand iOS apps from the App StoreLet's start by opening the two data sets and then continue with exploring the data. ###Code from csv import reader with open("data_sets/AppleStore.csv", encoding='utf8') as file_opened: file_readed = list(reader(file_opened)) apple_data = file_readed[1:] apple_headers = file_readed[0] from csv import reader with open("data_sets/googleplaystore.csv", encoding='utf8')as file_opened: file_readed = list(reader(file_opened)) google_data = file_readed[1:] google_headers = file_readed[0] ###Output _____no_output_____ ###Markdown To make it easier to explore the two data sets, we'll first write a function named explore_data() that we can use repeatedly to explore rows in a more readable way. We'll also add an option for our function to show the number of rows and columns for any data set. ###Code def explore_data(dataset, start, end, rows_and_columns=False): dataset_slice = dataset[start:end] for row in dataset_slice: print("%s\n" % row) if rows_and_columns: print('Number of rows:', len(dataset)) print('Number of columns:', len(dataset[0])) ###Output _____no_output_____ ###Markdown To make it easier to explore the two data sets, we'll first write a function named explore_data() that we can use repeatedly to explore rows in a more readable way. We'll also add an option for our function to show the number of rows and columns for any data set. ###Code explore_data(google_headers, 0, len(google_headers), False) explore_data(google_data, 0, 1, True) ###Output App Category Rating Reviews Size Installs Type Price Content Rating Genres Last Updated Current Ver Android Ver ['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up'] Number of rows: 10841 Number of columns: 13 ###Markdown We see that the Google Play data set has 10841 apps and 13 columns. At a quick glance, the columns that might be useful for the purpose of our analysis are 'App', 'Category', 'Reviews', 'Installs', 'Type', 'Price', and 'Genres'.Now let's take a look at the App Store data set. ###Code explore_data(apple_headers, 0, len(apple_headers), False) explore_data(apple_data, 0, 1, True) ###Output id track_name size_bytes currency price rating_count_tot rating_count_ver user_rating user_rating_ver ver cont_rating prime_genre sup_devices.num ipadSc_urls.num lang.num vpp_lic ['1', '281656475', 'PAC-MAN Premium', '100788224', 'USD', '3.99', '21292', '26', '4', '4.5', '6.3.5', '4+', 'Games', '38', '5', '10', '1'] Number of rows: 7197 Number of columns: 17 ###Markdown We have 7197 iOS apps in this data set, and the columns that seem interesting are: 'track_name', 'currency', 'price', 'rating_count_tot', 'rating_count_ver', and 'prime_genre'. Not all column names are self-explanatory in this case, but details about each column can be found in the data set [documentation](https://www.kaggle.com/ramamet4/app-store-apple-data-set-10k-apps/home). Deleting Wrong DataThe Google Play data set has a dedicated [discussion section](https://www.kaggle.com/lava18/google-play-store-apps/discussion) , and we can see that [one of the discussions](https://www.kaggle.com/lava18/google-play-store-apps/discussion/66015) outlines an error for row 10472. Let's print this row and compare it against the header and another row that is correct. ###Code print(google_data[10472]) # incorrect row print('\n') print(google_headers) # header print('\n') print(google_data[0]) # correct row ###Output ['Life Made WI-Fi Touchscreen Photo Frame', '1.9', '19', '3.0M', '1,000+', 'Free', '0', 'Everyone', '', 'February 11, 2018', '1.0.19', '4.0 and up'] ['App', 'Category', 'Rating', 'Reviews', 'Size', 'Installs', 'Type', 'Price', 'Content Rating', 'Genres', 'Last Updated', 'Current Ver', 'Android Ver'] ['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up'] ###Markdown The row 10472 corresponds to the app Life Made WI-Fi Touchscreen Photo Frame, and we can see that the rating is 19. This is clearly off because the maximum rating for a Google Play app is 5. As a consequence, we'll delete this row ###Code print(len(google_data)) del google_data[10472] # don't run this more than once print(len(google_data)) ###Output 10841 10840 ###Markdown Removing Duplicate Entries¶ Part OneLet's analyze datasets to detect duplicates ###Code def analyze_duplicates(data_set, data_set_name): unique_apps = [] duplicate_apps = [] for row in data_set: app = row[0] if app in unique_apps: duplicate_apps.append(app) else: unique_apps.append(app) print("%s unique_apps: %s" % (data_set_name, len(unique_apps))) print("%s duplicate_apps: %s" % (data_set_name, len(duplicate_apps))) ###Output _____no_output_____ ###Markdown First let's check the OS data set ###Code analyze_duplicates(apple_data, "OS") ###Output OS unique_apps: 7197 OS duplicate_apps: 0 ###Markdown Luckily the OS data set is unique. Let's check Android data as well ###Code analyze_duplicates(google_data, "Android") ###Output Android unique_apps: 9659 Android duplicate_apps: 1181 ###Markdown As we can see, the Android data set contains 1181 duplicated entries.Examples of duplicate apps: ['Quick PDF Scanner + OCR FREE', 'Box', 'Google My Business', 'ZOOM Cloud Meetings', 'join.me - Simple Meetings', 'Box', 'Zenefits', 'Google Ads', 'Google My Business', 'Slack', 'FreshBooks Classic', 'Insightly CRM', 'QuickBooks Accounting: Invoicing & Expenses', 'HipChat - Chat Built for Teams', 'Xero Accounting Software']We don't want to count certain apps more than once when we analyze data, so we need to remove the duplicate entries and keep only one entry per app. One thing we could do is remove the duplicate rows randomly, but we could probably find a better way.If you examine the rows we printed two cells above for the Instagram app, the main difference happens on the fourth position of each row, which corresponds to the number of reviews. The different numbers show that the data was collected at different times. We can use this to build a criterion for keeping rows. We won't remove rows randomly, but rather we'll keep the rows that have the highest number of reviews because the higher the number of reviews, the more reliable the ratings.To do that, we will:* Create a dictionary where each key is a unique app name, and the value is the highest number of reviews of that app* Use the dictionary to create a new data set, which will have only one entry per app (and we only select the apps with the highest number of reviews) Part TwoLet's start by building the dictionary. ###Code reviews_max = {} for row in google_data: name = row[0] n_reviews = float(row[3]) if name in reviews_max.keys(): if reviews_max[name] < n_reviews: reviews_max[name] = n_reviews else: reviews_max[name] = n_reviews ###Output _____no_output_____ ###Markdown In a previous code cell, we found that there are 1,181 cases where an app occurs more than once, so the length of our dictionary (of unique apps) should be equal to the difference between the length of our data set and 1,181. ###Code print('Expected length:', len(google_data) - 1181) print('Actual length:', len(reviews_max)) ###Output Expected length: 9659 Actual length: 9659 ###Markdown Now, let's use the reviews_max dictionary to remove the duplicates. For the duplicate cases, we'll only keep the entries with the highest number of reviews. In the code cell below:* We start by initializing two empty lists, android_clean and already_added.* We loop through the android data set, and for every iteration: * We isolate the name of the app and the number of reviews. * We add the current row (app) to the android_clean list, and the app name (name) to the already_cleaned list if:The number of reviews of the current app matches the number of reviews of that app as described in the reviews_max dictionary; andThe name of the app is not already in the already_added list. We need to add this supplementary condition to account for those cases where the highest number of reviews of a duplicate app is the same for more than one entry (for example, the Box app has three entries, and the number of reviews is the same). If we just check for reviews_max[name] == n_reviews, we'll still end up with duplicate entries for some apps. ###Code clean_google_data = [] already_added = [] for row in google_data: name = row[0] n_reviews = float(row[3]) if n_reviews == reviews_max[name] and name not in already_added: clean_google_data.append(row) already_added.append(name) ###Output _____no_output_____ ###Markdown Now let's quickly explore the new data set, and confirm that the number of rows is 9,659. ###Code explore_data(clean_google_data, 0, 3, True) ###Output ['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up'] ['U Launcher Lite – FREE Live Cool Themes, Hide Apps', 'ART_AND_DESIGN', '4.7', '87510', '8.7M', '5,000,000+', 'Free', '0', 'Everyone', 'Art & Design', 'August 1, 2018', '1.2.4', '4.0.3 and up'] ['Sketch - Draw & Paint', 'ART_AND_DESIGN', '4.5', '215644', '25M', '50,000,000+', 'Free', '0', 'Teen', 'Art & Design', 'June 8, 2018', 'Varies with device', '4.2 and up'] Number of rows: 9659 Number of columns: 13 ###Markdown We have 9659 rows, just as expected. Removing Non-English Apps Part OneIf you explore the data sets enough, you'll notice the names of some of the apps suggest they are not directed toward an English-speaking audience. Below, we see a couple of examples from both data sets: ###Code print(apple_data[813][1]) print(apple_data[6731][1]) print(clean_google_data[4412][0]) print(clean_google_data[7940][0]) ###Output 436672029 1144164707 中国語 AQリスニング لعبة تقدر تربح DZ ###Markdown We're not interested in keeping these kind of apps, so we'll remove them. One way to go about this is to remove each app whose name contains a symbol that is not commonly used in English text — English text usually includes letters from the English alphabet, numbers composed of digits from 0 to 9, punctuation marks (., !, ?, ;, etc.), and other symbols (+, *, /, etc.).All these characters that are specific to English texts are encoded using the ASCII standard. Each ASCII character has a corresponding number between 0 and 127 associated with it, and we can take advantage of that to build a function that checks an app name and tells us whether it contains non-ASCII characters.We built this function below, and we use the built-in ord() function to find out the corresponding encoding number of each character. ###Code def is_english(string): strint = string.encode('ascii', 'ignore').decode('ascii') for character in string: if ord(character) > 127: return False return True print(is_english('Instagram')) print(is_english('爱奇艺PPS -《欢乐颂2》电视剧热播')) ###Output True False ###Markdown The function seems to work fine, but some English app names use emojis or other symbols (™, — (em dash), – (en dash), etc.) that fall outside of the ASCII range. Because of this, we'll remove useful apps if we use the function in its current form. ###Code print(is_english('Docs To Go™ Free Office Suite')) print(is_english('Instachat 😜')) print(ord('™')) print(ord('😜')) ###Output False False 8482 128540 ###Markdown Part TwoTo minimize the impact of data loss, we'll only remove an app if its name contains non-ASCII characters: ###Code from langdetect import detect import emoji def give_emoji_free_text(text): all_chars = [str for str in text] emoji_list = [c for c in all_chars if c in emoji.UNICODE_EMOJI] for emoji_value in emoji_list: all_chars.remove(emoji_value) clean_text = ''.join(all_chars) return clean_text.strip() def is_english(string): clean_strint = give_emoji_free_text(string) try: clean_strint.encode(encoding='utf-8').decode('ascii') except UnicodeDecodeError: return False else: return True print(is_english('Docs To Go™ Free Office Suite')) print(is_english('ナビタイム ドライブサポーター - NAVITIMEのカーナビアプリ : 0')) print(is_english('Instachat 😜')) print(is_english('自転車ナビ by NAVITIME(ナビタイム) - 自転車のナビができるアプリ : 0')) ###Output True False True False ###Markdown The function is still not perfect, and very few non-English apps might get past our filter, but this seems good enough at this point in our analysis — we shouldn't spend too much time on optimization at this point.Below, we use the is_english() function to filter out the non-English apps for both data sets: ###Code google_data_english = [] apple_data_english = [] for app in clean_google_data: name = app[0] if is_english(name): google_data_english.append(app) for app in apple_data: name = app[2] if is_english(name): apple_data_english.append(app) explore_data(google_data_english, 0, 3, True) print('\n') explore_data(apple_data_english, 0, 3, True) ###Output ['Photo Editor & Candy Camera & Grid & ScrapBook', 'ART_AND_DESIGN', '4.1', '159', '19M', '10,000+', 'Free', '0', 'Everyone', 'Art & Design', 'January 7, 2018', '1.0.0', '4.0.3 and up'] ['Sketch - Draw & Paint', 'ART_AND_DESIGN', '4.5', '215644', '25M', '50,000,000+', 'Free', '0', 'Teen', 'Art & Design', 'June 8, 2018', 'Varies with device', '4.2 and up'] ['Pixel Draw - Number Art Coloring Book', 'ART_AND_DESIGN', '4.3', '967', '2.8M', '100,000+', 'Free', '0', 'Everyone', 'Art & Design;Creativity', 'June 20, 2018', '1.1', '4.4 and up'] Number of rows: 9282 Number of columns: 13 ['1', '281656475', 'PAC-MAN Premium', '100788224', 'USD', '3.99', '21292', '26', '4', '4.5', '6.3.5', '4+', 'Games', '38', '5', '10', '1'] ['2', '281796108', 'Evernote - stay organized', '158578688', 'USD', '0', '161065', '26', '4', '3.5', '8.2.2', '4+', 'Productivity', '37', '5', '23', '1'] ['3', '281940292', 'WeatherBug - Local Weather, Radar, Maps, Alerts', '100524032', 'USD', '0', '188583', '2822', '3.5', '4.5', '5.0.0', '4+', 'Weather', '37', '5', '3', '1'] Number of rows: 5874 Number of columns: 17 ###Markdown Isolating the Free AppsAs we mentioned in the introduction, we only build apps that are free to download and install, and our main source of revenue consists of in-app ads. Our data sets contain both free and non-free apps, and we'll need to isolate only the free apps for our analysis. Below, we isolate the free apps for both our data sets. ###Code google_final = [] apple_final = [] for app in google_data_english: price = app[7] if price == '0': google_final.append(app) for app in apple_data_english: price = app[5] if price == '0': apple_final.append(app) print(len(google_final)) print(len(apple_final)) ###Output 8554 3020 ###Markdown We're left with 8864 Android apps and 4056 iOS apps, which should be enough for our analysis. Most Common Apps by Genre Part OneAs we mentioned in the introduction, our aim is to determine the kinds of apps that are likely to attract more users because our revenue is highly influenced by the number of people using our apps.To minimize risks and overhead, our validation strategy for an app idea is comprised of three steps:Build a minimal Android version of the app, and add it to Google Play.If the app has a good response from users, we then develop it further.If the app is profitable after six months, we also build an iOS version of the app and add it to the App Store.Because our end goal is to add the app on both the App Store and Google Play, we need to find app profiles that are successful on both markets. For instance, a profile that might work well for both markets might be a productivity app that makes use of gamification.Let's begin the analysis by getting a sense of the most common genres for each market. For this, we'll build a frequency table for the prime_genre column of the App Store data set, and the Genres and Category columns of the Google Play data set. Part TwoWe'll build two functions we can use to analyze the frequency tables:* One function to generate frequency tables that show percentages* Another function that we can use to display the percentages in a descending order ###Code def freq_table(dataset, index): tmp_table = {} for line in dataset: value = line[index] if value in tmp_table.keys(): tmp_table[value] += 1 else: tmp_table[value] = 1 result = {} dataset_len = len(dataset) for key, tmp_value in tmp_table.items(): key_frequency_value = tmp_value/dataset_len * 100 result[key] = key_frequency_value return result def display_table(dataset, index): table = freq_table(dataset, index) table_display = [] for key in table: key_val_as_tuple = (table[key], key) table_display.append(key_val_as_tuple) table_sorted = sorted(table_display, reverse = True) for entry in table_sorted: print(entry[1], ':', entry[0]) ###Output _____no_output_____ ###Markdown Part ThreeWe start by examining the frequency table for the prime_genre column of the App Store data set. ###Code display_table(apple_final, -5) ###Output Games : 59.60264900662252 Entertainment : 7.6158940397351 Photo & Video : 4.966887417218543 Education : 3.80794701986755 Social Networking : 3.1788079470198674 Shopping : 2.4503311258278146 Utilities : 2.218543046357616 Music : 2.0860927152317883 Sports : 2.019867549668874 Health & Fitness : 1.95364238410596 Productivity : 1.6556291390728477 Lifestyle : 1.490066225165563 News : 1.2913907284768211 Travel : 1.0927152317880795 Finance : 1.0927152317880795 Weather : 0.8609271523178808 Food & Drink : 0.8609271523178808 Reference : 0.5298013245033113 Business : 0.49668874172185434 Book : 0.26490066225165565 Medical : 0.1986754966887417 Navigation : 0.16556291390728478 Catalogs : 0.09933774834437085 ###Markdown We can see that among the free English apps, more than a half (55.64%) are games. Entertainment apps are about 8-ish %, followed by photo & video apps, which are close to 5%, followed by social networking apps which amount for 3.52% of the apps in our data set.. Only 3.25% of the apps are designed for educationThe general impression is that App Store (at least the part containing free English apps) is dominated by apps that are designed for fun (games, entertainment, photo and video, social networking, sports, music, etc.), while apps with practical purposes (education, shopping, utilities, productivity, lifestyle, etc.) are more rare. However, the fact that fun apps are the most numerous doesn't also imply that they also have the greatest number of users — the demand might not be the same as the offer.Let's continue by examining the _Genres_ and _Category_ columns of the Google Play data set (two columns which seem to be related). ###Code display_table(google_final, 1) # Category ###Output FAMILY : 18.926817862988077 GAME : 9.72644376899696 TOOLS : 8.557400046761748 BUSINESS : 4.687865326163198 PRODUCTIVITY : 3.9396773439326633 LIFESTYLE : 3.904606032265607 FINANCE : 3.7175590367079727 MEDICAL : 3.624035538929156 PERSONALIZATION : 3.3785363572597613 SPORTS : 3.2382511105915364 COMMUNICATION : 3.20317979892448 HEALTH_AND_FITNESS : 3.1213467383680147 PHOTOGRAPHY : 2.9693710544774374 NEWS_AND_MAGAZINES : 2.7706336216974514 SOCIAL : 2.6654196866962825 TRAVEL_AND_LOCAL : 2.2913256955810146 SHOPPING : 2.221183072246902 BOOKS_AND_REFERENCE : 2.1627308861351415 DATING : 1.82370820668693 VIDEO_PLAYERS : 1.7535655833528174 MAPS_AND_NAVIGATION : 1.3327098433481412 FOOD_AND_DRINK : 1.227495908346972 EDUCATION : 1.1573532850128596 ENTERTAINMENT : 0.9469254150105214 LIBRARIES_AND_DEMO : 0.9352349777881692 AUTO_AND_VEHICLES : 0.9235445405658173 HOUSE_AND_HOME : 0.8183306055646482 WEATHER : 0.7832592938975917 EVENTS : 0.701426233341127 PARENTING : 0.6546644844517185 ART_AND_DESIGN : 0.6546644844517185 BEAUTY : 0.6195931727846622 COMICS : 0.5611409866729016 ###Markdown The landscape seems significantly different on Google Play: there are not that many apps designed for fun, and it seems that a good number of apps are designed for practical purposes (family, tools, business, lifestyle, productivity, etc.). However, if we investigate this further, we can see that the family category (which accounts for almost 19% of the apps) means mostly games for kids.Even so, practical apps seem to have a better representation on Google Play compared to App Store. This picture is also confirmed by the frequency table we see for the _Genres_ column: ###Code display_table(google_final, -4) # Genres ###Output Tools : 8.545709609539397 Entertainment : 6.055646481178396 Education : 5.342529810614917 Business : 4.687865326163198 Productivity : 3.9396773439326633 Lifestyle : 3.8929155950432546 Finance : 3.7175590367079727 Medical : 3.624035538929156 Personalization : 3.3785363572597613 Sports : 3.3083937339256484 Communication : 3.20317979892448 Action : 3.1564180500350716 Health & Fitness : 3.1213467383680147 Photography : 2.9693710544774374 News & Magazines : 2.7706336216974514 Social : 2.6654196866962825 Travel & Local : 2.2913256955810146 Shopping : 2.221183072246902 Books & Reference : 2.1627308861351415 Simulation : 2.104278700023381 Arcade : 1.8587795183539864 Dating : 1.82370820668693 Casual : 1.800327332242226 Video Players & Editors : 1.730184708908113 Maps & Navigation : 1.3327098433481412 Food & Drink : 1.227495908346972 Puzzle : 1.1456628477905073 Racing : 1.017068038344634 Strategy : 0.9469254150105214 Role Playing : 0.9469254150105214 Libraries & Demo : 0.9352349777881692 Auto & Vehicles : 0.9235445405658173 House & Home : 0.8183306055646482 Weather : 0.7832592938975917 Events : 0.701426233341127 Adventure : 0.6429740472293664 Beauty : 0.6195931727846622 Art & Design : 0.60790273556231 Comics : 0.5494505494505495 Parenting : 0.502688800561141 Card : 0.43254617722702826 Trivia : 0.4091653027823241 Educational;Education : 0.4091653027823241 Casino : 0.38578442833761983 Educational : 0.3740939911152677 Board : 0.3740939911152677 Education;Education : 0.33902267944821135 Word : 0.2571896188917466 Casual;Pretend Play : 0.2221183072246902 Music : 0.19873743277998598 Racing;Action & Adventure : 0.17535655833528174 Puzzle;Brain Games : 0.17535655833528174 Entertainment;Music & Video : 0.1402852466682254 Casual;Brain Games : 0.1402852466682254 Casual;Action & Adventure : 0.1402852466682254 Arcade;Action & Adventure : 0.10521393500116906 Action;Action & Adventure : 0.09352349777881692 Simulation;Action & Adventure : 0.08183306055646482 Parenting;Education : 0.08183306055646482 Educational;Pretend Play : 0.08183306055646482 Entertainment;Brain Games : 0.0701426233341127 Art & Design;Creativity : 0.0701426233341127 Parenting;Music & Video : 0.058452186111760576 Educational;Brain Games : 0.058452186111760576 Education;Pretend Play : 0.058452186111760576 Casual;Creativity : 0.058452186111760576 Board;Brain Games : 0.058452186111760576 Role Playing;Pretend Play : 0.04676174888940846 Education;Creativity : 0.04676174888940846 Role Playing;Action & Adventure : 0.03507131166705635 Puzzle;Action & Adventure : 0.03507131166705635 Educational;Creativity : 0.03507131166705635 Educational;Action & Adventure : 0.03507131166705635 Education;Music & Video : 0.03507131166705635 Education;Action & Adventure : 0.03507131166705635 Adventure;Action & Adventure : 0.03507131166705635 Video Players & Editors;Music & Video : 0.02338087444470423 Sports;Action & Adventure : 0.02338087444470423 Simulation;Pretend Play : 0.02338087444470423 Puzzle;Creativity : 0.02338087444470423 Music;Music & Video : 0.02338087444470423 Entertainment;Pretend Play : 0.02338087444470423 Entertainment;Creativity : 0.02338087444470423 Entertainment;Action & Adventure : 0.02338087444470423 Education;Brain Games : 0.02338087444470423 Casual;Education : 0.02338087444470423 Board;Action & Adventure : 0.02338087444470423 Video Players & Editors;Creativity : 0.011690437222352116 Trivia;Education : 0.011690437222352116 Tools;Education : 0.011690437222352116 Strategy;Education : 0.011690437222352116 Strategy;Creativity : 0.011690437222352116 Strategy;Action & Adventure : 0.011690437222352116 Simulation;Education : 0.011690437222352116 Role Playing;Brain Games : 0.011690437222352116 Racing;Pretend Play : 0.011690437222352116 Puzzle;Education : 0.011690437222352116 Parenting;Brain Games : 0.011690437222352116 Music & Audio;Music & Video : 0.011690437222352116 Lifestyle;Pretend Play : 0.011690437222352116 Health & Fitness;Education : 0.011690437222352116 Health & Fitness;Action & Adventure : 0.011690437222352116 Entertainment;Education : 0.011690437222352116 Comics;Creativity : 0.011690437222352116 Casual;Music & Video : 0.011690437222352116 Card;Action & Adventure : 0.011690437222352116 Books & Reference;Education : 0.011690437222352116 Art & Design;Pretend Play : 0.011690437222352116 Art & Design;Action & Adventure : 0.011690437222352116 Arcade;Pretend Play : 0.011690437222352116 Adventure;Education : 0.011690437222352116 ###Markdown The difference between the _Genres_ and the _Category_ columns is not crystal clear, but one thing we can notice is that the _Genres_ column is much more granular (it has more categories). We're only looking for the bigger picture at the moment, so we'll only work with the _Category_ column moving forward.Up to this point, we found that the App Store is dominated by apps designed for fun, while Google Play shows a more balanced landscape of both practical and for-fun apps. Now we'd like to get an idea about the kind of apps that have most users. Most Popular Apps by Genre on the App StoreOne way to find out what genres are the most popular (have the most users) is to calculate the average number of installs for each app genre. For the Google Play data set, we can find this information in the _Installs_ column, but for the App Store data set this information is missing. As a workaround, we'll take the total number of user ratings as a proxy, which we can find in the _rating_count_tot_ app.Below, we calculate the average number of user ratings per app genre on the App Store: ###Code def get_avg_n_ratings_by_genre(dataset, genre_index, rating_index): result = [] genres = freq_table(dataset, genre_index) for genre in genres: total = 0 len_genre = 0 for app in dataset: genre_app = app[genre_index] if genre_app == genre: n_ratings = float(app[rating_index]) total += n_ratings len_genre += 1 avg_n_ratings = total / len_genre result.append((avg_n_ratings, genre)) result.sort() for value in result: print(value[1], ':', value[0]) get_avg_n_ratings_by_genre(apple_final, -5, 6) ###Output Medical : 612.0 Catalogs : 5195.0 Education : 6099.417391304348 Business : 6839.6 Utilities : 11413.179104477613 Entertainment : 14481.995652173913 Book : 16671.0 Lifestyle : 17848.51111111111 Health & Fitness : 19230.86440677966 Games : 22820.230555555554 Productivity : 22842.22 News : 23382.17948717949 Sports : 25382.114754098362 Finance : 26729.090909090908 Shopping : 28517.72972972973 Photo & Video : 29249.766666666666 Food & Drink : 33333.92307692308 Travel : 34115.57575757576 Weather : 48275.57692307692 Music : 55396.01587301587 Social Networking : 75253.84375 Reference : 84258.25 Navigation : 102592.0 ###Markdown On average, navigation apps have the highest number of user reviews, but this figure is heavily influenced by Waze and Google Maps, which have close to half a million user reviews together: ###Code for app in apple_final: if app[-5] == 'Navigation': print(app[2], ':', app[6]) # print name and number of ratings ###Output Waze - GPS Navigation, Maps & Real-time Traffic : 345046 Geocaching® : 12811 ImmobilienScout24: Real Estate Search in Germany : 187 Railway Route Search : 5 Google Maps - Navigation & Transit : 154911 ###Markdown The same pattern applies to social networking apps, where the average number is heavily influenced by a few giants like Facebook, Pinterest, Skype, etc. Same applies to music apps, where a few big players like Pandora, Spotify, and Shazam heavily influence the average number.Our aim is to find popular genres, but navigation, social networking or music apps might seem more popular than they really are. The average number of ratings seem to be skewed by very few apps which have hundreds of thousands of user ratings, while the other apps may struggle to get past the 10,000 threshold. We could get a better picture by removing these extremely popular apps for each genre and then rework the averages, but we'll leave this level of detail for later.Reference apps have 84,258 user ratings on average, but it's actually the Bible and Dictionary.com which skew up the average rating: ###Code for app in apple_final: if app[-5] == 'Reference': print(app[2], ':', app[6]) ###Output Bible : 985920 Dictionary.com Dictionary & Thesaurus : 200047 Dictionary.com Dictionary & Thesaurus for iPad : 54175 Muslim Pro: Ramadan 2017 Prayer Times, Azan, Quran : 18418 Merriam-Webster Dictionary : 16849 Google Translate : 26786 Night Sky : 12122 WWDC : 762 Jishokun-Japanese English Dictionary & Translator : 0 VPN Express : 14 New Furniture Mods - Pocket Wiki & Game Tools for Minecraft PC Edition : 17588 LUCKY BLOCK MOD ™ for Minecraft PC Edition - The Best Pocket Wiki & Mods Installer Tools : 4693 Horror Maps for Minecraft PE - Download The Scariest Maps for Minecraft Pocket Edition (MCPE) Free : 718 City Maps for Minecraft PE - The Best Maps for Minecraft Pocket Edition (MCPE) : 8535 GUNS MODS for Minecraft PC Edition - Mods Tools : 1497 Real Bike Traffic Rider Virtual Reality Glasses : 8 ###Markdown However, this niche seems to show some potential. One thing we could do is take another popular book and turn it into an app where we could add different features besides the raw version of the book. This might include daily quotes from the book, an audio version of the book, quizzes about the book, etc. On top of that, we could also embed a dictionary within the app, so users don't need to exit our app to look up words in an external app.This idea seems to fit well with the fact that the App Store is dominated by for-fun apps. This suggests the market might be a bit saturated with for-fun apps, which means a practical app might have more of a chance to stand out among the huge number of apps on the App Store.Other genres that seem popular include weather, book, food and drink, or finance. The book genre seem to overlap a bit with the app idea we described above, but the other genres don't seem too interesting to us:Weather apps — people generally don't spend too much time in-app, and the chances of making profit from in-app adds are low. Also, getting reliable live weather data may require us to connect our apps to non-free APIs.Food and drink — examples here include Starbucks, Dunkin' Donuts, McDonald's, etc. So making a popular food and drink app requires actual cooking and a delivery service, which is outside the scope of our company.Finance apps — these apps involve banking, paying bills, money transfer, etc. Building a finance app requires domain knowledge, and we don't want to hire a finance expert just to build an app.Now let's analyze the Google Play market a bit. Most Popular Apps by Genre on Google PlayFor the Google Play market, we actually have data about the number of installs, so we should be able to get a clearer picture about genre popularity. However, the install numbers don't seem precise enough — we can see that most values are open-ended (100+, 1,000+, 5,000+, etc.): ###Code display_table(google_final, 5) # the Installs columns ###Output 1,000,000+ : 15.665185877951835 100,000+ : 11.526771101239186 10,000,000+ : 10.462941314005143 10,000+ : 10.39279869067103 1,000+ : 8.417114800093524 100+ : 7.002571896188918 5,000,000+ : 6.757072714519523 500,000+ : 5.541267243394903 50,000+ : 4.769698386719663 5,000+ : 4.500818330605565 10+ : 3.4837502922609307 500+ : 3.214870236146832 50,000,000+ : 2.2913256955810146 100,000,000+ : 2.1627308861351415 50+ : 1.9406125789104514 5+ : 0.806640168342296 1+ : 0.502688800561141 500,000,000+ : 0.2805704933364508 1,000,000,000+ : 0.2221183072246902 0+ : 0.04676174888940846 0 : 0.011690437222352116 ###Markdown One problem with this data is that is not precise. For instance, we don't know whether an app with 100,000+ installs has 100,000 installs, 200,000, or 350,000. However, we don't need very precise data for our purposes — we only want to get an idea which app genres attract the most users, and we don't need perfect precision with respect to the number of users.We're going to leave the numbers as they are, which means that we'll consider that an app with 100,000+ installs has 100,000 installs, and an app with 1,000,000+ installs has 1,000,000 installs, and so on.To perform computations, however, we'll need to convert each install number to float — this means that we need to remove the commas and the plus characters, otherwise the conversion will fail and raise an error. We'll do this directly in the loop below, where we also compute the average number of installs for each genre (category).Let's make refactoring of "get_avg_n_ratings_by_genre" function: ###Code def get_avg_n_ratings_by_genre(dataset, genre_index, user_activity_index): result = [] genres = freq_table(dataset, genre_index) for genre in genres: total = 0 len_category = 0 for app in dataset: category_app = app[genre_index] if category_app == genre: n_user_activity = app[user_activity_index] n_user_activity = n_user_activity.replace(',', '') n_user_activity = n_user_activity.replace('+', '') total += float(n_user_activity) len_category += 1 avg_n_ratings = total / len_category result.append((avg_n_ratings, genre)) result.sort() for value in result: print(value[1], ':', value[0]) ###Output _____no_output_____ ###Markdown Let's check result: ###Code get_avg_n_ratings_by_genre(google_final, 1, 5) ###Output MEDICAL : 121230.14193548387 EVENTS : 232885.83333333334 BEAUTY : 513151.88679245283 PARENTING : 535196.6071428572 AUTO_AND_VEHICLES : 645317.2278481013 LIBRARIES_AND_DEMO : 662421.375 DATING : 822459.9807692308 COMICS : 880440.625 HOUSE_AND_HOME : 1380033.7285714287 FINANCE : 1380165.5094339622 LIFESTYLE : 1381354.248502994 BUSINESS : 1710203.4663341646 EDUCATION : 1826767.6767676768 FOOD_AND_DRINK : 1911606.2 ART_AND_DESIGN : 1932519.642857143 FAMILY : 3696338.7331686225 SPORTS : 3860842.6606498193 HEALTH_AND_FITNESS : 4274711.20599251 MAPS_AND_NAVIGATION : 4304432.280701755 WEATHER : 5219216.7164179105 PERSONALIZATION : 5254790.269896193 SHOPPING : 7274624.131578947 BOOKS_AND_REFERENCE : 8999314.918918919 NEWS_AND_MAGAZINES : 9926131.265822785 TOOLS : 11010869.950819673 ENTERTAINMENT : 12177283.950617284 TRAVEL_AND_LOCAL : 14370321.867346939 GAME : 15799823.725961538 PRODUCTIVITY : 16852579.56676558 PHOTOGRAPHY : 18028223.68110236 SOCIAL : 24038639.263157893 VIDEO_PLAYERS : 24964878.133333333 COMMUNICATION : 35933961.6459854 ###Markdown On average, communication apps have the most installs: 35,933,961. This number is heavily skewed up by a few apps that have over one billion installs (WhatsApp, Facebook Messenger, Skype, Google Chrome, Gmail, and Hangouts), and a few others with over 100 and 500 million installs: ###Code for app in google_final: if app[1] == 'COMMUNICATION' and (app[5] == '1,000,000,000+' or app[5] == '500,000,000+' or app[5] == '100,000,000+'): print(app[0], ':', app[5]) ###Output WhatsApp Messenger : 1,000,000,000+ imo beta free calls and text : 100,000,000+ Android Messages : 100,000,000+ Google Duo - High Quality Video Calls : 500,000,000+ imo free video calls and chat : 500,000,000+ Skype - free IM & video calls : 1,000,000,000+ Who : 100,000,000+ GO SMS Pro - Messenger, Free Themes, Emoji : 100,000,000+ LINE: Free Calls & Messages : 500,000,000+ Google Chrome: Fast & Secure : 1,000,000,000+ Firefox Browser fast & private : 100,000,000+ UC Browser - Fast Download Private & Secure : 500,000,000+ Gmail : 1,000,000,000+ Hangouts : 1,000,000,000+ Messenger Lite: Free Calls & Messages : 100,000,000+ Kik : 100,000,000+ KakaoTalk: Free Calls & Text : 100,000,000+ Opera Mini - fast web browser : 100,000,000+ Opera Browser: Fast and Secure : 100,000,000+ Telegram : 100,000,000+ Truecaller: Caller ID, SMS spam blocking & Dialer : 100,000,000+ UC Browser Mini -Tiny Fast Private & Secure : 100,000,000+ Viber Messenger : 500,000,000+ WeChat : 100,000,000+ BBM - Free Calls & Messages : 100,000,000+ ###Markdown If we removed all the communication apps that have over 100 million installs, the average would be reduced roughly ten times: ###Code under_100_m = [] for app in google_final: n_installs = app[5] n_installs = n_installs.replace(',', '') n_installs = n_installs.replace('+', '') if (app[1] == 'COMMUNICATION') and (float(n_installs) < 100000000): under_100_m.append(float(n_installs)) sum(under_100_m) / len(under_100_m) ###Output _____no_output_____ ###Markdown We see the same pattern for the video players category, which is the runner-up with 24,964,878 installs. The market is dominated by apps like Youtube, Google Play Movies & TV, or MX Player. The pattern is repeated for social apps (where we have giants like Facebook, Instagram, Google+, etc.), photography apps (Google Photos and other popular photo editors), or productivity apps (Microsoft Word, Dropbox, Google Calendar, Evernote, etc.).Again, the main concern is that these app genres might seem more popular than they really are. Moreover, these niches seem to be dominated by a few giants who are hard to compete against.The game genre seems pretty popular, but previously we found out this part of the market seems a bit saturated, so we'd like to come up with a different app recommendation if possible.The books and reference genre looks fairly popular as well, with an average number of installs of 8,999,314. It's interesting to explore this in more depth, since we found this genre has some potential to work well on the App Store, and our aim is to recommend an app genre that shows potential for being profitable on both the App Store and Google Play.Let's take a look at some of the apps from this genre and their number of installs: ###Code for app in google_final: if app[1] == 'BOOKS_AND_REFERENCE': print(app[0], ':', app[5]) ###Output E-Book Read - Read Book for free : 50,000+ Download free book with green book : 100,000+ Wikipedia : 10,000,000+ Cool Reader : 10,000,000+ Free Panda Radio Music : 100,000+ Book store : 1,000,000+ FBReader: Favorite Book Reader : 10,000,000+ English Grammar Complete Handbook : 500,000+ Free Books - Spirit Fanfiction and Stories : 1,000,000+ Google Play Books : 1,000,000,000+ AlReader -any text book reader : 5,000,000+ Offline English Dictionary : 100,000+ Offline: English to Tagalog Dictionary : 500,000+ FamilySearch Tree : 1,000,000+ Cloud of Books : 1,000,000+ Recipes of Prophetic Medicine for free : 500,000+ Anonymous caller detection : 10,000+ Ebook Reader : 5,000,000+ Litnet - E-books : 100,000+ Read books online : 5,000,000+ English to Urdu Dictionary : 500,000+ eBoox: book reader fb2 epub zip : 1,000,000+ English Persian Dictionary : 500,000+ Flybook : 500,000+ All Maths Formulas : 1,000,000+ Ancestry : 5,000,000+ HTC Help : 10,000,000+ English translation from Bengali : 100,000+ Pdf Book Download - Read Pdf Book : 100,000+ Free Book Reader : 100,000+ eBoox new: Reader for fb2 epub zip books : 50,000+ Only 30 days in English, the guideline is guaranteed : 500,000+ Moon+ Reader : 10,000,000+ SH-02J Owner's Manual (Android 8.0) : 50,000+ English-Myanmar Dictionary : 1,000,000+ Golden Dictionary (EN-AR) : 1,000,000+ All Language Translator Free : 1,000,000+ Azpen eReader : 500,000+ URBANO V 02 instruction manual : 100,000+ Bible : 100,000,000+ C Programs and Reference : 50,000+ C Offline Tutorial : 1,000+ C Programs Handbook : 50,000+ Amazon Kindle : 100,000,000+ Aab e Hayat Full Novel : 100,000+ Aldiko Book Reader : 10,000,000+ Google I/O 2018 : 500,000+ R Language Reference Guide : 10,000+ Learn R Programming Full : 5,000+ R Programing Offline Tutorial : 1,000+ Guide for R Programming : 5+ Learn R Programming : 10+ R Quick Reference Big Data : 1,000+ V Made : 100,000+ Wattpad 📖 Free Books : 100,000,000+ Dictionary - WordWeb : 5,000,000+ Guide (for X-MEN) : 100,000+ AC Air condition Troubleshoot,Repair,Maintenance : 5,000+ AE Bulletins : 1,000+ Ae Allah na Dai (Rasa) : 10,000+ 50000 Free eBooks & Free AudioBooks : 5,000,000+ Ag PhD Field Guide : 10,000+ Ag PhD Deficiencies : 10,000+ Ag PhD Planting Population Calculator : 1,000+ Ag PhD Soybean Diseases : 1,000+ Fertilizer Removal By Crop : 50,000+ A-J Media Vault : 50+ Al-Quran (Free) : 10,000,000+ Al Quran (Tafsir & by Word) : 500,000+ Al Quran Indonesia : 10,000,000+ Al'Quran Bahasa Indonesia : 10,000,000+ Al Quran Al karim : 1,000,000+ Al-Muhaffiz : 50,000+ Al Quran : EAlim - Translations & MP3 Offline : 5,000,000+ Al-Quran 30 Juz free copies : 500,000+ Koran Read &MP3 30 Juz Offline : 1,000,000+ Hafizi Quran 15 lines per page : 1,000,000+ Quran for Android : 10,000,000+ Surah Al-Waqiah : 100,000+ Hisnul Al Muslim - Hisn Invocations & Adhkaar : 100,000+ Satellite AR : 1,000,000+ Audiobooks from Audible : 100,000,000+ Kinot & Eichah for Tisha B'Av : 10,000+ AW Tozer Devotionals - Daily : 5,000+ Tozer Devotional -Series 1 : 1,000+ The Pursuit of God : 1,000+ AY Sing : 5,000+ Ay Hasnain k Nana Milad Naat : 10,000+ Ay Mohabbat Teri Khatir Novel : 10,000+ Arizona Statutes, ARS (AZ Law) : 1,000+ Oxford A-Z of English Usage : 1,000,000+ BD Fishpedia : 1,000+ BD All Sim Offer : 10,000+ Youboox - Livres, BD et magazines : 500,000+ B&H Kids AR : 10,000+ Dictionary.com: Find Definitions for English Words : 10,000,000+ English Dictionary - Offline : 10,000,000+ Bible KJV : 5,000,000+ Borneo Bible, BM Bible : 10,000+ MOD Black for BM : 100+ BM Box : 1,000+ Anime Mod for BM : 100+ NOOK: Read eBooks & Magazines : 10,000,000+ NOOK Audiobooks : 500,000+ NOOK App for NOOK Devices : 500,000+ Browsery by Barnes & Noble : 5,000+ bp e-store : 1,000+ Brilliant Quotes: Life, Love, Family & Motivation : 1,000,000+ BR Ambedkar Biography & Quotes : 10,000+ BU Alsace : 100+ Catholic La Bu Zo Kam : 500+ Khrifa Hla Bu (Solfa) : 10+ Kristian Hla Bu : 10,000+ SA HLA BU : 1,000+ Learn SAP BW : 500+ Learn SAP BW on HANA : 500+ CA Laws 2018 (California Laws and Codes) : 5,000+ Bootable Methods(USB-CD-DVD) : 10,000+ cloudLibrary : 100,000+ SDA Collegiate Quarterly : 500+ Sabbath School : 100,000+ Cypress College Library : 100+ Stats Royale for Clash Royale : 1,000,000+ GATE 21 years CS Papers(2011-2018 Solved) : 50+ Learn CT Scan Of Head : 5,000+ Easy Cv maker 2018 : 10,000+ How to Write CV : 100,000+ CW Nuclear : 1,000+ CY Spray nozzle : 10+ BibleRead En Cy Zh Yue : 5+ CZ-Help : 5+ Guide for DB Xenoverse : 10,000+ Guide for DB Xenoverse 2 : 10,000+ Guide for IMS DB : 10+ DC HSEMA : 5,000+ DC Public Library : 1,000+ Painting Lulu DC Super Friends : 1,000+ Dictionary : 10,000,000+ Fix Error Google Playstore : 1,000+ D. H. Lawrence Poems FREE : 1,000+ Bilingual Dictionary Audio App : 5,000+ DM Screen : 10,000+ wikiHow: how to do anything : 1,000,000+ Dr. Doug's Tips : 1,000+ Bible du Semeur-BDS (French) : 50,000+ La citadelle du musulman : 50,000+ DV 2019 Entry Guide : 10,000+ DV 2019 - EDV Photo & Form : 50,000+ DV 2018 Winners Guide : 1,000+ EB Annual Meetings : 1,000+ EC - AP & Telangana : 5,000+ TN Patta Citta & EC : 10,000+ AP Stamps and Registration : 10,000+ CompactiMa EC pH Calibration : 100+ EGW Writings 2 : 100,000+ EGW Writings : 1,000,000+ Bible with EGW Comments : 100,000+ My Little Pony AR Guide : 1,000,000+ SDA Sabbath School Quarterly : 500,000+ Duaa Ek Ibaadat : 5,000+ Spanish English Translator : 10,000,000+ Dictionary - Merriam-Webster : 10,000,000+ JW Library : 10,000,000+ Oxford Dictionary of English : Free : 10,000,000+ English Hindi Dictionary : 10,000,000+ English to Hindi Dictionary : 5,000,000+ EP Research Service : 1,000+ Hymnes et Louanges : 100,000+ EU Charter : 1,000+ EU Data Protection : 1,000+ EU IP Codes : 100+ EW PDF : 5+ BakaReader EX : 100,000+ EZ Quran : 50,000+ La Fe de Jesus : 1,000+ Le Fe de Jesus : 500+ Florida - Pocket Brainbook : 1,000+ Florida Statutes (FL Code) : 1,000+ English To Shona Dictionary : 10,000+ Greek Bible FP (Audio) : 1,000+ Golden Dictionary (FR-AR) : 500,000+ Fanfic-FR : 5,000+ Bulgarian French Dictionary Fr : 10,000+ Chemin (fr) : 1,000+ The SCP Foundation DB fr nn5n : 1,000+ ###Markdown The book and reference genre includes a variety of apps: software for processing and reading ebooks, various collections of libraries, dictionaries, tutorials on programming or languages, etc. It seems there's still a small number of extremely popular apps that skew the average: ###Code for app in google_final: if app[1] == 'BOOKS_AND_REFERENCE' and (app[5] == '1,000,000,000+' or app[5] == '500,000,000+' or app[5] == '100,000,000+'): print(app[0], ':', app[5]) ###Output Google Play Books : 1,000,000,000+ Bible : 100,000,000+ Amazon Kindle : 100,000,000+ Wattpad 📖 Free Books : 100,000,000+ Audiobooks from Audible : 100,000,000+ ###Markdown However, it looks like there are only a few very popular apps, so this market still shows potential. Let's try to get some app ideas based on the kind of apps that are somewhere in the middle in terms of popularity (between 1,000,000 and 100,000,000 downloads): ###Code for app in google_final: if app[1] == 'BOOKS_AND_REFERENCE' and (app[5] == '1,000,000+' or app[5] == '5,000,000+' or app[5] == '10,000,000+' or app[5] == '50,000,000+'): print(app[0], ':', app[5]) ###Output Wikipedia : 10,000,000+ Cool Reader : 10,000,000+ Book store : 1,000,000+ FBReader: Favorite Book Reader : 10,000,000+ Free Books - Spirit Fanfiction and Stories : 1,000,000+ AlReader -any text book reader : 5,000,000+ FamilySearch Tree : 1,000,000+ Cloud of Books : 1,000,000+ Ebook Reader : 5,000,000+ Read books online : 5,000,000+ eBoox: book reader fb2 epub zip : 1,000,000+ All Maths Formulas : 1,000,000+ Ancestry : 5,000,000+ HTC Help : 10,000,000+ Moon+ Reader : 10,000,000+ English-Myanmar Dictionary : 1,000,000+ Golden Dictionary (EN-AR) : 1,000,000+ All Language Translator Free : 1,000,000+ Aldiko Book Reader : 10,000,000+ Dictionary - WordWeb : 5,000,000+ 50000 Free eBooks & Free AudioBooks : 5,000,000+ Al-Quran (Free) : 10,000,000+ Al Quran Indonesia : 10,000,000+ Al'Quran Bahasa Indonesia : 10,000,000+ Al Quran Al karim : 1,000,000+ Al Quran : EAlim - Translations & MP3 Offline : 5,000,000+ Koran Read &MP3 30 Juz Offline : 1,000,000+ Hafizi Quran 15 lines per page : 1,000,000+ Quran for Android : 10,000,000+ Satellite AR : 1,000,000+ Oxford A-Z of English Usage : 1,000,000+ Dictionary.com: Find Definitions for English Words : 10,000,000+ English Dictionary - Offline : 10,000,000+ Bible KJV : 5,000,000+ NOOK: Read eBooks & Magazines : 10,000,000+ Brilliant Quotes: Life, Love, Family & Motivation : 1,000,000+ Stats Royale for Clash Royale : 1,000,000+ Dictionary : 10,000,000+ wikiHow: how to do anything : 1,000,000+ EGW Writings : 1,000,000+ My Little Pony AR Guide : 1,000,000+ Spanish English Translator : 10,000,000+ Dictionary - Merriam-Webster : 10,000,000+ JW Library : 10,000,000+ Oxford Dictionary of English : Free : 10,000,000+ English Hindi Dictionary : 10,000,000+ English to Hindi Dictionary : 5,000,000+ ###Markdown Clean data ###Code import pandas as pd import utils import numpy as np import networkx as nx import matplotlib.pyplot as plt from sklearn.linear_model import LinearRegression from tqdm import tqdm # SP500 df_1 = pd.read_csv("sp500-info.csv", index_col="Date", parse_dates=True) print(sum(df_1.isna().sum() != 0), "stock(s) don't have enough value.") df_clean_1 = utils.clean_data(df_1, out_df_dir="sp500_clean.csv") # SP400 df_2 = pd.read_csv("sp400-info.csv", index_col="Date", parse_dates=True) print(sum(df_2.isna().sum() != 0), "stock(s) don't have enough value.") df_clean_2 = utils.clean_data(df_2, out_df_dir="sp400_clean.csv") df_clean = pd.concat([df_clean_1, df_clean_2], axis = 1) df_clean ###Output 2 stock(s) don't have enough value. 8 stock(s) don't have enough value. ###Markdown Calcualte correlation ###Code start = 0 end = 527 df_cor = utils.calculate_cor(df_clean, start, end) df_cor ###Output _____no_output_____ ###Markdown Create quantile and mean, variance of correlation values ###Code sercurity_code = np.array(df_cor.columns.values.tolist()) n = len(sercurity_code) # number of stocks # Correlation vector correlation = [] for i in range(n-1): for j in range(i+1,n): correlation.append(df_cor.iloc[i].iloc[j]) npcorrelation = np.asarray(correlation) plt.hist(npcorrelation) plt.xlabel("Correlation") plt.ylabel("Frequency") plt.title("Correlation distribution") plt.show() ###Output _____no_output_____ ###Markdown Create 2 financial networks Network 1: Most correlated stocks Network 2: Least Correlated stocks ###Code # Network 1 # 98.9% most correlated stocks # Threshold 1 QUANTILE_1 = 0.989 threshold_1 = np.quantile(npcorrelation, QUANTILE_1) threshold_1 network_1 = nx.Graph() for item in sercurity_code: network_1.add_node(item) for u in network_1.nodes: for v in network_1.nodes: if u != v and df_cor[u][v] > threshold_1: network_1.add_edge(u, v) # Write network to file for ploting nx.write_gexf(network_1, "network_1.gexf") # Count node invovle in the connected comm t = 0 de = list(network_1.degree) for item in de: if item[1] > 0: t=t+1 print(f"Nodes involve in the connected component of network 1: {t}") # Network 2 # 1.1% least correlated stock # Threshold 2 QUANTILE_2 = 0.011 threshold_2 = np.quantile(npcorrelation, QUANTILE_2) threshold_2 network_2 = nx.Graph() for item in sercurity_code: network_2.add_node(item) for u in network_2.nodes: for v in network_2.nodes: if u != v and df_cor[u][v] < threshold_2: network_2.add_edge(u, v) # Write network to file for ploting nx.write_gexf(network_2, "network_2.gexf") # Count node invovle in the connected comm t = 0 de = list(network_2.degree) for item in de: if item[1] > 0: t=t+1 print(f"Nodes involve in the connected component of network 2: {t}") # Since both network 1 and 2 have the same number of link and node # their average degree is the same # Number of nodes, edges, average degree of network n_node = network_1.number_of_nodes() n_link = network_1.number_of_edges() avg_degree_12 = 2*n_link/n_node print(f"Networks nodes: {n_node}") print(f"Network links: {n_link}") print(f"Average degree: {avg_degree_12}") print(f"Density of network 1 and 2: {nx.density(network_1)}") # create BA with approximative density to network 1 and 2 m = 5 ba_model= nx.barabasi_albert_graph(n_node, m) # Check the density of BA model print(f"Density of BA model: {nx.density(ba_model)}") nx.write_gexf(ba_model, "ba_model.gexf") er_model = nx.fast_gnp_random_graph(n_node, 0.011) print(f"Density of ER model: {nx.density(er_model)}") nx.write_gexf(er_model, "er_model.gexf") # The fucntion return a list of length of shorted paths def shorted_path_distribution(g): length_dict = dict(nx.shortest_path_length(g)) density_of_length = [] for key1 in length_dict.keys(): dict_of_key = length_dict[key1] for key2 in dict_of_key.keys(): if dict_of_key[key2] != 0: density_of_length.append(dict_of_key[key2]) return density_of_length def plot_shorted_path_dist(network, title, ax): den = shorted_path_distribution(network) ax.hist(den, bins = range(max(den)+1)[1:]) ax.set_title(title) ax.set_xlabel("Length") ax.set_ylabel("Frequency") fig, axs = plt.subplots(2,2) fig.set_size_inches(18.5, 10.5, forward=True) plot_shorted_path_dist(network_1, "Histogram of shorted path length in network 1", axs[0,0]) plot_shorted_path_dist(network_2, "Histogram of shorted path length in network 2", axs[0,1]) plot_shorted_path_dist(er_model, "Histogram of shorted path length in ER model", axs[1,0]) plot_shorted_path_dist(ba_model, "Histogram of shorted path length in BA model",axs[1,1]) # Connected components def largest_component(network): largest_cc = len(max(nx.connected_components(network), key=len)) return largest_cc/n print(f"Size of largest component compare to the network, in network 1: {largest_component(network_1)}") print(f"Size of largest component compare to the network, in network 2: {largest_component(network_2)}") print(f"Size of largest component compare to the network, in ER model: {largest_component(er_model)}") print(f"Size of largest component compare to the network, in BA model: {largest_component(ba_model)}") # Clustering coefficient def clustering_dist_plt(network, title, axs): clu = nx.clustering(network) b=[] for c in clu.values(): b.append(c) axs.hist(b, bins =10) axs.set_title(label = title) axs.set_xlabel("Clustering") axs.set_ylabel("Frequency") fig, axs = plt.subplots(2,2) fig.set_size_inches(18.5, 10.5, forward=True) clustering_dist_plt(network_1, "Clustering distribution of network 1", axs[0,0]) clustering_dist_plt(network_2, "Clustering distribution of network 2", axs[0,1]) clustering_dist_plt(er_model, "Clustering distribution of ER model", axs[1,0]) clustering_dist_plt(ba_model, "Clustering distribution of BA model", axs[1,1]) # Average clustering print(f"Average clustering of network 1: {nx.average_clustering(network_1)}") print(f"Average clustering of network 2: {nx.average_clustering(network_2)}") print(f"Average clustering of ER model: {nx.average_clustering(er_model)}") print(f"Average clustering of BA model: {nx.average_clustering(ba_model)}") r1 = nx.degree_pearson_correlation_coefficient(network_1) r2 = nx.degree_pearson_correlation_coefficient(network_2) r_er = nx.degree_pearson_correlation_coefficient(er_model) r_ba = nx.degree_pearson_correlation_coefficient(ba_model) print(f"Degree correlation of network 1: {r1}") print(f"Degree correlation of network 2: {r2}") print(f"Degree correlation of ER model: {r_er}") print(f"Degree correlation of BA model: {r_ba}") # So, network 1 is disassortative network # while other network 2 is assortative network # BA and ER model are neutral to slightly assortative # Degree distribution def degree_dist_plt(network, title, axs): deg = nx.degree(network) b=[] for c in deg: b.append(c[1]) axs.hist(b, bins =10) axs.set_title(label = title) axs.set_xlabel("Degree") axs.set_ylabel("Frequency") fig, axs = plt.subplots(2,2) fig.set_size_inches(18.5, 10.5, forward=True) degree_dist_plt(network_1, "Degree distribution of network 1", axs[0,0]) degree_dist_plt(network_2, "Degree distribution of network 2", axs[0,1]) degree_dist_plt(er_model, "Degree distribution of ER model", axs[1,0]) degree_dist_plt(ba_model, "Degree distribution of BA model", axs[1,1]) ###Output _____no_output_____ ###Markdown Network robustness ###Code # This part, we will evaluate the network robustness of 4 network f =np.linspace(0, 1, 100)[:-1] # Remove f fraction random node from the graph G import random def remove_nodes_random(G, f): N = G.number_of_nodes() k = int(f*N) nx.set_node_attributes(G, {node: np.random.rand() for node in G.nodes()}, 'p') sorted_nodes_failure = sorted(G.nodes(), key=lambda x: -G.nodes[x]['p']) remain_list_failure = sorted_nodes_failure[k:] H = nx.subgraph(G, remain_list_failure) return H # Remove f fraction highest degree node from graph G def remove_nodes_attack(G, f): N = G.number_of_nodes() k = int(f*N) nx.set_node_attributes(G, dict(G.degree()), 'd') sorted_nodes_attack = sorted(G.nodes(), key=lambda x: -G.nodes[x]['d']) remain_list_attack = sorted_nodes_attack[k:] H = nx.subgraph(G, remain_list_attack) return H # Calculate fraction of node belong to largest giant component def fraction_gc(H, f): components = sorted(nx.connected_components(H), key=len, reverse=True) if len(components) > 1: if len(components[0]) > len(components[1]): P = float(len(components[0]))/H.number_of_nodes() else: P = 0 else: P = 1 return P # Plot the figure for Random Network fig, axs = plt.subplots(2,2) fig.set_size_inches(18.5, 10.5, forward=True) # Simulate the targeted attacks and random failure in 4 networkx def failure_simulation(network, title, axs): # The fraction list for attack Pa_gc = [] # The fraction list for failure Pf_gc = [] for f0 in f: # Make the failure graph and fraction list Hf = remove_nodes_random(network_1, f0) Pf_gc.append(fraction_gc(Hf, f0)) # Make the attack graph and fraction list Ha = remove_nodes_attack(network_1, f0) Pa_gc.append(fraction_gc(Ha, f0)) axs.plot(f, Pa_gc, label = "targeted attacks") axs.plot(f, Pf_gc, label = "random failures") axs.set_xlabel("f") axs.set_ylabel("P") #plt.axvline(fc, color='r', label = "Threshold") axs.legend(loc ="upper right") axs.set_title(title) axs.axis("tight") failure_simulation(network_1,"Network 1 robustness", axs[0,0]) failure_simulation(network_2,"Network 2 robustness", axs[0,1]) failure_simulation(er_model,"ER model robustness", axs[1,0]) failure_simulation(ba_model,"BA model robustness", axs[1,1]) # Compare the assortivity of 4 networks def assortive_plot(g_network, network_name, axs): # Calculate <k> degrees = [degree for _, degree in g_network.degree()] k_max = max(degrees) # Calculate <k_nn(k)> k_nn = nx.average_degree_connectivity(g_network) k, knn = zip(*[(x, y) for x, y in k_nn.items()]) axs.scatter(k, knn, label='acual') # Draw the line for random network approximation k_nn_rand_exp = sum([degree**2 for degree in degrees]) / sum(degrees) axs.axhline(k_nn_rand_exp, c='k', label='random') # Calculate k and knn for random multiple link graph g_random_multiple = nx.configuration_model(degrees) k_nn_multiple = nx.average_degree_connectivity(g_random_multiple) axs.scatter(k_nn_multiple.keys(), k_nn_multiple.values(), label='(R-M)') # Assortativity coefficient of g_network r = nx.degree_assortativity_coefficient(g_network) # Plot axs.loglog() axs.legend() axs.set_xlabel("<k>") axs.set_ylabel("<knn(k)>") axs.set_title(fr'{network_name}, degree assortativity $r={r:.2f}$') fig, axs = plt.subplots(2,2) fig.set_size_inches(18.5, 10.5, forward=True) assortive_plot(network_1, "Network 1", axs[0,0]) assortive_plot(network_2, "Network 2", axs[0,1]) assortive_plot(er_model, "ER model", axs[1,0]) assortive_plot(ba_model, "BA model", axs[1,1]) ###Output _____no_output_____ ###Markdown Spreading simulation ###Code def infect_node(G, n=1): # Determined list of infectious nodes infected_list = random.sample(G.nodes(), k= n) infected_atr_dict = {} infection_time = {} recovered_dict = {} # make a boolen list of infected and non-infected for node in G.nodes(): recovered_dict[node] = False if node in infected_list: infected_atr_dict[node] = True # Set infection time = 0 for initial list infection_time[node] = 0 else: infected_atr_dict[node] = False infection_time[node] = -1 nx.set_node_attributes(G, infected_atr_dict, "Infected") nx.set_node_attributes(G, infection_time, "Infection_time") nx.set_node_attributes(G, recovered_dict, "Recovered") def plot(G,axs, title=None): pos = nx.spring_layout(G) G.graph["pos"] = pos # Make a list to color according to infectious status node_colors = [] isInfected = nx.get_node_attributes(G, "Infected") isRecovered = nx.get_node_attributes(G, "Recovered") for node in G.nodes: if isInfected[node]: node_colors.append("red") elif isRecovered[node]: node_colors.append("blue") else: node_colors.append("green") nx.draw(G, pos=G.graph["pos"] , node_size=30 , node_color=node_colors, ax = axs) axs.set_title(title) def spread(G, p, mu): N = G.number_of_nodes() # Lambda function to count current infectious node wI = lambda G: sum(nx.get_node_attributes(G, 'Infected').values()) # Lambda function to count current recovered node wR = lambda G: sum(nx.get_node_attributes(G, 'Recovered').values()) # Lambda function to count current rnot yet infected and nerver recovered wS = lambda G: N - wI(G) - wR(G) # Reset a graph # if infection time != 0, change to -1 and infected = False, #Recovered all = False node_attr_time = nx.get_node_attributes(G, 'Infection_time') node_attr_infected = nx.get_node_attributes(G, 'Infected') node_attr_recovered = nx.get_node_attributes(G, 'Recovered') for node in G.nodes(): node_attr_recovered[node] = False if node_attr_time[node] != 0: node_attr_time[node] = -1 node_attr_infected[node] = False else: node_attr_infected[node] = True # Set attributes for reseted network nx.set_node_attributes(G, node_attr_infected, "Infected") nx.set_node_attributes(G, node_attr_recovered, "Recovered") nx.set_node_attributes(G, node_attr_time, "Infection_time") G.graph["t"] = 0 # Initizalize St, It, Rt It = [wI(G)] Rt = [wR(G)] St = [wS(G)] t = 0 isComplete = False # Is G already saturated if wI(G) == 0: isComplete = True while isComplete == False: t = t+1 H = G # We make a copy H of G # Every possible changes are made on H # then later update to G # At each step, some node recover: if t != 1: for node in G.nodes(): if G.nodes[node]["Infected"]: s = np.random.rand() isRecovered = (s < mu) # Decide if recover or not if isRecovered: G.nodes[node]["Infected"] = False G.nodes[node]["Recovered"] = True # Spreading for e in G.edges(): u = e[0] v = e[1] # If 2 node of an edge have different status, # they have the possibility for one infected not infect the other if (G.nodes[u]["Infected"] != G.nodes[v]["Infected"]) and (G.nodes[u]["Recovered"] == False) and (G.nodes[v]["Recovered"] == False): isSpread = (np.random.rand() < p) # decice if infect or not if isSpread: H.nodes[u]["Infected"] = True H.nodes[v]["Infected"] = True if G.nodes[u]['Infection_time'] == -1: if H.nodes[u]['Infection_time'] == -1: H.nodes[u]['Infection_time'] = t elif G.nodes[v]['Infection_time'] == -1: if H.nodes[v]['Infection_time'] == -1: H.nodes[v]['Infection_time'] = t G = H St.append(wS(G)) It.append(wI(G)) Rt.append(wR(G)) if wI(G) ==0: isComplete = True G.graph["t"] = t return St, It, Rt, t # Calculate mean for vectors of different length def tolerant_mean(arrs): lens = [len(i) for i in arrs] arr = np.ma.empty((np.max(lens),len(arrs))) arr.mask = True for idx, l in enumerate(arrs): arr[:len(l),idx] = l return arr.mean(axis = -1) # Run the spreding over 10 simulation # Calculate the average of S(t), I(t), R(t) # and average time t to finish the spreading process def plot_simulations(G,axs, p, mu, G_name): St = [] It = [] Rt = [] t = 0 for b in tqdm(range(10)): infect_node(G, 5) [St_b, It_b, Rt_b, t_b] = np.array(spread(G, p=p, mu = mu)) St.append(St_b) It.append(It_b) Rt.append(Rt_b) t = t+t_b average_st = tolerant_mean(St) average_it = tolerant_mean(It) average_rt = tolerant_mean(Rt) average_t = t/10 axs.plot(average_st/n_node, label='S', color = "blue") axs.plot(average_it/n_node, label='I', color = "red") axs.plot(average_rt/n_node, label='R', color = "green") axs.axhline(1, ls=':', lw=1) axs.set_xlabel(r'$t$', fontsize=16) axs.set_ylabel('Percentage of node %', fontsize=16) axs.set_title(f"Spreading effect on {G_name}") axs.legend(loc="upper right") print(f"Average spreading time of {G_name}: {average_t}") fig, axs = plt.subplots(2,2) fig.set_size_inches(18.5, 10.5, forward=True) plot_simulations(network_1, axs[0,0], p =0.01, mu = 0.001, G_name = "Network 1" ) plot_simulations(network_2, axs[0,1], p =0.01, mu = 0.001, G_name = "Network 2" ) plot_simulations(er_model, axs[1,0], p =0.01, mu = 0.001, G_name = "ER model" ) plot_simulations(ba_model, axs[1,1], p =0.01, mu = 0.001, G_name = "BA model" ) def investigate_mu(G,axs1, axs2, p, G_name): It = [] t = [] # Evaluate mu over percentage of p mu = np.arange(p/10, 1.05*p, p/10) for b in tqdm(range(10)): infect_node(G, 5) [St_b, It_b, Rt_b, t_b] = np.array(spread(G, p=p, mu = mu[b])) It.append(max(It_b)) t.append(t_b) # Size of the infection max It axs1.plot(mu, It, label='I', color = "red") axs1.set_xlabel(r'$mu$', fontsize=16) axs1.set_ylabel('It_max', fontsize=16) axs1.set_title(f"Max infectious node in {G_name}") # Time to finish the spreading axs2.plot(mu, t) axs2.set_xlabel(r'$mu$', fontsize=16) axs2.set_ylabel('Time for spreading', fontsize=16) axs2.set_title(f"Max spreading time in {G_name}") fig1, axs1 = plt.subplots(2,2) fig1.set_size_inches(18.5, 10.5, forward=True) fig2, axs2 = plt.subplots(2,2) fig2.set_size_inches(18.5, 10.5, forward=True) investigate_mu(network_1, axs1[0,0], axs2[0,0] , p =0.01, G_name = "Network 1" ) investigate_mu(network_2, axs1[0,1], axs2[0,1], p =0.01, G_name = "Network 2" ) investigate_mu(er_model, axs1[1,0], axs2[1,0], p =0.01, G_name= "ER model" ) investigate_mu(ba_model, axs1[1,1], axs2[1,1], p =0.01, G_name = "BA model" ) ###Output 0%| | 0/10 [00:00<?, ?it/s]/var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/1888901345.py:4: DeprecationWarning: Sampling from a set deprecated since Python 3.9 and will be removed in a subsequent version. infected_list = random.sample(G.nodes(), k= n) /var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/3446460704.py:8: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. [St_b, It_b, Rt_b, t_b] = np.array(spread(G, p=p, mu = mu[b])) 100%|█████████████████████████████████████████████████████████████████████████████| 10/10 [02:47<00:00, 16.79s/it] 0%| | 0/10 [00:00<?, ?it/s]/var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/1888901345.py:4: DeprecationWarning: Sampling from a set deprecated since Python 3.9 and will be removed in a subsequent version. infected_list = random.sample(G.nodes(), k= n) /var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/3446460704.py:8: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. [St_b, It_b, Rt_b, t_b] = np.array(spread(G, p=p, mu = mu[b])) 100%|█████████████████████████████████████████████████████████████████████████████| 10/10 [02:59<00:00, 17.98s/it] 0%| | 0/10 [00:00<?, ?it/s]/var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/1888901345.py:4: DeprecationWarning: Sampling from a set deprecated since Python 3.9 and will be removed in a subsequent version. infected_list = random.sample(G.nodes(), k= n) /var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/3446460704.py:8: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. [St_b, It_b, Rt_b, t_b] = np.array(spread(G, p=p, mu = mu[b])) 100%|█████████████████████████████████████████████████████████████████████████████| 10/10 [03:10<00:00, 19.07s/it] 0%| | 0/10 [00:00<?, ?it/s]/var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/1888901345.py:4: DeprecationWarning: Sampling from a set deprecated since Python 3.9 and will be removed in a subsequent version. infected_list = random.sample(G.nodes(), k= n) /var/folders/kr/bcfd33n546q4hgfqznq2t4t00000gn/T/ipykernel_82835/3446460704.py:8: VisibleDeprecationWarning: Creating an ndarray from ragged nested sequences (which is a list-or-tuple of lists-or-tuples-or ndarrays with different lengths or shapes) is deprecated. If you meant to do this, you must specify 'dtype=object' when creating the ndarray. [St_b, It_b, Rt_b, t_b] = np.array(spread(G, p=p, mu = mu[b])) 100%|█████████████████████████████████████████████████████████████████████████████| 10/10 [02:48<00:00, 16.89s/it] ###Markdown Reading data ###Code import torch from spacy.tokenizer import Tokenizer from torchtext import data from torchtext import datasets SEED = 11 torch.manual_seed(SEED) ## Reproducibility torch.backends.cudnn.deterministic = True TEXT = data.Field(tokenize = 'spacy', include_lengths = True) ## Text field LABEL = data.LabelField(dtype = torch.float) ## Label Field train_data, test_data = datasets.IMDB.splits(TEXT, LABEL) import random test_data, valid_data = test_data.split(random_state = random.seed(SEED)) print(len(train_data), len(valid_data), len(test_data)) ## Let's create 60 000 length vocabulary MAX_VOCAB_SIZE = 60000 TEXT.build_vocab(train_data, max_size = MAX_VOCAB_SIZE, vectors = "glove.6B.100d", ## Global Vectors for Word Representation with 6B tokens and 100d unk_init = torch.Tensor.normal_) ## normal distribution for out-of-vocab words ## uncomment the script bellow and comment the script above to read the saved vocabulary vocab.txt # import pickle # with open('vocab.txt', 'rb') as file: # vocab = pickle.load(file) # TEXT.vocab = vocab LABEL.build_vocab(train_data) print(f"Number of words in TEXT vocab: {len(TEXT.vocab)}") print(f"Number of words in LABEL vocab: {len(LABEL.vocab)}") print(TEXT.vocab.freqs.most_common(10)) BATCH_SIZE = 64 device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') ## Let's use GPU if abailable ## BucketIterator will help us to minimize padding the amount of padding per batch train_iterator, valid_iterator, test_iterator = data.BucketIterator.splits( (train_data, valid_data, test_data), batch_size = BATCH_SIZE, sort_within_batch = True, device = device) ###Output _____no_output_____ ###Markdown Creating the LSTM model ###Code import torch.nn as nn class Model(nn.Module): def __init__(self, vocab_size, embedding_dim, hidden_dim, output_dim, n_layers, bidirectional, dropout, pad_idx): super().__init__() self.embedding = nn.Embedding(vocab_size, embedding_dim, padding_idx = pad_idx) self.lstm = nn.LSTM(embedding_dim, hidden_dim, num_layers = n_layers, bidirectional = bidirectional, dropout = dropout) self.fc = nn.Linear(hidden_dim * 2, output_dim) self.dropout = nn.Dropout(dropout) def forward(self, text, text_lengths): embedding = self.embedding(text) ## shape = (sent_length, batch_size) embedded = self.dropout(embedding) ## shape = (sent_length, batch_size, emb_dim) packed_embedded = nn.utils.rnn.pack_padded_sequence(embedded, text_lengths) ## pack sequence packed_output, (hidden, cell) = self.lstm(packed_embedded) output, output_lengths = nn.utils.rnn.pad_packed_sequence(packed_output) ## unpack sequence ## output shape = (sent_len, batch_size, hid_dim * num_directions) ## output over padding tokens are zero tensors ## hidden shape = (num_layers * num_directions, batch_size, hid_dim) ## cell shape = (num_layers * num_directions, batch_size, hid_dim) ## concat the final forward (hidden[-2,:,:]) and backward (hidden[-1,:,:]) hidden layers ## and apply dropout hidden = self.dropout(torch.cat((hidden[-2,:,:], hidden[-1,:,:]), dim = 1)) ## shape = (batch_size, hid_dim * num_directions) return self.fc(hidden) INPUT_DIM = len(TEXT.vocab) EMBEDDING_DIM = 100 HIDDEN_DIM = 256 OUTPUT_DIM = 1 N_LAYERS = 2 BIDIRECTIONAL = True DROPOUT = 0.4 PAD_IDX = TEXT.vocab.stoi[TEXT.pad_token] model = Model(INPUT_DIM, EMBEDDING_DIM, HIDDEN_DIM, OUTPUT_DIM, N_LAYERS, BIDIRECTIONAL, DROPOUT, PAD_IDX) train_params = sum(p.numel() for p in model.parameters() if p.requires_grad) print(f"There are {train_params} trainable parameters") ###Output There are 8310857 trainable parameters ###Markdown Replace initial embedding with pretrained embedding ###Code pretrained_embeddings = TEXT.vocab.vectors model.embedding.weight.data.copy_(pretrained_embeddings) ###Output _____no_output_____ ###Markdown Replace and with zeros (they were initialized with the normal distribution) ###Code UNK_IDX = TEXT.vocab.stoi[TEXT.unk_token] model.embedding.weight.data[UNK_IDX] = torch.zeros(EMBEDDING_DIM) model.embedding.weight.data[PAD_IDX] = torch.zeros(EMBEDDING_DIM) print(model.embedding.weight.data) def train(model, iterator, optimizer, criterion): epoch_loss = 0 epoch_accuracy = 0 model.train() for batch in iterator: optimizer.zero_grad() text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) accuracy = binary_accuracy(predictions, batch.label) loss.backward() optimizer.step() epoch_loss += loss.item() epoch_accuracy += accuracy.item() return epoch_loss / len(iterator), epoch_accuracy / len(iterator) def binary_accuracy(preds, y): rounded_preds = torch.round(torch.sigmoid(preds)) correct = (rounded_preds == y).float() #convert into float for division accuracy = correct.sum() / len(correct) return accuracy def binary_classification_metrics(prediction, ground_truth): ''' Computes metrics for binary classification Arguments: prediction, np array of bool (num_samples) - model predictions ground_truth, np array of bool (num_samples) - true labels Returns: precision, recall, f1, accuracy - classification metrics ''' prediction = torch.round(torch.sigmoid(prediction)) correct = (prediction == ground_truth).float() #convert into float for division precision = 0 recall = 0 accuracy = 0 f1 = 0 tp = 0 ## true positive tn = 0 ## true negative fp = 0 ## false positive fn = 0 ## false negative for i in range(len(prediction)): if prediction[i] == True and ground_truth[i] == True: tp += 1 if prediction[i] == True and ground_truth[i] == False: fp += 1 if prediction[i] == False and ground_truth[i] == True: fn += 1 if prediction[i] == False and ground_truth[i] == False: tn += 1 accuracy = (tp + tn)/(tp + tn + fp + fn) precision = tp/(tp + fp) recall = tp/(tp + fn) f1 = 2 * (precision * recall)/(precision + recall) return precision, recall, f1, accuracy def evaluate(model, iterator, criterion): epoch_loss = 0 epoch_accuracy = 0 model.eval() with torch.no_grad(): for batch in iterator: text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) accuracy = binary_accuracy(predictions, batch.label) epoch_loss += loss.item() epoch_accuracy += accuracy.item() return epoch_loss / len(iterator), epoch_accuracy / len(iterator) def metrics(model, iterator, criterion): epoch_loss = 0 epoch_f1 = 0 tp = tn = fp = fn = 0 model.eval() with torch.no_grad(): for batch in iterator: text, text_lengths = batch.text predictions = model(text, text_lengths).squeeze(1) loss = criterion(predictions, batch.label) precision, recall, f1, accuracy = binary_classification_metrics(predictions, batch.label) epoch_loss += loss.item() epoch_f1 += f1 return epoch_loss / len(iterator), epoch_f1 / len(iterator) import time def epoch_time(start_time, end_time): elapsed_time = end_time - start_time elapsed_mins = int(elapsed_time / 60) elapsed_secs = int(elapsed_time - (elapsed_mins * 60)) return elapsed_mins, elapsed_secs import torch.optim as optim optimizer = optim.Adam(model.parameters(), lr = 0.0017) criterion = nn.BCEWithLogitsLoss() model = model.to(device) ## use GPU criterion = criterion.to(device) N_EPOCHS = 6 best_valid_loss = float('inf') for epoch in range(N_EPOCHS): start_time = time.time() train_loss, train_accuracy = train(model, train_iterator, optimizer, criterion) valid_loss, valid_accuracy = evaluate(model, valid_iterator, criterion) end_time = time.time() epoch_mins, epoch_secs = epoch_time(start_time, end_time) if valid_loss < best_valid_loss: best_valid_loss = valid_loss torch.save(model, 'model.pt') print(f'Epoch: {epoch+1:02} | Epoch Time: {epoch_mins}m {epoch_secs}s') print(f'\tTrain Loss: {train_loss:.3f} | Train Acc: {train_accuracy*100:.2f}%') print(f'\t Val. Loss: {valid_loss:.3f} | Val. Acc: {valid_accuracy*100:.2f}%') test_loss, test_acc = evaluate(model, test_iterator, criterion) print(f'Test Loss: {test_loss:.3f} | Test Acc: {test_acc*100:.2f}%') ###Output Test Loss: 0.359 | Test Acc: 88.23% ###Markdown Saving model and vocabulary ###Code ## Use if you don't save your model during training # torch.save(model, 'model.pt') def save_vocab(vocab, path): import pickle output = open(path, 'wb') pickle.dump(vocab, output) output.close() save_vocab(TEXT.vocab, 'vocab.txt') ###Output /usr/local/lib/python3.6/dist-packages/torch/storage.py:34: FutureWarning: pickle support for Storage will be removed in 1.5. Use `torch.save` instead warnings.warn("pickle support for Storage will be removed in 1.5. Use `torch.save` instead", FutureWarning) ###Markdown Loading model and using for typical review ###Code import pickle with open('vocab.txt', 'rb') as file: vocab = pickle.load(file) import spacy nlp = spacy.load('en') def predict_sentiment(model, sentence): model.eval() tokenized = [tok.text for tok in nlp.tokenizer(sentence)] indexed = [vocab.stoi[t] for t in tokenized] length = [len(indexed)] tensor = torch.LongTensor(indexed).to(device) tensor = tensor.unsqueeze(1) length_tensor = torch.LongTensor(length) prediction = torch.sigmoid(model(tensor, length_tensor)) return prediction.item() sentence = "Best movie ever" device = torch.device("cuda" if torch.cuda.is_available() else "cpu") loaded_model = torch.load('model.pt', map_location = device) predict_sentiment(loaded_model, sentence) test_loss, test_f1 = metrics(loaded_model, test_iterator, criterion) print(f'Test Loss: {test_loss:.3f} | Test F1: {test_f1*100:.2f}%') ###Output Test Loss: 0.274 | Test F1: 88.17% ###Markdown Additional ###Code from google.colab import files files.download('model.pt') ###Output _____no_output_____ ###Markdown Setup and EDA Generate Data Sets ###Code independent_data = generate_data() correlated_data = generate_data(0.9) ###Output _____no_output_____ ###Markdown Plot Mean and Variance Over Time ###Code fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) ax1.plot(independent_data.days, independent_data.mu, label="mean") ax1.set_xlabel("Date") ax1.set_ylabel("Log Event Count") ax1.set_title("E(Z)") ax2.plot(independent_data.days, independent_data.sigma, label="standard deviation") ax2.set_xlabel("Date") plt.ylabel("Log Event Count") ax2.set_title("sd(Z)") plt.tight_layout() plt.savefig("./figures/mean_var_functions.png") plt.show() # The data set is underdispersed print(np.exp(5)) print(np.sqrt(np.exp(5))) print(np.exp(0.15)) ###Output 148.4131591025766 12.182493960703473 1.161834242728283 ###Markdown Compare Data Sets ###Code fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) ax1.plot(independent_data.days, independent_data.y) ax1.set_ylim((0, 1.1*np.max(independent_data.y))) ax1.set_xlabel("Date") ax1.set_ylabel("Event Count") ax1.set_title("Independent Event Counts") ax2.plot(correlated_data.days, correlated_data.y) ax2.set_ylim((0, 1.1*np.max(correlated_data.y))) ax2.set_xlabel("Date") ax2.set_ylabel("Event Count") ax2.set_title("Correlated Event Counts") plt.tight_layout() fig.savefig("./figures/events_over_time.png") plt.show() ###Output _____no_output_____ ###Markdown Model-fitting Independent Data ###Code gibbs_ind_ind = GibbsSampler() gibbs_ind_cor = GibbsSampler(alpha_rho=1, beta_rho=1) n_iter = 2000 gibbs_ind_ind.fit(independent_data, n_iter=n_iter) pickle.dump(gibbs_ind_ind, open("gibbs_ind_ind.pkl", "wb")) # gibbs_ind_ind = pickle.load(open("gibbs_ind_ind.pkl", "rb")) gibbs_ind_cor.fit(independent_data, n_iter=n_iter) pickle.dump(gibbs_ind_cor, open("gibbs_ind_cor.pkl", "wb")) # gibbs_ind_cor = pickle.load(open("gibbs_ind_cor.pkl", "rb")) ###Output _____no_output_____ ###Markdown Correlated Data ###Code gibbs_cor_ind = GibbsSampler() gibbs_cor_cor = GibbsSampler(alpha_rho=1, beta_rho=1) gibbs_cor_ind.fit(correlated_data, n_iter=n_iter) pickle.dump(gibbs_cor_ind, open("gibbs_cor_ind.pkl", "wb")) # gibbs_cor_ind = pickle.load(open("gibbs_cor_ind.pkl", "rb")) gibbs_cor_cor.fit(correlated_data, n_iter=n_iter) pickle.dump(gibbs_cor_cor, open("gibbs_cor_cor.pkl", "wb")) # gibbs_cor_cor = pickle.load(open("gibbs_cor_cor.pkl", "rb")) ###Output _____no_output_____ ###Markdown Analysis ###Code burnin = int(n_iter/4) n_days = independent_data.days.size # Function for plotting E(Z) and sd(Z) for two models def plot_mean_var(mod1, mod2, filename, proportion=1.): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) first_day_idx = int((1-proportion)*n_days) ax1.plot( independent_data.days[first_day_idx:], independent_data.mu[first_day_idx:], label="Truth" ) ax1.plot( independent_data.days[first_day_idx:], mod1.mu.values[burnin:, first_day_idx:].mean(axis=0), label="Independent Model", # linestyle="dashed", ) ax1.plot( independent_data.days[first_day_idx:], mod2.mu.values[burnin:, first_day_idx:].mean(axis=0), label="Correlated Model", # linestyle="dashdot", ) ax1.set_xlabel("Date") ax1.set_ylabel("Log Event Count") ax1.set_title("E(Z)") ax1.legend() ax2.plot( independent_data.days[first_day_idx:], independent_data.sigma[first_day_idx:], label="Truth" ) ax2.plot( independent_data.days[first_day_idx:], mod1.sigma.values[burnin:, first_day_idx:].mean(axis=0), label="Independent Model", # linestyle="dashed", ) ax2.plot( independent_data.days[first_day_idx:], mod2.sigma.values[burnin:, first_day_idx:].mean(axis=0), label="Correlated Model", # linestyle="dashdot", ) ax2.set_xlabel("Date") plt.ylabel("Log Event Count") ax2.set_title("sd(Z)") ax2.legend() plt.tight_layout() plt.savefig(filename) plt.show() plot_mean_var(gibbs_ind_ind, gibbs_ind_cor, "./figures/ind_data_mean_var.png", proportion=1) plot_mean_var(gibbs_cor_ind, gibbs_cor_cor, "./figures/cor_data_mean_var.png") fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) ax1.plot(independent_data.days, independent_data.y, label="Data") ax1.plot( independent_data.days, np.exp(np.median(gibbs_ind_ind.mu.values[burnin:, :], axis=0)), label="Independent Model Fit", ) ax1.plot( independent_data.days, np.exp(np.median(gibbs_ind_cor.mu.values[burnin:, :], axis=0)), label="Correlated Model Fit", ) ax1.set_ylim((0, 1.1*np.max(independent_data.y))) ax1.set_xlabel("Date") ax1.set_ylabel("Event Count") ax1.set_title("Independent Event Counts") ax1.legend() ax2.plot(correlated_data.days, correlated_data.y, label="Data") ax2.plot( independent_data.days, np.exp(np.median(gibbs_cor_ind.mu.values[burnin:, :], axis=0)), label="Independent Model Fit", ) ax2.plot( independent_data.days, np.exp(np.median(gibbs_cor_cor.mu.values[burnin:, :], axis=0)), label="Correlated Model Fit", ) ax2.set_ylim((0, 1.1*np.max(correlated_data.y))) ax2.set_xlabel("Date") ax2.set_ylabel("Event Count") ax2.set_title("Correlated Event Counts") ax2.legend() plt.tight_layout() fig.savefig("./figures/model_fits.png") plt.show() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) ax1.plot(gibbs_ind_cor.rho.values[burnin:]) ax1.set_xlabel("Index") ax1.set_ylabel("ρ") ax1.set_title("Independent Data") ax2.plot(gibbs_cor_cor.rho.values[burnin:]) ax2.set_xlabel("Index") ax2.set_ylabel("ρ") ax2.set_title("Correlated Data") plt.tight_layout() fig.savefig("./figures/rho_trace_plots.png") plt.show() fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) i = 100 ax1.plot(gibbs_ind_ind.z.values[1:, i]) ax1.set_xlabel("Index") ax1.set_ylabel(f"Z_{i+1}") ax1.set_title("Trace Plot") y_i = independent_data.y[i] mu_i = gibbs_ind_ind.mu.values[burnin:, i].mean() sigma_i = gibbs_ind_ind.sigma.values[burnin:, i].mean() z_i_vals = np.linspace(mu_i - 2*sigma_i, mu_i + 2*sigma_i) z_i_distribution = norm(loc=mu_i, scale=sigma_i) density_scaling_i = z_i_distribution.cdf(np.log(y_i+1)) - z_i_distribution.cdf(np.log(y_i)) ax2.plot(z_i_vals, norm.pdf(z_i_vals, loc=mu_i, scale=sigma_i)/density_scaling_i) ax2.set_xlabel(f"Z_{i+1}") ax2.set_ylabel("Density") ax2.hist(gibbs_ind_ind.z.values[burnin:, i], density=True, bins=4) ax2.set_title("Estimated Density Plot with Sampled Values") plt.tight_layout() fig.savefig("./figures/z_plots.png") plt.show() def trace_coefs(model, filename): fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(15, 3)) p = 1 ax1.plot(model.beta.values[1:, p]) ax1.set_xlabel("Index") ax1.set_ylabel(f"β_{p+1}") ax1.set_title("Trace Plot") ax2.plot(model.alpha.values[1:, p]) ax2.set_xlabel("Index") ax2.set_ylabel(f"α_{p+1}") ax2.set_title("Trace Plot") plt.tight_layout() fig.savefig(filename) plt.show() trace_coefs(gibbs_ind_ind, "./figures/ind_alpha_beta_plots.png") trace_coefs(gibbs_cor_cor, "./figures/cor_alpha_beta_plots.png") ###Output _____no_output_____ ###Markdown Import dependencies ###Code import numpy as np import pandas as pd from datetime import datetime, timedelta ###Output _____no_output_____ ###Markdown Import plotting library ###Code from matplotlib import style style.use('fivethirtyeight') import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Reflect Tables into SQLAlchemy ORM ###Code # Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func, and_, desc, extract # create connection to database engine = create_engine("sqlite:///data/hawaii.sqlite") # reflect an existing database into a new model Model = automap_base() # reflect the tables Model.prepare(engine, reflect=True) # We can view all of the classes that automap found Model.classes.keys() ###Output _____no_output_____ ###Markdown Save references to each table ###Code # create python classes by extending the existing database models # use a nicer representation of the class instances class Measurement(Model): __tablename__ = 'measurement' def __repr__(self): return "<{}(station='{}', date='{}', prcp='{}', tobs='{}')>".\ format(self.__class__.__name__, self.station, self.date, self.prcp, self.tobs) class Station(Model): __tablename__ = 'station' def __repr__(self): return "<{}(station='{}', name='{}', latitude='{}', longitude='{}', elevation='{}')>".\ format(self.__class__.__name__, self.station, self.name, self.latitude, self.longitude, self.elevation) # reflect the tables Model.prepare(engine, reflect=True) # Create our session (link) from Python to the DB session = Session(engine) ###Output _____no_output_____ ###Markdown Exploratory Climate Analysis ###Code # Design a query to retrieve the last 12 months of precipitation data and plot the results # Calculate the date 1 year ago from the last data point in the database last_date_reported = session.query(func.max(Measurement.date)).scalar() last_year = datetime.strptime(last_date_reported, '%Y-%m-%d') - timedelta(365) # Perform a query to retrieve the date and precipitation scores results = session.query(Measurement.date, Measurement.prcp).\ filter(Measurement.date >= last_year).\ all() # Save the query results as a Pandas DataFrame and set the index to the date column df = pd.DataFrame([ ( row.date, row.prcp ) for row in results ], columns=['date', 'percipitation'] ).set_index('date') # Fill in any missing percipitation values with 0 df.fillna(value=0, inplace=True) # Check if there are any duplicate records df.reset_index().duplicated().value_counts() # Sort the dataframe by date df.sort_values(by='date', ascending=True, inplace=True) # Use Pandas Plotting with Matplotlib to plot the data ax = df.plot(title='2016-2017 Percipitation Measurements\n', rot=45) ax.set_xlabel('\nDate') ax.set_ylabel('Inches\n') plt.show() # Use Pandas to calcualte the summary statistics for the precipitation data df[['percipitation']].describe() # Design a query to show how many stations are available in this dataset? # Station table joined to get station name in query q = session.query(Measurement.station, Station.name, func.count(Measurement.station)).\ join(Station, Station.station == Measurement.station).\ group_by(Measurement.station, Station.name).\ order_by(desc(func.count(Measurement.station))) # query database stations = q.all() print(f"There are {len(stations)} stations available in this dataset.") # What are the most active stations? (i.e. what stations have the most rows)? # List the stations and the counts in descending order. counter = 0 print() print(' ID Rows Name of Station') print(' =========== ==== =======================================') for station in stations: counter += 1 print(f"{counter}) {station[0]} {str(station[2]).rjust(4)} {station[1]}") # Using the station id from the previous query, calculate the lowest temperature recorded, # highest temperature recorded, and average temperature of the most active station? station = session.query(Measurement.station, func.min(Measurement.tobs), func.max(Measurement.tobs), func.avg(Measurement.tobs)).\ filter(Measurement.station == q.first()[0]).\ first() lo_temp = station[1] hi_temp = station[2] avg_temp = station[3] print(f'{station[0]} is the most active station with the following readings:') print(f'Lowest Temperature Recorded : { "{0:.2f}".format(lo_temp) }') print(f'Highest Temperature Recorded : { "{0:.2f}".format(hi_temp) }') print(f'Average Temperature : { "{0:.2f}".format(avg_temp) }') # Choose the station with the highest number of temperature observations. # Query the last 12 months of temperature observation data for this station and plot the results as a histogram q = session.query(Measurement.tobs).filter(Measurement.station == stations[0][0]) # Calculate the date 1 year ago from the last data point in the database last_date_reported = session.query(func.max(Measurement.date)).\ filter(Measurement.station == stations[0][0]).\ scalar() last_year = datetime.strptime(last_date_reported, '%Y-%m-%d') - timedelta(365) # Perform a query to retrieve the temperature readings results = q.filter(Measurement.date >= last_year).all() # Plot the data using a dataframe plt.hist([ row[0] for row in results ], bins=12, label='tobs') plt.ylabel('Frequency') plt.xlabel('Temperature') plt.legend(loc='best') plt.show() ###Output _____no_output_____ ###Markdown Bonus Challenge Assignment ###Code # Identify the average temperature in June at all stations across all available years in the dataset. # Do the same for December temperature. jun_avg_temps = [avg for avg, in session.query(func.avg(Measurement.tobs)).\ group_by(extract('year', Measurement.date)).\ filter(extract('month', Measurement.date) == 6)] dec_avg_temps = [avg for avg, in session.query(func.avg(Measurement.tobs)).\ group_by(extract('year', Measurement.date)).\ filter(extract('month', Measurement.date) == 12)] print(f'Number of years in June list {len(jun_avg_temps)}') print(f'Number of years in Decmeber list {len(dec_avg_temps)}') ###Output Number of years in June list 8 Number of years in Decmeber list 7 ###Markdown Statistical Analysis of June and December TemperaturesI prefered the paired t-test because it was for the same stations and locations but at different times of the year. And show that therre is definitely a statistical difference in temperatures between June and December in Hawaii. ###Code from scipy import stats print('Standard Deviation results:') print(f'June Avg Temps STD : {np.std(jun_avg_temps)}') print(f'Dec Avg Temps STD : {np.std(dec_avg_temps)}') print() # Welch's t-test because the sample sizes are not equal statValue, pValue = stats.ttest_ind(jun_avg_temps, dec_avg_temps, equal_var=False) print('Welch\'s t-test results:') print(f'stat = {statValue}') print(f'pValue = {pValue}') print() # Paired T-Test since they are for the same stations and locations at a different time jun_copy = jun_avg_temps[:] # paired tests require the same number of samples, # so dropping the last year (2017) from June average temperatures jun_copy.pop() statValue, pValue = stats.ttest_rel(jun_copy, dec_avg_temps) print('Paired t-test results:') print(f'stat = {statValue}') print(f'pValue = {pValue}') print() # This function called `calc_temps` will accept start date and end date in the format '%Y-%m-%d' # and return the minimum, average, and maximum temperatures for that range of dates def calc_temps(start_date, end_date): """TMIN, TAVG, and TMAX for a list of dates. Args: start_date (string): A date string in the format %Y-%m-%d end_date (string): A date string in the format %Y-%m-%d Returns: TMIN, TAVE, and TMAX """ return session.query(func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)).\ filter(Measurement.date.between(start_date, end_date)).first() # function usage example print(calc_temps('2012-02-28', '2012-03-05')) # Use your previous function `calc_temps` to calculate the tmin, tavg, and tmax # for your trip using the previous year's data for those same dates. trip_start_date = '2018-08-01' trip_start_calc = '2017-08-01' temp_min, temp_avg, temp_max = calc_temps(trip_start_calc, trip_start_date) temp_err = temp_max-temp_min print(f'Min Temperature: {"{:.2f}".format(temp_min)}') print(f'Max Temperature: {"{:.2f}".format(temp_max)}') print(f'Avg Temperature: {"{:.2f}".format(temp_avg)}') # Plot the results from your previous query as a bar chart. # Use "Trip Avg Temp" as your Title # Use the average temperature for the y value # Use the peak-to-peak (tmax-tmin) value as the y error bar (yerr) df = pd.DataFrame([temp_avg], columns=['avg']) df['avg'].plot(kind='bar', yerr=temp_err, color='red', alpha=0.3, edgecolor='black', grid=True, figsize=(2,6), position=0.5, error_kw=dict(ecolor='black',elinewidth=1, capsize=5, capthick=2), width=0.8, title='Trip Avg Temp') plt.ylabel('Temperature (F)') plt.ylim((0,100)) plt.show() # Calculate the total amount of rainfall per weather station for your trip dates using the previous year's matching dates. # Sort this in descending order by precipitation amount and list the station, name, latitude, longitude, and elevation results = session.query(Station.station, Station.name, Station.latitude, Station.longitude, Station.elevation, func.sum(Measurement.prcp).label('percipitation')).\ join(Station, Station.station == Measurement.station).\ filter(Measurement.date.between(trip_start_calc, trip_start_date)).\ group_by(Measurement.station).\ order_by(desc(func.sum(Measurement.prcp))).\ all() counter = 0 print() print(' ID Total Rainfall Name of Station LAT LON ELEV ') print(' =========== ============== ======================================= ====== ======= ======') for station in results: counter += 1 print(f"{counter}) {station[0]} {'{:.2f}'.format(station[5]).ljust(13)} {station[1].rjust(40)} {'{:.2f}'.format(station[2]).ljust(5)} {'{:.2f}'.format(station[3]).ljust(5)} {'{:.2f}'.format(station[4]).ljust(5)}") # Create a query that will calculate the daily normals # (i.e. the averages for tmin, tmax, and tavg for all historic data matching a specific month and day) def daily_normals(date): """Daily Normals. Args: date (str): A date string in the format '%m-%d' Returns: A list of tuples containing the daily normals, tmin, tavg, and tmax """ sel = [func.min(Measurement.tobs), func.avg(Measurement.tobs), func.max(Measurement.tobs)] return session.query(*sel).filter(func.strftime("%m-%d", Measurement.date) == date).all() daily_normals("01-01") # calculate the daily normals for your trip # push each tuple of calculations into a list called `normals` normals = [] # Set the start and end date of the trip start_date = '2017-08-01' end_date = '2018-08-01' # Use the start and end date to create a range of dates day1 = datetime.strptime(start_date, '%Y-%m-%d') day2 = datetime.strptime(end_date, '%Y-%m-%d') delta = day2-day1 trip_dates = days = [ (day1 + timedelta(days=i)).strftime('%Y-%m-%d') for i in range(delta.days) ] # Stip off the year and save a list of %m-%d strings days = [ (day1 + timedelta(days=i)).strftime('%m-%d') for i in range(delta.days) ] # Loop through the list of %m-%d strings and calculate the normals for each date for day in days: normals.append(daily_normals(day)[0]) # Load the previous query results into a Pandas DataFrame and add the `trip_dates` range as the `date` index norm_df = pd.DataFrame(normals, columns=['min','avg','max'], index=trip_dates) norm_df.sort_index(ascending=False, inplace=True) print(norm_df.shape) norm_df.head() # Plot the daily normals as an area plot with `stacked=False` norm_df.plot.area(stacked=False, rot=45) plt.ylabel('Temperature (F)') plt.xlabel('Date') plt.legend(loc='best') plt.show() ###Output _____no_output_____ ###Markdown ResumoAs analises consistem em fazer o estudo entre a qualidade do e o numero de internações pelas enfermidades: outras tuberculoses respiratórias, restante de tuberculose respiratória, outras neoplasias malignas do aparelho respiratório e dos órgãos intratorácicos, outras doenças do trato respiratório superior, outras doenças do aparelho respiratório, outros transtornos cardiovasculares originados no período perinatal.**Levantando a hipótese de que, conforme há uma piora na qualidade do ar de uma determinada região, o número de internações pelas enfermidades listada acima aumentam.** FontesCetesb: https://servicos.cetesb.sp.gov.br/qa/DataSUS: https://datasus.saude.gov.br/informacoes-de-saude-tabnet/ ImportsÁrea reservada para imports e variáveis globais. ###Code import os import pandas as pd import numpy as np from urllib.parse import quote import seaborn as sns import matplotlib.pyplot as plt import matplotlib.patches as mpatches sns.set_theme(style="darkgrid") ###Output _____no_output_____ ###Markdown CetesbCompanhia Ambiental do Estado de São PauloA Cetesb é a agência ambiental paulista responsável pelo desenvolvimento de ações de controle, licenciamento, fiscalização e monitoramento das atividades potencialmente poluidoras. Essas ações estão voltadas para a promoção, proteção e a recuperação da qualidade do ar, das águas e do solo.Os dados foram coletados através de um script externo, para mais detalhes consultar: https://github.com/BrunoASNascimento/estudo-da-correlacao-da-poluicao-atmosfericas-com-os-gastos-no-sus/blob/main/get_data_cetesb.py Configuração de leitura de dados CetesbÁrea destinada para fazer a configuração para leitura dos arquivos da Cetesb, podem ler local, ou de um repositório público no GitHub. ###Code try: print('Try local upload documents') dir_cetesb = 'data\cetesb' cetesb_files = os.listdir(dir_cetesb) print('Get local documents') except: print('Get in github') cetesb_files = [ 'cetesb_1-Parque D.Pedro II.csv', 'cetesb_17-Osasco.csv', 'cetesb_27-Pinheiros.csv', 'cetesb_29-Grajaú-Parelheiros.csv', 'cetesb_33-Itaim Paulista.csv', 'cetesb_36-Marg.Tietê-Pte Remédios.csv', 'cetesb_40-Guarulhos-Pimentas.csv', 'cetesb_41-Campinas-Taquaral.csv', 'cetesb_48-Paulínia-Sta Terezinha.csv', 'cetesb_56-S.José Campos-Jd.Satelite.csv', 'cetesb_58-Taubaté.csv', 'cetesb_62-Guaratinguetá.csv', 'cetesb_64-Limeira.csv', 'cetesb_7-São Caetano do Sul.csv', 'cetesb_74-Jundiaí.csv', 'cetesb_77-Piracicaba.csv', 'cetesb_8-Congonhas.csv', 'cetesb_80-São José do Rio Preto.csv', 'cetesb_83-Santos-Ponta da Praia.csv', 'cetesb_84-Ribeirão Preto.csv' ] ###Output Try local upload documents Get local documents ###Markdown Função para fazer a limpeza dos dados ###Code def clean_data_cetesb(df): df.rename(columns={ 'MP10 µg/m³|Média horária': 'MP10_hourly_mean', 'MP10 µg/m³|Média 24 h': 'MP10_daily_mean', 'MP10 µg/m³|Índice / Qualidade': 'MP10_index', 'MP2.5 µg/m³|Média horária': 'MP25_hourly_mean', 'MP2.5 µg/m³|Média 24 h': 'MP25_daily_mean', 'MP2.5 µg/m³|Índice / Qualidade': 'MP25_index' }, inplace=True) df.loc[df['Hora']=='24:00','Hora'] = '0:00' df['station_time'] = pd.to_datetime(df['Data']+' '+df['Hora']) return df ###Output _____no_output_____ ###Markdown Função para calcular o otif dos dados coletadosComo as estações da Cetesb, são hardwares e podem ter falhas (como de comunicação, falta de energia etc.), é necessário fazer a verificação dos dados, para ver a qualidade deles e porcentagem de perda, para utilizar uma região que contenha um número de dados expressivo para amostra. ###Code def otif_cetesb(station): try: df = pd.read_csv(f"{dir_cetesb}\{station}") except: url = f"https://raw.githubusercontent.com/BrunoASNascimento/estudo-da-correlacao-da-poluicao-atmosfericas-com-os-gastos-no-sus/main/data/cetesb/{quote(station)}" # print(url) df = pd.read_csv(url) df.drop_duplicates(inplace=True) clean_data_cetesb(df) theoretical_data_size = len(pd.date_range(start=df['station_time'].min(), end=df['station_time'].max(), freq='h')) data = { 'station': df['station_name'][0], 'name_file': station, 'otif_MP10': len(df['MP10_index'].dropna())/theoretical_data_size, 'otif_MP25': len(df['MP25_index'].dropna())/theoretical_data_size, } return data ###Output _____no_output_____ ###Markdown DataFrame sobre os otifs MP10 e MP2.5 ###Code df_otif = pd.DataFrame([ otif_cetesb(info_cetesb) for info_cetesb in cetesb_files ]) df_otif ###Output _____no_output_____ ###Markdown Otif_MP10 >= 75%Pontos do MP10 com mais de 75% dos dados.Vale ressaltar que partículas inaláveis (MP10)Podem ser definidas de maneira simplificada como aquelas cujo diâmetro aerodinâmico é menor ou igual a 10 µm. Dependendo da distribuição de tamanho na faixa de 0 a 10 µm, podem ficar retidas na parte superior do sistema respiratório ou penetrar mais profundamente, alcançando os alvéolos pulmonares. ###Code df_otif[df_otif['otif_MP10']>=0.75].reset_index(drop=True) ###Output _____no_output_____ ###Markdown Otif_MP2.5 >= 75%Pontos do MP10 com mais de 75% dos dados.Vale ressaltar que partículas inaláveis finas (MP2,5)Podem ser definidas de maneira simplificada como aquelas cujo diâmetro aerodinâmico é menor ou igual a 2,5 µm. or causa do seu tamanho diminuto, penetram profundamente no sistema respiratório, podendo atingir os alvéolos pulmonares. ###Code df_otif[df_otif['otif_MP25']>=0.75].reset_index(drop=True) ###Output _____no_output_____ ###Markdown Indice de qualidade do ar![alt text](https://i.ibb.co/ypm47Gj/estrutura-do-indice-de-qualidade-do-ar.png)Baseado no índice, e como forma de normalizar os dados consideramos os valore **menores ou iguais a 40 como bons** e **acima de 40 como valores ruins**.Nesse ponto há a normalização dos dados horarios para mensais, visto que para o data SUS tem essa granularidade (mês e ano). A normalização foi feita baseada no número de pontos com qualidade do ar boa e ruim, sobre o número total de dados no período, com isso temos um índice mensal da qualidade do ar considerando todos os dados e não a média do período. ###Code def air_quality_index(df, mp_type): df['year'] = df['station_time'].dt.year df['month'] = df['station_time'].dt.month df.drop(columns=[ 'Hora', 'Data', 'MP10_hourly_mean', 'MP10_daily_mean', 'MP25_hourly_mean', 'MP25_daily_mean', 'station_time' ], inplace=True) filter_value = ['year', 'month', 'station_name'] result = pd.merge( df[filter_value].drop_duplicates(), df[df[mp_type] <= 40].groupby( filter_value, as_index=False )[mp_type].count().rename(columns={ mp_type: 'air_quality_good' } ), how='left', on=filter_value ).merge( df[df[mp_type] > 40].groupby( filter_value, as_index=False )[mp_type].count().rename(columns={ mp_type: 'air_quality_bad' } ), how='left', on=filter_value).merge( df.groupby(filter_value)[mp_type].count( ).reset_index(name='control'), how='left', on=filter_value ).fillna(0) # Normalization result = result[result['control'] > 0] result['air_quality_good_normalizated'] = ( result['air_quality_good'] / result['control']) result['air_quality_bad_normalizated'] = ( result['air_quality_bad'] / result['control']) result['MP_TYPE'] = mp_type return result ###Output _____no_output_____ ###Markdown Filtrando MunicípioBaseado nas análises de otif e localização da estação no município, foi selecionado o município de Piracicaba para analise aprofundada os dados de qualidade do ar e internações. ###Code filter_country = df_otif[df_otif['station']=='Piracicaba'] station, name_file = filter_country['station'].values[0], filter_country['name_file'].values[0] station, name_file ###Output _____no_output_____ ###Markdown Pegando os dados e organizandoFoi selecionado o MP25 por se tratar de uma partícula mais fina e que pode trazer problemas no sistema respiratório. ###Code df = clean_data_cetesb(pd.read_csv(f"{dir_cetesb}\{name_file}")) result = air_quality_index(df, 'MP25_index') result['year_month'] = (result['year'].astype(str)+'/' +result['month'].astype(str).str.zfill(2)) result.sort_values(by='year_month',inplace=True,ascending=True) result=result.reset_index(drop=True) result.head(20) fig, ax = plt.subplots() fig.set_size_inches(20, 8) ax.set(ylim=(0, 1)) # leg_good = mpatches.Patch(color='green', label='air_quality_good_normalizated') leg_bad = mpatches.Patch(color='red', label='Qualidade do ar abaixo de 40') # img = sns.lineplot( # data=result, # x='year_month', # y='air_quality_good_normalizated', # color='green', # ax=ax # ) sns.lineplot( data=result, x='year_month', y='air_quality_bad_normalizated', color='red', ax=ax ) plt.legend(handles=[leg_bad]) #leg_good plt.xticks([result['year_month'][i] for i in range(0,result['year_month'].shape[0],5)],rotation=45) plt.title(f'Gráfico da qualidade do ar abaixo de 40 no município de {station}',fontdict={'fontsize': 18}) plt.xlabel('Datas agrupadas por ano e mês') plt.ylabel('Qualidade do ar normalizada') sns.despine() ###Output _____no_output_____ ###Markdown Top 5 máximas de qualidade do ar ruim ###Code result.sort_values(by='air_quality_bad_normalizated',ascending=False).head(5) ###Output _____no_output_____ ###Markdown Data SUS Função para coleta dos dados previamente baixados do Data SUS ###Code def read_data_sus(path): df = pd.read_csv( path, sep=';', skiprows=4, skipfooter=12, encoding='ISO-8859-1', thousands=".", decimal="," ) df.drop_duplicates(inplace=True) df.replace('-',np.nan,inplace=True) df[df.columns[1:]]=df[df.columns[1:]].astype("float") return df ###Output _____no_output_____ ###Markdown Leitura do dado do Data SUSÁrea destinada para fazer a configuração para leitura dos arquivos do data SUS sobre o numero de internações pelas enfermidades: outras tuberculoses respiratórias, restante de tuberculose respiratória, outras neoplasias malignas do aparelho respiratório e dos órgãos intratorácicos, outras doenças do trato respiratório superior, outras doenças do aparelho respiratório, outros transtornos cardiovasculares originados no período perinatal. ###Code try: df_hospitalizations = read_data_sus('data/sus/internacoes.csv') except: df_hospitalizations = read_data_sus('https://raw.githubusercontent.com/BrunoASNascimento/estudo-da-correlacao-da-poluicao-atmosfericas-com-os-gastos-no-sus/main/data/sus/internacoes.csv') df_hospitalizations.head() ###Output <ipython-input-453-cf3a02ed6a70>:2: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support skipfooter; you can avoid this warning by specifying engine='python'. df = pd.read_csv( ###Markdown Transformação do mês escrito para o numéricoEssa transformação é necessária para podermos fazer a comparação e junção com os dados da Cetesb. ###Code to_month_num = { 'Jan':'01', 'Fev':'02', 'Mar':'03', 'Abr':'04', 'Mai':'05', 'Jun':'06', 'Jul':'07', 'Ago':'08', 'Set':'09', 'Out':'10', 'Nov':'11', 'Dez':'12' } rename_date={} for old_date in df_hospitalizations.columns[1:len(df_hospitalizations.columns)-1]: rename_date.update({old_date : old_date[:5]+to_month_num[old_date[5:]]}) ###Output _____no_output_____ ###Markdown Limpeza dos dados data SUSÉ feita a quebra dos municípios com o código do IBGE e seu nome em duas colunas, também é feita a retirada da coluna de totais. ###Code df_hospitalizations.drop(columns=['Total'],inplace=True, errors='ignore') df_hospitalizations.rename(columns=rename_date,inplace=True) df_hospitalizations[['code_ibge','Município']]=df_hospitalizations['Município'].str.split(" ", 1, expand=True) df_hospitalizations.head() df_hospitalizations.tail() ###Output _____no_output_____ ###Markdown Transformação dos dados e normalizaçãoPara efetuar a normalização dos dados foi utilizado o método min-max:![Método min-max](https://miro.medium.com/max/202/1*9N7QdpE_CfvkTyirk7_oWw.png) ###Code county = station df_hospitalizations_analysis = pd.DataFrame() df_hospitalizations_analysis = df_hospitalizations[df_hospitalizations.columns[:-1]][df_hospitalizations['Município']==county].T #Transpose df_hospitalizations_analysis.rename(columns=df_hospitalizations_analysis.iloc[0],inplace=True) df_hospitalizations_analysis.drop(df_hospitalizations_analysis.index[0], inplace = True) df_hospitalizations_analysis= df_hospitalizations_analysis.reset_index().rename(columns={'index':'year_month'}) df_hospitalizations_analysis[county]=df_hospitalizations_analysis[county].astype("float") df_hospitalizations_analysis[f'{county}_norm'] = ((df_hospitalizations_analysis[county]-df_hospitalizations_analysis[county].min())/(df_hospitalizations_analysis[county].max()-df_hospitalizations_analysis[county].min())) #Normalization df_hospitalizations_analysis.head(10) ###Output _____no_output_____ ###Markdown Gráfico da qualidade do ar abaixo de 40 e o número de internações normalizadoTemos o gráfico das duas grandezas que queremos analisar, é possível ver algumas similaridades entre alguns cortes de datas como em abril de 2014 e março de 2016, entretanto o pico de qualidade do ar ruim é em setembro de 2017 e o pico de internações é em agosto de 2015. Mostrando que se há uma correlação ela pode ser baixa ou as enfermidades listadas não são tão afetadas pela MP10. ###Code df_hospitalizations_analysis_plot = df_hospitalizations_analysis[(df_hospitalizations_analysis['year_month']>='2013')&(df_hospitalizations_analysis['year_month'].isin(result['year_month'].values[:-5]))].reset_index(drop=True) fig, ax = plt.subplots() fig.set_size_inches(20, 8) ax.set(ylim=(0, 1)) leg_good = mpatches.Patch(color='green', label='Qualidade do ar abaixo de 40') leg_bad = mpatches.Patch(color='red', label='Internações normalizada') img = sns.lineplot( data=result[(result['year_month']>='2013')&(result['year_month'].isin(result['year_month'].values[:-5]))], x='year_month', y='air_quality_bad_normalizated', color='green', ax=ax ) sns.lineplot( data=df_hospitalizations_analysis_plot, x='year_month', y=f'{county}_norm', color='red', ax=ax ) plt.legend(handles=[leg_good,leg_bad]) plt.xticks([df_hospitalizations_analysis_plot['year_month'][i] for i in range(0,df_hospitalizations_analysis_plot['year_month'].shape[0],5)],rotation=45) plt.title(f'Gráfico da qualidade do ar abaixo de 40 e o número de internações normalizado no município de {station}',fontdict={'fontsize': 18}) plt.xlabel('Datas agrupadas por ano e mês') plt.ylabel('Qualidade do ar normalizada e numero de internações normalizado') sns.despine() ###Output _____no_output_____ ###Markdown Junção dos dados da Cetesb e do Data SUSEssa junção é feita para fazer o estudo de casos médios com a qualidade do ar abaixo de 40. ###Code df_air_with_hospitalizations =result.merge(df_hospitalizations_analysis[(df_hospitalizations_analysis['year_month']>='2013')&(df_hospitalizations_analysis['year_month'].isin(result['year_month'].values[:-5]))],on='year_month').sort_values(by='year_month',ascending=True) df_air_with_hospitalizations.head(10) ###Output _____no_output_____ ###Markdown Média aritmética das internações normalizadasEsse valor serve para verificar qual foi a média do período de janeiro de 2013 até junho de 2020. ###Code index_hospitalizations_mean = df_air_with_hospitalizations[f'{county}_norm'].mean() index_hospitalizations_mean ###Output _____no_output_____ ###Markdown Cálculo de verificação de internações acima da média baseando-se na qualidade do arEsse cálculo é para verificar se há um aumento nas internações acima da média do período baseado na qualidade do ar. Baseado nesse cálculo é possível comparar e verificar que há um aumento no número de internações nos meses que a qualidade do ar é pior, cerca de 13% maior. ###Code df_air_with_hospitalizations_air_bad = df_air_with_hospitalizations[df_air_with_hospitalizations['air_quality_bad_normalizated']>0].reset_index(drop=True) df_air_with_hospitalizations_air_good = df_air_with_hospitalizations[df_air_with_hospitalizations['air_quality_bad_normalizated']==0].reset_index(drop=True) index_air_bad = df_air_with_hospitalizations_air_bad[df_air_with_hospitalizations_air_bad[f'{county}_norm']>=index_hospitalizations_mean]['air_quality_bad_normalizated'].count()/df_air_with_hospitalizations_air_bad['air_quality_bad_normalizated'].count() index_air_good = df_air_with_hospitalizations_air_good[df_air_with_hospitalizations_air_good[f'{county}_norm']>=index_hospitalizations_mean]['air_quality_bad_normalizated'].count()/df_air_with_hospitalizations_air_good['air_quality_bad_normalizated'].count() print(f'index_air_bad : {index_air_bad}') print(f'index_air_good : {index_air_good}') print(f'diff : {index_air_bad-index_air_good}') ###Output index_air_bad : 0.5135135135135135 index_air_good : 0.38461538461538464 diff : 0.12889812889812885 ###Markdown Estimating text loss in The Old Norse fornaldarsögur This Python notebook is a derivative of the one which accompanies the following publication:> Mike Kestemont and Folgert Karsdorp, "Het Atlantis van de Middelnederlandse ridderepiek. Een schatting van het tekstverlies met methodes uit de ecodiversiteit". *Spiegel der letteren* (2020).Adaptation to the current study is still a work in progress. All figures and numbers were prepared using the code below. Future updates of the code and data will be managed in an open [Github repository](https://github.com/mikekestemont/chivalric_diversity). The code block below loads all (third-party) packages and modules necessary to run the module. These can be installed from the file `requirements.txt`: pip install -r requirements.txt ###Code from functools import partial from itertools import product import numpy as np np.random.seed(12345) from scipy.special import erfinv import pandas as pd import matplotlib.pyplot as plt plt.style.use("tufte.mplstyle") plt.rcParams["text.usetex"] = False %matplotlib inline import scipy.stats as stats from scipy.special import gammaln ###Output _____no_output_____ ###Markdown Data We load the data from the spreadsheet file `mnl.xlsx`: ###Code mnl = pd.read_excel('mnl.xlsx', header=None, names=('text', 'witness')) mnl.head(10) ###Output _____no_output_____ ###Markdown We are only interested in the count data, i.e. the number of witnesses per text (the technical term is "abundance data"). ###Code mnl.groupby('text').size().sort_values(ascending=False).head() ###Output _____no_output_____ ###Markdown The counts per text can be plotted as follows: ###Code fig, ax = plt.subplots(figsize=(10,18)) mnl.groupby('text').size().sort_values(ascending=True).plot.barh(ax=ax); ax.set(xlabel='number of manuscripts', ylabel='', title='Distribution of texts of ON legendary sagas (known to me)') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.savefig('output/Fig1.jpeg', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown Yet a different perspective is to list the size of the frequency bins that we can distinguish within the manuscript counts: ###Code types = mnl.groupby('text').size().sort_values(ascending=False).value_counts().sort_index() types = types.to_frame(name='number of texts') types['number of manuscripts'] = types.index types.to_excel('output/Tab1.xlsx') types ###Output _____no_output_____ ###Markdown Finally, we define the auxiliary function `species_richness` to count the number of unique texts in the data (i.e. the number of non-zero counts): ###Code def species_richness(counts): return np.sum(counts > 0) print('# unique texts:', species_richness(mnl.groupby('text').size())) print('# witnesses:', len(mnl)) ###Output # unique texts: 32 # witnesses: 87 ###Markdown Jackknife The following function computes the first-order Jackknife estimate, on the basis of the abundance data in our data frame, as well as a confidence interval (.95 be default). This approach is detailed in the following paper:> K. Burnham & W. Overton, "Robust Estimation of Population Size When Capture Probabilities Vary Among Animals". *Ecology* (1979), 927-936. ###Code def jackknife(data, conf_lvl=0.95): jack_stat = species_richness(data) x = np.array(sum([[i] * c for i, c in enumerate(data, 1)], [])) index = np.arange(x.shape[0]) vals = [] for i in range(x.shape[0]): t = x[index != i] vals.append(species_richness(np.bincount(t))) mean_jack_stat = np.mean(vals) bias = (x.shape[0] - 1) * (mean_jack_stat - jack_stat) estimate = jack_stat - bias std_err = np.sqrt( (x.shape[0] - 1) * np.mean((mean_jack_stat - vals) * (mean_jack_stat - vals), axis=0) ) z_score = np.sqrt(2.0) * erfinv(conf_lvl) conf_interval = estimate + z_score * np.array((-std_err, std_err)) return estimate, std_err, conf_interval results = jackknife(mnl.groupby('text').size()) print('jackknife-estimate (order=1):', results[0], results[-1]) ###Output jackknife-estimate (order=1): 42.873563218390935 [36.83294758 48.91417886] ###Markdown This implementation is verbose and uses an explicit `for`-loop, which iteratively leaves out observations and tracks the drops in diversity that follow from this operation. In the code blocks below we show that the same estimate can also be obtained in a fully analytical fashion. First we calculate the frequency counts for each unique text: ###Code num_per_text = mnl.groupby('text').size() num_per_text ###Output _____no_output_____ ###Markdown Next, we store the species richness (the number of unique texts) in $t$: ###Code t = species_richness(num_per_text) t ###Output _____no_output_____ ###Markdown Then we set $s$ to the number of texts that are only attested in a single witness: ###Code s = sum(num_per_text == 1) s ###Output _____no_output_____ ###Markdown Only the $s$ texts that occur once will affect the species richness during the iterative Jackknife procedure. We can therefore predict that we will obtain the following deviations when applying the bootstrap: ###Code mu = (((t - s) * t) + (s * (t - 1))) / t mu ###Output _____no_output_____ ###Markdown That means that we can calculate the bias as follows: ###Code bias = (t - 1) * (mu - t) bias ###Output _____no_output_____ ###Markdown To account for this bias, we can subtract it from the original species richness in the observed data: ###Code t - bias ###Output _____no_output_____ ###Markdown Simple example ###Code counts = [5, 4, 3, 3, 1, 1, 1, 1, 1] names = 'ABCDEFGHI' data = zip(counts, names) df = pd.DataFrame(zip(names, counts), columns=('name', 'mss')) df.to_excel('output/Tab2.xlsx') df print('total # of witnesses:', df['mss'].sum()) species_richness(df['mss']) jackknife(df['mss']) data = np.array(df['mss']) x = np.array(sum([[i]*c for i, c in enumerate(data, 1)], [])) tradition = [names[i - 1] for i in x] print(tradition) bootstrap = [] for i in range(len(tradition)): tradition_ = [tradition[j] for j in range(len(tradition)) if i != j] bootstrap.append(( (i + 1), tradition[i], ''.join(tradition_), len(set(tradition_)), len(set(tradition_)) - len(set(tradition)))) df = pd.DataFrame(bootstrap, columns=('iteration', 'leftout', 'imputed tradition', 'richness', 'error')) df.to_excel('output/Tab3.xlsx') df mean_estimate = np.mean(df['richness']) print('Average estimate:', mean_estimate) print('Bias:', mean_estimate - 9) bias = 19 * (mean_estimate - 9) bias corrected = 9 - bias corrected conf_lvl = .95 std_err = np.sqrt( 19 * np.mean((mean_estimate - df['richness']) * (mean_estimate - df['richness']), axis=0)) z_score = np.sqrt(2.0) * erfinv(conf_lvl) conf_interval = corrected + z_score * np.array((-std_err, std_err)) conf_interval ###Output _____no_output_____ ###Markdown Chao1 In the paper we eventually opt for the more recent, non-parametric formula "Chao1", which is described in this paper:> A. Chao & L. Jost, ‘Estimating diversity and entropy profiles via discovery rates of new species". *Methods in Ecology and Evolution* (2015), 873-882.Because we have "doubletons" in our data, we use can the following formula, where:- $\hat{f_0}$ is the (theoretical) number of non-observed species/texts;- $f_1$ is the number of species/texts attested exactly once ("singletons");- $f_2$ is the number of species/texts attested exactly twice ("doubletons");- $n$ is the total number of individuals/manuscripts in the observed data.\begin{equation}\hat{f_0} = \frac{(n - 1)}{n} \frac{f_1^2}{2f_2}\end{equation}The code block below returns the full, theoretical species richness as etimated by Chao1, i.e. it adds the estimated $\hat{f_0}$ to the species richness that was observed in the sample: ###Code def chao_richness(x): x, n = x[x > 0], x.sum() t = x.shape[0] f1, f2 = (x == 1).sum(), (x == 2).sum() return t + (n - 1) / n * ((f1 ** 2 / 2 / f2) if f2 > 0 else (f1 * (f1 - 1) / 2)) ###Output _____no_output_____ ###Markdown If we apply this function to our data, we obtain an even higher (but arguably more realistic) estimate of the loss in textual diversity for this literature. Note, however, that this estimate is still a theoretical *minimum estimate*, since the original loss could still be higher. ###Code chao_richness(num_per_text) ###Output _____no_output_____ ###Markdown Instead of reporting just this number, we apply a bootstrapped procedure in which we sample from the material using a multinomial distribution (see the Appendix Chao and Jost, 2015) and apply Chao1 to the resulting samples. This procedure allows us to calculate a .95 confidence interval for this value. ###Code def bt_prob(x): x, n = x[x > 0], x.sum() f1, f2 = (x == 1).sum(), (x == 2).sum() C = 1 - f1 / n * (((n - 1) * f1 / ((n - 1) * f1 + 2 * f2)) if f2 > 0 else ((n - 1) * (f1 - 1) / ((n - 1) * (f1 - 1) + 2)) if f1 > 0 else 0) W = (1 - C) / np.sum(x / n * (1 - x / n) ** n) p = x / n * (1 - W * (1 - x / n) ** n) f0 = np.ceil(((n - 1) / n * f1 ** 2 / (2 * f2)) if f2 > 0 else ((n - 1) / n * f1 * (f1 - 1) / 2)) p0 = (1 - C) / f0 p = np.hstack((p, np.array([p0 for i in np.arange(f0)]))) return p def bootstrap(x, n_iter=1000, conf=.95): # define a multinomial probability distribution # for the bootstrap procedure to sample from: p, n = bt_prob(x), x.sum() data_bt = np.random.multinomial(n, p, n_iter) pro = np.array([chao_richness(row) for row in data_bt]) pro_mean = pro.mean(0) lci_pro = -np.quantile(pro, (1 - conf) / 2, axis=0) + pro_mean uci_pro = np.quantile(pro, 1 - (1 - conf) / 2, axis=0) - pro_mean sd_pro = np.std(pro, axis=0) pro = pro_mean - pro return (lci_pro, uci_pro, sd_pro, pro) def chao_estimate(x, n_iter=1000, conf=0.95): pro = chao_richness(x) (lci_pro, uci_pro, sd_pro, bt_pro) = bootstrap(x, n_iter=n_iter, conf=conf) lci_pro, uci_pro = pro - lci_pro, pro + uci_pro bt_pro = pro - bt_pro return (lci_pro, uci_pro, bt_pro, pro) ###Output _____no_output_____ ###Markdown The following block applies this bootstrapped procedure to obtain the final estimates: ###Code lci_pro, uci_pro, bt_pro, pro = chao_estimate(num_per_text, n_iter=10000) print('pro:', pro) print('lci_pro:', lci_pro) print('uci_pro:', uci_pro) ###Output pro: 39.47557471264368 lci_pro: 28.554685801360193 uci_pro: 63.66962833009582 ###Markdown The array `bt_pro` contains the estimates that were collected during the bootstrap (1,000 iterations by default). Below, we plot the distribution of these numbers using a rainplot: [removing rain_alpha =.3 argument on pt.RainCloud() because it is showing as invalid] ###Code import ptitprince as pt fig, ax = plt.subplots(figsize=(8, 6)) d = list([(x, 'bootstrap') for x in bt_pro]) bt = pd.DataFrame(d, columns=('bootstrap', 'type')) pt.RainCloud( data=bt, x="type", y="bootstrap", ax=ax, orient="h", alpha=.8, bw=.2, rain_alpha=.3, palette="Greys" ) ax.axvline(pro, c='black', ls='--') ax.axvline(uci_pro, c='darkgrey', ls='--') ax.axvline(lci_pro, c='darkgrey', ls='--') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.set_yticks([]) ax.set_ylabel('') plt.savefig('output/Fig2.png', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown [These findings refer to the original study of Dutch romances and have not yet been analyzed for the FAS] The idea that there were at least 100 texts is not completely unlikely, but it is a veryconservative estimate, at the very bottom of the probability continuum. The estimate of ~148 manuscripts (or more) is much more plausible, which would mean that *at least half ofthe chivalric texts have been lost*. Just as 100 is an extremely optimisticestimate, ~219 is the most pessimistic estimate: in thatcase, only a third of the ever available chivalric epics would have been persisted throughtime, which is quite a dramatic, but not entirely unrealistic figure. Species accumulation curve In what preceded, we have investigated how many unique texts may have been lost, or, more positively, how many unique texts we may have not yet seen. In this concluding section, we investigate how many texts should be retrieved before we arrive at this diversity estimate. This new estimate provides us with information about the total population size, i.e. the total number of text witnesses. We follow Hsieh, Ma and Chao (2016) to compute this estimate using "Rarefaction Extrapolation". For details about this method, see:> Hsieh, Ma and Chao (2016): iNEXT: an R package for rarefaction and extrapolation ofspecies diversity. *Methods in Ecology and Evolution*, 7, 1451–1456. ###Code def bootstrap_re(x, fn=chao_richness, n_iter=1000, conf=.95): # define a multinomial probability distribution # for the bootstrap procedure to sample from: p, n = bt_prob(x), x.sum() data_bt = np.random.multinomial(n, p, n_iter) Dq = fn(x) pro = np.array([fn(row) for row in data_bt]) error = stats.norm.ppf(1 - (1 - conf) / 2) * np.std(pro, 0) lci_pro = Dq - error uci_pro = Dq + error sd_pro = np.std(pro, axis=0) return (lci_pro, uci_pro, sd_pro, Dq, ) def rarefaction_extrapolation(x, max_steps): x, n = x[x > 0], x.sum() def _sub(m): if m <= n: return np.sum(1 - np.array( [np.exp(gammaln(n - i + 1) + gammaln(n - m + 1) - gammaln(n - i - m + 1) - gammaln(n + 1)) if i <= (n - m) else 0 for i in x])) else: S = (x > 0).sum() f1, f2 = (x == 1).sum(), (x == 2).sum() f0 = ((n - 1) / n * f1 * (f1 - 1) / 2) if f2 == 0 else ((n - 1) / n * f1**2 / 2 / f2) A = n * f0 / (n * f0 + f1) return S if f1 == 0 else (S + f0 * (1 - A**(m - n))) return np.array([_sub(mi) for mi in range(1, max_steps)]) counts = np.bincount(mnl.groupby('text').size())[1:] # ignore zero x = np.array(sum([[i] * c for i, c in enumerate(counts, 1)], [])) ###Output _____no_output_____ ###Markdown Here too we use a bootstrap method with 100 samples: ###Code max_steps = 1000 lci_pro, uci_pro, sd_pro, Dq = bootstrap_re( x, fn=partial(rarefaction_extrapolation, max_steps=max_steps), n_iter=100 ) steps = np.arange(1, max_steps) interpolated = np.arange(1, max_steps) < x.sum() fig, ax = plt.subplots(figsize=(8, 6)) ax.plot(steps[interpolated], Dq[interpolated], color='C0') ax.plot(x.sum(), Dq[x.sum() - 1], 'o') ax.plot(steps[~interpolated], Dq[~interpolated], '--', color='C0') ax.fill_between(steps, lci_pro, uci_pro, alpha=0.3) ax.grid() ax.set(xlabel='# of manuscripts', ylabel='# texts', title='Species Accumulation Curve') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.savefig('output/Fig3.png', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown Statistics:- Annual PM2.5 Average in India- Annual PM2.5 Average in New Delhi- Heat Map of PM2.5 Average in New Delhi for 2016- Heat Map of PM2.5 Averages in India for 2016- Most polluted and least polluted cities in India- Most polluted and least polluted neighborhoods in New Delhi ###Code f = open('id-mappings/city-ids.txt', 'r') cities = f.readlines() cities = map(lambda elem: elem.split(","), cities)[1:] cities = map(lambda elem: [elem[0], elem[1], elem[2], elem[3][:-1]], cities) cities = filter(lambda elem: elem[2].isdigit(), cities) india_data = {} for elem in cities: _, stateName, _, cityName = elem f = open('data/{}_{}.txt'.format(stateName, cityName), 'r') city_data = f.readlines() city_data = filter(lambda elem: elem != "\n", city_data) city_data = map(lambda elem: elem.split(","), city_data) city_data = filter(lambda elem: elem[0] == "2016", city_data) city_data = map(lambda elem: float(elem[1].rstrip("\n")), city_data) if len(city_data) > 0: print city_data india_data[(stateName, cityName)] = np.mean(city_data) india_data = [[k, v] for (k, v) in india_data.iteritems()] india_data = sorted(india_data, key=lambda x: x[1]) gmaps.configure(api_key=os.environ["GOOGLE_API_KEY"]) def decode_address_to_coordinates(address): params = { 'address' : address, 'sensor' : 'false', } url = 'http://maps.google.com/maps/api/geocode/json' r = requests.get(url, params = params) return r.json()['results'][0]['geometry']['location'] locations = [] for (state, city), val in india_data: locations.append([(state, city), decode_address_to_coordinates("{}, {}".format(city, state)).values()]) india_coordinates = decode_address_to_coordinates("India").values() fig = gmaps.figure(center=india_coordinates, zoom_level=4) weights = map(lambda x: x[1], india_data) coordinates = map(lambda x: x[1], locations) heatmap_layer = gmaps.heatmap_layer(coordinates, weights=weights) heatmap_layer.max_intensity = 200 heatmap_layer.point_radius = 2.0 heatmap_layer.dissipating = False fig.add_layer(heatmap_layer) info_box_template = """ <div> <p><b>City:</b> {0}, {1}</p> <p><b>PM2.5:</b> {2:.2f}</p> </div> """ city_info = [info_box_template.format(city_data[0][1], city_data[0][0], city_data[1]) for city_data in india_data] marker_layer = gmaps.marker_layer(coordinates, info_box_content=city_info) fig.add_layer(marker_layer) fig embed_minimal_html('national-aq.html', views=[fig]) for d in india_data[:5]: print "{0}: {1:.2f} ug/m3".format(d[0][1], d[1]) for d in india_data[-5:]: print "{0}: {1:.2f} ug/m3".format(d[0][1], d[1]) coordinates = np.array(coordinates) x = coordinates[:, 0] y = coordinates[:, 1] # Interpolating and plotting again rbfi = Rbf(x, y, weights, function = "inverse") # sleep(0.05) data = open('indian-cities.csv', 'r').readlines() data = map(lambda x: x.split("\r"), data)[0] cities = [] for city in data: cities.append(decode_address_to_coordinates("{}, India".format(city)).values()) sleep(1) cities = np.array(cities) print cities aq = rbfi(cities[:, 0], cities[:, 1]) aq = map(lambda x: x if x > 0.0 else 0.0, aq) print aq fig = gmaps.figure(center=india_coordinates, zoom_level=4) info_box_template = """ <div> <p><b>City:</b> {0}</p> <p><b>PM2.5:</b> {1:.2f}</p> </div> """ city_info = [info_box_template.format(data[i], aq[i]) for i in range(0, len(data))] marker_layer = gmaps.marker_layer(cities, info_box_content=city_info) fig.add_layer(marker_layer) fig embed_minimal_html('national-aq-interp.html', views=[fig]) delhi_coordinates = decode_address_to_coordinates("New Delhi").values() f = open('data/Delhi_Delhi.txt', 'r') delhi_data = f.readlines() delhi_data = filter(lambda elem: elem != "\n", delhi_data) delhi_data = map(lambda elem: elem.split(","), delhi_data) filtered_delhi_data = [] station = -1 for line in delhi_data: if len(line) > 2 and "station" in line[2]: station = line[2].split(":")[1].rstrip("\n") if line[0] == "2016": filtered_delhi_data.append([station, line[1].rstrip("\n")]) delhi_data = filtered_delhi_data f = open('id-mappings/station-ids.txt', 'r') stations = f.readlines() stations = map(lambda elem: elem.split(","), stations) stations = filter(lambda elem: elem[2] == "85" and elem[4].isdigit(), stations) stations = {station[4]:station[5].rstrip("\n") for station in stations} print stations, delhi_data delhi_station_coordinates = [] for station in delhi_data: delhi_station_coordinates.append(decode_address_to_coordinates("{}, Delhi".format(stations[station[0]])).values()) sleep(1) print delhi_station_coordinates delhi_coordinates = decode_address_to_coordinates("New Delhi, Delhi").values() fig = gmaps.figure(center=delhi_coordinates, zoom_level=11) weights = np.array(delhi_data)[:, 1] heatmap_layer = gmaps.heatmap_layer(delhi_station_coordinates, weights=weights) heatmap_layer.max_intensity = 200 heatmap_layer.point_radius = 35.0 fig.add_layer(heatmap_layer) info_box_template = """ <div> <p><b>Station:</b> {0}</p> <p><b>PM2.5:</b> {1}</p> </div> """ print delhi_data station_info = [info_box_template.format(stations[d[0]], d[1]) for d in delhi_data] marker_layer = gmaps.marker_layer(delhi_station_coordinates, info_box_content=station_info) fig.add_layer(marker_layer) fig embed_minimal_html('delhi-aq-pm25.html', views=[fig]) ###Output _____no_output_____ ###Markdown AnalysisNotebook author: Martin Saveski ([email protected])Copyright (c) Facebook, Inc. and its affiliates.This source code is licensed under the MIT license found in the LICENSE file in the root directory of this source tree. ###Code # load libraries suppressMessages(library(tidyverse)) suppressMessages(library(cowplot)) suppressMessages(library(ggsci)) suppressMessages(library(scales)) # setup setwd("~/code/social-catalysts") source("scripts/utils.R") dta_root <- "data/" plt_root <- "figs_cscw/" theme_set(theme_light()) colors = c("Catalyst" = "#ee0001", "Matched" = "#3b4992") ###Output _____no_output_____ ###Markdown Posts Analysis Topics (Fig 2) ###Code df_empath <- readRDS(str_c(dta_root, "post_analysis/empath.rds")) df_empath <- df_empath %>% ungroup() %>% mutate(post_cm = str_to_title(post_cm)) # (A) counts plt_empath <- df_empath %>% ggplot(aes( x = fct_reorder(topic, m), y = m, fill = fct_rev(post_cm) )) + geom_bar(stat = "identity", position = position_dodge(), width = 0.7) + geom_errorbar( aes(ymin = low_ci, ymax = high_ci), position = position_dodge(width = 0.7), color = "black", size = 0.3, width = 0.5 ) + labs(x = NULL, y = "Average Count", fill = NULL) + scale_fill_manual(values = colors) + coord_flip() + theme( panel.grid.major.x = element_blank(), panel.grid.minor.x = element_blank(), legend.position = "none" ) # (B) differences df_empath_dd <- df_empath %>% select(post_cm, topic, m, se) %>% mutate(post_cm = str_to_lower(post_cm)) %>% multi_spread(post_cm, c(m, se)) %>% mutate( d_m = catalyst_m - matched_m, d_se = sqrt(catalyst_se^2 + matched_se^2), d_ci = 1.96 * d_se, d_m_low = d_m - d_ci, d_m_high = d_m + d_ci ) %>% arrange(desc(d_m)) # variables for coloring the CIs df_empath_dd <- df_empath_dd %>% mutate( b_start = case_when( d_m_low > 0 & d_m_high > 0 ~ d_m, d_m_low < 0 & d_m_high > 0 ~ d_m_low, d_m_low < 0 & d_m_high < 0 ~ d_m_low ), b_end = case_when( d_m_low > 0 & d_m_high > 0 ~ d_m_high, d_m_low < 0 & d_m_high > 0 ~ d_m_high, d_m_low < 0 & d_m_high < 0 ~ d_m ), w_start = case_when( d_m_low > 0 & d_m_high > 0 ~ d_m_low, d_m_low < 0 & d_m_high > 0 ~ 0, d_m_low < 0 & d_m_high < 0 ~ d_m ), w_end = case_when( d_m_low > 0 & d_m_high > 0 ~ d_m, d_m_low < 0 & d_m_high > 0 ~ d_m, d_m_low < 0 & d_m_high < 0 ~ d_m_high ) ) plt_empath_dd <- df_empath_dd %>% ggplot(aes(x = fct_reorder(topic, d_m), y = d_m)) + geom_bar(stat = "identity", width = 0.6) + geom_errorbar( aes(ymin = b_start, ymax = b_end), width = 0, color = "black", size = 0.8 ) + geom_errorbar( aes(ymin = w_start, ymax = w_end), width = 0, color = "white", size = 0.8 ) + labs(x = "", y = "Catalyst - Matched") + scale_x_discrete(position = "top") + scale_y_continuous(breaks = pretty_breaks(), limits = c(-0.01, 0.04)) + coord_flip() + theme(panel.grid.major.x = element_blank(), panel.grid.minor.x = element_blank()) p_row <- plot_grid(plt_empath, plt_empath_dd, ncol = 2, align = "h") legend <- get_legend( plt_empath + guides(fill = guide_legend(reverse = T)) + theme(legend.position="bottom") ) plt_empath_full <- plot_grid(p_row, legend, ncol=1, rel_heights = c(1, .08)) options(repr.plot.width=8, repr.plot.height=6.5) print(plt_empath_full) ###Output _____no_output_____ ###Markdown User Analysis Ego networks (Fig 3) ###Code df_ego_stats <- readRDS(str_c(dta_root, "user_ego_nets_sample/ego_stats.rds")) df_ego_stats_inc <- df_ego_stats %>% ungroup() %>% select(is_catalyst, field, m, se) %>% multi_spread(is_catalyst, c(m, se)) %>% group_by(field) %>% do( per_change_delta_se( .$catalyst_m, .$matched_m, .$catalyst_se, .$matched_se ) ) ego_stats_fields <- c( "n_nodes", "density", "avg_clust", "avg_degree", "var_degrees", "deg_assortativity", "fiedler", "modularity" ) df_ego_stats_inc <- df_ego_stats_inc %>% ungroup() %>% filter(field %in% ego_stats_fields) %>% mutate( field = case_when( field == "n_nodes" ~ "Number of Nodes (Friends)", field == "density" ~ "Density", field == "avg_degree" ~ "Degree Average", field == "var_degrees" ~ "Degree Variance", field == "deg_assortativity" ~ "Degree Assortativity", field == "fiedler" ~ "Algebraic Connectivity", field == "avg_clust" ~ " Average Clustering Coefficient", field == "modularity" ~ "Modularity" ), field = factor( field, levels = rev(c( "Number of Nodes (Friends)", "Number of Edges", "Density", "Degree Average", "Degree Variance", "Degree Assortativity", " Average Clustering Coefficient", "Algebraic Connectivity", "Modularity" ) )) ) plt_ego_stats_inc <- df_ego_stats_inc %>% ggplot(aes( x = field, y = mean, ymin = lower95, ymax = upper95 )) + geom_point(size = 2) + geom_errorbar(width = 0, size = 0.6) + geom_hline(aes(yintercept = 0), linetype = "dashed") + labs(x = NULL, y = "Catalyst vs Matched users (% increase)") + scale_y_continuous(labels = percent_format(accuracy = 1), limits = c(-0.013, 0.3)) + scale_color_aaas() + coord_flip() + theme( axis.ticks = element_blank(), strip.text.y = element_text(color = "black", angle = 0), strip.background.y = element_rect(fill = "grey90"), legend.position = "none" ) # k-core df_ego_k_core <- readRDS(str_c(dta_root, "user_ego_nets_sample/k_core.rds")) df_ego_k_core <- df_ego_k_core %>% ungroup() %>% filter(threshold < 16) plt_ego_k_core <- df_ego_k_core %>% ggplot(aes(x = threshold, y = m, color=is_catalyst)) + geom_line() + geom_point() + geom_errorbar(aes(ymin=low_ci, ymax=high_ci), width=0.2) + scale_x_continuous(trans = log2_trans(), breaks = c(2, 4, 8), labels = c(expression(2^1), expression(2^2), expression(2^3))) + labs(x = "k", y = "Components in k-core", color = NULL) + expand_limits(y = 1) + guides(color = guide_legend(reverse = T)) + scale_color_aaas() + theme( panel.grid.minor.y = element_blank(), legend.position="bottom" ) # k brace df_ego_k_truss <- readRDS(str_c(dta_root, "user_ego_nets_sample/k_truss.rds")) df_ego_k_truss <- df_ego_k_truss %>% ungroup() %>% filter(threshold < 16) plt_ego_k_truss <- df_ego_k_truss %>% ggplot(aes(x = threshold, y = m, color=is_catalyst)) + geom_line() + geom_point() + geom_errorbar(aes(ymin=low_ci, ymax=high_ci), width=0.2) + scale_x_continuous(trans = log2_trans(), breaks = c(2, 4, 8), labels = c(expression(2^1), expression(2^2), expression(2^3))) + scale_y_continuous(breaks = seq(1, 8, by = 1)) + labs(x = "k", y = "Components in k-brace", color = NULL) + expand_limits(y = 1) + guides(color = guide_legend(reverse = T)) + scale_color_aaas() + theme( panel.grid.minor.y = element_blank(), legend.position="bottom" ) # group figures plt_ego_nets_all <- plot_grid( plt_ego_stats_inc, plt_ego_k_core + theme(legend.position="none"), plt_ego_k_truss + theme(legend.position="right"), labels = c('A', 'B', 'C'), nrow = 1, rel_widths = c(1, 0.615, 0.82), align = "h" ) options(repr.plot.width=11, repr.plot.height=3) print(plt_ego_nets_all) ###Output _____no_output_____ ###Markdown Survey Questions Overlap (Fig 5) ###Code df_overlap <- readRDS(str_c(dta_root, "survey/overlap.rds")) df_overlap <- df_overlap %>% mutate(col = ifelse(v > 0.345, "white", "black")) plt_overlap <- df_overlap %>% ggplot(aes(q_i, fct_rev(q_j), fill = v)) + geom_tile() + geom_tile(color = "black", linetype = 1, size = 0.2) + geom_text(aes(label = v, color = col)) + scale_fill_material("grey", na.value = 'white') + scale_color_manual(values = c("black", "white")) + scale_x_discrete(position = "top") + labs( x = expression(paste("Question ", italic("i"))), y = expression(paste("Question ", italic("j"))) ) + guides( color = F, fill = guide_colourbar( draw.ulim = FALSE, draw.llim = FALSE, label.theme = element_text(colour = "black", size = 8, margin = margin(l=5)) )) + theme( axis.ticks = element_blank(), panel.border = element_blank(), panel.grid.major.x = element_blank(), panel.grid.minor.x = element_blank(), panel.grid.major.y = element_blank(), panel.grid.minor.y = element_blank(), legend.title = element_blank(), legend.position = "right" ) options(repr.plot.width=4, repr.plot.height=3) print(plt_overlap) ###Output Warning message: “Removed 4 rows containing missing values (geom_text).” ###Markdown Nominated Percentiles (Fig 6) ###Code df_nom_percentiles <- readRDS( str_c( dta_root, "survey_nominated_percentiles/nominated_percentile_per_nomination.rds" ) ) df_nom_percentiles <- df_nom_percentiles %>% ungroup() %>% filter(field != 'catalyst comments (per post)') %>% mutate( field = case_when( field == "posts" ~ "Number of Posts", field == "catalyst comments (total)" ~ "Number of Catalyst Comments", field == "mutual friends" ~ "Number of Mutual Friends", field == "friends" ~ "Number of Friends" ), field = factor( field, levels = c( "Number of Posts", "Number of Friends", "Number of Mutual Friends", "Number of Catalyst Comments" ) ), nomination_number = case_when( nomination_number == "0" ~ "1", nomination_number == "1" ~ "2", nomination_number == "2" ~ "3" ), question_code = str_to_upper(question_code) ) plt_nom_percentiles <- df_nom_percentiles %>% ggplot(aes(x = question_code, y = m, color = nomination_number)) + geom_point(size = 2, position = position_dodge(0.9)) + geom_errorbar(aes(ymin = low_ci, ymax = high_ci), width = 0.8, position = position_dodge(0.9)) + geom_hline(aes(yintercept = 0.5), linetype = "dashed") + facet_wrap(~ field, ncol = 4) + labs(x = NULL, y = "Mean Percentile Rank of Nominated Users", color = "Nomination Number") + scale_y_continuous(labels = percent_format(accuracy = 1), breaks = seq(0, 0.8, 0.1)) + expand_limits(y = 0) + scale_color_aaas() + theme( panel.grid.major.x = element_blank(), panel.grid.minor.y = element_blank(), strip.text.x = element_text(color = "black", size = 8, face = "bold"), strip.background.x = element_rect(fill = "grey95"), legend.position = "bottom" ) options(repr.plot.width=11, repr.plot.height=4) print(plt_nom_percentiles) ###Output _____no_output_____ ###Markdown Percent Increase in Mean Catalystness (Fig 7) ###Code df_tot_cat_per_q <- readRDS(str_c( dta_root, "survey_catalystness_per_question/tot_catalystness.rds" )) df_tot_cat_per_q <- df_tot_cat_per_q %>% ungroup() %>% mutate(question_code = str_to_upper(question_code)) %>% rename( mean = avg_total_cat, std = std_total_cat ) %>% multi_spread(is_nominated, c(mean, std, n)) df_tot_cat_per_q_inc <- df_tot_cat_per_q %>% group_by(question_code) %>% do( per_change_delta( .$nominated_mean, .$matched_mean, .$nominated_n, .$matched_n, .$nominated_std, .$matched_std ) ) plt_cat_total_inc <- df_tot_cat_per_q_inc %>% ggplot(aes(x = fct_rev(question_code), y = mean)) + geom_point(size = 3) + geom_errorbar(aes(ymin = lower95, ymax = upper95), width = 0, size = 0.6) + geom_hline(aes(yintercept = 0), linetype = "dashed") + labs(x = NULL, y = "Catalysts Comments of Nominated vs Matched users \n (% increase)") + scale_y_continuous(labels = percent) + expand_limits(y = 0) + coord_flip() + theme( axis.ticks = element_blank() ) options(repr.plot.width=4.5, repr.plot.height=3) print(plt_cat_total_inc) ###Output _____no_output_____ ###Markdown Schelling Segregation Model BackgroundThe Schelling (1971) segregation model is a classic of agent-based modeling, demonstrating how agents following simple rules lead to the emergence of qualitatively different macro-level outcomes. Agents are randomly placed on a grid. There are two types of agents, one constituting the majority and the other the minority. All agents want a certain number (generally, 3) of their 8 surrounding neighbors to be of the same type in order for them to be happy. Unhappy agents will move to a random available grid space. While individual agents do not have a preference for a segregated outcome (e.g. they would be happy with 3 similar neighbors and 5 different ones), the aggregate outcome is nevertheless heavily segregated. ImplementationThis is a demonstration of running a Mesa model in an IPython Notebook. The actual model and agent code are implemented in Schelling.py, in the same directory as this notebook. Below, we will import the model class, instantiate it, run it, and plot the time series of the number of happy agents. ###Code import matplotlib.pyplot as plt %matplotlib inline from model import SchellingModel ###Output _____no_output_____ ###Markdown Now we instantiate a model instance: a 10x10 grid, with an 80% chance of an agent being placed in each cell, approximately 20% of agents set as minorities, and agents wanting at least 3 similar neighbors. ###Code model = SchellingModel(10, 10, 0.8, 0.2, 3) ###Output _____no_output_____ ###Markdown We want to run the model until all the agents are happy with where they are. However, there's no guarentee that a given model instantiation will *ever* settle down. So let's run it for either 100 steps or until it stops on its own, whichever comes first: ###Code while model.running and model.schedule.steps < 100: model.step() print(model.schedule.steps) # Show how many steps have actually run ###Output 46 ###Markdown The model has a DataCollector object, which checks and stores how many agents are happy at the end of each step. It can also generate a pandas DataFrame of the data it has collected: ###Code model_out = model.datacollector.get_model_vars_dataframe() model_out.head() ###Output _____no_output_____ ###Markdown Finally, we can plot the 'happy' series: ###Code model_out.happy.plot() ###Output _____no_output_____ ###Markdown For testing purposes, here is a table giving each agent's x and y values at each step. ###Code x_positions = model.datacollector.get_agent_vars_dataframe() x_positions.head() ###Output _____no_output_____ ###Markdown Effect of Homophily on segregationNow, we can do a parameter sweep to see how segregation changes with homophily.First, we create a function which takes a model instance and returns what fraction of agents are segregated -- that is, have no neighbors of the opposite type. ###Code from mesa.batchrunner import BatchRunner def get_segregation(model): ''' Find the % of agents that only have neighbors of their same type. ''' segregated_agents = 0 for agent in model.schedule.agents: segregated = True for neighbor in model.grid.neighbor_iter(agent.pos): if neighbor.type != agent.type: segregated = False break if segregated: segregated_agents += 1 return segregated_agents / model.schedule.get_agent_count() ###Output _____no_output_____ ###Markdown Now, we set up the batch run, with a dictionary of fixed and changing parameters. Let's hold everything fixed except for Homophily. ###Code parameters = {"height": 10, "width": 10, "density": 0.8, "minority_pc": 0.2, "homophily": range(1,9)} model_reporters = {"Segregated_Agents": get_segregation} param_sweep = BatchRunner(SchellingModel, parameters, iterations=10, max_steps=200, model_reporters=model_reporters) param_sweep.run_all() df = param_sweep.get_model_vars_dataframe() plt.scatter(df.homophily, df.Segregated_Agents) plt.grid(True) ###Output _____no_output_____ ###Markdown This is a heading This is a subheading!This is normal text!*** I'm excited!! ***| Tables | Are | Cool || ------------- |:-------------:| -----:|| col 3 is | right-aligned | $1600 || col 2 is | centered | $12 || zebra stripes | are neat | $1 | ###Code name = report["First Name"] name.describe() doctors = report["Attnd. Phys."] doctors.describe() ###Output _____no_output_____ ###Markdown Given that there are only 6 attending phys., there is probably only one hospital. It's called "central" so we'll assume that it is between the river and the park. ###Code sectors = report['Sector'] sectors.describe() ###Output _____no_output_____ ###Markdown - Sector 22 is the most infected! - There are only patients from 18 unique sectors... ###Code sector_names = [sector for sector in np.unique(sectors)] sector_names ###Output _____no_output_____ ###Markdown ###Code report["Admission"].unique() report.where(report["Admission"] == '2018-03-04').groupby("Sector").size() report[report["Admission"]=='2018-03-04'] ###Output _____no_output_____ ###Markdown The afforementioned is the earliest recorded infected -- we assume patient 0.- Named Lila DeVoulier- Female- Aged 12- Patient reports from sector 26.- Maybe immigrant? No SIN. ###Code report["DOD"].unique() ###Output _____no_output_____ ###Markdown We may assume at most that the earliest submission data was March 16th 2018 -- being that this is the last reported date. ###Code report[report["SIN"].isnull()] report[report["Last Name"]=="Heskey"] report[report["Last Name"]=="Lila"] ###Output _____no_output_____ ###Markdown We have found that there are two people without a SIN -- both are from sector 26, and both are children. We were not able to identify any relations that were admitted. DeVoulier Lila - Aged 12, Female > Patient Zero, aliveMoises Heskey -- Aged 0, Male, deceased ###Code report["Age "].describe() report.hist(column="Age ", figsize=(9,6), bins=20) plt.show() report["Gender"].describe() ###Output _____no_output_____ ###Markdown Looking at age and gender of admitted patients does not appear to reveal anything statistically significant. ###Code report["Gender"].where(report["Status"]=="DECEASED").describe() ###Output _____no_output_____ ###Markdown 52% of infected female are dead. 51% of infected males are dead. ###Code report["Sector"].value_counts() report["Sector"].where(report["Status"] == "DECEASED").value_counts() ###Output _____no_output_____ ###Markdown EMF-Datenbank der Bundesnetzagentur ###Code %matplotlib inline import json import pandas as pd import geopandas as gpd from shapely.geometry import Point def to_gpd(df, lat='lat', lng='lng'): geometry = [Point(xy) for xy in zip(df[lng], df[lat])] crs = {'init': 'epsg:4326'} return gpd.GeoDataFrame(df, crs=crs, geometry=geometry) germany = gpd.read_file(gpd.datasets.get_path('naturalearth_lowres')) germany = germany[germany['name'] == 'Germany'] germany def get_data(): with open('data/positions.jsonl') as f: for line in f: yield json.loads(line) df = pd.DataFrame.from_records(get_data()) df.head() df['kind'].value_counts() ###Output _____no_output_____ ###Markdown Amateurfunk Freigaben ###Code afu_df = pd.DataFrame.from_records(df[df['kind'] == 'GetAFuFreigabe']['position'].values) afu_df.head() afu_df = to_gpd(afu_df, lat='Lat', lng='Lng') base = germany.plot(color='white', edgecolor='black') afu_df.plot(ax=base, alpha=0.2) ###Output _____no_output_____ ###Markdown Antennen ###Code def get_antennas(df): for _, p in df.iterrows(): if not isinstance(p['antennas'], list): continue for antenna in p['antennas']: antenna['datum'] = p['datum'] antenna['standortbescheinigung_nr'] = p['standortbescheinigung_nr'] antenna.update(p['position']) yield antenna a_df = pd.DataFrame.from_records(get_antennas(df[df['kind'] == 'GetStandorteFreigabe'])) a_df['datum'] = pd.to_datetime(a_df['datum'], format='%d.%m.%Y') a_df.head() a_df.to_csv('data/antennen.csv', index=False) ag_df = to_gpd(a_df, lat='Lat', lng='Lng') base = germany.plot(color='white', edgecolor='black') ag_df.plot(ax=base, alpha=0.01, markersize=0.5) ###Output _____no_output_____ ###Markdown Data Cleaning ###Code df.dropna(inplace=True) # converting string time to a timestamp df['time'] = pd.to_datetime(df['time'], errors='coerce') # Getting hour and month from the time column df['hour'] = df['time'].dt.hour df['month'] = df['time'].dt.month df.head(5) ###Output _____no_output_____ ###Markdown KPI cards texts ###Code # Total tweet card total_tweet = len(df) print(f'TOTAL TWEETS: {total_tweet}') # Average impression card avg_impression = round(df.impressions.sum()/len(df.impressions), 1) print(f'Avg impression: {avg_impression}') # engagements rate card likes_retweet = df['likes'].sum()+df['retweets'].sum() avg_engagement = round(likes_retweet/len(df), 1) print(f'Avg engagement: {avg_engagement}') # Media Engagement rate card media_engagement = int(df['media engagements'].sum()/len(df['media engagements'])) print(f'Media Engagement Per Tweet: {media_engagement}') ###Output Media Engagement Per Tweet: 52 ###Markdown Analysis Total tweet card ###Code area_chart_total_tweet = df[['Tweet','month']] tweet_count_db = area_chart_total_tweet.value_counts('month').reset_index(name='tweet_count').sort_values('month') tweet_count_db x = ['Jun', 'Jul', 'Aug', 'Sept', 'Oct'] fig = px.area( x = x, y = tweet_count_db['tweet_count'], markers = True, ) fig.update_layout( hovermode = 'closest', piecolorway = ['#0f52d9'], margin = dict( t = 40, b = 20, l = 30, r = 30 ), ) fig.update_xaxes( showgrid = False, zeroline = False, visible = False ) fig.update_yaxes( showgrid = False, zeroline = False, visible = False ) fig.show() ###Output _____no_output_____ ###Markdown Avg impression area plot ###Code area_chart_avg_impression = df[['impressions','month']] impression_count_db = area_chart_avg_impression.value_counts('month').reset_index(name='impressions').sort_values('month') impression_count_db x = ['Jun', 'Jul', 'Aug', 'Sept', 'Oct'] fig = px.area( x = x, y = impression_count_db['impressions'], markers = True, ) fig.update_layout( hovermode = 'closest', piecolorway = ['#0f52d9'], margin = dict( t = 40, b = 20, l = 30, r = 30 ), ) fig.update_xaxes( showgrid = False, zeroline = False, visible = False ) fig.update_yaxes( showgrid = False, zeroline = False, visible = False ) fig.show() ###Output _____no_output_____ ###Markdown Engagement rate ###Code area_chart_avg_engagements = df[['media engagements','month']] engagements_count_db = area_chart_avg_engagements.value_counts('month').reset_index(name='media engagements').sort_values('month') engagements_count_db x = ['Jun', 'Jul', 'Aug', 'Sept', 'Oct'] fig = px.area( x = x, y = engagements_count_db['media engagements'], markers = True, ) fig.update_layout( hovermode = 'closest', piecolorway = ['#0f52d9'], margin = dict( t = 40, b = 20, l = 30, r = 30 ), ) fig.update_xaxes( showgrid = False, zeroline = False, visible = False ) fig.update_yaxes( showgrid = False, zeroline = False, visible = False ) fig.show() ###Output _____no_output_____ ###Markdown Bikers on the Fremont bridgeExample adapted from the [Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html) Set up: Download (and load) data ###Code # Download data(you can download it by uncommenting and runing this line of code) #!curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD import matplotlib.pyplot as plt # for making plots import numpy as np # for doing numerical operations import pandas as pd import seaborn as sns from sklearn.preprocessing import MinMaxScaler # scaling data from sklearn.model_selection import train_test_split # splitting data from sklearn.neighbors import KNeighborsRegressor # regressor from sklearn.model_selection import GridSearchCV # for grid search from sklearn.pipeline import make_pipeline # for making pipelines %matplotlib inline # Aggregate data to the daily level counts = pd.read_csv('FremontBridge.csv', index_col='Date', parse_dates=True) # This operation shows us first 10 rows of this dataset counts.head(10) # The next few operations sum up the total number of bikers that have crossed # the Fremont Bridge on a given day and makes a new dataframe that gives us # date and total number of bikers that crossed that day. daily = counts.resample('d').sum() daily['Total'] = daily.sum(axis=1) daily = daily[['Total']] # remove other columns daily.head(10) ###Output _____no_output_____ ###Markdown Data Prep: Adding Features ###Code # Load weather data (downloaded from: https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND) weather = pd.read_csv('weather.csv', index_col='DATE', parse_dates=True) # Create dry_day column # This basically creates a new feature called dry day by checking if the # value of the precipitation('PRCP') column is 0 for that row. If it is, # it means it is a dry day and is assigned a numerical value of 1.Else, it # it is assigned a numerical value of zero. weather['dry_day'] = (weather['PRCP'] == 0).astype(int) weather.head(10) # Join selected weather columns # We are joining the four columns relevant to us in the weather dataset to our # daily dataframe which has total number of bikers for the given day. # We choose the 3 columns that are pre-existent in the weather dataset, # namely, precipitation, minimum and maximum temperature for the day and # our own feature which we made, which is the dry day column. daily = daily.join(weather[['PRCP', 'dry_day', 'TMIN', 'TMAX']]) daily.head(10) # Compute hours of daylight # Below is a function that calculates the hours of daylight for a given date # (Due to the complex nature, we wont get into it this session) def hours_of_daylight(date, axis=23.44, latitude=47.61): """Compute the hours of daylight for the given date""" days = (date - pd.datetime(2000, 12, 21)).days m = (1. - np.tan(np.radians(latitude)) * np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25))) return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180. # We are basically adding a new feature named daylight_hrs to our daily # dataframe. It gives the hours of daylight for that particular day daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index)) daily[['daylight_hrs']].plot() plt.ylim(8, 17) ###Output /usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:3: FutureWarning: The pandas.datetime class is deprecated and will be removed from pandas in a future version. Import from datetime instead. This is separate from the ipykernel package so we can avoid doing imports until ###Markdown Feature Generation: Categorical Variable(s) ###Code # Get dummy variables from categorical columns (alternative: sklearn OneHotEncoding) # Make each day of the week a column and the day which it is would get assigned # a value of one and the rest a value of 0. daily['day_of_week'] = daily.index.dayofweek.astype("str") # Plot: daily[["day", "Total"]].groupby("day").sum().plot() daily = pd.get_dummies(daily) daily.head(10) ###Output _____no_output_____ ###Markdown Abbreviated EDA We now see how various features are correlated with the number of bikers that crossed the fremont bridge. We want to be able to see how much influence features have on our target variable, so that we can get a better idea of which features we can use in our ML model ###Code # What is the relationship between bikers and temperature? plt.scatter(daily.TMAX, daily.Total, alpha=.2) # What is the relationship between bikers and date? plt.figure(figsize=(15, 3)) daily.Total.plot() # What is the relationship between bikers and (min) temperature? plt.scatter(daily.TMIN, daily.Total, alpha=.2) # What is the distribution of bikers on dry/wet days? plt.figure() plt.hist(daily.Total[daily.dry_day == True], label="Dry Day", alpha = .3) plt.hist(daily.Total[daily.dry_day == False], label="Wet Day", alpha = .3) plt.legend() # How does the number of bikers vary by temperature and wet/dry? # We want to see the correlation between temperature and dry day on the bikers # We see the number of bikers for various maximum temperatures for dry and wet # days. While we might not see a necessarily linear correlation, we do see that # there is a larger positive correlation between max temperature on dry days and # number of bikers as compared to that on a wet day. plt.figure() plt.scatter(daily.TMAX[daily.dry_day == True], daily.Total[daily.dry_day == True], alpha = .3, label="Dry") plt.scatter(daily.TMAX[daily.dry_day == False], daily.Total[daily.dry_day == False], alpha = .3, label="Wet") plt.legend() ###Output _____no_output_____ ###Markdown Modeling: KNN Regressor What is KNN Regressor model: * **KNN** stands for K Nearest Neighbors. This one of the standard models data scientists use to model their data.* *Basically, it is an algorithm that is used to check the distance of a new point from the nearest data points on the plot, so we can classify the point accordingly*. * **For example**, on the previous plot for a given value of temperature if we draw a vertical line, we would see that there are multiple data points around that. We want to see the nearest points(basically number of bikers for that temperature) and be able to predict what our target value might be, given our value on the X-axis.* We define K: The number of nearest neighbors we want the algorithm to look at while making our prediction. The more we make the value of K, we tend to avoid overfitting the data. Why we use KNN?* It works great where the correlation between features and the target isn't necessarily linear, hence it would be more appropriate than using an OLS regression model.* It is simple to implement and handles non-linearity well.* Fitting the model also tends to be quick: the computer doesn’t have to calculate any particular parameters or values ###Code # Split data into training and testing data # We train_features, test_features, train_outcome, test_outcome = train_test_split( daily.drop("Total", axis=1), daily.Total, test_size=0.30, random_state=11 ) ###Output _____no_output_____ ###Markdown What is a scaler?It basically scales our data. What does that mean? * Some models tend to produce better and more accurate results when all the input data(features) are relatively on the same scale. As in, the values of the data in our features are somewhat on the same scale.* For example, if one of our features has values ranging from 10 to 100 and other features have values from 1 million to 10 million, our features **are not** in the same relative scale. * Therefore, a scaler will perform appropriate transformations on our data in the features and try and keep them in the same relative scale. ***The distribution of the data still remains the same*** ###Code # Create a scaler and your classifier # We will use a MinMaxScaler() for our transformations where, # from each value in the columns the min value of the column is subtracted, # followed by dividing it by the range of the column(max - min). scaler = MinMaxScaler() knn_reg = KNeighborsRegressor() # Define a pipeline that uses your scaler and classifier pipe = make_pipeline(scaler, knn_reg) # Define a grid to search through # We are simply making a dictionary of the parameters here. We need to choose the # best parameters from these available ones to use for our model. param_grid = {'kneighborsregressor__n_neighbors':range(1, 5), 'kneighborsregressor__weights':["uniform", "distance"]} # Perform a grid search of your pipeline # Luckily, the grid search of our pipeline will output our best parameteres for # us below, which we can use. It does so according to the scoring we want to # use for our model, the available parameters we have given from above and # the regressor and scaler we have chosen to use from above. # If the parameters to search are more this takes longer to run!! grid = GridSearchCV(pipe, param_grid, scoring="neg_mean_absolute_error") grid.fit(train_features, train_outcome) grid.score(test_features, test_outcome) grid.best_params_ # Compare prediction to (test) data plt.scatter(grid.predict(test_features), test_outcome, alpha=.4) grid.score(test_features, test_outcome) ###Output _____no_output_____ ###Markdown Feature Generation: Polynomial Transformations ###Code # Add a polynomial transformation to the pipeline from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures() # Define a pipeline that includes the polynomial transformation pipe = make_pipeline(poly, scaler, knn_reg) # Define a grid to search through (including the degree of polynomial) param_grid = {'polynomialfeatures__degree':range(1, 3), 'kneighborsregressor__n_neighbors':range(1, 5), 'kneighborsregressor__weights':["uniform", "distance"]} # Perform a grid search of your pipeline grid = GridSearchCV(pipe, param_grid, scoring="neg_mean_absolute_error") grid.fit(train_features, train_outcome) grid.score(test_features, test_outcome) plt.scatter(grid.predict(test_features), test_outcome) # Visualize time trends test_data = test_features.join(test_outcome) test_data['preds'] = grid.predict(test_features) plt.figure(figsize=(15, 3)) test_data.Total.plot(label="Actual", alpha = .8) test_data.preds.plot(label="Predicted", alpha = .8) plt.legend() ###Output _____no_output_____ ###Markdown Error assessment: find systematic errors ###Code # Why are we getting this wrong? # Assess error by day of the week test_data['day'] = test_data.index.dayofweek test_data['err'] = test_data.Total - test_data.preds sns.violinplot(y="err", x="day", data=test_data) # Assess error by temperature and dry_day plt.figure(figsize=(10, 5)) plt.scatter(test_data.TMIN[test_data.dry_day == True], test_data.err[test_data.dry_day == True], alpha=.4, label="Dry") plt.scatter(test_data.TMIN[test_data.dry_day == False], test_data.err[test_data.dry_day == False], alpha=.4, label="Wet") plt.legend() # Assess error by precipitation plt.figure(figsize=(10, 5)) plt.scatter(test_data.PRCP, test_data.err, c=test_data.TMAX) ###Output _____no_output_____ ###Markdown Feature Selection: Select best featuresAs a form of dimensionality reduction, only select the top percentile features that have a certain threshold of variance. ###Code # Create a percentile selector, add it to the pipeline # (alternatives a K selectors, PCA, or others) from sklearn.feature_selection import SelectPercentile from sklearn.feature_selection import VarianceThreshold selecter = SelectPercentile() threshold = VarianceThreshold(.1) pipe = make_pipeline(poly, threshold, scaler, selecter, knn_reg) # Define a grid to search through (including the degree of polynomial AND percentile of best features) param_grid = { 'polynomialfeatures__degree':range(1, 3), 'selectpercentile__percentile':range(10, 30, 5), 'kneighborsregressor__n_neighbors':range(1, 5), 'kneighborsregressor__weights':["uniform", "distance"] } grid = GridSearchCV(pipe, param_grid, scoring="neg_mean_absolute_error") grid.fit(train_features, train_outcome) grid.score(test_features, test_outcome) ###Output _____no_output_____ ###Markdown Analysis to aid in development of a wordle challenge helper --- Notebook goal: using data analysis, discover trends in 5-letter english words to develop the logic needed to automate a wordle solver. First step of analysis: determine the best **first guess** to use in a game of wordle We can look at the most-used letters for five-letter words to see if there is any stand-out first guesses ###Code from english_words import english_words_lower_alpha_set from matplotlib import pyplot as plt %matplotlib inline plt.style.use('ggplot') allWords = list(english_words_lower_alpha_set) words = [i for i in allWords if len(i) == 5] words.remove('u.s.a') # 'u.s.a' considered a word for some reason numWords = len(words) letters = { 'a' : 0, 'b' : 0, 'c' : 0, 'd' : 0, 'e' : 0, 'f' : 0, 'g' : 0, 'h' : 0, 'i' : 0, 'j' : 0, 'k' : 0, 'l' : 0, 'm' : 0, 'n' : 0, 'o' : 0, 'p' : 0, 'q' : 0, 'r' : 0, 's' : 0, 't' : 0, 'u' : 0, 'v' : 0, 'w' : 0, 'x' : 0, 'y' : 0, 'z' : 0 } for word in words: usedLetters = [] for letter in word: if letter not in usedLetters: letters[letter] += 1 usedLetters.append(letter) x = [] y = [] for key in letters: x.append(key) y.append((letters[key]/numWords) * 100) x_pos = [i for i, _ in enumerate(x)] plt.bar(x_pos, y, color='green') plt.xlabel('Letter') plt.ylabel('Percent Used') plt.title('Unique Letters Used in Five-Letter Words') plt.xticks(x_pos, x) plt.show() ###Output _____no_output_____ ###Markdown It appears as though the most common letters are:* e* a* r* o* i* l* s* tWhile a, e, r, o, and i don't come together to make a five-letter word, we can find the best combo of letters by assigning a value to all combinations of five-letter words that can be made from these above letters. We can assign a value by adding together the % used value for each of the five letters for each combination.Once we know the values for all combinations, we can start from the highest value combos and work our way down. These combos will then be tested for whether there is a word that contains all five. If there is a word, this is the most optimum starting wordle word! ###Code from itertools import combinations # Create all combinations of 5 letters and store them in a dictionary topLetters = ['a', 'e', 'r', 'o', 'i', 'l', 's', 't'] combos = combinations(topLetters, 5) values = {} for i in list(combos): values[''.join(i)] = 0 # Assign values to each of the combinations for key in values: for i in key: values[key] += (letters[i]/numWords) # Sort the values dictionary by value values = dict(sorted(values.items(), key=lambda item: item[1], reverse=True)) def findWord(testLetters): ''' Given a list of test letters, will try to find a word with all five ''' print(f' Testing combo {testLetters}') firstWord = None for word in words: goodLetters = [i for i in testLetters] for letter in word: if letter in goodLetters: goodLetters.remove(letter) if len(goodLetters) == 0: print(f'Best word: {word}') firstWord = word return True, firstWord return False, None optimized = False for key in values: if not optimized: check, word = findWord([char for char in key]) if check: print(f'Best combination of letters: {key}') print(f'Best word to use: {word}') optimized = True ###Output Testing combo ['a', 'e', 'r', 'o', 'i'] Testing combo ['a', 'e', 'r', 'o', 'l'] Testing combo ['a', 'e', 'r', 'o', 's'] Best word: arose Best combination of letters: aeros Best word to use: arose ###Markdown Replica-based ("official") metrics Up until February, active editors were calculated using the following procedure. For the initial run (probably some time in 2018), the procedure was run for all previous time. Then, each month, it was re-run to add data for the previous month.First, we built an [editor month dataset](https://meta.wikimedia.org/wiki/Research:Editor_month_dataset) by running [the update_editor_month query](https://github.com/wikimedia-research/Editing-movement-metrics/blob/3f5322cc1302419114ea7f647fdf4592063c6a35/queries/update_editor_month.sql) (or [a rewritten version](https://github.com/wikimedia-research/Editing-movement-metrics/blob/f6db91f3c64ffc05ae6eeda599755af744928803/queries/update_editor_month.sql) in January 2018) on [a specific selection of wikis](https://github.com/neilpquinn/wmfdata/blob/b0548529c4d39fc37f40fb637025e8a9b428a33f/wmfdata/mariadb.pyL94) sequentially.Then, the active editor numbers were calculated using [an SQL query](https://github.com/wikimedia-research/Editing-movement-metrics/blob/f6db91f3c64ffc05ae6eeda599755af744928803/queries/active_editors.sql) on that editor-month table.This gave the following, which is our currently accepted version of reality: ###Code metrics_url = "https://raw.githubusercontent.com/wikimedia-research/Editing-movement-metrics/75b3251727f8c766e4872f775f57a09632df6500/metrics/metrics.tsv" metrics_stream = StringIO(requests.get(metrics_url).text) official_ae = pd.read_csv( metrics_stream, sep="\t", parse_dates=["month"] ).set_index("month")["active_editors"].to_frame() official_ae.tail() ###Output _____no_output_____ ###Markdown Data Lake-based ("new") metrics For February's metrics, we switched to calculating these based on the `mediawiki_history` dataset in the Data Lake. First, we built an editor-month table using the following SQL: ```sqlinsert into neilpquinn.editor_monthselect trunc(event_timestamp, "MONTH") as month, wiki_db, event_user_id as local_user_id, max(event_user_text) as user_name, -- Some rows incorrectly have a null `event_user_text` count(*) as edits, coalesce( sum(cast(page_namespace_is_content_historical as int)), 0 ) as content_edits, NULL as mobile_web_edits, NULL as mobile_app_edits, NULL as visual_edits, NULL as ve_source_edits, ( max(event_user_is_bot_by_name) or max(array_contains(event_user_groups, "bot")) or max(array_contains(event_user_groups_historical, "bot")) ) as bot, min(event_user_creation_timestamp) as user_registrationfrom wmf.mediawiki_historywhere event_timestamp between "{start}" and "{end}" and event_entity = "revision" and event_type = "create" and snapshot = "{mwh_snapshot}"group by trunc(event_timestamp, "MONTH"), wiki_db, event_user_id``` ###Code new_ae = ( hive.run(""" select month, count(*) as active_editors from ( select cast(month as date) as month, user_name, sum(content_edits) as content_edits, max(bot) as bot from neilpquinn.editor_month where month < "2019-02-01" and local_user_id != 0 group by month, user_name ) global_edits where content_edits >= 5 and (not bot or user_name in ("Paucabot", "Niabot", "Marbot")) group by month """) .assign(month=lambda df: pd.to_datetime(df["month"])) .set_index("month") ) ###Output _____no_output_____ ###Markdown These differ a LOT from the replica-based metrics. ###Code (new_ae - official_ae).plot(title="Deviation of 'new' active editors from 'official'"); ###Output _____no_output_____ ###Markdown Load editor month datasets for comparisons Let's directly compare the official version of the dataset with the new one (tweaked to eliminate a few obvious differences). ###Code staging_host = !analytics-mysql -d staging --print-target staging_host = staging_host[0] jdbc_uri = "jdbc:mysql://" + staging_host + "/staging" cnf_path = "/etc/mysql/conf.d/research-client.cnf" sqoop_query = """ select convert(wiki using utf8) as wiki, cast(month as datetime) as month, local_user_id, convert(user_name using utf8) as user_name, edits, content_edits, bot_flag, user_registration from editor_month where $CONDITIONS """ !sqoop import --connect {jdbc_uri} --connection-param-file {cnf_path} --query '{sqoop_query}' \ --split-by local_user_id --target-dir /user/neilpquinn-wmf/editor_month_official_raw \ --hive-import --hive-table neilpquinn.editor_month_official \ --map-column-hive month=timestamp,user_registration=timestamp hive.run([""" CREATE TABLE IF NOT EXISTS neilpquinn.editor_month_new ( `wiki` STRING, `month` TIMESTAMP, -- Hive 1.1 does not support the DATE type `local_user_id` BIGINT, `user_name` STRING, `edits` BIGINT, `content_edits` BIGINT, `bot_flag` BOOLEAN, `user_registration` TIMESTAMP ) STORED AS PARQUET """, """ insert into neilpquinn.editor_month_new select wiki_db as wiki, trunc(event_timestamp, "MONTH") as month, event_user_id as local_user_id, max(event_user_text) as user_name, -- Some rows incorrectly have a null `event_user_text` count(*) as edits, coalesce( sum(cast(page_namespace_is_content_historical as int)), 0 ) as content_edits, ( max(array_contains(event_user_groups, "bot")) or max(array_contains(event_user_groups_historical, "bot")) ) as bot, min(event_user_creation_timestamp) as user_registration from wmf.mediawiki_history where event_timestamp < "2019-02-01" and event_entity = "revision" and event_type = "create" and snapshot = "2019-03" group by trunc(event_timestamp, "MONTH"), wiki_db, event_user_id """]) ###Output _____no_output_____ ###Markdown Let's make sure these datasets have the same active editors discrepancy. ###Code ae_query = """ select month, count(*) as active_editors from ( select cast(month as date) as month, user_name, sum(content_edits) as content_edits, max(bot_flag) as bot_flag from neilpquinn.{table} where local_user_id != 0 group by month, user_name ) global_edits where content_edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_query = ae_query.format(table="editor_month_official") emn_ae_query = ae_query.format(table="editor_month_new") emo_ae = hive.run(emo_ae_query).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") emn_ae = hive.run(emn_ae_query).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") ###Output _____no_output_____ ###Markdown Yup, it's the same. So we can proceed to compare just these two datasets. ###Code (emn_ae - emo_ae)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown Wiki inclusion It looks there are discrepancies in which wikis are included. ###Code emo_wikis = hive.run(""" select distinct wiki from neilpquinn.editor_month_official """) emo_wikis = set(emo_wikis["wiki"].unique()) emn_wikis = hive.run(""" select distinct wiki from neilpquinn.editor_month_new """) emn_wikis = set(emn_wikis["wiki"].unique()) ###Output _____no_output_____ ###Markdown The extra wikis included in `editor_month_official` seem to be a miscellaneous collection that are [mistakenly not included](https://phabricator.wikimedia.org/T220456) in `mediawiki_history`. ###Code extra_emo_wikis = emo_wikis - emn_wikis len(extra_emo_wikis) ###Output _____no_output_____ ###Markdown The extra wikis included in `editor_month_new` are a mixture of test wikis, infrastructure wikis (`donatewiki`, `loginwiki`), and affiliate wikis that are only there because I forgot to port the logic excluding them from the replicas-based pipeline to the Data Lake-based one. ###Code extra_emn_wikis = emn_wikis - emo_wikis len(extra_emn_wikis) ###Output _____no_output_____ ###Markdown Let's see what the discrepancy looks like when we exclude these extra wikis. ###Code ae_same_wikis_sql = """ select month, count(*) as active_editors from ( select cast(month as date) as month, user_name, sum(content_edits) as content_edits, max(bot_flag) as bot_flag from neilpquinn.{table} where local_user_id != 0 and wiki not in {excluded_wikis!r} group by month, user_name ) global_edits where content_edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_same_wikis_sql = ae_same_wikis_sql.format( table="editor_month_official", excluded_wikis=tuple(extra_emo_wikis) ) emn_ae_same_wikis_sql = ae_same_wikis_sql.format( table="editor_month_new", excluded_wikis=tuple(extra_emn_wikis) ) emo_ae_same_wikis = hive.run(emo_ae_same_wikis_sql).assign( month=lambda df: pd.to_datetime(df["month"]) ).set_index("month") emn_ae_same_wikis = hive.run(emn_ae_same_wikis_sql).assign( month=lambda df: pd.to_datetime(df["month"]) ).set_index("month") ###Output _____no_output_____ ###Markdown Basically no change, which makes sense when you consider that all the wikis involved are tiny. ###Code (emn_ae_same_wikis - emo_ae_same_wikis)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown Unmatched rows If we use the same selection of wikis, `editor_month_new` has about 476,000 more rows than `editor_month_official`. ###Code row_count_sql = """ select count(*) from neilpquinn.{table} where wiki not in {excluded_wikis!r} """ emo_row_count_sql = row_count_sql.format( table="editor_month_official", excluded_wikis=tuple(extra_emo_wikis) ) emn_row_count_sql = row_count_sql.format( table="editor_month_new", excluded_wikis=tuple(extra_emn_wikis) ) hive.run(emn_row_count_sql) hive.run(emo_row_count_sql) ###Output _____no_output_____ ###Markdown Let's find the rows that don't match up. ###Code unmatched_rows_sql = """ select * from neilpquinn.editor_month_official emo full outer join neilpquinn.editor_month_new emn on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where coalesce(emo.wiki not in {extra_emo_wikis!r}, true) and coalesce(emn.wiki not in {extra_emn_wikis!r}, true) and (emo.local_user_id is null or emn.local_user_id is null) """.format( extra_emo_wikis=tuple(extra_emo_wikis), extra_emn_wikis=tuple(extra_emn_wikis) ) unmatched_rows = hive.run([ "set hive.resultset.use.unique.column.names=true", unmatched_rows_sql ]).rename(columns=lambda x: x.replace(".", "_")) ###Output _____no_output_____ ###Markdown This gives us about 522,000 unmatched rows, which is about 46,000 more than the overall row count discrepancy. That suggests that we're mostly talking about rows that don't appear at all in one dataset, not about rows that appear in both dataset but didn't match up.Out of these these unmatched rows, 96% are found only in `editor_month_new` and 4% only in `editor_month_official`. ###Code len(unmatched_rows) emn_only = unmatched_rows.query("~emn_wiki.isnull()") len(emn_only) emo_only = unmatched_rows.query("~emo_wiki.isnull()") len(emo_only) ###Output _____no_output_____ ###Markdown The rows found only in `editor_month_new` correspond to revisions [imported](https://www.mediawiki.org/wiki/Manual:Importing_XML_dumps) from one wiki to another. The number dropped substantially in the past few years, when `editor_month_official` was being periodically built a month after the fact (unlike the `mediawiki_history`, which is rebuilt completely every month). This suggests that these rows are at least partly a case of "history" being changed gradually after the fact. ###Code emn_only.groupby("emn_month")["emn_wiki"].count().plot(); ###Output _____no_output_____ ###Markdown Best viewed locally in a Jupyter notebook or online in Jupyter Notebook Viewer Analysis of Noun Semantics in the Hebrew Bible Cody KinghamIn this notebook, I compare the syntactic contexts of the top 200 most frequent nouns in the Hebrew Bible. This notebook essentially walks through my process and includes limited commentary throughout. Full descriptions borrowed from the paper will soon be transferred to here as well. ###Code ! echo "last updated:"; date from pathlib import Path # ETCBC's BHSA data from tf.fabric import Fabric from tf.app import use # stats & data-containers import collections, math, re, random, csv import pandas as pd pd.set_option('display.max_rows', 100) import numpy as np from kneed import KneeLocator # https://github.com/arvkevi/kneed # data visualizations import seaborn as sns import matplotlib.pyplot as plt from matplotlib import rcParams rcParams['font.serif'] = ['Times New Roman'] from bidi.algorithm import get_display from IPython.display import HTML, display, Image from adjustText import adjust_text # fixes overlapping scatterplot annotations # custom modules from pyscripts.contextparameters import deliver_params from pyscripts.deliver_data import deliver_data from pyscripts.pca import apply_pca, plot_PCA import pyscripts.significance as my_stats # prep the Hebrew syntax data name = 'noun_semantics' hebrew_data = ['~/github/etcbc/{}/tf/c'.format(direc) for direc in ('bhsa','lingo/heads', 'heads', 'phono')] # data dirs load_features = ''' typ phono lex_utf8 lex voc_lex_utf8 voc_lex gloss freq_lex pdp sp ls language rela number function vs vt code label head obj_prep sem_set nhead heads noun_heads ''' # Text Fabric load statements TF = Fabric(locations=hebrew_data) api = TF.load(load_features) B = use('bhsa', api=api, hoist=globals(), silent=True) # Bhsa functions for search and visualizing text # configure paths for figures and data plot_path = Path('results/plots/') table_path = Path('results/tables') fisher_data = table_path.joinpath('fisher_scores.csv') def savefig(name): plt.savefig(plot_path.joinpath(name), format='svg', bbox_inches='tight') def savecsv(name, df): df.to_csv(table_path.joinpath(name)) def reverse_hb(heb_text): ''' Reverses order of left-to-right text for good matplotlib formatting. ''' return ''.join(reversed(heb_text)) def show_word_list(word_nodes, joiner='&nbsp;&nbsp;|', title=''): ''' Displays Hebrew for a pipe-separated list of word nodes Good for seeing lexemes without taking up screen space. ''' formatted = joiner.join(T.text(node) for node in word_nodes) display(HTML(formatted)) def show_subphrases(phrase, direction=L.d): ''' A simple function to print subphrases and their relations to each other. ''' for sp in direction(phrase, 'subphrase'): mother = E.mother.f(sp)[0] if E.mother.f(sp) else '' mother_text = T.text(mother) print('-'*7 + str(sp) + '-'*16) print() print(f'{T.text(sp)} -{F.rela.v(sp)}-> {mother_text}') print(f'nodes: {sp} -{F.rela.v(sp)}-> {mother}') print(f'slots: {L.d(sp, "word")} -{F.rela.v(sp)}-> {L.d(mother or 0, "word")}') print('-'*30) ###Output _____no_output_____ ###Markdown Corpus SizeBelow is the number of words included in the corpus of BHSA. ###Code len(list(F.otype.s('word'))) ###Output _____no_output_____ ###Markdown Define a Target Noun Set*Insert discussion about the semantic relationship between iconicity and frequency with regards to the most frequent noun lexemes in the HB.* ###Code raw_search = ''' lex language=Hebrew sp=subs ''' raw_nouns = B.search(raw_search) ###Output 0.02s 3706 results ###Markdown Now we order the results on the basis of lexeme frequency. ###Code raw_terms_ordered = sorted(((F.freq_lex.v(res[0]), res[0]) for res in raw_nouns), reverse=True) ###Output _____no_output_____ ###Markdown Below we have a look at the top 50 terms from the selected set. Pay attention to the feature `ls`, i.e. "lexical set." This feature gives us some rudimentary semantic information about the nouns and their usual functions, and it suggests that some additional restrictions are necessary for the noun selection procedure. Note especially that several of these nouns are used in adjectival or prepositional roles (e.g. כל ,אחד, אין, תחת). ###Code raw_nnodes = [res[1] for res in raw_terms_ordered] # isolate the word nodes of the sample B.displaySetup(extraFeatures={'ls', 'freq_lex'}) # config B to display ls and freq_lex # display lexeme data for i, node in enumerate(raw_nnodes[:50]): print(T.text(node), end=' | ') ###Output כֹּל | בֵּן | אֱלֹהִים | מֶלֶךְ | אֶרֶץ | יֹום | אִישׁ | פָּנֶה | בַּיִת | עַם | יָד | דָּבָר | אָב | עִיר | אֶחָד | עַיִן | שָׁנָה | שֵׁם | עֶבֶד | אַיִן | אִשָּׁה | שְׁנַיִם | נֶפֶשׁ | כֹּהֵן | אַחַר | דֶּרֶךְ | אָח | שָׁלֹשׁ | לֵב | רֹאשׁ | בַּת | מַיִם | מֵאָה | הַר | גֹּוי | אָדָם | חָמֵשׁ | קֹול | תַּחַת | פֶּה | אֶלֶף | עֹוד | שֶׁבַע | צָבָא | קֹדֶשׁ | אַרְבַּע | עֹולָם | מִשְׁפָּט | שַׂר | שָׁמַיִם | ###Markdown Based on the nouns that are present, we should make some key exclusions. Many substantives have more functional or adjectival roles. Undesirable categories include copulative nouns (`nmcp`, e.g. אין), cardinal numbers (`card`), potential prepositions (`ppre`, e.g. תחת). The `ls` category of potential adverb (`padv`) contains desirable nouns like יום, but also more functionally adverbial-nouns like עוד. Thus we can see that there is a range of adverbial tendencies found in this category. Due to the potentially interesting possibility of seeing these tendencies play out in the data, we can decide to keep these instances. To be sure, the very phenomenon of "functional" versus "nominal" is worthy of further, quantitative investigation. The `ls` feature is an experimental and incomplete feature in the ETCBC, and this is precisely the kind of shortcoming this present work seeks to address. Nouns and adverbs likely sit along a sliding scale of adverbial tendencies, with adverbs nearly always functioning in such a role, and nouns exhibiting various statistical tendencies. But due to the scope of this investigation, we limit ourselves to mainly nominal words with a small inclusion of some adverbial-like substantives.We can eliminate more functional nouns by restricting the possible lexical set (`ls`) values. Below we apply those restrictions to the search template. In the case of certain quantifiers such as כל there is an `ls` feature of distributive noun (`nmdi`), yet this feature is likewise applied to nouns such as אח ("brother"). So it is undesirable to exclude all of these cases. Thus we depend, instead, on an additional filter list that excludes quantifiers.A few terms such as דרך and עבר are eliminated because the ETCBC labels it as a potential preposition. This is a speculative classification. So we define a seperate parameter in the template that saves this instance. ###Code exclude = '|'.join(('KL/', 'M<V/', 'JTR/', 'M<FR/', 'XYJ/')) # exclude quantifiers include = '|'.join(('padv', 'nmdi')) # ok ls features keep = '|'.join(('DRK/', '<BR/')) ''' Below is a TF search query for three cases: One is a lexeme with included ls features. The second is a lexeme with a null ls feature. The third is lexemes we want to prevent from being excluded. For all cases we exclude excluded lexemes. ''' select_noun_search = f''' lex language=Hebrew /with/ sp=subs ls={include} lex#{exclude} /or/ sp=subs ls# lex#{exclude} /or/ sp=subs lex={keep} /-/ ''' select_nouns = B.search(select_noun_search) noun_dat_ordered = sorted(((F.freq_lex.v(res[0]), res[0]) for res in select_nouns), reverse=True) nnodes_ordered = list(noun_dat[1] for noun_dat in noun_dat_ordered) filtered_lexs = list(node for node in raw_nnodes if node not in nnodes_ordered) print(f'\t{len(raw_nouns) - len(select_nouns)} results filtered out of raw noun list...') print('\tfiltered lexemes shown below:') show_word_list(filtered_lexs) ###Output 0.02s 3658 results 48 results filtered out of raw noun list... filtered lexemes shown below: ###Markdown Plot the Nouns in Order of FrequencyNow that we have obtained a filtered noun-set, we must decide a cut-off point at which to limit the present analysis. Below we plot the attested nouns and their respective frequencies. ###Code fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,4)) y_freqs = [lex_data[0] for lex_data in noun_dat_ordered] x_rank = [i+1 for i in range(0, len(y_freqs))] # second plot ax1.plot(x_rank[:1000], y_freqs[:1000], color='black', linewidth=1) ax1.set_xlabel('noun rank', size=10) ax1.set_ylabel('noun freq.', size=10) ax1.axvline(200, color='red', linewidth=0.8, linestyle='--') ax1.set_title('raw frequencies', size=10) # second plot log x log ax2.plot(np.log(x_rank[:1000]), np.log(y_freqs[:1000]), color='black', linewidth=1) ax2.set_xlabel('log noun rank', size=10) ax2.set_ylabel('log noun freq.', size=10) ax2.set_title('log frequencies', size=10) savefig('noun_frequencies1-1000.svg') ###Output _____no_output_____ ###Markdown These curves are typical of Zipf's law:> Zipf's law states that given some corpus of natural language utterances, the frequency of any word is inversely proportional to its rank in the frequency table ([wikipedia](https://en.wikipedia.org/wiki/Zipf%27s_law))The curve sharply "elbows" at around rank 15. Between ranks 50-100 there is still an appreciable drop-off. The curve starts to significantly flatten after 200. We thus decide an arbitrary cut-off point at rank 200, based on the fact that the curve does not show any significant leveling after this point. ###Code target_nouns = nnodes_ordered[:200] tnoun_instances = set(word for lex in target_nouns for word in L.d(lex, 'word')) show_word_list(target_nouns) # temporary comment out while bug is fixed print(f'\n{len(tnoun_instances)} nouns ready for searches') nouns_text_freqs = sorted( ((F.voc_lex_utf8.v(L.d(noun,'word')[0]), F.freq_lex.v(noun)) for noun in target_nouns), key=lambda k: k[-1], reverse=True ) ', '.join(f'{noun}' for noun, freq in nouns_text_freqs) ###Output _____no_output_____ ###Markdown Strategy for Context SelectionSee [pyscripts/contextparameters.py](pyscripts/contextparameters.py) for the full delineation of these patterns and to see how they've been selected and tokenized. ###Code contexts = deliver_params(tnoun_instances, tf=api) print('done!') context_data = deliver_data(contexts, tf=TF) ###Output running query on template [ T.function→ st.verb.lex ]... 19884 results found. running query on template [ T.prep.funct→ st.verb.lex ]... 15009 results found. running query on template [ lex.PreC→ T.Subj ]... 2525 results found. running query on template [ lex.prep.PreC→ T.Subj ]... 1136 results found. running query on template [ T.PreC→ lex.Subj ]... 930 results found. running query on template [ T.prep.PreC→ lex.Subj ]... 1504 results found. running query on template [ lex.coord→ T ]... 4217 results found. running query on template [ T.coord→ lex ]... 4336 results found. running query on template [ lex.atr→ T ]... 1588 results found. running query on template [ lex.coord→ T (phrase atoms) ]... 704 results found. running query on template [ T.coord→ lex (phrase atoms) ]... 600 results found. running query on template [ lex.appo→ T ]... 1410 results found. running query on template [ T.appo→ lex ]... 3640 results found. ###Markdown Let's have a look at the first example... ###Code context_data[0] ###Output _____no_output_____ ###Markdown Now we put the data into a dataframe. We also export the dataframe for reference. ###Code data_df = pd.DataFrame(context_data) data_df.set_index('clause', inplace=True) data_df.to_csv('dataset.csv') # export dataset data_df.head() ###Output _____no_output_____ ###Markdown Now we'll build the co-occurrence counts. ###Code raw_counts = pd.pivot_table( data_df, index='target', columns='basis', fill_value=0, aggfunc='size' ) # sort by size, first by noun sum, then by basis sum raw_counts = raw_counts.loc[raw_counts.sum(1).sort_values(ascending=False).index] raw_counts = raw_counts[raw_counts.sum().sort_values(ascending=False).index] raw_counts.head() ###Output _____no_output_____ ###Markdown Removing OutliersWe will apply two primary adjustments:1. We drop co-occurrences that are unique to a noun. The dropped observations will thus be considered outliers. While these items are useful for describing the uniqueness of a given lexeme, they are unhelpful for drawing comparisons between our sets. 2. We convert the counts into a measure of statistical significance. For this we use Fisher's exact test, which is ideal for datasets that have counts that are less than 5. Our matrix is likely to have many such counts. The resulting p-values, of which <0.05 represents a statistically significant colexeme, will be log-transformed. Values that fall below expected frequencies will be negatively transformed. ###Code raw_counts.sum(1).sort_values().head(10) ###Output _____no_output_____ ###Markdown We note that the term נאם only occurs 7 times in the entire datasetcompared with the other terms. We will therefore drop that term due toa lack of representative examples. Remove Co-occurrence OutliersWe will remove colexemes/bases that occur with only one target noun. This is done by subtracting the row total from each item in the row. Any 0 value in a row means that that row has a unique colexeme that only occurs with one target noun (we will call that a `hapax_colex` here). We willremove these rows further down. Drop the outliers ###Code # drop נאם and any context counts left empty as a result count_df = raw_counts.drop('נאם.n1', axis=0) empties = count_df.loc[:, (count_df == 0).all(0)] count_df = count_df.drop(empties.columns, axis=1) # drop all hapax legomena colex_counts = count_df.sum(0) remaining_counts = count_df.sub(colex_counts, axis=1) # subtract colex_counts hapax_colex = remaining_counts.loc[:,(remaining_counts == 0).any(0)] # select columns that have a 0 value anywhere count_df = count_df.drop(labels=hapax_colex.columns, axis=1) print(f'New data dimensions: {count_df.shape}') print(f'New total observations: {count_df.sum().sum()}') print(f'Observations removed: {raw_counts.sum().sum() - count_df.sum().sum()}') ###Output New data dimensions: (199, 4045) New total observations: 45424 Observations removed: 12059 ###Markdown Let's look at the sorted minimum values to make sure no terms have been left featureless. ###Code count_df.sum().sort_values().head(5) count_df.sum(1).sort_values().head(5) ###Output _____no_output_____ ###Markdown How many zero counts are there?The raw count matrix has a lot of sparsity. Here's how many zeros there are. We also count other values. ###Code # unique_values, value_counts = np.unique(data.values, return_counts=True) # unique_counts = pd.DataFrame.from_dict(dict(zip(unique_values, value_counts)), orient='index', columns=['count']) # display(HTML('<h5>Top 10 Unique Values and Their Counts in Dataset</h5>')) # unique_counts.head(10) # zero = unique_counts.loc[0.0][0] # non_zero = unique_counts[unique_counts.index > 0].sum()[0] # non_zero_ratio, zero_ratio = non_zero / (non_zero+zero), zero / (non_zero+zero) # print(f'Number of zero count variables: {zero} ({round(zero_ratio, 2)})') # print(f'Number of non-zero count variables: {non_zero} ({round(non_zero_ratio, 2)})') ###Output _____no_output_____ ###Markdown Below the number of observed counts is given: ###Code count_df.sum().sum() ###Output _____no_output_____ ###Markdown Data DistributionThe basic unit of analysis is the level of the clause. We have selected a subset of all clauses from the Hebrew Bible. Let's see if the observed frequencies within the dataset exist above or below the expected frequencies.If they are below, then how much so? ###Code from pyscripts.feature_formatting import book2sbl all_clauses = collections.Counter() for cl in F.otype.s('clause'): lang = F.language.v(L.d(cl,'word')[0]) if lang != 'Hebrew': continue book, chapter, verse = T.sectionFromNode(cl) book = book2sbl[book] all_clauses[book] += 1 expected_freq = pd.Series(all_clauses) expected_freq.head() # get samples from dataset sample_df = data_df.loc[ (data_df.target.isin(count_df.index)) & (data_df.basis.isin(count_df.columns)) ] # calculate deviation of proportions (Gries 2008; Levshina 2015) # for observed frequencies, we only want to consider each clause once # thus we create a dataframe that only keeps the first clause entry non_duplicated_clauses = sample_df[~sample_df.index.duplicated(keep='first')] observed_freq = non_duplicated_clauses.book.value_counts() observed_prop = observed_freq.div(observed_freq.sum()) expected_prop = expected_freq.div(expected_freq.sum()) deviation_prop = observed_prop - expected_prop ###Output _____no_output_____ ###Markdown Let's compare the overall number of clauses with observed clauses. ###Code # overall clauses expected_freq.sum() # observed clauses observed_freq.sum() ###Output _____no_output_____ ###Markdown Let's make that a proportion... ###Code observed_freq.sum() / expected_freq.sum() ###Output _____no_output_____ ###Markdown We see that our dataset consists of 32% of all clauses in the Hebrew Bible. This raises thefurther question. Have any particular books become over/under represented in the sample?We can answer this question by calculating the deviation of proportions (above), which tellshow much the observed proportions differ from the expected proportions.In this case, let total number of clauses in the Hebrew Bible be $NC$ and let the total numberof clauses in the sample be $SC$. We can obtain the deviation of proportions by doing the following:[add formula] Plot Book Representations in Sample ###Code fig, ax = plt.subplots(figsize=(8, 5)) observed_prop.sort_values().plot(kind='bar', ax=ax, color='lightgrey', edgecolor='black', linewidth=0.8) ax.grid(axis='y') ax.set_axisbelow(True) ax.axhline(0, color='black', linewidth=0.5) ax.set_ylim((0, 0.1)) ax.set_ylabel('observed ratio') ax.set_xlabel('book') savefig('sample_book_proportions.svg') ###Output _____no_output_____ ###Markdown Plot deviated proportions in sample from expected proportion (entire Hebrew Bible) ###Code fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(18, 3)) for ax in (ax1, ax2): deviation_prop.sort_values().plot(kind='bar', ax=ax, color='lightgrey', edgecolor='black', linewidth=0.8) ax.grid(axis='y') ax.set_axisbelow(True) ax.axhline(0, color='black', linewidth=0.5) ax.set_ylabel('deviation of sample ratio') ax.set_xlabel('book') ax1.set_title('sample deviation from expected ratio (at scale)') ax1.set_ylim((-1, 1)) ax2.set_title('sample deviation from expected ratio (zoomed)') savefig('sample_deviation_proportions.svg') deviation_prop.sort_values().head(10) deviation_prop.sort_values(ascending=False).head(10) ###Output _____no_output_____ ###Markdown Here we see 2% underpresentation of Isaiah, as well as some smaller representationof Psalms, Job, and Proverbs.In general, the underepresented portions are more poetic/prophetic in nature while morenarratival books are represented very slightly higher.Meanwhile there is a slightly higher sample of 2 Chronicles (1.3%) 1 Kings (1%) and Deuteronomy(1%).These differences are very small, and thus we can say that the sample dataset is essentially asevenly distributed as the original sample across the Hebrew Bible. Context Type DistributionLooking at the distribution of the various contexts ###Code context_counts = sample_df.context_type.value_counts() context_props = context_counts.div(context_counts.sum()) context_counts context_props fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(12, 5)) for ax, data in zip((ax1, ax2), (context_counts, context_props)): data.plot(kind='bar', ax=ax, color='white', edgecolor='black', linewidth=0.8, width=0.7) ax.grid(axis='y') ax.set_axisbelow(True) ax.axhline(0, color='black', linewidth=0.5) ax.set_xlabel('context') ax1.set_ylabel('count') ax2.set_ylabel('ratio') savefig('context_counts.svg') ###Output _____no_output_____ ###Markdown Look at function distribution ###Code function_count = sample_df.function.value_counts() function_prop = function_count.div(function_count.sum()) function_count function_prop fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10, 5)) for ax, data in zip((ax1, ax2), (function_count, function_prop)): data.plot(kind='bar', ax=ax, color='lightgrey', edgecolor='black', linewidth=0.8, width=0.6) ax.grid(axis='y') ax.set_axisbelow(True) ax.axhline(0, color='black', linewidth=0.5) ax.set_xlabel('context') ax1.set_ylabel('count') ax2.set_ylabel('proportion') savefig('function_counts.svg') ###Output _____no_output_____ ###Markdown Examining the DatasetBelow we look at the number of dimensions in the data: ###Code count_df.shape ###Output _____no_output_____ ###Markdown And number of observations.. ###Code count_df.size ###Output _____no_output_____ ###Markdown Apply Fisher's Exact TestNow we apply the Fisher's exact test to the data set. This involves supplying values to a 2x2 contingency table that is fed to `scipy.stats.fisher_exact` Number of Datapoints To Iterate OverThe Fisher's exact test takes some time to run. That is because it must iterate over a lot of pairs. The number is printed below. ###Code count_df.size ###Output _____no_output_____ ###Markdown Apply the TestsThe whole run takes 5.5-6.0 minutes on a 2017 Macbook pro. ###Code run = False if run: fisherdata, odds_ratios = my_stats.apply_fishers(count_df, sample_axis=0, feature_axis=1) fisherdata.to_csv(fisher_data) else: fisherdata = pd.read_csv(fisher_data, index_col=0) odds_ratios = pd.read_csv('results/tables/fisher_odds.csv') fisherdata.head(10) ###Output _____no_output_____ ###Markdown The Fisher's test has produced p-vales of 0, indicating a very high degree of attraction between lexemes and a colexemes. A log-transformed zero equals `infinity`. Below those values are isolated. ###Code inf_nouns = fisherdata[(fisherdata == np.inf).any(1) | (fisherdata == -np.inf).any(1)] inf_nouns ###Output _____no_output_____ ###Markdown In this case the Fisher's has returned a zero value. A p-value of 0 means that the likelihood אלהים and יהוה are *not* dependent variables is essentially null. We can thus reject the null hypothesis that the two values are not related. There is, rather, a maximum level of confidence that these two values *are* interrelated. The `np.inf` value that resulted from `log10(0)` is not viable for calculating vector distances. Thus, we need to substitute an arbitrary, but appropriate value. Below we access the lowest non-zero p-values in the dataset. ###Code fisherdata.max().sort_values(ascending=False) ###Output _____no_output_____ ###Markdown The largest non-infinite value is ~189. We make the substitution below. ###Code # set the infinite context equal to max non-infinite value fisherdata.loc['אלהים.n1']['T.appo→ יהוה.n1'] = fisherdata.max().sort_values(ascending=False)[1] ###Output _____no_output_____ ###Markdown Below we double to check to ensure that all infinitive values have been removed. The test should read `False`. ###Code # infinites in dataset? bool(len(fisherdata[(fisherdata == np.inf).any(1)].index)) fisherdata.loc[:, (fisherdata > 50).any()] ###Output _____no_output_____ ###Markdown Examine the Spread of Fisher ScoresThe scores vary widely, and it seems that some relations are unduly influencing the model. ###Code scores = pd.Series(fisherdata.values.flatten()) scores = scores[scores != 0] scores.shape fig, ax = plt.subplots(figsize=(8, 5)) scores.plot(kind='box', ax=ax) ax1.set_xticklabels(['Fisher score']) # zoom on scores between -2 and 4 # +/-log10(0.5) = +/- 1.3 fig, ax = plt.subplots(figsize=(8, 5)) scores[(scores > -2) & (scores < 4)].plot(kind='box', ax=ax) ax.set_xticklabels(['Fisher score']) plt.show() fig, (ax1, ax2, ax3) = plt.subplots(1, 3, figsize=(18, 5)) sns.distplot(scores, ax=ax1) ax1.set_title('log10 Fisher scores distribution\n', size=10) ax1.set_xlabel('log10 Fisher scores') subset_scores = scores[(scores < 10) & (scores > -5)] sns.distplot(subset_scores, ax=ax2) ax2.set_xlabel('log10 Fisher scores') ax2.set_title('log10 Fisher scores distribution\nwhere -5 < score < 10', size=10) subset_scores.plot(kind='box', ax=ax3) ax3.set_xticklabels(['log10 Fisher -5 < score < 10']) savefig('fisher_score_dist.svg') plt.show() ###Output _____no_output_____ ###Markdown Note that the vast majority of the data falls between a score of $-2$ to $5$. ###Code extreme_values = ((fisherdata > -2) & (fisherdata < 5)).any() extreme_values.size extreme_values fisherdata.loc[:,extreme_values].T.head(20) fisherdata.columns.size ###Output _____no_output_____ ###Markdown Adjust scores ###Code fish_mean = fisherdata.copy() def replace_score(score): if score < -2: return -2 elif score > 5: return 5 else: return score fish_mean = fisherdata.apply(lambda x: pd.Series(replace_score(y) for y in x), result_type='broadcast') fish_mean fish_capped = fisherdata.copy() def replace_score(score): if score < -1.3: return -1.3 elif score > 1.3: return 1.3 else: return score fish_capped = fish_capped.apply(lambda x: pd.Series(replace_score(y) for y in x), result_type='broadcast') fish_capped.head() ###Output _____no_output_____ ###Markdown Comparing the NounsThe nouns are now ready to be compared.Principle Component Analysis — We have a semantic space with ~4k dimensions. That is a lot of potential angles from which to compare the vectors. One method that is commonly used in semantic space analysis is principle component analysis or **PCA**. PCA is a dimensionality reduction method that reduce a multi-dimensional vector to the two points in an imagined space that show the most distance between the nouns. We can visualize said space by plotting the two points on an X and Y axis. PCA AnalysisWe want to apply PCA in order to plot nouns in an imaginary space. The goal is to use the visualization to identify patterns and groups amongst the 199 target nouns. Nouns that are more similar should fall within the same general areas relative to the origin (0, 0). PCA seeks to identify the maximum variance amongst the vector spaces. Fisher with adjusted max/min scores ###Code def plot_nouns(df, ax, family='serif', weight='heavy', **kwargs): for noun in df.index: x,y = df.loc[noun] lex, sp = noun.split('.') noun_text = get_display(lex).replace('\u05C1','') ax.text(x, y, noun_text, family=family, weight=weight, **kwargs) # store PCA experiments by normalization type exp2pca = collections.defaultdict(dict) experiments = { 'fish_raw': fisherdata, 'fish_capped': fish_capped, 'fish_mean': fish_mean, } for exp_name, data in experiments.items(): print(exp_name) pca_df, loadings_df = apply_pca( data, sample_axis=0, feature_axis=1, components=5 ) exp2pca[exp_name]['pca'] = pca_df.loc[:, :'PC2'] exp2pca[exp_name]['loadings'] = loadings_df.iloc[:2].T fig, axes = plt.subplots(1, 3, figsize=(18,5)) for x, ax in zip(exp2pca, axes): pca_df = exp2pca[x]['pca'] ax.scatter(pca_df['PC1'], pca_df['PC2'], s=10, color='', edgecolor='black') ax.axhline(0, linewidth=0.7, color='black') ax.axvline(0, linewidth=0.7, color='black') ax.set_title(x) fig, axes = plt.subplots(1, 3, figsize=(20,5)) for x, ax in zip(exp2pca, axes): pca_df = exp2pca[x]['pca'] ax.scatter(pca_df['PC1'], pca_df['PC2'], s=11, color='') plot_nouns(pca_df, ax, size=8) ax.axhline(0, linewidth=0.7, color='black') ax.axvline(0, linewidth=0.7, color='black') ax.set_title(x) savefig('pca_text.svg') ###Output _____no_output_____ ###Markdown Examining Fish Mean ###Code fm_pca = exp2pca['fish_mean']['pca'] fm_loads = exp2pca['fish_mean']['loadings'] fm_pca_subset = fm_pca.loc[fm_pca.abs().max(1) < 11] fig, ax = plt.subplots(figsize=(8,8)) ax.scatter(fm_pca_subset['PC1'], fm_pca_subset['PC2'], s=11, color='') plot_nouns(fm_pca_subset, ax) ax.axhline(0, linewidth=0.7, color='black') ax.axvline(0, linewidth=0.7, color='black') savefig('pca_fish_mean_zoomed.svg') ###Output _____no_output_____ ###Markdown Quadrant I ###Code # terms in Q1 def sort_on_mean(df, axis=1): """Sort on the mean of the absolute value across rows""" return df.loc[df.abs().mean(axis).sort_values(ascending=False).index] def get_quad(bound1, bound2, sort=True): words = fm_pca[(bound1) & (bound2)] if sort: words = sort_on_mean(words) return words quad_1 = get_quad(fm_pca.PC1 > 0, fm_pca.PC2 > 0) quad_1 # influences on Q1 def get_qloads(bound1, bound2, sort=True): loads = fm_loads[(bound1) & (bound2)] if sort: loads = sort_on_mean(loads) return loads q1_loads = get_qloads(fm_loads[1] > 0, fm_loads[2] > 0) q1_loads.head(20) # sort by influence on PC2 q1_loads.sort_values(by=2, ascending=False).head(10) ###Output _____no_output_____ ###Markdown Quadrant IV ###Code quad_4 = get_quad(fm_pca.PC1 > 0, fm_pca.PC2 < 0) quad_4 q4_loads = get_qloads(fm_loads[1] > 0, fm_loads[2] < 0) q4_loads.head(20) ###Output _____no_output_____ ###Markdown Quadrant II ###Code quad_2 = get_quad(fm_pca.PC1 < 0, fm_pca.PC2 > 0) quad_2 q2_loads = get_qloads(fm_loads[1] < 0, fm_loads[2] > 0) q2_loads.head(20) ###Output _____no_output_____ ###Markdown Quadrant III ###Code quad_3 = get_quad(fm_pca.PC1 < 0, fm_pca.PC2 < 0) quad_3.head(40) q3_loads = get_qloads(fm_loads[1] < 0, fm_loads[1] < 0) q3_loads.head(20) # what of JWM? # raw log10 fisher scores below fisherdata.loc['יום.n1'].sort_values(ascending=False).head(20) ###Output _____no_output_____ ###Markdown Alicia [email protected] 12/03/17 Discourse Analysis of the Australian Radio Talkback CorpusThis file starts where [process-art-corpus.ipynb](https://github.com/Data-Science-for-Linguists/Discourse-Analysis-ART-Corpus/blob/master/process-art-corpus.ipynb) left off, and is the analysis portion of this project. Table of Contents- [About the Data](about-the-data)- [Reading in Data Frames](reading-in-data-frames) - [Data Frames Summary](data-frames-summary) - [Splitting Speakers by Role](splitting-speakers-by-role) - [All Presenters](all-presenters)- [Distribution of Speakers](distribution-of-speakers) - [How many Speakers are there for each Role?](how-many-speakers-are-there-for-each-role) - [How many Males vs. Females?](how-many-males-vs-females?) - [How are Males and Females distributed across Roles?](wow-are-males-and-females-distributed-across-roles) - [Gender Equality](gender-equality)- [Comparison by Speaker Type](comparison-by-speaker-type) - [Analysis](analysis)- [Comparison by Gender](comparison-by-gender)- [Back Channels](back-channels) - [What are the Back Channels? Which ones are most common?](what-are-the-back-channels-which-ones-are-most-common) - [What Speaker Type has the most Back Channels?](what-speaker-type-has-the-most-back-channels) - [What Speaker Type has the most number of Back Channels uttered during their lines?](what-speaker-type-has-the-most-number-of-back-channels-uttered-during-their-lines) - [What Gender utters the most Back Channels?](what-gender-utters-the-most-back-channels) - [What Gender has the most Back Channels uttered while they are speaking?](what-gender-has-the-most-back-channels-uttered-while-they-are-speaking) - [Are Men more likely to utter Back Channels when a Women or Man is speaking? How about the other way around?](are-men-more-likely-to-utter-back-channels-when-a-women-or-man-is-speaking-how-about-the-other-way-around) - [How do Male and Female Most Common Back Channels Compare?](how-do-male-and-female-most-common-back-channels-compare)- [Presenter Gender Analysis](presenter-gender-analysis) - [Making Data Frames](making-data-frames) - [Presenter Distribution](presenter-distribution) - [Presenter Gender Statistics](presenter-gender-statistics)- [Caller Gender Back Channel Analysis](caller-gender-back-channel-analysis) - [Data Frame of Caller Back Channels](data-frame-of-caller-back-channels) - [Data Frame of Caller Lines with Back Channels](data-frame-of-caller-lines-with-back-channels) - [How Gender Alone Affects Back Channels](how-gender-alone-affects-back-channels)- [Conclusion](conclusion) About the Data- 27 transcribed recordings of samples of national, regional and commercial Australian talkback radio from 2004 to 2006.- *raw files* and text files- Closed Data ###Code %pprint from IPython.core.interactiveshell import InteractiveShell InteractiveShell.ast_node_interactivity = "all" import nltk import pandas as pd # visualization tools import matplotlib as mpl import matplotlib.pyplot as plt plt.style.use('classic') ###Output _____no_output_____ ###Markdown Reading in Data Frames ###Code # reading in data frames speaker_df=pd.read_csv("data_files/Speakers.csv") art_df=pd.read_csv("data_files/Texts.csv") bk_df=pd.read_csv("data_files/Back_Channels.csv") # speaker_df.head() # art_df.head() # bk_df.head() ###Output _____no_output_____ ###Markdown Data Frames Summary- speaker_df - data frame of all unique speakers- art_df - data frame of each line of text- bk_df - data frame of all back channels ###Code # modifying data frame column names speaker_df.columns = ["Speaker","Segment","Speaker_Type","Gender","Name","Number_of_Utterances"] speaker_df = speaker_df.set_index("Speaker") print("Speaker Data Frame:") speaker_df.head() art_df.columns = ["Speaker","Utterance_Number","Segment","Speaker_Type","Gender","Text","Word_Toks","Num_Words","Avg_Word_Length","Sents","Num_Sents"] art_df = art_df.set_index(keys=["Speaker","Utterance_Number"]) print("Lines of Text Data Frame:") art_df.head() bk_df.columns = ["","Speaker","Speaker_Type","Speaker_Gender","Back_Channel","Line_Speaker","Segment_Utterance_Number","Segment","Line_Speaker_Type","Line_Speaker_Gender"] bk_df = bk_df.set_index("") print("Back Channel Data Frame:") bk_df.head() ###Output Speaker Data Frame: ###Markdown Splitting Speakers by Role ###Code # dataframe of presenters P_df=speaker_df.loc[speaker_df["Speaker_Type"]=='P',:] # dataframe of callers C_df=speaker_df.loc[speaker_df["Speaker_Type"]=='C',:] # dataframe of experts E_df=speaker_df.loc[speaker_df["Speaker_Type"]=='E',:] ###Output _____no_output_____ ###Markdown All Presenters ###Code P_df ###Output _____no_output_____ ###Markdown Distribution of Speakers How many Speakers are there for each Role?- 31 Presenters- 362 Callers- 37 Experts ###Code # Number of Speakers per Role figure=speaker_df["Speaker_Type"].value_counts().reindex(["P","C","E"]).plot.bar() speaker_df["Speaker_Type"].value_counts().reindex(["P","C","E"]) plt.title("Number of Speakers per Role") plt.xlabel("Speaker Type") plt.ylabel("Number of Speakers") plt.show() # saving the figure figure.figure.savefig("images/role_totals.png") ###Output _____no_output_____ ###Markdown There are a lot of Callers, but very few Presenters and Experts in the corpus. This is because many Callers call in during the show, while Presenters and Experts have a more steady position in each show. How many Males vs. Females?- 218 Males- 212 FemalesNumber of Males and Females are about equal with slightly more Males. ###Code figure=speaker_df["Gender"].value_counts().reindex(["M","F"]).plot.bar() speaker_df["Gender"].value_counts().reindex(["M","F"]) plt.title("Number of Males and Females") plt.xlabel("Gender") plt.ylabel("Number of Speakers") plt.show() # saving the figure figure.figure.savefig("images/gender_totals.png") ###Output _____no_output_____ ###Markdown How are Males and Females distributed across Roles? ###Code # Presenters: fig1 = P_df["Gender"].value_counts().reindex(["M","F"]).plot.bar() P_df["Gender"].value_counts().reindex(["M","F"]) plt.title("Male vs. Female Presenters") plt.xlabel("Gender") plt.ylabel("Number of Speakers") plt.show() # saving the figure fig1.figure.savefig("images/presenter_genders.png") # Callers: fig2 = C_df["Gender"].value_counts().reindex(["M","F"]).plot.bar() C_df["Gender"].value_counts().reindex(["M","F"]) plt.title("Male vs. Female Callers") plt.xlabel("Gender") plt.ylabel("Number of Speakers") plt.show() # saving the figure fig2.figure.savefig("images/caller_genders.png") # Experts: fig3 = E_df["Gender"].value_counts().reindex(["M","F"]).plot.bar() E_df["Gender"].value_counts().reindex(["M","F"]) plt.title("Male vs. Female Experts") plt.xlabel("Gender") plt.ylabel("Number of Speakers") plt.show() # saving the figure fig3.figure.savefig("images/expert_genders.png") ###Output _____no_output_____ ###Markdown Gender Equality**Ratio of Gender by Role (Male : Female):**- Presenters: 2.1 : 1- Callers: .895 : 1- Experts: 2.36: 1There are about twice as many Male Presenters and Experts as compared to Females, but about equal numbers of Male and Female Callers, with slightly more Females.**Conclusion:** Presenters and Experts are predominantly Male and Callers are more equally distributed but with more Females than Males.Presenters are the show's hosts, hired by the program. Experts are professionals talking about their line of work. Callers however can be anyone who calls the radio station. Presenters and Experts are the people chosen by the radio to talk, and they are mostly males. Why are there more men than women working in this radio station? Is radio a generally predominantly male industry across the US?**Further Analysis Needed:** I will do further research and analysis on gender equality before making conclusions about the Australian Radio Talkback Corpus. Comparison by Speaker Type- Number of Turns- Number of Sentences- Number of Words- Average Word Length- Average Sentence Length- Average Number of Turns ###Code # Comparing Presenter, Caller, and Expert Data Frames # this gives a table of all the information P_df.describe() C_df.describe() E_df.describe() # SHOULD THIS SUMMARY BE HERE OR IN THE MARKDOWN CELL BELOW? print("Summary of Important Information:") print("Presenters:") print("Total Number of Turns:\t",str(P_df["Number_of_Utterances"].sum())) # 1470 print("Average Number of Turns:",str(P_df["Number_of_Utterances"].mean())) # 122.5 print("Standard Deviation:\t",str(P_df["Number_of_Utterances"].std())) # 129.38 print("\nCallers:") print("Total Number of Turns:\t",C_df["Number_of_Utterances"].sum()) # 1505 print("Average Number of Turns:",str(C_df["Number_of_Utterances"].mean())) # 11.23 print("Standard Deviation:\t",str(C_df["Number_of_Utterances"].std())) # 7.97 print("\nExperts:") print("Total Number of Turns:\t",str(E_df["Number_of_Utterances"].sum())) # 1464 print("Average Number of Turns:",str(E_df["Number_of_Utterances"].mean())) # 91.5 print("Standard Deviation:\t",str(E_df["Number_of_Utterances"].std())) # 86.82 # data frames for Presenter, Caller, and Expert Lines P_art_df=art_df.loc[art_df["Speaker_Type"]=='P',:] C_art_df=art_df.loc[art_df["Speaker_Type"]=='C',:] E_art_df=art_df.loc[art_df["Speaker_Type"]=='E',:] # Presenter vs. Caller vs. Experts # utterances print("Turns:") art_df["Speaker_Type"].value_counts().reindex(["P","C","E"]) # sentences print("Number of Sentences:") P_art_df["Num_Sents"].sum() C_art_df["Num_Sents"].sum() E_art_df["Num_Sents"].sum() # words print("Number of Words:") P_art_df["Num_Words"].sum() C_art_df["Num_Words"].sum() E_art_df["Num_Words"].sum() # avg word length print("Average Word Length:") P_art_df["Avg_Word_Length"].mean() C_art_df["Avg_Word_Length"].mean() E_art_df["Avg_Word_Length"].mean() # avg sent length print("Average Sentence Length:") P_art_df["Num_Words"].sum()/P_art_df["Num_Sents"].sum() C_art_df["Num_Words"].sum()/C_art_df["Num_Sents"].sum() E_art_df["Num_Words"].sum()/E_art_df["Num_Sents"].sum() print("Average Number of Turns:") P_df["Number_of_Utterances"].mean() C_df["Number_of_Utterances"].mean() E_df["Number_of_Utterances"].mean() ###Output Turns: ###Markdown AnalysisSummary of Numbers Above:- Total Number of Turns: - Presenters > Callers > Experts - Total Number of Sentences: - Presenters > Callers > Experts- Total Number of Words: - Experts > Presenters > Callers- Average Word Length: - About Equal- Average Sentence Length: - Expert > Caller > Presenter - Presenter and Callers are about equal - Average Number of Turns: - Presenters > Experts > CallersImportant Discoveries:- More Callers with fewer turns- Fewer Presenters with more turns- Experts have the longest sentencesOn average, Presenters speak the most throughout the Australian Radio Talkback Corpus. There are many Callers in each show, but they do not speak for very long. The Presenters probably talk the most because they are leading the show. Across the corpus, **the Presenters have the most turns and sentences, followed by Callers and then Experts.** Average sentence length is much more indicative of speaker type than word length. Based on the Australian Radio Talkback Corpus, **Experts' sentences are the longest** with an average of about 23 words per sentence, while Callers have on average 17 words per sentence and Presenters about 16 words per sentence. Without a statistical analysis, I cannot be certain whether or not this finding is significant for this data. However, this finding makes sense, because Experts will talk at length about their topic, so they may have longer, more complicated sentences. Comparison by Gender- Number of Turns- Number of Sentences- Number of Words- Average Word Length- Average Sentence Length- Average Number of Turns ###Code # Males vs. Females # utterances print("Utterances:") art_df["Gender"].value_counts().reindex(["M","F"]) # data frames for male and female lines M_art_df=art_df.loc[art_df["Gender"]=='M',:] F_art_df=art_df.loc[art_df["Gender"]=='F',:] # sentences print("Number of Sentences:") M_art_df["Num_Sents"].sum() F_art_df["Num_Sents"].sum() # words print("Number of Words:") M_art_df["Num_Words"].sum() F_art_df["Num_Words"].sum() # avg word length print("Average Word Length:") M_art_df["Avg_Word_Length"].mean() F_art_df["Avg_Word_Length"].mean() # avg sent length print("Average Sentence Length:") M_art_df["Num_Words"].sum()/M_art_df["Num_Sents"].sum() F_art_df["Num_Words"].sum()/F_art_df["Num_Sents"].sum() # building male and female data frames from speaker_df M_df=speaker_df.loc[speaker_df["Gender"]=='M',:] F_df=speaker_df.loc[speaker_df["Gender"]=='F',:] print("Average Number of Turns:") M_df["Number_of_Utterances"].mean() F_df["Number_of_Utterances"].mean() ###Output Utterances: ###Markdown Summary of Key Information:- Number of Turns: - Males > Females- Number of Sentences: - Males > Females- Number of Words: - Males > Females- Average Word Length: - About Equal- Average Sentence Length: - Males > Females- Average Number of Turns: - Males > Females As previously stated, Presenters and Experts are predominantly male, while Callers have slightly more Females. Thus, men are in roles that talk more throughout the corpus, meaning that **men have more opportunities to talk in the corpus because of their roles.** Back Channels What are the Back Channels? Which ones are most common? ###Code bk_df["Back_Channel"].value_counts()[:20] bk_df["Back_Channel"].value_counts()[-20:] figure = bk_df["Back_Channel"].value_counts()[:20].plot.bar() plt.title("Top 20 Back Channels") plt.xlabel("Back Channel") plt.ylabel("Number of Occurances") plt.show() # saving the figure figure.figure.savefig("images/top_20_back_channels.png") ###Output _____no_output_____ ###Markdown Unfortunately, a lot of the back channels were inaudible, with 303 being inaudible. However, the top back channels make sense and I do not expect that having the inaudible utterances would impact the results greatly.Laughter is marked as plural and singlular because when 2 speakers laughed at the same time, the format was . ###Code # What speakers uttered the most Back Channels? bk_df["Speaker"].value_counts()[:20] ###Output _____no_output_____ ###Markdown What Speaker Type has the most Back Channels? ###Code # number of back channels per speaker type bk_df["Speaker_Type"].value_counts().reindex(["P","C","E"]) figure = bk_df["Speaker_Type"].value_counts().reindex(["P","C","E"]).plot.bar() plt.title("Back Channels by Speaker Type") plt.xlabel("Speaker Type") plt.ylabel("Number of Back Channels") plt.show() # saving the figure figure.figure.savefig("images/back_channel_speaker_types.png") ###Output _____no_output_____ ###Markdown Callers (closely followed by Presenters) utter the most Back Channels.**Conclusions:** - There are many Callers with few lines each, so they're constantly hearing new information upon being introduced to the show.- Presenters stay throughout the entire show, so they have plenty of opportunities to utter back channels.- Experts have the fewest number of turns and sentences, and their biggest purpose is to explain a complicated topic. This means that the other speakers will be uttering more back channels for the complicated topics. What Speaker Type has the most number of Back Channels uttered during their lines? ###Code bk_df["Line_Speaker_Type"].value_counts().reindex(["P","C","E"]) figure = bk_df["Line_Speaker_Type"].value_counts().reindex(["P","C","E"]).plot.bar() plt.title("Back Channels by Line Speaker Type") plt.xlabel("Line Speaker Type") plt.ylabel("Number of Back Channels") plt.show() # saving the figure figure.figure.savefig("images/back_channel_line_speaker_types.png") ###Output _____no_output_____ ###Markdown Presenter Lines have the most number of Back Channels, closely followed by Expert Lines. There are over 1000 fewer Caller lines containing back channels. I believe Experts and Presenters have more back channels uttered while they are talking, because:- Experts have the longest sentences and are giving detailed information for many of their lines, so Presenters and Callers would utter back channels to show they are listening (and maybe understanding).- Presenters are taking many turns and uttering more sentences, so there is more information coming from the Presenters.**Potential Conclusion:** More turns and sentences and longer sentences lead to more back channels. What Gender utters the most Back Channels?For my back channel gender analysis, please visit my [Final Report](https://github.com/Data-Science-for-Linguists/Discourse-Analysis-ART-Corpus/blob/master/final_report.md72-kieran-snyder-men-interrupt-more-than-women) for information about the Language Log article [*Men Interrupt More Than Women*](http://languagelog.ldc.upenn.edu/nll/?p=13422) by Kieran Snyder. ###Code # number of back channels per gender bk_df["Speaker_Gender"].value_counts().reindex(["M","F"]) figure = bk_df["Speaker_Gender"].value_counts().reindex(["M","F"]).plot.bar() plt.title("Back Channels by Speaker Gender") plt.xlabel("Speaker Gender") plt.ylabel("Number of Back Channels") plt.show() # saving the figure figure.figure.savefig("images/back_channel_speaker_genders.png") ###Output _____no_output_____ ###Markdown What Gender has the most Back Channels uttered while they are speaking? ###Code # number of lines with back channels per gender bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) figure = bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]).plot.bar() plt.title("Back Channels by Line Speaker Gender") plt.xlabel("Line Speaker Gender") plt.ylabel("Number of Back Channels") plt.show() # saving the figure figure.figure.savefig("images/back_channel_line_speaker_genders.png") ###Output _____no_output_____ ###Markdown **Conclusion:** Men produced more back channels, and more back channels were uttered while they were talking. Are Men more likely to utter Back Channels when a Women or Man is speaking? How about the other way around? ###Code # Male Back Channels M_bk_df=bk_df.loc[bk_df["Speaker_Gender"]=='M',:] # Female Back Channels F_bk_df=bk_df.loc[bk_df["Speaker_Gender"]=='F',:] # peaking at the data frames M_bk_df.head() F_bk_df.head() print("The Gender of the Line's Speaker during All Instances of Male Back Channels:") M_bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) print("The Gender of the Line's Speaker during All Instances of Female Back Channels:") F_bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) # creating bar graphs fig1 = M_bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]).plot.bar() plt.title("Male Back Channels by Line Speaker Gender") plt.xlabel("Line Speaker Gender") plt.ylabel("Number of Back Channels") plt.show() fig2 = F_bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]).plot.bar() plt.title("Female Back Channels by Line Speaker Gender") plt.xlabel("Line Speaker Gender") plt.ylabel("Number of Back Channels") plt.show() # saving the figures fig1.figure.savefig("images/male_back_channel_line_speaker_genders.png") fig2.figure.savefig("images/female_back_channel_line_speaker_genders.png") ###Output The Gender of the Line's Speaker during All Instances of Male Back Channels: ###Markdown **Conclusion:** *Men* produce more Back Channels when *other men* are talking, and *Women* produce slightly more back channels when *other women* are talking. How do Male and Female Most Common Back Channels Compare? ###Code # Most Common Male and Female Back Channels print("Most Common Male Back Channels:") M_bk_df["Back_Channel"].value_counts()[:20] print("Most Common Female Back Channels:") F_bk_df["Back_Channel"].value_counts()[:20] # creating graphs fig1 = M_bk_df["Back_Channel"].value_counts()[:10].plot.bar() plt.title("Top 10 Male Back Channels") plt.xlabel("Back Channel") plt.ylabel("Number of Back Channels") plt.show() fig2 = F_bk_df["Back_Channel"].value_counts()[:10].plot.bar() plt.title("Top 10 Female Back Channels") plt.xlabel("Back Channel") plt.ylabel("Number of Back Channels") plt.show() # saving the figures fig1.figure.savefig("images/top_10_male_back_channels.png") fig2.figure.savefig("images/top_10_female_back_channels.png") ###Output Most Common Male Back Channels: ###Markdown Female and Male Back Channels appear to be about the sameNext Question: How does Speaker Type Affect Men and Women's Back Channels? Presenter Gender Analysis ###Code # Presenter Data Frame: P_df P_df["Name"].value_counts().sum() len(P_df["Name"].unique()) ###Output _____no_output_____ ###Markdown Making Data Frames ###Code # Male and Female Presenter Data Frames: M_P_df=P_df.loc[P_df["Gender"]=='M',:] F_P_df=P_df.loc[P_df["Gender"]=='F',:] M_P_df F_P_df print("Number of Uninque Male IDs:") M_P_df["Name"].value_counts().sum() print("Number of Unique Male Presenters") len(M_P_df["Name"].unique()) print("Number of Uninque Female IDs:") F_P_df["Name"].value_counts().sum() print("Number of Unique Female Presenters") len(F_P_df["Name"].unique()) ###Output _____no_output_____ ###Markdown Presenter Distribution- 31 Unique Speaker Ids - 21 Male Ids - 10 Female Ids- 25 Unique Speakers - 15 Males - 10 Females There are 10 unique Female IDs and 10 unique Female Presenters - **no Female presents twice.**There are 21 unique Male IDs and 15 unique Male Presenters - Multiple Males present twice and 1 presents 3 times.Therefore there are not only are **more males hired by the show,** but **only males presesnt multiple times.** ###Code # Male and Female Presenter Lines Data Frames: M_P_art_df=P_art_df.loc[P_art_df["Gender"]=='M',:] F_P_art_df=P_art_df.loc[P_art_df["Gender"]=='F',:] M_P_art_df.head() F_P_art_df.head() ###Output _____no_output_____ ###Markdown Presenter Gender Statistics ###Code # utterances print("Number of Utterances:") P_art_df["Gender"].value_counts().reindex(["M","F"]) # sentences: print("Number of Sentences:") M_P_art_df["Num_Sents"].sum() F_P_art_df["Num_Sents"].sum() # words print("Number of Words:") M_P_art_df["Num_Words"].sum() F_P_art_df["Num_Words"].sum() # avg word length print("Average Word Length:") M_P_art_df["Avg_Word_Length"].mean() F_P_art_df["Avg_Word_Length"].mean() # avg sent length print("Average Sentence Length:") M_P_art_df["Num_Words"].sum()/M_P_art_df["Num_Sents"].sum() F_P_art_df["Num_Words"].sum()/F_P_art_df["Num_Sents"].sum() print("Average Number of Turns:") M_P_df["Number_of_Utterances"].mean() F_P_df["Number_of_Utterances"].mean() ###Output Number of Utterances: ###Markdown Because there are about twice as many Male Presenters as Female Presenters, I cannot compare their raw scores directly. However, looking looking at Average Word Length, Average Sentence Length, and Average Number of Turns, it seems that Women talk more on average than Men, because **Females have a longer average sentence length and more number of turns.** Caller Gender Back Channel AnalysisI can look at Caller Gender Back Channels to compare back channels by gender in a more equal distribution of males and females. Data Frame of Caller Back Channels ###Code # Caller's saying back channels print("Callers Uttering Back Channels:") C_bk_df=bk_df.loc[bk_df["Speaker_Type"]=='C',:] C_bk_df.head() print("All Instances of Male and Female Callers Contributing Back Channels:") C_bk_df["Speaker_Gender"].value_counts().reindex(["M","F"]) print("All Male and Female Lines that Contained Caller Back Channels") C_bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) ###Output All Instances of Male and Female Callers Contributing Back Channels: ###Markdown **Observations:** - Female Callers uttered twice as many back channels as compared to Male Callers.- More Females Lines had Caller Back Channels.**Conclusion:** *Female Callers* utter more back channels and have more back channels uttered while they are talking as compared to Male callers. Data Frame of Caller Lines with Back Channels ###Code # Caller lines that include back channels print("Caller Lines that Include Back Channels:") C_line_bk_df=bk_df.loc[bk_df["Line_Speaker_Type"]=='C',:] C_line_bk_df.head() print("All Caller Lines that Contained Back Channels (by Any Speaker Type):") C_line_bk_df["Speaker_Gender"].value_counts().reindex(["M","F"]) print("All Instances of Male and Female Caller Lines that Contained Back Channels:") C_line_bk_df["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) ###Output All Caller Lines that Contained Back Channels (by Any Speaker Type): ###Markdown **Observations**- Of the Caller Lines that contained Back Channels, more of those back channels came from Males. - **Conclusion:** *Males* are more likely to contribute a back channel to a *Caller* than Females are.- Of the Caller Lines that contained Back Channels, more Female Caller Lines contained back channels. - **Conclusion:** *Speakers* are more likely to contribute a back channel to a *Female Caller* than a Male Caller. The real question is: **Are Male and Female Callers contributing more back channels to speakers of the same gender or different genders?** How Gender Alone Affects Back ChannelsBecause Callers are about equally male and female, I can negate the affect of the speaker role. Thus, this analysis shows the affect of *gender* instead of a combination of gender and speaker type. ###Code print("Male Callers Uttering Back Channels during Male and Female Lines:") # Back Channels by Male Callers CM=C_bk_df.loc[(C_bk_df["Speaker_Gender"]=='M') & (C_bk_df["Speaker_Type"]=="C"),:] # uttered during Male and Female Lines CM["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) print("Female Callers Uttering Back Channels during Male and Female Lines:") # Back Channels by Female Callers CF=C_bk_df.loc[(C_bk_df["Speaker_Gender"]=='F') & (C_bk_df["Speaker_Type"]=="C"),:] # uttered during Male and Female Lines CF["Line_Speaker_Gender"].value_counts().reindex(["M","F"]) # creating bar graphs fig1 = CM["Line_Speaker_Gender"].value_counts().reindex(["M","F"]).plot.bar() plt.title("Male Caller Back Channels by Line Speaker Gender") plt.xlabel("Line Speaker Gender") plt.ylabel("Number of Back Channels") plt.show() fig2 = CF["Line_Speaker_Gender"].value_counts().reindex(["M","F"]).plot.bar() plt.title("Female Caller Back Channels by Line Speaker Gender") plt.xlabel("Line Speaker Gender") plt.ylabel("Number of Back Channels") plt.show() # saving the figures fig1.figure.savefig("images/male_caller_back_channel_line_speaker_genders.png") fig2.figure.savefig("images/female_caller_back_channel_line_speaker_genders.png") ###Output Male Callers Uttering Back Channels during Male and Female Lines: ###Markdown Screen data to tabular form ###Code text = open('list.txt', 'r', encoding = 'utf-8') to_analyse = text.read() to_analyse_list = to_analyse.split('\n') display(to_analyse_list) import pandas as pd objectives = [] subsection = [] standards = [] subjects = [] include = ['คณิตศาสตร์', 'วิทยาศาสตร์', 'สังคมศึกษา', 'สุขศึกษาและพลศึกษา', 'ศิลปะ', 'การงานอาชีพ', 'ภาษาต่างประเทศ'] for i in to_analyse_list: tmp = ' ' if i == '': continue elif i[0].isnumeric(): subjects.append(i.split()[1]) elif subjects[-1] in include and i[:4] == 'สาระ': subsection.append({'วิชา': subjects[-1], 'สาระ': tmp.join(i.split()[2:])}) elif i[:7] == 'มาตรฐาน' and subjects[-1] in include: standards.append({'วิชา': subjects[-1], 'สาระ': subsection[-1]['สาระ'], 'มาตรฐาน': tmp.join(i.split()[3:])}) elif i[:7] == 'มาตรฐาน': standards.append({'วิชา': subjects[-1], 'มาตรฐาน': tmp.join(i.split()[3:])}) elif i[:1] == '\t': if i[2] == ' ' or i[1].isnumeric(): tmp2 = i[1:].split() objectives.append({'มาตรฐาน' : standards[-1]['มาตรฐาน'], 'ตัวชี้วัด' : tmp.join(tmp2[1:]) if tmp2[0][0].isnumeric() else tmp.join(tmp2[3:])}) import pandas as pd object_pd = pd.read_csv('Std51\objectives.csv', encoding='UTF-8') standard_pd = pd.read_csv('Std51\standards.csv', encoding='UTF-8') subject_pd = pd.read_csv('Std51\subjects.csv', encoding='UTF-8') subsection_pd = pd.read_csv('Std51\subsection.csv', encoding='UTF-8') import pythainlp from pythainlp import tokenize, spell obj_word = [] for i in object_pd['ตัวชี้วัด']: obj_word.append(tokenize.word_tokenize(i, engine='deepcut', keep_whitespace = False)) import ast def ordered_sublist(list1, list2): if list1[0] not in list2: return False, -1 else: idx_list = [] count = list2.count(list1[0]) for idx in range(count): firstidx = list2.index(list1[0], idx) for i in range(len(list1)): if list1[i] != list2[firstidx + i]: break idx_list.append(firstidx) break if idx_list == []: return False, -1 return True, idx_list def join_list(joindict, testlist): for i,j in joindict.items(): tmp = ast.literal_eval(i) condition = ordered_sublist(tmp, testlist) if condition[1] != -1: condition[1].reverse() if condition[0]: for idx in condition[1]: testlist[idx:idx+len(tmp)] = j return testlist dict_freq = {} for i in range(len(obj_word)): tmp = set(obj_word[i]) for j in list(tmp): try: dict_freq[j].append(i) except: dict_freq[j] = [i] dict_count = {} for i, j in dict_freq.items(): dict_count[i] = len(j) sort_value = pd.Series(dict_count).to_frame().reset_index().sort_values(0, ascending = False) from pythainlp.tag import pos_tag removal = sort_value[sort_value.apply(lambda x: pos_tag([x['index']])[0][1] not in ['NCMN', 'NPRP', 'VACT'], axis = 1)]['index'].tolist() for i in removal: del dict_freq[i] newdf = pd.merge(subject_pd, pd.merge(subsection_pd, pd.merge(standard_pd, object_pd), how='right'), how='left') universal = {} for i, j in dict_freq.items(): for k in j: value = newdf.iloc[k]['สาระ'] if newdf.iloc[k]['วิชา'] == 'วิทยาศาสตร์' else newdf.iloc[k]['วิชา'] try: universal[i].add(value) except: universal[i] = set(); universal[i].add(value) universal filtration = {} for i, j in universal.items(): cond_set = {subject_pd['วิชา'].iloc[0], subject_pd['วิชา'].iloc[7]} if j == cond_set: filtration[i] = len(dict_freq[i]) print(cond_set) import json to_json = {'elements': [], 'connection': []} subjects = {'ภาษาไทย':'Thai Linguistics', 'คณิตศาสตร์':'Mathematics', 'ชีววิทยา':'Biology', 'เคมี':'Chemistry', 'ฟิสิกส์':'Physics', 'โลก ดาราศาสตร์ และอวกาศ':'Geology, Astronomy, and Cosmology', 'เทคโนโลยี':'Technology', 'สังคมศึกษา':'Social Science', 'สุขศึกษาและพลศึกษา':'Health Science & Physical Education', 'ศิลปะ':'Arts', 'การงานอาชีพ':'Home Economics', 'ภาษาต่างประเทศ':'Foreign Linguistics'} for i, j in universal.items(): tmp_elements = {} tmp_elements['label'] = i tmp_elements['count'] = dict_count[i] tmp_elements['tags'] = [] for k in j: tmp_elements['tags'].append(subjects[k]) to_json['elements'].append(tmp_elements) with open('course.json', 'w', encoding = 'utf8') as json_file: json.dump(to_json, json_file, ensure_ascii = False) to_json ###Output _____no_output_____ ###Markdown Agent-Based Traffic Model BackgroundThis model is a looped implementation of the cellular automata (CA) described by Nagel and Schreckenberg (NaSch).The NaSch CA model splits agent (vehicle) actions into four stages:1. Acceleration2. Braking3. Randomisation4. Vehicle MovementIn this implementation the 4th action is separated from the other actions to simulate simultaneous activation of the agents.This isn't strictly necessary for non-multithreaded processes but ensures that vehicle positions wouldn't cause conflicts if it were multithreaded. ImplementationThe model is written in Python using the Mesa ABM framework which allows for easy visualisation.This is a demonstration of running a Mesa model in an IPython Notebook which is an alternative to running it using javascript visualisation in a webpage.The actual model and agent code are implemented in model.py, in the same directory as this notebook.Below, we will import the model class, instantiate it, run it, and plot the average speed of the agents. ###Code import matplotlib.pyplot as plt %matplotlib inline plt.rcParams['figure.figsize'] = [10, 6] plt.rcParams['figure.dpi'] = 100 from model import NaSchTraffic ###Output _____no_output_____ ###Markdown Now we instantiate a model instance: a 1x30 grid, with a 20% chance of an agent being placed in each cell, and a max vehicle speed of 4. ###Code model = NaSchTraffic(1, 60, 5, 4, seed=1) ###Output _____no_output_____ ###Markdown We want to run the model until it's settles, but it's hard to tell when that is so let's just run it for 100 steps: ###Code while model.running and model.schedule.steps < 100: model.step() print(model.schedule.steps) # Show how many steps have actually run ###Output 100 ###Markdown The model has a DataCollector object, which checks and stores the average speed of the agents at every step.It also collects the individual speed and position of each agent at each step.It can also generate a pandas DataFrame of the data it has collected. ###Code model_out = model.datacollector.get_model_vars_dataframe() ###Output _____no_output_____ ###Markdown The dataframe for the model: ###Code model_out.head() ###Output _____no_output_____ ###Markdown Finally, we can plot the 'AverageSpeed' series: ###Code plt.plot(model_out.Average_Speed) plt.xlabel('Step Number') plt.ylabel('Average Speed') plt.show() ###Output _____no_output_____ ###Markdown For testing purposes, here is the dataframe for the agents giving each agent's x position and speed at each step.*commented out as not yet reimplemented* ###Code # agent_out = model.datacollector.get_agent_vars_dataframe() # agent_out.head() ###Output _____no_output_____ ###Markdown Effect of speed limit and traffic vehicle_quantity on traffic average speedNow, we can do a parameter sweep to see how speed changes against number of vehicles and the max speed.First we make a new function to collect the average speed during the second half of the simulation. ###Code from mesa.batchrunner import BatchRunner import itertools def get_averages(model): """ Find the average speed of all the agents over the last 30 steps. """ total_averages = 0 list_length = 0 selected_averages = itertools.islice(model.averages, 60) for average_speed in selected_averages: total_averages += average_speed list_length+=1 return total_averages / list_length model_reporters={"Average_Speed": get_averages} ###Output _____no_output_____ ###Markdown Now, we set up the batch run, with a dictionary of fixed and changing parameters.Let's vary the maximum speed, and the number of vehicles. ###Code fixed_params = {"height": 1, "width": 60} variable_parms = {"general_max_speed": range(1, 6), "vehicle_quantity": range(1, 20+1)} ###Output _____no_output_____ ###Markdown Then we create a batch runner object to conduct the parameter sweep.The number of iterations is the number of runs it does of the whole parameter space. ###Code param_sweep = BatchRunner(NaSchTraffic, variable_parameters=variable_parms, fixed_parameters=fixed_params, iterations=10, max_steps=120, model_reporters=model_reporters) ###Output _____no_output_____ ###Markdown Then we run the parameter sweep (this can take a few minutes). ###Code param_sweep.run_all() ###Output 1000it [00:30, 32.38it/s] ###Markdown Now we create the dataframe for the data collected like we did for the single model run. ###Code df = param_sweep.get_model_vars_dataframe() df.head() ###Output _____no_output_____ ###Markdown A scatter plot can be used to show how the parameters affect each other.We have varied more than one parameter, so we should try to visualise the interactions.One way of achieving this is with coloured data points: ###Code plt.scatter(df.Average_Speed, df.general_max_speed, c=df.vehicle_quantity, cmap=plt.cm.coolwarm) plt.xlabel('Average Speed') plt.ylabel('Max Speed') bar = plt.colorbar() bar.set_label('Number of Vehicles') plt.grid(True) ###Output _____no_output_____ ###Markdown If coloured data points aren't showing the trends clearly enough another option is a 3D scatter plot: ###Code from mpl_toolkits.mplot3d import Axes3D fig = plt.figure() # fig.tight_layout(pad=4) ax = Axes3D(fig) ax.scatter(df.vehicle_quantity, df.general_max_speed, df.Average_Speed, c=df.vehicle_quantity, cmap=plt.cm.coolwarm) ax.set_zlabel('Average Speed') plt.xlabel('Number of Vehicles') plt.ylabel('Max Speed') plt.show() ###Output _____no_output_____ ###Markdown Relatório do trabalho final da disciplina de estrutura de dados (2017/2) Fernando Correa Gomes (00274317) e Daniel de Souza Novaes (00290193)Esse relatório analisa o desempenho de um programa escrito em C escrito como trabalho final dessa disciplina. A análise é iniciada partindo do arquivo de exemplo, quais são as diferenças de desempenho entre a implementação da splay e da abp para converter o arquivo TheGodfather-MarioPuzo-Chapter1-English.txt (78K) de ascii para morse? ###Code read_csv() ###Output _____no_output_____ ###Markdown Podemos ver que entre a splay e a abp, o tempo total de processamento é bem próximo, mas o número de comparações realizadas na conversão é bem menor na splay, em comparação com a abp.O número de comparações não deve mudar, mas devido ao método de cálculo de tempo de execução com a função clock do C, seria mais confiável se repetíssemos a execução do programa mais vezes com o mesmo arquivo e utilizássemos a média de tempo para comparação. ###Code time_histogram(df) ###Output _____no_output_____ ###Markdown A distribuição de tempo tende a ser bastante próxima entre as duas árvores, ao menos nesse arquivo. Com um número maior de caractéres a ser convertido, as diferenças de tempo devem ficar mais significativas, então vamos realizar o mesmo processo com um arquivo de 331K. ###Code time_histogram(df_insect) ###Output _____no_output_____ ###Markdown Nesse exemplo já é possível notar uma distribuição bem mais acentuada do tempo de execução diferente entre a ABP e a Splay. Então talvez com arquivos ainda maiores, a visualização da diferença de tempo seja maior.Vamos realizar o mesmo teste com arquivos de 1,5M e 3,2M, respectivamente: ###Code time_histogram(df_history) time_histogram(df_miserables) ###Output _____no_output_____ ###Markdown A diferença se tornou bastante clara no último exemplo.Vale ressaltar que todos os arquivos utilizados continham texto em inglês, nenhum foi gerado de maneira artificial. A geração de arquivos .txt com textos artificiais pode pender para um desempenho melhor de uma árvore em comparação com a outra. Abaixo são os histogramas de dois arquivos gerados artificialmente que favorecem um tipo específico de árvore. ###Code time_histogram(df_splay_biased) time_histogram(df_bst_biased) comparison_list = [df.at[800, "comparisons"], df.at[801, "comparisons"], df.at[1000, "comparisons"], df.at[1001, "comparisons"]] file_sizes = ["98K, Splay", "98K, BST"] comparison_bar(comparison_list, file_sizes) ###Output _____no_output_____ ###Markdown Para finalizar, vamos demonstrar as diferenças gerais entre as duas implementações ###Code m_splay, m_bst, c_splay, c_bst = lists_of_values(df) file_sizes = [78, 331, 1.5*1024, 3.2*1024] f, (ax1, ax2) = plt.subplots(2) ax1.plot(file_sizes, m_splay, 'o', label="Splay") ax1.plot(file_sizes, m_bst, 'o', label="ABP") ax1.set_title('Tempo gasto em relação ao tamanho do arquivo') ax1.legend() ax1.set_ylabel("Tempo em ms") ax1.set_xlabel("Tamanho em KB") ax2.set_title('Comparações em relação ao tamanho do arquivo') ax2.plot(file_sizes, c_splay, label="Splay") ax2.plot(file_sizes, c_bst, label="ABP") ax2.set_ylabel("Número de comparações") ax2.set_xlabel("Tamanho em KB") plt.tight_layout() ! rm data.csv ! ./txtToMorse -t TabelaMorse.txt -i test-files/TheGodfather-MarioPuzo-Chapter1-English.txt -o saida.txt -s -c ! ./txtToMorse -t TabelaMorse.txt -i test-files/TheGodfather-MarioPuzo-Chapter1-English.txt -o saida.txt -c ! rm data.csv for i in range(100): convert("test-files/TheGodfather-MarioPuzo-Chapter1-English.txt") df = read_csv() for i in range(100): convert("test-files/insect_adventures.txt") df = read_csv() for i in range(100): convert("test-files/history_modern_philosophy.txt") df = read_csv() df_history = df.iloc[400:600] for i in range(100): convert("test-files/les_miserables.txt") df = read_csv() df_miserables = df.iloc[600:800] create_splay_biased(); for i in range(100): convert("./splay_biased.txt") df = read_csv() df_splay_biased = df.iloc[800:1000] create_bst_biased(); for i in range(100): convert("./bst_biased.txt") df = read_csv() df_bst_biased = df.iloc[1000:1200] import pandas as pd import matplotlib.pyplot as plt import numpy as np def read_csv(): df = pd.read_csv("data.csv", header=None, names=["filename", "tree", "total_time", "comparisons", "converted_chars", "tree_height"]) df["tree"] = df["tree"].replace(trees) return df def convert(filename): ! ./txtToMorse -t TabelaMorse.txt -i {filename} -o saida.txt -s -c ! ./txtToMorse -t TabelaMorse.txt -i {filename} -o saida.txt -c def time_histogram(dataframe): total_time = [] total_time.append(dataframe[dataframe['tree']=="Splay"]['total_time'].tolist()) total_time.append(dataframe[dataframe['tree']=="ABP"]['total_time'].tolist()) colors = ['red', 'blue'] labels = ['Splay', 'ABP'] plt.hist(total_time, 15, histtype='step', color=colors, label=labels) plt.title('Frequência de tempo da execução') plt.xlabel("Tempo em ms") plt.ylabel("Frequência") plt.legend() plt.show() def comparison_bar(values, file_size): N = len(values)//2 labels = ['Splay', 'ABP'] ind = np.arange(N) # the x locations for the groups width = 0.35 # the width of the bars fig, ax = plt.subplots() rects1 = ax.bar(ind, values[0::2], width, color='red') rects2 = ax.bar(ind + width, values[1::2], width, color='blue') # add some text for labels, title and axes ticks ax.set_title('Comparações durante execução') ax.set_xticks(ind + width / 2) ax.set_xticklabels(file_size) ax.legend((rects1[0], rects2[0]), labels) plt.show() trees = {0: "ABP", 1: "Splay"} import random def create_splay_biased(): with open("./splay_biased.txt", 'w') as file: for i in range(100000): file.write("Y") def create_bst_biased(): random.seed() char = "ABCDEFGHIJKLMNOPQRSTUVWXYZ1234567890.,? '!/()&:;=-_\"$@" with open("./bst_biased.txt", 'w') as file: for i in range(100000): file.write(char[random.randint(0, len(char) - 1)]) def lists_of_values(dataframe): mean_splay = [0, 0, 0, 0] mean_bst = [0, 0, 0, 0] comparisons_splay = [] comparisons_bst = [] for i in range(800): if (i % 2) is 0: mean_splay[i//200] += dataframe["total_time"][i] else: mean_bst[i//200] += dataframe["total_time"][i] for i in range(4): mean_splay[i] = mean_splay[i] / 100 comparisons_splay.append(dataframe["comparisons"][i * 200]) mean_bst[i] = mean_bst[i] / 100 comparisons_bst.append(dataframe["comparisons"][(i * 200) + 1]) return mean_splay, mean_bst, comparisons_splay, comparisons_bst ###Output _____no_output_____ ###Markdown EE5907/EE5027 Programming Assignment CA1> by: SUN Shuo A0162488U> > "You may just run the code blocks all the way till the end" Data Processing ###Code %matplotlib inline import scipy.io import numpy as np from tqdm import tqdm import matplotlib.pyplot as plt # Load mat data mat_data = scipy.io.loadmat('data/spamData.mat') #print(mat_data) x_train = mat_data['Xtrain'] y_train = mat_data['ytrain'] x_test = mat_data['Xtest'] y_test = mat_data['ytest'] #x_train = np.array([(1,0), (1,1), (0,0)]).reshape(-1,2) #y_train = np.array([1, 1, 0]).reshape(-1,1) #x_test = np.array([(1,0), (1,0)]).reshape(-1,2) #y_test = np.array([1, 1]).reshape(-1,1) # Check data shapes and types print("X train", type(x_train), "shape:", x_train.shape, "dtype:", x_train.dtype) print("y train", type(y_train), "shape:", y_train.shape, "dtype:", y_train.dtype) print("X test", type(x_test), "shape:", x_test.shape, "dtype:", x_test.dtype) print("y test", type(y_test), "shape:", y_test.shape, "dtype:", y_test.dtype) # Binarization x_train_bin = (x_train > 0) * 1 x_test_bin = (x_test > 0) * 1 #print(x_train_bin) #print(x_test_bin) # Log Transform x_train_log = np.log(x_train + 0.1) x_test_log = np.log(x_test + 0.1) #print(x_train_log) #print(x_test_log) ###Output X train <class 'numpy.ndarray'> shape: (3065, 57) dtype: float64 y train <class 'numpy.ndarray'> shape: (3065, 1) dtype: uint8 X test <class 'numpy.ndarray'> shape: (1536, 57) dtype: float64 y test <class 'numpy.ndarray'> shape: (1536, 1) dtype: uint8 ###Markdown Q1. Beta-binomial Naive Bayes (24%) ###Code def beta(N, N_1, a, b): """ Compute the Beta(`alpha`, `alpha`) distribution """ if (N + a + b) > 0: return (N_1 + a)/(N + a + b) else: return 0 def computeFeatureLikelihood(X_train, Y_train, alpha): """ Compute the feature likelihood term on all training data Class: `c`, Feature: `j`: p(x_test_j| x_i_j, y_test=c) """ eta = np.zeros((X_train.shape[1], 2)) for j in range(X_train.shape[1]): X_train_j = X_train[:, j].reshape(-1, 1) N_1 = (X_train_j[Y_train == 1] == 1).sum() N_0 = (X_train_j[Y_train == 0] == 1).sum() #print("N:", N, "N_1:", N_1) eta[j,1] = beta((Y_train == 1).sum(), N_1, alpha, alpha) eta[j,0] = beta((Y_train == 0).sum(), N_0, alpha, alpha) return eta def lookUpfeatureLikelihood(eta, j, x_j, c): """ Look up for the feature likelihood term for one (x_test, y_test=c) data point Class: `c`, Feature: `j`: p(x_test_j| x_i_j, y_test=c) """ if x_j == 1: return eta[j, c] else: return 1 - eta[j, c] def posteriorPredictiveDistribution(X_test, i, c, eta): """ Compute the posterior predictive distribution of test feature SUM of log(p(x_test_j | x_i_j, y_test=c)) """ p_sum = 0 # For its j-th feature for j in range(X_test.shape[1]): p = lookUpfeatureLikelihood(eta, j, X_test[i][j], c) if p > 0: p_sum += np.log(p) #print("Term(", i, ",", j, ") is:", p) return p_sum def betaBinomialNaiveBayes(X_train, Y_train, X_test, alpha): """ Fit a Beta Binomial Naive Bayes Classifier on the `X_train`, `Y_train` data, and predict the results `Y_pred` with the given `alpha` """ # Class label prior lambda lambda_ml = (Y_train == 1).sum() / Y_train.shape[0] #print("lambda_ml:", lambda_ml) eta = computeFeatureLikelihood(X_train, Y_train, alpha) Y_pred = np.zeros((X_test.shape[0], 1), dtype=int) # For the i-th test data for i in range(Y_pred.shape[0]): P_0 = np.log(1 - lambda_ml) + posteriorPredictiveDistribution(X_test, i, 0, eta) P_1 = np.log(lambda_ml) + posteriorPredictiveDistribution(X_test, i, 1, eta) #print(P_0) #print(P_1) if P_0 < P_1: Y_pred[i][0] = 1 #print(Y_pred) #print("y predict", type(Y_pred), "shape:", Y_pred.shape, "dtype:", Y_pred.dtype) return Y_pred def computeErrorRate(X_train, Y_train, X_test, Y_test, alpha): """ Compute the Error Rate based on the `Y_pred` result and the given ground truth `Y_test`, with a given alpha values """ Y_pred = betaBinomialNaiveBayes(X_train, Y_train, X_test, alpha) num_error = (Y_pred != Y_test).sum() return num_error/Y_test.shape[0] def compareAlphas(X_train, Y_train, X_test, Y_test, alphas): """ Compute the Error Rate based on the `Y_pred` result and the given ground truth `Y_test`, with varying alpha values """ error_rates = np.zeros((alphas.shape[0], 1)) for i in tqdm(range(alphas.shape[0])): error_rates[i] = computeErrorRate(X_train, Y_train, X_test, Y_test, alphas[i]) return error_rates ###Output _____no_output_____ ###Markdown Compute and Plot Results ###Code # Set experimenting alpha values alphas = np.arange(0, 100.5, 0.5) print("Plotting error rates on the training set:") train_error_rates = compareAlphas(x_train_bin, y_train, x_train_bin, y_train, alphas) print("Plotting error rates on the test set:") test_error_rates = compareAlphas(x_train_bin, y_train, x_test_bin, y_test, alphas) # Plotting fig, ax = plt.subplots() line1, = ax.plot(alphas, train_error_rates, label='training') line2, = ax.plot(alphas, test_error_rates, dashes=[6, 2], label='test') ax.set(xlabel='α', ylabel='error rate', title='Q1. Beta-binomial Naive Bayes') ax.legend() ax.grid() fig.savefig("pics/q1.png") plt.show() # Print some results print("On the training set, the error rates for α = 1, 10, 100 are respectively:", train_error_rates[2], ",", train_error_rates[20], ",", train_error_rates[-1]) print("On the test set, the error rates for α = 1, 10, 100 are respectively:", test_error_rates[2], ",", test_error_rates[20], ",", test_error_rates[-1]) ###Output Plotting error rates on the training set: ###Markdown Q2. Gaussian Naive Bayes (24%) ###Code def gaussian(x, mu, sigma_sq): """ Compute the gaussian(`mu`, `sigma_sq`) distribution of `x` """ if sigma_sq > 0: return 1/np.sqrt(2*np.pi*sigma_sq) * np.exp(-0.5*np.power((x - mu), 2)/sigma_sq) else: return 0 def paramMLEstimate(X_train, Y_train, c): """ Compute the ML estimate of `mean` and `var` for each feature """ row_idxs = [] for i in range(Y_train.shape[0]): if Y_train[i][0] == c: row_idxs.append(i) X_train_c = X_train[np.array(row_idxs), :] #print("X_train_c:", X_train_c.shape) mean = np.mean(X_train_c, axis=0) var = np.var(X_train_c, axis=0) #print("Mean:", mean[0], "shape:", mean.shape) #print("Var:", var[0], "shape:", var.shape) return mean, var def featureLikelihood(x_j, mu, sigma_sq): """ Compute the feature likelihood term for one (x_test, y_test=c) data point Class: `c`, Feature: `j`: p(x_test_j| x_i_j, y_test=c) """ return gaussian(x_j, mu, sigma_sq) def sumFeatureLikelihood(X_test, Means, Vars, i, c): """ Compute the sum of test feature likelihood: SUM(log(p(x_test_j | x_i_j, y_test=c))) """ p_sum = 0 for j in range(X_test.shape[1]): p_sum += np.log(featureLikelihood(X_test[i][j], Means[c][j], Vars[c][j])) return p_sum def GaussianNaiveBayes(X_train, Y_train, X_test): """ Fit a Beta Binomial Naive Bayes Classifier on the `X_train`, `Y_train` data, and predict the results `Y_pred` with the given `alpha` """ # Class label prior lambda lambda_ml = (Y_train == 1).sum() / Y_train.shape[0] #print("lambda_ml:", lambda_ml) Means = np.zeros((2, X_train.shape[1])) Vars = np.zeros((2, X_train.shape[1])) for i in range(2): Means[i], Vars[i] = paramMLEstimate(X_train, Y_train, i) #print("Means:", Means, "shape:", Means.shape) #print("Vars:", Vars, "shape:", Vars.shape) Y_pred = np.zeros((X_test.shape[0], 1), dtype=int) # For the i-th test data for i in range(Y_pred.shape[0]): P_0 = np.log(1 - lambda_ml) + sumFeatureLikelihood(X_test, Means, Vars, i, 0) P_1 = np.log(lambda_ml) + sumFeatureLikelihood(X_test, Means, Vars, i, 1) #print(P_0) #print(P_1) if P_0 < P_1: Y_pred[i][0] = 1 #print(Y_pred) #print("y predict", type(Y_pred), "shape:", Y_pred.shape, "dtype:", Y_pred.dtype) return Y_pred def computeErrorRate(X_train, Y_train, X_test, Y_test): """ Compute the Error Rate based on the `Y_pred` result and the given ground truth `Y_test` """ Y_pred = GaussianNaiveBayes(X_train, Y_train, X_test) num_error = (Y_pred != Y_test).sum() return num_error/Y_test.shape[0] ###Output _____no_output_____ ###Markdown Compute Results ###Code # Compute the train and test error rate train_error_rate = computeErrorRate(x_train_log, y_train, x_train_log, y_train) test_error_rate = computeErrorRate(x_train_log, y_train, x_test_log, y_test) # Print some results print("On the training set, the error rate is:", train_error_rate) print("On the test set, the error rate is:", test_error_rate) ###Output /var/folders/fg/jctl91s50mlb_ynfb3z_7xx80000gn/T/ipykernel_35686/4275886289.py:42: RuntimeWarning: divide by zero encountered in log p_sum += np.log(featureLikelihood(X_test[i][j], Means[c][j], Vars[c][j])) ###Markdown Q3. Logistic regression (24%) ###Code def sigmoid(x): """ Compute the sigmoid(`x`) """ return 1/(1 + np.exp(-x)) def mu(w, X): """ Compute the sigmoid(`-w^Tx`) for N feature vectors """ mu_ = [] for i in range(X.shape[0]): mu_.append(sigmoid(np.transpose(w).dot(X[i]))) return np.array(mu_) def NLL(w, X, Y): """ Compute the Negative Log Likelihood, NLL(`w`) """ nll_sum = 0 mu_ = mu(w, X) for i in range(Y.shape[0]): nll_sum += Y[i]*np.log(mu[i]) + (1 - Y[i])*np.log(1 - mu[i]) return -nll_sum def NLLReg(w_, X_, Y, _lambda): """ Compute the Negative Log Likelihood with l2 regularization, NLL_reg(`w_`) """ return NLL(w_, X_, Y) + 0.5*_lambda*np.transpose(w_).dot(w_) def g(mu_, X_, Y): """ Compute NLL's first derivatives `g` """ return np.transpose(X_).dot(mu_ - Y) def hessian(mu_, X_): """ Compute NLL's second derivatives, the Hessian Matrix `H` """ for i in range(mu_.shape[0]): mu_[i] = mu_[i]*(1 - mu_[i]) S = np.diag(mu_.reshape(mu_.shape[0])) return np.transpose(X_).dot(S).dot(X_) def newtonsMethod(w, X, Y, k_max, _lambda, eta, tolerance): """ Optimization with Newton's Method """ w_ = np.insert(w, 0, 0.0, axis=0) X_ = np.insert(X, 0, 1.0, axis=1) w_curr = w_ diag_v = np.ones(w_.shape[0]) diag_v[0] = 0.0 for i in range(k_max): v = np.copy(w_curr) v[0] = 0.0 mu_ = mu(w_curr, X_) g_reg = g(mu_, X_, Y) + _lambda*v H_reg = hessian(mu_, X_) + _lambda*np.diag(diag_v) d = np.linalg.inv(H_reg).dot(-g_reg) if np.average((d/w_curr)) < tolerance: # print("Optimization finished at iteration:", i) break else: w_next = w_curr + eta*d w_curr = w_next return w_next def logisticRegressionPredict(w_, X_test): """ Predict the results `Y_pred` based on the given weights `w_` """ X_ = np.insert(X_test, 0, 1.0, axis=1) # Start Prediction mu_test = mu(w_, X_) Y_pred = np.zeros((X_test.shape[0], 1), dtype=int) for i in range(mu_test.shape[0]): P_1 = np.log(mu_test[i]) P_0 = np.log(1 - mu_test[i]) if P_1 > P_0: Y_pred[i][0] = 1 return Y_pred def computeErrorRate(w_, X_test, Y_test): """ Compute the Error Rate based on the `Y_pred` result and the given ground truth `Y_test`, with a given alpha values """ Y_pred = logisticRegressionPredict(w_, X_test) num_error = (Y_pred != Y_test).sum() return num_error/Y_test.shape[0] def compareLambdas(X_train, Y_train, X_test, Y_test, lambdas, lr, tol, k_max): """ Compute the Error Rate based on the `Y_pred` result and the given ground truth `Y_test`, with varying lambda values """ train_error_rates = np.zeros((lambdas.shape[0], 1)) test_error_rates = np.zeros((lambdas.shape[0], 1)) for i in tqdm(range(lambdas.shape[0])): # Start Training w = np.zeros((x_train_log.shape[1], 1)) w = newtonsMethod(w, x_train_log, y_train, k_max, lambdas[i], lr, tolerance) # Start Prediction train_error_rates[i] = computeErrorRate(w, X_train, Y_train) test_error_rates[i] = computeErrorRate(w, X_test, Y_test) return train_error_rates, test_error_rates ###Output _____no_output_____ ###Markdown Train, Predict and Plot ###Code # Hyperparameters lr = 0.01 tol = 1e-6 k_max = 1000 # Set experimenting lambda values lambdas = np.concatenate((np.arange(1, 10, 1), np.arange(10, 105, 5)), axis=None) print(lambdas) print("Plotting error rates...") train_error_rates, test_error_rates = compareLambdas(x_train_log, y_train, x_test_log, y_test, lambdas, lr, tol, k_max) # Plotting fig, ax = plt.subplots() line1, = ax.plot(lambdas, train_error_rates, label='training') line2, = ax.plot(lambdas, test_error_rates, dashes=[6, 2], label='test') ax.set(xlabel='λ', ylabel='error rate', title='Q3. Logistic Regression') ax.legend() ax.grid() fig.savefig("pics/q3.png") plt.show() # Print some results print("On the training set, the error rates for λ = 1, 10, 100 are respectively:", train_error_rates[0], ",", train_error_rates[9], ",", train_error_rates[-1]) print("On the test set, the error rates for λ = 1, 10, 100 are respectively:", test_error_rates[0], ",", test_error_rates[9], ",", test_error_rates[-1]) ###Output [ 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] Plotting error rates... ###Markdown Q4. K-Nearest Neighbors (24%) ###Code def euclideaniDist(a, b): """ Compute the euclidean distance between two feature vectors """ dist = 0 for j in range(a.shape[0]): dist += np.power((a[j] - b[j]), 2) return np.sqrt(dist) def sortNN(X_train, Y_train, x_test): """ sort the training data based on the euclidean distance to the test data `x_test` """ dists = [] for i in range(X_train.shape[0]): dists.append(euclideaniDist(X_train[i], x_test)) idxs = np.argsort(np.array(dists)) return idxs def KNNPredict(X_train, Y_train, X_test, Ks): """ Predict class labels for `X_test` using `K` Nearest Neighbors """ Y_pred = np.zeros((X_test.shape[0], Ks.shape[0]), dtype=int) # loop through all test data for i in tqdm(range(X_test.shape[0])): idxs = sortNN(X_train, Y_train, X_test[i]) # for each K value, estimate the resulted class labels for k in range(Ks.shape[0]): k_1 = (Y_train[idxs[:Ks[k]]] == 1).sum() P_1 = k_1/Ks[k] if P_1 > 0.5: Y_pred[i][k] = 1 return Y_pred def computeErrorRate(X_train, Y_train, X_test, Y_test, Ks): """ Compute the Error Rate based on the `Y_pred` result and the given ground truth `Y_test`, with a given K value """ error_rates = np.zeros((Ks.shape[0], 1)) Y_pred = KNNPredict(X_train, Y_train, X_test, Ks) for k in tqdm(range(Ks.shape[0])): y_pred = Y_pred[:, k].reshape(-1, 1) num_error = (y_pred != Y_test).sum() #print("y_pred", y_pred) error_rates[k] = num_error/Y_test.shape[0] return error_rates ###Output _____no_output_____ ###Markdown Predict and Plot Results ###Code # Set experimenting lambda values Ks = np.concatenate((np.arange(1, 10, 1), np.arange(10, 105, 5)), axis=None) print("K values:", Ks) print("Plotting error rates...") train_error_rates = computeErrorRate(x_train_log, y_train, x_train_log, y_train, Ks) test_error_rates = computeErrorRate(x_train_log, y_train, x_test_log, y_test, Ks) # Plotting fig, ax = plt.subplots() line1, = ax.plot(Ks, train_error_rates, label='training') line2, = ax.plot(Ks, test_error_rates, dashes=[6, 2], label='test') ax.set(xlabel='K', ylabel='error rate', title='Q4. K-Nearest Neighbors') ax.legend() ax.grid() fig.savefig("pics/q4.png") plt.show() # Print some results print("On the training set, the error rates for K = 1, 10, 100 are respectively:", train_error_rates[0], ",", train_error_rates[9], ",", train_error_rates[-1]) print("On the test set, the error rates for K = 1, 10, 100 are respectively:", test_error_rates[0], ",", test_error_rates[9], ",", test_error_rates[-1]) ###Output K values: [ 1 2 3 4 5 6 7 8 9 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100] Plotting error rates... ###Markdown Normalize columnsFirst, let's normalize all of the statistics in the dataset.We want to make the range of all variables 0-100. It'll make it easier to do a radar plot.First, we'll look at the distribution of one metric. ###Code layer_scores['layer4-alexa-rankings'].plot.hist() ###Output _____no_output_____ ###Markdown When we normalize it, we should see the same distribution. ###Code def normalize (df: pd.DataFrame) -> pd.DataFrame: '''Convert to values 0 to 1.''' return (df - df.min()) / (df.max() - df.min()) normalize(layer_scores['layer4-alexa-rankings']).plot.hist() ###Output _____no_output_____ ###Markdown One more issue here is that network interference events are power-law distributed. ###Code normalize(layer_scores['layer3-network-interference-rate']).plot.hist() ###Output _____no_output_____ ###Markdown We have the same problem with data laws ###Code normalize(layer_scores['layer5-discrete-categories-data-laws']).plot.hist() ###Output _____no_output_____ ###Markdown We also want to "flip" IPv6 adoption, such that higher IPv6 signals lower fragmentation. ###Code def flip (df): return 1 - df flip(normalize(layer_scores['layer2-ipv6-adoption'])).plot.hist() ###Output _____no_output_____ ###Markdown Simplify datasetLet's perform this mapping for all of our metrics to produce a simplified dataset. ###Code data = pd.DataFrame({ 'Country': layer_scores['Country'], 'Alpha-2 code': layer_scores['Alpha-2 code'], 'layer2 (ipv6)': flip(normalize(layer_scores['layer2-ipv6-adoption'])), 'layer3 (network interference)': normalize(layer_scores['layer3-network-interference-rate']).fillna(value=0), # 'layer3 (network interference)': normalize(layer_scores['layer3-network-interference-rate']).fillna(value=0), 'layer4 (popular website locality)': normalize(layer_scores['layer4-alexa-rankings']), 'layer5 (data laws)': normalize(layer_scores['layer5-discrete-categories-data-laws']), }) data.head() ###Output _____no_output_____ ###Markdown Produce radar plotsNow we'll want to produce radar plots for each country (or for sets of countries). ###Code def find_country (alpha2: str) -> pd.DataFrame: return data[data['Alpha-2 code']==alpha2] find_country('CN') # number of variable def radar_plot (df, filename=None): non_numeric_cols = ['Country','Alpha-2 code'] categories=list(df.drop(columns=non_numeric_cols)) N = len(categories) # # We are going to plot the first line of the data frame. # # But we need to repeat the first value to close the circular graph: # # values=df.loc[0].drop(columns=['Country','Alpha-2 code']).values.flatten().tolist() # values= df.values.flatten().tolist() # values += values[:1] # # values # What will be the angle of each axis in the plot? (we divide the plot / number of variable) angles = [n / float(N) * 2 * pi for n in range(N)] angles += angles[:1] # Initialise the spider plot ax = plt.subplot(111, polar=True) # If you want the first axis to be on top: ax.set_theta_offset(pi / 2) ax.set_theta_direction(-1) # Draw one axe per variable + add labels labels yet plt.xticks(angles[:-1], categories, color='grey', size=8) # Draw ylabels ax.set_rlabel_position(0) plt.yticks([10,20,30], ["10","20","30"], color="grey", size=7) plt.ylim(0,1) # # Plot data # ax.plot(angles, values, linewidth=1, linestyle='solid') # # Fill area # ax.fill(angles, values, 'b', alpha=0.1) for i in range(len(df)): values=df.iloc[i].drop(non_numeric_cols).values.flatten().tolist() values += values[:1] ax.plot(angles, values, linewidth=1, linestyle='solid', label=df.iloc[i]['Country']) ax.fill(angles, values, 'b', alpha=0.05) plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1)) if filename: plt.savefig(filename, dpi=300, bbox_inches='tight') # radar_plot( # find_country('DK')\ # .append(find_country('SE'))\ # .append(find_country('NO')) # ) ###Output _____no_output_____ ###Markdown FindingsMaking observations about 'profiles' groups of countries. The ScandinavainsLet's start with the Scandinavians (Denmark, Norway and Sweden). These countriesare very similar to one another in a variety of ways. Norway stands out as beingoutside the EU, and exceptionally wealthy. However, the three share culture,basic systems of governance, and arguably a single language. [fn:4]Immediately, Norway stands out as having higher IPv6 adoption, and no laws aboutcross-border data flow. Denmark also has much less "fragmentation" (locality) atthe content layer than Sweden. ###Code radar_plot( find_country('DK')\ .append(find_country('SE'))\ .append(find_country('NO')) , filename="writing/figures/scandinavians.png" ) ###Output _____no_output_____ ###Markdown Immediately, Norway stands out as having higher IPv6 adoption, and no laws aboutcross-border data flow. Denmark also has much less "fragmentation" (locality) atthe content layer than Sweden. Five eyes ###Code radar_plot( find_country('US')\ .append(find_country('GB'))\ # .append(find_country('CA'))\ # .append(find_country('AU'))\ .append(find_country('NZ'))\ ) ###Output _____no_output_____ ###Markdown Let's start by looking at United States, United Kingdom, and New Zealand. The UKand New Zealand are similar, but the United States has very little networkinterference, and more fragmentation on layers 2 and 3. ###Code radar_plot( find_country('US')\ .append(find_country('GB'))\ .append(find_country('NZ'))\ .append(find_country('CA'))\ .append(find_country('AU'))\ , filename="writing/figures/five-eyes-individual.png" ) ###Output _____no_output_____ ###Markdown Now let's add in Canada and Australia. These two countries have laws aboutcross-border data flow, and Australia's network interference is near zero.Other than that, these countries are all similar to one another, except for theUnited States. The United States has lower transport-layer fragmentation andhigher network- and content-layer than the rest of the pack. Regardless, let's look at an "average" of the 5-eyes countries. ###Code def create_block ( block_name: str, alpha2s: list, ) -> pd.DataFrame: '''Produces a mean of all countries in a block.''' block = find_country(alpha2s[0]) for alpha2 in alpha2s[1:]: # print(find_country(alpha2)) block = block.append(find_country(alpha2)) block = block.mean().to_frame().T block['Alpha-2 code'] = '' block['Country'] = block_name return block # five_eyes=\ five_eyes = create_block('Five eyes', [ 'US', 'GB', 'NZ', 'CA', 'AU' ]) five_eyes radar_plot(five_eyes) ###Output _____no_output_____ ###Markdown How do five-eyes compare with the G7? ###Code g7 = create_block('G7', [ 'CA', 'FR', 'DE', 'IT', 'JP', 'US', 'GB' ]) radar_plot(g7.append(five_eyes)) ###Output _____no_output_____ ###Markdown G7 and five eyes countries are roughly similar, those G7 has higher fragmentation across the board. China, belt-and-roadThat was all warmup. Let's look at China. ###Code belt_and_road = create_block('Belt and road', [ # asia 'CN', # china 'LA', # laos 'ID', # indonesia 'MN', # mongolia # beyond asia 'PK', # pakistan 'DJ', # djbouti 'AR', # argentina 'SD', # sudan 'JM', # jamaica ]) radar_plot(belt_and_road.append(five_eyes), filename='writing/figures/belt-and-road-vs-fiveeyes.png') radar_plot( belt_and_road\ .append(find_country('CN')) , filename='writing/figures/china-vs-belt-and-road.png' ) ###Output /home/ffff/.local/lib/python3.6/site-packages/pandas/core/frame.py:6211: FutureWarning: Sorting because non-concatenation axis is not aligned. A future version of pandas will change to not sort by default. To accept the future behavior, pass 'sort=False'. To retain the current behavior and silence the warning, pass 'sort=True'. sort=sort) ###Markdown I'm showing China here with Five Eyes, for comparison.We can see a qualitatively different profile here. There's more network interference,but the real stand-out is content-layer fragmentation. This fragmentation isextremely high, probably the result of both censorship and language/culture.As a sanity check, how does China compare with its East Asian neighbors? ###Code radar_plot( find_country('CN')\ .append(find_country('KR').iloc[1])\ .append(find_country('JP'))\ ) ###Output _____no_output_____ ###Markdown Overall, it's US-allied neighbors have slightly lower content layerfragmentation, and higher IPv6 uptake.Now, what happens when we average China with all of the belt-and-road countries?*Note*: there is no authoritative list of the belt-and-road countries, as many Western and South American countries have signed various belt-and-road-related treaties. I'm including a highly (let's call it) "intuitive" list of developing Asian and African countries who have developed diplomatic relationships with China and/or accepted loans for large infrastructure projects, without major outcry (i.e., excluding Malaysia). Other "high-touch" countries ###Code islamic_theocracies = create_block('Gulf states with Islamic theocracies', [ 'SA', # saudi arabia 'AE', # UAE 'KW', # kuwait 'BH', # bahrain 'IR', # iran ]) radar_plot( belt_and_road\ .append(islamic_theocracies)\ .append(five_eyes)\ , filename='writing/figures/three-bloc.png' ) ###Output _____no_output_____ ###Markdown 'Best buddies' Europe - similar and diffferent ###Code radar_plot( find_country('DE')\ .append(find_country('FR'))\ ) radar_plot( find_country('UA')\ .append(find_country('BY'))\ ) layer_scores.sort_values(by='layer3-network-interference-rate', ascending=False) radar_plot( find_country('NO')\ .append(islamic_theocracies)\ , filename='writing/figures/no-vs-islamic.png' ) radar_plot( find_country('SE')\ .append(find_country('DK'))\ ) ###Output _____no_output_____ ###Markdown South and Southeast Asia ###Code radar_plot( find_country('IN')\ .append(find_country('MY'))\ ) radar_plot( find_country('IN')\ .append(find_country('BD'))\ , filename='writing/figures/in-bd.png' ) radar_plot( find_country('BR')\ .append(find_country('MX'))\ ) find_country('BD') ###Output _____no_output_____ ###Markdown South America ###Code radar_plot( find_country('BR')\ .append(find_country('PY'))\ .append(find_country('AR'))\ ) ###Output _____no_output_____ ###Markdown Caribbean ###Code radar_plot( find_country('JM')\ .append(find_country('BS'))\ .append(find_country('CU'))\ .append(find_country('VG'))\ ) ###Output /home/ffff/.local/lib/python3.6/site-packages/matplotlib/projections/polar.py:63: RuntimeWarning: invalid value encountered in less mask = r < 0 ###Markdown A more complex picture ###Code radar_plot( find_country('BH')\ .append(find_country('CN'))\ .append(find_country('US'))\ # .append(find_country('DK'))\ .append(find_country('DE'))\ , filename='writing/figures/us-cn-bh-de.png' ) ###Output _____no_output_____ ###Markdown Analysis of the DLR Knowledge Exchange Workshop Series on Software EngineeringThe following Jupyter notebook gives an overview about the five different workshops and participants since 2014. First, we show a basic overview about the workshop and the participant data. Then, we identify the two main groups and check their attendance behavior for every workshop. Finally, we consider how many participants attended the next workshop. Basic overview Workshop dataThe following data set contains the basic information about every workshop including its main topic, number of participants, date, location, and the number of employees currently working at the workshop location. In addition, we calculate the total number of workshop series participants and the average number of participants. ###Code import pandas as pd workshops = pd.read_csv("data/workshops.csv", index_col="id") total_num_participants = workshops.num_participants.sum() average_num_participants = total_num_participants / len(workshops) print("Total number of participants:", total_num_participants) print("Average number of participants:", average_num_participants) workshops.head(6) ###Output Total number of participants: 320 Average number of participants: 53.333333333333336 ###Markdown Participant dataThe participant data has been pre-processed as follows:- The basis formed the registration lists which have been further cleaned up by removing duplicates and double-checking them with the available attendance lists.- The data has been anonymized by removing the participants names.- Specific helper fields have been calculated to support the later analysis.The resulting data set only contains the unique participants of the workshop series. I.e., every entry represents an unique particpant and indicates the total number of workshops visited, the specific workshops visisted, if the participant still works for the DLR and whether we consider the particpant a non-regular visitor. The last field (non-regular) indicates whether the participant visited more than one workshop but skipped more than one workshop in a row while still working at DLR. The field is later used to differentiate the core participant group. ###Code participants = pd.read_csv("data/participants.csv", index_col="id") total_unique_participants = len(participants) print("Total number of unique participants:", total_unique_participants) participants.head(10) ###Output Total number of unique participants: 223 ###Markdown Location DataThe location data for each workshop lists for each particpant it's location of origin as well as if this was the only workshop he or she attended. The data has been anonymized by removing the participants names. The IDs used are not related to each other or the IDs of the participant data set. ###Code locations_ws1 = pd.read_csv("data/ws1_location.csv", index_col="id") locations_ws2 = pd.read_csv("data/ws2_location.csv", index_col="id") locations_ws3 = pd.read_csv("data/ws3_location.csv", index_col="id") locations_ws4 = pd.read_csv("data/ws4_location.csv", index_col="id") locations_ws5 = pd.read_csv("data/ws5_location.csv", index_col="id") locations_ws6 = pd.read_csv("data/ws6_location.csv", index_col="id") locations = pd.concat([locations_ws1, locations_ws2, locations_ws3, locations_ws4, locations_ws5, locations_ws6], keys=['BS', 'KP', 'OP', 'BA', 'HB', 'JE']) # Amount of unique locations from which people attended unique_locations = locations["location"].drop_duplicates().count() print ("Unique locations from which people attended the workshop series:", unique_locations) locations.head(10) ###Output Unique locations from which people attended the workshop series: 16 ###Markdown Analysis of the attendance behavior Definition of the core group and the group of non-regular visitorsWe consider participants that continually attend the workshops as part of the core group. We include participants into this group, if:- they attended more than one workshop and- did not skip more than one workshop in a row while still working at DLR.Otherwise we consider them as non-regular workshop visitors. ###Code participants_more_one_workshop = participants[participants.num_workshops_visited > 1] num_participants_more_one_workshop = len(participants_more_one_workshop) core_group = participants_more_one_workshop[participants_more_one_workshop.non_regular == False] # See definition of non_regular num_core_group = len(core_group) num_core_group_still_there = len(core_group[core_group.currently_works_for_DLR == True]) non_regular_group = participants_more_one_workshop[participants_more_one_workshop.non_regular == True] # See definition of non_regular num_non_regular_group = len(non_regular_group) num_non_regular_group_still_there = len(non_regular_group[non_regular_group.currently_works_for_DLR == True]) print("Number of participants visiting more than one workshop:", num_participants_more_one_workshop) print("Number of core group members:", num_core_group) print("Number of core group members still working at DLR:", num_core_group_still_there) print("Number of non-regular visitors:", num_non_regular_group) print("Number of non-regular visitors still working at DLR:", num_non_regular_group_still_there) ###Output Number of participants visiting more than one workshop: 49 Number of core group members: 33 Number of core group members still working at DLR: 25 Number of non-regular visitors: 16 Number of non-regular visitors still working at DLR: 15 ###Markdown Definition of the group of one-time participantsOne-time participants are participants attending only one workshop. ###Code one_time_participants = participants[participants.num_workshops_visited == 1] num_one_time_participants = len(one_time_participants) print("Number of one-time participants:", num_one_time_participants) ###Output Number of one-time participants: 174 ###Markdown Trend of the attendance rates of the two main groupsIn the following, we calculate for every group the attendance rate for every workshop. I.e., we want to find out how many core group members and how many one-time participants attended every workshop. ###Code # Define attendance data and calculates corresponding attendance rates attendance_data = { "workshop": [1, 2, 3, 4, 5, 6], "num_participants": workshops.num_participants.values, "num_core_group": [ core_group["1"].sum(), core_group["2"].sum(), core_group["3"].sum(), core_group["4"].sum(), core_group["5"].sum(), core_group["6"].sum()], "num_one_time_participants": [ one_time_participants["1"].sum(), one_time_participants["2"].sum(), one_time_participants["3"].sum(), one_time_participants["4"].sum(), one_time_participants["5"].sum(), one_time_participants["6"].sum()], "num_non_regular_participants": [ non_regular_group["1"].sum(), non_regular_group["2"].sum(), non_regular_group["3"].sum(), non_regular_group["4"].sum(), non_regular_group["5"].sum(), non_regular_group["6"].sum()] } attendance_data = pd.DataFrame(attendance_data) attendance_data["rate_core_to_num_participants"] = attendance_data["num_core_group"] / attendance_data["num_participants"] * 100 attendance_data["rate_one_time_to_num_participants"] = attendance_data["num_one_time_participants"] / attendance_data["num_participants"] * 100 attendance_data["rate_non_regular_participants_to_num_participants"] = attendance_data["num_non_regular_participants"] / attendance_data["num_participants"] * 100 attendance_data = attendance_data.set_index("workshop") # Calculate the average attendance rate for every group average_attendance_rate_core = attendance_data["rate_core_to_num_participants"].sum() / len(workshops) average_attendance_rate_one_time = attendance_data["rate_one_time_to_num_participants"].sum() / len(workshops) average_attendance_rate_non_regular = attendance_data["rate_non_regular_participants_to_num_participants"].sum() / len(workshops) print("Average attendance rate of the core group:", average_attendance_rate_core) print("Average attendance rate of one-time participants:", average_attendance_rate_one_time) print("Average attendance rate of non-regular participants:", average_attendance_rate_non_regular) attendance_data.head(6) # Plot rates trend %matplotlib inline attendance_rate_data = attendance_data.drop( columns=["num_core_group", "num_one_time_participants", "num_non_regular_participants", "num_participants", "rate_non_regular_participants_to_num_participants"]) ax = attendance_rate_data.plot.line() # Adjust x and y axis as well as the legend ax.set_xbound(0.5, 5.5) ax.set_xticks([1, 2, 3, 4, 5, 6, 7]) ax.set_xlabel("Workshop") ax.set_ybound(15, 70) ax.set_ylabel("Attendance Rate [%]") ax.legend(["Core group", "One-time participants"], loc="upper left") # Print values for index, value in enumerate(attendance_rate_data["rate_core_to_num_participants"]): if index < len(attendance_rate_data) - 2: ax.text(index + 1, value, str(round(value, 2)) + "%") else: ax.text(index + 1, value, str(round(value, 2)) + "%*") for index, value in enumerate(attendance_rate_data["rate_one_time_to_num_participants"]): if index < len(attendance_rate_data) - 2: ax.text(index + 1, value, str(round(value, 2)) + "%") else: ax.text(index + 1, value, str(round(value, 2)) + "%*") ###Output _____no_output_____ ###Markdown \* The data points of the indicated workshops are usually subject to a larger change because:* From the current point of time it is unclear whether the identified one-time participants of the last workshop will attend the next workshop and become members of the core group or not.* It is unclear whether the trend of new core group members joined at the fifth workshop will last. How many participants attended the next workshop as well? ###Code # Define the attended next data attended_next_data = { "workshop": [1, 2, 3, 4, 5], "num_attended_next": [ len(participants[(participants["1"] == True) & (participants["2"] == True)]), len(participants[(participants["2"] == True) & (participants["3"] == True)]), len(participants[(participants["3"] == True) & (participants["4"] == True)]), len(participants[(participants["4"] == True) & (participants["5"] == True)]), len(participants[(participants["5"] == True) & (participants["6"] == True)]) ], "num_participants": workshops.num_participants.values[:-1] } attended_next_data = pd.DataFrame(attended_next_data) attended_next_data["attended_next_rate"] = attended_next_data["num_attended_next"] / attended_next_data["num_participants"] * 100 attended_next_data = attended_next_data.set_index("workshop") attended_next_data.head(6) # Plot the attended next data attended_next_plot = attended_next_data.drop(columns=["attended_next_rate"]) attended_next_plot = attended_next_plot[["num_participants", "num_attended_next"]] # Ensure the right column order ax = attended_next_plot.plot.bar(figsize=(9, 5)) ax.set_xlabel("Workshop") ax.set_ylabel("Number of participants") ax.set_ybound(0, 70) ax.legend(["Total number of participants", "Number of participants attending the next workshop"]) # Print attended next rate values num_pairs = 5 attended_next_rates = ["{}%".format(int(value)) for value in attended_next_data.attended_next_rate.values] make_pairs = zip(*[ax.get_children()[:num_pairs], ax.get_children()[num_pairs:num_pairs*2]]) for index, (left, right) in enumerate(make_pairs): ax.text(index + 0.15, min(left.get_bbox().y1, right.get_bbox().y1) + 1, attended_next_rates[index], horizontalalignment="center") ###Output _____no_output_____ ###Markdown Analysis of the attendance origin locationIn the following we analyse the origin locations of the workshop participants and how it influences their attendance. Where do the participants of the workshop series origin from? ###Code # Count the amount of participants of the workshop series per location location_distribution = locations.location.value_counts() location_distribution_filt = location_distribution[location_distribution >= 5] location_distribution_filt # Plot the locatio dictribution data ax = location_distribution_filt.plot(kind='bar', figsize=(10,7), fontsize=13); ax.set_xlabel("Locations") ax.set_ylabel("Number of Participants"); # set individual bar lables using above list for i in ax.patches: # get_x pulls left or right; get_height pushes up or down ax.text(i.get_x()+0.1, i.get_height()+1, \ str(i.get_height())) ###Output _____no_output_____ ###Markdown Do more people attend a workshop if it is run at their home location? ###Code # From which locations are the participants for each workshop? location_distribution_per_ws = pd.DataFrame({"1: BS": locations_ws1.location.value_counts(), "2: KP": locations_ws2.location.value_counts(), "3: OP": locations_ws3.location.value_counts(), "4: BA": locations_ws4.location.value_counts(), "5: HB": locations_ws5.location.value_counts(), "6: JE": locations_ws6.location.value_counts()}) # Filter chart down to locations where a workshop took place location_distribution_per_ws_filtered = location_distribution_per_ws.loc[['BS', 'KP', 'OP', 'BA', 'HB', 'JE']] # Create a heatmap of the location-scpecific distribution of participant data # X axis: location names of the workshops ordered chronologically # Y axis: number of participants from the indicated locations import matplotlib.pyplot as plt import seaborn fig, ax = plt.subplots(figsize=(8, 6)) seaborn.heatmap(location_distribution_per_ws_filtered, cmap="Greens", annot=True) ###Output _____no_output_____ ###Markdown Some effects and (possible) explanations:- Determinate shows the of participants of a location when the workshop took place there. Usually, the largest participant group comes from the location at which the workshop takes place. Exception: HB.- BS row: 11 => Topic "Embedded Systems" was a driver from some specific departments to more or less jointly attend the workshop.- BS row: columns "1:BS" (27) and "2:KP" (14) => Two BS institutes have been involved in the initial workshop series setup. Thus, there are quite many BS participants for BS/KP.- JE row: No one from JE attended the first 4 workshops. Reason: The JE location did not exist at this time. ###Code # Plot the same data as bar chart ax = location_distribution_per_ws_filtered.plot(kind='bar', figsize=(10,7), fontsize=13) ax.set_xlabel("Origin location of participants") ax.set_ylabel("Number of participants") ###Output _____no_output_____ ###Markdown How many more people attend a workshop if it is run at their location?Netx, we calculate the factor of which the number of participants increase when the workshop is run at the home location in comparison to the participation in external workshops. ###Code def calc_factor(location): local_ws = location_distribution_per_ws.loc[location].max() # Max can be used since all local workshops were visited by the most participants in comparison to external workshops external_ws = location_distribution_per_ws.loc[location].sum() - local_ws external_ws_avg = (external_ws / 5) diff = local_ws - external_ws_avg factor = local_ws / external_ws_avg print ("The workshop in", location, "was visited by", diff, "more participants from", location, "than an average external one.") print ("The workshop in", location, "was visited by", factor, "times more participants from", location, "than an average external one.\n") for location in locations.index.levels[0]: calc_factor(location) ###Output The workshop in BS was visited by 17.6 more participants from BS than an average external one. The workshop in BS was visited by 2.872340425531915 times more participants from BS than an average external one. The workshop in KP was visited by 15.4 more participants from KP than an average external one. The workshop in KP was visited by 10.625 times more participants from KP than an average external one. The workshop in OP was visited by 24.6 more participants from OP than an average external one. The workshop in OP was visited by 3.6170212765957444 times more participants from OP than an average external one. The workshop in BA was visited by 10.6 more participants from BA than an average external one. The workshop in BA was visited by 2.962962962962963 times more participants from BA than an average external one. The workshop in HB was visited by 6.2 more participants from HB than an average external one. The workshop in HB was visited by 8.75 times more participants from HB than an average external one. The workshop in JE was visited by 13.4 more participants from JE than an average external one. The workshop in JE was visited by 23.333333333333336 times more participants from JE than an average external one. ###Markdown Analysis of the relation between one-time participants and origin locationMore people attend a workshop if it is run at their origin location. The resulting question is: Are those the one-time participants we identified earlier? What seems to be more important: The topic or the location. Do one-time participants attend local or external workshops? ###Code from collections import OrderedDict one_time = [] one_time_local = [] local = [] for location in locations.index.levels[0]: location_data = locations.loc[location] one_time.append(location_data.one_time_participant.value_counts()[True]) one_time_local.append(location_data[location_data.location == location].one_time_participant.value_counts()[True]) local.append(len(location_data[location_data.location == location])) data = OrderedDict() data["Workshop"] = [1, 2, 3, 4, 5, 6] data["Local One-Time Participants"] = one_time_local data["Local Participants"] = local data["One-Time Participants"] = one_time local_one_timers = pd.DataFrame(data) local_one_timers = local_one_timers.set_index("Workshop") # plot data ax = local_one_timers.plot(kind='bar', figsize=(10,7), fontsize=13) ax.set_xlabel("Workshop") ax.set_ylabel("Number of participants"); ###Output _____no_output_____ ###Markdown Capstone Project Submission- Student name: Bronwen Cohn-Cort- Student pace: self-paced- Scheduled project review date/time: July 27, 2020- Instructor name: Jeff Herman- Blog post URL: https://bronwencc.github.io/pandas_dataframe_quick-start_guide_python AbstractThe problem was to see whether the text of abstracts authored by Nobel Prize winners that were highly cited was different from the text of abstracts from highly-cited publications authored by scientists who were listed as an author on one of the Nobel Prize winners' highly-cited publications. The publications were from Google Scholar and the information about the Nobel Prize winners was from the Nobel Prize website. Publications may be books as well as journal articles, and abstract text was assumed to be in English, although there is at least one suspected instance of French.Then, the publications that had abstract text (a non-null `bib_abstract`) were put into one dataframe and the text was stripped of punctuation, tokenized and lemmatized with `nltk`. After that, I found frequency distributions and subsequently TF-IDF (term frequency - inverse document frequency) values for each word (or name or number) in all the abstracts for each abstract. These values were reduced to two dimensions with `sklearn`'s `TSNE` and plotted with varying color codes: author name, field of study (as related to the field in which the connected Nobel Prize was won), and whether the author of the publication was a Nobel Prize winner.The TF-IDF values were put through Sequential models to get predictions for field of study (4 possibilities): 19% accuracy and for coauthor (Nobel Prize winner or not): 58% accuracy. A t-test found the average TF-IDF values to not be significantly different between abstracts from a non-Prize winner's author page and those from a Prize-winner's author page. Import Statements ###Code import pandas as pd import numpy as np from keras.layers import Input, Dense, LSTM, Embedding from keras.layers import Dropout, Activation, Bidirectional, GlobalMaxPool1D from keras.models import Sequential from keras import initializers, regularizers, constraints, optimizers, layers from keras.preprocessing import sequence from sklearn.manifold import TSNE from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer, TfidfTransformer, CountVectorizer from scipy import stats from statsmodels.stats.multicomp import pairwise_tukeyhsd import matplotlib.pyplot as plt %matplotlib inline plt.style.use("seaborn") from nltk.tokenize import word_tokenize from nltk import FreqDist from nltk.corpus import stopwords import string #use WordNet database to reduce words to roots (lemmatize) from nltk.stem.wordnet import WordNetLemmatizer lemmatizer = WordNetLemmatizer() import nltk nltk.download("punkt") #download Punkt sentence tokenizer nltk.download('wordnet') #download wordnet for WordNetLemmatizer np.random.seed(321) ###Output _____no_output_____ ###Markdown ObtainThe bulk of obtaining is in the obtain.ipynb notebook, where it retrieved and parsed results through my modified `scholarly` package.This section reads in the .CSV files that were created by putting together information from `newscholarly` search results for filled publication information. It also creates new dataframe with additional informative columns consisting of those records that have abstract text (where `bib_abstract` is not null). ###Code #all filled publications that were first five results for Nobel Prize winners publidf = pd.read_csv("csvdata\publications.csv",index_col=[0]) publidf.reset_index(drop=True, inplace=True) publidf.info() #all first five filled publications for at most three authors that were first #listed on first five results for Nobel Prize winners coapublidf = pd.read_csv("csvdata\copublications.csv",index_col=[0]) coapublidf.reset_index(drop=True,inplace=True) coapublidf.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 75 entries, 0 to 74 Data columns (total 23 columns): bib_eprint 38 non-null object bib_cites 75 non-null int64 citations_link 75 non-null object url_scholarbib 0 non-null float64 url_add_sclib 0 non-null float64 bib_abstract 44 non-null object bib_author_list 0 non-null float64 bib_venue 0 non-null float64 bib_year 75 non-null int64 bib_gsrank 0 non-null float64 bib_title 75 non-null object bib_url 44 non-null object bib_author 75 non-null object bib_listauthors 75 non-null object bib_journal 64 non-null object bib_volume 65 non-null float64 bib_number 60 non-null object bib_publisher 61 non-null object bib_pages 69 non-null object source 75 non-null object id_citations 75 non-null object cites_per_year 75 non-null object fileID 75 non-null object dtypes: float64(6), int64(2), object(15) memory usage: 13.6+ KB ###Markdown Create author identifier from fileID (an index number plus the last four characters of an author's name) for both dataframes listing filled publications. ###Code publidf["authID"]=[ident[:-1] for ident in publidf["fileID"]] coapublidf["authID"]=[ident[:-1] for ident in coapublidf["fileID"]] #how many publications that have an abstract are there for "co-authors" coapublidf[coapublidf.bib_abstract.isna()==False].authID.value_counts() #add coauthor binary column coapublidf["coauthor"]=1 publidf["coauthor"]=0 ###Output _____no_output_____ ###Markdown ScrubRemove author's publications known to be an incorrect search result and combine dataframes into one with all publications that have abstracts. ###Code #drop rows at indices where authID is "1Bado" coapublidf.drop(index=coapublidf[coapublidf.authID=="1Bado"].index,inplace=True) coapublidf.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 70 entries, 0 to 74 Data columns (total 25 columns): bib_eprint 34 non-null object bib_cites 70 non-null int64 citations_link 70 non-null object url_scholarbib 0 non-null float64 url_add_sclib 0 non-null float64 bib_abstract 40 non-null object bib_author_list 0 non-null float64 bib_venue 0 non-null float64 bib_year 70 non-null int64 bib_gsrank 0 non-null float64 bib_title 70 non-null object bib_url 40 non-null object bib_author 70 non-null object bib_listauthors 70 non-null object bib_journal 59 non-null object bib_volume 60 non-null float64 bib_number 55 non-null object bib_publisher 57 non-null object bib_pages 64 non-null object source 70 non-null object id_citations 70 non-null object cites_per_year 70 non-null object fileID 70 non-null object authID 70 non-null object coauthor 70 non-null int64 dtypes: float64(6), int64(3), object(16) memory usage: 14.2+ KB ###Markdown With 44 out of 70 or 75 for each dataframe having a non-null abstract, put together dataframe of those with abstract and whether from coauthor or prize-winner list. This is excepting 1Bado from the `coapublidf`, which I know to be information for a different author than intended.Matching names was one of the more difficult aspects of getting the desired search results. ###Code #concatenate where abstract is not null abstractdf = pd.concat([coapublidf[coapublidf.bib_abstract.isna()==False],publidf[publidf.bib_abstract.isna()==False]]) abstractdf.info() #reset index and not add as a column the one being replaced (drop=True) abstractdf.reset_index(drop=True,inplace=True) abstractdf.tail() #save this dataframe abstractdf.to_csv("csvdata\pubs_with_abstracts.csv") abstractdf = pd.read_csv("csvdata\pubs_with_abstracts.csv", index_col=[0]) abstractdf.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 84 entries, 0 to 83 Data columns (total 25 columns): bib_eprint 60 non-null object bib_cites 84 non-null int64 citations_link 84 non-null object url_scholarbib 0 non-null float64 url_add_sclib 0 non-null float64 bib_abstract 84 non-null object bib_author_list 0 non-null float64 bib_venue 0 non-null float64 bib_year 84 non-null int64 bib_gsrank 0 non-null float64 bib_title 84 non-null object bib_url 84 non-null object bib_author 84 non-null object bib_listauthors 84 non-null object bib_journal 70 non-null object bib_volume 74 non-null float64 bib_number 70 non-null object bib_publisher 75 non-null object bib_pages 76 non-null object source 84 non-null object id_citations 84 non-null object cites_per_year 84 non-null object fileID 84 non-null object authID 84 non-null object coauthor 84 non-null int64 dtypes: float64(6), int64(3), object(16) memory usage: 17.1+ KB ###Markdown Add field from Nobel Prize winner information to authorinfo.csv. ###Code authdf = pd.read_csv("csvdata/authorinfo.csv",index_col=[0]) authdf.reset_index(drop=True, inplace=True) authdf.info() #checking all fileID's are unique to each record sum(authdf.fileID.value_counts()) #get sciences Nobel Prize winner information from 2010-2019 sciwindf = pd.read_csv("files/science10years.csv",index_col=[0]) sciwindf.info() sciwindf["thor"]=[name[-4:] for name in sciwindf.name1] #last four characters of authorname #be sure last four characters are unique sum(sciwindf.thor.value_counts()) #create new empty column for winning area in authdf authdf["area"]=np.nan #add field if sciwindf.thor matches last 4 characters from fileID from authdf for idx, nameid in zip(authdf.index,authdf.fileID): last4 = nameid[-4:] winarea = sciwindf[sciwindf.thor==last4].field area = None try: for i in winarea: area = i except: continue authdf.iloc[idx,-1]=area #last column is "area" #it should be where area is missing, is also not Nobel Prize winners authdf.head() #save new file of author information with winning areas authdf.to_csv("files/authors.csv") #create column of last four characters of an author name from fileID to compare with abstractdf authdf["name4"] = [fileid[-4:] for fileid in authdf["fileID"]] ###Output _____no_output_____ ###Markdown Use information from `authdf` to fill in `abstractdf` with Nobel Prize winning field for that author or coauthor. ###Code #initialize column to be null abstractdf["area"]=None #if an author in bib_listauthors matches an authdf.name4 and area is not NaN for idx, authors in zip(abstractdf.index,abstractdf.bib_listauthors): authlist = authors.strip("[]").split(", ")#expecting string with appearance of a list: ['Name H Itisi', 'I M Here'] area = None hasfield=False for auth in authlist: authname = auth.strip("'")#remove trailing or leading apostrophes abslast4 = authname[-4:] #find whether last four characters match a name in authdf and add that field winarea = authdf[authdf.name4==abslast4].area #find the winning subject area for that match try: for i in winarea: #winarea is a Series with an index, so iterating gives the desired value area = i hasfield = True except: continue if hasfield:#the first author listed in bib_listauthors that matches an author in authdf and has a useful result abstractdf.iloc[idx,-1]=area #last column is "area", that record will be classified in that area break #and leave the loop since it found an area for this list of authors for this record else: continue #create list with one dataframe for each authID and concatenate back together #after filling with nearby values in area concatlist = [] for authorID in abstractdf.authID.value_counts().index: #set of authID values tempdf = abstractdf[abstractdf.authID==authorID].copy() #separate out each dataframe by authID tempdf.area.fillna(method="ffill",inplace=True) #fill forwards tempdf.area.fillna(method="bfill",inplace=True) #fill backwards concatlist.append(tempdf) newabsdf = pd.concat(concatlist) newabsdf[newabsdf.coauthor==0].tail() #some values for area are missing from Nobel Prize winners (where authdf.coauthor is 0) #add area if last four characters from newabsdf.authID matches fileID from authdf for idx, nameid in zip(newabsdf.index,newabsdf.authID): if newabsdf.iloc[idx,-2]==0: #if the coauthor column is 0, the record is for a Nobel winner last4 = nameid[-4:] winarea = authdf[authdf.name4==last4].area #get area value from author info dataframe absarea = None hasarea = False try: for i in winarea: absarea = i except: continue #go on to next record if hasarea and newabsdf.iloc[idx,-1]==None: newabsdf.iloc[idx,-1]=absarea #"area" was last column added # the value at the corresponding index for this authID is set to the area from authdf continue newabsdf.area.value_counts() ###Output _____no_output_____ ###Markdown This method of using the last four characters did not work completely well and left some records in `area` empty, so I manually searched for who were coauthors of Nobel Prize winners in my rough draft notebook and then looked up in `sciwindf` in which field they won. ###Code #example lookup for gham having alij as a coauthor sciwindf[sciwindf.thor=="gham"] #since gham won in chemistry, alij's publications will also be classified as such prefindx = newabsdf[newabsdf.authID=="1alij"].index newabsdf.loc[prefindx,"area"]="chemistry" ###Output _____no_output_____ ###Markdown I saved the resulting `newabsdf`, after manually adding the rest of the values for `area` as "abstractsinfo.csv", which can be read in below as `infodf`. ###Code infodf = pd.read_csv("csvdata/abstractsinfo.csv", index_col=[0]) infodf.info() #sorting by index column, then dropping it infodf.set_index(infodf["index"], inplace=True) infodf.sort_index(inplace=True) infodf.drop(columns=["index"],inplace=True) infodf.tail() sum(infodf.area.isna()) infodf.area.value_counts() ###Output _____no_output_____ ###Markdown Possible duplicates ###Code infodf[infodf.citations_link=="/scholar?cites=10229049581137351676"] ###Output _____no_output_____ ###Markdown Before truly beginning analysis, some publications may have been added more than once so I will remove those with enough similar information with `drop duplicates`; keeping one of each publication. ###Code infodf.drop_duplicates().info() #there are no records that match completely, so I will specify where the abstract, eprint and citations_link are the same finaldf = infodf.drop_duplicates(subset=["bib_abstract","citations_link","bib_eprint"]) finaldf.info() #reset index and save as abstracts76 finaldf.reset_index(drop=True,inplace=True) finaldf.to_csv("csvdata/abstracts76.csv") finaldf.tail() ###Output _____no_output_____ ###Markdown ExploreWith dataframe of records that have abstracts, analyze abstract text for each with `nltk` and get TF-IDF values for each. ###Code def cleantokens(textstring): ''' A function to remove punctuation, various other symbol characters, newlines, and English stopwords from textstring. It returns words or sequences of numbers (and/or letters) from textstring as tokens using nltk.word_tokenize. Args textstring (str) : A string of text, assumed to be in English, with words separated by spaces. Returns cleantokens (list) : lowercase words (including acronyms) from textstring not in stopwords.words("english") ''' stopwordspunct = stopwords.words("english") stopwordspunct += list(string.punctuation) stopwordspunct += ["…","\+","''","‘","’","“","”","—","\*","à"] #other punctuation that was unaccounted for for symbol in "\+,.?!;-\\:\∼\~'\n\'…‘’“”—\*":#replace punctuation with an empty string, including ~ and ∼ textstring = textstring.replace(symbol, '').lower() #put into lowercase tokenized = word_tokenize(textstring) #alternately: cleanedtokens = [word.lower() for word in tokenized if word not in stopwordspunct] return cleanedtokens ###Output _____no_output_____ ###Markdown The next code blocks get a list of lists of all words in all abstracts. ###Code abstractext = [abstract for abstract in finaldf.bib_abstract]#each entry in bib_abstract is one string tokenslists = [] abstractlist = [] for each in abstractext: #a list of Strings tokens = cleantokens(each) #get tokens lemmlist = [] for token in tokens: lemtoken = lemmatizer.lemmatize(token) lemmlist.append(lemtoken) #lemmatize each token, add as item to list abstractlist.append(lemtoken) #add to one big list with no distinction between abstracts tokenslists.append(lemmlist) #each list of lemmatized tokens is an item in the list #freqdist for all words in all abstracts absfreq = FreqDist(abstractlist) absfreq.most_common(10) len(absfreq) ###Output _____no_output_____ ###Markdown The most common is "cell" although there are 2500 unique words, numbers (and likely, names as well) in total for all abstract text.Now, I will get the TF-IDF values for each word for each abstract text. ###Code #get frequency dictionaries for each list of words freqlist = [] for tokenslist in tokenslists: freqdistr = FreqDist(tokenslist) freqlist.append(freqdistr) ###Output _____no_output_____ ###Markdown The below are based on the TF-IDF lab comparing song lyrics https://github.com/learn-co-curriculum/ds-word-vectorization-lab/ that get term frequency - inverse term frequency. ###Code #get term frequency: def proportional_freq(freqdict): ''' If given a frequency dictionary, would return a new dictionary with the same keys and the frequencies relative to the total sum of the frequencies (total number of times all keys were counted): a key's given value / sum of all values. Args freqdict (dict or similar) : has words as keys and their frequencies in the text as the values Returns propor (dict) : same keys as freqdict, values are freqdict's value divided by the total sum of freqdict's values ''' totalcount = sum(freqdict.values()) #the total number of words, summing up all the frequency counts propor=dict() for item, freq in freqdict.items(): #iterate over each item-frequency pair propor[item] = freq/totalcount return propor #find inverse document frequency given a list of frequency dictionaries def calc_inverse_freq(freqdlist): ''' Takes in a list of frequency dictionaries and finds the inverse document frequency for every key. Returns one dict containing all of the set of keys across all freqdlist's dictionaries with the inverse document frequency as the values Args freqdlist (list) : list of frequency dictionaries that are part of the same corpus Returns inversedict (dict) : the keys are from the dictionaries in freqdlist's keys and the values are log-transformed inverse document frequency (the number of dictionaries / how many dicts the key appears in) ''' listlen = len(freqdlist) totfreqd = dict() for freqd in freqdlist: #create frequency dictionary with every key across all dictionaries in freqdlist for key in freqd.keys(): totfreqd[key]=totfreqd.get(key,0)+1 #if key does not exist already, creates it with value of 1 #totfreqd contains how many times a word appears at least once in a freqd from freqdlist (the number of #documents a word appears in) inversedict=dict() for word, freq in totfreqd.items():#for every token-frequency pair in totfreqd #inversedict contains log of (the total number of dictionaries (documents) / how many documents word appears in) inversedict[word] = np.log(listlen/float(freq)) #the log of this quotient (to divide well, needs float type) # (so the difference between 10 and 20 is bigger than between 100 and 120) return inversedict #for term frequency, I used FreqDist object from nltk def termf_invdf(listofdicts): ''' Finds term frequency-inverse document frequency for every key in each given frequency dictionary in listofdicts and returns the values in tfidf_dictslist list of dictionaries, each having every key from across listofdicts. Args listofdicts (list) : list of frequency dictionaries Returns tfidf_dictslist (list) : list of dictionaries, each with keys of all of the keys across listofdicts' dictionaries and the values are term frequency * inverse document frequency derived from same ''' idfdict = calc_inverse_freq(listofdicts) newdict = {i:0 for i in list(idfdict.keys())} #all the words from all dictionaries in the list tfidf_dictslist=[] for eachdict in listofdicts: tfidf_dict = newdict.copy() #dictionary with keys as all the tokens in the corpus and all have values of 0 profreq = proportional_freq(eachdict) #gets term frequency for word in profreq.keys(): tfidf_dict[word] = profreq[word]*idfdict[word] #multiply proportional frequency by inverse frequency tfidf_dictslist.append(tfidf_dict) #each dictionary lists every word in the corpus #if a word is not in eachdict, it has a value of 0 in its corresponding tfidf_dict return tfidf_dictslist ###Output _____no_output_____ ###Markdown Use frequency distributions FreqDist objects (similar to dictionaries) to get list of dictionaries of TF-IDF values for each abstract. ###Code tfidflist = termf_invdf(freqlist) #put all TF-IDF values into dataframe format tfidframe = pd.DataFrame(tfidflist) #tfidflist is a list of dictionaries where each dictionary is every word's tfidf value for an abstract tfidflist[41]["cell"] ###Output _____no_output_____ ###Markdown As a dataframe, each record is for one asbtract. ###Code tfidframe.head() #interesting note: there are two different strings for micrometers "µm"=="μm" tfidframe.info() #save TF-IDF values to .CSV file tfidframe.to_csv("csvdata/tfidfvalues.csv") tfidframe.describe() #quick calculation for average tokens per abstract totalwords=0 for i in tokenslists: #list of lists of tokens totalwords+=len(i) #how many tokens in each abstract = length of list totalwords/finaldf.shape[0] #with number of rows in finaldf ###Output _____no_output_____ ###Markdown Most values are zero, likely indicating that most tokens are not in most abstracts, as there are 70 tokens on average in each abstract. Of the tokens shown by `.describe()` at a glance, β is the most unique; with a maximum TF-IDF value of 0.2 (closest to 1). ###Code statsframe = tfidframe.describe() statsframe.info() #finding the highest values for which tokens statsframeT = statsframe.T statsframeT[statsframeT["max"]>.37] ###Output _____no_output_____ ###Markdown There are ten tokens with the TF-IDF values in the dataset that are above 0.37. The highest, or most unique, is "decision" at 0.58 although six have the same `max` value of 0.481193. Plot TF-IDF valuesUse t-SNE (t-Stochastic Neighbors Embedding) from sci-kit learn to graph the values. ###Code #list of lists of values from the list of tf-idf dictionaries tfidfvalues = [] for tfidfdict in tfidflist: tfidfvalues.append(list(tfidfdict.values())) #convert values of each to list def graphdims(transformed, dims=3): ''' Transpose a list of lists or similar iterable from one N-length list of dims-length lists -> one list of dims number of N-length lists. It's like switching a matrix coordinate from (i, j) to be (j, i) except using a list of lists Args transformed (list or arraylike) : an arraylike of an arraylike of dimension dims x N (dims lists each of size N) dims (int) : defaults to 3. The desired dimension of the returned list of lists Returns coordlist (list) : a list of lists of dimension N x dims (N lists each of size dims) ''' coordlist = [[] for i in range(0,dims)] #list of lists for coord in transformed: for j in range(0,dims): coordlist[j].append(coord[j]) return coordlist #reduce to two dimensions to graph on x-y axes dim2TSNE = TSNE(n_components=2) #using sklearn dim2data = dim2TSNE.fit_transform(tfidfvalues) dim2abstr = graphdims(dim2data,2) #kind of transpose list of lists #check graphdims changed shape as expected print(dim2data.shape, len(dim2abstr), len(dim2abstr[0])) #add coordinates as columns to finaldf finaldf["xcoord"] = dim2abstr[0] finaldf["ycoord"] = dim2abstr[1] finaldf.describe() #save with coordinates finaldf.to_csv("csvdata/abs76coords.csv") finaldf = pd.read_csv("csvdata/abs76coords.csv", index_col=[0]) ###Output _____no_output_____ ###Markdown Match individual colors to each `authID` for graph. ###Code authidlist = finaldf.authID authidset = set(authidlist) len(authidset) #create list of 26 color names to be for each authID colors = ["darkgrey","dimgray","brown","red","tomato","sienna", "chocolate","darkorange","tan","gold","darkkhaki","y", "yellowgreen","green","c","royalblue","slateblue","navy", "blue","mediumpurple","violet","fuchsia","deeppink", "lawngreen","cyan","darkgoldenrod"] len(colors)==len(authidset) #create dictionary for color names colordict = dict() for authid,color in zip(authidset,colors): colordict[authid]=color #graph with the authID's for the corresponding abstracts fig = plt.figure(figsize=(20,10)) ax = fig.add_subplot(111) for xcoord, ycoord, authid in zip(dim2abstr[0], dim2abstr[1], authidlist): colr = colordict[authid] ax.scatter(xcoord, ycoord, c=colr, label=authid) pts = 18 #font pt size plt.rc('axes', titlesize=pts, labelsize=pts) # font size of the axes titles and labels plt.rc('xtick', labelsize=pts-2) # font size of the tick labels plt.rc('ytick', labelsize=pts-2) # font size of the tick labels plt.rc('figure', titlesize=30) #title font size, slightly larger than the other text plt.title('Abstract TF-IDF Color-coded by Author') #plt.savefig("images/dots-by-author.png") #ax.legend(ncol=8) #with the legend, it was hard to see which was a datapoint and which might be in the key plt.show() ###Output _____no_output_____ ###Markdown Match four colors for Nobel Prize field to graph and look for clusters. ###Code fourcolors = ["darkgreen","blue","goldenrod","magenta"] fieldset = ["physics","chemistry","economics","medicine"] #sort by area areasort = finaldf.sort_values(by=["area"]) phys = areasort[areasort["area"]=="physics"] chem = areasort[areasort["area"]=="chemistry"] econ = areasort[areasort["area"]=="economics"] medi = areasort[areasort["area"]=="medicine"] areadflist = [phys,chem,econ,medi] fig = plt.figure(figsize=(16,8)) ax = fig.add_subplot(111) for areadf, colr, field in zip(areadflist,fourcolors,fieldset): ax.scatter(areadf.xcoord,areadf.ycoord,color=colr,label=field) ax.legend() pts = 18 #font pt size plt.rc('axes', titlesize=pts, labelsize=pts) # font size of the axes titles and labels plt.rc('xtick', labelsize=pts-2) # font size of the tick labels plt.rc('ytick', labelsize=pts-2) # font size of the tick labels plt.rc('figure', titlesize=30) #title font size, slightly larger than the other text plt.title('Abstract TF-IDF Color-coded by Field') #plt.savefig("images/dots-by-field.png") plt.show() ###Output _____no_output_____ ###Markdown The most noticeable group is about 10 Physics publications near center, at about coordinate pair (50, 100). ###Code #see how coauthor column compares winners = finaldf[finaldf["coauthor"]==0] coauths = finaldf[finaldf["coauthor"]==1] coautcatlist=[winners,coauths] labellist = ["Winners","Other Authors"] twocolors = ["blue","goldenrod"] fig = plt.figure(figsize=(16,8)) ax = fig.add_subplot(111) for df, colr, each in zip(coautcatlist,twocolors,labellist): ax.scatter(df.xcoord,df.ycoord,color=colr,label=each) ax.legend() pts = 18 #font pt size plt.rc('axes', titlesize=pts, labelsize=pts) # font size of the axes titles and labels plt.rc('xtick', labelsize=pts-2) # font size of the tick labels plt.rc('ytick', labelsize=pts-2) # font size of the tick labels plt.rc('figure', titlesize=30) #title font size, slightly larger than the other text plt.title('Abstract TF-IDF Color-coded by Nobel Prize Winner') #plt.savefig("images/dots-by-winner.png") plt.show() ###Output _____no_output_____ ###Markdown There appears to be a few clusters, one in particular is made up of non-winners' publications text near the left center of the plot around coordinates (-100, 100). In other graphs, the dots are different colors in this cluster, indicating that they are not by the same author, nor are they in the same field. ModelUsing keras to determine a model of 7 clusters using TF-IDF values as X, predict for each y: `area` and `coauthor`. ###Code #get dummies to create two targets: coauthor and field ycoa = pd.get_dummies(finaldf["coauthor"]).values yarea = pd.get_dummies(finaldf["area"]).values tfidframe.shape X = [row for row in tfidframe.values] #list of rows (numpy arrays) X = np.array(X) #Sequential prefers numpy arrays to lists type(X[0][0]) ###Output _____no_output_____ ###Markdown Model for `coauthor` as Target ###Code #train test split X_train, X_test, yc_train, yc_test = train_test_split(X, ycoa, test_size=0.33, random_state=321) modelc = Sequential() embedsize = 32 #there are 84 records numwords = tfidframe.shape[1] #and 2500 tokens modelc.add(Embedding(numwords, embedsize)) modelc.add(LSTM(10, return_sequences=True)) modelc.add(GlobalMaxPool1D()) modelc.add(Dropout(0.5)) modelc.add(Dense(20, activation='relu')) modelc.add(Dropout(0.5)) modelc.add(Dense(2, activation='softmax')) #coauthor has two possibilities modelc.compile(loss="categorical_crossentropy",optimizer="SGD",metrics=["accuracy"]) modelc.fit(X_train, yc_train,epochs=10,batch_size=15) ###Output Epoch 1/10 4/4 [==============================] - 9s 2s/step - loss: 0.6983 - accuracy: 0.3800 Epoch 2/10 4/4 [==============================] - 9s 2s/step - loss: 0.6947 - accuracy: 0.4800 Epoch 3/10 4/4 [==============================] - 9s 2s/step - loss: 0.6926 - accuracy: 0.5400 Epoch 4/10 4/4 [==============================] - 9s 2s/step - loss: 0.6981 - accuracy: 0.4000 Epoch 5/10 4/4 [==============================] - 9s 2s/step - loss: 0.6917 - accuracy: 0.4400 Epoch 6/10 4/4 [==============================] - 9s 2s/step - loss: 0.6981 - accuracy: 0.3800 Epoch 7/10 4/4 [==============================] - 9s 2s/step - loss: 0.6926 - accuracy: 0.5800 Epoch 8/10 4/4 [==============================] - 9s 2s/step - loss: 0.6930 - accuracy: 0.5400 Epoch 9/10 4/4 [==============================] - 9s 2s/step - loss: 0.6925 - accuracy: 0.5000 Epoch 10/10 4/4 [==============================] - 9s 2s/step - loss: 0.6944 - accuracy: 0.5200 ###Markdown The loss seems large, at .7, but the accuracy improved over the epochs from .38 to .52. ###Code yc_preds = modelc.predict(X_test) #I can compare with .evaluate more conveniently traincresults = modelc.evaluate(X_train, yc_train) testcresults = modelc.evaluate(X_test, yc_test) ###Output 2/2 [==============================] - 0s 215ms/step - loss: 0.6932 - accuracy: 0.5000 1/1 [==============================] - 0s 0s/step - loss: 0.6919 - accuracy: 0.5769 ###Markdown The accuracy on the test set is about 57%. The loss is lower than 1, but still rather high and improved minimally from the first epoch. Model for `area` as the target ###Code #train test split X_train, X_test, ya_train, ya_test = train_test_split(X, yarea, test_size=0.33, random_state=321) modela = Sequential() embedsize = 32 #there are 84 records numwords = tfidframe.shape[1] #and 2500 tokens modela.add(Embedding(numwords, embedsize)) modela.add(LSTM(10, return_sequences=True)) modela.add(GlobalMaxPool1D()) modela.add(Dropout(0.5)) modela.add(Dense(20, activation='relu')) modela.add(Dropout(0.5)) modela.add(Dense(4, activation='softmax')) #area has 4 possibilities modela.compile(loss="categorical_crossentropy",optimizer="SGD",metrics=["accuracy"]) modela.fit(X_train, ya_train,epochs=10,batch_size=15) ###Output Epoch 1/10 4/4 [==============================] - 9s 2s/step - loss: 1.3882 - accuracy: 0.2400 Epoch 2/10 4/4 [==============================] - 9s 2s/step - loss: 1.3825 - accuracy: 0.3200 Epoch 3/10 4/4 [==============================] - 9s 2s/step - loss: 1.3885 - accuracy: 0.2000 Epoch 4/10 4/4 [==============================] - 9s 2s/step - loss: 1.3874 - accuracy: 0.3400 Epoch 5/10 4/4 [==============================] - 9s 2s/step - loss: 1.3826 - accuracy: 0.3200 Epoch 6/10 4/4 [==============================] - 9s 2s/step - loss: 1.3829 - accuracy: 0.3400 Epoch 7/10 4/4 [==============================] - 9s 2s/step - loss: 1.3876 - accuracy: 0.2600 Epoch 8/10 4/4 [==============================] - 9s 2s/step - loss: 1.3915 - accuracy: 0.1800 Epoch 9/10 4/4 [==============================] - 9s 2s/step - loss: 1.3838 - accuracy: 0.3200 Epoch 10/10 4/4 [==============================] - 9s 2s/step - loss: 1.3837 - accuracy: 0.2600 ###Markdown The accuracy improved a little over the epochs, but perhaps it needs more of them to converge. ###Code ya_preds = modela.predict(X_test) trainaresults = modela.evaluate(X_train, ya_train) testaresults = modela.evaluate(X_test, ya_test) ###Output 2/2 [==============================] - 0s 213ms/step - loss: 1.3824 - accuracy: 0.3000 1/1 [==============================] - 0s 0s/step - loss: 1.3945 - accuracy: 0.1923 ###Markdown The accuracy is 19% for the test data and 30% for the training data, both with loss values near 1.4. T-test for significance for `coauthor` feature I'd like to see whether there is a significant difference between TF-IDF values for abstract text by a Nobel winner (0) or a coauthor (1). As a hypothesis test:$H_0$ : The mean difference between the TF-IDF values for non-coauthors and coauthors is zero. Rephrased, $\mu_{nobel} = \mu_{coauthor}$$H_1$ : The mean difference between the TF-IDF values for non-coauthors and coauthors is nonzero. Rephrased, $\mu_{nobel} \ne \mu_{coauthor}$To prove the alternative hypothesis, I can use a two-tailed less-than test.With the $p$ and $t$ values from a two-tailed test (returned by `ttest_ind`), I can reject the null hypothesis when $p 0$. ###Code finaldf["tfidf_avg"] = [np.mean(i) for i in tfidframe.values] #average each row #create lists of average TF-IDF values for whether coauthor/Nobel winner coauth1tfidf = [tival for tival in finaldf[finaldf["coauthor"]==1].tfidf_avg] coauth0tfidf = [tival for tival in finaldf[finaldf["coauthor"]==0].tfidf_avg] ttestresults = stats.ttest_ind(coauth1tfidf,coauth0tfidf) ttestresults ###Output _____no_output_____ ###Markdown That appears to not be significant; a publication authored by a Nobel prize-winner and that which was authored by a collaborator do not have abstracts that are significantly different. T-test for significance for `area` feature I'd like to see whether there is a significant difference between TF-IDF values for abstract text by one field or another. To prove the alternative hypothesis, these would be two-tailed, paired tests comparing the four possibilities for `area` (each pair would be field A compared to field B).$H_0$ : The mean difference between the TF-IDF values for field A and field B is zero. Rephrased, $\mu_{A} = \mu_{B}$$H_1$ : The mean difference between the TF-IDF values for field A and field B is nonzero. Rephrased, $\mu_{A} \ne \mu_{B}$With the $p$ and $t$ values from a two-tailed test (returned by `ttest_ind`), I can reject the null hypothesis when $p 0$. ###Code phystfidf = [tival for tival in finaldf[finaldf["area"]=="physics"].tfidf_avg] chemtfidf = [tival for tival in finaldf[finaldf["area"]=="chemistry"].tfidf_avg] econtfidf = [tival for tival in finaldf[finaldf["area"]=="economics"].tfidf_avg] meditfidf = [tival for tival in finaldf[finaldf["area"]=="medicine"].tfidf_avg] #pairwise Tukey test: #information needs to be in numpy arrays area_arrays = np.concatenate([np.array(phystfidf),np.array(chemtfidf),np.array(econtfidf),np.array(meditfidf)]) #and labels are important for it to handle the data properly areanames = ["physics"]*len(phystfidf) + ["chemistry"]*len(chemtfidf) + ["economics"]*len(econtfidf) + ["medicine"]*len(meditfidf) #get tukeyhsd test results with 0.05 for significant p-value print(pairwise_tukeyhsd(area_arrays,areanames,0.05)) ###Output Multiple Comparison of Means - Tukey HSD,FWER=0.05 ================================================== group1 group2 meandiff lower upper reject -------------------------------------------------- chemistry economics 0.0 -0.0 0.0001 False chemistry medicine 0.0 -0.0 0.0001 False chemistry physics -0.0001 -0.0001 -0.0 True economics medicine 0.0 -0.0001 0.0001 False economics physics -0.0001 -0.0002 -0.0 True medicine physics -0.0001 -0.0002 -0.0 True -------------------------------------------------- ###Markdown By field, three combinations' null hypotheses can be rejected: chemistry-economics, chemistry-medicine, and economics-medicine. Conversely, it means pairs with physics are not significantly different. However, all values for `meandiff`, `lower` and `upper` are very close to 0. InterpretUltimately, the results rely on too little data. The model has a relatively high loss values and accuracy metrics that barely improve over the last few epochs of the Sequential Model from `keras`. The t-test comparing TF-IDF values for co-authors and those for Nobel Prize winners did not find significance. Pairwise tests comparing four different fields (`area`) found significance for half of the pairs (those combinations of chemistry, medicine and economics).Comparing the TF-IDF for abstract text gives closeness based on the words' importances to the abstract. With many abstracts containing specialized jargon from different disciplines, it was surprising that when graphing the values, the abstracts were not more clustered by `area`. Comparison to `sklearn`'s `TfidfTransformer` with `CountVectorizer`Using the tokenized abstracts and a `set` of the words from all the abstracts, get TF-IDF values from `sklearn` methods. ###Code #take tokenslists and put each list into one String, each word separated by spaces corpus = [] vocab = [] #vocab will be set of all words from all tokens for tokenlist in tokenslists: tokenstring="" lasttoken = tokenlist[-1] for token in tokenlist[:-1]: vocab.append(token) tokenstring+=token tokenstring+=" " #last token does not need space after it tokenstring+=lasttoken #each separated by spaces vocab.append(lasttoken) corpus.append(tokenstring) len(corpus) vocabul = set(vocab) len(vocabul) tokenslists[10][-1] corpus[10] #without a pipeline vectorizer = CountVectorizer() vectorized = vectorizer.fit_transform(corpus) vectorized[10] transformer = TfidfTransformer() tfidf = transformer.fit_transform(vectorized) tfidf vectarr = vectorized.toarray() tfidfarr = tfidf.toarray() vectdf = pd.DataFrame(vectarr, columns=vectorizer.get_feature_names()) vectdf.head() tfidfdf = pd.DataFrame(tfidfarr, columns=vectorizer.get_feature_names()) tfidfdf.head() ###Output _____no_output_____ ###Markdown Data Structuring and Pruning ###Code # Load datasets import json import pathlib import importlib from collections import defaultdict, Counter import pyupset as pyu import pandas as pd import matplotlib.pyplot as plt import numpy as np from scipy import stats import re from matplotlib.gridspec import GridSpec import csv import requests import pickle import os from vicckb import model as viccdb from vicckb.definitions import DATA_ROOT, PROJECT_ROOT %matplotlib inline REPOPATH = PROJECT_ROOT.parent OUTPATH = REPOPATH / 'out' FIGPATH = OUTPATH / 'figures' os.makedirs(FIGPATH, exist_ok=True) # reload module and load data importlib.reload(viccdb) vdb = viccdb.ViccDb() vdb.report_groups() # for now, omit brca from analysis brca = vdb.select(lambda x: x['source'] == 'brca') core_vdb = vdb - brca core_vdb.report_groups() # remove biological associations oncokb_biological = core_vdb.select(lambda x: x['source'] == 'oncokb' and 'biological' in x['raw']) oncokb_biological.report_groups(core_vdb) core_vdb = core_vdb - oncokb_biological ###Output oncokb: 3801 (93.9% of superset) Total: 3801 (22.5% of superset) ###Markdown Evidence UniquenessThis section deals with non-unique entries from the database. This is a temporary measure until the importers are fixed. As such, it uses private variables and non-standard methods to hack around the built-in uniqueness assumptions that are violated by these data. Remove this entire section once the source hash checks pass. ###Code core_vdb.report_groups() # Non-unique raw entries raw_duplicates = core_vdb.select(lambda x: len(core_vdb._hashed[hash(x)]) > 1) raw_duplicates.report_groups(core_vdb) cgi_dups = raw_duplicates.by_source('cgi') cgi_clean = [x for x in cgi_dups if x['raw']['Drug status']] test = viccdb.ViccDb([x for x in core_vdb if x not in cgi_dups] + list(cgi_clean)) test.report_groups(core_vdb) # Test matches expectation, moving to core core_vdb = test pmkb_dups = raw_duplicates.by_source('pmkb') len(pmkb_dups._hashed) len(pmkb_dups) merged_associations = list() for hash_key, equivalent_associations in pmkb_dups._hashed.items(): root_association = equivalent_associations.pop() for other_association in equivalent_associations: root_association['features'].append(other_association['features'][0]) merged_associations.append(root_association) test = viccdb.ViccDb([x for x in core_vdb if x not in merged_associations] + list(merged_associations)) test.report_groups(core_vdb) x = len(core_vdb.by_source('pmkb')) - len(pmkb_dups) + len(pmkb_dups._hashed) print("Expecting {} associations for PMKB".format(x)) # Test matches expectation, moving to core core_vdb = test ###Output _____no_output_____ ###Markdown Evidence filteringRemoval of all evidence without associated publications, followed by removal of all associations without evidence. ###Code def clean_refs(association): evidences = association['association']['evidence'] evidence_indices_to_delete = list() for i, evidence in enumerate(evidences): assert isinstance(publications, list) publications = [x for x in evidence['info']['publications'] if x] evidence['info']['publications'] = publications if not publications: evidence_indices_to_delete.append(i) for index in sorted(evidence_indices_to_delete, reverse=True): del association['association']['evidence'][index] map(clean_refs, core_vdb) core_missing_ref = core_vdb.select(lambda x: not any(x.publications)) core_missing_ref.report_groups(core_vdb) core_vdb = core_vdb - core_missing_ref core_vdb.report_groups() # All associations should have an evidence level core_vdb.select(lambda x: not x.evidence_level).report_groups(core_vdb) ###Output Total: 0 (0.0% of superset) ###Markdown Feature coordinatesWhat follows is a detailed look at associations without start and end coordinates after normalization, and a set of regular expression filters to separate out these associations into chunks that can be annotated with gene- or exon-level coordinates, as appropriate. ###Code # Associations with more than 1 feature x = core_vdb.select(lambda x: len(x.features) > 1) x.report_groups(vdb) # Associations without at least 1 complete and valid feature no_features = core_vdb.select(lambda x: len(x.features) == 0) no_features.report_groups(vdb) vdb[0]['association']['phenotype'] # Associations with coordinate features coord_featured = core_vdb - no_features coord_featured.report_groups(core_vdb) ###Output cgi: 1063 (99.2% of superset) civic: 3323 (99.5% of superset) jax: 5736 (99.8% of superset) molecularmatch: 2063 (99.2% of superset) oncokb: 245 (99.2% of superset) pmkb: 369 (99.5% of superset) Total: 12799 (99.6% of superset) ###Markdown Fix PMKB features ###Code with open('vicckb/data/gene_strand.pkl', 'rb') as f: gene_strand = pickle.load(f) COMPLEMENT = { 'A': 'T', 'T': 'A', 'G': 'C', 'C': 'G', '-': '-' } complement_map = str.maketrans(COMPLEMENT) def get_gene_strand(gene, trx_id): strand = gene_strand.get((gene, trx_id), None) if strand is None: cmd = '''wget -q -O - 'http://grch37.ensembl.org/biomart/martservice?query=<?xml version="1.0" encoding="UTF-8"?> <!DOCTYPE Query> <Query virtualSchemaName = "default" formatter = "CSV" header = "0" uniqueRows = "0" count = "" datasetConfigVersion = "0.6" > <Dataset name = "hsapiens_gene_ensembl" interface = "default" > <Filter name = "hgnc_symbol" value = "{}"/> <Attribute name = "ensembl_transcript_id" /> <Attribute name = "strand" /> </Dataset> </Query>' | grep '{}' '''.format(gene, trx_id) result = !{cmd} strand = result[0].split(',')[-1] gene_strand[(gene, trx_id)] = strand return strand return strand for association in core_vdb.by_source('pmkb'): del(association._features) for feature in association['features']: gene = feature['geneSymbol'] trx_id = feature['attributes']['transcript']['string_value'] strand = get_gene_strand(gene, trx_id) if strand == '-1': # feature['ref'] = feature['ref'][::-1].translate(complement_map) try: feature['alt'] = feature['alt'][::-1].translate(complement_map) except KeyError: continue with open('vicckb/data/gene_strand.pkl', 'wb') as f: pickle.dump(gene_strand, f) ###Output _____no_output_____ ###Markdown Remainder of section is inactivated code for identifying associations without coordinatesimport redef feature_filter(re_obj, associations): report matches and return non-matches found = list(filter(lambda x: re_obj.search(x['feature_names']) is not None, associations)) not_found = list(filter(lambda x: re_obj.search(x['feature_names']) is None, associations)) report_groups(found) return(not_found)amp_re = re.compile(r'(amplification)|(loss)|(amp)', re.IGNORECASE)remainder = feature_filter(amp_re, no_partial_coord_featured_with_feature_names) fusion_re = re.compile(r'(\w{2,}-\w{2,})|(fusion)', re.IGNORECASE)r2 = feature_filter(fusion_re, remainder) ppm_re = re.compile(r'\w+(:| )[a-z]\d+[a-z]?(fs\*?)?$', re.IGNORECASE)r3 = feature_filter(ppm_re, r2) indel_re = re.compile(r'\w+(:| )\w+(ins\w+)|(del($|ins\w+))|(dup$)')r4 = feature_filter(indel_re, r3) bucket_re = re.compile(r'[A-Z0-9]+( (in)?act)?( oncogenic)? mut((ant)|(ation))?$')r5 = feature_filter(bucket_re, r4) exon_re = re.compile(r'exon', re.IGNORECASE)r6 = feature_filter(exon_re, r5) expression_re = re.compile(r'(exp)|(^\w+ (pos(itive)?)|(neg(ative)?)|(biallelic inactivation)$)|(truncating)|(deletion)', re.IGNORECASE)r7 = feature_filter(expression_re, r6) report_groups(r7) get_feature_names([x for x in r7 if x['source'] == 'cgi']) Diseases ###Code disease_missing = core_vdb.select(lambda x: x.disease is None) disease_missing.report_groups(core_vdb) disease_missing[0]['association'] # Fix DOID for association in core_vdb.select(lambda x: x.disease and x.disease.name == 'CNS Cancer'): association['association']['phenotype']['type']['term'] = 'central nervous system cancer' association['association']['phenotype']['type']['id'] = 'DOID:3620' mismatched_do_cgi = core_vdb.select(lambda x: x.disease and \ x.disease.source.lower().endswith('doid') and \ not x.disease.id.startswith('DOID') and \ x.source == 'cgi' ) mismatched_do_cgi.report_groups(core_vdb) mismatched_do_cgi[0]['association']['phenotype'] mismatched_do_cgi[0]['raw'] from vicckb.definitions import DATA_ROOT from vicckb.harmonizers import DiseaseHarmonizer adh = DiseaseHarmonizer(map_file=(DATA_ROOT / 'disease_alias.tsv'), disease_ontology='DOID') disease = mismatched_do_cgi[0]['raw']['Primary Tumor type'] adh.harmonize(disease) for cgi_association in mismatched_do_cgi: disease = cgi_association['raw']['Primary Tumor type'] harmonized = adh.harmonize(disease) cgi_association['association']['phenotype'] = { 'description': disease, 'type': { 'id': harmonized['id'], 'source': harmonized['ontology'], 'term': harmonized['term'] } } mismatched_do_cgi = core_vdb.select(lambda x: x.disease and \ x.disease.source.lower().endswith('doid') and \ not x.disease.id.startswith('DOID') and \ x.source == 'cgi' ) mismatched_do_cgi.report_groups(core_vdb) core_vdb.select(lambda x: not x.disease and x.source == 'cgi').report_groups() other_do_cgi = core_vdb.select(lambda x: x.disease and \ x.source == 'cgi' and \ not x.disease.source.lower().endswith('doid')) other_do_cgi.report_groups() for cgi_association in other_do_cgi: disease = cgi_association['raw']['Primary Tumor type'] harmonized = adh.harmonize(disease) cgi_association['association']['phenotype'] = { 'description': disease, 'type': { 'id': harmonized['id'], 'source': harmonized['ontology'], 'term': harmonized['term'] } } core_vdb.select(lambda x: x.disease and \ x.source == 'cgi' and \ not x.disease.source.lower().endswith('doid')).report_groups() ###Output 0 total associations ###Markdown Drugs ###Code drugs_missing = core_vdb.select(lambda x: len(x.drugs) == 0) drugs_missing.report_groups(core_vdb) ###Output cgi: 112 (10.4% of superset) civic: 1261 (37.8% of superset) jax: 457 (8.0% of superset) molecularmatch: 120 (5.8% of superset) oncokb: 8 (3.2% of superset) pmkb: 371 (100.0% of superset) Total: 2329 (18.1% of superset) ###Markdown Genes ###Code ambiguous = list() for a in core_vdb: a.genes # assert len(ambiguous) == 0 # Ensure there are no ambiguous genes from knowledgebases ###Output /Users/awagner/Workspace/git/vicckb/vicckb/model.py:257: UserWarning: Ambiguous gene symbol MLL2 in assertion 235677252030682 warn('Ambiguous gene symbol {} in assertion {}'.format(g, self)) ###Markdown CacheSaving core_vdb to cache for testing. ###Code core_vdb.cache_data() ###Output _____no_output_____ ###Markdown Knowledgebase Comparison Publications All publications ###Code x = core_vdb.plot_element_by_source('publications', min_bound=4) f = x['figure'] # f.savefig('out/publications.pdf') # x['input_data'] ## For Sidi ebs = x['input_data'] df_dict = dict() for source in ebs: fe = list(filter(lambda x: bool(x), ebs[source])) df_dict[source] = pd.DataFrame(fe, columns=['attribute']) with open('example.pkl', 'wb') as f: pickle.dump(df_dict, f) with open('example.pkl', 'rb') as f: df_dict = pickle.load(f) !open . # Publications uniquely cited data = x['input_data'] total = 0 for source in data: publications_from_elsewhere = set() for source2 in data: if source == source2: continue publications_from_elsewhere.update(data[source2]) unique = data[source] - publications_from_elsewhere print("{}: {} resource-specific publications".format(source, len(unique))) total += len(unique) print("{} ({:.2%}) total resource-specific publications".format(total, total / len(set.union(*(data.values()))))) p_sets = core_vdb.get_element_by_source('publications') len((p_sets['civic'] & p_sets['jax']) - p_sets['pmkb'] - p_sets['oncokb'] - p_sets['molecularmatch'] - p_sets['cgi']) x = core_vdb.element_by_source_stats('publications') x['ubiquitous'] # Bose et al. Cancer Discovery 2013 ###Output 3696 / 4354 (84.89%) of publications are represented in only 1 resource. 203 / 4354 (4.66%) of publications are represented in the majority of (3) resources. 1 / 4354 (0.02%) of publications are represented across all resources. ###Markdown PMIDs ###Code x = core_vdb.plot_element_by_source('publications', lambda x: x.pmid, min_bound=3) # f = x['figure'] # f.savefig('out/pmids.pdf') x = core_vdb.element_by_source_stats('publications', lambda x: x.pmid) x['ubiquitous'] # Bose et al. Cancer Discovery 2013 ###Output 3146 / 3800 (82.79%) of publications are represented in only 1 resource. 203 / 3800 (5.34%) of publications are represented in the majority of (3) resources. 1 / 3800 (0.03%) of publications are represented across all resources. ###Markdown Genes ###Code g_set = core_vdb.get_element_by_source('genes') x = g_set['civic'] for n, s in g_set.items(): if n == 'civic': continue x = x - s len(x) no_genes = core_vdb.select(lambda x: not x.genes) no_genes.report_groups(core_vdb) with_genes = core_vdb - no_genes x = with_genes.plot_element_by_source('genes') # f = x['figure'] # f.savefig('out/genes.pdf') x = with_genes.element_by_source_stats('genes') x['ubiquitous'] stats.fisher_exact([ [203, 4151], [97, 318] ]) ###Output _____no_output_____ ###Markdown Features ###Code # suddenly stopped working? maybe a dependency error? # x = core_vdb.plot_element_by_source('features', min_bound=5) # f = x['figure'] # f.savefig(str(FIGPATH / 'misc_figures' / 'feature_upset.pdf')) x = core_vdb.select(lambda x: x.evidence_level == 'A').element_by_source_stats('features') f_sets = core_vdb.get_element_by_source('features') # all_features = set.update() count = Counter() for s in f_sets.values(): count.update(s) # non-scientific-notation calculations sources = list(f_sets) for source in sources: s = set() for other in sources: if source == other: continue s.update(f_sets[other]) print(f'{source}: {len(f_sets[source] - s)}') cgi_and_okb = f_sets['oncokb'] & f_sets['cgi'] others = f_sets['pmkb'] | f_sets['molecularmatch'] | f_sets['civic'] | f_sets['jax'] print(f'cgi and oncokb: {len(cgi_and_okb - others)}') count_of_counts = Counter() count_of_counts.update(count.values()) np.asarray(list(count_of_counts.values())) labels = sorted(count_of_counts.keys()) values = [count_of_counts[x] for x in labels] values fig1, ax1 = plt.subplots() pie, _, _ = ax1.pie(values, radius=1, labels=labels, autopct='%1.1f%%', pctdistance=2) ax1.axis('equal') plt.setp(pie, edgecolor='white') # plt.savefig(str(FIGPATH / 'misc_figures' / 'feature_overlap.pdf')) plt.show() ubiquitous_features = list(x['ubiquitous']) sorted([x.name for x in ubiquitous_features]) def element_uniqueness_across_kbs(element, as_proportion=False): e_sets = core_vdb.get_element_by_source(element) count = Counter() for s in e_sets.values(): count.update(s) count_of_counts = Counter() count_of_counts.update(count.values()) labels = sorted(count_of_counts.keys()) if as_proportion: d = sum(count_of_counts.values()) values = [count_of_counts[x]/d for x in labels] else: values = [count_of_counts[x] for x in labels] return dict(zip(labels, values)) element_uniqueness_across_kbs('features', as_proportion=True) g_prop = element_uniqueness_across_kbs('genes', as_proportion=True) f_prop = element_uniqueness_across_kbs('features', as_proportion=True) di_prop = element_uniqueness_across_kbs('disease', as_proportion=True) dr_prop = element_uniqueness_across_kbs('drugs', as_proportion=True) pub_prop = element_uniqueness_across_kbs('publications', as_proportion=True) labels = ['Genes', 'Features', 'Diseases', 'Drugs*', 'Publications'] N = len(labels) ind = np.arange(N) value_sets = [g_prop, f_prop, di_prop, dr_prop, pub_prop] width = 0.5 plot_sets = [[x.get(i, 0) for x in value_sets] for i in range(1,7)] plots = list() b_sums = np.zeros(N) for plot_set in plot_sets: p = plt.bar(ind, plot_set, width, bottom=b_sums) b_sums += np.array(plot_set) plots.append(p) plt.ylabel('Proportion') plt.xticks(ind, labels) plt.legend([p[0] for p in plots], range(1,7), bbox_to_anchor=(1.2, 0.5, 0, 0.5)) # plt.savefig(str(FIGPATH / 'misc_figures' / 'elements_overlap.pdf')) plt.show() ###Output _____no_output_____ ###Markdown Tier 1 variants ###Code tier1 = core_vdb.select(lambda x: x.evidence_level in ['A', 'B']) genes = set() features = set() for a in tier1: genes.update(a.genes) features.update(a.features) print(len(genes)) print(len(features)) ###Output 236 1512 ###Markdown Hierarchical searchExisting method is to find an exact match of any features for an association. Below we demonstrate gains through hierarchical search of GenomicFeatures, a core result of this effort. ###Code hits = core_vdb.search_by_feature(chromosome=7, start=140453136, end=140453136, reference_name='GRCh37') v600k = [x['best_match']['p'] for x in hits if x['best_match']['feature'].name.endswith('V600K')] len(v600k) unique_features = set() x = [x.features for x in core_vdb] for fset in x: unique_features.update(fset) unique_features = list(unique_features) len(unique_features) # This is a computationally expensive operation (~1 minute for the 2800 searches). Could be sped up through indexed searching. # feature_hits = dict() # for feature in unique_features: # feature_hits[feature] = core_vdb.search_by_feature(genomic_feature=feature) # New method feature_hits = core_vdb.search_by_features(genomic_features=unique_features) ranking = viccdb.ViccDb.MATCH_RANKING hits_by_type = Counter() sources_by_type = defaultdict(Counter) for match_type in ranking: typed_hits = [x for x in feature_hits if ranking.index(x['best_match']['type']) <= ranking.index(match_type)] hits_by_type[match_type] = len(typed_hits) typed_associations_by_query = defaultdict(set) for hit in typed_hits: typed_associations_by_query[hit['query']].add(hit['association']) for associations in typed_associations_by_query.values(): sources = {association.source for association in associations} sources_by_type[len(sources)][match_type] += 1 hits_by_type sources_by_type fig, ax = plt.subplots() source_counts = sorted(sources_by_type) groups = viccdb.ViccDb.MATCH_RANKING width = 0.15 plot_elements = list() ind = np.arange(len(groups)) for i, source_count in enumerate(source_counts): type_counts = sources_by_type[source_count] x = [type_counts[k] for k in groups] p = ax.bar(ind + width*(i-2.5), x, width, label=source_count) plot_elements.append(p) ax.set_xticks(ind) ax.set_xticklabels(groups) handles, labels = ax.get_legend_handles_labels() ax.legend(handles, labels, title='Sources') plt.ylabel('Queries') plt.show() # fig.savefig(str(FIGPATH / 'misc_figures' / 'search_performance.pdf'), format='pdf') # feature_hits = core_vdb.search_by_features(genomic_features=ubiquitous_features) q = {hit['query'] for hit in feature_hits} len(q) c = Counter() for f in unique_features: if len(f) > 9 and len(f) < 100: l = '10-99' elif len(f) >= 100: l = '100+' else: l = len(f) c[l] += 1 c ###Output _____no_output_____ ###Markdown Sequence Ontology ###Code count = Counter() for association in core_vdb: for feature in association.features: count[feature.so.get('name', 'Uncategorized')] += 1 count.most_common(10) (5052 + 3263) / sum(count.values()) # Associations lacking any sequence ontology ID def no_soid(association): x = [feature.so.get('name', 'Uncategorized') == 'Uncategorized' for feature in association.features] return all(x) no_soid_group = core_vdb.select(no_soid) no_soid_group.report_groups(core_vdb) # Associations lacking at least one sequence ontology ID def missing_soid(association): x = [feature.so.get('name', 'Uncategorized') == 'Uncategorized' for feature in association.features] return any(x) missing_soid_group = core_vdb.select(missing_soid) missing_soid_group.report_groups(core_vdb) partial_soid_group = missing_soid_group - no_soid_group partial_soid_group.report_groups(core_vdb) partial_soid_group[0].features[2].so ###Output _____no_output_____ ###Markdown Project GENIE feature match ###Code # Loading Disease graph here for use in GENIE disease matching import obonet import networkx url = 'https://raw.githubusercontent.com/DiseaseOntology/HumanDiseaseOntology/v2018-05-11/src/ontology/HumanDO.obo' graph = obonet.read_obo(url) assert networkx.is_directed_acyclic_graph(graph) so_by_name = { "3'Flank": {'name': 'downstream_transcript_variant', 'soid': 'SO:0001987'}, "3'UTR": {'name': '3_prime_UTR_variant', 'soid': 'SO:0001624'}, "5'Flank": {'name': 'upstream_transcript_variant', 'soid': 'SO:0001986'}, "5'UTR": {'name': '5_prime_UTR_variant', 'soid': 'SO:0001623'}, "Frame_Shift_Del": {'name': 'frameshift_truncation', 'soid': 'SO:0001910'}, "Frame_Shift_Ins": {'name': 'frameshift_elongation', 'soid': 'SO:0001909'}, "In_Frame_Del": {'name': 'inframe_deletion', 'soid': 'SO:0001822'}, "In_Frame_Ins": {'name': 'inframe_insertion', 'soid': 'SO:0001821'}, "Intron": {'name': 'intron_variant', 'soid': 'SO:0001627'}, "Missense_Mutation": {'name': 'missense_variant', 'soid': 'SO:0001583'}, "Nonsense_Mutation": {'name': 'stop_gained', 'soid': 'SO:0001587'}, "Nonstop_Mutation": {'name': 'stop_lost', 'soid': 'SO:0001578'}, "Silent": {'name': 'synonymous_variant', 'soid': 'SO:0001819'}, "Splice_Region": {'name': 'splice_region_variant', 'soid': 'SO:0001630'}, "Splice_Site": {'name': 'splice_site_variant', 'soid': 'SO:0001629'}, "Translation_Start_Site": {'name': 'initiator_codon_variant', 'soid': 'SO:0001582'} } alias_to_doids = defaultdict(list) def map_to_doid(graph, doid): for _id in graph.predecessors(doid): map_to_doid(graph, _id) xrefs = graph.node[doid].get('xref', []) for xref in xrefs: source, xref_id = xref.split(':') alias_to_doids[(source, xref_id)].append(doid) map_to_doid(graph, 'DOID:162') oncotree_to_aliases = dict() oncotree_types_url = 'http://oncotree.mskcc.org/api/tumorTypes' resp = requests.get(oncotree_types_url, params={'version': 'oncotree_2018_05_01'}) resp.raise_for_status() oncotree_types = resp.json() for o_type in oncotree_types: oncotree_to_aliases[o_type['code']] = [] for source, terms in o_type['externalReferences'].items(): for term in terms: oncotree_to_aliases[o_type['code']].append((source, term)) oncotree_to_doids = dict() for o_term, aliases in oncotree_to_aliases.items(): if not aliases: oncotree_to_doids[o_term] = None continue doids = set() for alias in aliases: alias_doids = alias_to_doids.get(alias, False) if alias_doids: doids.update(alias_doids) if doids: oncotree_to_doids[o_term] = list(doids) else: oncotree_to_doids[o_term] = None patched_doids = { # 'MAAP': 'DOID:3608', # 'SCCNOS': 'DOID:1749', # 'MACR': 'DOID:0050861', # 'OCSC': 'DOID:0050866', # 'UDMN': 'DOID:162', # 'CUP': 'DOID:162', # 'CUPNOS': 'DOID:162', # 'MYF': 'DOID:4971', # 'HGSOC': 'DOID:0050933', # 'LGSOC': 'DOID:0050933', # 'SOC': 'DOID:0050933', # 'PANET': 'DOID:1798', # 'IMT': 'DOID:0050905', # 'OPHSC': 'DOID:0050921', # 'MDS': 'DOID:0050908', 'ACYC': 'DOID:0080202', 'HL': 'DOID:8567', 'SEM': 'DOID:4440' } sample_to_patient = dict() patient_to_samples = defaultdict(list) sample_to_doid = dict() sample_oncotree_code = dict() required_patches = set() optional_patches = set() no_patch = set() with open(DATA_ROOT / 'GENIE_v3' / 'data_clinical_sample_3.0.0.txt') as f: for _ in range(4): f.readline() # get past info lines reader = csv.DictReader(f, delimiter="\t") for row in reader: patient = row['PATIENT_ID'] sample = row['SAMPLE_ID'] sample_to_patient[sample] = patient patient_to_samples[patient].append(sample) oncotree_code = row['ONCOTREE_CODE'].upper() doids = oncotree_to_doids[oncotree_code] if not doids: required_patches.add(oncotree_code) doid = patched_doids.get(oncotree_code, None) elif len(doids) > 1: optional_patches.add(oncotree_code) doid = patched_doids[oncotree_code] else: no_patch.add(oncotree_code) doid = doids[0] sample_to_doid[sample] = doid sample_oncotree_code[sample] = oncotree_code patient_to_samples = dict(patient_to_samples) # Load genie variants classification_counter = Counter() genie_features = list() genie_features_by_patient = defaultdict(list) genie_features_by_variant = defaultdict(list) genie_features_by_sample = defaultdict(list) unfiltered_patients_with_variants = set() EXCLUDED_CLASSIFICATIONS = [ 'Silent', "3'Flank", "3'UTR", "5'Flank", "5'UTR", 'Intron', 'Splice_Region' ] with open(DATA_ROOT / 'GENIE_v3' / 'data_mutations_extended_3.0.0.txt', 'r') as maf: sample_list = maf.readline().strip().split(' ')[1:] maf_reader = csv.DictReader(maf, delimiter="\t") for row in maf_reader: start = row['Start_Position'] end = row['End_Position'] chromosome = row['Chromosome'] patient = sample_to_patient[row['Tumor_Sample_Barcode']] unfiltered_patients_with_variants.add(patient) if row['Variant_Classification'] in EXCLUDED_CLASSIFICATIONS: continue if row['Reference_Allele'] != row['Tumor_Seq_Allele1']: alt = row['Tumor_Seq_Allele1'] else: alt = row['Tumor_Seq_Allele2'] reference = row['NCBI_Build'] feature = viccdb.GenomicFeature( chromosome=chromosome, start=start, end=end, referenceName=reference, name=':'.join([row['Tumor_Sample_Barcode'], row['HGVSp_Short']]), geneSymbol=row['Hugo_Symbol'], sequence_ontology=so_by_name[row['Variant_Classification']], alt=alt ) genie_features.append(feature) genie_features_by_patient[patient].append(feature) genie_features_by_variant[(reference, chromosome, start, end, alt)].append(feature) genie_features_by_sample[row['Tumor_Sample_Barcode']].append(feature) len(genie_features) # Do a GENIE feature search across knowledgebase. Huge search operation takes ~5.5 min to complete from timeit import default_timer tick = default_timer() genie_search_results = core_vdb.search_by_features(genie_features) tock = default_timer() print(tock-tick) featured_patients = set(genie_features_by_patient) print(f'Avg. queries / second: {len(genie_features)/(tock-tick)}') print(f'Search results: {len(genie_search_results)}') print(f'Avg. search results / query: {len(genie_search_results)/len(genie_features)}') genie_feature_lengths = Counter() for feature in genie_features: genie_feature_lengths[len(feature)] += 1 result_size = defaultdict(Counter) for result in genie_search_results: for match_type in ranking: if ranking.index(result['best_match']['type']) <= ranking.index(match_type): result_size[result['query']][match_type] += 1 print('Percentage of queries with results: {:.1%}'.format(len(result_size) / len(genie_features))) exact_match_features = [x for x in result_size if result_size[x]['exact'] + result_size[x]['positional'] > 0] len(exact_match_features) print('Percentage of queries with exact results: {:.1%}'.format(len(exact_match_features) / len(genie_features))) data = defaultdict(list) for feature in genie_features: length = len(feature) for match_type in ranking: data[match_type].append([length, result_size[feature][match_type]]) colors = dict(zip(ranking, ['blue', 'green', 'orange', 'red'])) pcs = list() labels = list() plt.figure() plt.xscale('log') plt.yscale('log') for t in reversed(ranking): coord_pairs = data[t] a = np.array(coord_pairs) + 1 pc = plt.scatter(a[:,0], a[:,1], marker='.', color=colors[t], alpha=0.05) pcs.append(pc) labels.append(t) plt.xlabel('Feature Size') plt.ylabel('Interpretations') plt.title('Feature v Result Size of GENIE Variants') plt.legend(pcs, labels, bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.tight_layout() # drops legend :-/ # plt.savefig(str(FIGPATH / 'feature_v_result_size_genie.pdf')) # plt.savefig(str(FIGPATH / 'feature_v_result_size_genie.png')) plt.show() for t in reversed(ranking): data = [result_size[q][t] for q in genie_features if result_size[q][t] > 0 ] plt.hist(data, alpha=1, label=t, color=colors[t], bins=150) plt.xlabel('Interpretations Matched to Variant Query') plt.ylabel('Queries') plt.title('Counts of Interpretations per Variant Query by Search Strategy') plt.legend() # plt.savefig(str(FIGPATH / 'genie_interpretation_v_query_all.pdf')) plt.show() notables = Counter() for t in reversed(ranking[:3]): data = [result_size[q][t] for q in genie_features if result_size[q][t] > 0 ] for q in genie_features: if result_size[q][t] > 90: notables[(q,t)] += 1 plt.hist(data, alpha=1, label=t, color=colors[t], bins=150) plt.title('Counts of Interpretations per Variant Query by Search Strategy') plt.xlabel('Interpretations Matched to Variant Query') plt.ylabel('Queries') plt.legend() # plt.savefig(str(FIGPATH / 'genie_interpretation_v_query_no_regional.pdf')) plt.show() coord_q = dict() for notable in notables.most_common(len(notables)): if notable[1] > 950: feature = notable[0][0] t = notable[0][1] queries = notable[1] HGVSp = feature.name.split(':')[1] coord_q[(result_size[feature][t], queries)] = (feature, t) else: break for coord in sorted(coord_q): feature, t = coord_q[coord] HGVSp = feature.name.split(':')[1] queries = coord[1] print(f'({result_size[feature][t]}, {queries}): {feature.gene_symbol} {HGVSp} ({t})') ###Output (92, 1425): KRAS p.G12V (exact) (94, 998): KRAS p.G12C (exact) (111, 1062): PIK3CA p.E545K (exact) (113, 1062): PIK3CA p.E545K (positional) (117, 1062): PIK3CA p.E545K (focal) (160, 1080): PIK3CA p.H1047R (exact) (161, 1720): KRAS p.G12D (exact) (174, 1080): PIK3CA p.H1047R (positional) (178, 1080): PIK3CA p.H1047R (focal) (205, 998): KRAS p.G12C (positional) (308, 1425): KRAS p.G12V (positional) (308, 1720): KRAS p.G12D (positional) (343, 998): KRAS p.G12C (focal) (457, 1425): KRAS p.G12V (focal) (457, 1720): KRAS p.G12D (focal) (565, 1439): BRAF p.V600E (exact) (584, 1439): BRAF p.V600E (positional) (655, 1439): BRAF p.V600E (focal) ###Markdown Disease ###Code oncotree_codes = {x['code'] for x in oncotree_types} print(f'There are {len(oncotree_codes)} diseases in oncotree.') no_xrefs = {x for x, v in oncotree_to_aliases.items() if not v} print(f'Of these, {len(no_xrefs)} have no xrefs.') print(f'{len(required_patches)} of {len(required_patches | no_patch)} oncotree diseases from GENIE do not automatically map to doid.') print(f'Of these, {len(required_patches & no_xrefs)} have no xrefs.') a = np.array([ [len(required_patches & no_xrefs), len(required_patches - no_xrefs)], [len(oncotree_codes & no_xrefs), len(oncotree_codes - no_xrefs)] ]) print(a) stats.fisher_exact(a) c = Counter() for x in core_vdb: try: c[x.disease.source] += 1 except AttributeError: c[None] += 1 c doid = core_vdb.select(lambda x: x.disease is not None and x.disease.id.startswith('DOID:')) # Problem with number of entries from jax reporting "cancer" as doid type doid.select(lambda x: x.disease.id == 'DOID:162').report_groups(core_vdb) id_to_name = {id_: data['name'] for id_, data in graph.nodes(data=True)} c = Counter() for x in doid: try: c[x.disease.id] += 1 except AttributeError: c[None] += 1 for k, v in c.most_common(20): print(f'{id_to_name[k]}: {v}') organ_system_ids = graph.predecessors('DOID:0050686') benign_and_premalignant_ids = ['DOID:0060072', 'DOID:0060071'] cell_type_cancer_id = 'DOID:0050687' cancer_id = 'DOID:162' organ_system = dict() benign_and_premalignant = dict() def assign_to_id(ids, id_, d): if len(ids) == 0: return for i in ids: d[i] = id_ assign_to_id(graph.predecessors(i), id_, d) return for organ_id in (organ_system_ids + [cell_type_cancer_id]): assign_to_id(graph.predecessors(organ_id), organ_id, organ_system) organ_system[organ_id] = organ_id for id_ in benign_and_premalignant_ids: assign_to_id(graph.predecessors(id_), id_, benign_and_premalignant) benign_and_premalignant[id_] = id_ return_id = organ_system['DOID:0050615'] graph.node[return_id] normalized_disease = core_vdb.select(lambda x: x.disease is not None) normalized_disease.report_groups(core_vdb) do_sourced = normalized_disease.select(lambda x: x.disease.source in ['DOID', 'http://purl.obolibrary.org/obo/doid']) do_sourced.report_groups(core_vdb) cancer_organ_interpretations = do_sourced.select(lambda x: organ_system.get(x.disease.id, False)) benign_premalignant_interpretations = do_sourced.select(lambda x: benign_and_premalignant.get(x.disease.id, False)) cancer_interpretations = do_sourced.select(lambda x: x.disease.id == cancer_id) other_interpretations = do_sourced - cancer_organ_interpretations - benign_premalignant_interpretations - cancer_interpretations cancer_organ_interpretations.report_groups(do_sourced) benign_premalignant_interpretations.report_groups(do_sourced) cancer_interpretations.report_groups(do_sourced) other_interpretations.report_groups(do_sourced) x = other_interpretations.select(lambda x: x.disease.id.split(':')[0] != 'DOID') x.report_groups(do_sourced) c = Counter() for i in x: c[i.disease.id.split(':')[0]] += 1 c entry = x.by_source('civic')[0] print(entry.disease.source) print(entry.disease.id) print(entry.disease.term) print(entry['feature_names']) c = Counter() for association in cancer_organ_interpretations: disease_id = association.disease.id organ_id = organ_system[disease_id] c[organ_id] += 1 for k, v in c.most_common(13): print(f'{id_to_name[k]}: {v}') p_cancer = cancer_organ_interpretations.select(lambda x: id_to_name[organ_system[x.disease.id]] == 'peritoneum cancer')[0] print(p_cancer.disease) print(p_cancer.source) print(p_cancer.description) len(set(organ_system.values())) with open(DATA_ROOT / 'TopNodes_DOcancerslim_3_18.json', 'r') as f: result = json.load(f) nodes = result['graphs'][0]['nodes'] nodes[0]['id'].split('/')[-1].replace('_', ':') topnodes_docancerslim = list() doid_re = re.compile(r'DOID:\d+') for node in nodes: doid = node['id'].split('/')[-1].replace('_', ':') if doid_re.match(doid): topnodes_docancerslim.append(doid) len(topnodes_docancerslim) def assign_to_nearest_id(ids, id_, d, terminals): if len(ids) == 0: return for i in ids: if i in terminals: assignment = i else: assignment = id_ d[i] = assignment assign_to_nearest_id(graph.predecessors(i), assignment, d, terminals) return topnode_map = dict() assign_to_nearest_id(['DOID:162'], 'DOID:162', topnode_map, topnodes_docancerslim) cancer_counts = Counter() cancer_associations = do_sourced.select( lambda x: topnode_map.get(x.disease.id, False)) for association in cancer_associations: disease_id = association.disease.id topnode_id = topnode_map[disease_id] cancer_counts[topnode_id] += 1 cancer_associations.report_groups(do_sourced) other_associations = do_sourced - cancer_associations other_associations.report_groups(do_sourced) len(cancer_counts) for k, v in cancer_counts.most_common(48): print(f'{id_to_name[k]}: {v}') def write_disease_counts(file_handle, disease_counter): writer = csv.writer(file_handle) s = sum(disease_counter.values()) writer.writerow(['DOID', 'Disease Name', 'Interpretations', 'Percentage']) for k, v in disease_counter.most_common(len(disease_counter)): writer.writerow([k, id_to_name[k], v, '{:.2%}'.format(v/s)]) with open('out/interpretation_disease_topnode_counts.csv', 'w') as f: write_disease_counts(f, cancer_counts) # Benign benign_id = 'DOID:0060072' benign = dict() assign_to_id(graph.predecessors(benign_id), benign_id, benign) benign[benign_id] = benign_id benign_associations = other_associations.select( lambda x: benign.get(x.disease.id, False)) other_associations = other_associations - benign_associations benign_associations.report_groups(do_sourced) # pre-malignant premalignant_id = 'DOID:0060071' premalignant = dict() assign_to_id(graph.predecessors(premalignant_id), premalignant_id, premalignant) premalignant[premalignant_id] = premalignant_id premalignant_associations = other_associations.select( lambda x: premalignant.get(x.disease.id, False)) premalignant_associations.report_groups(do_sourced) # Make data common_cancers = list(filter(lambda x: x[0] != "DOID:162", cancer_counts.most_common(6))) interpretation_group_names=[id_to_name[x[0]] for x in common_cancers] + ['other cancers'] + ['benign', 'other disease'] common_cancer_values = [x[1] for x in common_cancers] interpretation_group_sizes=common_cancer_values + [sum(cancer_counts.values()) - sum(common_cancer_values), len(benign_associations), len(other_associations)] incidence_by_topnode = Counter() mortality_by_topnode = Counter() p = (len(benign_associations) + len(other_associations)) / len(do_sourced) with open(DATA_ROOT / 'Cancer Incidence and Mortality 2018.csv', 'r') as f: reader = csv.DictReader(f) for row in reader: incidence_by_topnode[topnode_map[row['DOID']]] += int(row['New Cases']) mortality_by_topnode[topnode_map[row['DOID']]] += int(row['Estimated Deaths']) def select_by_percent(counter, percent=5): assert percent <= 100 s = sum(counter.values()) out = Counter() for k, v in counter.most_common(len(counter)): if k == "DOID:162": continue p = v/s if p*100 < percent: break out[k] = v print(f'{id_to_name[k]}: {p}') return out with open('out/NCI_disease_topnode_counts.csv', 'w') as f: writer = csv.writer(f) s1 = sum(incidence_by_topnode.values()) s2 = sum(mortality_by_topnode.values()) writer.writerow( ['DOID', 'Disease Name', 'Estimated New Cases, 2018, US', 'Percentage', 'Estimated Deaths, 2018, US', 'Percentage' ]) for k, v in incidence_by_topnode.most_common(len(incidence_by_topnode)): v2 = mortality_by_topnode[k] writer.writerow( [k, id_to_name[k], v, '{:.2%}'.format(v/s1), v2, '{:.2%}'.format(v2/s2) ]) prevalent_incidence = select_by_percent(incidence_by_topnode) prevalent_mortality = select_by_percent(mortality_by_topnode) len(incidence_by_topnode) incidence_group_names = [id_to_name[x] for x in prevalent_incidence] + ['other cancers'] incidence_group_sizes = list(prevalent_incidence.values()) + [ sum(incidence_by_topnode.values()) - sum(prevalent_incidence.values()) ] mortality_group_names = [id_to_name[x] for x in prevalent_mortality] + ['other cancers'] mortality_group_sizes = list(prevalent_mortality.values()) + [ sum(mortality_by_topnode.values()) - sum(prevalent_mortality.values()) ] RADIUS=1 greens = plt.cm.Greens grays = plt.cm.Greys blues = plt.cm.Blues reds = plt.cm.Reds colors = [ greens(.85), greens(.7), greens(.55), greens(.4), greens(.25), greens(.1), grays(.5), grays(.25) ] fig1, ax1 = plt.subplots() pie, _ = ax1.pie(interpretation_group_sizes, colors=colors, radius=RADIUS, labels=interpretation_group_names) ax1.axis('equal') plt.setp(pie, edgecolor='white') # plt.savefig(str(FIGPATH / 'disease_interpretations.pdf')) plt.show() colors = [ blues(.85), blues(.75 * 5/6 + .1), blues(.75 * 4/6 + .1), blues(.75 * 3/6 + .1), blues(.75 * 2/6 + .1), blues(.75 * 1/6 + .1), blues(.1) ] fig1, ax1 = plt.subplots() pie, _ = ax1.pie(incidence_group_sizes, colors=colors, radius=RADIUS, labels=incidence_group_names) ax1.axis('equal') plt.setp(pie, edgecolor='white') # plt.savefig(str(FIGPATH / 'disease_incidence.pdf')) plt.show() colors = [ reds(.85), reds(.7), reds(.55), reds(.4), reds(.25), reds(.1) ] fig1, ax1 = plt.subplots() pie, _ = ax1.pie(mortality_group_sizes, colors=colors, radius=RADIUS, labels=mortality_group_names) ax1.axis('equal') plt.setp(pie, edgecolor='white') # plt.savefig(str(FIGPATH / 'disease_mortality.pdf')) plt.show() b = benign_associations[0] print(b.description) print(b.disease) print(b.disease.id) print(b.source) # MAKE A DISEASE/GENE PLOT: heatmap of ubiquitous gene x disease, heat = tier 1 evidence ###Output _____no_output_____ ###Markdown Export disease counts for supplementary table ###Code # d = cancer_associations.get_element_by_source('disease') # d2 = benign_associations.get_element_by_source('disease') d = defaultdict(Counter) d2 = defaultdict(Counter) d3 = defaultdict(Counter) for association in cancer_associations: disease = association.disease source = association.source d[source][disease] += 1 for association in benign_associations: disease = association.disease source = association.source d2[source][disease] += 1 for association in other_associations: disease = association.disease source = association.source d3[source][disease] += 1 sorted(d.keys()) diseases = set() cancer_diseases = set() benign_diseases = set() other_diseases = set() for x in d.values(): cancer_diseases.update(x) diseases.update(x) for x in d2.values(): benign_diseases.update(x) diseases.update(x) for x in d3.values(): other_diseases.update(x) diseases.update(x) ###Output _____no_output_____ ###Markdown with open(FIGPATH / 'Data' / 'disease_counts.csv', 'w') as f: header = ['disease', 'doid', 'TopNode_disease', 'TopNode_doid'] + sorted(d.keys()) writer = csv.DictWriter(f, fieldnames=header) writer.writeheader() counts = dict() for s, v in d.items(): counts[s] = Counter(v) for s, v in d2.items(): counts[s].update(Counter(v)) for s, v in d3.items(): counts[s].update(Counter(v)) for disease in diseases: if disease in cancer_diseases: tn_id = topnode_map[disease.id] tn_name = id_to_name[tn_id] elif disease in benign_diseases: tn_id = benign[disease.id] tn_name = id_to_name[tn_id] elif disease in other_diseases: tn_id = None tn_name = 'other' else: raise ValueError if not disease.id.startswith('DOID'): continue try: row = { 'disease': id_to_name[disease.id], 'doid': disease.id, 'TopNode_disease': tn_name, 'TopNode_doid': tn_id } except KeyError: print(f'Failed to find name for {disease.id}: {disease.name}') continue for s in d: row[s] = counts[s][disease] writer.writerow(row) Clinical actionability improvement ###Code # Stacked bar (Actionability type): # Group 1: Average actionability, variant only (SD whiskers?) # Group 2: Aggregate actionability, variant only (p-value bar?; with narrow search) # Group 3: Aggregate actionability, variant only (p-value bar?; with broad search) # Group 4: Average actionability, variant + disease # Group 5: Aggregate actionability, variant + disease (p-value bar?; with narrow search) # Group 6: Aggregate actionability, variant + disease (p-value bar?; with broad search) # Actionability by disease type from collections import defaultdict genie_search_results[0]['query'] genie_features_by_patient['GENIE-NKI-01CH'] genie_search_results_by_query = defaultdict(list) for result in genie_search_results: genie_search_results_by_query[result['query']].append(result) ###Output _____no_output_____ ###Markdown Interpretations and Actionability ###Code tier1_disease_gene = Counter() all_disease_gene = Counter() for association in core_vdb: try: disease = id_to_name[topnode_map[association.disease.id]] except (KeyError, AttributeError): continue level = association.evidence_level for gene in association.genes: k = (gene.gene_symbol, disease) if level in ['A', 'B']: tier1_disease_gene[k] += 1 all_disease_gene[k] += 1 (gene, disease), count = tier1_disease_gene.most_common(30)[0] import seaborn as sns f, ax = plt.subplots(figsize=(3.75, 1.5)) genes = Counter() diseases = interpretation_group_names[:5] i = 0 for (gene, disease), count in all_disease_gene.most_common(len(all_disease_gene)): i += 1 if disease not in diseases: continue genes[gene] += count genes = [x[0] for x in genes.most_common(15)] heat_array_all = np.zeros((len(diseases),len(genes))) for i in range(len(genes)): for j in range(len(diseases)): heat_array_all[j][i] = all_disease_gene.get((genes[i], diseases[j]), 0) sns.heatmap(heat_array_all, xticklabels=genes, yticklabels=diseases, robust=True, cmap='Greens') # f.savefig(str(FIGPATH / 'misc_figures' / 'all_disease_gene_heatmap.pdf'), format='pdf') # genes = [x.gene_symbol for x in with_genes.element_by_source_stats('genes')['ubiquitous']] f, ax = plt.subplots(figsize=(3.75, 1.5)) genes = Counter() diseases = interpretation_group_names[:5] i = 0 for (gene, disease), count in tier1_disease_gene.most_common(len(tier1_disease_gene)): i += 1 if disease not in diseases: continue genes[gene] += count genes = [x[0] for x in genes.most_common(15)] heat_array_tier1 = np.zeros((len(diseases),len(genes))) for i in range(len(genes)): for j in range(len(diseases)): heat_array_tier1[j][i] = tier1_disease_gene.get((genes[i], diseases[j]), 0) sns.heatmap(heat_array_tier1, xticklabels=genes, yticklabels=diseases, robust=True, cmap='Greens') # f.savefig(str(FIGPATH / 'misc_figures' / 'tier1_disease_gene_heatmap.pdf'), format='pdf') all_df = pd.DataFrame.from_dict(all_disease_gene, orient='index') tier1_df = pd.DataFrame.from_dict(tier1_disease_gene, orient='index') merged_df = all_df.merge(tier1_df, left_index=True, right_index=True, how='outer').fillna(0) merged_df.columns = ['all_interpretations', 'tier1_interpretations'] sns.set_style("ticks") f, ax = plt.subplots(figsize=(5, 4)) ax = sns.regplot(x='all_interpretations', y='tier1_interpretations', fit_reg=False, data=np.log2(merged_df + 1), marker='.' ) tdf = np.log2(merged_df + 1) tdf.loc[(tdf['all_interpretations'] > 8) & (tdf['tier1_interpretations'] < 4)] with open(DATA_ROOT / 'GENIE_v3' / 'data_clinical_sample_3.0.0.txt') as f, open(OUTPATH / 'genie_mapping.csv', 'w') as out_f: for _ in range(4): f.readline() # get past info lines reader = csv.DictReader(f, delimiter="\t") writer = csv.writer(out_f) header = ['PATIENT_ID', 'SAMPLE_ID', 'ONCOTREE_CODE', 'SPECIFIC_CANCER_TYPE', 'CANCER_TYPE', 'DOID', 'DO_NAME', 'TOPNODE_DOID', 'TOPNODE_NAME' ] writer.writerow(header) for row in reader: patient = row['PATIENT_ID'] sample = row['SAMPLE_ID'] oncotree_code = row['ONCOTREE_CODE'].upper() cancer_type_detailed = row['CANCER_TYPE_DETAILED'] cancer_type = row['CANCER_TYPE'] doid = sample_to_doid[sample] do_name = id_to_name.get(doid, None) topnode_id = topnode_map.get(doid, None) topnode_name = id_to_name.get(topnode_id, None) writer.writerow([ patient, sample, oncotree_code, cancer_type_detailed, cancer_type, doid, do_name, topnode_id, topnode_name ]) dd_score = dict() def disease_dist(doid_1, doid_2): try: key = tuple(sorted([doid_1, doid_2])) except TypeError: return -1 if key in dd_score: return dd_score[key] best_score = None queue = [(doid_1, doid_2, 0, False), (doid_2, doid_1, 0, False)] while queue: current, target, distance, topnode_hit = queue.pop() if current == target: if best_score is None or distance < best_score: best_score = distance else: if topnode_hit: distance += 1 topnode_hit = False if current in topnode_map and current == topnode_map[current]: topnode_hit = True try: for successor in graph.successors(current): queue.append((successor, target, distance, topnode_hit)) except networkx.NetworkXError: pass if best_score is None: best_score = -1 dd_score[key] = best_score return best_score SOURCES = tuple(sorted(core_vdb.sources)) patient_actionability = dict() disease_actionability_count = Counter() sample_disease_count = Counter() disease_feature_count = Counter() patients_with_topnode = set() cgi_diseases_with_patient_match = defaultdict(set) ALL_PATIENT_COUNT = len(patient_to_samples) for patient in featured_patients: samples = patient_to_samples[patient] actionable = np.zeros(40) # [0..5]: sources (exact), 6: combined, 7: deprecated. # +8 for +disease +16 for +dis/tier1 # +24 for broad variant, +32 for broad disease for sample in samples: sample_disease = sample_to_doid[sample] features = genie_features_by_sample[sample] evidence_level = None for feature in features: results = genie_search_results_by_query.get(feature, []) for result in results: best = result['best_match'] dd = disease_dist(result['association'].disease.id, sample_disease) level = result['association']['association']['evidence_label'] tier1 = level in ['A', 'B'] idx = SOURCES.index(result['association']['source']) if best['type'] in ['exact', 'positional']: actionable[idx] = 1 actionable[6] = 1 if result['association'].source == 'cgi' and sample_disease: cgi_diseases_with_patient_match[patient].add((result['association'].disease.id, sample_disease)) if dd == 0: actionable[14] = 1 actionable[idx + 8] = 1 if tier1: actionable[22] = 1 actionable[idx + 16] = 1 if evidence_level is None or level < evidence_level: evidence_level = level actionable[idx + 24] = 1 actionable[30] = 1 if dd >= 0: actionable[idx + 32] = 1 actionable[38] = 1 try: top_disease = id_to_name[topnode_map[sample_disease]] sample_disease_count[top_disease] += 1 disease_feature_count[top_disease] += len(features) except KeyError: top_disease = None if evidence_level is not None and top_disease is not None: disease_actionability_count[(top_disease, evidence_level)] += 1 if top_disease is not None: patients_with_topnode.add(sample_to_patient[sample]) patient_actionability[patient] = actionable actionability_grid = np.array(list(patient_actionability.values())) actionability_sum = actionability_grid.sum(axis=0) ###Output _____no_output_____ ###Markdown investigating CGI discrepancy ###Code # len(cgi_diseases_with_patient_match) patient_disease_match = dict() for patient, matches in cgi_diseases_with_patient_match.items(): best_score = -1 for cgi_diseases in matches: score = disease_dist(*cgi_diseases) if score >= 0: if best_score == -1: best_score = score elif score < best_score: best_score = score if best_score < 0: patient_disease_match[patient] = {'total': 0} patient_diseases = set([x[1] for x in matches]) for disease in patient_diseases: patient_disease_match[patient][disease] = Counter() for cgi_diseases in matches: patient_disease_match[patient][cgi_diseases[1]][cgi_diseases[0]] += 1 patient_disease_match[patient]['total'] += 1 # for patient in sorted(patient_disease_match, key=lambda x: patient_disease_match[x]['total'], reverse=True): # print(patient, patient_disease_match[patient]['total']) disease_counter = Counter() for patient in patient_disease_match: for disease in patient_disease_match[patient]: disease_counter[disease] += 1 disease_counter.most_common(30) cgi_disease_counter = Counter() for patient in patient_disease_match: if 'DOID:3008' in patient_disease_match[patient]: for cgi_disease in patient_disease_match[patient]['DOID:3008']: cgi_disease_counter[cgi_disease] += 1 cgi_disease_counter.most_common(30) ###Output _____no_output_____ ###Markdown disease match analysis ###Code x = (0, 2, 4, 6, 8, 10) * 4 y = list() for i in (6, 4, 2, 0): y.extend((i,) * 6) levels = ['A','B','C','D'] proportion = np.zeros((4,6)) for i, level in enumerate(levels): for j, disease in enumerate(diseases): proportion[i][j] = disease_actionability_count[(disease, level)] / sample_disease_count[disease] proportion[:,5] = (.5,.25,.1,.01) f, ax = plt.subplots(figsize=(5, 4)) ax.set_xlim(-1,11) ax.set_ylim(-1,7) plt.scatter(x, y, s=proportion*4000) # f.savefig(str(FIGPATH / 'misc_figures' / 'disease_actionability.pdf'), format='pdf') diseases interpretable_disease_counts = np.zeros((4,2)) total_counts = np.zeros(2) genie_topnode_diseases = set([ x[0] for x in disease_actionability_count ]) for disease in genie_topnode_diseases: for i, level in enumerate(levels): if disease in diseases: j = 0 else: j = 1 interpretable_disease_counts[i][j] += disease_actionability_count[(disease, level)] total_counts[j] += sample_disease_count[disease] test_matrix = np.zeros((2,2)) test_matrix[0,:] = interpretable_disease_counts.sum(axis=0) test_matrix[1,:] = total_counts - test_matrix[0,:] print(test_matrix[0,:] / total_counts) print(test_matrix) stats.fisher_exact(test_matrix) interpretable_disease_counts.sum(axis=0) test_matrix = np.zeros((2,2)) test_matrix[0,:] = interpretable_disease_counts[:2,:].sum(axis=0) test_matrix[1,:] = total_counts - test_matrix[0,:] print(test_matrix[0,:] / total_counts) print(test_matrix) result = stats.fisher_exact(test_matrix) print(result) fig, ax = plt.subplots(figsize=(7.5,3)) counts = actionability_sum groups = ['Variant', 'Variant + Disease', 'Variant + Disease + Tier I'] subs = SOURCES + ('aggregate',) width = 0.15 plot_elements = list() resource_ind = np.arange(3) for i, source in enumerate(subs): x = np.array([actionability_sum[i + 24], actionability_sum[i + 32], 0]) / ALL_PATIENT_COUNT ind = np.array((i, i+12, i+24)) * width p = ax.bar(ind, x, width, label=source, color='black') plot_elements.append(p) for i, source in enumerate(subs): x = np.array([actionability_sum[i], actionability_sum[i + 8], actionability_sum[i + 16]]) / ALL_PATIENT_COUNT ind = np.array((i, i+12, i+24)) * width p = ax.bar(ind, x, width, label=source) plot_elements.append(p) ax.set_xticks(ind - 3*width) # ax.set_xticklabels(groups, rotation='vertical') handles, labels = ax.get_legend_handles_labels() half_idx = len(labels) // 2 ax.legend(handles[half_idx:], labels[half_idx:], title='Search Type') plt.ylabel('% Cohort with Interpretations') plt.show() # fig.savefig(str(FIGPATH / 'misc_figures' / 'genie_actionability.pdf'), format='pdf') (actionability_sum / ALL_PATIENT_COUNT).reshape((5,8)) # Average individual KB variant matching, exact searching (actionability_sum[:6] / ALL_PATIENT_COUNT).mean() # Average individual KB variant+disease matching, exact searching (actionability_sum[8:14] / ALL_PATIENT_COUNT).mean() # Average individual KB variant+disease+tier I matching, exact searching (actionability_sum[16:22] / ALL_PATIENT_COUNT).mean() # Average individual KB variant matching, broad searching (actionability_sum[24:30] / ALL_PATIENT_COUNT).mean() # Average individual KB variant+disease matching, broad searching (actionability_sum[32:38] / ALL_PATIENT_COUNT).mean() c = defaultdict(Counter) for a in core_vdb: c[a.source][a.evidence_level] += 1 c for source, counts in c.items(): tier1 = (counts['A'] + counts['B']) / sum(counts.values()) print("{}: Tier 1 is {:.1%} of total.".format(source, tier1)) s = len(patients_with_topnode) s / ALL_PATIENT_COUNT len(sample_oncotree_code) code_patient_count = Counter() for patient, samples in patient_to_samples.items(): patient_codes = set() for sample in samples: patient_codes.add(sample_oncotree_code[sample]) for code in patient_codes: code_patient_count[code] += 1 patient_count = len(patient_to_samples) for code, count in code_patient_count.most_common(): f = count / patient_count print('{}: {:.1%}, {}'.format(code, f, count)) cancer_rank = {pair[0]: rank for rank, pair in enumerate( code_patient_count.most_common() ) if pair[0] not in patched_doids} # Exclude manual patching for analysis mapped = list() unmapped = list() for code, rank in cancer_rank.items(): doids = oncotree_to_doids.get(code, False) if doids: mapped.append(rank) else: unmapped.append(rank) print(mapped) print(unmapped) print(len(mapped) / (len(unmapped) + len(mapped))) stats.mannwhitneyu(mapped, unmapped, alternative='two-sided') cancer_rank len(unmapped) np.mean(mapped) np.mean(unmapped) ###Output _____no_output_____ ###Markdown Interpretation gene intersection search ###Code a = core_vdb[0] f = genie_features[0] e_level = defaultdict(dict) gene_diseases = defaultdict(lambda: defaultdict(set)) for association in core_vdb: source = association.source for gene in association.genes: try: disease = association.disease.id except AttributeError: continue key = (gene.symbol, disease) gene_diseases[source][gene.symbol].add(disease) gene_diseases['aggregate'][gene.symbol].add(disease) current = e_level[source].get(key, None) new = association.evidence_level if current is None or new < current: e_level[source][key] = new current = e_level['aggregate'].get(key, None) if current is None or new < current: e_level['aggregate'][key] = new patient_gene_actionability = dict() for patient in featured_patients: samples = patient_to_samples[patient] actionable = np.zeros(24) # [0..5]: sources (exact), 6: combined, 7: deprecated. # +8 for +disease +16 for +dis/tier1 aggregate_gene_diseases = gene_diseases['aggregate'] aggregate_e_level = e_level['aggregate'] for sample in samples: sample_disease = sample_to_doid[sample] features = genie_features_by_sample[sample] evidence_level = None for feature in features: feature_gene = feature.gene_symbol if feature_gene not in aggregate_gene_diseases: continue actionable[6] = 1 for interpretation_disease in aggregate_gene_diseases[feature_gene]: if disease_dist(interpretation_disease, sample_disease) >= 0: actionable[14] = 1 if aggregate_e_level[(feature_gene, interpretation_disease)] in ['A', 'B']: actionable[22] = 1 break for i, source in enumerate(SOURCES): source_e_level = e_level[source] source_gene_diseases = gene_diseases[source] if feature_gene not in source_gene_diseases: continue actionable[i] = 1 if not actionable[14]: continue for interpretation_disease in source_gene_diseases[feature_gene]: if disease_dist(interpretation_disease, sample_disease) >= 0: actionable[i + 8] = 1 if source_e_level[(feature_gene, interpretation_disease)] in ['A', 'B']: actionable[i + 16] = 1 break patient_gene_actionability[patient] = actionable gene_actionability_grid = np.array(list(patient_gene_actionability.values())) gene_actionability_sum = gene_actionability_grid.sum(axis=0) (gene_actionability_sum / ALL_PATIENT_COUNT).reshape((3,8)) fig, ax = plt.subplots(figsize=(7.5,3)) counts = gene_actionability_sum groups = ['Variant', 'Variant + Disease', 'Variant + Disease + Tier I'] subs = SOURCES + ('aggregate',) width = 0.15 plot_elements = list() resource_ind = np.arange(3) # for i, source in enumerate(subs): # x = np.array([gene_actionability_sum[i + 24], gene_actionability_sum[i + 32], 0]) / gene_actionability_grid.shape[0] # ind = np.array((i, i+12, i+24)) * width # p = ax.bar(ind, x, width, label=source, color='black') # plot_elements.append(p) for i, source in enumerate(subs): x = np.array([gene_actionability_sum[i], gene_actionability_sum[i + 8], gene_actionability_sum[i + 16]]) / ALL_PATIENT_COUNT ind = np.array((i, i+12, i+24)) * width p = ax.bar(ind, x, width, label=source) plot_elements.append(p) ax.set_xticks(ind - 3*width) # ax.set_xticklabels(groups, rotation='vertical') handles, labels = ax.get_legend_handles_labels() # half_idx = len(labels) // 2 half_idx = 0 lgd = ax.legend(handles[half_idx:], labels[half_idx:], title='Search Type', bbox_to_anchor=(1,1) ) plt.ylabel('% Cohort with Interpretations') plt.show() # fig.savefig(str(FIGPATH / 'misc_figures' / 'genie_gene_actionability.pdf'), format='pdf', # bbox_extra_artists=(lgd, ), bbox_inches='tight' # ) ###Output _____no_output_____ ###Markdown Quantitative value of harmonization Genes ###Code raw_genes = list() ###Output _____no_output_____ ###Markdown CGI ###Code def create_raw_cgi_genes(vdb): cgi = vdb.by_source('cgi') genes = list() for interpretation in cgi: for gene in interpretation['raw']['Gene'].split(';'): genes.append(gene) return genes cgi_genes = create_raw_cgi_genes(core_vdb) raw_genes.extend(set(cgi_genes)) ###Output _____no_output_____ ###Markdown CIViC ###Code def create_raw_civic_genes(vdb): civic = vdb.by_source('civic') genes = list() for interpretation in civic: genes.append(interpretation['raw']['entrez_name']) return genes civic_genes = create_raw_civic_genes(core_vdb) raw_genes.extend(set(civic_genes)) ###Output _____no_output_____ ###Markdown JAX-CKB ###Code def create_raw_jax_genes(vdb): jax = vdb.by_source('jax') genes = list() for interpretation in jax: for gene in interpretation['genes']: genes.append(gene.strip()) return genes jax_genes = create_raw_jax_genes(core_vdb) raw_genes.extend(set(jax_genes)) ###Output _____no_output_____ ###Markdown MolecularMatch ###Code def create_raw_molecularmatch_genes(vdb): mm = vdb.by_source('molecularmatch') genes = list() for interpretation in mm: genes2 = interpretation['raw'].get('includeGene0', None) if not genes2: genes2 = interpretation['raw'].get('includeGene1', None) if genes2: genes.extend(genes2) return genes mm_genes = create_raw_molecularmatch_genes(core_vdb) raw_genes.extend(set(mm_genes)) ###Output _____no_output_____ ###Markdown OncoKB ###Code def create_raw_okb_genes(vdb): okb = vdb.by_source('oncokb') genes = list() for interpretation in okb: gene = interpretation['raw']['clinical']['gene'] genes.append(gene) return genes okb_genes = create_raw_okb_genes(core_vdb) raw_genes.extend(set(okb_genes)) ###Output _____no_output_____ ###Markdown PMKB ###Code def create_raw_pmkb_genes(vdb): pmkb = vdb.by_source('pmkb') genes = list() for interpretation in pmkb: gene = interpretation['raw']['variant']['gene']['name'] genes.append(gene) return genes pmkb_genes = create_raw_pmkb_genes(core_vdb) raw_genes.extend(set(pmkb_genes)) ###Output _____no_output_____ ###Markdown Harmonized genes ###Code h_genes = list() for source in core_vdb.sources: unique_source_genes = set() for interpretation in core_vdb.by_source(source): for gene in interpretation.genes: unique_source_genes.add(gene.symbol) print(f'{source}: {len(unique_source_genes)}') h_genes.extend(unique_source_genes) ###Output molecularmatch: 109 civic: 296 pmkb: 42 oncokb: 44 jax: 107 cgi: 182 ###Markdown Comparison ###Code raw_start = len(raw_genes) raw_uniq = len(set(raw_genes)) h_start = len(h_genes) h_uniq = len(set(h_genes)) 1 - (h_uniq / h_start) 1 - (raw_uniq / raw_start) ###Output _____no_output_____ ###Markdown Variants ###Code raw_features = list() ###Output _____no_output_____ ###Markdown CGI ###Code hgvs_re = re.compile(r'(.*):g.(\d+)(\w+)>(\w+)') def hgvs_to_coords(hgvs): match = hgvs_re.match(hgvs) if not match: return None groups = match.groups() return (str(groups[0]), int(groups[1]), int(groups[1]) + len(groups[2]) - 1) def create_raw_cgi_features(vdb): cgi = vdb.by_source('cgi') features = list() for interpretation in cgi: for f in interpretation['raw']['gDNA']: if not f: continue coords = hgvs_to_coords(f) if coords: features.append(coords) return features cgi_features = create_raw_cgi_features(core_vdb) len(set(cgi_features)) raw_features.extend(set(cgi_features)) ###Output _____no_output_____ ###Markdown CIViC ###Code def create_raw_civic_features(vdb): civic = vdb.by_source('civic') features = list() harmonized_features = list() for interpretation in civic: coordinates = interpretation['raw']['coordinates'] gf = ( coordinates['chromosome'], coordinates['start'], coordinates['stop'], # coordinates['variant_bases'] ) if not all(gf[:3]): continue features.append(gf) return features civic_features = create_raw_civic_features(core_vdb) len(set(civic_features)) raw_features.extend(set(civic_features)) ###Output _____no_output_____ ###Markdown JAX-CKB There is nothing to do for this resource. Without harmonization or inference routines, cannot ascribe variant names to coordinates. MolecularMatch ###Code def create_raw_molecularmatch_features(vdb): features = list() mm = vdb.by_source('molecularmatch') for interpretation in mm: for mutation in interpretation['raw']['mutations']: try: coords = mutation['GRCh37_location'][0] # Take first coord only except IndexError: continue try: start = int(coords['start']) stop = int(coords['stop']) except TypeError: continue assert start <= stop chromosome = coords['chr'] alt = coords['alt'] if not all([chromosome, start, stop]): continue f = (chromosome, start, stop) features.append(f) return features mm_features = create_raw_molecularmatch_features(core_vdb) len(set(mm_features)) raw_features.extend(set(mm_features)) ###Output _____no_output_____ ###Markdown OncoKB All mutations at protein level. PMKB ###Code def create_raw_pmkb_features(vdb): features = list() pmkb = vdb.by_source('pmkb') for interpretation in pmkb: coordinates = interpretation['raw']['variant']['coordinates'] for coordinate in coordinates.split(', '): chromosome, r = coordinate.split(':') start, stop = r.split('-') features.append((chromosome, int(start), int(stop))) return features pmkb_features = create_raw_pmkb_features(core_vdb) len(set(pmkb_features)) raw_features.extend(set(pmkb_features)) ###Output _____no_output_____ ###Markdown Harmonized features ###Code h_features = list() for source in core_vdb.sources: unique_source_features = set([x[0] for x in core_vdb.by_source(source).features]) print(f'{source}: {len(unique_source_features)}') h_features.extend(unique_source_features) len(h_features) ###Output _____no_output_____ ###Markdown Comparison ###Code raw_start = len(raw_features) raw_uniq = len(set(raw_features)) h_start = len(h_features) h_uniq = len(set(h_features)) 1 - (h_uniq / h_start) 1 - (raw_uniq / raw_start) ###Output _____no_output_____ ###Markdown Diseases ###Code raw_diseases = list() ###Output _____no_output_____ ###Markdown CGI ###Code def create_raw_cgi_diseases(vdb): cgi = vdb.by_source('cgi') diseases = list() for interpretation in cgi: for d in interpretation['raw']['Primary Tumor type'].split(';'): diseases.append(d.lower()) return diseases cgi_diseases = create_raw_cgi_diseases(core_vdb) raw_diseases.extend(set(cgi_diseases)) ###Output _____no_output_____ ###Markdown CIViC ###Code def create_raw_civic_diseases(vdb): civic = vdb.by_source('civic') diseases = list() for interpretation in civic: disease = interpretation['raw']['evidence_items'][0]['disease']['display_name'] diseases.append(disease.lower()) return diseases civic_diseases = create_raw_civic_diseases(core_vdb) raw_diseases.extend(set(civic_diseases)) ###Output _____no_output_____ ###Markdown JAX-CKB ###Code def create_raw_jax_diseases(vdb): jax = vdb.by_source('jax') diseases = list() for interpretation in jax: disease = interpretation['raw']['indication']['name'] diseases.append(disease.lower()) return diseases jax_diseases = create_raw_jax_diseases(core_vdb) raw_diseases.extend(set(jax_diseases)) ###Output _____no_output_____ ###Markdown MolecularMatch ###Code def create_raw_mm_diseases(vdb): mm = vdb.by_source('molecularmatch') diseases = list() for interpretation in mm: disease = interpretation['raw']['includeCondition1'][0] diseases.append(disease.lower()) return diseases mm_diseases = create_raw_mm_diseases(core_vdb) raw_diseases.extend(set(mm_diseases)) ###Output _____no_output_____ ###Markdown OncoKB ###Code def create_raw_okb_diseases(vdb): okb = vdb.by_source('oncokb') diseases = list() for interpretation in okb: disease = interpretation['raw']['clinical']['cancerType'] diseases.append(disease.lower()) return diseases okb_diseases = create_raw_okb_diseases(core_vdb) raw_diseases.extend(set(okb_diseases)) ###Output _____no_output_____ ###Markdown PMKB ###Code def create_raw_pmkb_diseases(vdb): pmkb = vdb.by_source('pmkb') diseases = list() for interpretation in pmkb: for tissue in interpretation['raw']['tissues']: disease = ' '.join([tissue['name'], interpretation['raw']['tumor']['name']]) diseases.append(disease.lower()) return diseases pmkb_diseases = create_raw_pmkb_diseases(core_vdb) raw_diseases.extend(set(pmkb_diseases)) ###Output _____no_output_____ ###Markdown Harmonized diseases ###Code h_diseases = list() for source in core_vdb.sources: unique_source_diseases = set([x.disease.term for x in core_vdb.by_source(source) if x.disease]) print(f'{source}: {len(unique_source_diseases)}') h_diseases.extend(unique_source_diseases) len(h_diseases) ###Output _____no_output_____ ###Markdown Comparison ###Code raw_start = len(raw_diseases) raw_uniq = len(set(raw_diseases)) h_start = len(h_diseases) h_uniq = len(set(h_diseases)) 1 - (h_uniq / h_start) 1 - (raw_uniq / raw_start) ###Output _____no_output_____ ###Markdown Drugs ###Code raw_drugs = list() ###Output _____no_output_____ ###Markdown CGI ###Code def create_raw_cgi_drugs(vdb): cgi = vdb.by_source('cgi') drugs = list() for interpretation in cgi: for drug in interpretation['raw']['Drug full name'].split('+'): drugs.append(drug.strip().lower()) return drugs cgi_drugs = create_raw_cgi_drugs(core_vdb) raw_drugs.extend(set(cgi_drugs)) ###Output _____no_output_____ ###Markdown CIViC ###Code def create_raw_civic_drugs(vdb): civic = vdb.by_source('civic') drugs = list() for interpretation in civic: for drug in interpretation['raw']['evidence_items'][0]['drugs']: drugs.append(drug['name'].lower()) return drugs civic_drugs = create_raw_civic_drugs(core_vdb) raw_drugs.extend(set(civic_drugs)) ###Output _____no_output_____ ###Markdown JAX-CKB ###Code def create_raw_jax_drugs(vdb): jax = vdb.by_source('jax') drugs = list() for interpretation in jax: for drug in interpretation['raw']['therapy']['therapyName'].split('+'): drugs.append(drug.strip().lower()) return drugs jax_drugs = create_raw_jax_drugs(core_vdb) raw_drugs.extend(set(jax_drugs)) ###Output _____no_output_____ ###Markdown MolecularMatch ###Code def create_raw_mm_drugs(vdb): mm = vdb.by_source('molecularmatch') drugs = list() for interpretation in mm: try: for drug in interpretation['raw']['includeDrug1']: for drug2 in drug.split('+'): drugs.append(drug2.strip().lower()) except KeyError: continue return drugs mm_drugs = create_raw_mm_drugs(core_vdb) raw_drugs.extend(set(mm_drugs)) ###Output _____no_output_____ ###Markdown OncoKB ###Code def create_raw_okb_drugs(vdb): okb = vdb.by_source('oncokb') drugs = list() for interpretation in okb: for drug in interpretation['raw']['clinical']['drug'].split(','): for drug2 in drug.strip().split('+'): drugs.append(drug2.strip().lower()) return drugs okb_drugs = create_raw_okb_drugs(core_vdb) raw_drugs.extend(set(okb_drugs)) ###Output _____no_output_____ ###Markdown PMKB PMKB does not provide drug fields Harmonized drugs ###Code h_drugs = list() for source in core_vdb.sources: unique_source_drugs = set() for interpretation in core_vdb.by_source(source): for drug in interpretation.drugs: unique_source_drugs.add(drug.term) print(f'{source}: {len(unique_source_drugs)}') h_drugs.extend(unique_source_drugs) ###Output molecularmatch: 110 civic: 313 pmkb: 0 oncokb: 77 jax: 542 cgi: 200 ###Markdown Comparison ###Code raw_start = len(raw_drugs) raw_uniq = len(set(raw_drugs)) h_start = len(h_drugs) h_uniq = len(set(h_drugs)) 1 - (h_uniq / h_start) 1 - (raw_uniq / raw_start) Counter([x['raw']['clinicalSignificance'] for x in core_vdb.by_source('molecularmatch')]) Counter([x['raw']['clinicalSignificance'] for x in vdb.by_source('molecularmatch')]) ###Output _____no_output_____ ###Markdown Export for Somatic Reference Sample project ###Code import csv with open('out/srs_export.csv', 'w') as f: writer = csv.writer(f) writer.writerow([ 'chromosome', 'start', 'stop', 'ref', 'alt', 'feature_label', 'evidence_level', 'drugs', 'disease_context', 'disease_id', 'interpretation_source', 'pmids', ]) for a in core_vdb: pmids = '|'.join([str(x.pmid) for x in a.publications if x.pmid]) drugs = '|'.join([str(x) for x in a.drugs if x]) if a.evidence_level not in ['A', 'B']: continue for drug in a.drugs: assert '|' not in str(drug) for feature in a.features: try: feature_name = feature.name except AttributeError: feature_name = '' try: disease_name = a.disease.name except AttributeError: disease_name = a['association']['phenotype'].get('description', '') try: disease_id = a.disease.id except AttributeError: continue out = [feature.chromosome, feature.start, feature.end, feature.ref, feature.alt, feature_name, a.evidence_level, drugs, disease_name, disease_id, a.source, pmids] if not (feature.ref and feature.alt): continue writer.writerow(out) ###Output _____no_output_____ ###Markdown Troubleshooting ###Code x = core_vdb[0] f = x.features[0] x.disease.id len(unfiltered_patients_with_variants) len(unfiltered_patients_with_variants) / len(patient_to_samples) brca.report_groups() ###Output 0 total associations ###Markdown Analyze the experimental results and generate a report Authors* Juan Carlos Alfaro Jiménez* Juan Ángel Aledo Sánchez* José Antonio Gámez MartínIn this notebook, we analyze the experimental results and generate a report (`HTML` format). Below, we detail the steps. 1. ArgumentsFirst, we add the command line arguments: ###Code library(argparser) description <- "Analysis of experimental results and report generation." parser <- arg_parser(description) ###Output _____no_output_____ ###Markdown * The path to the tables: ###Code arg <- "--source" default <- "tables" help <- "Path to the tables" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The path to the rendered file: ###Code arg <- "--destination" default <- "reports" help <- "Path to the rendered file" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The name of the target output variable: ###Code arg <- "--output" default <- "test_score" help <- "Name of the target output variable" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The optimization strategy of the target output variable: ###Code arg <- "--rank" default <- "max" help <- "Optimization strategy of the target output variable" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The number of decimal digits for the numeric output ###Code arg <- "--digits" default <- 3 help <- "Number of decimal digits for the numeric output" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The short title for the document: ###Code arg <- "--title" help <- "Short title for the document" default <- "Report" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The significance level used for the testing procedure ###Code arg <- "--alpha" default <- 0.05 help <- "Significance level used for the testing procedure" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The subset of methods to filter: ###Code arg <- "--methods" default <- ".*" help <- "Subset of methods to filter" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown * The subset of problems to filter: ###Code arg <- "--problems" default <- ".*" help <- "Subset of problems to filter" parser <- add_argument(parser, arg, help, default = default) ###Output _____no_output_____ ###Markdown Now, we parse the command line arguments: ###Code argv <- readLines(con = "arguments.txt", n = 1) argv <- strsplit(argv, split = " ") argv <- parse_args(parser, argv = argv) ###Output _____no_output_____ ###Markdown And rename the variables: ###Code source <- argv$source source destination <- argv$destination destination output <- argv$output output rank <- argv$rank rank digits <- argv$digits digits title <- argv$title title alpha <- argv$alpha alpha methods <- argv$methods methods problems <- argv$problems problems ###Output _____no_output_____ ###Markdown 2. LoadSecond, we get the file with the table (`source`): ###Code source <- file.path("work", source, output, "mean.csv") data <- read.csv(source, row.names = 1, check.names = FALSE) ###Output _____no_output_____ ###Markdown And include a column with the `methods`: ###Code data <- cbind(rownames(data), data) colnames(data)[1] <- "method" ###Output _____no_output_____ ###Markdown Then, we initialize the report document (`title`) and create the experiment object from a tabular representation: ###Code library(exreport) report <- exreport(title) experiment <- expCreateFromTable(data, output, title) ###Output _____no_output_____ ###Markdown Finally, we filter the methods (`methods`) and datasets (`datasets`): ###Code library(stringr) rows <- rownames(data) cols <- colnames(data) methods <- str_subset(rows, methods) problems <- str_subset(cols, problems) subset <- list(method = methods, problem = problems) experiment <- expSubset(experiment, subset) experiment <- expInstantiate(experiment) ###Output _____no_output_____ ###Markdown 3. Analyze Third, we summarize the experiment with a table and a plot for the given target output variable (`output`) according with the optimization strategy (`rank`) and number of decimal digits (`digits`): ###Code tabular_exp_summary <- tabularExpSummary(experiment, output, rank, digits = digits) plot_exp_summary <- plotExpSummary(experiment, output, columns = 5, freeScale = TRUE) report <- exreportAdd(report, tabular_exp_summary) report <- exreportAdd(report, plot_exp_summary) ###Output _____no_output_____ ###Markdown Now, we perform a multiple comparison statistical test for the given experiment. In particular, we apply a *Friedman test* and a *post-hoc test* with the *Shaffer procedure*: ###Code test_multiple_pairwise <- testMultiplePairwise(experiment, output, rank, alpha) tabular_test_pairwise <- tabularTestPairwise(test_multiple_pairwise) report <- exreportAdd(report, test_multiple_pairwise) report <- exreportAdd(report, tabular_test_pairwise) ###Output _____no_output_____ ###Markdown And the *Holm procedure*: ###Code metrics <- c("rank", "pvalue", "wtl") test_multiple_control <- testMultipleControl(experiment, output, rank, alpha) tabular_test_summary <- tabularTestSummary(test_multiple_control, metrics) plot_rank_distribution <- plotRankDistribution(test_multiple_control) report <- exreportAdd(report, test_multiple_control) report <- exreportAdd(report, tabular_test_summary) report <- exreportAdd(report, plot_rank_distribution) ###Output _____no_output_____ ###Markdown 4. Generate Fourth, we generate the report (`destination`): ###Code destination <- file.path("work", destination, output) dir.create(destination, showWarnings = FALSE, recursive = TRUE) exreportRender(report, destination, target = "html", safeMode = FALSE, visualize = FALSE) ###Output _____no_output_____ ###Markdown Finally, we write the destination directory in a file for the `HTML` export: ###Code writeLines(destination, "destination.txt") ###Output _____no_output_____ ###Markdown Setup ###Code import pandas as pd import numpy as np import regex as re ###Output _____no_output_____ ###Markdown Load and transform data ###Code df_original = pd.read_csv('data.csv') df_original.info() df = df_original.rename({ "Message Id": "msg_id", "Time": "time", "Sender Name": "sender", "Reply Id": "reply_id", "Message": "msg" }, axis=1) df.reply_id = df.reply_id.fillna(-1).astype(np.int64) df.time = df.time.astype(np.datetime64) df.set_index('msg_id', inplace=True) df.msg.fillna('', inplace=True) ###Output _____no_output_____ ###Markdown Anonymize ###Code def gen_names_map(names): new_name = iter(["Michael","Christopher","Jessica","Matthew","Ashley","Jennifer","Joshua","Amanda","Daniel","David","James","Robert","John","Joseph","Andrew","Ryan","Brandon","Jason","Justin","Sarah","William","Jonathan","Stephanie","Brian","Nicole","Nicholas","Anthony","Heather","Eric","Elizabeth","Adam","Megan","Melissa","Kevin","Steven","Thomas","Timothy","Christina","Kyle","Rachel","Laura","Lauren","Amber","Brittany","Danielle","Richard","Kimberly","Jeffrey","Amy","Crystal","Michelle","Tiffany","Jeremy","Benjamin","Mark","Emily","Aaron","Charles","Rebecca","Jacob","Stephen","Patrick","Sean","Erin","Zachary","Jamie","Kelly","Samantha","Nathan","Sara","Dustin","Paul","Angela","Tyler","Scott","Katherine","Andrea","Gregory","Erica","Mary","Travis","Lisa","Kenneth","Bryan","Lindsey","Kristen","Jose","Alexander","Jesse","Katie","Lindsay","Shannon","Vanessa","Courtney","Christine","Alicia","Cody","Allison","Bradley","Samuel","Shawn","April","Derek","Kathryn","Kristin","Chad","Jenna","Tara","Maria","Krystal","Jared","Anna","Edward","Julie","Peter","Holly","Marcus","Kristina","Natalie","Jordan","Victoria","Jacqueline","Corey","Keith","Monica","Juan","Donald","Cassandra","Meghan","Joel","Shane","Phillip","Patricia","Brett","Ronald","Catherine","George","Antonio","Cynthia","Stacy","Kathleen","Raymond","Carlos","Brandi","Douglas","Nathaniel","Ian","Craig","Brandy","Alex","Valerie","Veronica","Cory","Whitney","Gary","Derrick","Philip","Luis","Diana","Chelsea","Leslie","Caitlin","Leah","Natasha","Erika","Casey","Latoya","Erik","Dana","Victor","Brent","Dominique","Frank","Brittney","Evan","Gabriel","Julia","Candice","Karen","Melanie","Adrian","Stacey","Margaret","Sheena","Wesley","Vincent","Alexandra","Katrina","Bethany","Nichole","Larry","Jeffery","Curtis","Carrie","Todd","Blake","Christian","Randy","Dennis","Alison","Trevor","Seth","Kara","Joanna","Rachael","Luke","Felicia","Brooke","Austin","Candace","Jasmine","Jesus","Alan","Susan","Sandra","Tracy","Kayla","Nancy","Tina","Krystle","Russell","Jeremiah","Carl","Miguel","Tony","Alexis","Gina","Jillian","Pamela","Mitchell","Hannah","Renee","Denise","Molly","Jerry","Misty","Mario","Johnathan","Jaclyn","Brenda","Terry","Lacey","Shaun","Devin","Heidi","Troy","Lucas","Desiree","Jorge","Andre","Morgan","Drew","Sabrina","Miranda","Alyssa","Alisha","Teresa","Johnny","Meagan","Allen","Krista","Marc","Tabitha","Lance","Ricardo","Martin","Chase","Theresa","Melinda","Monique","Tanya","Linda","Kristopher","Bobby","Caleb","Ashlee","Kelli","Henry","Garrett","Mallory","Jill","Jonathon","Kristy","Anne","Francisco","Danny","Robin","Lee","Tamara","Manuel","Meredith","Colleen","Lawrence","Christy","Ricky","Randall","Marissa","Ross","Mathew","Jimmy"]) result = {} for name in names: result[name] = next(new_name) return result names_map = gen_names_map(df.sender.unique()) df.sender.replace(names_map, inplace=True) df.msg.replace(names_map, inplace=True) df.msg = df.msg.str.replace(r'(?<!\w@)\b(?<=@)(\w+)(?<!bot)\b', flags=re.I, repl=lambda m: names_map[m[0]] if m[0] in names_map else re.sub('.', '*', m[0])) df.msg = df.msg.str.replace(r'((?<![\d\=\-_]|(?<!\\)[A-z])(?:\(?\+?55\)?)? ?(?:\(?0?[2-9]\d\)?)? ?(?:9[ \.]?)?[1-9]\d{3}[ \-]?\d{4}\b)', flags=re.I, repl=lambda m: re.sub('\d', '*', m[0])) df.info() df.head() df.to_csv('out.csv') ###Output _____no_output_____ ###Markdown ... ###Code msg_cnt = df.sender.value_counts() df = df[~df.sender.isin(msg_cnt[msg_cnt == 1].index)] reply_df = df[df.reply_id != -1] replied_df = df[df.index.isin(reply_df.reply_id)] links_df = df[df.msg.str.contains(r'https?://[\w\-\.]+')] has_emoji_df = df[df.msg.str.match(r"[\U0001F600-\U0001F64F\U0001F300-\U0001F5FF\U0001F680-\U0001F6FF\U0001F1E0-\U0001F1FF]")] members_df = pd.DataFrame(index=df.sender.unique()) members_df['reply_percent'] = ( reply_df.sender.value_counts() / df.sender.value_counts() ).fillna(0).apply( lambda p: '< 1%' if p < 0.01 else '>= 1%') members_df.reply_percent.value_counts() members_df['replied_percent'] = ( replied_df.sender.value_counts() / df.sender.value_counts() ).fillna(0).apply( lambda p: '< 10%' if p < 0.10 else '>= 10%') members_df.replied_percent.value_counts() members_df['link_percent'] = ( links_df.sender.value_counts() / df.sender.value_counts() ).fillna(0).apply( lambda p: '< 5%' if p < 0.05 else '>= 5%') # Removing the links so that it will not affect the size of the messages. df.msg = df.msg.str.replace(r'https?://.+', '') members_df.link_percent.value_counts() df['msg_size'] = df.msg.str.len() members_df['msg_mean_size'] = df.groupby('sender').msg_size.mean().apply( lambda s: '< 10 characters' if s < 10 else '< 200 characters' if s < 200 else '>= 200 characters') members_df.msg_mean_size.value_counts() members_df['msg_cnt'] = df.sender.value_counts().apply( lambda c: '< 5' if c < 5 else '>= 5') members_df.msg_cnt.value_counts() members_df['uses_emoji'] = (has_emoji_df.sender.value_counts() / df.sender.value_counts()).apply( lambda p: 'Yes' if p > 0 else "No") members_df.uses_emoji.value_counts() import plotly.graph_objects as go # Create dimensions msg_cnt_dim = go.parcats.Dimension( values=members_df.msg_cnt,label="Number of messages" ) msg_mean_size_dim = go.parcats.Dimension( values=members_df.msg_mean_size,label="Messages size" ) replied_percent_dim = go.parcats.Dimension( values=members_df.replied_percent,label="Percent of replied messages" ) reply_percent_dim = go.parcats.Dimension( values=members_df.reply_percent,label="Percent of reply messages" ) link_percent_dim = go.parcats.Dimension( values=members_df.link_percent,label="Percent of messages with hyperlinks" ) uses_emoji_dim = go.parcats.Dimension( values=members_df.uses_emoji, categoryorder='category ascending', label="Uses emoji" ) group_one = np.int32(members_df.uses_emoji == 'Yes') group_two = ((members_df.msg_cnt == '< 5') & (members_df.replied_percent == '< 10%') & (members_df.reply_percent == '< 1%')) color = np.int32(group_one) + np.int32(group_two)*2 colorscale = [[0, 'lightsteelblue'], [0.5, 'mediumseagreen'], [1, 'lightsalmon']]; fig = go.Figure(data = [ go.Parcats( dimensions=[msg_cnt_dim, replied_percent_dim, reply_percent_dim, uses_emoji_dim], line={'color': color, 'colorscale': colorscale}, labelfont={'size': 18, 'family': 'Times'}, tickfont={'size': 16, 'family': 'Times'}, arrangement='freeform')]) fig.layout = { 'title': ('The relation between the use of emotes and the type of interaction' + ' over a Telegram Group') } fig.show() group_one = ((members_df.msg_cnt == '>= 5') & (members_df.replied_percent == '>= 10%') & (members_df.reply_percent == '>= 1%')) group_two = ((members_df.msg_cnt == '< 5') & (members_df.replied_percent == '< 10%') & (members_df.reply_percent == '< 1%')) color = np.int32(group_one) + np.int32(group_two)*2 colorscale = [[0, 'lightsteelblue'], [0.5, 'peru'], [1, 'lightsalmon']]; fig = go.Figure(data = [ go.Parcats( dimensions=[msg_cnt_dim, replied_percent_dim, reply_percent_dim], line={'color': color, 'colorscale': colorscale}, labelfont={'size': 18, 'family': 'Times'}, tickfont={'size': 16, 'family': 'Times'}, arrangement='freeform' )]) fig.layout = { 'title': ('The relation between the proportion of replies and the replied' + ' messages over a Telegram Group') } fig.show() fig = go.Figure(data = [ go.Parcats( dimensions=[msg_cnt_dim, replied_percent_dim, reply_percent_dim, uses_emoji_dim, link_percent_dim, msg_mean_size_dim], labelfont={'size': 18, 'family': 'Times'}, tickfont={'size': 16, 'family': 'Times'}, arrangement='freeform')]) fig.layout = { 'title': ('The interaction' + ' over a Telegram Group') } fig.show() ###Output _____no_output_____ ###Markdown Sample Analysis Coy Zimmermann Last updated 8/6/2021 The purpose of this notebook is to run you through a typical analysis of data generated from link.py. Use this as a starting point to retrieve the data you need for your purposes. I really like [seaborn](https://seaborn.pydata.org/index.html) for plotting data in Python. If there are any plots you want to make, look through the documentation! ###Code import seaborn as sns import matplotlib.pyplot as plt import matplotlib as mpl import pandas as pd import numpy as np from scipy import signal, fftpack from scipy.stats import linregress import glob import cv2 import trackpy as tp # Plot defaults mpl.rcParams['svg.fonttype'] = 'none' mpl.rcParams['font.sans-serif'] = "Arial" mpl.rcParams['font.family'] = "sans-serif" mpl.rcParams['figure.figsize'] = 10, 8 sns.set_context('talk', font_scale=1.3) df = pd.read_csv('linked_results/210806_1141AM.csv') df.drop(labels=['Unnamed: 0'], inplace=True, axis=1) # drop unused column ###Output _____no_output_____ ###Markdown Alright, what's our data look like that we generated from link.py? `df.head()` will display the first 5 columns of our dataframe. ###Code df.head() ###Output _____no_output_____ ###Markdown Description of columns* `Area` - area of particle in pix^2 for each point in time* `x`, `y` - location in pixels. the origin is the top left corner of the video.* `XM`, `YM` - location in µm.* `Major`, `Minor` - major and minor axes of the fit ellipse. taken directly from the ImageJ particle analysis. [More information](https://imagej.nih.gov/ij/docs/menus/analyze.html)* `frame` - frame number* `particle` - particle number *in the given video** `dx`, `dy` - centered difference derivative of position, velocity in pix/frame* `time` - time in seconds.* `dv` - magnitude of the velocity in pix/frame, $\sqrt{dx^2 + dy^2}$* `dv_m` - """ but in µm/s* `Area_m` - area in microns^2* `dx_m` - horizontal velocity in µm/s* `filename` - name of the video* `particle_u` - identifier for a wheel that is a combination of the `filename` and `particle`. Allows analysis across all videos. Time Series Plots ###Code # Example plot, plot velocity over time for each particle # sns.lineplot(data=df, x='time', y='dv_m', hue='particle_u', legend=False) # ax = plt.gca() # # ax.set_xlim(left=0) # ax.set_ylim(bottom=0) # ax.set(xlabel='Time (s)', ylabel='Velocity (µm/s)') ###Output _____no_output_____ ###Markdown Checking trajectoriesIts often useful to look at the trajectories overlaid over a frame of the video to see if its working correctly or tracking dust. `video_wheels.py` will generate an entire video, but will take awhile on a slow computer. This next cell will just show a single frame of the video. ###Code def show_trajectories(VIDEO_NAME, FRAME): """ Given the filename of the video and a valid frame, display a frame in the video with trajectories overlaid and annotated. """ # video always indexes at 0, it is unaware of any clipping in imagej. df_check = df[df['filename'] == VIDEO_NAME] f_start, f_end = [df_check['frame'].unique().min(), df_check['frame'].unique().max()] chosen_frame_img = FRAME - f_start vid_path = f'original_video/{VIDEO_NAME}/*.tif' img_names = glob.glob(vid_path) loaded_img = cv2.imread(img_names[chosen_frame_img]) fig, ax = plt.subplots() plt.imshow(loaded_img) tp.plot_traj(df_check.query(f'frame<={FRAME}'), label=True) return fig #fig = show_trajectories(VIDEO_NAME='05182021_2', FRAME=481) ###Output _____no_output_____ ###Markdown FFTSo above you can see that the `df` dataframe we generated from link.py is time series data for every particle. You might notice there is some periodicity in the data.. we can *sometimes* use this to extract a good guess using the finite fourier transform. See `ffttest.ipynb` for the functions and tests for using the FFT to get the rotation rate of a µwheel.The next cell contains the functions to do this. I really encourage you to walk through this code and try to understand what's going on. This is sometimes tricky and may require some debugging. For example, midway through the function you could ask it to save or return a plot of the actual spectrum, like what is shown in `ffttest.ipynb`.Also, I've had most success using the `Angle` of the fit ellipse to get a reliable rotation rate. I've found that one period of the `Angle` corresponds to one *half rotation*. However, this may not work for you. One of the arguments to the function is `y`, which is the column of the data it will take the FFT with respect to. ###Code def compute_fft(data, y, particle_u): """Compute the finite fourier transform of the chosen particle. Compute the fft using scipy. Use the a detrended column to determine the frequency at which the eccentricity of the wheel changes. I used this video for a background on the discrete fourier transform. https://www.youtube.com/watch?v=mkGsMWi_j4Q Args: data: dataframe y: column to take the fft with respect to particle_u: particle to take the fft of Returns: Dataframe column containing the fft of y """ data = data[data['particle_u'] == particle_u] # pull only the data matching input `particle_u` num_frames = int(len(data)) # the number of frames, or sample points # sample spacing spf = data['time'].values[1] - data['time'].values[0] # seconds per frame y = data[y] detrend_y = signal.detrend(y) # Detrend fft_particle = fftpack.fft(detrend_y) # Compute fft. t_fi = pd.DataFrame() # Initialize empty dataframe to store xf and yf columns # Actually calculating the FFT (formulas from examples and youtube video) t_fi['yf'] = 2.0 / num_frames * np.abs(fft_particle[:num_frames // 2]) # 'np.abs' computes the magnitude of the complex number. fft_particle[:N//2] selects the first N/2 points. # Its multiplied by 2 to account for the mirrored half of the spectrum, then normalized by N. t_fi['xf'] = np.linspace(start=0.0, stop=1.0 / (2.0 * spf), num=num_frames // 2) # The double divison sign is integer division. t_fi['particle'] = np.full(len(t_fi), particle_u) highest_peak_frequency = t_fi.loc[t_fi['yf'].idxmax(), 'xf'] # pulls out the frequency that corresponds to the highest peak return highest_peak_frequency def batch_fft(data, data_grouped): """ For each particle in the `data` dataframe, run the above compute_fft function, which outputs the frequency which corresponds to the highest peak. Take this peak for each particle and combine it with a grouped dataframe. """ temp = [] for p in data['particle_u'].unique(): # run compute_fft for every particle in the input data peak = compute_fft(data=data, y='Angle', particle_u=p) temp.append([p, peak]) # Assemble it all into a dataframe that has a column for particle_u and a column for the frequency guess. dfpeaks = pd.DataFrame(temp) dfpeaks.rename(columns={0: 'particle_u', 1:'freq_guess'}, inplace=True) dfpeaks.set_index('particle_u', inplace=True) # Merge with a grouped dataframe. I.E. the dataframe only contains one entry for each particle_u. Most often the mean of each particle over time. dfmerge = data_grouped.merge(dfpeaks, on='particle_u') dfmerge['omega'] = dfmerge['freq_guess'] * np.pi return dfmerge ###Output _____no_output_____ ###Markdown Selecting WheelsUsing the excel file `chosenwheels.xls`, enter particles that you either want to blacklist or whitelist. Specify which type you'd like to use with the `filter_type` keyword argument (kwarg) when calling the function. ###Code dfilter = pd.read_excel('chosenwheels.xls') def filterwheels(a, b, filter_type="whitelist"): """ Filter dataframe `a` using columns from the filter dataframe `b`. Based on `filter_type` """ if filter_type == "whitelist": # Only take particle_u's df1 = a[a.particle_u.isin(b.particle_u)] elif filter_type == "blacklist": # Take everything BUT particle_u's df1 = a[~a.particle_u.isin(b.particle_u)] return df1 else: raise Exception("Invalid filter type. filter_type must be whitelist or blacklist.") # Only take the frames specified if not NaN # TODO Something in here is removing some of the particles I want res = pd.DataFrame() for p in df1.particle_u.unique(): df_sub = df1[df1.particle_u == p] # create subset dataframe of df1 with only particle_u `p`'s data chosen_frames = b[b.particle_u == p]['frames'].values[0] # extract the `frames` column value from the filter dataframe # Extract the chosen frames for the given particle_u `p` if str(chosen_frames) != "nan": # if there's an entry first, last = chosen_frames.split(':') # look at the range # convert wildcard ! to the first or last frame if first == "!": first = df_sub['frame'].min() else: first = int(first) if last == "!": last = df_sub['frame'].max() else: last = int(last) else: # take all frames first = df_sub['frame'].min() last = df_sub['frame'].max() # Execute the filtering clipped = df_sub[df_sub.frame.isin(np.arange(first, last+1))] # last+1 because arange does not include the last value if len(clipped) < 100: print(f"Warning: Particle {p} with chosen_frames {first} and {last} is {len(clipped)} frames.") res = pd.concat([res, clipped]) # add to result return res df_filtered = filterwheels(df, dfilter, filter_type="blacklist") # df_filtered['particle_u'].unique() ###Output _____no_output_____ ###Markdown Grouped DataSince time series data is a bit messy, we can take each trajectory and take the mean of columns of interest. We expect that the mean of all of the velocity data is the steady-state velocity. ###Code df_grouped = df_filtered.groupby('particle_u')[['dx_m', 'Area_m', 'dv_m', 'Major', 'Minor']].mean() df_grouped.head() df_grouped.describe() ###Output _____no_output_____ ###Markdown Now, using the above FFT functions, we can feed in the time series data in `df` as well as our new grouped dataframe to get a new column for our frequency guess (1/s) and calculated `omega` (radians/s). ###Code dfg = batch_fft(df_filtered, df_grouped) dfg['filename'] = dfg.index.str.split('-').str[0] dfg.head() ###Output _____no_output_____ ###Markdown Lastly, we can add a few columns that are useful for plotting. ###Code CAMBER_ANGLE = 30 # degrees dfg['area_flat'] = dfg['Area_m'] / np.cos(np.radians(CAMBER_ANGLE)) dfg['R'] = np.sqrt(dfg['area_flat'] / np.pi) dfg.describe() ###Output _____no_output_____ ###Markdown Plotting Here, we plot the data. Seaborn has a variety of features to allow for great plots. Here I'll walk you through a typical process for plotting according to an experimental condition. The basic process is using a scatterplot command like: ``` sns.scatterplot(data=dfg, x='R', y='dv_m', edgecolor='k', hue='filename', alpha=0.7) ``` By using the `hue` parameter, we can show a third variable in our scatterplot. Here I'll name the column I'd like to use and Seaborn will do the rest. See this tutorial (https://pandas.pydata.org/docs/getting_started/intro_tutorials/10_text_data.html) to figure out how to extract experimental conditions from the filename into a new column. ###Code sns.scatterplot(data=dfg, x='R', y='dv_m', edgecolor='k', hue='filename', alpha=0.7) ax = plt.gca() ax.set_xlim(left=0) ax.set_ylim(bottom=0) ax.set(xlabel="R (µm)", ylabel="Velocity (µm/s)") # uncomment this to save the figure # plt.savefig('plotnamehere.png', dpi=400) sns.histplot(data=dfg, x='dv_m', kde='True', stat='density', common_norm=False) ax = plt.gca() ax.set_xlim(left=0) ax.set(xlabel='Mean µWheel Velocity (µm)') sns.scatterplot(data=dfg, x='R', y='omega') ax = plt.gca() ax.set_xlim(left=0) ax.set_ylim(bottom=0) ax.set(xlabel="R (µm)", ylabel="ω (1/s)") ###Output _____no_output_____ ###Markdown Generate new data ###Code %%bash data_dir="./data/clean/wd50k" cp -r ${data_dir}/statements ${data_dir}/statements_switch data_dir = "./data/clean/wd50k/statements_switch" modify.aug_switch(data_dir + "/train.txt", data_dir + "/train_switch.txt") %%bash data_dir="./data/clean/wd50k/statements_switch" mv ${data_dir}/train_switch.txt ${data_dir}/train.txt a=torch.randn(5) print(a) print(torch.argsort(a, descending=True)) torch.argsort(torch.argsort(a, descending=True)) ###Output tensor([-0.2562, -0.5812, -1.1616, -0.9717, -0.4676]) tensor([0, 4, 1, 3, 2]) ###Markdown Solving the [8-puzzle](https://8-puzzle.readthedocs.io/en/latest/) (with a slight twist) Heuristic search vs uninformed search, admissibility, performance tests, empirical results, and some charts! Fun stuff ahead Instead of only being able to slide tiles vertically and horizontally (with a cost of 1), when the empty tile is at a corner, the tiles on the same row (or on the same column) can wrap around (if you have more than two rows) with a cost of 2. Similarly the diagonal tiles (both the adjacent one and the opposing corner) can slide into an empty corner with a cost of 3. We use the number 0 to represent the empty tile. ###Code # you need to install these in your env to run this notebook import numpy as np from tqdm import tqdm import time import matplotlib.pyplot as plt import copy # local modules, no installs needed from board import Board from node import Node import search from heuristics import hamming_distance, manhattan_distance, row_col_out_of_place, euclidean_distance, permutation_inversion ###Output _____no_output_____ ###Markdown We have implemented a bunch of heuristics, but we don't know which are the best for our problem. We know from theory that hamming distance and manhattan distance are both [admissible](https://en.wikipedia.org/wiki/Admissible_heuristic) and that permutation inversion is not. But we came up with two new heuristics and would like to know about their admissibility.1. Rows and columns out of place: Is the sum of all tiles that are out of their goal row position and all tiles that are out of their goal column position. For example, if a tile is out of both row and column position it adds 2 to the running sum of the heuristic, if it's out of row XOR column it adds 1 to the sum and if the tile is in its goal position it add 0 to the heuristic sum. We expect it to be admissible because when conceptually compared with hamming and manhattan distance, this heuristic seems to be more optimistic than manhattan distance but slightly less optimistic than hamming distance. It s more optimistic than manhattan because it essentially three states: either in place, out of place along one axis or out of place along two axis. Manhattan will assign more add more estimated cost to tiles that are further away from their goal position, making it less optimistic than this heuristic.2. Euclidean distance: Is the sum of the euclidean distances between each tile and it's goal position. Euclidean distance should be more optimistic than manhattan distance for the following reason: given any two coordinates on the board manhattan distance calculates the number of steps that the tile has to move but the tile is restricted to moves that are parallel to the x-axis or the y-axis. if you were to take any two tiles and draw the euclidean and manhattan distance between them, you would get a right triangle where the euclidean distance draws the hypothenuse and the manhattan distance draws the opposite and adjacent sides. The hypothenuse is always smaller than the sum of the two other sides, which is why we expect euclidean distance to be admissible. In order to validate our intuition, we will generate 100 random [8-puzzles](https://8-puzzle.readthedocs.io/en/latest/) in 2x4 and 3x3 format and run algorithms A* and Greedy Best First Search using these heuristics. Of course to verify whether we get the shortest cost solution path to those puzzle we will also run Uniform Cost Search to obtain the shortest paths with certainty. ###Code HEURISTICS = [hamming_distance, manhattan_distance, row_col_out_of_place, euclidean_distance, permutation_inversion] NUMBER_PUZZLES = 50 two_by_two = [np.random.permutation(8).reshape(2,4) for _ in range(NUMBER_PUZZLES)] three_by_three = [np.random.permutation(9).reshape(3,3) for _ in range(NUMBER_PUZZLES)] print(f"Here are the {NUMBER_PUZZLES} random 2x4 puzzles") for puzzle in two_by_two: print(puzzle) print(f"Here are the {NUMBER_PUZZLES} random 3x3 puzzles") for puzzle in three_by_three: print(puzzle) def build_experiment_object(): '''Build's the structure that will run the experiment and hold results''' experiment = {} for func in HEURISTICS: experiment[func.__name__] = { 'func': func, 'algos': { 'GBF': { 'func': search.greedy_best_first, 'shape': { (2, 4): {'results': []}, (3, 3): {'results': []} } }, 'A*': { 'func': search.a_star, 'shape': { (2, 4): {'results': []}, (3, 3): {'results': []} } } }, } return experiment experiment = build_experiment_object() def run_experiment(experiment: dict, puzzles: list): for heurist_name in tqdm(experiment): heuristic_func = experiment[heurist_name]['func'] for algo_name in experiment[heurist_name]['algos']: algo_func = experiment[heurist_name]['algos'][algo_name]['func'] for puzzle in puzzles: b = Board(puzzle) result: dict = algo_func(board=b, H=heuristic_func) experiment[heurist_name]['algos'][algo_name]['shape'][puzzle.shape]['results'].append(result) return experiment ###Output _____no_output_____ ###Markdown Let's Run A* and Greedy Best First search on the 50 2x4 puzzles ###Code print('\nRunning 2 search algorithms on 50 puzzles, 5 different times to test the 5 heuristics:') start = time.time() run_experiment(experiment,two_by_two) elapsed = round(time.time()-start, 2) print(f'\n\nTotal of 2x50x5 = {2*50*5} puzzles solved in {elapsed} seconds') ###Output 0%| | 0/5 [00:00<?, ?it/s] Running 2 search algorithms on 50 puzzles, 5 different times to test the 5 heuristics: 100%|██████████| 5/5 [01:21<00:00, 16.29s/it] Total of 2x50x5 = 500 puzzles solved in 81.45 seconds ###Markdown Imports for the Analysis ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline import scipy import stats ###Output _____no_output_____ ###Markdown Reading in the Data ###Code # DataFrame for Crime Data Between 1996-2007 df1 = pd.read_csv('seattle_data/seattle-crime-stats-by-1990-census-tract-1996-2007.csv') # DataFrame for Crime Data from 2008-Present df2 = pd.read_csv('seattle_data/seattle-crime-stats-by-police-precinct-2008-present.csv') ###Output _____no_output_____ ###Markdown What kinds of information does each set of years tell us?To do this, let's take a look through some of the rows in the DataFrames. ###Code df1.head() df2.loc[3:20] df2.loc[21:41] ###Output _____no_output_____ ###Markdown Purpose of the AnalysisThe goal of this exploratory data analysis is to understand trends in crime for the City of Seattle over roughly the past 24 years. The outcome of asking and seeking this answers about this data will hopefully help lead us to make suggestions for how urban communities in Seattle and elsewhere can improve. Question 1: How has the amount of crime in Seattle changed over the years 1996-Present? ###Code def count_annual_crimes(df): """Return a dict of all the years in a DataFrame, with the total number of crimes that occured in that year.""" # figure out which df we have, and which years we have data for in the df if 'Report_Year' in df.columns: years = df['Report_Year'].unique() else: reported_years = pd.Series([int(date[:4]) for date in df['REPORT_DATE']]) years = sorted(reported_years.unique()) # iterate over rows of dataset, and count up the total crimes in each year year_crimes = dict() # separate algorithms for one df over the other # condition for 1996-2007 if 'Report_Year' in df.columns: for index, year in enumerate(years): # grab all the rows with this year, and sum crime numbers crimes_ls = (df.loc[df['Report_Year'] == year])['Report_Year_Total'].dropna() # print(crimes_ls) crimes = sum([int(crime) for crime in crimes_ls]) year_crimes[year] = crimes # condition for 2008-present else: for year in years: crimes = len([date for date in df['REPORT_DATE'].dropna().values if str(year) in date]) year_crimes[year] = crimes return year_crimes annual_crimes_1996 = count_annual_crimes(df1) annual_crimes_2008 = count_annual_crimes(df2) # combine the two dictionaries annual_crime_counts = annual_crimes_1996.copy() annual_crime_counts.update(annual_crimes_2008) ###Output _____no_output_____ ###Markdown Line Graph Representation ###Code years, annual_crimes = ( list(annual_crime_counts.keys()), list(annual_crime_counts.values()) ) plt.title("Annual Crimes in Seattle, 1996-2014") plt.xlabel('Year') plt.ylabel('Crimes') plt.plot(years, annual_crimes) plt.show() ###Output _____no_output_____ ###Markdown Question 2: What Kinds of Crime Were Most Prevalent over 1996-2007? 2008-2014? ###Code def make_pie_chart(x, labels, title): """Creates a pie chart to represent the data, x. Depends on Matplotlib. Parameters: x(list of numbers): data to plot labels(list of str): must be same length as x, and index position of each str corresponds with whichever group in x that it labels title(str): descriptive name for the plot as a whole Returns: None """ plt.pie(x, labels=labels, autopct='%1.1f%%') plt.title(title) plt.show() # Store variables for column names ct, reported = 'Crime_Type', 'Report_Year_Total' # For each DataFrame, we can determine all the different crime types crime_types_96 = df1[ct].unique() # For 2008-2014, count amounts of different crime types crime_counts_by_type = list() for crime in crime_types_96: counts = df1.loc[df1[ct] == crime, [reported]].values counts = counts.reshape(1, -1)[0] crime_count = sum(counts) crime_counts_by_type.append(crime_count) # Pie Chart Representation make_pie_chart(crime_counts_by_type, crime_types_96, "Types of Crime in Seattle, 1996-2007") # Find the Crime Types for 2008-2014 crime_types_08 = df2[ct.upper()].unique() # Create a Pie Chart for the different crime types crime_counts_by_type = list() for crime in crime_types_08: crime_count = df2[ct.upper()].value_counts()[crime] crime_counts_by_type.append(crime_count) # Pie Chart Representation make_pie_chart(crime_counts_by_type, crime_types_08, "Types of Crime in Seattle, 2008-2014") ###Output _____no_output_____ ###Markdown Interesting! So it looks like all the crimes levelled off in Seattle to equivalent amounts. But will this equality also hold out for different regions of the city. Question 3: Which precincts of the city saw the most crime in Seattle, from 2008-2014? ###Code df2['Precinct'].hist() plt.title("Distribution of Crime in Seattle Precincts, 2008-2014") plt.show() ###Output _____no_output_____ ###Markdown Okay, so the police may need to focus on some areas more than others. How should they best prepare for the criminals in each precinct of Seattle? Question 4: Which Crime Type Was the Most Common, for each Precinct between the years 2008-2014? ###Code # store each precinct with its most common crime type precincts_most_common = dict() # iterate over the city precincts precincts = df2['Precinct'].unique() for precinct in precincts: # find the most common crimes_in_precinct = df2[df2['Precinct'] == precinct]['CRIME_TYPE'].value_counts() precincts_most_common[precinct] = crimes_in_precinct # Print the results! # print(precincts_most_common.items()) print('For the years 2008-2014:\n') for p in precincts: conclusion = precincts_most_common[p] print(f'Here is the breakdown of crime types in precinct {p}: \n{conclusion}.\n') ###Output For the years 2008-2014: Here is the breakdown of crime types in precinct SE: Motor Vehicle Theft 684 Rape 684 Assault 684 Robbery 684 Burglary 684 Larceny-Theft 684 Homicide 684 Name: CRIME_TYPE, dtype: int64. Here is the breakdown of crime types in precinct W: Assault 913 Robbery 913 Burglary 912 Motor Vehicle Theft 912 Rape 912 Larceny-Theft 911 Homicide 911 Name: CRIME_TYPE, dtype: int64. Here is the breakdown of crime types in precinct E: Motor Vehicle Theft 684 Rape 684 Assault 684 Robbery 684 Burglary 684 Larceny-Theft 684 Homicide 684 Name: CRIME_TYPE, dtype: int64. Here is the breakdown of crime types in precinct SW: Motor Vehicle Theft 456 Rape 456 Assault 456 Robbery 456 Burglary 456 Larceny-Theft 456 Homicide 456 Name: CRIME_TYPE, dtype: int64. Here is the breakdown of crime types in precinct N: Burglary 1139 Motor Vehicle Theft 1139 Rape 1139 Assault 1139 Robbery 1139 Larceny-Theft 1139 Homicide 1139 Name: CRIME_TYPE, dtype: int64. ###Markdown get all settlements links ###Code driver.get('https://www.gov.il/he/departments/news/?OfficeId=104cb0f4-d65a-4692-b590-94af928c19c0&limit=10&topic=3ef9cac8-a1a9-4352-91d4-860efd3b720d&subTopic=626a30f9-8b50-495a-9b9f-e4ce4b433ca5') settlements_url_list_of_lists = [] while True: series = pd.Series(driver.page_source.split(' ')) settlements_url_list = series[series.str.contains('departments/news/') & ~series.str.contains('\?')].apply(lambda x: x[6:-1]).tolist() print('number of settlements:', len(settlements_url_list)) settlements_url_list_of_lists.append(settlements_url_list) element = driver.find_elements_by_xpath("//div[contains(@class, 'button-gov blue xs-pl-5 xs-pr-5')]")[1] if element.is_displayed(): element.click() time.sleep(0.5) else: break all_settlements_list = list(itertools.chain.from_iterable(settlements_url_list_of_lists)) print(len(all_settlements_list)) temp_settlements_series = pd.Series(all_settlements_list) all_settlements_series = pd.Series(temp_settlements_series.unique()) display(all_settlements_series.shape) display(all_settlements_series.head()) all_settlements_csv_path = './all_settlements_links.csv' all_settlements_series.to_csv(all_settlements_csv_path, index=False, header=False) # all_settlements_series = pd.read_csv(all_settlements_csv_path, header=None)[0] display(all_settlements_series.head()) display(all_settlements_series.shape) ###Output _____no_output_____ ###Markdown get settlements datums ###Code def get_settlement_data(driver): main_xpath = '//div[@class=\'margin-for-ul txt dark-gray-txt lg-mb-30 tbl-accesabilty tbl-responsive sub-links-permanent-underline\']//' xpath = f'{main_xpath}h3 | {main_xpath}h2 | {main_xpath}p | {main_xpath}li' elements_list = driver.find_elements_by_xpath(xpath) datum_list = [element.text for element in elements_list] b = pd.Series(datum_list) datum_clean_list = b[:b[b.str.contains('הנחיות לציבור')].index[0]].tolist() return datum_clean_list all_settlements_dict = {} for index, settlement_link in enumerate(all_settlements_series): if not re.search('[a-zA-Z]', settlement_link.split('/')[-1]): continue driver.get(settlement_link) time.sleep(0.25) clear_output(wait=True) settlement_datum_list = get_settlement_data(driver) all_settlements_dict[settlement_link] = {'title': driver.title, 'datum': settlement_datum_list} print(f'{index + 1} / {len(all_settlements_series)}: {settlement_link}') print(all_settlements_dict[settlement_link]) json_path = 'all_settlements_dict.json' with open(json_path, 'w') as fp: json.dump(all_settlements_dict, fp) # with open(json_path, 'r') as fp: # all_settlements_dict = json.load(fp) ###Output _____no_output_____ ###Markdown extract incident date ###Code def get_update_date_if_update(row): if 'עדכון' in re.findall('עדכון|עודכן', row['raw']): return get_date_from_string(row['raw']) else: return None def get_date_from_string(string): date_strings_list = re.findall('\d{1,2}\.\d{1,2}\.\d{1,4}|\d{1,2}/\d{1,2}/\d\d', string) if date_strings_list: if date_strings_list[0] == '30.30.2020': date_strings_list[0] = '30.3.2020' # print(string, date_strings_list[0]) date = pd.to_datetime(date_strings_list[0], dayfirst=True) else: date_strings_list_2 = re.findall('\d{1,2}\.\d{1,2}', string) if date_strings_list_2: if date_strings_list_2[0] == '24.32': date_strings_list_2[0] = '24.3' date = pd.to_datetime(date_strings_list_2[0] + '.20', dayfirst=True) else: date = None return date def get_settlement_df(settlement_link, settlement_dict): settlement_name = " ".join(settlement_dict['title'].split()[:-9]) df = pd.Series(settlement_dict['datum']).to_frame('raw') df['update_date_temp'] = df.apply(get_update_date_if_update, axis=1) df['update_date'] = df['update_date_temp'].ffill() clean_df = df[~df['update_date_temp'].notna()][['raw', 'update_date']].dropna(subset=['update_date']) clean_df['incident_day'] = clean_df['raw'].apply(get_date_from_string) clean_df['settlement_name'] = settlement_name clean_df['settlement_link'] = settlement_link return clean_df temp_df = [get_settlement_df(key, value) for key, value in all_settlements_dict.items()] incidents_df = pd.concat(temp_df).reset_index(drop=True) incidents_df.head() all_settlements_links_series = pd.Series(list(all_settlements_dict.keys())) all_settlements_links_series.head() all_settlements_links_set = set(all_settlements_links_series) incidents_settlement_links_set = set(incidents_df['settlement_link']) all_settlements_links_set.difference(incidents_settlement_links_set) incidents_df['incident_day'].describe() incidents_df[incidents_df['incident_day'] == '2020-04-29'] incidents_df[incidents_df['incident_day'] == '2020-07-04'] incidents_csv_path = './incidents.csv' incidents_df.to_csv(incidents_csv_path, index=False) # incidents_df = pd.read_csv(incidents_csv_path, parse_dates=['update_date', 'incident_day']).dropna() incidents_df.head() ###Output _____no_output_____ ###Markdown statistics ###Code incidents_stat_df = incidents_df.groupby('incident_day').size().to_frame('size').reset_index() incidents_clean_stat_df = incidents_stat_df[(incidents_stat_df['incident_day'] >= '2020-03-01') & (incidents_stat_df['incident_day'] <= '2020-05-02')] incidents_clean_stat_df.tail(10) %matplotlib notebook plt.rcParams['figure.figsize'] = [10, 5] incidents_clean_stat_df.plot(x='incident_day', y='size', marker='*') plt.title('Incidents per day') plt.xlabel('date') plt.ylabel('number of incidents') ###Output _____no_output_____ ###Markdown Cities ###Code def check_name(df, name): settlement_names_series = df['settlement_name'] return settlement_names_series[settlement_names_series.str.contains(name)].unique() def show_stat(df, settlement_name): print(check_name(df, settlement_name)) settlement_df = df[df['settlement_name'].str.contains(settlement_name)] stat_df = settlement_df.groupby('incident_day').size().to_frame('size').reset_index() stat_df.plot(x='incident_day', y='size', marker='*') plt.title('Incidents per day') plt.xlabel('date') plt.ylabel('number of incidents') show_stat(incidents_df, 'בני ברק') show_stat(incidents_df, 'פתח') show_stat(incidents_df, 'כפר סבא') show_stat(incidents_df, 'תל אביב') show_stat(incidents_df, 'ירושלים') show_stat(incidents_df, 'חיפה') incidents_df['incident_to_update_days_delay'] = incidents_df['update_date'] - incidents_df['incident_day'] incidents_df.head() incidents_df['incident_to_update_days_delay'].describe() incidents_df.loc[incidents_df['incident_to_update_days_delay'].idxmin()] incidents_df.loc[incidents_df['incident_to_update_days_delay'].idxmax()] a = incidents_df['incident_to_update_days_delay'].dt.days b = a[(a >= 0) & (a < 50)] b.hist(bins=20) plt.title('delay in days distribution') plt.xlabel('delay in days') plt.ylabel('count') c = incidents_df.groupby('incident_day')['incident_to_update_days_delay'].apply(lambda x: x.mean()).reset_index() c['incident_to_update_days_delay'] = c['incident_to_update_days_delay'].dt.days c.head() d = c['incident_to_update_days_delay'] e = c[(d < 50) & (d >= 0)] e.head() e.plot(x='incident_day', y='incident_to_update_days_delay') plt.title('average delay in days between incident and report') plt.xlabel('date') plt.ylabel('average delay in days') ###Output _____no_output_____ ###Markdown Maryland schools star ratings analysis By [Christine Zhang](mailto:[email protected]) An analysis of data from the [Maryland State Department of Education Report Card](http://mdreportcard.org/) for a December 4, 2018 Baltimore Sun story titled ["Maryland releases first star ratings for every public school; 60 percent earn four or five stars out of five"](https://www.baltimoresun.com/news/maryland/education/k-12/bs-md-star-rating-release-20181203-story.html) by Liz Bowie and Talia Richman.Here are the key findings:- Only 35 of the state's more than 1,300 schools received one star, the lowest rating, while 219 received five stars.- In Baltimore City, 23 schools earned one star.- More than half of the city’s schools received one- or two-star ratings.- Howard County had 91 percent of its schools rated four and five stars, while Baltimore County had 96 of its 160 schools rated as four or five stars.- In Harford County, 70 percent of schools earned either a four- or five-star rating.- Fourteen school systems in the state had no one- or two-star schools. How we did it Import R data analysis libraries ###Code suppressMessages(library('tidyverse')) suppressMessages(library('janitor')) ###Output _____no_output_____ ###Markdown Read in the scores data for analysis. ###Code scores <- suppressMessages(read_csv('input/accountability_schools_download_file.csv', na = 'na') %>% clean_names()) ###Output _____no_output_____ ###Markdown Finding: Only 35 of the state's more than 1,300 schools received one star, the lowest rating, while 219 received five stars. Print the number of schools in the state dataset. ###Code print(paste("There were", length(scores$school_name), "public schools in the Maryland school system in the 2017-18 school year.")) ###Output [1] "There were 1319 public schools in the Maryland school system in the 2017-18 school year." ###Markdown Use `table()` to view the breakdown of schools by star rating. ###Code table(scores$star_rating) ###Output _____no_output_____ ###Markdown Finding: In Baltimore City, 23 schools earned one star. Use `filter()` and `table()` to view the breakdown of schools in Baltimore City by star rating. ###Code scores %>% filter(lea_name == 'Baltimore City') %>% select(star_rating) %>% table() ###Output _____no_output_____ ###Markdown Finding: More than half of the city’s schools received one- or two-star ratings. Use `group_by()` and `summarise()` to calculate the percentage breakdown of schools by star rating. Save this into a dataframe called `scores.sum`. ###Code scores.sum <- scores %>% group_by(lea_name, star_rating) %>% summarise(n = n()) %>% mutate(percent = n/sum(n) * 100) ###Output _____no_output_____ ###Markdown Use `filter()` to look just at Baltimore City. ###Code scores.sum %>% filter(lea_name == 'Baltimore City') ###Output _____no_output_____ ###Markdown Print the percentage of Baltimore City schools receiving one- or two-star ratings. ###Code print(paste(round(scores.sum[scores.sum$star_rating == 1 & scores.sum$lea_name == 'Baltimore City', ]$percent + scores.sum[scores.sum$star_rating == 2 & scores.sum$lea_name == 'Baltimore City', ]$percent), "percent of the city's schools (more than half) received one- or two-star ratings.")) ###Output [1] "60 percent of the city's schools (more than half) received one- or two-star ratings." ###Markdown Finding: Howard County had 91 percent of its schools rated four and five stars, while Baltimore County had 96 of its 160 schools rated as four or five stars. Use `filter()` on the `scores.sum` dataframe to view the number and percentage of schools in Howard and Baltimore County rated four or five stars. ###Code scores.sum %>% filter(lea_name == 'Howard' | lea_name == 'Baltimore County') ###Output _____no_output_____ ###Markdown Print the percentage of Howard County schools and the number of Baltimore County schools receiving one- or two-star ratings. ###Code print(paste(round(scores.sum[scores.sum$star_rating == 4 & scores.sum$lea_name == 'Howard', ]$percent + scores.sum[scores.sum$star_rating == 5 & scores.sum$lea_name == 'Howard', ]$percent), "percent of Howard County schools received four- or five-star ratings.")) print(paste(scores.sum[scores.sum$star_rating == 4 & scores.sum$lea_name == 'Baltimore County', ]$n + scores.sum[scores.sum$star_rating == 5 & scores.sum$lea_name == 'Baltimore County', ]$n, "Baltimore County's", sum(scores.sum[scores.sum$lea_name == 'Baltimore County', ]$n), "schools received four- or five-star ratings.")) ###Output [1] "91 percent of Howard County schools received four- or five-star ratings." [1] "96 Baltimore County's 160 schools received four- or five-star ratings." ###Markdown Finding: In Harford County, 70 percent of schools earned either a four- or five-star rating. Use `filter()` on the `scores.sum` dataframe to view the number and percentage of schools in Harford County rated four or five stars. ###Code scores.sum %>% filter(lea_name == 'Harford') ###Output _____no_output_____ ###Markdown Print the percentage of Harford County schools receiving one- or two-star ratings. ###Code print(paste(round(scores.sum[scores.sum$star_rating == 4 & scores.sum$lea_name == 'Harford', ]$percent + scores.sum[scores.sum$star_rating == 5 & scores.sum$lea_name == 'Harford', ]$percent), "percent of Harford County schools received four- or five-star ratings.")) ###Output [1] "70 percent of Harford County schools received four- or five-star ratings." ###Markdown Fourteen school systems in the state had no one- or two-star schools. Use `group_by()` and `mutate()` to create a column, `lowest_rating`, which gives lowest rating received by a school in the LEA (local education agency). Use `filter()` to include school with a lowest rating of three stars or above — meaning they had no one- or two-star schools. Use `select()`, `distinct()`, `ungroup()` and `mutate()` to print out and tally LEAs aka school systems with no one- or two-star schools. ###Code scores.sum %>% group_by(lea_name) %>% mutate(lowest_rating = min(star_rating)) %>% filter(lowest_rating >= 3) %>% select(lea_name) %>% distinct() %>% ungroup() %>% mutate(row_number = row_number()) ###Output _____no_output_____ ###Markdown Distribution of star ratings Ratings are assigned to schools based on the number of points a school receives as a percentage of the total possible points it could earn:- Less than 30% = one star- 30% or more and less than 45% = two stars- 45% or more and less than 60% = three stars- 60% or more and less than 75% = four stars- 75% or more = five starsFor more information, read the [story](https://www.baltimoresun.com/news/maryland/education/k-12/bs-md-star-rating-release-20181203-story.html). Below are a histogram of star ratings, showing the schools that fell into each "earned points percent" bucket. Statewide ###Code scores.grouped.points.md <- scores %>% group_by(total_earned_points_percent) %>% summarise(n = n()) %>% mutate(perc = n/sum(n) * 100) %>% mutate(lea_name = 'Statewide') options(repr.plot.width = 6, repr.plot.height = 4) ggplot(scores.grouped.points.md, aes(x = total_earned_points_percent, y = perc)) + geom_bar(stat = 'identity', fill = '#2484C6') + scale_y_continuous(breaks = seq(0, 10, 2))+ geom_vline(xintercept = 29, size = .3)+ geom_vline(xintercept = 44.9, size = .3)+ geom_vline(xintercept = 59.9, size = .3)+ geom_vline(xintercept = 74.9, size = .3)+ geom_bar(stat = 'identity', fill = '#2484C6')+ labs(x = '', y ='') + theme(panel.grid.major.x = element_blank(), panel.grid.minor.y = element_blank(), panel.grid.minor.x = element_blank(), panel.grid.major.y = element_line(color = 'lightgrey', size = .1), panel.background = element_blank(), strip.background = element_blank(), panel.border = element_rect(fill = NA, colour = "grey")) + facet_wrap(~lea_name) + scale_x_continuous(breaks = seq(0, 100, 10)) + expand_limits(x = 0) ###Output _____no_output_____ ###Markdown Baltimore region, by county ###Code scores.grouped.points <- scores %>% group_by(lea_name, total_earned_points_percent) %>% summarise(n = n()) %>% mutate(perc = n/sum(n) * 100) scores.grouped.filter <- scores.grouped.points %>% filter(lea_name == 'Baltimore City' | lea_name == 'Baltimore County' | lea_name == 'Anne Arundel' | lea_name == 'Carroll' | lea_name == 'Harford' | lea_name == 'Howard') options(repr.plot.width = 6, repr.plot.height = 3) ggplot(scores.grouped.filter, aes(x = total_earned_points_percent, y = perc)) + geom_bar(stat = 'identity', fill = '#2484C6') + scale_y_continuous(breaks = seq(0, 10, 2))+ geom_vline(xintercept = 29, size = .3)+ geom_vline(xintercept = 44.9, size = .3)+ geom_vline(xintercept = 59.9, size = .3)+ geom_vline(xintercept = 74.9, size = .3)+ geom_bar(stat = 'identity', fill = '#2484C6')+ labs(x = '', y ='') + theme(panel.grid.major.x = element_blank(), panel.grid.minor.y = element_blank(), panel.grid.minor.x = element_blank(), panel.grid.major.y = element_line(color = 'lightgrey', size = .1), panel.background = element_blank(), strip.background = element_blank(), panel.border = element_rect(fill = NA, colour = "grey")) + facet_wrap(~lea_name) + scale_x_continuous(breaks = seq(0, 100, 10)) ###Output _____no_output_____ ###Markdown AnalysisDo analysis across a number of files. ###Code # ignore whitespace warnings %env SPACY_WARNING_IGNORE=W008 import ipywidgets as widgets import itertools import pandas as pd import plotly.offline as py import plotly.graph_objs as go # offline mode py.init_notebook_mode(connected=False) ###Output _____no_output_____ ###Markdown Re-run this cell when Python code in the repository changes. ###Code import importlib import fismatic.core as fismatic import fismatic.helpers as helpers importlib.reload(fismatic) importlib.reload(helpers); ###Output _____no_output_____ ###Markdown Load files ###Code path_widget = widgets.Text(description="Path:", value=".") display(path_widget) files = fismatic.get_files(path_widget.value) control_sets = [fismatic.control_set_for(f) for f in files] ###Output _____no_output_____ ###Markdown Compare files ###Code stats = [fismatic.stats_for(cs) for cs in control_sets] df = pd.DataFrame(stats) df.set_index("Filename", inplace=True) df control_token_counts = helpers.flatten([cs.implementation_token_counts() for cs in control_sets]) data = [go.Histogram(x=control_token_counts)] layout = go.Layout( title="Control token counts", xaxis={ "title": "Number of tokens" }, yaxis={ "title": "Number of controls" } ) fig = go.Figure(data=data, layout=layout) py.iplot(fig, filename='basic histogram') from collections import Counter control_names = helpers.flatten([cs.control_names() for cs in control_sets]) counter = Counter(control_names) top_controls = counter.most_common(20) pd.DataFrame(top_controls, columns=["Control", "# occurrences"]) ###Output _____no_output_____ ###Markdown Carregando bibliotecas ###Code %matplotlib inline import numpy as np import pandas as pd import scipy.stats as stats import matplotlib.pyplot as plt import sklearn import statsmodels.api as sm from sklearn import metrics import seaborn as sns sns.set_style("whitegrid") sns.set_context("poster") # special matplotlib argument for improved plots from matplotlib import rcParams ###Output _____no_output_____ ###Markdown Carregando dataset ###Code from sklearn.datasets import load_boston boston = load_boston() bos = pd.DataFrame(boston.data) bos.columns = boston.feature_names bos['PRICE'] = boston.target print(bos.head()) ###Output CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \ 0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 PTRATIO B LSTAT PRICE 0 15.3 396.90 4.98 24.0 1 17.8 396.90 9.14 21.6 2 17.8 392.83 4.03 34.7 3 18.7 394.63 2.94 33.4 4 18.7 396.90 5.33 36.2 ###Markdown Análises básicas ###Code print(bos.describe()) ###Output CRIM ZN INDUS CHAS NOX RM \ count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 mean 3.613524 11.363636 11.136779 0.069170 0.554695 6.284634 std 8.601545 23.322453 6.860353 0.253994 0.115878 0.702617 min 0.006320 0.000000 0.460000 0.000000 0.385000 3.561000 25% 0.082045 0.000000 5.190000 0.000000 0.449000 5.885500 50% 0.256510 0.000000 9.690000 0.000000 0.538000 6.208500 75% 3.677083 12.500000 18.100000 0.000000 0.624000 6.623500 max 88.976200 100.000000 27.740000 1.000000 0.871000 8.780000 AGE DIS RAD TAX PTRATIO B \ count 506.000000 506.000000 506.000000 506.000000 506.000000 506.000000 mean 68.574901 3.795043 9.549407 408.237154 18.455534 356.674032 std 28.148861 2.105710 8.707259 168.537116 2.164946 91.294864 min 2.900000 1.129600 1.000000 187.000000 12.600000 0.320000 25% 45.025000 2.100175 4.000000 279.000000 17.400000 375.377500 50% 77.500000 3.207450 5.000000 330.000000 19.050000 391.440000 75% 94.075000 5.188425 24.000000 666.000000 20.200000 396.225000 max 100.000000 12.126500 24.000000 711.000000 22.000000 396.900000 LSTAT PRICE count 506.000000 506.000000 mean 12.653063 22.532806 std 7.141062 9.197104 min 1.730000 5.000000 25% 6.950000 17.025000 50% 11.360000 21.200000 75% 16.955000 25.000000 max 37.970000 50.000000 ###Markdown Separando o dataset de treino do de teste ###Code from sklearn.model_selection import train_test_split X = bos.drop('PRICE', axis = 1) Y = bos['PRICE'] X_train, X_test, Y_train, Y_test = sklearn.model_selection.train_test_split(X, Y, test_size = 0.33, random_state = 5) print(X_train.shape) print(X_test.shape) print(Y_train.shape) print(Y_test.shape) ###Output (339, 13) (167, 13) (339,) (167,) ###Markdown Iniciando a regressão ###Code from sklearn.linear_model import LinearRegression lm = LinearRegression() lm.fit(X_train, Y_train) Y_pred = lm.predict(X_test) plt.scatter(Y_test, Y_pred) plt.xlabel("Preços originais:") plt.ylabel("Preços preditos:") plt.title("Preços originais vs Preços preditos:") diff = pd.DataFrame({'Original': Y_test, 'Predito': Y_pred}) diff1 = diff.head(20) print(diff.head(15)) diff1.plot(kind='bar',figsize=(10,8)) plt.grid(which='major', linestyle='-', linewidth='0.5', color='green') plt.grid(which='minor', linestyle=':', linewidth='0.5', color='black') plt.show() diff.describe() print('Erro absoluto médio:', metrics.mean_absolute_error(Y_test, Y_pred)) print('Erro quadrático médio:', metrics.mean_squared_error(Y_test, Y_pred)) print('Raiz quadrada do erro médio:', np.sqrt(metrics.mean_squared_error(Y_test, Y_pred))) ###Output Erro absoluto médio: 3.4550349322483482 Erro quadrático médio: 28.530458765974583 Raiz quadrada do erro médio: 5.341391089030514 ###Markdown Starbucks Capstone Challenge OverviewThis data set contains simulated data that mimics customer behavior on the Starbucks rewards mobile app. Once every few days, Starbucks sends out an offer to users of the mobile app. An offer can be merely an advertisement for a drink or an actual offer such as a discount or BOGO (buy one get one free). Some users might not receive any offer during certain weeks. Not all users receive the same offer, and that is the challenge to solve with this data set.The task is to combine transaction, demographic and offer data to determine which demographic groups respond best to which offer type. This data set is a simplified version of the real Starbucks app because the underlying simulator only has one product whereas Starbucks actually sells dozens of products.Every offer has a validity period before the offer expires. As an example, a BOGO offer might be valid for only 5 days. You'll see in the data set that informational offers have a validity period even though these ads are merely providing information about a product; for example, if an informational offer has 7 days of validity, you can assume the customer is feeling the influence of the offer for 7 days after receiving the advertisement.Transactional data shows user purchases made on the app including the timestamp of purchase and the amount of money spent on a purchase. It also has a record for each offer that a user receives as well as a record for when a user actually views the offer. There are also records for when a user completes an offer. Keep in mind as well that someone using the app might make a purchase through the app without having received an offer or seen an offer. ExampleTo give an example, a user could receive a discount offer buy 10 dollars get 2 off on Monday. The offer is valid for 10 days from receipt. If the customer accumulates at least 10 dollars in purchases during the validity period, the customer completes the offer.However, there are a few things to watch out for in this data set. Customers do not opt into the offers that they receive; in other words, a user can receive an offer, never actually view the offer, and still complete the offer. For example, a user might receive the "buy 10 dollars get 2 dollars off offer", but the user never opens the offer during the 10 day validity period. The customer spends 15 dollars during those ten days. There will be an offer completion record in the data set; however, the customer was not influenced by the offer because the customer never viewed the offer. TipsTake into account that some demographic groups will make purchases even if they don't receive an offer. From a business perspective, if a customer is going to make a 10 dollar purchase without an offer anyway, you wouldn't want to send a buy 10 dollars get 2 dollars off offer. Therefore, try to assess what a certain demographic group will buy when not receiving any offers. Objectives In this notebook, I will develop heurisitics to determine which offer should be sent and how spends vary across customers with demographics.Based on the findings, two machine learning models will be built:- a classification model to predict whether or not a customer will respond to an offer- a regression model to predict spends of customers based on demographics and offer type Data SetsThe data is contained in three files:* portfolio.json - containing offer ids and meta data about each offer (duration, type, etc.)* profile.json - demographic data for each customer* transcript.json - records for transactions, offers received, offers viewed, and offers completedHere is the schema and explanation of each variable in the files:**portfolio.json*** id (string) - offer id* offer_type (string) - type of offer ie BOGO, discount, informational* difficulty (int) - minimum required spend to complete an offer* reward (int) - reward given for completing an offer* duration (int) - time for offer to be open, in days* channels (list of strings)**profile.json*** age (int) - age of the customer * became_member_on (int) - date when customer created an app account* gender (str) - gender of the customer (note some entries contain 'O' for other rather than M or F)* id (str) - customer id* income (float) - customer's income**transcript.json*** event (str) - record description (ie transaction, offer received, offer viewed, etc.)* person (str) - customer id* time (int) - time in hours since start of test. The data begins at time t=0* value - (dict of strings) - either an offer id or transaction amount depending on the record Load packages ###Code # data analysis import pandas as pd import numpy as np import matplotlib.pyplot as plt from matplotlib import colors import seaborn as sns import math # utils import os import json import pickle from tqdm import tqdm import datetime %matplotlib inline # Check if xgboost package exists # or install it try: import xgboost except ImportError as e: !pip install xgboost # modeling from sklearn.linear_model import LogisticRegression from sklearn.svm import SVC from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, GradientBoostingClassifier from xgboost import XGBClassifier from sklearn.preprocessing import StandardScaler from sklearn.model_selection import train_test_split, GridSearchCV, RandomizedSearchCV from sklearn.pipeline import Pipeline from sklearn.metrics import accuracy_score, classification_report, confusion_matrix # Oversampling & undersampling import imblearn from imblearn.over_sampling import SMOTE from imblearn.under_sampling import NearMiss from collections import Counter print(imblearn.__version__) ###Output 0.9.0 ###Markdown Table of contentsThis project is divided into two Jupyter Notebooks.- wrangling.ipynb- analysis.ipynbThis notebook (`analysis.ipynb`) starts continues the data wrangling works that can be found in `wrangling.ipynb`. 3. Explore data: Part1 [link](explore-part1) <- to skip data cleaning4. Explore data: Part2 [link](explore-part2)5. Feature engineering [link](feature)6. Modeling [link](model)7. Build the final model [link](final)8. Conclusion [link](conclude) --- SECTION 3 Explore data : Part 1Here we explore the individual dataset first. In the next section (Part2) we will continue the analysis with the merged dataset. ###Code # Load the clean dataset portfolio = pd.read_csv('data/portfolio_clean.csv') profile = pd.read_csv('data/profile_clean.csv') transcript = pd.read_csv('data/transcript_clean.csv') transaction = pd.read_csv('data/transactions_pivoted.csv') portfolio.head() ###Output _____no_output_____ ###Markdown 3a. Offer types and channels ###Code fig, (ax1, ax2) = plt.subplots(1,2, figsize=(12,5)) sns.heatmap(portfolio.iloc[:, :4].groupby('offer_type').mean(), annot=True, fmt='.2f', square=True, cmap='Blues', ax=ax1); sns.heatmap(portfolio.iloc[:, 3:].groupby('offer_type').mean(), annot=True, fmt='.2f', cmap='Greens', ax=ax2); ax1.set(title ='How does each offer type look?', xlabel='', ylabel=''); ax2.set(title ='Which channel does each offer use?\n(0: not at all - 1: always)', xlabel='', ylabel='') plt.tight_layout() # Save figure plt.show() ###Output _____no_output_____ ###Markdown Offers- **discount** offer requires the highest spends to redeem (the most difficult) with the longest duration - longest engagment with customers. - **bogo** offer gives the most rewards with comparatively lower spends requred - as the name (Buy One Get One For Free) suggests.- **informational** offer does not require reward and spends. ChannelsRegardless of offer type, **email** is always used when communicating the offer. **bogo** uses all four channels more intensively. The analysis will be more meaningful when offer type is explored together with customer profile and transction data, which will be done later after mering the dataset. 3b. Demographics ###Code profile['became_member_on'] = pd.to_datetime(profile['became_member_on']) profile.head() base_colors = sns.color_palette()[:4] fig, axes = plt.subplots(2, 2, figsize=(16,8)) fig1 = sns.countplot(x=profile.gender, color=base_colors[0], ax=axes[0,0]) fig2 = sns.countplot(x=profile.became_member_on.dt.year, color=base_colors[1], ax=axes[0,1]) fig3 = sns.histplot(x=profile.age, color=base_colors[2], kde=True, element='step', ax=axes[1,0]) fig4 = sns.histplot(x=profile.income, color=base_colors[3], kde=True, element='step', ax=axes[1,1]) fig1.set(title='Count by gender', xlabel='', ylabel='') fig2.set(title='New customers by years', xlabel='', ylabel='') fig3.set(title='Age distribution of members', xlabel='', ylabel='') fig4.set(title='Income distribution of members\n(unit: US dollars)', xlabel='', ylabel='') plt.tight_layout(pad=3.5) plt.show() ###Output _____no_output_____ ###Markdown **Gender:** slightly more male respondants (57%) than female while others exist. **New customers:** The growth of new customer base is increasing assuming other factors, such as total annual visitor volume, are consistent. **Age:** The minimum age is 18 which may be due to age restriction for members. With the median of 55, 50% of the members fall into between 42 and 66. Although trivial, some members are above 100, which may be correct but likely caused by survey error.**Income:** Median income is $64,000. The distribution is skewed to the right which seems natural for income distribution. 3c. Offer completionUsing the cleaned, pivoted dataframe saved in `transaction_pivoted.csv` ###Code print('Number of unique customers: ', transaction.person.nunique()) print('Number of unique offer types: ', transaction.offer_id.nunique()) ###Output Number of unique customers: 17000 Number of unique offer types: 10 ###Markdown The number of total record is 169940, which I interpret as the total mix of possible transactions. ###Code # Map label number to name label_num_to_name = {1: 'complete', 2: 'inactive', 3: 'active', 4: 'indifferent', 5: 'not received'} transaction['label_descr'] = transaction['label'].map(label_num_to_name) # Set color for the plots label_order = label_num_to_name.values() fig = sns.countplot(x=transaction.label_descr, palette="rocket", order=label_order); fig.set(title='Counts by Label', xlabel='label type', ylabel='count'); plt.xticks() plt.show() # Proportions of each label transaction['label_descr'].value_counts() / transaction.shape[0] ###Output _____no_output_____ ###Markdown 17000 unique customers and 10 unique offers are represented in this dataset, which gives 170,000 mix of offers . Around 63% offers are `unsent` (label 5), most likely because- offers were not relevant for customers- opportunities were misinterpreted and missed ###Code count_total_sent = transaction.loc[transaction.label != 5, 'label'].shape[0] transaction.loc[transaction.label != 5, 'label_descr'].value_counts() / count_total_sent ###Output _____no_output_____ ###Markdown Among those offers that were sent, over 47% led to the completion. In other words, either offer led to purchase or offer is information and viewed. Additionally,- 24% of customers viewed offers but not redeemed- 15% were not responsive to the offer- 13% (purchased without viewing ###Code # Get subset data for informational and transactional offers info_offer_ids = portfolio.loc[portfolio['offer_type'] == 'informational', 'id'].to_list() offer_informational = transaction[transaction['offer_id'].isin(info_offer_ids)] offer_transactional = transaction[~transaction['offer_id'].isin(info_offer_ids)] print('# informational offers:', len(offer_informational)) print('# transactional offers:', len(offer_transactional)) # Visualization fig, (ax1, ax2) = plt.subplots(1,2, figsize=(16,5), sharey=True) # Set order for plots label_order = label_num_to_name.values() fig1 = sns.countplot(x=offer_informational.label_descr, ax=ax1, palette="Blues", order=label_order); fig2 = sns.countplot(x=offer_transactional.label_descr, ax=ax2, palette="Greens", order=label_order); ax1.set(title='Offer completion for information offers', xlabel='Labels'); ax2.set(title='Offer completion for transactional offers', xlabel='Labels', ylabel=''); plt.tight_layout(pad=1.2) # Save figure plt.show() offer_informational['label'].value_counts() / 34000 offer_transactional['label'].value_counts() / 136000 ###Output _____no_output_____ ###Markdown Around 20% of the total dataset are informational and the rest 80% are transactional. - informational offers have higher completion rate- unsent offers were proportionally similar between informational and transactional offers, but still dominant in counts- no inactive, active customers for informational offers (with no purchase) SECTION 4 Explore data - Part2In this section, we would like to go deeper into offer completion by offer type and demographics. Completion can be measured for transactions that were actually sent. 4a. Completion by offer type ###Code transaction.head(3) # Subset transactions with offers sent transactions_sent = transaction[transaction['label'] != 5].copy() # Create a dataframe that shows # number of completed and incomplete offers by offer id completion_by_offer = transactions_sent.groupby(['offer_id', 'label_descr']).size().unstack() # Compute completion rate completion_by_offer['completion_rate'] = completion_by_offer['complete'] / completion_by_offer.sum(axis=1) # Sort by completed rate completion_by_offer.sort_values('completion_rate', ascending=False, inplace=True) # Merge the data sets completion_by_offer = pd.merge(completion_by_offer.reset_index(), portfolio, left_on='offer_id', right_on='id', how='left') # Drop duplicated id column completion_by_offer.drop(columns='id', inplace=True) # show the prepared dataset completion_by_offer # Get custom offer names # offer_type + reward + difficulty + duration # Instantiate a list of offer names offer_names = list() # Subset the dataframe offset_subset = completion_by_offer[['offer_type', 'reward', 'difficulty', 'duration']] # Iterate by row for idx, values in offset_subset.iterrows(): # Instantiate name name = '' for item in values: # If item is string, get the first 4 letters if type(item) == str: item = item[:4] # If item is integer, check if the value < 10, # then add '0' in front and transform it to string if type(item) == int and item < 10: item = '0' + str(item) else: item = str(item) # Concatenate item name += item # Add completed name to a list of offer names offer_names.append(name) # Add the custom column name completion_by_offer['offer_name'] = offer_names completion_by_offer['completion_rate'].plot(kind='bar', stacked=True, figsize=(16,5)); plt.title('Completion rate by offer type') plt.xlabel('offer type') plt.ylabel('completion rate') plt.xticks(ticks=range(10), labels=offer_names, rotation=0) plt.yticks(ticks=np.arange(0, 1+0.1, 0.1), labels=['{:.0f}%'.format(n*100) for n in np.arange(0, 1+0.1, 0.1)]) plt.show() ###Output _____no_output_____ ###Markdown Informational offer with 3 day duration has nearly 90% completion. Amongst transtional offers (discount, bogo), disc021010 and disc030707 offers have comparatively higher completion- disc021010 : discount offer, reward 2, difficulty 7, duration 10 - disc030707 : discount offer, reward 3, difficulty 7, duration 7Although **bogo** has relatively more rewards than the two discount offers, completion rate is lower. ###Code channels_by_offer = completion_by_offer.iloc[:, -5:].set_index('offer_name') plt.figure(figsize=(10,6)) sns.heatmap(channels_by_offer.T, cmap='YlGn', annot=True, cbar=False, square=True) plt.xlabel('offer name') plt.ylabel('channel') plt.show() ###Output _____no_output_____ ###Markdown For transactional offers, higher completion rate could be associated with number of channels. Not communiting through **social** media channel is very likely to lead lower completion rate. Let's make it more granular by offer type. ###Code ## Informational offers # Subset dataset channels = ['mobile', 'web', 'social', 'email'] completion_info = completion_by_offer.query('offer_type == "informational"') fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,5)) # Figure1 - heatmap for binary sns.heatmap(completion_info[channels].T, linewidths = 0.30, annot = True, cmap='YlGn', cbar=False, ax=ax1); # Labels ax1.set_title('Channels for informational offer\n(1: Yes, 0: No)') ax1.set(xlabel='', ylabel='') ax1.set_xticklabels(labels=completion_info['offer_name'], rotation=0) # Figure2 - bar sns.barplot(x='offer_name', y='completion_rate', data=completion_info, ax=ax2, color='green') # Labels ax2.set(title='Completion rate by informational offer') ax2.set_xticks(ticks=np.arange(len(completion_info))) ax2.set_xticklabels(labels=completion_info['offer_name'], rotation=0) ax2.set_yticks(ticks=np.arange(0, 1+0.1, 0.1)) ax2.set_yticklabels(labels=['{:.0f}'.format(n*100) + '%' for n in np.arange(0, 1+0.1, 0.1)]) plt.tight_layout(pad=1.2) ## Discount offers # Subset dataset channels = ['mobile', 'web', 'social', 'email'] completion_discount = completion_by_offer.query('offer_type == "discount"') fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,5)) # Figure1 - heatmap for binary sns.heatmap(completion_discount[channels].T, linewidths = 0.30, annot = True, cmap='YlGn', cbar=False, ax=ax1); # Labels ax1.set_title('Channels for discount offer\n(1: Yes, 0: No)') ax1.set_xticklabels(labels=completion_discount['offer_name'], rotation=0) ax1.set(xlabel='', ylabel='') # Figure2 - bar sns.barplot(x='offer_name', y='completion_rate', data=completion_discount, ax=ax2, color='green') # Labels ax2.set(title='Completion rate by discount offer') ax2.set_xticks(ticks=np.arange(len(completion_discount))) ax2.set_xticklabels(labels=completion_discount['offer_name'], rotation=0) ax2.set_yticks(ticks=np.arange(0, 1+0.1, 0.1)) ax2.set_yticklabels(labels=['{:.0f}'.format(n*100) + '%' for n in np.arange(0, 1+0.1, 0.1)]) plt.tight_layout(pad=1.2) ## Discount offers # Subset dataset channels = ['mobile', 'web', 'social', 'email'] completion_bogo = completion_by_offer.query('offer_type == "bogo"') fig, (ax1, ax2) = plt.subplots(1, 2, figsize=(10,5)) # Figure1 - heatmap for binary sns.heatmap(completion_bogo[channels].T, linewidths = 0.30, annot = True, cmap='YlGn', cbar=False, ax=ax1); # Labels ax1.set_title('Channels for bogo offer\n(1: Yes, 0: No)') ax1.set(xlabel='', ylabel='') ax1.set_xticklabels(labels=completion_bogo['offer_name'], rotation=0) # Figure2 - bar sns.barplot(x='offer_name', y='completion_rate', data=completion_bogo, ax=ax2, color='green') # Labels ax2.set(title='Completion rate by bogo offer') ax2.set_xticks(ticks=np.arange(len(completion_bogo))) ax2.set_xticklabels(labels=completion_bogo['offer_name'], rotation=0) ax2.set_yticks(ticks=np.arange(0, 1+0.1, 0.1)) ax2.set_yticklabels(labels=['{:.0f}'.format(n*100) + '%' for n in np.arange(0, 1+0.1, 0.1)]) plt.tight_layout(pad=1.2) ###Output _____no_output_____ ###Markdown 4c. Offer completion by demographics There are 5 possible behaviours identified through the funnels and each will be labeled as following.1. complete2. inactive : incomplete, no purchase after offer viewed3. active : incomplete, but purchased without offer viewed4. indifferent: incomplete, no purchase no view5. not received For this analysis, label 5 (not received) is not considered. ###Code # Prepare dataset for analysis # Merge with profile_v1 dataset completion_demo = pd.merge(transactions_sent, profile, left_on='person', right_on='id', how='left') # Drop the duplicated id column completion_demo = completion_demo.drop(columns='id') # Set the label order label_order = list(label_num_to_name.values())[:-1] completion_demo.label_descr = pd.Categorical(completion_demo.label_descr, categories=label_order) completion_demo.head() # Pivot completion by gender completion_gender = completion_demo.groupby(['label_descr', 'gender']).size().unstack() completion_gender_perc = completion_gender / completion_gender.sum(axis=0) # Plot completion_gender_perc.T.plot(kind='bar', stacked=True, figsize=(10,5)); # Annotation for i, _type in enumerate(completion_gender.columns): compl_rate = completion_gender_perc.loc['complete', _type] plt.text(i-0.05, 0.2, '{:.0f}%'.format(compl_rate * 100), color='#fff', fontsize=12) plt.title('Offer completion by gender\n(arrow represents completion rate)') plt.xticks(rotation=0, ticks=np.arange(3), labels=['Female', 'Male', 'Others']) plt.ylabel('Percentage') plt.legend(loc=8, ncol=len(completion_gender.index), bbox_to_anchor=(0.50, -0.30)) plt.tight_layout(pad=1.2) plt.show() ###Output _____no_output_____ ###Markdown Female customers generally have higher completion rate than male. Male customers are less active to promotional offers - viewing an offere less likely to lead to purchase. Completion by age ###Code # Divide each record with age group bin_edges = np.arange(10, 100+10, 10) bin_label = [str(n)+ 's' for n in bin_edges[:-1]] completion_demo['age_group'] = pd.cut(completion_demo.age, bins=bin_edges, labels=bin_label) # Pivot completion by age completion_age = completion_demo.groupby(['label_descr', 'age_group']).size().unstack() completion_age_perc = completion_age / completion_age.sum(axis=0) # Plot completion_age_perc.T.plot(kind='bar', stacked=True, figsize=(10,5)); # Annotation for i, val in enumerate(completion_age_perc.columns): compl_rt = completion_age_perc[val][0] plt.text(i-0.14, 0.2, '{:.0f}%'.format(compl_rt * 100), color='#fff', fontsize=10) plt.title('Offer completion by age group\n(box represents completion rate)') plt.xticks(rotation=0) plt.ylabel('percent') plt.legend(loc=8, ncol=len(completion_age_perc.index), bbox_to_anchor=(0.50, -0.30)) plt.tight_layout(pad=1.2) plt.show() ###Output _____no_output_____ ###Markdown Completion rate is low (lower than incomplete) for customers below 30s whereas those above 40s have completion rate higher than 50%. Completion by income ###Code # Divide each record with income group bin_edges = np.arange(completion_demo.income.min(), completion_demo.income.max() + 10000, 10000) bin_label = ['$' + str(int(n))[:-3] + 'k' for n in bin_edges[:-1]] completion_demo['income_group'] = pd.cut(completion_demo.income, bins=bin_edges, labels=bin_label) # Pivot completion by income completion_income = completion_demo.groupby(['label_descr', 'income_group']).size().unstack() completion_income_perc = completion_income / completion_income.sum(axis=0) completion_income_perc # Plot completion_income_perc.T.plot(kind='bar', stacked=True, figsize=(10,5)); # Annotation for i, val in enumerate(completion_income_perc.columns): compl_rt = completion_income_perc[val][0] plt.text(i-.17, 0.2, '{:.0f}%'.format(compl_rt * 100), color='#fff', fontsize=10) plt.title('Offer completion by income group\n(box represents completion rate)') plt.xticks(rotation=0) plt.ylabel('percent') plt.legend(loc=8, ncol=len(completion_income_perc.index), bbox_to_anchor=(0.50, -0.30)) plt.show() ###Output _____no_output_____ ###Markdown Completion rate is lower for customers with income less than \\$50k. The higest completion rate is observed in the income group between \\$80k and \\$100k. --- SECTION5 Feature engineeringNow merge the cleaned dataset to prepare for a classifer model. Load the cleand dataset again to ensure that the correct data is used. ###Code # Load dataset portfolio = pd.read_csv('data/portfolio_clean.csv') profile = pd.read_csv('data/profile_clean.csv') transactions = pd.read_csv('data/transactions_pivoted.csv') ###Output _____no_output_____ ###Markdown 5a. Merging the dataset ###Code df = pd.merge(transactions, profile, left_on='person', right_on='id', how='left') df.head() df = pd.merge(df, portfolio, left_on='offer_id', right_on='id', how='left') df.head() df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 170000 entries, 0 to 169999 Data columns (total 23 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 person 170000 non-null object 1 offer_id 170000 non-null object 2 offer received 63288 non-null float64 3 offer viewed 49135 non-null float64 4 transaction 0 non-null float64 5 offer completed 28996 non-null float64 6 label 170000 non-null float64 7 amount 28996 non-null float64 8 reward_x 28996 non-null float64 9 gender 148250 non-null object 10 age 148250 non-null float64 11 id_x 148250 non-null object 12 became_member_on 148250 non-null object 13 income 148250 non-null float64 14 reward_y 170000 non-null int64 15 difficulty 170000 non-null int64 16 duration 170000 non-null int64 17 offer_type 170000 non-null object 18 id_y 170000 non-null object 19 web 170000 non-null int64 20 email 170000 non-null int64 21 social 170000 non-null int64 22 mobile 170000 non-null int64 dtypes: float64(9), int64(7), object(7) memory usage: 31.1+ MB ###Markdown 5b. Clean data After merging, drop unnecessary columns:- offer received, offer viewed, transaction, offer completed : **label** can replace- reward_y, id_x, id_y: duplicated ###Code # Drop unncessary columns dropcols = ['offer received', 'offer viewed', 'transaction', 'offer completed', 'reward_y', 'id_x', 'id_y'] df = df.drop(columns=dropcols) df = df.rename(columns={'reward_x': 'reward'}) df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 170000 entries, 0 to 169999 Data columns (total 16 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 person 170000 non-null object 1 offer_id 170000 non-null object 2 label 170000 non-null float64 3 amount 28996 non-null float64 4 reward 28996 non-null float64 5 gender 148250 non-null object 6 age 148250 non-null float64 7 became_member_on 148250 non-null object 8 income 148250 non-null float64 9 difficulty 170000 non-null int64 10 duration 170000 non-null int64 11 offer_type 170000 non-null object 12 web 170000 non-null int64 13 email 170000 non-null int64 14 social 170000 non-null int64 15 mobile 170000 non-null int64 dtypes: float64(5), int64(6), object(5) memory usage: 22.0+ MB ###Markdown Further feature cleaning- **amount** and **reward** are null when there is no transaction: fill the missing values with 0- demographic information are missing for some persons (21,750, 12.7% of the total data) : drop them as there are not much of data to use for imputation ###Code # Fill missing amount and reweard values with 0 df['amount'] = df['amount'].fillna(0) df['reward'] = df['reward'].fillna(0) # Drop records with missing demo values df = df[df['gender'].notnull()] df.shape df.isnull().sum() ###Output _____no_output_____ ###Markdown Continue with future cleaning**target variable** : `label` - Create the subset dataframe excluding **unsent** offer status**predictors**- drop **person** column: too specific to use an individual person as a feature- drop **offer_id** : shares the same information as **offer_type**- convert **gender** and **offer_type** into dummy variables (avoid reduncy or [dummy variable trap](https://www.geeksforgeeks.org/ml-dummy-variable-trap-in-regression-models/))- transform **became_member_on** into numeric value: The most recent record is 2018-07-26. Create **recency** variable - suppose that this analysis was performed on '2019-01-01', calculate days difference from this reference date ###Code # Futher processing for predictors # Drop person, offer_id features df = df.drop(columns=['person', 'offer_id']) # Make dummy variables for gender and offer_type df = pd.concat([df, pd.get_dummies(df.gender, drop_first=True)], axis=1) df = pd.concat([df, pd.get_dummies(df.offer_type, drop_first=True)], axis=1) # Convert into clear feature names df = df.rename(columns={'M' : 'gender_male', 'O': 'gender_other'}) df = df.drop(columns=['gender', 'offer_type']) # Compute recency def calculate_recency(date): ref_date = datetime.date(2019,1,1) date_obj = datetime.datetime.strptime(date, '%Y-%m-%d').date() recency = ref_date - date_obj recency = int(recency.days) return recency df['recency'] = df['became_member_on'].apply(calculate_recency) df = df.drop(columns='became_member_on') df.info() # Save the final data df.to_csv('data/starbucks_data_final.csv', index=False) ###Output _____no_output_____ ###Markdown 5c. Create train, test setNormally, train and test sets are randomly split. However, in this project, a different approach will be taken.Label 5 corresponds to **not received**. In other words, they represent unsent offers and cannot possibly tell customer behaviours. I will set these data records aside, and use it to . This process is not ideal as it reduces train set significantly given a large proportion of the unsent offer data. However, using unsent offers in the training does not make sense anyways. ###Code # Reload the final dataset df = pd.read_csv('data/starbucks_data_final.csv') # Divide data for dev_set and out of bag sets dev_set = df.query('label != 5') oob_set = df.query('label == 5') print('Development data size:', dev_set.shape[0]) print('Out of bag data size:', oob_set.shape[0]) X = dev_set.drop(columns='label') y = dev_set['label'] # Train and test split with data set for development (dev_set) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) print('X train size:', X_train.shape[0]) print('y train size:', y_train.shape[0]) print('X test size:', X_test.shape[0]) print('y test size:', y_test.shape[0]) ###Output X train size: 44177 y train size: 44177 X test size: 11045 y test size: 11045 ###Markdown 5d. Handle imbalanced labelThe completion will be classified into 4 classes. In order to avoid label imbalance issue, invariant metric will be introduced. In case that labels are not balance, the model may end up performing poorly on a minority label better and will product biased classification results. ###Code # Plot to see the imbalance issue sns.countplot(x = y_train); ###Output _____no_output_____ ###Markdown The labels are highly imbalanced with a lot of Label 1 (completed) existing in the training set. Before modeling, I will create two different train sets with oversampling and undersampling using **imbalanced-learn** Python library.- Oversampling: [Reference](https://machinelearningmastery.com/multi-class-imbalanced-classification/)By default, the library uses SMOTE (Synthetic Minority Oversampling Technique) that will oversample(synthesizes) minority classes so all labels share the same number of examples as the class with the most examples.- Undersampling:[Reference](https://machinelearningmastery.com/undersampling-algorithms-for-imbalanced-classification/) ###Code # Function to apply SMOTE def oversample_data(X, y, return_results=True): oversample = SMOTE() X_train, y_train = oversample.fit_resample(X, y) # summarize distribution counter = Counter(y_train) for k, v in counter.items(): per = v / len(y_train) * 100 print('Class=%d, n=%d (%.3f%%)' % (k, v, per)) if return_results: # plot the distribution plt.bar(counter.keys(), counter.values()) plt.show() return X_train, y_train # Oversample training set X_train_over, y_train_over = oversample_data(X_train, y_train) def undersample_data(X, y, return_results=True): # define the undersampling method undersample = NearMiss(version=1) X_train, y_train = undersample.fit_resample(X, y) counter = Counter(y_train) for k, v in counter.items(): per = v / len(y_train) * 100 print('Class=%d, n=%d (%.3f%%)' % (k, v, per)) if return_results: # plot the distribution plt.bar(counter.keys(), counter.values()) plt.show() return X_train, y_train # Undersample training set X_train_under, y_train_under = undersample_data(X_train, y_train) ###Output Class=1, n=6500 (25.000%) Class=2, n=6500 (25.000%) Class=3, n=6500 (25.000%) Class=4, n=6500 (25.000%) ###Markdown --- SECTION6 ModelingI would like to build a classifier model to predict offer completion given a set of variables, such as demogrpahics, offer types, channels, etc.Each model will have a different classification algorithm and will be fit with three different data sets with- oversampled labels (_over)- undersampled labels (_under) ###Code # Function to evaluate training def scale_predictors(X_train, X_test, returen_s): ''' Using the statistics from X_train, standardize the values in the training sets. INPUT: X_train: X predictors in the train set X_test: X predictors in the test set OUTPUT: X_train, X_test: scaled predictors ''' # Instantiate scaler scaler = StandardScaler() # Fit and tranform X_train X_train_scaled = scaler.fit_transform(X_train) # fitting training set only # Transform X_test X_test_scaled = scaler.transform(X_test) return X_train_scaled, X_test_scaled def model_predict(model, X_test): ''' Run predictions for a fitted classifer model INPUT: model: a fitted classifer model X_test: test features used for prediction OUTPUT: y_pred: the predicted target variable ''' # Make predictions y_pred = model.predict(X_test) return y_pred def evaluate_model(y_test, y_pred): ''' Show test scores for classification as one go by combining accuracy score and classification report. INPUT: model: the classifier model that fit training sets y_test: a true y test values y_pred: a predicted y values OUTPUT: None ''' # Get test scores print(f'Accuracy score: {accuracy_score(y_test, y_pred) * 100:.2f}%') print(f'Classfication report:\n') print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown 5a. Scale predictorsEach feature has different units and ranges of values. Scaling will make the model trained more effectively. ###Code # Scale predictors for both train and test set X_train_over, X_test_over = scale_predictors(X_train_over, X_test) X_train_under, X_test_under = scale_predictors(X_train_under, X_test) print('X train size (oversampled):', X_train_over.shape[0]) print('X train size (oversampled):', X_test_over.shape[0]) print('X test size (undersampled):', X_train_under.shape[0]) print('X test size (undersampled):', X_test_under.shape[0]) # same as X_test_over ###Output X train size (oversampled): 89220 X train size (oversampled): 11045 X test size (undersampled): 26000 X test size (undersampled): 11045 ###Markdown 5b. model_01 logistic regression ###Code # Fitting the model # model_01o : oversampled model_01o = LogisticRegression(random_state=123, max_iter=1000) model_01o.fit(X_train_over, y_train_over) # Make predictions on train and test set ypred_01o_train = model_predict(model_01o, X_train_over) ypred_01o_test = model_predict(model_01o, X_test_over) # Evaluate the model performance evaluate_model(y_train_over, ypred_01o_train) evaluate_model(y_test, ypred_01o_test) # Fitting the model # model_01u : undersampled model_01u = LogisticRegression(random_state=123, max_iter=1000) model_01u.fit(X_train_under, y_train_under) # Make predictions on train and test set ypred_01u_train = model_predict(model_01u, X_train_under) ypred_01u_test = model_predict(model_01u, X_test_under) # Evaluate the model performance evaluate_model(y_train_under, ypred_01u_train) evaluate_model(y_test, ypred_01u_test) ###Output Accuracy score: 78.45% Classfication report: precision recall f1-score support 1.0 0.69 0.72 0.70 6500 2.0 0.92 0.82 0.87 6500 3.0 0.74 0.68 0.71 6500 4.0 0.81 0.91 0.86 6500 accuracy 0.78 26000 macro avg 0.79 0.78 0.78 26000 weighted avg 0.79 0.78 0.78 26000 Accuracy score: 69.02% Classfication report: precision recall f1-score support 1.0 0.86 0.57 0.69 5573 2.0 0.93 0.82 0.87 2203 3.0 0.48 0.69 0.56 1606 4.0 0.49 0.91 0.64 1663 accuracy 0.69 11045 macro avg 0.69 0.75 0.69 11045 weighted avg 0.76 0.69 0.70 11045 ###Markdown Not extremely bad score for all metrics for the first model (test accuracy around 73%). However, overfitting exists and there still is a room to improve seeing lower f1-score for label 3 and 4 classification with the test set. Between the two sampling methods, the model with overasmpled dataset produced slightly higher accuracy for both train and test set.Nevertheless, training accuracy still is around 80%, which suggests that model itself can be improved more. Let's use other machine learning classifiers. Feature importanceWhen fitting the logistic regression model, features were selected based on availability and relevance. Let's see how the model evaluates the importance of each feature by comparing the coefficients of each feature. ###Code # Get the feature names feature_names = X.columns.tolist() def plot_feature_importances(series, c): plt.barh(series.index, series.Importance, color=c) plt.axvline(x=0, color='.5') plt.xlabel('coefficient') plt.ylabel('feature') def feature_importance(model, feature_names, plot_result=True): ''' Find the importance of each features by coefficients. The highest coefficient corresponds to the most importance feature here. The computed result will be proportional to the highest coefficient value amont the features. Therefore, the most important feature should return 1.0. If plot_result=True, horizional barplot will be returned instead of dataframe. ''' coefs = model.coef_[0] coefs_prop = 100.0 * (coefs / coefs.max()) result = pd.DataFrame(index=feature_names, data=coefs_prop) result.columns = ['Importance'] result = result.sort_values(by='Importance', ascending=False) if plot_result: pos_data = result[result.Importance >= 0] neg_data = result[result.Importance < 0] plt.figure(figsize=(10,6)) plot_feature_importances(pos_data, 'b') plot_feature_importances(neg_data, 'r') plt.show() else: return feature_importance feature_importance(model_01o, feature_names) ###Output _____no_output_____ ###Markdown The feature importance chart tells that types and channels related to each offer contributes more to predicting completion, rather than demographic features like age or income. The earlier exploratory analysis suggested these demographic factors would play a role no matter how significant. Let's continue with another model and evaluate the feature importance. 5c. model_02 decision tree ###Code # Fitting the model # model_02o : oversampled model_02o = DecisionTreeClassifier(max_depth=12) model_02o.fit(X_train_over, y_train_over) # Make predictions on train and test set ypred_02o_train = model_predict(model_02o, X_train_over) ypred_02o_test = model_predict(model_02o, X_test_over) # Evaluate the model performance evaluate_model(y_train_over, ypred_02o_train) evaluate_model(y_test, ypred_02o_test) # Fitting the model # model_02u : undersampled model_02u = DecisionTreeClassifier(max_depth=12) model_02u.fit(X_train_under, y_train_under) # Make predictions on train and test set ypred_02u_train = model_predict(model_02u, X_train_under) ypred_02u_test = model_predict(model_02u, X_test_under) # Evaluate the model performance evaluate_model(y_train_under, ypred_02u_train) evaluate_model(y_test, ypred_02u_test) ###Output Accuracy score: 83.56% Classfication report: precision recall f1-score support 1.0 0.73 0.83 0.78 6500 2.0 0.91 0.91 0.91 6500 3.0 0.82 0.70 0.76 6500 4.0 0.89 0.90 0.90 6500 accuracy 0.84 26000 macro avg 0.84 0.84 0.84 26000 weighted avg 0.84 0.84 0.84 26000 Accuracy score: 66.34% Classfication report: precision recall f1-score support 1.0 0.83 0.55 0.66 5573 2.0 0.90 0.84 0.87 2203 3.0 0.43 0.63 0.51 1606 4.0 0.48 0.85 0.61 1663 accuracy 0.66 11045 macro avg 0.66 0.72 0.66 11045 weighted avg 0.73 0.66 0.67 11045 ###Markdown With the decision tree model, test accuracy increased from 73% to 76% only when oversampling technique is applied. Undersampling technique produced zero division error for precision, implying zero instances of positive prediction for label 2. Feature importanceSklearn's decision tree API has a built-in feature importance feature. ###Code # The built-in method produces feature importances that are > 0 feature_result = pd.DataFrame(index=feature_names, data=model_02o.feature_importances_) feature_result.columns = ['Importance'] feature_result = feature_result.sort_values(by='Importance', ascending=False) plt.figure(figsize=(10,6)) plot_feature_importances(feature_result, c='b') plt.show() ###Output _____no_output_____ ###Markdown In the decision tree, demographic factors like income and age contributed more to predicting the offer completion. **reward**, **social** and **duration**, however, are seen more important predictors. 5d. Model_03 random forecast classifier ###Code # Fitting the model # model_03o : oversampled model_03o = RandomForestClassifier(max_depth=12) model_03o.fit(X_train_over, y_train_over) # Make predictions on train and test set ypred_03o_train = model_predict(model_03o, X_train_over) ypred_03o_test = model_predict(model_03o, X_test_over) # Evaluate the model performance evaluate_model(y_train_over, ypred_03o_train) evaluate_model(y_test, ypred_03o_test) # Fitting the model # model_03u : undersampled model_03u = DecisionTreeClassifier(max_depth=12) model_03u.fit(X_train_under, y_train_under) # Make predictions on train and test set ypred_03u_train = model_predict(model_03u, X_train_under) ypred_03u_test = model_predict(model_03u, X_test_under) # Evaluate the model performance evaluate_model(y_train_under, ypred_03u_train) evaluate_model(y_test, ypred_03u_test) ###Output Accuracy score: 83.57% Classfication report: precision recall f1-score support 1.0 0.73 0.83 0.78 6500 2.0 0.91 0.91 0.91 6500 3.0 0.82 0.70 0.76 6500 4.0 0.89 0.90 0.90 6500 accuracy 0.84 26000 macro avg 0.84 0.84 0.84 26000 weighted avg 0.84 0.84 0.84 26000 Accuracy score: 66.36% Classfication report: precision recall f1-score support 1.0 0.82 0.55 0.66 5573 2.0 0.90 0.85 0.87 2203 3.0 0.43 0.62 0.51 1606 4.0 0.48 0.85 0.62 1663 accuracy 0.66 11045 macro avg 0.66 0.72 0.66 11045 weighted avg 0.73 0.66 0.67 11045 ###Markdown The random forest model produced slighly better test accuracy (77%) with oversampling technique than logistic regression (73%) and (76%). Feature importance ###Code feature_result = pd.DataFrame(index=feature_names, data=model_03o.feature_importances_) feature_result.columns = ['Importance'] feature_result = feature_result.sort_values(by='Importance', ascending=False) plt.figure(figsize=(10,6)) plot_feature_importances(feature_result, c='b') plt.show() ###Output _____no_output_____ ###Markdown reward, amount, social, difficulty and duration plays an important role for prediction when the random forest model is used. Offer type and channel are deemed more important than demographic factors just as logistic regression model told. 5e. Model_04 gradient boost classifier ###Code # Fitting the model # model_04o : oversampled model_04o = GradientBoostingClassifier() model_04o.fit(X_train_over, y_train_over) # Make predictions on train and test set ypred_04o_train = model_predict(model_04o, X_train_over) ypred_04o_test = model_predict(model_04o, X_test_over) # Evaluate the model performance evaluate_model(y_train_over, ypred_04o_train) evaluate_model(y_test, ypred_04o_test) # Fitting the model # model_04u : undersampled model_04u = GradientBoostingClassifier() model_04u.fit(X_train_under, y_train_under) # Make predictions on train and test set ypred_04u_train = model_predict(model_04u, X_train_under) ypred_04u_test = model_predict(model_04u, X_test_under) # Evaluate the model performance evaluate_model(y_train_under, ypred_04u_train) evaluate_model(y_test, ypred_04u_test) ###Output Accuracy score: 80.29% Classfication report: precision recall f1-score support 1.0 0.71 0.73 0.72 6500 2.0 0.91 0.85 0.88 6500 3.0 0.75 0.72 0.74 6500 4.0 0.84 0.90 0.87 6500 accuracy 0.80 26000 macro avg 0.80 0.80 0.80 26000 weighted avg 0.80 0.80 0.80 26000 Accuracy score: 68.06% Classfication report: precision recall f1-score support 1.0 0.86 0.54 0.66 5573 2.0 0.93 0.85 0.89 2203 3.0 0.44 0.72 0.54 1606 4.0 0.51 0.89 0.65 1663 accuracy 0.68 11045 macro avg 0.68 0.75 0.69 11045 weighted avg 0.76 0.68 0.69 11045 ###Markdown Gradient boost classifier performed on par with random forecast (77%) with oversampling method. There still is a room for the model to improve given the training accuracy of ~85%. Let's train with the final classifier, xgboost. 5f. Model_05 gradient boost classifier ###Code # Fitting the model # model_05o : oversampled model_05o = XGBClassifier(max_depth=12) model_05o.fit(X_train_over, y_train_over) # Make predictions on train and test set ypred_05o_train = model_predict(model_05o, X_train_over) ypred_05o_test = model_predict(model_05o, X_test_over) # Evaluate the model performance evaluate_model(y_train_over, ypred_05o_train) evaluate_model(y_test, ypred_05o_test) # Fitting the model # model_05u : undersampled model_05u = GradientBoostingClassifier() model_05u.fit(X_train_under, y_train_under) # Make predictions on train and test set ypred_05u_train = model_predict(model_05u, X_train_under) ypred_05u_test = model_predict(model_05u, X_test_under) # Evaluate the model performance evaluate_model(y_train_under, ypred_05u_train) evaluate_model(y_test, ypred_05u_test) ###Output Accuracy score: 80.29% Classfication report: precision recall f1-score support 1.0 0.71 0.73 0.72 6500 2.0 0.91 0.85 0.88 6500 3.0 0.75 0.72 0.74 6500 4.0 0.84 0.90 0.87 6500 accuracy 0.80 26000 macro avg 0.80 0.80 0.80 26000 weighted avg 0.80 0.80 0.80 26000 Accuracy score: 68.07% Classfication report: precision recall f1-score support 1.0 0.86 0.54 0.66 5573 2.0 0.93 0.85 0.89 2203 3.0 0.44 0.72 0.54 1606 4.0 0.51 0.89 0.65 1663 accuracy 0.68 11045 macro avg 0.68 0.75 0.69 11045 weighted avg 0.76 0.68 0.69 11045 ###Markdown XGBoost classifier clearly overfits given the large difference in accuracy between training (99%) and test set (77%). XGboost also clearly performs better with oversampled dataset. --- SECTION 7 Build the final modelDuring the initial modeling phase, three machine learning classifier were used: logistic regression, decision tree, random forecast, graident boost and XGboost. The test results are summarized as following:| Model | Logistic Regression | Decision Tree | Random Forecast | Gradient Boosting | XGboost ||:---------------------------------: |:-----------------------: |:-----------------: |:-------------------: |:---------------------: |:-------: || Train accuracy - oversampled | 81% | 86% | 86% | 85% | 99% || Test accuracy - oversampled | 73% | 76% | **77%** | **77%** | **77%** || Train accuracy - undersampled | 78% | 84% | 84% | 80% | 80% || Test accuracy - undersampled | 69% | 67% | 67% | 68% | 68% | Random forest, Gradient boost and XGboost share the similar test accuracy. However, random forest will be used due to : - less computation than the other two- XGboost overfits significantlyAlso, oversampling method will be adopted as it performed better than undersampling for almost all classifiers. 7a. Functions to faciliate modeling ###Code # Function to load the data for modeling def load_data_for_modeling(): # Load the final dataset df = pd.read_csv('data/starbucks_data_final.csv') # Create X, y for training set dev_set = df.query('label != 5') X = dev_set.drop(columns='label') y = dev_set['label'] return X, y # Functions to preprocess data def oversample_data(X, y, return_results=True): oversample = SMOTE() X_train, y_train = oversample.fit_resample(X, y) # summarize distribution counter = Counter(y_train) for k, v in counter.items(): per = v / len(y_train) * 100 print('Class=%d, n=%d (%.3f%%)' % (k, v, per)) if return_results: # plot the distribution plt.bar(counter.keys(), counter.values()) plt.show() return X_train, y_train def scale_predictors(X_train, X_test): ''' Using the statistics from X_train, standardize the values in the training sets. This time the scaler used for the final model will be saved for the future use. INPUT: X_train: X predictors in the train set X_test: X predictors in the test set OUTPUT: X_train, X_test: scaled predictors ''' # Instantiate scaler scaler = StandardScaler() # Fit and tranform X_train X_train_scaled = scaler.fit_transform(X_train) # fitting training set only # Transform X_test X_test_scaled = scaler.transform(X_test) # Save the scaler # Date of build for the model name date_built = datetime.date.today() date_built = datetime.datetime.strftime(date_built, format='%Y-%m-%d').replace('-', '') with open(f'models/final_model_{date_built}_scaler', 'wb') as scaler_pkl: pickle.dump(scaler, scaler_pkl) print(f'Scaler stored at the path: <models/final_model_{date_built}_scaler>') return X_train_scaled, X_test_scaled def preprocess_data(X, y): # Set predictors and label print('Preprocessing data...') # Split train and test set X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=123) # Oversample print('Oversampling data...') X_train, y_train = oversample_data(X_train, y_train) # Standardize predictors X_train, X_test = scale_predictors(X_train, X_test) return X_train, X_test, y_train, y_test # Function to build model def build_final_model(model, X, y, param_grid=None, cv=5, scoring='accuracy', verbose=1): ''' Fit a model given by its name. Make a prediction on the train set The function requires training and test sets (scaled predictor X) and stored as global variables. INPUT: model_name: a classification algorithm (abbreviated) param_grid: A dictionary of hyperparameters. If None, skip parameter tuning. random_search: If True, perform random grid search. If False, perform grid search to find best hyperparameters (may take longer time to train) OUTPUT: fitted model ''' # Extract preprocessed data X_train, X_test, y_train, y_test = preprocess_data(X, y) # Save preprocessed train / test set cache = { 'X_train': X_train, 'X_test': X_test, 'y_train': y_train, 'y_test': y_test } # Skip parameter tuning if param_grid == None: print('Training without parameter tuning') final_model = model.fit(X_train, y_train) print('Training has been completed.') # Train the best estimator with parameter tuning else: print('Training with parameter tuning. This process may take time upto several minutes.') gridCV = GridSearchCV(model, param_grid=param_grid, cv=cv, scoring=scoring, verbose=verbose) gridCV.fit(X_train, y_train) print('Training has been completed with the best hyperparameters found.', gridCV.best_params_) final_model = gridCV.best_estimator_ return final_model, cache # Functions for model evaluation def model_predict(model, X_test): ''' Run predictions for a fitted classifer model INPUT: model: a fitted classifer model X_test: test features used for prediction OUTPUT: y_pred: the predicted target variable ''' # Make predictions y_pred = model.predict(X_test) return y_pred def evaluate_model(y_test, y_pred): ''' Show test scores for classification as one go by combining accuracy score and classification report. INPUT: model: the classifier model that fit training sets y_test: a true y test values y_pred: a predicted y values OUTPUT: None ''' # Get test scores print(f'Accuracy score: {accuracy_score(y_test, y_pred) * 100:.2f}%') print(f'Classfication report:\n') print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown 7b. Parameter tuning Grid search may take lots of time. Therefore run random grid search instead. Range of hyperparameters replicate the workflow from the reference following [the link](https://towardsdatascience.com/hyperparameter-tuning-the-random-forest-in-python-using-scikit-learn-28d2aa77dd74).Nonetheless, parameter tuning still takes time. Therefore, in this section, the actual codes were commented out and the tuned best hyperparameters were presented. In order to run the grid search again, uncomment the below code. The below training is made compact with less iterlation and cross validation, but still takes up to 30 minutes (~2 minutes for run of 15 fits). ###Code # # Load the dataset # X, y = load_data_for_modeling() # X_train, X_test, y_train, y_test = preprocess_data(X, y) # # Instantiate the final model - random forest # model = RandomForestClassifier() # # Uncomment the below code to run the grid search again # # below training takes up to 30 minutes (~2 minutes for run of 15 fits) # # Set hyperparameters # # Number of trees in random forest # n_estimators = [int(x) for x in np.linspace(start = 200, stop = 2000, num = 5)] # # Number of features to consider at every split # max_features = ['auto', 'sqrt'] # # Maximum number of levels in tree # max_depth = [int(x) for x in np.linspace(10, 110, num = 11)] # max_depth.append(None) # # Minimum number of samples required to split a node # min_samples_split = [2, 5, 10] # # Minimum number of samples required at each leaf node # min_samples_leaf = [1, 2, 4] # # Method of selecting samples for training each tree # bootstrap = [True, False] # # Create the random grid # param_grid = {'n_estimators': n_estimators, # 'max_features': max_features, # 'max_depth': max_depth, # 'min_samples_split': min_samples_split, # 'min_samples_leaf': min_samples_leaf, # 'bootstrap': bootstrap} # # Randomized grid search # randGridCV = RandomizedSearchCV(model, param_distributions=param_grid, n_iter=5, cv=3, scoring='accuracy', verbose=3) # randGridCV.fit(X_train, y_train) # print('Best params:', randGridCV.best_params_) # # Mean test accuracy for each iternation # randGridCV.cv_results_['mean_test_score'] ###Output _____no_output_____ ###Markdown The random grid search produced the combination of best hyperparameters as below: Best params: {'n_estimators': 1550, 'min_samples_split': 2, 'min_samples_leaf': 2, 'max_features': 'sqrt', 'max_depth': 60, 'bootstrap': False} ###Code # Build the model # with the best combination of hyperparameters # Instantiate the final model - random forest model = RandomForestClassifier(n_estimators=1550, min_samples_split=2, min_samples_leaf=2, max_features='sqrt', max_depth=60, bootstrap=False) # Reload the dataset X, y = load_data_for_modeling() # Build models final_model, cache = build_final_model(model, X, y, param_grid=None) # Make a prediction on train and test set y_pred_train = model_predict(final_model, cache['X_train']) y_pred_test = model_predict(final_model, cache['X_test']) # Evaluate the model performance evaluate_model(cache['y_train'], y_pred_train) evaluate_model(cache['y_test'], y_pred_test) ###Output Accuracy score: 99.57% Classfication report: precision recall f1-score support 1.0 1.00 1.00 1.00 22305 2.0 0.99 1.00 0.99 22305 3.0 1.00 1.00 1.00 22305 4.0 1.00 0.99 0.99 22305 accuracy 1.00 89220 macro avg 1.00 1.00 1.00 89220 weighted avg 1.00 1.00 1.00 89220 Accuracy score: 76.99% Classfication report: precision recall f1-score support 1.0 0.80 0.85 0.82 5573 2.0 0.89 0.88 0.89 2203 3.0 0.56 0.47 0.51 1606 4.0 0.68 0.65 0.66 1663 accuracy 0.77 11045 macro avg 0.73 0.71 0.72 11045 weighted avg 0.76 0.77 0.77 11045 ###Markdown The parameter tuning did not improve the model performance given that the test accuracy stays similar, while the overfitting got worse. Classification for label 3 and 4 still performs poorly on the test set.The earlier random forest with default set up had a test accuracy of 77% and it only had a change in max_depth set to 12. I will try training the model with a set of light-weight hyperparameters (less computation), searched through grid search. 7c. Build the final model ###Code # Rebuild the final model # Instantiate the final model - random forest model = RandomForestClassifier() # Reload the dataset X, y = load_data_for_modeling() # Set params param_grid = { 'max_depth': [2, 5, 10, 15, 20, 25], 'n_estimators': [5, 10, 50, 100] } # Build models final_model, cache = build_final_model(model, X, y, param_grid=param_grid, verbose=3) # Make a prediction on train and test set y_pred_train = model_predict(final_model, cache['X_train']) y_pred_test = model_predict(final_model, cache['X_test']) # Evaluate the model performance evaluate_model(cache['y_train'], y_pred_train) evaluate_model(cache['y_test'], y_pred_test) ###Output Accuracy score: 99.63% Classfication report: precision recall f1-score support 1.0 0.99 1.00 0.99 22305 2.0 1.00 1.00 1.00 22305 3.0 1.00 0.99 0.99 22305 4.0 1.00 1.00 1.00 22305 accuracy 1.00 89220 macro avg 1.00 1.00 1.00 89220 weighted avg 1.00 1.00 1.00 89220 Accuracy score: 77.04% Classfication report: precision recall f1-score support 1.0 0.80 0.84 0.82 5573 2.0 0.89 0.88 0.89 2203 3.0 0.56 0.49 0.52 1606 4.0 0.68 0.65 0.67 1663 accuracy 0.77 11045 macro avg 0.73 0.72 0.72 11045 weighted avg 0.77 0.77 0.77 11045 ###Markdown The final model was trained with a new set of light-weight hyperwparameters. The model fits perfectly on the training set so the model complexity is fine. However, the accuracy on the out of bag data stays 77% - no noticeable improvement when compared with the earlier trainings.However, what is encouraging is the model predicts label 1.0 and 2.0 quite well considering F1-score higher than 80%. In other words, this classification model would work fine to tell if a potential customer will complete an offer or not, which is the original objective of this project. The limitation is when conducting a granular analysis for incomplete offers. For example, the model may not so precise in telling if customers actually viewed an offer or made a purchase when they didn't activate offers. 1. complete2. inactive : incomplete, no purchase after offer viewed3. active : incomplete, but purchased without offer viewed4. indifferent: incomplete, no purchase no viewRecall that we haven't used a lots data with unsent offers (93,028 records, vs 55,222 used for the training). Therefore, I suggest that we make predictions on these out of bag data for the next round of offer distributions. Then, a new model could be built with more data records, which might help improve the model performance to more granular level and overfitting issues. 7d. Store the final model ###Code # Date of build for the model name date_built = datetime.date.today() date_built = datetime.datetime.strftime(date_built, format='%Y-%m-%d').replace('-', '') print(date_built) # Save the final model and train/set set with open(f'models/final_model_{date_built}', 'wb') as model_pkl: pickle.dump(final_model, model_pkl) # Save the final model and train/set set with open(f'models/final_model_{date_built}_cache', 'wb') as data_pkl: pickle.dump(cache, data_pkl) ###Output _____no_output_____ ###Markdown --- SECTION 8 ConclusionTo this point, we performed exploratory analysis on individual and trained machine learning classification models. We aimed to find how customers have interacted with differnt offers and finally to predict if offers will lead to completion given a combination of offer types, distributed channels and customer demographics. Insights on offer completion OffersOffers were grouped into three categories: bogo, discount and informational. bogo and discount are transactional following the below funnel and offers are considered completion if customers were activate at all stages : > offer received -> offer viewed -> purchased -> offer completed- Of those offers sent, 47% were copmleted indicating that customers viewed offers and made purchases (bogo / disount) or were made aware of offers (informational).- Amongst the three offer categories, discount offers are the most difficult to redeem (on average 11.75) but have the longest duration allowing customers to be interacted and influenced the most.- Two transactional offers marked above 60% completion rate and they both fall into discount category. Although these two offers are more difficult to redeem (and less rewards given), they have higher duration and wider distribution across all existing channels so customers had more chances to interact and be influenced. In the meantime, informational offers are considered compelted when customers received and viewed offers (as they do not lead to transactions). - The two informational offers named as **info000003** and **info000004** recorded high completion rate above 60%. Especially, **info000003** showed the highest completion rate (around 90%) despite a slightly shorter duration than the other. It was found that this different may come from communication channels: other than email and mobile, **info000003** distributed on social media as opposed web that **info000004** used. Channels- Regardless of offer type, email is always used - It is more likely to increase the completion when more channels are used- Across all offer types, using social media led to more completion Demographics- Female customers have slighly higher completion rate than male customers (53% vs 45%).- Offer completion rate is lower than 50% for age groups below 50.- Income groups bewteen 80k and 100k have the highest completion rate (60%). It marked at least 40% completion rate across all income groups. Model resultsThere are 5 possible behaviours identified through the funnels and each will be labeled as following.1. complete2. inactive : incomplete, no purchase after offer viewed3. active : incomplete, but purchased without offer viewed4. indifferent: incomplete, no purchase no view5. not received For this analysis, label 5 (not received) is not considered as it does show describe customer behaviours on completion at all. The final model used random forest classifier, and was built using grid search to find the best combination of hyperparameters.The training accuracy reached 99% whereas the test accuracy stayed at 77%. The near perfect train accuracy score tells that the model complexity is enough. However, the model is not ideally generalized when predicting out of bag data. The model, however, predicts the completion fairly well. However, it does not sufficiently provide more granular analysis on incomplete offers - whether customers actually viewed an offer / made a purchase when offers were not activated. Given that the original dataset contains lots of unsent offers, I suggest that we re-utilize these out of bag data - by sending across offers to those customers who likely complete the offers, and gain more insights. The new set of insights will then be trained with another round modeling using a similar workflow presented in this notebook.Pratically speaking, the costs of offer distribution might not be too significant when leveraging the existing digital medium (social, web, email and mobile). Handling unsent offers 63% of them are labeled unsent possibly because the previous business decisions identified that some offers would not match customers with certain characterstics, resources(time, costs, etc.) were limited or just by chance.Therefore, in this conclusion section, we would also like to apply our classifier model to those offers unsent and find opportunities for any future promotional activites. ###Code # Reload the final dataset df = pd.read_csv('data/starbucks_data_final.csv') # Get the out of bag data (offer unsent) oob_set = df.query('label == 5') print('Out of bag data size:', oob_set.shape[0]) X = oob_set.drop(columns='label') y = oob_set['label'] X.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 93028 entries, 0 to 148248 Data columns (total 15 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 amount 93028 non-null float64 1 reward 93028 non-null float64 2 age 93028 non-null float64 3 income 93028 non-null float64 4 difficulty 93028 non-null int64 5 duration 93028 non-null int64 6 web 93028 non-null int64 7 email 93028 non-null int64 8 social 93028 non-null int64 9 mobile 93028 non-null int64 10 gender_male 93028 non-null int64 11 gender_other 93028 non-null int64 12 discount 93028 non-null int64 13 informational 93028 non-null int64 14 recency 93028 non-null int64 dtypes: float64(4), int64(11) memory usage: 11.4 MB ###Markdown The out of bag data do not need the entire preprocessing methods used for modeling. For example, splitting train/test set or oversampling is not ncessary. Rescaling will be helpful to standardize ranges and units of values. ###Code # Load scaler with open('models/final_model_20220223_scaler', 'rb') as scaler_pkl: scaler = pickle.load(scaler_pkl) # Load model with open('models/final_model_20220223', 'rb') as model_pkl: model = pickle.load(model_pkl) # Scale the out of bag predictors X_scaled = scaler.transform(X) # Make predictions for offer completion predictions = model.predict(X_scaled) print('Number of predicted labels:', len(predictions)) print('Counts:', Counter(predictions)) # Plot the predicted labels sns.countplot(x=predictions) plt.xlabel('label') plt.show() ###Output _____no_output_____ ###Markdown California "Conservation-Consumption Score" analysisBy Ryan Menezes, Matt Stevens and Ben Welsh [A Los Angeles Times analysis published on Oct. 31, 2016](http://www.latimes.com/local/lanow/la-me-ln-water-conservation-backslide-20161018-snap-htmlstory.html), found that the overwhelming majority of California water districts increased their usage after the state eased its drought restrictions. Some of the most extreme increases were found in inland Northern California, led by the San Juan Water District near Folsom Lake.How did The Times come to that conclusion? Using the computer code that follows.**Here's how it worked.**We started by downloading data from California’s State Water Resources Control Board, which publishes a monthly accounting of each district’s water usage on its website.That data has been used by state regulators to monitor and enforce mandatory water-use reductions introduced as part of the state’s emergency drought response. Regulators ended mandatory conservation for the vast majority of urban water suppliers this spring.The state measures each district’s water savings by comparing the number of gallons it supplies to homes, businesses and institutions each month versus the same month in 2013, a baseline that precedes Gov. Jerry Brown’s proclamation of a drought State of Emergency.The code below calculates that statistic for three months this summer after restrictions were eased, then compares it against the same months in 2015. In total, 93% of 387 districts increased water usage this year. Nineteen districts were excluded because they did not report enough data to the state.California’s water districts vary greatly in size, from large urban areas like Los Angeles to small districts in the rural north. To compare suppliers and identify areas where residents use large amounts of water at home, state officials also track the total amount of water used by each district’s average resident each day.This code combines that measure with each district’s change in total summer water usage to create a ranking we’re calling a Conservation-Consumption Score. By including both factors, this statistic -- sometimes known as a z-score -- better identifies areas where residents account for increases.Some of the highest ranking districts by this score were found in Northern California and around Folsom Lake near Sacramento. The top score belonged to the San Juan Water District, the ultimate focus of our story. Import and configure analysis tools. ###Code import os import pandas as pd import numpy as np import matplotlib.pyplot as plt from __future__ import division %matplotlib inline pd.set_option('display.float_format', lambda x: '%.2f' % x) pd.set_option("display.max_columns", 500) ###Output _____no_output_____ ###Markdown Import raw water usage data from the state ###Code supplier_path = os.path.join(os.getcwd(), 'uw_supplier_data100516.xlsx') SUPPLIER_TABLE = pd.read_excel(supplier_path) ###Output _____no_output_____ ###Markdown Keep the columns we want ###Code supplier_table = SUPPLIER_TABLE.iloc[:,[0,3,18,19,21]] supplier_table.columns = [ 'supplier_name', 'month', 'total_water_production_gallons', 'total_water_production_gallons_2013', 'residential_water_usage' ] ###Output _____no_output_____ ###Markdown Clean them up ###Code supplier_table['month'] = supplier_table['month'].astype(str) supplier_table.info() supplier_table.head() ###Output _____no_output_____ ###Markdown Filter the data to only the three summer months in 2015 and 2016 ###Code target_months = ['2016-08-15', '2016-07-15', '2016-06-15', '2015-08-15', '2015-07-15', '2015-06-15',] month_table = supplier_table[supplier_table['month'].isin(target_months)] month_table.drop_duplicates(inplace=True) "Total records: {}".format(len(supplier_table)) "Month records: {}".format(len(month_table)) ###Output _____no_output_____ ###Markdown Eliminate any suppliers who have fewer or greater than six months of data with those labels ###Code supplier_counts = month_table.groupby("supplier_name")['supplier_name'].count().to_frame("count").reset_index() incomplete_month_table = supplier_counts[supplier_counts['count'] <> 6] incomplete_month_table complete_month_table = month_table[~month_table['supplier_name'].isin(incomplete_month_table['supplier_name'])] "Complete month records: {}".format(len(complete_month_table)) ###Output _____no_output_____ ###Markdown Group and sum the total water production for each summer ###Code summer_16_table = complete_month_table[complete_month_table['month'].isin(['2016-08-15', '2016-07-15', '2016-06-15',])] summer_16_totals = summer_16_table.groupby("supplier_name")['total_water_production_gallons'].sum().to_frame("total_water_production_16").reset_index() summer_16_totals.head(5) "Summer 16 records: {}".format(len(summer_16_totals)) summer_15_table = complete_month_table[complete_month_table['month'].isin(['2015-08-15', '2015-07-15', '2015-06-15',])] summer_15_totals = summer_15_table.groupby("supplier_name")['total_water_production_gallons'].sum().to_frame("total_water_production_15").reset_index() summer_15_totals.head(5) "Summer 15 records: {}".format(len(summer_15_totals)) summer_13_totals = summer_16_table.groupby("supplier_name")['total_water_production_gallons_2013'].sum().to_frame("total_water_production_13").reset_index() summer_13_totals.head() "Summer 13 records: {}".format(len(summer_13_totals)) ###Output _____no_output_____ ###Markdown Join those summer production totals into a combined table ###Code summer_table = summer_16_totals.merge(summer_15_totals, on="supplier_name") summer_table = summer_table.merge(summer_13_totals, on="supplier_name") "Total summer records: {}".format(len(summer_table)) summer_table.head(5) ###Output _____no_output_____ ###Markdown Calculate the percentage change of summers 15 and 16 versus the baseline of summer 2013 ###Code summer_table['savings_16'] = summer_table.apply( lambda x: (x['total_water_production_16']-x['total_water_production_13'])/float(x['total_water_production_13']), axis=1 ) summer_table['savings_15'] = summer_table.apply( lambda x: (x['total_water_production_15']-x['total_water_production_13'])/float(x['total_water_production_13']), axis=1 ) summer_table.sort_values('savings_16', ascending=False).head() ###Output _____no_output_____ ###Markdown Calculate the difference between in that statistic between 15 and 16 ###Code summer_table['savings_change'] = summer_table.apply( lambda x: x['savings_16']-x['savings_15'], axis=1 ) summer_table.head(5) ###Output _____no_output_____ ###Markdown Rank the cities that have regressed the most towards their 2013 baseline ###Code summer_table.sort_values("savings_change", ascending=False).head() ###Output _____no_output_____ ###Markdown Calculate the average monthly water usage per person (R-GPCD) in each district for the summer of 2016 ###Code summer_16_means = summer_16_table.groupby('supplier_name')['residential_water_usage'].mean().to_frame("residential_water_usage_mean_16").reset_index() summer_16_means.head(5) ###Output _____no_output_____ ###Markdown Join those water usage average to our combined table ###Code summer_table = summer_table.merge(summer_16_means, on="supplier_name") summer_table.head(5) ###Output _____no_output_____ ###Markdown Calculate summary statistics to judge how many districts regressed in summer 2016 ###Code savings_16 = (summer_table.total_water_production_16.sum() - summer_table.total_water_production_13.sum()) / (summer_table.total_water_production_13.sum()) savings_15 = (summer_table.total_water_production_15.sum() - summer_table.total_water_production_13.sum()) / (summer_table.total_water_production_13.sum()) "State water use overall backslid {} percentage points".format((savings_16 - savings_15)*100) pct_backslid = len(summer_table[summer_table['savings_change'] > 0]) / len(summer_table) "{}% of urban districts in the state backslid".format(pct_backslid*100) plt.figure(figsize=(16,8)) summer_table.savings_change.hist(bins=30) plt.axvline(0, linewidth=3, c='red') plt.axvline(savings_16 - savings_15, c='black', linewidth=3) plt.annotate("Statewide backslide", (0.093, 48)) plt.annotate("Used less water\nin summer 2016", (-0.075, 46), color='red') plt.annotate("Used more water\nin summer 2016", (0.25, 46), color='red') plt.ylabel("Number of districts") plt.xlabel("Change in water savings between summer '15 and summer '16") ###Output _____no_output_____ ###Markdown Calculate a "Conservation-Consumption Score" that adjusts the savings change by the amount of water usage to surface the high-usage districts that regressed the most This indexed score:1. Accounts for how much a district's savings changed between the summers of 2015 and 2016 (in the numerator)2. Gives greater weight to districts with high residential water use (RGPCD). Positive scores indicate districts that backslid (in the denominator) $$CCS = \frac{SavingsChange}{\frac{1}{\sqrt{RGPCD16}}}$$ ###Code summer_table['cc_score'] = (summer_table['savings_change']) / np.sqrt(1/summer_table['residential_water_usage_mean_16']) summer_table.sort_values("cc_score", ascending=False).head(10) summer_table.sort_values("cc_score").head(10) plt.figure(figsize=(16,8)) summer_table.cc_score.hist(bins=30) plt.axvline(0, linewidth=3, c='red') plt.annotate("Used less water\nin summer 2016", (-1.5,52), color='red') plt.annotate("Used more water\nin summer 2016", (4.05,52), color='red') plt.ylabel("Number of districts") plt.xlabel("Conservation-Consumption Score") ###Output _____no_output_____ ###Markdown Write the combined table out to a CSV ###Code summer_table.sort_values("cc_score", ascending=False).to_csv("analysis.csv", index=False) ###Output _____no_output_____ ###Markdown Count occurrences of specific words or types of words in both types of statements. Visualize the proportion ###Code from collections import Counter right=0 wrong=0 nlp = spacy.load("en_core_web_sm") def visualizeFeature(name, tcount, fcount): labels = ['Truthful', 'Deceptive'] sizes = [tcount, fcount] fig1, ax1 = plt.subplots() ax1.pie(sizes, labels=labels, autopct='%1.1f%%', shadow=True, startangle=90, textprops={'color': "black"}) printmd( f"\n\n## **{name}:** {labels[0]} {tcount} {labels[1]} {fcount}") plt.show() ###Output _____no_output_____ ###Markdown Significance testsH0 : Words from wordlist are equally likely to occur in truthful and deceptive statementsHA : Words from wordlist occur in truthful and deceptive statements with different probability**Sample**: measure the proportion truthful/deceptive in the data**Simulation**: Generate 1000 pairs of 160 docs, randomly inserting words of interest according to the probability with which they occur in the text according to H0. Of course, this kind of simulation is rather naïve, since actual language places a lot more constraints on the simulation. Theoretically, an advanced generative model could be used to generate better data. However, such simulation may be skewed, because generative models are typically trained on truthful data.**Assumption**: If less than 1% of the simulations show a truthful/deceptive proportion equal to or less (or greater, for proportions > 1) than the measured one, reject H0If H0 is rejected, the feature can be used to predict the veracity of a statement ###Code #generate a set of "truthful" and "deceptive" "documents" with the same number of words #count "occurrences" of a "word" that has a probability prob to appear in a "document" def simstat(numdoc, numwords, prob): tcount = 0 for i in range(numdoc): for j in range(numwords): if(random.uniform(0, 1) < prob): tcount += 1 return tcount #simulation: 1000 times generate 2 random documents, each containing words_per_doc def simulation(numdoc, numwords, prob): sim = [] for k in range(1000): sim.append(simstat(numdoc, int(words_per_doc), prob) / simstat(numdoc, int(words_per_doc), prob)) return sim import matplotlib.pyplot as plt import numpy as np %matplotlib inline def visualizeSimulation(sim, measured_proportion): #sort sim sim = sorted(sim) bottom = sim[int(0.01*len(sim))] top = sim[int(0.99*len(sim))] #count members of sim that are below the measured proportion below = sum(map(lambda x: x < measured_proportion, sim)) #above = sum(map(lambda x: x > 1/measured_proportion, sim)) alpha = 0.01 pfactor = below/len(sim) plt.hist(sim, density=False, bins=30) # density=False would make counts plt.ylabel('Frequency') plt.xlabel('Proportion') plt.show() print( f"Probability of getting a ratio at or below {measured_proportion:.2f}: {pfactor*100:.2f}%") if pfactor < alpha: printmd("Feature can be used for veracity assessment\n", color="green") else: printmd("Feature cannot be used for veracity assessment\n", color="red") ###Output _____no_output_____ ###Markdown Extract a few language features that Pennebaker claims can be used to assess veracity of written text.The built-in "count_by" method of spaCy cannot be used because we want the ability to count not just spacific POS, but specific POS that are also a part of a short list. For example, from the auxilliary verb group we only care about the modal verbs. As it turns out, further splitting that group into two yields a really good results in terms of distribution between deceptive and truthful statements.The idea is to count the occurences of members of each feature group in deceptive as well as truthful statements, and if they are unbalanced, perform a significance test. ###Code import matplotlib.pyplot as plt from spacy.tokens import Doc def count_words(doc, type, wordlist): alloftype = [token.lower_ for token in doc if token.pos_ == type] if wordlist: alloftype = [x for x in alloftype if x in wordlist] return sum(Counter(alloftype).values()) featureTypes=[ { 'name':'i-words', 'POS':'PRON', 'wordlist': ['we','i', 'me', 'myself', 'my', 'mine'], 'tcount':0, 'fcount':0, 'indicates':None }, { 'name': 'verbs', 'POS': 'VERB', 'wordlist': None, 'tcount': 0, 'fcount': 0, 'indicates': None }, { 'name': 'articles', 'POS': 'DET', 'wordlist': ['a', 'an', 'the'], 'tcount':0, 'fcount':0, 'indicates':None }, { 'name': 'modal verbs 1', 'POS': 'AUX', 'wordlist': ["could", "should"], 'tcount': 0, 'fcount': 0, 'indicates':None }, { 'name': 'modal verbs 2', 'POS': 'AUX', 'wordlist': ["would", "may"], 'tcount': 0, 'fcount': 0, 'indicates':None }, { 'name': 'cognitive verbs', 'POS': 'VERB', 'wordlist': ['realize' , 'think', 'understand', 'figure', 'derive', "know", "believe", "recognize", "appreciates"], 'tcount': 0, 'fcount': 0, 'indicates':None }, { 'name': 'interjections', 'POS': 'INTJ', 'wordlist': None, 'tcount': 0, 'fcount': 0, 'indicates': None } ] twcount = 0 fwcount = 0 docs = [] labels = [] for index, row in df.iterrows(): text = row['Transcription'] doc = nlp(text) docs.append(doc) labels.append(row['Type']) cdoc = Doc.from_docs(docs) for doc, label in zip(docs, labels): for feature in featureTypes: if label == 'Truthful': feature['tcount'] += count_words(doc, feature['POS'], feature['wordlist']) else: feature['fcount'] += count_words(doc, feature['POS'], feature['wordlist']) if label == 'Truthful': twcount += len(doc) else: fwcount += len(doc) numdocs = len(docs) total_wordcount = twcount + fwcount words_per_doc = total_wordcount/len(docs) for feature in featureTypes: listlen = len(feature['wordlist']) if feature['wordlist'] else 1 global_occurences = feature['tcount'] + feature['fcount'] visualizeFeature(feature['name'], feature['tcount'], feature['fcount']) prob = global_occurences/total_wordcount sim = simulation(numdocs, words_per_doc, prob) measured_proportion = feature['tcount']/feature['fcount'] if measured_proportion > 1. : measured_proportion = 1./measured_proportion feature['indicates'] = 'truthful' else: feature['indicates'] = 'deceptive' visualizeSimulation(sim, measured_proportion) ###Output _____no_output_____ ###Markdown Next steps: construct features by checking for the presence of multiple significant words in a statement. Perhaps add a score, either 1 for each significant word present, or assign different weight based on the calculated significance ###Code def pos_list(doc, pos): pos_list = [token.lemma for token in doc if token.pos_ == pos] return Counter(pos_list) def rwratio(lieword, trueword, counter): right = 0 wrong = 0 if counter[lieword] > counter[trueword] and label == 'Truthful': wrong += 1 elif counter[lieword] < counter[trueword] and label == 'Deceptive': wrong += 1 elif counter[lieword] != counter[trueword]: right += 1 return right, wrong MINSCORE = 0 def veval(doc, features): tscore = 0 fscore = 0 for feature in features: fcount = count_words(doc, feature['POS'], feature['wordlist']) if feature['indicates'] == 'truthful': tscore += fcount else: fscore += fcount #print(f"{feature['name']} {fcount}") score = tscore - fscore/2 #compensate for the feature set being unbalanced if score == 0: return score elif score > 0: return 'Truthful' else: return 'Deceptive' right = 0 wrong = 0 usable_features = ['modal verbs 1', 'modal verbs 2', 'cognitive verbs'] features = [x for x in featureTypes if x['name'] in usable_features] for doc, label in zip(docs, labels): score = veval(doc, features) if score != 0: if score == label: right += 1 else: wrong += 1 print(f"Right: {right}") print(f"Wrong: {wrong}") print(f"Accuracy: {right/(right+wrong)*100:.2f}%") ###Output Right: 126 Wrong: 94 Accuracy: 57.27% ###Markdown Importing the required libraries ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt import plotly.express as px df = pd.read_csv('data/owid-covid-latest.csv') df.info() df.head(10) ###Output _____no_output_____ ###Markdown Continent specific visualisations ###Code continent_obj = df.groupby('continent') asia_df = continent_obj.get_group('Asia') na_df = continent_obj.get_group('North America') sa_df = continent_obj.get_group('South America') ###Output _____no_output_____ ###Markdown ASIA ###Code asia_df.head() asia_df.drop(['last_updated_date','new_cases_smoothed','new_deaths_smoothed','new_cases_smoothed_per_million','new_deaths_smoothed_per_million','icu_patients','hosp_patients','weekly_icu_admissions','weekly_hosp_admissions','new_tests','new_tests_per_thousand','new_tests_smoothed','new_tests_smoothed_per_thousand','new_vaccinations','new_vaccinations_smoothed','total_vaccinations_per_hundred','people_vaccinated_per_hundred','people_fully_vaccinated_per_hundred','new_vaccinations_smoothed_per_million'],axis=1,inplace=True) ###Output /Users/thegeorgejoseph/opt/anaconda3/envs/proton/lib/python3.8/site-packages/pandas/core/frame.py:4167: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy return super().drop( ###Markdown Dealing with Null Data ###Code asia_df.shape #logic asia_df.dropna(axis=0,subset=['total_cases','total_deaths'],inplace=True,how='any') df.dropna(axis=0,subset=['total_cases','total_deaths'],inplace=True,how='any') print(asia_df.columns) ###Output Index(['iso_code', 'continent', 'location', 'total_cases', 'new_cases', 'total_deaths', 'new_deaths', 'total_cases_per_million', 'new_cases_per_million', 'total_deaths_per_million', 'new_deaths_per_million', 'reproduction_rate', 'icu_patients_per_million', 'hosp_patients_per_million', 'weekly_icu_admissions_per_million', 'weekly_hosp_admissions_per_million', 'total_tests', 'total_tests_per_thousand', 'positive_rate', 'tests_per_case', 'tests_units', 'total_vaccinations', 'people_vaccinated', 'people_fully_vaccinated', 'stringency_index', 'population', 'population_density', 'median_age', 'aged_65_older', 'aged_70_older', 'gdp_per_capita', 'extreme_poverty', 'cardiovasc_death_rate', 'diabetes_prevalence', 'female_smokers', 'male_smokers', 'handwashing_facilities', 'hospital_beds_per_thousand', 'life_expectancy', 'human_development_index'], dtype='object') ###Markdown Bubble Maps ###Code fig = px.scatter_geo(df, locations="iso_code", size="total_cases", # size of markers, "pop" is one of the columns of gapminder ) fig.show() ###Output _____no_output_____ ###Markdown ![](svd.gif) ###Code v = array(ex.metrics['val_loss']) v = v-v.mean() v = v/v.std() s = array(srs[1:]) s = s-s.mean() s = s/s.std() ###Output _____no_output_____ ###Markdown pyloess is used for smoothing. It can be found on [github](https://github.com/joaofig/pyloess) ###Code sys.path.append(os.path.abspath('../others/pyloess/')) from pyloess.Loess import Loess ###Output _____no_output_____ ###Markdown Import data Death data 20th century ###Code project_path = pathlib.Path.cwd() dataset_path = project_path / 'Datasets' figure_path = project_path / 'Figures' metadata = [] description = [] data = {} other = {} datset_path_20th = dataset_path / '20thcenturymortality' for f in datset_path_20th.glob('*'): if f.suffix in ['.xls', '.xlsx']: icd_v = f.stem.split('_')[0].lower() print(f.stem) excel_data = pd.read_excel(f, sheet_name=None, dtype=str) for k, v in excel_data.items(): if k == 'metadata': metadata.append(v) elif k == 'description': #Add the ICD version to the data v['ICD_V'] = icd_v v.rename(columns = {'CODE': 'icdcode', 'DESCRIPTION': 'description1', 'description': 'description1'}, inplace=True) v.icdcode = v.icdcode.str.strip('*') description.append(v) elif 'icd' in k.lower(): icd_col = v.columns[0] v['ICD_V'] = icd_v v.rename(columns = {'yr':'year', 'sex':'gender', 'ndths':'numdeaths', icd_col:'icdcode'}, inplace=True) v.icdcode = v.icdcode.str.strip('*') data[k.lower()] = v.astype({'year':int, 'gender':int, 'numdeaths':int, 'age':str, 'icdcode':str, 'ICD_V':str}) #print(data[k].dtypes) else: #print(f.parent.stem, k) other[f'{f.parent.stem}_{k}'] = v description = pd.concat(description)#.set_index(['ICD_V', 'icdcode']) def get_category(x): if any(word in x.description for word in ['fever']): return 'infectious' elif x.description == 'Unknown': return 'error' else: return '' def get_description(x): try: result = ICD_key[ICD_key.icdcode == x]['description1'].values[0] return result except IndexError: print(f'{icd} contains unknown code: {x}') return 'Unknown' data['icd1'].icdcode = data['icd1'].icdcode.str.lstrip('0') for icd, dat in data.items(): ICD_id = f"icd{icd.split('_')[0][-1]}" ICD_key = description[description.ICD_V == ICD_id] print(icd, ICD_id) dat['description'] = dat.icdcode.apply(get_description) data[icd] = dat.astype({'year':int, 'gender':int, 'numdeaths':int, 'age':str, 'icdcode':str, 'ICD_V':str}) print("done") keysets = [s.split('_') for s in data.keys()] keylists = defaultdict(list) for v in keysets: if len(v) > 1: keylists[v[0]].append(v[1]) else: keylists[v[0]] = [] for icd, vl in keylists.items(): dat = [] for v in vl: dat.append(data.pop(f'{icd}_{v}')) if dat: data[icd] = pd.concat(dat) ###Output _____no_output_____ ###Markdown Death data 21st century ###Code excel_data = pd.read_excel(dataset_path/'21stcenturymortality2019final.xls', sheet_name=None) dats = [] for k in [j for j in excel_data.keys() if '20' in j]: dat = excel_data[k] dat.columns = dat.iloc[0].to_list() dat['ICD_V'] = 'icd10' dat.rename(columns = {'ICD-10': 'icdcode', 'YEAR': 'year', 'YR': 'year', 'SEX': 'gender', 'AGE':'age', 'ICD10': 'icdcode', 'Year': 'year', 'Sex': 'gender', 'Age':'age', 'NDTHS': 'numdeaths'}, inplace=True) dats.append(dat[['icdcode', 'year', 'gender', 'age', 'numdeaths', 'ICD_V']][1:]) #print(dat.columns) dats = pd.concat(dats) data['icd10'] = dats ###Output _____no_output_____ ###Markdown Population data ###Code excel_data = pd.read_excel(dataset_path/'ukpopulationestimates_1851-2014.xlsx', sheet_name=None)#, dtype=str) totals = excel_data['UK Total Pop 1851-2014'].iloc[0:149] totals.columns = totals.iloc[0].to_list() totals = totals[['Year', 'Total Population']].iloc[34:].astype({'Year':int, 'Total Population':int}) totals.rename(columns={'Year':'year', 'Total Population': 'total_pop'}, inplace=True) initial = excel_data['UK Quinary 1953-1970'].iloc[:20] initial_male = excel_data['UK Quinary 1953-1970'].iloc[23:42] initial_female = excel_data['UK Quinary 1953-1970'].iloc[45:64] initial_columns = [s[4:] if 'Mid' in s else s for s in initial.iloc[0].to_list()] initial.columns = initial_columns initial_male.columns = initial_columns initial_female.columns = initial_columns initial.drop(['Code', 'Name'], inplace=True, axis=1) initial_male.drop(['Code', 'Name'], inplace=True, axis=1) initial_female.drop(['Code', 'Name'], inplace=True, axis=1) initial = initial.iloc[1:].set_index('Age') initial_male = initial_male.iloc[1:].set_index('Age') initial_female = initial_female.iloc[1:].set_index('Age') initial_corrected_columns = initial.columns[:12] initial[initial_corrected_columns] = initial[initial_corrected_columns]*1000 initial_male[initial_corrected_columns] = initial_male[initial_corrected_columns]*1000 initial_female[initial_corrected_columns] = initial_female[initial_corrected_columns]*1000 initial = initial.astype(int) initial_male = initial_male.astype(int) initial_female = initial_female.astype(int) totals['Male'] = totals.total_pop/ 2 totals['Female'] = totals.total_pop/ 2 total_male = excel_data['UK Quinary 1953-1970'].iloc[23].values.copy() total_male = total_male[3:] total_male[:12] = total_male[:12]*1000 total_female = excel_data['UK Quinary 1953-1970'].iloc[45].values.copy() total_female = total_female[3:] total_female[:12] = total_female[:12]*1000 totals.loc[(totals.year > 1952) & (totals.year < 1971), 'Male'] = total_male totals.loc[(totals.year > 1952) & (totals.year < 1971), 'Female'] = total_female total_male = excel_data['UK SYOA 1971-2014'].iloc[96].values.copy() total_female = excel_data['UK SYOA 1971-2014'].iloc[191].values.copy() total_male = total_male[3:] total_female = total_female[3:] totals.loc[totals.year > 1970, 'Male'] = total_male totals.loc[totals.year > 1970, 'Female'] = total_female totals = totals.astype({'Male':int, 'Female':int}) final = excel_data['UK SYOA 1971-2014'].iloc[:93] final_male = excel_data['UK SYOA 1971-2014'].iloc[97:188] final_female = excel_data['UK SYOA 1971-2014'].iloc[192:283] final_columns = [s[4:] if 'Mid' in s else s for s in final.iloc[0].to_list()] final.columns = final_columns final_male.columns = final_columns final_female.columns = final_columns final.drop(['Code', 'Name'], inplace=True, axis=1) final_male.drop(['Code', 'Name'], inplace=True, axis=1) final_female.drop(['Code', 'Name'], inplace=True, axis=1) final.Age = final.Age.astype(str) final_male.Age = final_male.Age.astype(str) final_female.Age = final_female.Age.astype(str) final.Age[87] = '85+' final_male.Age[182] = '85+' final_female.Age[277] = '85+' final = final.iloc[2:].set_index('Age').replace(':', '0').astype(int) final_male = final_male.set_index('Age').replace(':', '0').astype(int) final_female = final_female.set_index('Age').replace(':', '0').astype(int) final.iloc[86] = final.iloc[86:].sum() final_male.iloc[85] = final_male.iloc[85:].sum() final_female.iloc[85] = final_female.iloc[85:].sum() final = final.iloc[:86] final_male = final_male.iloc[:86] final_female = final_female.iloc[:86] excel_data = pd.read_excel(dataset_path/'nomis_2021_01_15_011854.xlsx', sheet_name=None) final_next = excel_data['United Kingdom Total'] final_next_male = excel_data['United Kingdom Male'] final_next_female = excel_data['United Kingdom Female'] final_next.columns = [str(s)[:4] for s in final_next.iloc[6].values] final_next_male.columns = final_next.columns final_next_female.columns = final_next.columns total_next = pd.DataFrame(final_next.iloc[7,-5:]).reset_index() total_next['Male'] = final_next_male.iloc[7,-5:].values total_next['Female'] = final_next_female.iloc[7,-5:].values total_next.columns = totals.columns totals = totals.append(total_next).reset_index(drop=True).astype(int) final_next = final_next.iloc[8:] final_next_male = final_next_male.iloc[8:] final_next_female = final_next_female.iloc[8:] final_next.Age = [a[4:].strip(' ') for a in final_next.Age] final_next_male.Age = [a[4:].strip(' ') for a in final_next_male.Age] final_next_female.Age = [a[4:].strip(' ') for a in final_next_female.Age] final_next = final_next.set_index('Age').astype(int) final_next_male = final_next_male.set_index('Age').astype(int) final_next_female = final_next_female.set_index('Age').astype(int) span = [str(s) for s in range(2015, 2020)] final = final.join(final_next[span]) final_male = final_male.join(final_next_male[span]) final_female = final_female.join(final_next_female[span]) ###Output C:\Users\domhu\Anaconda3\lib\site-packages\pandas\core\frame.py:4312: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors, C:\Users\domhu\Anaconda3\lib\site-packages\pandas\core\frame.py:4312: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy errors=errors, C:\Users\domhu\Anaconda3\lib\site-packages\pandas\core\generic.py:5491: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self[name] = value C:\Users\domhu\Anaconda3\lib\site-packages\IPython\core\interactiveshell.py:3418: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy exec(code_obj, self.user_global_ns, self.user_ns) ###Markdown Figure helper functions ###Code def setup_ax(ax, xlabel, ylabel): ax.yaxis.set_tick_params(labelsize=10, colors="dimgrey") ax.xaxis.set_tick_params(labelsize=10, colors="dimgrey") ax.set_facecolor("0.97") ax.spines['top'].set_visible(False) ax.spines['bottom'].set_visible(False) ax.spines['right'].set_visible(False) ax.spines['left'].set_visible(False) ax.yaxis.set_ticks_position('left') ax.yaxis.set_label_position('left') ax.set_ylabel(ylabel, rotation=90, color="dimgrey", size=15, labelpad=10, verticalalignment='center', horizontalalignment='center') ax.xaxis.set_ticks_position('bottom') ax.xaxis.set_label_position('bottom') ax.set_xlabel(xlabel, color="dimgrey", size=15) ax.grid(color='w') ax.set_xticks(np.arange(1900, 2030, 10)) ax.set_xlim(1900, 2020) def setup_colorbar(fig, ax): cbar_ax = fig.add_axes([0.91, 0.125, 0.02, 0.75]) cb = fig.colorbar(ax.collections[0], ax=ax, orientation='vertical', extend='both', cax=cbar_ax) cb.set_label('fit quality', labelpad=15, size=13, color="dimgrey", rotation=270) cb.ax.tick_params(labelsize=10, colors="grey") ###Output _____no_output_____ ###Markdown Basic analysis Population ###Code fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) ax.plot(totals.year, totals.total_pop.values/1000000) ax.set_ylim(0, 70) setup_ax(ax, 'year', 'Total population (millions)') deaths = [] for k, icd in data.items(): deaths.append(icd.groupby(['year']).numdeaths.sum()) deaths = pd.concat(deaths).reset_index() deaths['proportion'] = deaths.apply(lambda x: x.numdeaths/totals.total_pop[totals.year==x.year].values[0], axis=1) deaths['deaths per million'] = deaths.apply(lambda x: x.numdeaths/totals.total_pop[totals.year==x.year].values[0]*1000000, axis=1) fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) ax.plot(deaths.year, deaths.numdeaths.values/1000000) ax.set_ylim(0, 0.65) setup_ax(ax, 'year', 'Deaths (millions)') fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) deaths.plot('year', 'deaths per million', xlim=(1900, 2020), legend=False, ax=ax) ax.set_ylim(0, 16000) setup_ax(ax, 'year', 'deaths per million') fig.savefig(figure_path/'deaths_per_million.png') deaths_male = [] deaths_female = [] for k, icd in data.items(): deaths_male.append(icd[icd.gender==1].groupby(['year']).numdeaths.sum()) deaths_female.append(icd[icd.gender==2].groupby(['year']).numdeaths.sum()) deaths_male = pd.concat(deaths_male).reset_index() deaths_female = pd.concat(deaths_female).reset_index() deaths_male['proportion'] = deaths_male.apply(lambda x: x.numdeaths/totals['Male'][totals.year==x.year].values[0], axis=1) deaths_male['deaths per million'] = deaths_male.apply(lambda x: x.numdeaths/totals['Male'][totals.year==x.year].values[0]*1000000, axis=1) deaths_female['proportion'] = deaths_female.apply(lambda x: x.numdeaths/totals['Female'][totals.year==x.year].values[0], axis=1) deaths_female['deaths per million'] = deaths_female.apply(lambda x: x.numdeaths/totals['Female'][totals.year==x.year].values[0]*1000000, axis=1) fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) deaths_male.plot('year', 'deaths per million', xlim=(1900, 2020), label='Male', ax=ax)#, color='b') deaths_female.plot('year', 'deaths per million', xlim=(1900, 2020), label='Female', ax=ax) ax.set_ylim(0, 16500) setup_ax(ax, 'year', 'deaths per million') fig.savefig(figure_path/'deaths_per_million_gender.png') ###Output _____no_output_____ ###Markdown Smoothed equivalents ###Code loess = Loess(deaths.year.values, deaths['deaths per million'].values) step = 0.25 year_s = np.arange(deaths.year.min(), deaths.year.max() + step, step) deaths_s = np.empty_like(year_s) for i in range(len(year_s)): deaths_s[i] = loess.estimate(year_s[i], window=10) fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) deaths.plot('year', 'deaths per million', xlim=(1900, 2020), label='Raw data', ax=ax) ax.plot(year_s, deaths_s, label='2.5 year averaged') ax.set_ylim(0, 16000) setup_ax(ax, 'year', 'deaths per million') fig.savefig(figure_path/'deaths_per_million_smoothed.png') ###Output _____no_output_____ ###Markdown Residuals ###Code difference = deaths['deaths per million'].values - deaths_s[0::int(1/step)] fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) ax.bar(deaths.year, difference) ax.set_ylim(-1000, 3100) setup_ax(ax, 'year', 'residual deaths per million') fig.savefig(figure_path/'deaths_per_million_residuals.png') window = 5 VarValues = np.empty_like(difference) for count in range(0, len(difference)): window_min = count - window window_max = count + window if window_min < 0: window_min = 0 VarValues[count] = np.var(difference[window_min: window_max]) fig = plt.figure(figsize=(15, 4), dpi=80) ax = fig.add_subplot(1,1,1) ax.plot(deaths.year.values, VarValues) setup_ax(ax, 'year', 'variation in deaths') fig.savefig(figure_path/'deaths_per_million_residuals_variation.png') ###Output _____no_output_____ ###Markdown Death breakdowns ###Code description[description.ICD_V=='icd2'] for k in data.keys(): print(k) data_ageless= data[k].groupby(['icdcode', 'year']).numdeaths.sum() print(set([k[0] for k in data_ageless[data_ageless > 10000].index]))#.sort_values(ascending=False).iloc[:20]) ###Output icd1 {'1670', '1050', '460', '380', '220', '470', '1060', '210', '1180', '390', '700', '1440', '890', '60', '120', '1660', '130', '990', '1070', '680', '760'} icd2 {'91', '151A', '40', '28B', '79A', '151B', '154B', '28A', '81B', '79C', '120A', '89&90B', '92A', '104A', '92B', '10', '64E', '6'} icd3 {'74a(1)', '11a(1)', '90(9)', '101a', '100', '45', '91b(1)', '113,114(3)', '99c,99d', '164(2)', '99a', '90(4)', '99b', '31', '90(2)', '91b(2)', '161(1)', '49', '44', '90(7)', '129'} icd4 {'97(3)', '11a(1)', '162b', '82a(1)', '94', '186', '159', '107', '93c', '92(2)', '46', '106c', '93b(3)', '92(5)', '93b(2)', '108', '23', '131'} icd5 {'93d', '47b', '94a', '162c', '106b', '107(2)', '93c(1)', '97', '46b', '13b', '46c', '83a', '106c', '93c(3)', '197', '106a', '83bc'} icd6 {'1620', '4221', '4910', '4222', '3320', '1530', '4430', '5021', '1630', '5020', '4500', '1510', '3310', '4201', '0020'} icd7 {'3310', '4221', '4910', '4222', '3320', '4430', '5021', '1700', '5020', '4500', '1510', '1621', '4201'} icd8 {'4910', '4369', '4850', '4339', '1519', '4379', '1740', '4280', '4409', '4109', '1621', '4123', '4319'} icd9 {'4340', '4140', '4960', '1749', '4850', '4919', '4310', '4360', '4860', '4149', '4100', '7970', '1629'} icd10 {'R54 ', 'I64', 'I679', 'F03 ', 'C61', 'F019', 'J180', 'J449', 'F03', 'G309', 'C509', 'J189', 'I251', 'I259', 'I219', 'J440', 'C349', 'I64 ', 'C80 ', 'C61 '} ###Markdown Age corrections ###Code ageset = set() for k in data.keys(): a = data[k].age.unique() ageset = ageset.union(a) ages = list(ageset) ages.sort() print(ages) ###Output _____no_output_____ ###Markdown Assumptions for CalculationsAssumptions necessary for calculation of trace completion times, i.e. the point in time a all Spans of a trace have been written to a database.1. All Traces are completed, i.e. all Spans part of a Trace are in the dataset1. All Traces are sorted by trace id and consist of an equal number of spans ###Code df_merged['span_visibility'] = df_merged.write_time - df_merged.StartTime starttime = 0 completion_times = [0]*len(df_merged) firstTraceIdx = 0 lastTraceIdx = 0 write_times_tmp = [] current_trace_id = df_merged['trace_id'].iloc[0] #init with first trace id for index, row in df_merged.iterrows(): if row['trace_id'] == current_trace_id: write_times_tmp.append(row['write_time']) else: lastTraceIdx = index trace_completion_time = max(write_times_tmp) - starttime write_times_tmp = [] for i in range(firstTraceIdx, lastTraceIdx): completion_times[i] = trace_completion_time #use starttime of root span if row['operation_name'] == 'svc01-parent': starttime = row['StartTime'] firstTraceIdx = index current_trace_id = row['trace_id'] #save the write time of current span in temp list df_merged['trace_completion_time'] = completion_times df_merged.head(10) #df_merged.drop(df_merged.index[:100], inplace=True) df_roots = df_merged.loc[df_merged['operation_name'] == 'svc01-parent'] df_roots = df_roots.sort_values(by = ['StartTime']) colors = {'red', 'blue'} categories = {'req-resp-lat', 'trace-visibility-lat'} columns = {'duration', 'trace_completion_time'} scatterplot = plt.figure() ax = scatterplot.add_subplot(1, 1, 1) for column, color, cat in zip(columns, colors, categories): x, y = df_roots['StartTime'], df_roots[column] ax.scatter(x, y, alpha=0.8, c=color, edgecolors='none', s=30, label=cat) plt.title('Scatter plot') plt.yscale("log") plt.legend(loc=2) plt.show() plt.savefig('shower.pdf') #plt.title('Visibility Delay') figure1, axes = plt.subplots(1, 2) #apparently we have too much stuff going on at the righthand y-axis, so we need to add extra space #figure1.subplots_adjust(right=0.8) #axes[0].text('Latency [µs]') label = 'exp' #label = 'large-baggage' axes[0].boxplot([df_roots['duration']], labels=['Request-Response']) #plt.savefig('latency-high-baggage.pdf') axes[1].boxplot([df_roots['trace_completion_time']], labels=['Trace Completion Time']) axes[1].yaxis.tick_right() figure1.savefig('latency-'+label+'.pdf') #plt.savefig('completion-high-baggage.pdf') #plt.savefig('completion'+label+'.pdf') #plot = plt.boxplot([df_roots['duration'], df_roots['completion_time']], labels=['Request-Response','Trace Completion']) df_roots['completion_ratio'] = df_roots['trace_completion_time'] / df_roots['duration'] df_roots['completion_delta'] = df_roots['trace_completion_time'] - df_roots['duration'] figure2, axes2 = plt.subplots(1, 2) #apparently we have too much stuff going on at the righthand y-axis, so we need to add extra space #figure1.subplots_adjust(right=0.8) #axes[0].text('Latency [µs]') axes2[0].boxplot([df_roots['completion_ratio']], labels=['Completion Ratio']) axes2[1].boxplot([df_roots['completion_delta']], labels=['Completion Delta']) axes2[1].yaxis.tick_right() figure2.savefig('difference-'+label+'.pdf') df_roots = df_roots[['duration', 'SpanDuration', 'span_visibility', 'trace_completion_time']] numpy.round(df_roots.describe().T, 2).to_csv('summary-'+label+'.csv', sep=',') ###Output _____no_output_____ ###Markdown Reading the Facebook Graph ###Code g = nx.read_edgelist('/Users/user/Desktop/node2vec-master/graph/facebook_combined.txt', create_using=nx.Graph(), nodetype=int) print(nx.info(g)) sp=nx.spring_layout(g) plt.axis('off') ###Output Name: Type: Graph Number of nodes: 4039 Number of edges: 88234 Average degree: 43.6910 ###Markdown Processing the embeddings from Node2Vec ###Code all_values = pd.read_csv('facebook.emd')['4039 128'].values fb_dict = {'node_id': [], 'embedding': []} for v in all_values: v_split = [float(x) for x in v.split(' ')] fb_dict['embedding'] += [v_split[1:]] fb_dict['node_id'] += [int(v_split[0])] fb_df = pd.DataFrame.from_dict(fb_dict) fb_df.head() ###Output _____no_output_____ ###Markdown Experiment 1: Clustering Q 1.1 : Are the nodes who took the survey the k-means center of the embedding space? ###Code embeddings_X = np.array([np.array(x) for x in fb_df['embedding'].values]) kmeans = KMeans(n_clusters=10, random_state=0).fit(embeddings_X) centroids = {} for i in range(len(kmeans.cluster_centers_)): c_id = 'c_id_' + str(i) centroids[c_id] = [] for e in fb_df['embedding'].values: centroids[c_id] += [np.linalg.norm(kmeans.cluster_centers_[i] - e)] centroids = {} for i in range(len(kmeans.cluster_centers_)): c_id = 'c_id_' + str(i) centroids[c_id] = [] for e in fb_df['embedding'].values: centroids[c_id] += [np.linalg.norm(kmeans.cluster_centers_[i] - e)] for k in centroids.keys(): fb_df[k] = centroids[k] cluster_to_node = {} for label in fb_df.dtypes.index.values: if 'c_id' in label: cluster_to_node[label] = fb_df.sort_values(label)['node_id'].values[0] cluster_to_node.values() cluster_to_node survey_nodes = [107, 1684, 1912, 3437, 0, 348, 3980, 414, 686, 698] survey_nodes ###Output _____no_output_____ ###Markdown Q 1.2 : Are the nodes who took the survey significantly closer to a centers than other nodes ? ###Code def node_dist(emb1, emb2): return np.linalg.norm(emb1 - emb2) survey_to_centroid = [] for node in survey_nodes: node_emb = fb_df.loc[fb_df['node_id'] == node]['embedding'].values[0] survey_to_centroid += [min([node_dist(node_emb, centroid_i) for centroid_i in kmeans.cluster_centers_])] average_to_centroid = [] for boot_strap in range(1000): # sampling random nodes random_nodes = [] while len(random_nodes) != 10: r_node = random.choice(fb_df['node_id'].values) if r_node not in survey_nodes: random_nodes += [r_node] # measuring average distance to closest centroid random_to_centroid = [] for node in random_nodes: node_emb = fb_df.loc[fb_df['node_id'] == node]['embedding'].values[0] random_to_centroid += [min([node_dist(node_emb, centroid_i) for centroid_i in kmeans.cluster_centers_])] average_to_centroid += [np.mean(random_to_centroid)] # p-value of the Null Hypothesis: survey nodes are closer to the centroids that other nodes p_value = np.mean(np.mean(survey_to_centroid) < average_to_centroid) p_value ###Output _____no_output_____ ###Markdown Experiment 2: Semantic interpretation of Embeddings ###Code def node_sum(node1, node2): """Takes in two nodes and returns the node whose embedding is closest to the sum of their embeddings""" node1_e = np.array(fb_df.loc[fb_df['node_id'] == node1]['embedding'].values[0]) node2_e = np.array(fb_df.loc[fb_df['node_id'] == node2]['embedding'].values[0]) sum_n1_n2 = node1_e + node2_e fb_df['dist to n12'] = [node_dist(sum_n1_n2, n) for n in fb_df['embedding'].values] closest_node = fb_df.sort_values('dist to n12')['node_id'].values[0] return closest_node def node_average(node1, node2): """Takes in two nodes and returns the node whose embedding is closest to the sum of their embeddings""" node1_e = np.array(fb_df.loc[fb_df['node_id'] == node1]['embedding'].values[0]) node2_e = np.array(fb_df.loc[fb_df['node_id'] == node2]['embedding'].values[0]) av_n1_n2 = (node1_e + node2_e)*0.5 fb_df['midpoint'] = [node_dist(av_n1_n2, n) for n in fb_df['embedding'].values] closest_node = fb_df.sort_values('midpoint')['node_id'].values[0] return closest_node def nodes_connected(u, v): return u in g.neighbors(v) ###Output _____no_output_____ ###Markdown Random interesting observation(first try observation which in turn motivated statistical exploration of the idea) ###Code node_average(5, 1987) in nx.shortest_path(g, 5, 1987) ###Output _____no_output_____ ###Markdown Q 2.1: Does the node closest to the average point between two embeddings lie on the shortest path linking them a) comparing it to a probability that a random node lies on two others' shortest path ###Code # average length on shortest_path sp = [] for i in range(1000): two_random_nodes = np.random.choice(4039, 2, replace=False) sp += [len(nx.shortest_path(g, two_random_nodes[0], two_random_nodes[1]))] av_sp_len = np.mean(sp) # proportion of random nodes whose average point lies on the shortest path mean_av_sp = [] mean_rd_sp = [] for bootstrap in range(100): average_on_sp = [] random_on_sp = [] for simulation in range(100): two_random_nodes = np.random.choice(4039, 3, replace=False) node_1, node_2, node_3 = two_random_nodes[0], two_random_nodes[1], two_random_nodes[2] sp_n1_n2 = nx.shortest_path(g, node_1, node_2) while len(sp_n1_n2) < av_sp_len: two_random_nodes = np.random.choice(4039, 3, replace=False) node_1, node_2, node_3 = two_random_nodes[0], two_random_nodes[1], two_random_nodes[2] sp_n1_n2 = nx.shortest_path(g, node_1, node_2) average_on_sp += [node_average(node_1, node_2) in sp_n1_n2] random_on_sp += [node_3 in sp_n1_n2] mean_av_sp += [np.mean(average_on_sp)] mean_rd_sp += [np.mean(random_on_sp)] # average nodes are more likely to be on the shortest path than a random node p_value = np.mean(np.mean(mean_av_sp) < mean_rd_sp) p_value ###Output _____no_output_____ ###Markdown b) comparing it to a probability that a node connected to one of two nodes lies on the two nodes' shortest path ###Code for bootstrap in range(100): average_on_sp = [] random_on_sp = [] for simulation in range(100): two_random_nodes = np.random.choice(4039, 2, replace=False) node_1, node_2 = two_random_nodes[0], two_random_nodes[1] sp_n1_n2 = nx.shortest_path(g, node_1, node_2) while len(sp_n1_n2) < av_sp_len: two_random_nodes = np.random.choice(4039, 3, replace=False) node_1, node_2, node_3 = two_random_nodes[0], two_random_nodes[1], two_random_nodes[2] sp_n1_n2 = nx.shortest_path(g, node_1, node_2) average_on_sp += [node_average(node_1, node_2) in sp_n1_n2] random_on_sp += [random.choice(list(g.neighbors(node_1))) in sp_n1_n2] mean_av_sp += [np.mean(average_on_sp)] mean_rd_sp += [np.mean(random_on_sp)] # average nodes are more likely to be on the shortest path than a random node p_value = np.mean(np.mean(mean_av_sp) < mean_rd_sp) p_value ###Output _____no_output_____ ###Markdown Analysis of the results ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd import myscripts.helper as H from myscripts.myplot import * # matplotlib settings %matplotlib inline plt.style.use('/Users/sst/visual.mplstyle') # pandas settings pd.set_option('float_format', '{:.2e}'.format) ###Output _____no_output_____ ###Markdown Data information ###Code DATA = pd.read_csv('meta/old_data.csv') DATA ###Output _____no_output_____ ###Markdown Characteristic functionsWhat characteristic functions are the best? What do them tell? ###Code CSV = pd.read_csv('meta/csv.csv').loc[85:] FGR = pd.read_csv('meta/fgr.csv').loc[85:] FGR['c'] = DATA.set_index('sample').loc[FGR['name'], 'c'].to_list() index = pd.DataFrame({ 'Two SphericalCFs': [85, 86, 94, 87, 95], # Two SphericalCFs 'SpheroidalCF': [88, 89, 96, 90, 97], # SpheroidalCF 'LognormalSphericalCF': [91, 92, 98, 93, 99], # LognormalSphericalCF }, dtype=int) ###Output _____no_output_____ ###Markdown Fitted PDFsAll three characteristic functions are indistinguishable by fitted PDFs. The $R_w$ and residuals are basically the same. All functions fit the data well. ###Code plt.figure(figsize=(24, 16)) ax = plt.subplot(131) fitting = index.iloc[:, 0] fgr = FGR.loc[fitting] plot_fgr(fgr['file'], names=fgr['name'], colors=fgr['c'], normal=True, auto_rw=True) plt.title(fitting.name) plt.subplot(132, sharey=ax) fitting = index.iloc[:, 1] fgr = FGR.loc[fitting] plot_fgr(fgr['file'], names=fgr['name'], colors=fgr['c'], normal=True, auto_rw=True) plt.title(fitting.name) plt.subplot(133, sharey=ax) fitting = index.iloc[:, 2] fgr = FGR.loc[fitting] plot_fgr(fgr['file'], names=fgr['name'], colors=fgr['c'], normal=True, auto_rw=True) plt.title(fitting.name) plt.show() ###Output _____no_output_____ ###Markdown Fitting Results2Spherical: Nonthing to say.Spheroidal: The JBNP31 prefers the polar direction while the others tend to be longer along equator direction.Lognormal: The average particle size is small. ###Code res_dct = {} num_rows = [4, 3, 3] for (cf, index), num_row in zip(index.iteritems(), num_rows): csv = CSV.loc[index] res = H.join_result_with_std(csv['file'], column_names=csv['name']) res = res.iloc[2:] res_dct[cf] = res print(res.head(num_row).to_string(col_space=16), end='\n\n') ###Output JBNP31 JBNP32 JBNP32L JBNP33 JBNP33L frac_b1 0.7+/-0.4 0.5+/-0.4 0.4+/-1.1 0.71+/-0.32 0.7+/-0.6 psize_Bronze_1 46+/-14 43+/-18 (4+/-5)e+01 52+/-14 53+/-23 psize_Bronze_2 21+/-16 19+/-10 22+/-23 21+/-17 24+/-28 scale_Bronze 0.54+/-0.09 0.53+/-0.11 0.30+/-0.14 0.52+/-0.09 0.39+/-0.09 JBNP31 JBNP32 JBNP32L JBNP33 JBNP33L erad_Bronze 14.6+/-3.5 29+/-13 26+/-21 38+/-22 37+/-28 prad_Bronze (0.7+/-2.9)e+02 8+/-4 8+/-8 12+/-5 12+/-7 scale_Bronze 0.52+/-0.07 0.53+/-0.11 0.30+/-0.16 0.50+/-0.07 0.39+/-0.07 JBNP31 JBNP32 JBNP32L JBNP33 JBNP33L psize_Bronze 25+/-21 17+/-20 (2+/-4)e+01 27+/-25 29+/-34 psig_Bronze 10.0+/-2.2 8.2+/-2.2 8.0+/-2.4 11.8+/-1.7 11.8+/-3.2 scale_Bronze 0.54+/-0.09 0.53+/-0.13 0.30+/-0.17 0.51+/-0.08 0.39+/-0.08 ###Markdown Linear Regression ###Code from sklearn import datasets, linear_model from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report, accuracy_score X_train, X_test, y_train, y_test = train_test_split(X, y,test_size = 0.8, random_state=10) from sklearn.linear_model import LinearRegression linreg = LinearRegression() linreg.fit(X_train, y_train) print (linreg.intercept_) print (linreg.coef_) predict_result = linreg.predict(X_test) print(predict_result) acc = linreg.score(X_test,y_test) print(acc) y = y_test.flatten() y_hat = predict_result.flatten() fig, ax = plt.subplots(figsize=(12,6)) ax.scatter(y, y_hat) ax.plot([y.min(), y.max()], [y.min(), y.max()], 'k--', lw=4) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') plt.show() fig.savefig('layer.png') house1 = [2,2,90,6,0,0,1,2000,0,1,0,0] house2 = [2,1,83,6,0,0,1,1998,0,0,1,0] list = [house1,house2] predict_result = linreg.predict(list) print(predict_result) neighbor_dict = {} for i in range(len(df)): location = re.findall("-(\w+)",df.location[i])[0] if(location in neighbor_dict): neighbor_dict[location] = neighbor_dict[location] + 1 else: neighbor_dict[location] = 1 neighbor_dict #countdf = pd.DataFrame(data = neighbor_dict) countdf = pd.Series(neighbor_dict) countdf = countdf.sort_values(ascending=False) countdf = countdf.to_frame() countdf import matplotlib.pyplot as plt import matplotlib import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['Arial Unicode MS'] fig = plt.figure(figsize=(12,6)) plt.bar(range(len(neighbor_dict)), (neighbor_dict.values())) plt.xticks(range(len(neighbor_dict)), (neighbor_dict.keys())) # # for python 2.x: # plt.bar(range(len(D)), D.values(), align='center') # python 2.x # plt.xticks(range(len(D)), D.keys()) # in python 2.x plt.xticks(rotation=90) plt.show() fig.savefig('neighbor_name.png') new_neighbor_dict = {} for key,value in neighbor_dict.items(): if value >=30: new_neighbor_dict.update({key:value}) print(new_neighbor_dict) import matplotlib.pyplot as plt import matplotlib import numpy as np import matplotlib.pyplot as plt plt.rcParams['font.sans-serif']=['Arial Unicode MS'] fig = plt.figure(figsize=(12,6)) plt.bar(range(len(new_neighbor_dict)), (new_neighbor_dict.values())) plt.xticks(range(len(new_neighbor_dict)), (new_neighbor_dict.keys())) # # for python 2.x: # plt.bar(range(len(D)), D.values(), align='center') # python 2.x # plt.xticks(range(len(D)), D.keys()) # in python 2.x plt.xticks(rotation=90) plt.show() fig.savefig('new_neighbor_name.png') neighbor_name = [] for key,value in neighbor_dict.items(): if value >=30: neighbor_name.append(key) print(neighbor_name) dic = {} a = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15] co = [-6.32730677e+04, -6.30612421e+04, -6.28865505e+04, -6.36125907e+04, -6.28302585e+04, -6.32471820e+04, -6.29959605e+04, -6.27682295e+04, -6.28805346e+04, -6.31831148e+04, -6.31075775e+04, -6.28579271e+04,-6.33238003e+04, -6.27960561e+04, -6.27852625e+04] for i in range(15): dic[neighbor_name[i]] = co[i] print(sorted(dic.items(), key = lambda kv:(kv[1], kv[0]))) rate = [] for i in range(15): rate.append(co[i]/-62768.2295) rate col_names = ['title','number_of_rooms','number_of_halls','size','layer', 'high','mid','low', 'completed_year'] col_names = col_names+neighbor_name+['price'] new_house_df = pd.DataFrame(columns = col_names) new_house_df for i in range(len(df)): title = df.title[i] d = re.findall("\d+",df.detail[i]) if(len(d)!=5): room = int(d[0]) hall = 0 size = int(d[1]) layer = int(d[2]) completed = int(d[3]) else: room = int(d[0]) hall = int(d[1]) size = int(d[2]) layer = int(d[3]) completed = int(d[4]) high = 0 mid = 0 low = 0 height = re.findall("\w+",df.detail[i])[2] if(height == "高层"): high = 1 elif(height == "中层"): mid = 1 else: low = 1 neighbor = re.findall("-(\w+)",df.location[i])[0] dj = 0 mf = 0 kd = 0 jbh = 0 ws = 0 yh = 0 hcz = 0 wd = 0 rmgc = 0 xwz = 0 tsy = 0 gd = 0 drf =0 gl = 0 dmk =0 if(neighbor == "东津世纪城"): dj = 1 elif(neighbor == "民发世界城"): mf = 1 elif(neighbor == "凯地广场"): kd = 1 elif(neighbor == "嘉佰惠广场"): jbh = 1 elif(neighbor == "武商沃尔玛"): ws = 1 elif(neighbor == "悦活荟"): yh = 1 elif(neighbor == "火车站"): hcz = 1 elif(neighbor == "万达广场"): wd = 1 elif(neighbor == "人民广场"): rmgc = 1 elif(neighbor == "新五中"): xwz = 1 elif(neighbor == "铁四院"): tsy = 1 elif(neighbor == "广电中心"): gd = 1 elif(neighbor == "大润发广场"): drf = 1 elif(neighbor == "鼓楼"): gl = 1 elif(neighbor == "东门口"): dmk = 1 else: continue p = re.findall("\d+",df.price[i])[0] price = int(p)*10000 location = df.location[i] new_house_df.loc[i] = [title,room,hall,size,layer,high,mid,low,completed, dj,mf,kd,jbh,ws,yh,hcz,wd,rmgc,xwz,tsy,gd,drf,gl,dmk,price] y1 = new_house_df[['price']] x_names = ['number_of_rooms','number_of_halls','size','layer', 'high','mid','low', 'completed_year'] x_names = x_names+neighbor_name X1 = new_house_df[x_names] X1 = normalization(X1) y1 = normalization(y1) from sklearn import datasets, linear_model from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, classification_report, accuracy_score X_train1, X_test1, y_train1, y_test1 = train_test_split(X1, y1, random_state=10) from sklearn.linear_model import LinearRegression linreg1 = LinearRegression() linreg1.fit(X_train1, y_train1) print (linreg1.intercept_) print (linreg1.coef_) predict_result1 = linreg1.predict(X_test1) acc1 = linreg1.score(X_test1,y_test1) print(acc1) y1 = y_test1.flatten() y_hat1 = predict_result1.flatten() fig, ax = plt.subplots(figsize=(12,6)) ax.scatter(y1, y_hat1) ax.plot([y1.min(), y1.max()], [y1.min(), y1.max()], 'k--', lw=4) ax.set_xlabel('Measured') ax.set_ylabel('Predicted') plt.show() fig.savefig('newplot.png') ###Output _____no_output_____ ###Markdown Agrupamento de dados ###Code import numpy as np # Numpy: biblioteca para manipular vetores e matrizes import pandas as pd # Pandas: biblioteca para manipular tabelas data = pd.read_csv('shenzhenPlatoons13.csv') print(data.shape) print(data.head()) #X = data[['lat', 'long', 'hour']] X = data[['long', 'hour']] X import matplotlib.pyplot as plt from sklearn.decomposition import PCA from sklearn.impute import SimpleImputer pca = PCA(n_components=2) imputer = SimpleImputer() Xpca = pca.fit_transform(imputer.fit_transform(X)) plt.scatter(Xpca[:, 0], Xpca[:, 1]) plt.show() # Sementes aleatórias para reproducibilidade dos experimentos (reproducão dos experimentos) seeds = [11156, 28750, 3509, 20838, 5907, 20167, 10632, 26137, 12628, 13922, 1124, 32301, 17230, 21, 7432, 16445, 29820, 28931, 11104, 2741] # O ideal são 100 bootstraps ###Output _____no_output_____ ###Markdown Determinando número de grupos ###Code from sklearn.cluster import KMeans, AgglomerativeClustering, DBSCAN from sklearn.impute import SimpleImputer from sklearn.preprocessing import StandardScaler from sklearn.metrics import silhouette_score from sklearn.utils import resample result = {} for k in range(2, 20): result[f'k={k}'] = [] for seed in seeds: imputer = SimpleImputer(strategy='mean') scaler = StandardScaler() alg = KMeans(n_clusters=k, random_state=seed) #alg = AgglomerativeClustering(n_clusters=k, linkage='single') Xb = resample(X, random_state=seed) # Reamostragem da base de dados (bootstrapping) Xb = scaler.fit_transform(imputer.fit_transform(Xb)) clusters = alg.fit_predict(Xb) result[f'k={k}'].append(silhouette_score(Xb, clusters)) result = pd.DataFrame.from_dict(result) print(result) result.apply(lambda x: "{:.2f} ± {:.2f}".format(x.mean(), x.std())) import matplotlib.pyplot as plt plt.plot(range(2, 20), result.mean()) plt.errorbar(range(2, 20), result.mean(), result.std()) plt.show() ###Output _____no_output_____ ###Markdown Melhores grupos (deploying) ###Code imputer = SimpleImputer(strategy='mean') scaler = StandardScaler() Xfixed = imputer.fit_transform(scaler.fit_transform(X)) alg = KMeans(n_clusters=4, random_state=seed) clusters = alg.fit_predict(Xfixed) for k in range(4): plt.scatter(Xpca[np.where(clusters == k), 0], Xpca[np.where(clusters == k), 1], color=['red', 'blue', 'green', 'yellow', 'gray'][k]) plt.show() k = 4 algorithms = { 'kmeans': KMeans(n_clusters=k), 'single': AgglomerativeClustering(n_clusters=k, linkage='single'), 'average': AgglomerativeClustering(n_clusters=k, linkage='average'), 'complete': AgglomerativeClustering(n_clusters=k, linkage='complete'), 'dbscan': DBSCAN(eps = 0.09, min_samples = 2, metric = 'euclidean'), } result = {} for key, alg in algorithms.items(): result[key] = [] for seed in seeds: imputer = SimpleImputer(strategy='mean') scaler = StandardScaler() Xb = scaler.fit_transform(imputer.fit_transform(resample(X, random_state=seed))) clusters = alg.fit_predict(Xb) result[key].append(silhouette_score(Xb, clusters)) result = pd.DataFrame.from_dict(result) print(result) result.apply(lambda x: "{:.2f} ± {:.2f}".format(x.mean(), x.std())) import matplotlib.pyplot as plt plt.boxplot([ scores for alg, scores in result.iteritems() ]) plt.xticks(1 + np.arange(result.shape[1]), result.columns) plt.show() ###Output _____no_output_____ ###Markdown ModCloth ###Code dataset = 'modcloth' df_review = pd.read_csv('./data/df_'+dataset+'.csv') df_review['timestamp'] = pd.to_datetime(df_review['timestamp']) df_review['fit_score'] = 0.0 df_review['fit_score'].loc[df_review['fit'] == 'Just right'] = 1.0 df_review['fit_score'].loc[df_review['fit'].isna()] = None df_review['timestamp'] = pd.to_datetime(df_review['timestamp']) ###Output /home/mengting/anaconda3/lib/python3.7/site-packages/pandas/core/indexing.py:190: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy self._setitem_with_indexer(indexer, value) ###Markdown Product Selection vs. Marketing Bias (ModCloth) Chi2 test of contingency table ###Code contingency_table(df_review, ['Small', 'Large', 'All']) chi2_test_by_year(df_review) ###Output _____no_output_____ ###Markdown Consumer Satisfaction vs. Marketing Bias (ModCloth) 2-way ANOVA on rating score ###Code _ = two_way_anova(df_review, 'rating') plot_avg_by_segment(df_review, 'rating', (2.2,2), ['Small', 'Large'], dataset, dump=False) ###Output _____no_output_____ ###Markdown 2-way ANOVA on clothing fit feedback ###Code _ = two_way_anova(df_review, 'fit_score') plot_avg_by_segment(df_review, 'fit_score', (2.2,2), ['Small', 'Large'], dataset, dump=False) ###Output _____no_output_____ ###Markdown Amazon Electronics ###Code dataset = 'electronics' df_review = pd.read_csv('./data/df_'+dataset+'.csv') df_review['timestamp'] = pd.to_datetime(df_review['timestamp']) ###Output _____no_output_____ ###Markdown Product Selection vs. Marketing Bias (Electronics) Chi2 test of contingency table ###Code contingency_table(df_review) ###Output contingency table ###Markdown Consumer Satisfaction ###Code _ = two_way_anova(df_review, 'rating') plot_avg_by_segment(df_review, 'rating', (3.2,2), [], dataset, dump=False) ###Output _____no_output_____ ###Markdown This contains lots of methods including cluster, dimension reduction and regression for test. ###Code data = pd.read_csv(folder + '/match_total.csv') data = data[data.columns[~data.columns.str.contains('gk')]] ###Output /usr/local/lib/python3.7/dist-packages/IPython/core/interactiveshell.py:2718: DtypeWarning: Columns (933,934,976,977) have mixed types.Specify dtype option on import or set low_memory=False. ###Markdown **获取label** ###Code y = data['home_team_goal'] - data['away_team_goal'] ###Output _____no_output_____ ###Markdown 获取某些data ###Code ''' feature_list = ['overall_rating', # 总体评分 'potential', # 总体评分上升潜力 'ball_control', # 对方传来的球能不能接住 'dribbling', # 带球 'agility', # 变换能力 'sprint_speed', # 冲刺 'short_passing', # 短传 'long_passing', # 长传 'crossing', # 横传 'vision', # 对周围环境的理解力,这对提升长传能力有效 'volleys', # 凌空传球 'curve', # 香蕉球 'finishing', # 进球 'sliding_tackle', # 铲球 'standing_tackle', # 拦截 'interceptions', # 抢断 'marking', # 盯人 'stamina', # 体力 'reactions', # 对身边环境的反应能力 'positioning', # 站位 ] ''' feature_list = ['long_passing', 'curve', 'short_passing', 'crossing', 'overall_rating', 'ball_control', 'potential', 'reactions', 'vision', 'finishing', 'volleys', 'positioning', 'marking', 'sliding_tackle', 'standing_tackle', 'interceptions', 'dribbling', 'agility', 'sprint_speed', 'stamina'] def get_data(feat, try_data=None): if try_data is None: home = data[data.columns[data.columns.str.contains(feat) & data.columns.str.contains('home')]] away = data[data.columns[data.columns.str.contains(feat) & data.columns.str.contains('away')]] return home, away else: home = try_data[data.columns[try_data.columns.str.contains(feat) & try_data.columns.str.contains('home')]] away = try_data[data.columns[try_data.columns.str.contains(feat) & try_data.columns.str.contains('away')]] return home, away home_dict = {} away_dict = {} home_mean = pd.DataFrame() away_mean = pd.DataFrame() for feat in feature_list: a, b = get_data(feat) home_dict[feat] = a away_dict[feat] = b home_mean[feat] = a.mean(axis=1) away_mean[feat] = b.mean(axis=1) mean_df = pd.concat([home_mean, away_mean], axis=0) corr_mat = mean_df.corr() corr_mat sns.heatmap(mean_df.corr()) sns.heatmap(mean_df[np.random.permutation(mean_df.columns)].corr()) sns.heatmap(mean_df.corr('spearman')) ###Output _____no_output_____ ###Markdown Flat Clustering ###Code dissimilarity = 1 - np.abs(mean_df.corr()) hierarchy = linkage(squareform(dissimilarity), method='average') labels = fcluster(hierarchy, 0.3, criterion='distance') labels mean_df.columns c = Counter(labels) c temp = rearrange(mean_df.copy(), dict(zip(mean_df.columns, labels))) sns.heatmap(temp) temp.columns hierarchy ###Output _____no_output_____ ###Markdown DBSCAN ###Code from sklearn.cluster import DBSCAN dist = mean_df.corr() X = 1 - dist.values clustering = DBSCAN(eps=0.5, min_samples=3).fit(X) clustering.labels_ temp = rearrange(mean_df.copy(), dict(zip(mean_df.columns, clustering.labels_.tolist()))) sns.heatmap(temp) Counter(clustering.labels_) temp.columns ###Output _____no_output_____ ###Markdown Block Modeling Clustering (old version) ###Code n_variables = 20 n_clusters = 5 cluster_size = n_variables // n_clusters C = mean_df.corr().values belongs_to_cluster = np.repeat(range(n_clusters), cluster_size) def score(C): ''' Function to assign a score to an ordered covariance matrix. High correlations within a cluster improve the score. High correlations between clusters decease the score. ''' score = 0 for cluster in range(n_clusters): inside_cluster = np.arange(cluster_size) + cluster * cluster_size outside_cluster = np.setdiff1d(range(n_variables), inside_cluster) # Belonging to the same cluster score += np.sum(C[inside_cluster, :][:, inside_cluster]) # Belonging to different clusters score -= np.sum(C[inside_cluster, :][:, outside_cluster]) score -= np.sum(C[outside_cluster, :][:, inside_cluster]) return score initial_C = C initial_score = score(C) initial_ordering = np.arange(n_variables) plt.figure() plt.imshow(C, interpolation='nearest') plt.title('Initial C') print('Initial ordering:', initial_ordering) print('Initial covariance matrix score:', initial_score) # Pretty dumb greedy optimization algorithm that continuously # swaps rows to improve the score def swap_rows(C, var1, var2): ''' Function to swap two rows in a covariance matrix, updating the appropriate columns as well. ''' D = C.copy() D[var2, :] = C[var1, :] D[var1, :] = C[var2, :] E = D.copy() E[:, var2] = D[:, var1] E[:, var1] = D[:, var2] return E current_C = C current_ordering = initial_ordering current_score = initial_score max_iter = 1000 for i in range(max_iter): # Find the best row swap to make best_C = current_C best_ordering = current_ordering best_score = current_score for row1 in range(n_variables): for row2 in range(n_variables): if row1 == row2: continue option_ordering = best_ordering.copy() option_ordering[row1] = best_ordering[row2] option_ordering[row2] = best_ordering[row1] option_C = swap_rows(best_C, row1, row2) option_score = score(option_C) if option_score > best_score: best_C = option_C best_ordering = option_ordering best_score = option_score if best_score > current_score: # Perform the best row swap current_C = best_C current_ordering = best_ordering current_score = best_score else: # No row swap found that improves the solution, we're done break # Output the result plt.figure() plt.imshow(current_C, interpolation='nearest') plt.title('Best C') print('Best ordering:', current_ordering) print('Best score:', current_score) print() print('Cluster [variables assigned to this cluster]') print('------------------------------------------------') for cluster in range(n_clusters): meaning_list = [mean_df.columns[i] for i in current_ordering[cluster*cluster_size:(cluster+1)*cluster_size]] print('Cluster %02d %s' % (cluster + 1, meaning_list)) ###Output Best ordering: [ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19] Best score: -345.768936391987 Cluster [variables assigned to this cluster] ------------------------------------------------ Cluster 01 ['long_passing', 'curve', 'short_passing', 'crossing'] Cluster 02 ['overall_rating', 'ball_control', 'potential', 'reactions'] Cluster 03 ['vision', 'finishing', 'volleys', 'positioning'] Cluster 04 ['marking', 'sliding_tackle', 'standing_tackle', 'interceptions'] Cluster 05 ['dribbling', 'agility', 'sprint_speed', 'stamina'] ###Markdown Block Modeling Clustering (new version) ###Code n_variables = 20 n_clusters = 5 cluster_size = n_variables // n_clusters columns_num_dict = dict(zip(list(mean_df.columns), np.repeat(range(n_clusters), cluster_size))) class_count = Counter(columns_num_dict.values()) reg = sum([i ** 2 for i in class_count.values()]) df = abs(mean_df.corr()) lamda = 2 def score(df, columns_num_dict, verbose=False): ''' Function to assign a score to an ordered covariance matrix. High correlations within a cluster improve the score. High correlations between clusters decease the score. ''' m, n = df.shape C = df.values assert m == n score = 0 for cluster in range(n_clusters): is_inside = np.array([columns_num_dict[i] == cluster for i in df.columns]) inside_cluster = np.arange(m)[is_inside] outside_cluster = np.setdiff1d(range(m), inside_cluster) # Belonging to the same cluster score += np.sum(C[inside_cluster, :][:, inside_cluster]) # Belonging to different clusters score -= np.sum(C[inside_cluster, :][:, outside_cluster]) score -= np.sum(C[outside_cluster, :][:, inside_cluster]) if verbose: return score, - lamda * reg, score - lamda * reg return score - lamda * reg def recombinant(var1, var2, columns_num_dict): ''' Function to swap two rows in a covariance matrix, updating the appropriate columns as well. ''' p1 = columns_num_dict[var1] p2 = columns_num_dict[var2] columns_num_dict[var1] = p2 columns_num_dict[var2] = p1 return columns_num_dict def metamorphosis(var, j, columns_num_dict): global reg columns_num_dict[var] = j class_count = Counter(columns_num_dict.values()) reg = sum([i ** 2 for i in class_count.values()]) if len(class_count.values()) != 5: return False, columns_num_dict return True, columns_num_dict def rearrange(mean_df, column_dict): col_list = [] for i in column_dict.keys(): col_list.append((column_dict[i], i)) col_list.sort() cols = [i for _, i in col_list] return mean_df[cols].corr() def print_cluster(column_dict): for i in range(n_clusters): print('Cluster', i, end='') print(':', end=' ') for j in column_dict.keys(): if column_dict[j] == i: print(j, end='\t') print() initial_df = df initial_score = score(df, columns_num_dict) intial_dict = columns_num_dict plt.figure() sns.heatmap(mean_df.corr()) plt.title('Initial df') print_cluster(intial_dict) import copy current_df = df current_dict = copy.deepcopy(intial_dict) current_score = initial_score max_iter = 1000 for p in range(max_iter // 30): # if p == 0: # var = np.random.choice(df.columns) # j = np.random.randint(0, 5) # res, d = metamorphosis(var, j, copy.deepcopy(current_dict)) # if not res: # continue # current_dict = d for i in range(max_iter): # Find the best row swap to make best_dict = copy.deepcopy(current_dict) best_score = current_score for row1 in range(n_variables): for row2 in range(n_variables): if row1 == row2: continue option_dict = recombinant(df.columns[row1], df.columns[row2], copy.deepcopy(best_dict)) option_score = score(df, option_dict) if option_score > best_score: best_dict = copy.deepcopy(option_dict) best_score = option_score if best_score > current_score: # Perform the best row swap current_C = best_C current_dict = copy.deepcopy(best_dict) current_score = best_score print_cluster(best_dict) print(score(df, best_dict, True)) else: # No row swap found that improves the solution, we're done break current_score df = rearrange(mean_df, current_dict) current_dict sns.heatmap(df) print_cluster(best_dict) ###Output _____no_output_____ ###Markdown LDA Data Preprocessing ###Code ''' From Zeng Xin ''' # def avg_max_data(data, k): # result_control = [] # for i in range(len(data)): # curr_arr = data.iloc[i].values # curr_arr = curr_arr[~np.isnan(curr_arr)] # result_control.append(np.nanmean(sorted(curr_arr, reverse=True)[:k])) # return np.array(result_control) # for feat in tqdm(feature_list, total=len(feature_list)): # a, b = get_data(feat) # home_mean[feat] = avg_max_data(a, 6) # away_mean[feat] = avg_max_data(b, 6) # home_mean.to_csv(folder + '/home_mean.csv') # away_mean.to_csv(folder + '/away_mean.csv') home_mean = pd.read_csv(folder + '/home_mean.csv', index_col=0) away_mean = pd.read_csv(folder + '/away_mean.csv', index_col=0) y = data['home_team_goal'] - data['away_team_goal'] y.name = 'label' lda_data = pd.concat([home_mean - away_mean, y], axis=1) lda_data = lda_data.loc[lda_data.label != 0] lda_data['label'] = lda_data['label'] > 0 lda_data['label'] feature_cluster_list = [df.columns[i * 4:i * 4 + 4] for i in range(5)] ans = pd.DataFrame() trans_list = [] minmax_list = [] for i in range(5): val = lda_data[df.columns[i * 4:i * 4 + 4]].values y = lda_data['label'] minmax = MinMaxScaler() minmax.fit(val) val = minmax.transform(val) lda = LinearDiscriminantAnalysis(n_components=1) lda.fit(val, y) trans_list.append(lda) minmax_list.append(minmax) ans['feat' + str(i)] = lda.transform(val)[:, 0] ans.feat0.plot(kind='hist') trans_list[0].coef_ for i in range(5): for j in range(4): print(round(trans_list[i].coef_[0][j], 3), '*', df.columns[i * 4 + j], sep=' ', end=' + ') print() for i in range(5): print(trans_list[i].explained_variance_ratio_) ###Output [1.] [1.] [1.] [1.] [1.] ###Markdown Build Evaluation System For Classification ###Code y = lda_data['label'].astype(int) team_features = ['buildUpPlaySpeed', 'buildUpPlayPassing', 'chanceCreationPassing', 'chanceCreationCrossing', 'chanceCreationShooting', 'defencePressure', 'defenceAggression', 'defenceTeamWidth'] mean_df system_df = lda_data[df.columns] system_df sys_lda_df = pd.DataFrame() name_list = ['passing', 'overall', 'shot', 'tackle', 'physical'] for i in range(5): mmtrans = minmax_list[i] ldatrans = trans_list[i] val = system_df.iloc[:, i * 4:i * 4 + 4].values val = ldatrans.transform(mmtrans.transform(val)) sys_lda_df[name_list[i]] = np.squeeze(val) sys_lda_df.passing.plot(kind='hist') X = np.array(sys_lda_df.iloc[:, [0, 2, 3, 4]]).reshape(-1, 4) reg = sm.Logit(y, sm.add_constant(X)).fit() reg.summary() X = np.array(sys_lda_df.iloc[:]).reshape(-1, 5) reg = sm.Logit(y, sm.add_constant(X)).fit() reg.summary() def get_team_data(feat): home = data[data.columns[data.columns.str.endswith(feat) & data.columns.str.contains('home')]] away = data[data.columns[data.columns.str.endswith(feat) & data.columns.str.contains('away')]] return home, away team_df = pd.DataFrame() for feat in team_features: home, away = get_team_data(feat) team_df[feat] = (home.values - away.values)[:, 0] print((home.values - away.values).shape) team_df team_df.dropna(how='all') ###Output _____no_output_____ ###Markdown For Regression ###Code y = data['home_team_goal'] - data['away_team_goal'] system_df = home_mean[df.columns] - away_mean[df.columns] system_df sys_lda_df = pd.DataFrame() name_list = ['passing', 'general', 'shot', 'tackle', 'quality'] for i in range(5): mmtrans = minmax_list[i] ldatrans = trans_list[i] val = system_df.iloc[:, i * 4:i * 4 + 4].values val = ldatrans.transform(mmtrans.transform(val)) sys_lda_df[name_list[i]] = np.squeeze(val) X = np.array(sys_lda_df.iloc[:, [0, 2, 3, 4]]).reshape(-1, 4) reg = sm.OLS(y, sm.add_constant(X)).fit() reg.summary() X = np.array(sys_lda_df.iloc[:]).reshape(-1, 5) reg = sm.OLS(y, sm.add_constant(X)).fit() reg.summary() sys_lda_df sys_lda_df.quality.plot(kind='hist') home_mean_df = home_mean[df.columns] home_sys_lda_df = pd.DataFrame() name_list = ['passing', 'general', 'shot', 'tackle', 'quality'] for i in range(5): mmtrans = minmax_list[i] ldatrans = trans_list[i] val = home_mean_df.iloc[:, i * 4:i * 4 + 4].values val = ldatrans.transform(mmtrans.transform(val)) home_sys_lda_df[name_list[i]] = np.squeeze(val) home_score_df = home_sys_lda_df.copy() home_score_df['passing'] = home_score_df['passing'].apply(lambda x: np.clip(7 * x - 13, 60, 100)) home_score_df['general'] = home_score_df['general'].apply(lambda x: np.clip(7 * x - 27, 60, 100)) home_score_df['shot'] = home_score_df['shot'].apply(lambda x: np.clip(7 * x + 1, 60, 100)) home_score_df['tackle'] = home_score_df['tackle'].apply(lambda x: np.clip(7 * x + 1, 60, 100)) home_score_df['quality'] = home_score_df['quality'].apply(lambda x: np.clip(7 * x - 27, 60, 100)) away_mean_df = away_mean[df.columns] away_sys_lda_df = pd.DataFrame() name_list = ['passing', 'general', 'shot', 'tackle', 'quality'] for i in range(5): mmtrans = minmax_list[i] ldatrans = trans_list[i] val = away_mean_df.iloc[:, i * 4:i * 4 + 4].values val = ldatrans.transform(mmtrans.transform(val)) away_sys_lda_df[name_list[i]] = np.squeeze(val) away_score_df = away_sys_lda_df.copy() away_score_df['passing'] = away_score_df['passing'].apply(lambda x: np.clip(7 * x - 13, 60, 100)) away_score_df['general'] = away_score_df['general'].apply(lambda x: np.clip(7 * x - 27, 60, 100)) away_score_df['shot'] = away_score_df['shot'].apply(lambda x: np.clip(7 * x + 1, 60, 100)) away_score_df['tackle'] = away_score_df['tackle'].apply(lambda x: np.clip(7 * x + 1, 60, 100)) away_score_df['quality'] = away_score_df['quality'].apply(lambda x: np.clip(7 * x - 27, 60, 100)) away_score_df.to_csv(folder + '/away_score.csv') home_score_df.iloc[:, 3].plot(kind='hist') away_mean_df = away_mean[df.columns] home_score_df = home_sys_lda_df.applymap(lambda x: np.clip(80 + 5 * x, 60, 100)) home_sys_lda_df.quality.plot(kind='hist') home_score_df score_df.to_csv(folder + '/score.csv') ###Output _____no_output_____ ###Markdown PCA ###Code pca_data = MinMaxScaler().fit(mean_df).transform(mean_df) pca_data = pd.DataFrame(pca_data, columns=mean_df.columns) pca = PCA(n_components=10) pca = pca.fit(pca_data) var_exp_list = pca.explained_variance_ratio_ var_exp_list plt.plot((1 - var_exp_list.cumsum())) pca.components_.shape wgt = abs(pd.DataFrame(pca.components_, columns=mean_df.columns)) sns.heatmap(wgt) ###Output _____no_output_____ ###Markdown **potential** ###Code home_potential, away_potential = get_data('potential') home_potential ###Output _____no_output_____ ###Markdown 取平均分 ###Code mean_home = home_potential.mean(axis=1) mean_away = away_potential.mean(axis=1) mean_diff = mean_home - mean_away X = np.array(mean_diff).reshape(-1, 1) reg = sm.OLS(y, sm.add_constant(X)).fit() reg.summary() y_pred = reg.predict(sm.add_constant(X)) plt.scatter(X, y) plt.plot(X, y_pred, color='r') plt.xlabel('mean_potential_difference') plt.ylabel('score_difference') plt.show() ###Output _____no_output_____ ###Markdown 平方后取平均 ###Code mean_home = home_potential.apply(lambda x: x ** 2).mean(axis=1) mean_away = away_potential.apply(lambda x: x ** 2).mean(axis=1) mean_diff = mean_home - mean_away X = np.array(mean_diff).reshape(-1, 1) reg = sm.OLS(y, sm.add_constant(X)).fit() reg.summary() y_pred = reg.predict(sm.add_constant(X)) plt.scatter(X, y) plt.plot(X, y_pred, color='r') plt.xlabel('mean_potential_difference') plt.ylabel('score_difference') plt.show() ###Output _____no_output_____ ###Markdown 立方后取平均 ###Code mean_home = home_potential.apply(lambda x: x ** 3).mean(axis=1) mean_away = away_potential.apply(lambda x: x ** 3).mean(axis=1) mean_diff = mean_home - mean_away X = np.array(mean_diff).reshape(-1, 1) reg = sm.OLS(y, sm.add_constant(X)).fit() reg.summary() y_pred = reg.predict(sm.add_constant(X)) plt.scatter(X, y) plt.plot(X, y_pred, color='r') plt.xlabel('mean_potential_difference') plt.ylabel('score_difference') plt.show() ###Output _____no_output_____ ###Markdown 指数后取平均 ###Code mean_home = home_potential.apply(lambda x: np.exp(x - 100)).mean(axis=1) mean_away = away_potential.apply(lambda x: np.exp(x - 100)).mean(axis=1) mean_diff = mean_home - mean_away X = np.array(mean_diff).reshape(-1, 1) reg = sm.OLS(y, sm.add_constant(X)).fit() reg.summary() y_pred = reg.predict(sm.add_constant(X)) plt.scatter(X, y) plt.plot(X, y_pred, color='r') plt.xlabel('mean_potential_difference') plt.ylabel('score_difference') plt.show() ###Output _____no_output_____ ###Markdown ###Code import matplotlib from matplotlib.font_manager import * import numpy as np import matplotlib.pyplot as plt matplotlib.rcParams['axes.unicode_minus']=False #=======自己设置开始============ #标签 labels = np.array(['Passing', 'Overall', 'Shot', 'Tackle', 'Physical']) #数据个数 dataLenth = 5 #数据 data = away_score_df.iloc[471]# data = np.array([60,70,80,90,100]) labels = [labels[i] + '(' + str(round(data[i])) + ')' for i in range(5)] #========自己设置结束============ angles = np.linspace(0, 2*np.pi, dataLenth, endpoint=False) data = np.concatenate((data, [data[0]])) # 闭合 # #将数据结合起来 angles = np.concatenate((angles, [angles[0]])) # 闭合 fig = plt.figure() ax = fig.add_subplot(121, polar=True)# polar参数!!121代表总行数总列数位置 ax.plot(angles, data, 'bo-', linewidth=1)# 画线四个参数为x,y,标记和颜色,闲的宽度 ax.fill(angles, data, facecolor='r', alpha=0.5)# 填充颜色和透明度 ax.set_thetagrids(angles * 180/np.pi , labels) ax.set_rlim(0,100) ax.grid(True) home_score_df.iloc[471] away_score_df.iloc[471] data.iloc[471].home_team_id data.iloc[471].away_team_id data.iloc[471].home_team_goal data.iloc[471].away_team_goal ###Output _____no_output_____ ###Markdown Analysis of crimes in Phoenix, AZThe analysis of crime datasets has become a standard practice among people learning data science. Not only these datasets are rich in terms of their features, but they also offer an opportunity to study a region with much more information when combined with other datasets. And finally, these studies can be used to make a safer community using the tools of data science.The city of Phoenix started to publish their crime dataset from November 2015 (other datasets are also [available](https://www.phoenix.gov/opendata)). The dataset is a CSV file (under _Neighborhood and Safetey_ category) which is updated daily by 11 am and includes incidents from November 1st, 2015 forward through 7 days before the posting date. The dataset used for this analysis is downloaded on 6 Feb 2017. In this analysis, I try to break down the crimes into different categroies and study their daily, monthly and weekly trends. CleaningI use the following packages in `Python`:* `numpy`* `pandas`* `matplotlib`* `seaborn`I use `seaborn ` only once to create a heatmap. If you don't have `seaborn` installed, the code still works without producing the heatmap. ###Code import numpy as np import pandas as pd try: # module exists import seaborn as sns seaborn_exists = True except ImportError: # module doesn't exist seaborn_exists = True import matplotlib.pyplot as plt from matplotlib.ticker import MaxNLocator %matplotlib inline # custom features of plots plt.rcParams['font.family'] = 'sans-serif' plt.rcParams['font.serif'] = 'Helvetica Neue' plt.rcParams['font.monospace'] = 'Helvetica Neue' plt.rcParams['font.size'] = 12 plt.rcParams['axes.labelsize'] = 12 plt.rcParams['axes.labelweight'] = 'bold' plt.rcParams['axes.titlesize'] = 12 plt.rcParams['xtick.labelsize'] = 12 plt.rcParams['ytick.labelsize'] = 12 plt.rcParams['legend.fontsize'] = 12 plt.rcParams['figure.titlesize'] = 12 df = pd.read_csv('./data/cleaneddataset.csv') print (df['crime'].unique()) df.head(5) # replace long names with short names crimemap = { 'MOTOR VEHICLE THEFT': 'VEHICLE THEFT', 'LARCENY-THEFT': 'LARCENY THEFT', 'MURDER AND NON-NEGLIGENT MANSLAUGHTER' : 'MURDER', 'AGGRAVATED ASSAULT': 'ASSAULT' } df['crime'].replace(crimemap, inplace=True) ###Output _____no_output_____ ###Markdown Less safe zipcodesLet's see how many crimes have happend in each zipcode during the last 15 months. Only zipcodes with more than 50 crimes are plotted. ###Code cutoff = 50 plt.figure(figsize=(15,8)) sd = df['zip'].value_counts(sort=True,ascending=True) sd.index = sd.index.astype(int) sd = sd[~(sd<cutoff)] ax = sd.plot.bar() ax.set_ylabel('Number of Incidents') ax.set_xlabel('Zipcodes with more than '+str(cutoff)+' crimes') plt.show() ###Output _____no_output_____ ###Markdown Crime monthly ###Code crime_year = pd.crosstab([df['year'],df['month']],df['crime']) """fig, ax = plt.subplots(nrows=1, ncols=1,figsize=(12,6)) crime_year.plot(kind='bar', stacked=False, grid=False,ax=ax) ax.set_ylabel("number of incidents") ax.set_xlabel("year") ax.legend(loc = (1,0.1)) ax.set_ylim(0,3000) plt.tight_layout() plt.show()""" """ax = crime_year.plot() ax.set_ylabel("number of incidents") ax.set_xlabel("year") ax.legend(loc = (1,0.1)) ax.set_ylim(0,3000) ax.set_xticklabels(ax.get_xticklabels(),rotation=90) plt.tight_layout() plt.show()""" #sns.heatmap(crime_year.T) #plt.show() # a set of colors to plot the bars color_sequence = ['#1f77b4', '#ff7f0e', '#2ca02c','#d62728','#8c564b', '#377eb8','#4daf4a','#984ea3','#f781bf'] # create the figure fig, axes = plt.subplots(nrows=3, ncols=3, figsize=(12,12), sharex=True) k=0 for i in range(0,3): for j in range(0,3): ax = axes[i,j] # selec kth columns crime_year_col = crime_year.ix[:,k] #plot the data with a selected color crime_year_col.plot(kind='bar', ax=ax, color=color_sequence[k]) ax.legend(loc = (0,1)) # rotate the x-axis ticks ax.set_xticklabels(ax.get_xticklabels(),rotation=90) ax.set_xlabel('') k+=1 plt.tight_layout() plt.show(fig) #df.time = pd.to_datetime(df['datetime'], format='%m/%d/%Y %H:%M') #df.head(5) df.groupby(['year','month'])['crime'].count().plot(kind='bar') plt.show() ###Output _____no_output_____ ###Markdown Weekly trendsTo see weekly trends| Crime | Highest | Lowest || --- | --- | --- || ARSON | Saturday (59) | Tuesday (27) || ASSAULT | Sunday (801) | Wednesday (636) || BURGLARY | Friday (2274) | Sunday (1383) || DRUG OFFENSE | Wednesday (1029) | Sunday (411) || LARCENY THEFT | Friday (5424) | Sunday (4655) || MURDER | Sunday (28) | Wednesday (15) || RAPE | Saturday (155) | Thursday (118) || ROBBERY | Wednesday (465) | Thursday (394) || VEHICLE THEFT | Friday (1221) | Thursday (1115) |While assault increase going towards the weekend, while drug offense decreases. In fact, drug offense has its peak on wednesdays. Heatmap ###Code crime_weekday = pd.crosstab(df['weekday'],df['crime']) fig, ax = plt.subplots(nrows=1, ncols=1, figsize=(12,8), sharex=True) if seaborn_exists: daysOfWeekList = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] #daysOfWeekList = ['Mon', 'Tue', 'Wed', 'Thu', 'Fri', 'Sat', 'Sun'] crime_weekday=crime_weekday.reindex(daysOfWeekList) ax=sns.heatmap(crime_weekday.T,annot=True, fmt="d",linewidths=0.5,cmap='RdBu_r') ax.set_xticklabels(ax.get_xticklabels(),rotation=30) plt.tight_layout() plt.savefig('heatmap.png') plt.show() fig, axes = plt.subplots(nrows=3, ncols=3,figsize=(12,12),sharex=True) print ('| Crime | Highest | Lowest |') print ('| --- | --- | --- |') k=0 for i in range(0,3): for j in range(0,3): ax = axes[i,j] # selec kth columns crime_weakday_col = crime_weekday.ix[:,k] crime_name = crime_weakday_col.name crime_max_label,crime_max_val = crime_weakday_col.idxmax(), crime_weakday_col.max() crime_min_label,crime_min_val = crime_weakday_col.idxmin(), crime_weakday_col.min() print ('| {} | {} ({}) | {} ({}) |'.format(crime_name,crime_max_label,crime_max_val,crime_min_label,crime_min_val)) crime_weakday_col.plot(kind='line',ax=ax,color='r',marker='o') #crime_weakday_col.plot(kind='bar',ax=ax,color='r') ax.legend(loc = (0,1)) ax.set_xticklabels(ax.get_xticklabels(),rotation=60) ax.set_xlabel('') k+=1 plt.tight_layout() plt.show(fig) ###Output | Crime | Highest | Lowest | | --- | --- | --- | | ARSON | Saturday (128) | Wednesday (92) | | ASSAULT | Saturday (1660) | Thursday (1366) | | BURGLARY | Friday (4297) | Sunday (2686) | | DRUG OFFENSE | Thursday (1868) | Sunday (963) | | LARCENY THEFT | Friday (10747) | Sunday (9360) | | MURDER | Saturday (62) | Wednesday (31) | ###Markdown Month Days trend ###Code crime_monthday = pd.crosstab(df['day'],df['crime']) fig, axes = plt.subplots(nrows=3, ncols=3,figsize=(12,12),sharex=True) #print ('| Crime | Highest | Lowest |') #print ('| --- | --- | --- |') k=0 for i in range(0,3): for j in range(0,3): ax = axes[i,j] # selec kth columns crime_monthday_col = crime_monthday.ix[:,k] '''crime_name = crime_weakday_col.name crime_max_label,crime_max_val = crime_weakday_col.idxmax(), crime_weakday_col.max() crime_min_label,crime_min_val = crime_weakday_col.idxmin(), crime_weakday_col.min() print ('| {} | {} ({}) | {} ({}) |'.format(crime_name,crime_max_label,crime_max_val,crime_min_label,crime_min_val))''' crime_monthday_col.plot(kind='line',ax=ax,color='r',marker='o') ax.legend(loc = (0,1)) ax.set_xticklabels(ax.get_xticklabels(),rotation=0) ax.set_xlabel('') k+=1 plt.tight_layout() plt.show(fig) dg = pd.crosstab(df['date'],df['crime']) for col in dg.columns: print (col) print (dg.sort_values(by=col,ascending=False).index[0:3]) ###Output ARSON Index(['2017-12-27', '2018-01-16', '2016-11-14'], dtype='object', name='date') ASSAULT Index(['2018-01-01', '2017-08-10', '2017-04-16'], dtype='object', name='date') BURGLARY Index(['2017-05-01', '2016-12-13', '2017-01-20'], dtype='object', name='date') DRUG OFFENSE Index(['2017-01-19', '2016-03-03', '2017-02-02'], dtype='object', name='date') LARCENY THEFT Index(['2017-10-01', '2015-12-19', '2016-12-14'], dtype='object', name='date') MURDER Index(['2017-06-29', '2016-02-23', '2017-10-06'], dtype='object', name='date') RAPE Index(['2016-01-01', '2016-03-01', '2017-04-01'], dtype='object', name='date') ROBBERY Index(['2017-04-25', '2017-07-13', '2017-10-28'], dtype='object', name='date') VEHICLE THEFT Index(['2017-10-13', '2016-12-26', '2016-05-06'], dtype='object', name='date') ###Markdown check zipcodes , which crime more, local buisessnes. For example, does the location of bars have any correlation with car theft or rape? ###Code daysOfWeekList = ['Monday', 'Tuesday', 'Wednesday', 'Thursday', 'Friday', 'Saturday', 'Sunday'] """wdf = pd.crosstab(df['crime'],df['weekday'])[daysOfWeekList] wdf.to_json('crime_weekly.json') wdf.to_csv('crime_weekly.csv')""" def save_crime(names): #make sure there is no white space in the filename for name in names: wdf = pd.crosstab(df['weekday'],df['crime'])[name] wdf = pd.DataFrame(wdf).reindex([daysOfWeekList]) wdf.columns = ['count'] wdf.to_csv('./crime_weekly/'+name.replace(" ", "_")+'.csv',sep=',') save_crime(sorted(df.crime.unique())) # for all types of crimes, rem sorted(df.crime.unique()) ###Output _____no_output_____ ###Markdown Intorduction Task descriptionData source: Wikipedia Clickstream https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstreamPrepare a Jupyter Notebook that shows how to:1. Determine which links people click on most frequently in a given article.2. Determine the most common referrers for a given article.3. Determine what percentage of all visitors clicked on a link within a given article.4. Determine and visualize the most popular articles people accessed from all external search engines.Requirements:1. You should create Jupyter Notebook that can be re-run to validate your tasks. Any comments in notebook oradditional readme file are welcome.2. You are free to choose any libraries you need.3. It would be great if you share your code, dependencies and notebook on Github or any other similar platform. Notebook technical aspectsMost libraries used in this notebook should be present in latest Anaconda bundle distribution (**Anaconda 5.1.0**) from [here](https://repo.continuum.io/archive/).List of main packages used in the analysis: | Package | Version | Description ||-------------|-------------|--------------------------------------------------------|| jupyter | >=1.0.0 | Code interpreter in browser environment engine || jupyterlab | >=0.31.4 | Next generation notebook environment | | numpy | >=1.14..0 | Efficient, vectorized matrix and vectror computations || pandas | >=0.22.0 | Data manipulation tool (tabular display, grouping) || matplotlib | >=2.1.2 | Basic visualization tool (2D plots) || seaborn | >=0.8.1 | Statistical visualizations tool || watermark | >=1.6.0 | Jupyter system info display |Due to archive size I chose English Wikipedia clickstream data file from June 2018 is 314 MB in compressed form:https://dumps.wikimedia.org/other/clickstream/2018-06/clickstream-enwiki-2018-06.tsv.gz Packages installation ###Code # Manual for each package #-q quite, -U upgrade if package exists and newer is avaliable !pip install -q -U jupyterlab numpy pandas matplotlib seaborn watermark # Tool to list basic properties of the system and python environment %load_ext watermark %watermark -a "Michal Dyzma" -d -m -v -p jupyterlab,numpy,pandas,matplotlib,seaborn,watermark ###Output Michal Dyzma 2018-07-19 CPython 3.6.5 IPython 6.4.0 jupyterlab 0.32.1 numpy 1.14.3 pandas 0.23.0 matplotlib 2.2.2 seaborn 0.8.1 watermark 1.6.0 compiler : MSC v.1900 64 bit (AMD64) system : Windows release : 10 machine : AMD64 processor : Intel64 Family 6 Model 60 Stepping 3, GenuineIntel CPU cores : 4 interpreter: 64bit ###Markdown Analysis Data description https://meta.wikimedia.org/wiki/Research:Wikipedia_clickstreamFor each release, and for several Wikipedia language versions, we take one months worth of requests for articles in the main namespace. Referrers are mapped to a fixed set of values, based on this scheme:an article in the main namespace -> the article titlea page from any other Wikimedia project -> other-internalan external search engine -> other-searchany other external site -> other-externalan empty referrer -> other-emptyanything else -> other-otherThe current data includes the following 4 fields:* prev: the result of mapping the referer URL to the fixed set of values described above* curr: the title of the article the client requested* type: describes (prev, curr) - link: if the referrer and request are both articles and the referrer links to the request - external: if the referrer host is not en(.m)?.wikipedia.org - other: if the referer and request are both articles but the referrer does not link to the request. This can happen when clients search or spoof their refer.* n: the number of occurrences of the (referrer, resource) pair Load data ###Code import pandas as pd import numpy as np # Download may take a while (314 MB), please be patient data = pd.read_csv('https://dumps.wikimedia.org/other/clickstream/2018-06/clickstream-enwiki-2018-06.tsv.gz', compression='gzip', sep='\t', header=None) data.columns= ['prev', 'curr', 'type', 'n'] # alternatively you can download via web browser and place in the folder with notebook # data = pd.read_csv('clickstream-enwiki-2018-06.tsv.gz', compression='gzip', sep='\t', header=None) # data.columns= ['prev', 'curr', 'type', 'n'] ###Output _____no_output_____ ###Markdown Descriptive statistics and exploratory data analysis ###Code data.head(10) data.describe(include='all') # Another way of getting table (data frame object) basic composition is info method data.info() # Any missing data? pd.isnull(data).sum().sum() ###Output _____no_output_____ ###Markdown Total amount of missing data in any of the columns is very low. ###Code pd.isnull(data).sum().sum()/len(data) * 100 #45 Missing data I wonder which are they data[data.isnull().any(axis=1)] ###Output _____no_output_____ ###Markdown Anyway, I can safely remove 45 NaN's from the dataframe ###Code data.dropna(axis=0, inplace=True) data.isnull().sum().sum() data.info() # Lets check if all examples of prev, curr and type are strings data[['prev', 'curr', 'type']].applymap(type).eq(str).all() # maximal value in n column? print('idx: {}, value = {}, type: {}'.format(data.n.idxmax(), data.n.max(), type(data.n.max()))) #Still less than np.int32 range, which is 2147483647 395349956<2147483647 # We can optimize a bit memory usage data['n'] = data['n'].astype('int32') data.info() print('idx: {}, value = {}, type: {}'.format(data.n.idxmax(), data.n.max(), type(data.n.max()))) ###Output idx: 17841134, value = 395349956, type: <class 'numpy.int32'> ###Markdown Determine which links people click on most frequently in a given article.According to wiki metadata all internal sources have type link or other, only distinction is, that links are articles requested and served, while other are requested, but referer does not link to the reqauest. So in order for link to be "clickable by people it must be connecting two articles and be of type link ###Code df_link = data[data['type'] == 'link'] # is there any other source in prev, except Unique Wiki title? '^other*' in df_link.prev.values df_link.head() ###Output _____no_output_____ ###Markdown Now, when I have links clicked from articles to articles I can group them and count frequency. I will group by curr column, since this column refers to the link requested and sum up all events recorded in n column. ###Code df_link.groupby('curr').sum().sort_values('n', ascending=False)[:5] ###Output _____no_output_____ ###Markdown Most frequently clicked link in Jun 2018 was ... **2018_FIFA_World_Cup**. Determine the most common referrers for a given article. Referrer is any element from prev column, no matter where it came from, it always leads to the wiki article in curr column. I will just group by prev in entire dataset and sum all events denoted in n column. ###Code data.groupby('prev').sum().sort_values('n', ascending=False)[:10] ###Output _____no_output_____ ###Markdown Analysis says, that in June 2018 most common referrer (2.86 bln) to wikipedia articles was group of **search engines**. It is also worth to note, that it was 2018 World Cup seazon, and it can be seen in Wikipedia clickstream results. Wiki page about World Cup Wiki pages came up also very high (7th, 8th and 9th) in top ten referrers. Determine what percentage of all visitors clicked on a link within a given article.I already calculated nuumber of links, which were served from links in df_link. Calculating percentage will be easy as: taking all events from that data frame and divide it by total number of visitors (all n summ from entire data set). ###Code 'Percentage of all visitors, who clicked on a link within a given article is {:.2%}'.format(df_link.n.sum()/data.n.sum()) ###Output _____no_output_____ ###Markdown Answer: **22.88%** Determine and visualise the most popular articles people accessed from all external search engines. I need to get all rows containing 'other-search' in prev column. Then group by curr column (requested articles) and sort by n descending. ###Code df_search = data[data['prev'].str.contains('other-search')] # Just pre-view of the data-set df_search.head() group = df_search.groupby('curr').sum().sort_values('n', ascending=False)[:20] group = group.reset_index() group import seaborn as sns import matplotlib.pyplot as plt sns.set(style="whitegrid") fig, ax = plt.subplots(figsize=(15, 20)) sns.set_color_codes("pastel") sns.barplot(x="n", y="curr", data=group, color="b") for tick in ax.yaxis.get_major_ticks(): tick.label.set_fontsize(16) for tick in ax.xaxis.get_major_ticks(): tick.label.set_fontsize(16) ax.set_title('20 Most popular articles accessed from search engines\n in June 2018', fontdict={'fontsize':30, 'fontweight': 'bold'}) ax.set_xlabel("Number of visits", fontsize=24) ax.set_ylabel('') sns.despine(left=True, bottom=True) fig.tight_layout() fig.savefig('popular_20.png', dpi=72) ###Output _____no_output_____ ###Markdown Real-Time TDDFT*Roberto Di Remigio* Running the simulationsYou will, of course, need the appropriate version of ReSpect. The following are sample files for the water molecule using HF and uncontracted cc-pVDZ basis set. Change as needed. SCF step```scf: geometry: O 0.000000 0.000000 0.000000 H 0.000000 0.000000 0.940000 H 0.903870 0.000000 -0.258105 method: hf initmo: atomic nc-model: point charge: 0 multiplicity: 1 maxiterations: 30 convergence: 1.e-7 basis: H: ucc-pvdz O: ucc-pvdz```Assuming the input file is named `scf.inp`, run with:```bashrespect --scf --inp=scf```the `scf.out_scf` output file and `scf.50` checkpoint file will be generated. If the calculation ends successfully, that is. TDSCF step(s)The TDSCF trajectory will, most likely, be calculated in batches of $n_\mathrm{steps}$ points. The first batch of points will restart from the SCF step, perform $n_\mathrm{steps}$, and save the results to the corresponding `.out_tdscf` output and `.50` checkpoint file.The template TDSCF step input is:```tdscf: spectroscopy: eas solver: magnus time-steps: nsteps x 0.005 maxiterations: 6 convergence: 1.0e-7 checkpoint: 3 field: model: delta amplitude: 0.2 direction: 1.0 0.0 0.0```this one is for the perturbation applied in the $x$ direction. We will thus have three templates, one per direction, named `tdscf_x.inp`, `tdscf_y.inp`, and `tdscf_z.inp`, respectively.Before starting the simulation, we need to substitute `nsteps` with the number of actual steps to be run in the calculation. We'll just look at the $x$ direction, but the gist should be evident. To keep everything in order:```bashnsteps_previous=0nsteps_next=5cp tdscf_x.inp ${nsteps_next}_tdscf_x.inpsed -i -e "s/nsteps/${nsteps_next}/g" ${nsteps_next}_tdscf_x.inp```The launcher script will look for a similarly named checkpoint file to start the calculation from. Instead of copying the one from SCF (or a previous TDSCF batch of points) we use symlinks:```bashif [ "$nsteps_previous" -eq "0" ]; then ln -sf scf.50 ${nsteps_next}_tdscf_x.50else ln -sf ${nsteps_previous}_tdscf_x.50 ${nsteps_next}_tdscf_x.50fi ```We are finally ready to roll with:```bashif [ "$nsteps_previous" -eq "0" ]; then respect --tdscf --inp=${nsteps_next}_tdscf_x else respect --tdscf --inp=${nsteps_next}_tdscf_x --restartfi ``` Obtain raw data from simulation outputOnce we have the output files, we are ready to extract the data from it. The Python code is inspired by the `spectrum.py` script shipped with ReSpect. We are now reading from some reference output files contained in this repository. Change paths accordingly!**WARNING** This code is written with Python 3 in mind. ###Code # All imports at the top import pathlib import numpy as np import collections import re import sys import scipy.constants import scipy.signal from scipy import interpolate from scipy.interpolate import BSpline import matplotlib.pyplot as plt from io import StringIO def read_data_from_output(fname, what): """Read time-dependent signal from output file. Parameters ---------- fname: Path The output file to read. what: str What to extract from the output, e.g. "Step EAS" for EAS data. Returns ------- A tuple with field strength, size to of the time step, and the data into a NumPy array. """ timestep = 0.0 field = 0.0 nsteps = 0 data = [] with fname.open() as handle: for line in handle: if what in line: data.append(np.loadtxt(StringIO(line), dtype=float, usecols=(4, 5, 6, 7))) elif 'time step length:' in line: timestep = float(line.split()[-1]) elif 'field strength:' in line: field = float(line.split()[-1]) elif 'number of time steps:' in line: nsteps = int(line.split()[-1]) signalTD = np.array(data) return field, timestep, signalTD ###Output _____no_output_____ ###Markdown The data is read in using an intrinsic NumPy function. The return time is an array of size number of time steps _times_ 4, the number of columns comprising the energy and the $x$, $y$, and $z$ components of the detected signal. ###Code def check_equal(iterator): """Checks that the contents of iterator are all equal. """ iterator = iter(iterator) try: first = next(iterator) except StopIteration: return True return all(first == rest for rest in iterator) def reader(data_dir, root_name): """Read data from output files. Parameters ---------- data_dir: Path Path to the directory with the output files. root_name: str Common root of the output filenames. Returns ------- The filename of a NumPy compressed array. This is saved to the current working directory and contains the data extracted from the plain-text files. Notes ----- It is assumed that simulations in the three Cartesian directions have been performed and the output is saved to filenames `root_name`_{x,y,z}.out_tdscf """ # Get out_tdscf files, sorted by direction (x, y, z) out_tdscf = sorted(data_dir.glob('{}*.out_tdscf'.format(root_name))) raw_signal = {} field = 0.0 timestep = 0.0 what = 'Step EAS' # What to extract for _, v in enumerate(out_tdscf): # Get filename, split on underscore, get the last element in the list # FIXME this is not a general way to extract this information # FIXME (probably?) the field is assumed to always have the same strength! direction = v.stem.replace(root_name + '_', '') field, timestep, data = read_data_from_output(v, what) raw_signal.update({direction : data}) # Check that sizes of raw data are matching, abort if not error_message = '' if not check_equal((v.shape for v in raw_signal.values())): error_message += ' Shapes of TD signals in different directions DO NOT MATCH\n' for k, v in raw_signal.items(): error_message += ' {0} direction has shape {1}'.format(k, v.shape) error_message += '\n ( check whether the input file is formatted correctly )' print(error_message) sys.exit(-1) # Save to compressed NumPy array the raw data npz_name = '{}-raw_TD-data.npz'.format(root_name) np.savez(npz_name, field=field, timestep=timestep, nsteps=raw_signal['x'].shape[0], xdata=raw_signal['x'], ydata=raw_signal['y'], zdata=raw_signal['z']) print('Raw data saved to {}'.format(npz_name)) return npz_name ###Output _____no_output_____ ###Markdown We are now ready to run the analysis. At each time step $t_{i}$ we have an induced signal matrix $G^{(i)}_{uv}$ with $u, v \in {x, y, z}$. We will save the whole thing, even though to get the spectrum only the trace of the induced signal is needed: $G^{(i)} = \frac{1}{3}\mathrm{tr} \mathbf{G}^{(i)}$. This approach is possibly a bit wasteful of memory, but it could make it easier to extend to the extraction of higher order properties. ###Code # Extract the diagonal components of the induced signal, i.e. t-direction signal from t-direction perturbation # At each time step we have a signal matrix G_{ij}(\omega), # so our data structure will be a list (which gives the step-indexing) of matrices. # We define a custom data structure by means of a namedtuple class Signal(collections.namedtuple('Signal', 'nsteps timestep field signal')): __slots__ = () def __new__(cls, raw_data): nsteps, timestep, signal = cls._signal_from_raw_data(raw_data) field_strength = raw_data.f.field return super(cls, Signal).__new__(cls, nsteps, timestep, field_strength, signal) def _signal_from_raw_data(raw): """Read raw data into more amenable data structures Parameters ---------- raw: dict Raw signal. Returns ------- A tuple of data from the analysed trajectory. """ # Extract timestep timestep = raw.f.timestep # Extract number of steps nsteps = raw.f.nsteps # Stacking TD signals for the various direction into a 3-Dimensional array # The first dimension is the time step, # the second dimension is the direction of the perturbing field (x: 0, y: 1, z: 2), # the third dimension is the detection direction for the induced signal (x: 0, y: 1, z: 2) # Hence: signal_timestep_view[n] is the full 3x3 induced signal at time step n. # NOTE: We are discarding the energy. signal_timestep_view = np.stack((raw.f.xdata[:, 1:], raw.f.ydata[:, 1:], raw.f.zdata[:, 1:]), axis=1) return nsteps, timestep, signal_timestep_view def compute_spectrum(cls, prefactor, field_time=0.0, damping=None, scaling=1.0): """Compute the spectrum from the time-dependent signal using the Fast Fourier Transform. Parameters ---------- prefactor: function Prefactor for the spectroscopy, e.g. :math:`\frac{4\pi\omega}{3c}` for EAS. field_time: float, optional Center of perturbing field. damping: float, optional Damping factor for the computed signal. scaling: float, optional Scaling factor for the spectrum. Returns ------- A tuple with the spectrum and poles. The `spectrum` is a tuple of NumPy arrays: (frequency, intensity). The `poles` is a tuple of NumPy arrays: (frequency at pole, intensity at pole) Notes ----- https://docs.scipy.org/doc/numpy/reference/routines.fft.html """ # Compute isotropic average of the signal signal_iso = np.array([np.trace(v)/3.0 for v in cls.signal]) signal_iso /= cls.field # Generate array of time steps time = np.array([i*cls.timestep for i in range(cls.nsteps)]) # Set damping factor if damping is None: damping = -np.log(0.005) / time[-1] # Report settings cls._report(time[-1], damping, field_time) # Damp isotropic average of signal signal_iso *= np.exp(-damping * time) # Real discrete Fourier transform # signal_iso is now the signal in the frequency domain signal_iso = np.fft.rfft(signal_iso) # Get the frequencies, only the positive part is relevant freq = np.fft.rfftfreq(time.size) # for an even number of points, make the last frequency positive freq[-1] = abs(freq[-1]) freq *= 2 * np.pi / cls.timestep # Correct the phase to get the factor d_k in \sum_k d_k \exp(-iw_k t) from real-FFT signal_iso *= - np.exp(1j * field_time * freq) # Normalize signal_iso *= cls.timestep # Detect poles by looking at the maxima of the imaginary (absorptive) part of the signal pole_idx = sorted(scipy.signal.argrelmax(np.imag(signal_iso))[0]) # The frequency-dependent polarizability (FDP) as a tuple of NumPy arrays. # alpha[0] is the array of frequencies (a.u.) # alpha[1] is the complex FDP (a.u.) alpha = (freq, signal_iso) # The poles of the FDP as a tuple of NumPy arrays. # alpha_poles[0] is the array of poles (a.u.) # alpha_poles[1] is the complex FDP at the poles, scaled by the damping factor (a.u.) alpha_poles = (freq[pole_idx], signal_iso[pole_idx] * damping) # Get the spectrum, i.e. apply spectroscopy-specific prefactor and scaling to the FDP factor = np.array([prefactor(omega) for omega in alpha[0]]) intensity = np.multiply(alpha[1].real, factor.real) + 1j * np.multiply(alpha[1].imag, factor.imag) spectrum = (alpha[0], intensity * scaling) # Get the poles, i.e. apply spectroscopy-specific prefactor and scaling to the poles of the FDP poles = (spectrum[0][pole_idx], spectrum[1][pole_idx] * damping) return spectrum, poles def _report(cls, final_time, damping, field_time): """Print report on spectrum calculation. """ report = ''' RT-TDDFT Analysis --- Computing EAS Number of steps = {nsteps:4d} Time step = {timestep:.3E} a.u. Field strength = {field:.3E} a.u. Field centered at time = {fieldtime:.3E} a.u. Damping = {damping:.3E} a.u. Resolution = {resEh:14.8f} E_h ({reseV:14.8f} eV) Hartree energy = {hartree2eV:20.8f} eV Speed of light = {c:20.8f} a.u. ''' # Resolution in E_h resEh = 2 * np.pi / (final_time - field_time) reseV = resEh * scipy.constants.value('Hartree energy in eV') print(report.format(nsteps=cls.nsteps, hartree2eV=scipy.constants.value('Hartree energy in eV'), c=scipy.constants.value('inverse fine-structure constant'), timestep=cls.timestep, field=cls.field, fieldtime=field_time, damping=damping, resEh=resEh, reseV=reseV)) def eas_prefactor(omega): """ Prefactor for EAS spectroscopy. Parameters ---------- omega: float Frequency Returns ------- The prefactor for EAS spectroscopy as a complex number. .. math:: f(\omega) = 1 + \mathrm{i}\frac{4\pi\omega}{3c} Notes ----- Why a complex number? Because the EAS spectrum is the imaginary (absorptive) part of the frequency-dependent polarizability and the scaling need only be applied to that part. """ c = scipy.constants.value('inverse fine-structure constant') return np.complex(1.0, (4.0 * np.pi * omega) / (c)) ###Output _____no_output_____ ###Markdown Since the spectrum is only known at a discrete set of point, we will have to interpolate to get a smooth curve. We use B-spline interpolation as implemented in `scipy`. ###Code def cubic_spline_smoothing(x, y, s): """Smoothing cubic spline. Parameters ---------- x: array_like Array of x values y: array_like Array of corresponding y values s: float Spline smoothing parameter Returns ------- A tuple with the x values in the interval and the y values computed from the smoothing spline """ t, c, k = interpolate.splrep(x, y, s=s, k=3) spline = BSpline(t, c, k, extrapolate=False) x_smooth = np.linspace(x.min(), x.max(), 3 * x.shape[0]) return (x_smooth, spline(x_smooth)) def filter_spectrum_data(data, threshold): """ Filter the spectrum tuple based on its first dimension. """ indexing = np.where(data[0] <= threshold) return (data[0][indexing], data[1][indexing]) # Where is the data? We use pathlib to manipulate paths (directories and files) data_dir = pathlib.Path('ref').resolve() print('Where is the data? {}\n'.format(data_dir)) root_name = '20_tdscf' npz_file_name = reader(data_dir, root_name) raw_signal = np.load(npz_file_name) signal = Signal(raw_signal) spectrum, poles = signal.compute_spectrum(eas_prefactor) # We are now ready to plot the spectrum. # The energy scale of the spectrum data structure is in Hartree, but we can easily convert it to electronvolt. Hartree2eV = scipy.constants.value('Hartree energy in eV') spectrum_eV = (spectrum[0] * Hartree2eV, spectrum[1]) # x is the excitation energy axis (eV). It is the same for all data sets # y is the imaginary part of the intensity (arbitrary units) # We interpolate with a cubic B-spline with smoothing factor 0.01 x, y = cubic_spline_smoothing(spectrum_eV[0], np.imag(spectrum_eV[1]), s=0.01) plt.xlim(2.5, x.max()) plt.ylim(0.0, np.amax(y) + 0.5) plt.plot(x, y, label='Vacuum') plt.xlabel('Energy[eV]', fontsize=14) plt.ylabel('$I(\omega)$[arb. units]', fontsize=14) plt.legend(fontsize=14) # Save plot to file fname = str(pathlib.Path('RT-spectrum.svg').resolve()) plt.savefig(fname, format='svg', dpi=300, bbox_inches='tight') plt.show() print('Analysis for uranyl') Hartree2eV = scipy.constants.value('Hartree energy in eV') print('Computing TD signal and spectrum in vacuum') root_name = 'UO2_2+_magnus-delta' npz_file_name = reader(data_dir, root_name) raw_signal = np.load(npz_file_name) signal = Signal(raw_signal) vacuum, poles = signal.compute_spectrum(eas_prefactor) print('Computing TD signal and spectrum in water, delayed propagation') root_name = 'UO2_2+_magnus-delta_pcm' npz_file_name = reader(data_dir, root_name) raw_signal = np.load(npz_file_name) signal = Signal(raw_signal) delayed, poles = signal.compute_spectrum(eas_prefactor) print('Computing TD signal and spectrum in water, equilibrium propagation') root_name = 'UO2_2+_magnus-delta_eq+pcm' npz_file_name = reader(data_dir, root_name) raw_signal = np.load(npz_file_name) signal = Signal(raw_signal) equilibrium, poles = signal.compute_spectrum(eas_prefactor) # We are now ready to plot the spectrum. # The energy scale of the spectrum data structure is in Hartree, but we can easily convert it to electronvolt. vacuum_eV = (vacuum[0] * Hartree2eV, vacuum[1]) # Plot only below 16 eV vacuum_eV = filter_spectrum_data(vacuum_eV, 16.0) delayed_eV = (delayed[0] * Hartree2eV, delayed[1]) # Plot only below 16 eV delayed_eV = filter_spectrum_data(delayed_eV, 16.0) equilibrium_eV = (equilibrium[0] * Hartree2eV, equilibrium[1]) # Plot only below 16 eV equilibrium_eV = filter_spectrum_data(equilibrium_eV, 16.0) # x is the excitation energy axis (eV). It is the same for all data sets # y is the imaginary part of the intensity (arbitrary units) # We interpolate with a cubic B-spline with smoothing factor 0.01 x, y_vacuum = cubic_spline_smoothing(vacuum_eV[0], np.imag(vacuum_eV[1]), s=0.01) _, y_delayed = cubic_spline_smoothing(delayed_eV[0], np.imag(delayed_eV[1]), s=0.01) _, y_equilibrium = cubic_spline_smoothing(equilibrium_eV[0], np.imag(equilibrium_eV[1]), s=0.01) plt.xlim(2.5, x.max()) plt.ylim(0.0, max(np.amax(y_vacuum), np.amax(y_delayed), np.amax(y_equilibrium)) + 0.5) plt.plot(x, y_vacuum, label='Vacuum') plt.plot(x, y_delayed, label='Water, delayed') plt.plot(x, y_equilibrium, label='Water, equilibrium') plt.xlabel('Energy [eV]', fontsize=14) plt.ylabel('$I(\omega)$ [arb. units]', fontsize=14) plt.legend(fontsize=14) fname = str(pathlib.Path('uranyl-RT-spectrum.svg').resolve()) plt.savefig(fname, format='svg', dpi=300, bbox_inches='tight') plt.show() ###Output Analysis for uranyl Computing TD signal and spectrum in vacuum Raw data saved to UO2_2+_magnus-delta-raw_TD-data.npz RT-TDDFT Analysis --- Computing EAS Number of steps = 10001 Time step = 2.000E-01 a.u. Field strength = 5.000E-04 a.u. Field centered at time = 0.000E+00 a.u. Damping = 2.649E-03 a.u. Resolution = 0.00314159 E_h ( 0.08548709 eV) Hartree energy = 27.21138602 eV Speed of light = 137.03599914 a.u. Computing TD signal and spectrum in water, delayed propagation Raw data saved to UO2_2+_magnus-delta_pcm-raw_TD-data.npz RT-TDDFT Analysis --- Computing EAS Number of steps = 10001 Time step = 2.000E-01 a.u. Field strength = 5.000E-04 a.u. Field centered at time = 0.000E+00 a.u. Damping = 2.649E-03 a.u. Resolution = 0.00314159 E_h ( 0.08548709 eV) Hartree energy = 27.21138602 eV Speed of light = 137.03599914 a.u. Computing TD signal and spectrum in water, equilibrium propagation Raw data saved to UO2_2+_magnus-delta_eq+pcm-raw_TD-data.npz RT-TDDFT Analysis --- Computing EAS Number of steps = 10001 Time step = 2.000E-01 a.u. Field strength = 5.000E-04 a.u. Field centered at time = 0.000E+00 a.u. Damping = 2.649E-03 a.u. Resolution = 0.00314159 E_h ( 0.08548709 eV) Hartree energy = 27.21138602 eV Speed of light = 137.03599914 a.u. ###Markdown TüEyeQ AnalysisThis notebook contains experiments and plots accompanying the TüEyeQ data set. Please refer to our paper when using this script: [citation]The TüEyeQ data set can be downloaded at [link].This notebook comprises the following parts:1. Load Packages and Data2. General Analysis of the Raw Data (prior to pre-processing)3. Preprocessing4. Distance Correlations of Features5. Logistic Regression Model---This code is published under the MIT license.*Copyright (c) 2020 Johannes Haug* 1. Load Packages and Data ###Code import numpy as np import pandas as pd from sklearn.preprocessing import MinMaxScaler import matplotlib.pyplot as plt from sklearn.model_selection import train_test_split from sklearn.metrics import roc_auc_score, roc_curve from sklearn.linear_model import LogisticRegression import shap from lime import lime_tabular import dcor import pickle tiq = pd.read_csv('./data/cft_full.csv') # !!! you may need to substitute this with a different path to the data tiq.head() tiq.shape ###Output _____no_output_____ ###Markdown 2. General AnalysisNext, we investigate frequencies and distributions of the raw (unprocessed) data set. Solved TasksHere, we illustrate the **number of participants, who managed to solve each task correctly**. In addition, we show the incremental mean of participants and the number of unsolved tasks. Note that the tasks are shown in the order of appearance. Each block of tasks is highlighted in a different color. We also indicate all tasks with an error during the data collection process. ###Code color_palette = ['#fee090','#91cf60','#e0f3f8','#91bfdb'] tasks = tiq.groupby('task_id', sort=False)['cft_task'].sum() # sum of participants who solved the task mean = pd.Series(tasks.values).expanding().mean() # incremental mean no. of participants with correct answer # Count number of NaNs (i.e. no. of participants that did not solve the task) unsolved = tiq[['task_id','cft_task']].copy() unsolved['cft_task'] = unsolved['cft_task'].isnull() unsolved = unsolved.groupby('task_id', sort=False)['cft_task'].sum() itr = 0 # task iterator clr = 0 # color indicator group_size = [15,15,14,10] # no. tasks per group fig = plt.figure(figsize=(20,5)) for tk in tasks.items(): if itr == group_size[clr]: itr = 0 # reset iterator (next task group begins) clr += 1 # increment color indicator # Mark erroneous measurements with pattern if tk[0][-1] == 'e': pattern = '//' else: pattern = '' plt.bar(tk[0], tk[1], color=color_palette[clr], hatch=pattern, label='_nolegend_') itr += 1 # increment task iterator # Line plot of incremental mean plt.plot(unsolved.keys(), mean, color='black', lw=2, marker='.', markersize=12, label='Incremental Mean') # Line plot of unsolved tasks plt.plot(unsolved.keys(), unsolved.values, color='black', lw=2, ls=':', marker='x', markersize=8, label='Participants without an answer') plt.ylabel('Participants with Correct Answer', size=12) plt.xlabel('Task', size=12) plt.xticks(rotation=90) plt.xlim(-1, 54) plt.ylim(0, 335) plt.legend() # Save histogram plt.savefig('./figures/task_histogram.pdf', bbox_inches='tight', format='pdf') plt.savefig('./figures/task_histogram.png', bbox_inches='tight', format='png') plt.plot() ###Output _____no_output_____ ###Markdown BiasWe **investigate whether the data is biased against age or gender**. To this end, we plot the distribution/frequency of both variables, as well as the normalized fraction of correctly solved tasks. ###Code # Generic function to plot distribution histogram (bar chart) def plot_bar(x, y_1, y_2, x_ticklabels, label_x, label_y, path, stacked=False): wd = .4 if stacked: plt.bar(x, y_1, color='#91bfdb') plt.bar(x, y_2, color='#fc8d59', bottom=y_1) else: plt.bar(x - wd/2, y_1, width=wd, color='#91bfdb') plt.bar(x + wd/2, y_2, width=wd, color='#fc8d59') plt.ylim(0,1) plt.xlabel(label_x, size=12) plt.xticks(x, x_ticklabels) plt.ylabel(label_y, size=12) plt.xlim(min(x)-.5, max(x)+.5) plt.legend(['Male','Female'], loc='upper right') plt.savefig('./figures/{}.png'.format(path), bbox_inches='tight', format='png') plt.savefig('./figures/{}.pdf'.format(path), bbox_inches='tight', format='pdf') plt.show() ############################################################################## # Plot histogram of age and gender age_count_male = tiq[tiq['gender'] == 1]['age'].value_counts().sort_index() # count male participants per age age_count_female = tiq[tiq['gender'] == 2]['age'].value_counts().sort_index() # count female participants per age # Correctly solved tasks per age and gender tasks_age_male = tiq[tiq['gender'] == 1].groupby('age', sort=False)['cft_task'].sum().sort_index() tasks_age_female = tiq[tiq['gender'] == 2].groupby('age', sort=False)['cft_task'].sum().sort_index() plot_bar(age_count_male.keys(), age_count_male.values, age_count_female.values, age_count_male.keys().values.astype(int), 'Age', 'No. of Tasks', 'age_hist', True) plot_bar(age_count_male.keys(), tasks_age_male.values / age_count_male.values, tasks_age_female.values / age_count_female.values, age_count_male.keys().values.astype(int), 'Age', 'Norm. % of Tasks Solved Correctly', 'age_tasks_norm') ###Output _____no_output_____ ###Markdown CFT DistributionWe investigate the histogram of the aggregated CFT score (cft_sum_full) and find that it is approximately normally distributed. ###Code cft_unique = tiq[['subject', 'cft_sum_full']].drop_duplicates() # extract unique subjects cft_unique.hist(bins=26, color='#91bfdb') # separate into 26 bins, since there are 26 unique aggr. CFT scores plt.grid(False) plt.title(None) plt.xlabel('Aggregated CFT', size=12) plt.ylabel('No. of Participants', size=12) # Save histogram plt.savefig('./figures/cft_histogram.png', bbox_inches='tight', format='png') plt.savefig('./figures/cft_histogram.pdf', bbox_inches='tight', format='pdf') plt.show() ###Output _____no_output_____ ###Markdown 3. PreprocessingAll subsequent analysis requires the data set to be preprocessed. For illustration, we consider a binary classification scenario of **cft_task (target)**. Specifically, we use the **true class "correct answers (label 1)"** and the **negative class "wrong answers (label 0)"**. We ignore missing answers (NaN values) in this experiment (removes 1,248 observations).Specifically, we apply the following pre-processing steps:1. Specify the categorical and the continuous features (according to the paper)1. Remove all observations with missing target (i.e. NaN value in cft_task).2. Remove subject and cft_sum_full to avoid information leakage due to high dependendy with the target.3. Impute NaN-values in categorical features with a new category.4. Impute NaN-values in continuous features with the median.5. Factorize the categorical features (to encode strings as integers).6. Normalize the continuous features to the intervall [0,1] (since we will be using l2-regularization).7. Split data into a training and test set (20% holdout for testing) ###Code # 1. Extract categorical and continuous features ftr_cont = ['mean_grade_degree','grades_math', 'grades_german', 'grades_biology', 'grades_physics', 'grades_chemistry','grades_geography','grades_history','grades_art', 'gaming_hours_weekly_min', 'gaming_hours_weekly_max', 'cft_sum_full'] ftr_cat = tiq.iloc[:,~tiq.columns.isin(ftr_cont)].columns.tolist() # Remove the target 'cft_task' from the list of categorical features ftr_cat.remove('cft_task') # 2. Remove all observations with missing target tiq = tiq[tiq['cft_task'].notna()] # 3. Remove subject and cft_sum_full, due to possible information leakage # Note that we did NOT remove these variables for the computation of the distance correlation as reported in the paper # However, it should be noted that none of these variables has a pairwise correlation above 0.5 tiq = tiq.drop(['subject','cft_sum_full'], axis=1) ftr_cat.remove('subject') ftr_cont.remove('cft_sum_full') # 4. Impute NaN-values in categorical features with a new category tiq[ftr_cat] = tiq[ftr_cat].fillna('new_category') # 5. Impute NaN-values in continuous features with the median medians = tiq[ftr_cont].median() tiq[ftr_cont] = tiq[ftr_cont].fillna(medians) # 6. Factorize the categorical features tiq[ftr_cat] = tiq[ftr_cat].apply(lambda x: pd.factorize(x)[0]) # 7. Normalize the continuous features tiq[ftr_cont] = MinMaxScaler().fit_transform(tiq[ftr_cont]) # 8. Train/Test split of the data X_train, X_test, y_train, y_test = train_test_split(tiq.drop('cft_task', axis=1), tiq['cft_task'], test_size=.2, random_state=42) ###Output _____no_output_____ ###Markdown 4. Distance CorrelationsWe compute the pairwise Distance Correlation of features in a test set according toSzékely, Gábor J., Maria L. Rizzo, and Nail K. Bakirov. "Measuring and testing dependence by correlation of distances." The annals of statistics 35.6 (2007): 2769-2794. ###Code # Compute Distance Correlation (on a sample of the data) # !!! Note that we also provide pre-computed distance correlation scores, which can be loaded in the next cell !!! dist_crl = [] combs = set() # save feature combinations crl_sample = tiq.sample(frac=0.2, random_state=42) # sample a test set (as computation of distance correlation is costly) for ftr1 in crl_sample: for ftr2 in crl_sample: # Check if feature combination was already evaluated (distance correlation is symmetric!) if '{}-{}'.format(ftr1, ftr2) not in combs and '{}-{}'.format(ftr2, ftr1) not in combs and ftr1 != ftr2: combs.add('{}-{}'.format(ftr1, ftr2)) # add feature pair to list of combinations dist_crl.append([ftr1, ftr2, dcor.distance_correlation(crl_sample[ftr1], crl_sample[ftr2])]) print(dist_crl[-1]) dist_crl = pd.DataFrame(dist_crl, columns=['Feature 1', 'Feature 2', 'Dist. Correlation']) # Save/Load the Distance correlation object #filehandler = open('./pre-computed/distance_correlation_full.obj', 'wb') #pickle.dump(dist_crl, filehandler) # Save Object filehandler = open('./pre-computed/distance_correlation.obj', 'rb') dist_crl = pickle.load(filehandler) # Load Object filehandler.close() # Plot most strongly correlated features top_crl = dist_crl.reindex(dist_crl['Dist. Correlation'].sort_values(ascending=False).index).reset_index(drop=True) # sort values top_crl['Dist. Correlation'] = top_crl['Dist. Correlation'].round(5) # round scores ltx_crl = top_crl.iloc[:54,:] # select top entries print(ltx_crl.to_latex(index=False)) # plot in latex style # Plot histogram of the distance correlation scores def plot_hist(var, b, xmin, xlabel, ylabel, path): var.hist(bins=b, color='#91bfdb') plt.grid(False) plt.xlim(xmin, 1) plt.title(None) plt.xlabel(xlabel, size=12) plt.ylabel(ylabel, size=12) # Save histogram plt.savefig('./figures/{}_histogram.png'.format(path), bbox_inches='tight', format='png') plt.savefig('./figures/{}_histogram.pdf'.format(path), bbox_inches='tight', format='pdf') plt.show() ############################################################################## plot_hist(dist_crl, 100, 0, 'Distance Correlation', 'No. of Feature Pairs', 'dist_corr') # Plot correlation with cft_sum_full cft_crl = top_crl[(top_crl['Feature 1'] == 'cft_sum_full') | ((top_crl['Feature 2'] == 'cft_sum_full'))].iloc[:20,:] print(cft_crl.to_latex(index=False)) # plot in latex style ###Output \begin{tabular}{llr} \toprule Feature 1 & Feature 2 & Dist. Correlation \\ \midrule grades\_math & cft\_sum\_full & 0.34335 \\ mean\_grade\_degree & cft\_sum\_full & 0.29253 \\ grades\_chemistry & cft\_sum\_full & 0.24498 \\ grades\_physics & cft\_sum\_full & 0.22522 \\ native\_german\_father & cft\_sum\_full & 0.21195 \\ education\_father & cft\_sum\_full & 0.20961 \\ cft\_task & cft\_sum\_full & 0.20898 \\ native\_language\_father & cft\_sum\_full & 0.20001 \\ grades\_biology & cft\_sum\_full & 0.18949 \\ programming\_experience & cft\_sum\_full & 0.17870 \\ spreadsheet\_usage & cft\_sum\_full & 0.14477 \\ native\_german\_mother & cft\_sum\_full & 0.13621 \\ native\_german & cft\_sum\_full & 0.13383 \\ text\_editor\_usage & cft\_sum\_full & 0.13258 \\ education\_mother & cft\_sum\_full & 0.13026 \\ leisure\_travel\_tourism & cft\_sum\_full & 0.12710 \\ grades\_art & cft\_sum\_full & 0.12149 \\ age & cft\_sum\_full & 0.12012 \\ grades\_german & cft\_sum\_full & 0.11945 \\ training\_father & cft\_sum\_full & 0.11916 \\ \bottomrule \end{tabular} ###Markdown 5. Logistic Regression ModelFor illustration, we train a simple Logistic Regression model to predict the **cft_task (target)**. We also compute the **SHAP and LIME values** to quantify every feature's contribution in the prediction.Specifically, we perform the following training and evaluation steps:1. Train and test the Logistic Regression (LR) model2. Plot the weights of the LR model3. Compute Shapley values for the LR model4. Compute LIME values for the LR model ###Code # Function to plot ROC curve def plot_roc(y_pred, path): # Compute ROC-AUC Score auc = roc_auc_score(y_test, y_pred) # Plot ROC Curve fpr, tpr, _ = roc_curve(y_test, y_pred) plt.plot(fpr, tpr, color='#4575b4', label='ROC Curve (AUC = {})'.format(round(auc, 4)), lw=2) plt.plot([0, 1], [0, 1], color='black', ls='--', label='_nolegend_', lw=2) plt.xlim(0,1) plt.ylim(0,1) plt.xlabel('False Positive Rate', size=12) plt.ylabel('True Positive Rate', size=12) plt.legend() plt.savefig('{}.pdf'.format(path), bbox_inches='tight', format='pdf') # save as PDF plt.savefig('{}.png'.format(path), bbox_inches='tight', format='png') # save as PNG plt.show() # 1. Train and test the LR model model = LogisticRegression(penalty='l2', random_state=42, max_iter=1000, solver='lbfgs') model.fit(X_train, y_train) y_pred = model.predict_proba(X_test) plot_roc(y_pred[:,1], './figures/roc_lr') # 2. Plot the weights of the LR model coef = model.coef_.flatten() coef_idx = abs(coef).argsort()[-20:] # get indices of top coefficients coef_sorted = coef[coef_idx] coef_names = X_test.columns[coef_idx] # get coefficient names fig = plt.figure(figsize=(8,6)) plt.xlabel('Logistic Regression Coefficient', size=12) plt.ylabel('Feature', size=12) plt.barh(coef_names, coef_sorted, color='#4575b4') plt.ylim(-1,20) plt.vlines(0, -1, 21, ls='--') plt.savefig('./figures/coef_lr.pdf', bbox_inches='tight', format='pdf') # save as PDF plt.savefig('./figures/coef_lr.png', bbox_inches='tight', format='png') # save as PNG plt.show() # 3. Compute SHAP (LinearSHAP) reference_X = shap.sample(X_train, 100) explainer = shap.LinearExplainer(model, reference_X) shap_values = explainer.shap_values(X_test) shap.summary_plot(shap_values, X_test, show=False) plt.savefig('./figures/shap_lr.png', bbox_inches='tight', format='png') plt.savefig('./figures/shap_lr.pdf', bbox_inches='tight', format='pdf') plt.show() # 4. Compute LIME (TabularLIME) lime_exp = lime_tabular.LimeTabularExplainer( reference_X.to_numpy(), feature_names=X_test.columns.values.tolist(), discretize_continuous=False, random_state=42 ) lime_mean = np.zeros(X_test.shape[1]) for xt in X_test.to_numpy(): # Compute average LIME scores exp = lime_exp.explain_instance(xt, model.predict_proba, num_samples=100, num_features=X_test.shape[1], top_labels=2).local_exp for itm in exp[1]: # collect explanations for positive class (label=1) lime_mean[itm[0]] += itm[1] # sum local explanations lime_mean /= X_test.shape[0] # compute mean attribution lime_mean_idx = abs(lime_mean).argsort()[-20:] # get indices of top coefficients lime_mean_sorted = lime_mean[lime_mean_idx] coef_names = X_test.columns[lime_mean_idx] # get coefficient names fig = plt.figure(figsize=(8,6)) plt.xlabel('Average LIME Attribution', size=12) plt.ylabel('Feature', size=12) plt.barh(coef_names, lime_mean_sorted, color='#4575b4') plt.ylim(-1,20) plt.vlines(0, -1, 21, ls='--') plt.savefig('./figures/lime_lr.pdf', bbox_inches='tight', format='pdf') # save as PDF plt.savefig('./figures/lime_lr.png', bbox_inches='tight', format='png') # save as PNG plt.show() ###Output _____no_output_____ ###Markdown Performing Analysis on Nutrtient Data- Using the New Zealand Food Composition Database ###Code import math import requests import string import pandas as pd import numpy as np # working director with the api food_url = "https://api.foodcomposition.co.nz/api/food" # response = requests.get(food_url) # foods_df = pd.json_normalize(response.text) food_file = './food-data/nz-concise-13-edition.xlsx' food_df = pd.read_excel(food_file) renamed_columns = {} for i, column in enumerate(food_df.columns): unit = food_df.iloc[1][i] if unit is not np.nan: renamed_columns[food_df.columns[i]] = f'{column.replace(" "," ").title()}, {unit}' food_df.rename(columns = renamed_columns, inplace=True) # columns have units food_df.drop([0, 1, 2], inplace=True) # remove empty rows food_df food_df = food_df[food_df["FoodID"].notnull()] food_df # egg # chicken_wings # beef # carrots # strawberries # blueberries # honey # banana # apple # mushrooms list(food_df.columns) # Eggs egg_match = food_df[food_df['Short Food Name'].str.contains("^Egg,")] egg_match from typing import NamedTuple, Tuple class Food(NamedTuple): """ Food parameters name (str): name of the food TODO: add more params protein (Tuple(float, str)): amount and unit e.g. 10 g carbohydrate (Tuple(float, str)): amount and unit e.g. 10 g fat (Tuple(float, str)): amount and unit e.g. 10 g Example egg = Food("egg", "G1001" (10, g), # protein 10 grams ... (10, g), # fat ) """ food_id: str food_name: str water: Tuple[float, str] energy: Tuple[float, str] energy_nip: Tuple[float, str] protein: Tuple[float, str] fat: Tuple[float, str] carbohydrate: Tuple[float, str] dietary_fibre: Tuple[float, str] sugars: Tuple[float, str] startch: Tuple[float, str] sfa: Tuple[float, str] mufa: Tuple[float, str] pufa: Tuple[float, str] alpha_linolec_acid: Tuple[float, str] linoleic_acid: Tuple[float, str] cholesterol: Tuple[float, str] sodium: Tuple[float, str] iodine: Tuple[float, str] potassium: Tuple[float, str] phosphorus: Tuple[float, str] calcium: Tuple[float, str] iron: Tuple[float, str] zinc: Tuple[float, str] selenium: Tuple[float, str] vitamin_a: Tuple[float, str] beta_carotene: Tuple[float, str] thiamin: Tuple[float, str] riboflavin: Tuple[float, str] niacin: Tuple[float, str] vitamin_b6: Tuple[float, str] vitamin_b12: Tuple[float, str] dietary_folate: Tuple[float, str] vitamin_c: Tuple[float, str] vitamin_d: Tuple[float, str] vitamin_e: Tuple[float, str] def __repr__(self): INDENT = 10 return f""" {self.name} {'-' * len(self.name)} {'Protein'.ljust(INDENT)}{self.protein[0]} ({self.protein[1]}) {'Carbs'.ljust(INDENT)}{self.carbohydrate[0]} ({self.carbohydrate[1]}) {'Fat'.ljust(INDENT)}{self.fat[0]} ({self.fat[1]}) """ # eggs use G1001 as an example food_df[food_df["FoodID"]=="G1001"]["Protein, g"].values[0] food_ids = ["G1001"] for food_id in food_ids: for macro in food_df.columns: if macro in ["FoodID", "Short Food Name"]: macro_nutrient = food_df[food_df["FoodID"]==food_id][macro].values[0] elif macro not in ["Measure, g"]: macro_nutrient = ( food_df[food_df["FoodID"]==food_id][macro].values[0], macro.split(',')[-1].replace(" ", "") ) print(macro_nutrient) ###Output G1001 Egg, chicken, white & yolk, boiled Egg, chicken, white & yolk, boiled (76.9, 'g') (568, 'kJ') (568, 'kJ') (12.2, 'g') (9.5, 'g') (0.6, 'g') (0, 'g') (0.6, 'g') (0, 'g') (2.6, 'g') (4, 'g') (0.9, 'g') (nan, 'g') (nan, 'g') (395, 'mg') (140, 'mg') (46, 'µg') (140, 'mg') (190, 'mg') (52, 'mg') (1.8, 'mg') (1.1, 'mg') (23, 'µg') (105, 'µg') (0, 'µg') (0.05, 'mg') (0.44, 'mg') (3.8, 'mg') (0.06, 'mg') (1.3, 'µg') (66, 'µg') (0, 'mg') (1.8, 'µg') (1.5, 'mg') ###Markdown About this projectThere is a lot of misinformation about guns in the media coming from both sides of the aisle. It's hard to get unbiased information from any one source - but luckily for us, data doesn't lie.I have taken it upon myself to collect data from multiple sources and compile it in one place, so that we can do a comprehensive analysis and take a look at the *facts*.I will not pretend to be unbiased about this issue - but I have tried to present the data in an unbiased manner, and since all of the data and code used to analyze it is freely available, I invite you to look at it yourself.Before we get to the graphs and data, lets go over some definitions.* Automatic weapon: The firearm will continue to fire bullets as long as the trigger is depressed.* Semi-automatic weapon: The firearm will fire one bullet per pull of the trigger. By far the most popular kind of the weapon in the United States, and most likely, the world.* Assault weapon: a rather nebulous term used by the media to describe AR-15 style rifles. In military parlance, an assault rifle is a "select-fire" weapon, meaning it can switch between fully automatic and semi-automatic rates of fire. AR-15s, as purchasable by US citizens, are not "select-fire", as they only fire in semi-automatic mode.All analyses are performed on data that is publically available, from reputable sources - typically government agencies, or the World Bank. Where I believe the sources are more spurious, I will tell you. Gun Crime in the United StatesBoth gun homicides, and general homicides have experienced steep declines since 1995. Rates of gun homicides dropped 50% from the high of 1995 to the low of 2014, and have only slightly rebounded since then, mirroring the overall homicide trend in the United States.There has been a [lot](https://www.vox.com/policy-and-politics/2018/2/21/17028930/gun-violence-us-statistics-charts) of [talk](https://www.npr.org/2016/01/05/462017461/guns-in-america-by-the-numbers) about the increasing number of guns owned by civilians in the United States. Several of these pieces draw a direct link between the number of guns, and rates of gun homicides, even going so far as to suggest that more guns = more gun homicides.The data suggests otherwise. ###Code plt.subplot(211) plt.plot(data['year'], data['usa.guns.rate'], 'g-', label='Civilian firearms') plt.ylabel('Civilian firearm ownership, per person', fontsize=8) plt.title("Fig 1a. Gun ownership vs firearm homicides, over time, USA", fontsize=12, y=1.08) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xlim(1995, 2016) plt.subplot(212) plt.plot(data['year'], data['usa.homicide.firearms.total'], label='Firearm homicides') plt.ylabel('Firearm homicides, per 100k people', fontsize=8) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.xlim(1995, 2016) plt.text(1992, 1.5, "Source: FBI Uniform Crime Reporting: https://ucr.fbi.gov/ucr-publications") plt.text(1992, 1, "Source: Congressional Research Service: https://fas.org/sgp/crs/misc/RL32842.pdf") plt.text(1992, 0.5, "Source: Hill, 2013:https://engagedscholarship.csuohio.edu/cgi/viewcontent.cgi?article=1679&context=urban_facpub") plt.show() x = data['usa.guns.rate'] y = data['usa.homicide.firearms.total'] z = data['year'] regr = linear_model.LinearRegression() fit = regr.fit(x.reshape(-1, 1), y.reshape(-1, 1)) y_pred = regr.predict(x.reshape(-1, 1)) plt.plot(x, y, 'go') plt.plot(x, y_pred, 'b--') plt.title("Fig 1b. Inverse relationship between number of civilian guns and homicides", fontsize=12, y=1.05) plt.ylabel("Firearm homicides per 100k people", fontsize=8) plt.xlabel("Firearms per person", fontsize=8) # annotate r-squared value plt.text(0.9, 3.5, 'R²: {0}'.format(regr.score(x.reshape(-1,1), y.reshape(-1,1)).round(2)), color='blue') # annotate first and last three years for i in [0, 1, 2, len(x)-3, len(x)-2, len(x)-1]: plt.text(x[i] + 0.01, y[i] + 0.01, z[i]) plt.show() ###Output _____no_output_____ ###Markdown Are assault weapons really that deadly?The rate of rifle homicides (including so-called "assault rifles") has dropped even quicker than general homicide rate. Despite all of the furor raised over civilian ownership of "assault rifles", less than 400 people have been killed with rifles (hunting, military, semiautomatic, etc) for the last 10 years.The answer seems to be no. The overwhelming majority of homicides committed with firearms involve handguns. ###Code plt.plot(data['year'], data['usa.homicide.firearms.rifles']) plt.title('Fig 2a. Homicide rate, rifles, US', fontsize=12, y=1.05) plt.show() pos = np.arange(len(data['year'])) + .5 bars = plt.barh(pos, data['usa.fbi.firearms.rifles'], align='center') plt.title('Fig 2b. Total people killed with rifles in the US', fontsize=12, y=1.05) plt.yticks(pos, data['year'], fontsize=10) plt.ylim(0, len(data['year'])) plt.show() ###Output _____no_output_____ ###Markdown Mass ShootingsData on mass shootings was collected from [Mother Jones US Mass Shooting Database](https://www.motherjones.com/politics/2012/12/mass-shootings-mother-jones-full-data/)Mother Jones used the following criteria were used to define a mass shooting:* The perpetrator took the lives of at least three people. * The killings were carried out by a lone shooter. (Except in the case of the Columbine massacre and the Westside Middle School killings, which involved two shooters.)* The shootings occurred in a public place. (Except in the case of a party on private property in Crandon, Wisconsin, and another in Seattle, where crowds of strangers had gathered.) Crimes primarily related to gang activity or armed robbery are not included, nor are mass killings that took place in private homes (often stemming from domestic violence).* Perpetrators who died or were wounded during the attack are not included in the victim counts.* "Spree Killings": more than one location over a short period of time, that otherwise fit the above criteria.___There have been only 97 mass shootings in the United States since 1982___Processing on data was performed, with the following categorical terms lumped under semi-automatic rifles:* Semi-automatic/semiautomatic rifle* AR-15* Assault rifleData on firearm homicides was collected from the [FBI Uniform Crime Reporting page](https://ucr.fbi.gov/ucr-publications)I have selected the years since 1995 for this case study, since reliable data for some statistics tends to be harder to find for years prior to that (FBI crime reports, World Bank development indicators, homicide data, etc). 1996 was also the year that the Australian ban on semi-automatic weapons was implemented. Semi-automatic rifle use in mass shootingsIn the last 23 years (since 1995), there have been a total of 21 instances of mass shootings involving the use of semi-automatic rifles (also called "assault" rifles). In those 21 cases, a total of 229 people were killed. 160 (69%, expected: 19%) of those fatalities came from just four mass shootings: 1. Las Vegas, 2017: 582. Orlando nightclub, 2016: 493. Sandy Hook, 2012: 274. Texas First Baptist, 2017: 26 Semi-automatic handgun use in mass shootingsInterestingly, in the same time span there have been 36 instances of mass shootings where only semi-automatic handguns were used. In these cases, a total of 267 people were killed. 85 (25%, expected: 11%) of those fatalities came from four mass shootings: 1. Virginia Tech, 2007: 322. Killeen, Texas, 1996: 243. USPS, 1986: 154. Binghamton, 2009: 14 Are mass shootings increasing in frequency?Looking at the data, there is an increase in the number of victims of mass shootings, and the percentage of gun homicides from mass shootings. However, this increase is relatively small (accounting for approximately 0.5% of gun homicides), and is significantly smaller than the increase in defensive gun use by citizens ###Code x = data['year'] y = data['usa.mass_shootings.fatalities'] / data['usa.fbi.firearms.total'] * 100 z = data['usa.justifiable.firearms.total'] / data['usa.fbi.firearms.total'] * 100 regr = linear_model.LinearRegression() fit = regr.fit(x.reshape(-1,1), z.reshape(-1,1)) z_pred = regr.predict(x.reshape(-1, 1)) plt.plot(x, z, 'bo', label='Percent of gun homicides that are justifiable') plt.plot(x, z_pred, 'b--') plt.text(1995, 2.5, 'R²: {0}'.format(regr.score(x.reshape(-1,1), z.reshape(-1,1)).round(2)), color='blue') regr = linear_model.LinearRegression() fit = regr.fit(x.reshape(-1,1), y.reshape(-1,1)) y_pred = regr.predict(x.reshape(-1, 1)) plt.plot(x, y, 'ro', label='Percent of gun homicides from mass shootings') plt.plot(x, y_pred, 'r--') plt.text(1995, 0.3, 'R²: {0}'.format(regr.score(x.reshape(-1,1), y.reshape(-1,1)).round(2)), color='red') plt.title('Fig 3. Defensive gun use vs mass shootings', y=1.05) plt.ylabel('Percent of gun homicides', fontsize=10) plt.xlim(1994, 2017) plt.legend(bbox_to_anchor=(1.05, 1), loc=2, borderaxespad=0.) plt.show() ###Output _____no_output_____ ###Markdown Setup ###Code %matplotlib inline #this line makes matplotlib plots show directly in the notebook import pandas import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Creating the Pandas DataFrame ###Code #read in the input data. Skip the first line as a header line. df = pandas.read_csv('datalog_Richards_Hall.csv', header=1, sep=',', index_col=0, parse_dates=True, infer_datetime_format=True, low_memory=False) # Get one day of data beginDate = '2017-03-04 00:00:00' endDate = '2017-03-04 23:59:59' df_sub = df[beginDate:endDate] ###Output _____no_output_____ ###Markdown Create timeseries plot of FlowRate variable ###Code #Plot just the FlowRate variable df_sub.plot(y = 'FlowRate', marker='o') #get current axes ax = plt.gca() # set the x and y-axis labels ax.set_ylabel('Flow (gpm)') ax.set_xlabel('Date/Time') # set the x and y-axis limits ax.set_xlim([df_sub.index[0], df_sub.index[-1]]) ax.grid(True) # Add a legend with some customizations legend = ax.legend(loc='upper right', shadow=True) fig = plt.gcf() fig.set_size_inches(18.5, 10.5) fig.savefig('test2png.png', dpi=100) ###Output _____no_output_____ ###Markdown Resample the data from 1s to 1hr ###Code #aggregate data to hourly time step df_sub = df.resample(rule='1H', base=0).sum() ###Output _____no_output_____ ###Markdown Plot the 1hr FlowRate data ###Code #Plot just the FlowRate variable df_sub.plot(y = 'FlowRate', marker='o') #get current axes ax = plt.gca() # set the x and y-axis labels ax.set_ylabel('Flow (gpm)') ax.set_xlabel('Date/Time') # set the x and y-axis limits ax.set_xlim([df_sub.index[0], df_sub.index[-1]]) ax.grid(True) # Add a legend with some customizations legend = ax.legend(loc='upper right', shadow=True) fig = plt.gcf() fig.set_size_inches(18.5, 10.5) fig.savefig('test2png.png', dpi=100) ###Output _____no_output_____ ###Markdown Create a plot to show total volume of water used on an hourly timestep Plot is for each hour of the day and across all days in the period of record including error bars showing +/- 1 standard deviation in water use for that hour ###Code # First aggregate the incremental flow volume to a # total volume for each hourly time step hourlyTotVol = df['IncrementalVolume'].resample(rule='1H', base=0).sum() # Calculate an average volume for each hour # of the day by aggregating across days using # the groupby function hourlyAvgVol = hourlyTotVol.groupby(hourlyTotVol.index.hour).mean() # Also calculate the standard deviation for each hour hourlyStDevVol = hourlyTotVol.groupby(hourlyTotVol.index.hour).std() # Generate a plot of the data with some indication of the variability in # the hourly average values (e.g., add error bars with +- one Std. Dev.) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) plt.errorbar(x=hourlyAvgVol.index, y=hourlyAvgVol, yerr=hourlyStDevVol, capsize=3, capthick=0.5, fmt='--', label='Average Hourly Volumes', marker='o') # Set the limits on the x-axis and the tick # mark locations ax.set_xlim(-0.5, 23.5) xmarks = range(0, 23 + 1, 1) plt.xticks(xmarks) # Set the x and y-axis labels and title ax.set_ylabel('Average Hourly Volume (gal)') ax.set_xlabel('Hour of the Day') ax.grid(False) plt.title('Average Hourly Volume Estimates') #set figure size and save figure legend = ax.legend(loc='upper right', shadow=True) fig = plt.gcf() fig.set_size_inches(18.5, 10.5) fig.savefig('test2png.png', dpi=100) ###Output _____no_output_____ ###Markdown Some tricks that may help with your Assignment 4 ###Code # add a new column to the dataset that in the day of the week (0 = Monday, 6 = Sunday) df['weekday'] = df.index.weekday #show the result of the above with the new weekday column df.head() #create a dataset that includes just the weekday (and not weekend) values df_weekday = df[(df.weekday >= 0) & (df.weekday <= 5)] #Plot this new weekday dataset to show the filter worked correctly df_weekday.plot(y = 'FlowRate', marker='o') #get current axes ax = plt.gca() # set the x and y-axis labels ax.set_ylabel('Flow (gpm)') ax.set_xlabel('Date/Time') # set the x and y-axis limits ax.set_xlim([df_sub.index[0], df_sub.index[-1]]) ax.grid(True) # Add a legend with some customizations legend = ax.legend(loc='upper right', shadow=True) fig = plt.gcf() fig.set_size_inches(18.5, 10.5) fig.savefig('test2png.png', dpi=100) ###Output _____no_output_____ ###Markdown The State of Open Data on School Bullying and HarassmentBy [Two Sigma Data Clinic](https://www.twosigma.com/dataclinic) On March 6th, 2018, the Two Sigma Data Clinic hosted "The State of Open Data on School Bullying and Harassment" as part of [NYC Open Data Week](https://www.open-data.nyc/), a weeklong celebration of the city's [open data portal](https://opendata.cityofnewyork.us/). The two-hour event featured a comparison of federal and local datasets about New York City schools, followed by a panel discussion on what open data can reveal—and conceal—about this important school safety issue.This notebook documents our comparative analysis of the bullying/harassment data in the New York City Department of Education's School Survey of parents, students, and teachers in NYC public schools, and the federal Office for Civil Rights's Civil Rights Data Collection Survey, which is filled out by all public schools and districts nationwide, both for the 2013-14 school year. Data Sources The [raw Excel file](http://schools.nyc.gov/documents/misc/2014%20Public%20Data%20File%20SUPPRESSED.xlsx) of the NYC survey responses comes from the New York City Department of Education (NYCDOE). The full page for the 2014 NYC School Survey Results (representing the 2013-14 school year) is [here](http://schools.nyc.gov/Accountability/tools/survey/2014+NYC+School+Survey+Results). NYCDOE posts archived survey information [here](http://schools.nyc.gov/Accountability/tools/survey/SurveyArchives.htm).The [raw file](https://inventory.data.gov/dataset/2acc601e-9806-4dff-b144-f8a5e7c095b8/resource/3dc84a95-526a-4b90-aacd-72f60d4fecbc/download/crdc201314csv.zip) of the federal civil rights survey responses comes from the U.S. Department of Education (ED)'s Office for Civil Rights (OCR), available on [Data.gov](https://catalog.data.gov/dataset/civil-rights-data-collection-2013-14). The full page for the Civil Rights Data Collection for the 2013-14 school year is [here](https://www2.ed.gov/about/offices/list/ocr/docs/crdc-2013-14.html). OCR also hosts a data portal with information from earlier years [here](https://ocrdata.ed.gov/).For details on these pre-processing of these datasets, see the notebooks in the `processing/` folder referenced under the Load Data section below. Import Python libraries and set working directories ###Code from itertools import product import os import feather import numpy as np import pandas as pd import matplotlib.pyplot as plt import seaborn as sns from scipy.stats import ttest_ind from sklearn import preprocessing import statsmodels.api as sm import statsmodels.formula.api as smf import csv import time from sklearn.linear_model import LogisticRegression %matplotlib inline %load_ext rpy2.ipython intermediate_dir = os.path.join(os.getcwd(), 'data', 'intermediate') output_dir = os.path.join(os.getcwd(), 'data', 'output') ###Output _____no_output_____ ###Markdown Load data Let's read in the combined dataset, containing information from both surveys. The data is saved as a [feather](https://blog.cloudera.com/blog/2016/03/feather-a-fast-on-disk-format-for-data-frames-for-r-and-python-powered-by-apache-arrow/) file in the `data/output` folder. It is also available a csv file in the same folder. For details on data cleaning and pre-processing, see the notebooks in the `processing/` folder, specifically `processing/01_combine_surveys.ipynb` and `processing/02_add_school_characteristics.ipynb`. ###Code df = pd.read_feather( os.path.join(output_dir, 'combined_data.feather') ) ###Output _____no_output_____ ###Markdown NYC School SurveyLet's first look at the responses to the NYC School Survey, which is filled out by parents, teachers, and grade 6-12 students. Plot the distribution of responses on the NYC School Survey Let's plot (using the `ggplot2` library in R) the percent of respondents selecting each answer value to the two NYC School Survey questions about bullying/harassment: a general question about bullying/harassment, and a specific question about bullying/harassment based on differences. Since each group has four answer choices, we rank orderer these from 1 to 4, going from weak to strong feelings, by creating a 4-point ordinal scale. Note we exclude "Don't Know" responses from Parents. For more information, see `processing/nyc_school_survey.ipynb`. Set up [`rpy2`](https://rpy2.bitbucket.io/) in order to run R in this Jupyter notebook ###Code %%R -i df library('dplyr') library('ggplot2') library('tidyr') survey.answers <- df %>% select(dbn, school_name, answer_code, grep('perc_harass', names(df))) survey.answers.long <- survey.answers %>% gather(category, value, -answer_code, -dbn, -school_name, -answer_code) survey.answers.long$population <- ifelse(grepl('parents', survey.answers.long$category), 'parents', ifelse(grepl('students', survey.answers.long$category), 'students', 'teachers')) survey.answers.long$question <- ifelse(grepl('differences', survey.answers.long$category), 'differences', 'harass') survey.answers.long.agg <- survey.answers.long %>% group_by(answer_code, question, population) %>% summarise(response = mean(value, na.rm = T)) survey.answers.long.agg$q <- ifelse(survey.answers.long.agg$question == 'differences', 'Students bully/harass each other based on differences', 'Students bully/harass each other') survey.answers.long.agg$col <- ifelse(survey.answers.long.agg$answer_code == 3, '#80cdc1', ifelse(survey.answers.long.agg$answer_code == 4, '#018571', ifelse(survey.answers.long.agg$answer_code == 2, '#dfc27d', '#a6611a'))) highs <- survey.answers.long.agg %>% filter(answer_code >= 3) lows <- survey.answers.long.agg %>% filter(answer_code < 3) p <- ggplot() + geom_bar(data = survey.answers.long.agg[order(survey.answers.long.agg$answer_code, decreasing = T),], aes(x = population, y = response, fill = factor(answer_code, levels = c( '4', '3', '2', '1'))), stat="identity", width = 0.6) + coord_flip() + facet_wrap(~q, nrow = 2, scales = 'free') + labs(y = '', x = '') + theme(legend.position = 'bottom') + labs(fill = 'feelings scale:\n1 = weak; 4 = strong ') + guides(fill = guide_legend(reverse=T)) + scale_fill_manual(values = c('#018571', '#80cdc1', '#dfc27d', '#a6611a')) p + theme(panel.background = element_rect(fill = "white"), axis.text.x = element_text(size = 12), axis.text.y = element_text(size = 12), strip.text = element_text(size = 16), panel.spacing = unit(2, "lines"), axis.ticks.y = element_line(size = 0), strip.background = element_rect(fill = "white")) + labs(x = '', y = '') ###Output _____no_output_____ ###Markdown Calculate standarized scores for each school, based on responses to the NYC School Survey Because we have an ordinal scale representing the responses, we can compute a "score" for each school by taking a weighted average of the response percentages in each category. ###Code def condense_to_score(df_orig, weight_cols): df = df_orig.copy() df[weight_cols] = df[weight_cols] / 100.0 score_cols = [c + '_score' for c in weight_cols] for w, s in zip(weight_cols, score_cols): df[s] = df[w] * df['answer_code'] df = df[['dbn', 'school_name'] + score_cols].groupby(['dbn', 'school_name']).sum(min_count = 1) return df survey_cols = [''.join(tup) for tup in product(['perc_harass_'], ['', 'differences_'], ['parents', 'students', 'teachers'])] unique_cols = [c for c in df.columns if c not in set(survey_cols + ['answer_code'])] df_schools = df[unique_cols].drop_duplicates() df_scores = condense_to_score(df, survey_cols).reset_index() ###Output _____no_output_____ ###Markdown To understand where each school falls with respect to the citywide average, we can compute the citywide average and then calculate a "z-score" for each school that standardizes the school's score with respect to this average. Schools with higher-than-average feelings about bullying/harassment will have positive z-scores, and schools with lower-than-avrage feelings will have negative z-scores. ###Code def calculate_z_score(df_orig): df = df_orig.copy() score_cols = [c for c in df_scores.columns if 'score' in c] z_score_cols = [c + '_z' for c in score_cols] for s, z in zip(score_cols, z_score_cols): df[z] = (df[s] - df[s].agg('mean')) / df[s].agg('std') return df df_scores_z = calculate_z_score(df_scores) df_merge = pd.merge(df_schools, df_scores_z, on = ['dbn', 'school_name']) ###Output _____no_output_____ ###Markdown How correlated are responses? Let's generate a heatmap to see how correlated respones are between each of the questions. ###Code m = df_scores_z[['perc_harass_parents_score_z', 'perc_harass_differences_parents_score_z', 'perc_harass_students_score_z', 'perc_harass_differences_students_score_z', 'perc_harass_teachers_score_z', 'perc_harass_differences_teachers_score_z']] # Compute the correlation matrix corr = m.corr() # Set up the matplotlib figure f, ax = plt.subplots(figsize=(10, 8)) # Draw the heatmap with the mask and correct aspect ratio heatmap = sns.heatmap(corr, cmap='YlGnBu', annot_kws={"size": 18}) ###Output _____no_output_____ ###Markdown Within each response group, the two bullying/harassment questions are strongly correlated, as shown by the dark blue squares on the diagonal. So, students agree with students, parent with parents, and so on. Student + parent scores tend to be more correlated with each other than teachers + students or teachers + parents. Where do teachers and students appear to disagree on the NYC school survey? Let's look at teacher and student agreement within individual schools. Here we plot the difference in scores between teachers and students on the y axis where each dot represents a school. Schools are ranked by total enrollment along the x-axis. If there was perfect agreement between teachers and students, the orange trend line would be horizontal but interestingly, we notice a slight trend of disagreement that changes with school enrollment – in smaller schools, teachers tend to perceive more bullying and harassment than students but in larger schools, this is reversed. Note, however, that the correlation is small. ###Code %%R -i df_merge -w 600 -h 600 library('ggplot2') library('dplyr') library('forcats') df_merge$school_sorted <- as.numeric(fct_reorder(as.factor(df_merge$dbn), df_merge$total_enrollment)) df_merge <- df_merge %>% mutate(students_teachers_diff = perc_harass_differences_teachers_score_z - perc_harass_differences_students_score_z) plot <- ggplot(df_merge, aes(x = log(total_enrollment), y = students_teachers_diff)) + geom_point(color = '#00747A') + labs(x = 'School enrollment (log values)', y = 'Feelings about bullying/harassment\n(Top = Stronger; Bottom = Weaker)') + theme_minimal() + geom_smooth(method = 'lm', se = F, color = '#E37222', size = 1.5) + theme(axis.text = element_blank(), axis.title=element_text(size = 12), axis.ticks.x = element_blank(), plot.title = element_text(size=16)) + ggtitle('Teachers and students appear to disagree in the largest and smallest schools\n(though this correlation is small)') print(cor(df_merge$students_teachers_diff, log(df_merge$total_enrollment), use = 'complete.obs', method = 'spearman')) plot(plot) ###Output _____no_output_____ ###Markdown Federal civil rights dataNow let's look at the responses to the federal Office for Civil Rights's Civil Rights Data Collection survey, which is filled out by the schools. When we refer to allegations, we mean either race, sex, or disability-based allegations as we did not examine each category independently. Also note that in addition to the number of allegations, the Office for Civil Rights collects the number of students reported to be bullied/harassed and the number of students disciplined for bullying/harassment. For ease of comparison with the NYC School Survey, we only used allegations in our analysis. For more information, see `processing/federal_civil_rights_survey.ipynb`. ###Code df_merge['max_allegations'] = df_merge[['allegations_harass_sex', 'allegations_harass_race', 'allegations_harass_dis']].max(axis = 1) df_merge['allegations_binary'] = np.where(df_merge['max_allegations'] == 0, 0, 1) df_merge['allegations_binary'] = np.where(pd.isnull(df_merge['max_allegations']), np.nan, df_merge['allegations_binary']) df = pd.merge(df, df_merge[['dbn', 'allegations_binary', 'max_allegations']], on = 'dbn', how = 'outer') ###Output _____no_output_____ ###Markdown How many schools report bullying/harassment allegations? Let's plot (using the `ggplot2` library in R) the percent of NYC schools reporting 0, 1, and more than 1 allegation of bullying/harassment. ###Code %%R -i df_merge library('ggplot2') library('dplyr') library('forcats') df_merge$allegations_cat <- ifelse(df_merge$max_allegations == 0, 'zero', ifelse(df_merge$max_allegations == 1, 'one', 'multiple')) bar <- df_merge %>% group_by(allegations_cat) %>% summarise(n = n()) %>% mutate(perc = n/sum(n) * 100) %>% filter(is.na(allegations_cat) == F) bar <- bar %>% mutate(allegations_cat = fct_reorder(allegations_cat, n, .desc = TRUE)) plot <- ggplot(bar, aes(x = allegations_cat, y = n)) + geom_bar(stat='identity', width = .8, fill = '#00747A') + labs(x = '', y = '') + theme(panel.background = element_rect(fill = "white"), axis.ticks.x = element_blank(), axis.text.y = element_text(size = 12), axis.text.x = element_text(size = 12), ) + scale_y_continuous(limits = c(0, 1500), expand = c(0, 0)) + theme(axis.line.x = element_line(color="darkgrey", size = 2), plot.title = element_text(size = 18)) + ggtitle('Number of schools reporting ____ allegations of\nbullying/harassment\n') print(paste(bar[bar$allegations_cat == 'zero',]$n, 'schools, or', round(bar[bar$allegations_cat == 'zero',]$perc), "percent of NYC schools report zero allegations of bullying/harassment to the federal Office for Civil Rights.")) plot(plot) ###Output _____no_output_____ ###Markdown Let's use the full dataset (created in `processing/federal_civil_rights_survey.ipynb`) to see how this compares with the percent of schools reporting zero allegations nationwide. ###Code ocr_nationwide = pd.read_feather(os.path.join(intermediate_dir, 'federal_ocr_survey.feather')) print(str(ocr_nationwide.allegations_harass_ind.value_counts()[0]) + " schools, or " + str(round(ocr_nationwide.allegations_harass_ind.value_counts(normalize = True)[0] * 100)) + " percent of schools nationwide report zero allegations of bullying/harassment to the federal Office for Civil Rights.") ###Output 76916 schools, or 81.0 percent of schools nationwide report zero allegations of bullying/harassment to the federal Office for Civil Rights. ###Markdown Comparing the NYC School Survey and the federal civil rights data Now let's compare the two surveys. Characteristics of schools with 0 or 1+ allegations Using this classification of zero versus one or more, let's explore the differences in school characteristics. ###Code f = csv.writer(open(os.path.join(intermediate_dir, 't_stats.csv'), 'w')) f.writerow(['variable', 't', 'p']) for var in df_merge.drop(['allegations_binary'], axis = 1).columns: try: group1 = df_merge[df_merge['allegations_binary'] == 0][var].astype(float).dropna() group2 = df_merge[df_merge['allegations_binary'] == 1][var].astype(float).dropna() t, p = ttest_ind(group1, group2, equal_var=False) f.writerow([var, t, p]) except: continue time.sleep(2) t_stats = pd.read_csv(os.path.join(intermediate_dir, 't_stats.csv')) t_stats = t_stats.loc[abs(t_stats['t']) > 1.96] t_stats.columns.tolist() # to get significant variables grouped = df_merge.loc[df_merge['allegations_binary'].notnull()].groupby('allegations_binary') grouped_means = grouped.mean() grouped_means.reset_index(inplace = True) grouped_means[['allegations_binary', 'total_enrollment', 'perc_students_with_disabilities', 'perc_english_language_learners', 'perc_harass_differences_parents_score_z', 'perc_harass_differences_students_score_z', 'perc_harass_differences_teachers_score_z']] ###Output _____no_output_____ ###Markdown ![characteristics](img/characteristics.PNG) Schools with 1+ allegation of bullying & harassment have a significantly higher total school enrollment (which is to be expected given we are grouping based on counts) and percent of students with disabilities, but a lower percent of English language learners. Schools reporting allegations had on average much higher z-scores for the NYC survey, indicating that perceived harassment is generally higher in schools with at least one federal allegation of bullying, suggesting general agreement between the federal and local data sources. How much do the two surveys (dis)agree? Although the above section shows that survey agreement is generally in the "right" direction (namely federal allegations are associated with student, teacher, and parent perceptions of bullying), let's take a closer look at individual schools.Let's create a dataframe, `df_all_the_time`, that filters for the percentage of students/parents/teachers saying bullying is happening all of the time. ###Code df_all_the_time = df.loc[df['answer_code'] == 4] ###Output _____no_output_____ ###Markdown Now we can find outliers. For example, here are some schools with a high percentage of students saying bullying based on differences happens all of the time but that reported 0 allegations to the federal Civil Rights Data Collection. (Each row below is a separate school.) ###Code df_all_the_time[['dbn', 'perc_harass_differences_students']].sort_values(by = 'perc_harass_differences_students', ascending = False).head() ###Output _____no_output_____ ###Markdown As shown above, there is a school where nearly 35 percent of students said bullying based on differences was happening all of the time in the NYC School Survey but that reported 0 allegations to the federal Office for Civil Rights.On the other hand, here are some schools that reported 1 or more allegations of bullying to the federal Civil Rights Data Collection but where a low percentage of students said bullying was happening all of the time in the NYC School Survey (Each row below is a separate school.) ###Code df_all_the_time.loc[df['allegations_binary'] == 1][['dbn', 'perc_harass_differences_students', 'max_allegations']].sort_values(by = 'max_allegations', ascending = False).head() ###Output _____no_output_____ ###Markdown As shown above, there is a school that reported 26 allegations of harassment to the federal Office for Civil Rights, but where less than 1 percent of students said bullying was happening all the time. Let's plot the distribution of students responding that bullying based on differences is happening all of the time among schools that report 0 and and 1+ allegations. Here we will remove schools with question response rates < 75%.The dark teal(top plot) represents schools reporting 0 allegations and the light teal (bottom plot) represents school reporting 1+ allegations. ###Code df_all_the_time = df_all_the_time[~(df_all_the_time['perc_harass_differences_students'].isnull())] df_all_the_time_rr = df_all_the_time[df_all_the_time['question_rr_harass_differences_students'] >= 75.0] allegations_mags = [1.0 if x else -1.0 for x in df_all_the_time_rr['allegations_harass_ind'].values] df_all_the_time_rr['mag_all'] = df_all_the_time_rr['perc_harass_differences_students'] * (allegations_mags) df_all_the_time_rr['mag_color'] = df_all_the_time_rr['allegations_harass_ind'].apply(lambda i: '#63CECA' if i else '#00747A') df_all_the_time_rr = df_all_the_time_rr.sort_values(['allegations_harass_ind', 'perc_harass_differences_students'], ascending=False) base_plot_size = 15.0 for df in [df_all_the_time_rr]: plt.style.use('seaborn-ticks') f, ax = plt.subplots(figsize=(base_plot_size, base_plot_size * 2)) ax.barh(range(len(df)), df['perc_harass_differences_students'], 0.6, color=df['mag_color']) ax.grid() ticks = range(0, 41, 5) plt.xticks(ticks, [str(abs(t)) + '%' for t in ticks], fontsize=16) plt.yticks([]) plt.show() ###Output _____no_output_____ ###Markdown Zones of (dis)agreement Now let's try to see if we can better characterize what makes a school more or less likely to show agreement between data sources. To do this, we need to first define what agreement and disagreement are. For the federal data, we have a binary classification of 0 allegations or 1+ allegations. Similarly, for the NYC school survey we can categorize schools into those with a low perception of bullying on the bottom versus those with a high perception on the top. To figure out what constitutes "low" and "high" perceptions, we ranked schools using z-scores and used a threshold to define "low" perception that would bucket roughly the same percent of schools as those with zero allegations ("high" perception would be the rest). We then mapped schools into zones of agreement and disagreement. - Agreement is defined as schools with zero allegations + low perception OR at least one allegation + high perception - Conversely, disagreement refers to schools with zero allegations + high perception OR one plus allegation + low perception. ![zones](img/zones_disagreement.PNG) Now let's take a look at the data for each school to demonstrate how to translate our conceptual framework into an agreement versus disagreement metric for analysis. ###Code %%R -i df_merge -w 800 -h 600 library('ggplot2') ggplot(df_merge, aes(x = max_allegations, y = perc_harass_differences_students_score_z)) + geom_point(color = '#00747A', size = 3) + labs(x = '', y = '') + theme_minimal() + theme(axis.text = element_text(size = 14), axis.ticks.x = element_blank()) ###Output _____no_output_____ ###Markdown Here we can see the outlier we discussed earlier with 26 allegations + low student perceptions of bullying. Classifying schools into agreement/disagreement zones ~75 percent of schools have 0 allegations and ~25 percent have 1 or more allegations. We take a look at the (bottom) 75th & (top) 25th percentile of scores for parents/students/teachers. For instance, for each question and survey population, we ask: What is the threshold/cutoff score of the bottom 75% of schools? Then, we look at each school's score. If it is lower than this number, we classify the school as having "low" bullying/harassment perceptions, and if it's higher than this number, we classify the school as having "high" bullying/harassment perceptions. ###Code #determine what qualifies as low response rates rr = ['question_rr_harass_parents', 'question_rr_harass_students', 'question_rr_harass_teachers', 'question_rr_harass_differences_parents', 'question_rr_harass_differences_students', 'question_rr_harass_differences_teachers'] df_merge[rr].quantile(q=[0.005, 0.01, .05, 0.1]) #response rate cut off 75% corresponds to <.05 of a percent of data. #nan values where response rate <75% df_merge['avg_score_parents_harass2'] = df_merge['perc_harass_parents_score'] df_merge['avg_score_parents_harass_differences2'] = df_merge['perc_harass_differences_parents_score'] df_merge['avg_score_students_harass2'] = df_merge['perc_harass_students_score'] df_merge['avg_score_students_harass_differences2'] = df_merge['perc_harass_differences_students_score'] df_merge['avg_score_teachers_harass2'] = df_merge['perc_harass_teachers_score'] df_merge['avg_score_teachers_harass_differences2'] = df_merge['perc_harass_differences_teachers_score'] df_merge.loc[df_merge.question_rr_harass_parents < 75, 'avg_score_parents_harass2'] = np.nan df_merge.loc[df_merge.question_rr_harass_differences_parents < 75, 'avg_score_parents_harass_differences2'] = np.nan df_merge.loc[df_merge.question_rr_harass_students < 75, 'avg_score_students_harass2'] = np.nan df_merge.loc[df_merge.question_rr_harass_differences_students < 75, 'avg_score_students_harass_differences2'] = np.nan df_merge.loc[df_merge.question_rr_harass_parents < 75, 'avg_score_teachers_harass2'] = np.nan df_merge.loc[df_merge.question_rr_harass_differences_teachers < 75, 'avg_score_teachers_harass_differences2'] = np.nan #reclassify school type and grade category df_merge['school_type2'] = df_merge['school_type'].map(lambda x: 'general' if x == 'General Academic' else 'Other' if x == 'Transfer School' else 'Other' if x == 'Career Technical' else 'Other' if x == 'Special Education' else x) df_merge['school_grade_category2'] = df_merge['school_grade_category'].map(lambda x: 'Elementary' if x == 'Elementary' else 'Elementary' if x == 'Early Childhood' else 'Middle' if x == 'Junior High-Intermediate-Middle' else 'High' if x == 'High school' else 'High' if x == 'Secondary School' else 'Mixed' if x == 'K-8' else 'Mixed' if x == 'K-12 all grades' else 'Mixed' if x == 'Ungraded' else x) #classify percentiles for agreement/disagreement metric alleg = df_merge.allegations_binary.value_counts() alleg / alleg.sum() survey = ['perc_harass_parents_score_z', 'perc_harass_differences_parents_score_z', 'perc_harass_students_score_z', 'perc_harass_differences_students_score_z', 'perc_harass_teachers_score_z', 'perc_harass_differences_teachers_score_z'] df_merge[survey].quantile(q=[0.755172]) #create indicator to match percentiles between surveys df_merge['bin_parents_harass_z'] = df_merge.perc_harass_parents_score_z.map(lambda x: 0 if x <= 0.668263 else 1 if x > 0.668263 else x) df_merge['bin_parents_harass_differences_z'] = df_merge.perc_harass_differences_parents_score_z.map(lambda x: 0 if x <= 0.700869 else 1 if x > 0.700869 else x) df_merge['bin_students_harass_z'] = df_merge.perc_harass_students_score_z.map(lambda x: 0 if x <= 0.678322 else 1 if x > 0.678322 else x) df_merge['bin_students_harass_differences_z'] = df_merge.perc_harass_differences_students_score_z.map(lambda x: 0 if x <= 0.706146 else 1 if x > 0.706146 else x) df_merge['bin_teachers_harass_z'] = df_merge.perc_harass_teachers_score_z.map(lambda x: 0 if x <= 0.68863 else 1 if x > 0.68863 else x) df_merge['bin_teachers_harass_differences_z'] = df_merge.perc_harass_differences_teachers_score_z.map(lambda x: 0 if x <= 0.650904 else 1 if x > 0.650904 else x) surveyx = ['bin_parents_harass_z', 'bin_parents_harass_differences_z', 'bin_students_harass_z', 'bin_students_harass_differences_z', 'bin_teachers_harass_z', 'bin_teachers_harass_differences_z'] v = df_merge[surveyx].apply(lambda x: x.value_counts()) v / v.sum() def f(row): val = np.nan if row.allegations_binary == 0: if row.bin_parents_harass_differences_z == 0: val = 1 elif row.bin_parents_harass_differences_z == 1: val = 0 if row.allegations_binary == 1: if row.bin_parents_harass_differences_z == 1: val = 1 elif row.bin_parents_harass_differences_z == 0: val = 0 return val df_merge['agreement_parents_harass_diff'] = df_merge.apply(f, axis=1) def f(row): val = np.nan if row.allegations_binary == 0: if row.bin_students_harass_differences_z == 0: val = 1 elif row.bin_students_harass_differences_z == 1: val = 0 if row.allegations_binary == 1: if row.bin_students_harass_differences_z == 1: val = 1 elif row.bin_students_harass_differences_z == 0: val = 0 return val df_merge['agreement_students_harass_diff'] = df_merge.apply(f, axis=1) def f(row): val = np.nan if row.allegations_binary == 0: if row.bin_teachers_harass_differences_z == 0: val = 1 elif row.bin_teachers_harass_differences_z == 1: val = 0 if row.allegations_binary == 1: if row.bin_teachers_harass_differences_z == 1: val = 1 elif row.bin_teachers_harass_differences_z == 0: val = 0 return val df_merge['agreement_teachers_harass_diff'] = df_merge.apply(f, axis=1) ###Output _____no_output_____ ###Markdown Which factors are associated with survey (dis)agreement? Now that every school has been assigned either a 1 for agreement between local + federal surveys or a 0 for disagreement, we use this variable as the response in a first pass simple logistic regression model to investigate the relationship between survey disagreement and various school characteristics.Let's run 3 different models - for parent, students, and teachers. Note we are using the bullying/harassment based on differences question here. ###Code #final model variables final = df_merge[['dk_parents_perc_harass_parents', 'dk_parents_perc_harass_differences_parents', 'survey_rr_parents', 'survey_rr_teachers', 'perc_allegations_harass_sex', 'perc_allegations_harass_race', 'perc_allegations_harass_dis', 'avg_class_size', 'pupil_teacher_ratio', 'total_enrollment', 'perc_female', 'perc_male', 'perc_asian', 'perc_black', 'perc_hispanic', 'perc_multiple_other', 'perc_white', 'perc_students_with_disabilities', 'perc_english_language_learners', 'perc_free_lunch', 'perc_harass_parents_score_z', 'perc_harass_differences_parents_score_z', 'perc_harass_students_score_z', 'perc_harass_differences_students_score_z', 'perc_harass_teachers_score_z', 'perc_harass_differences_teachers_score_z', 'avg_score_parents_harass2', 'avg_score_parents_harass_differences2', 'avg_score_students_harass2', 'avg_score_students_harass_differences2', 'avg_score_teachers_harass2', 'avg_score_teachers_harass_differences2', 'doe_or_charter', 'borough', 'school_type2', 'school_grade_category2', 'agreement_parents_harass_diff', 'agreement_teachers_harass_diff','allegations_binary']] final_students = df_merge[['dk_parents_perc_harass_parents', 'dk_parents_perc_harass_differences_parents', 'survey_rr_parents', 'survey_rr_students', 'survey_rr_teachers', 'perc_allegations_harass_sex', 'perc_allegations_harass_race', 'perc_allegations_harass_dis', 'avg_class_size', 'pupil_teacher_ratio', 'total_enrollment', 'perc_female', 'perc_male', 'perc_asian', 'perc_black', 'perc_hispanic', 'perc_multiple_other', 'perc_white', 'perc_students_with_disabilities', 'perc_english_language_learners', 'perc_free_lunch', 'perc_harass_parents_score_z', 'perc_harass_differences_parents_score_z', 'perc_harass_students_score_z', 'perc_harass_differences_students_score_z', 'perc_harass_teachers_score_z', 'perc_harass_differences_teachers_score_z', 'avg_score_parents_harass2', 'avg_score_parents_harass_differences2', 'avg_score_students_harass2', 'avg_score_students_harass_differences2', 'avg_score_teachers_harass2', 'avg_score_teachers_harass_differences2', 'doe_or_charter', 'borough', 'school_type2', 'school_grade_category2', 'agreement_parents_harass_diff', 'agreement_students_harass_diff', 'agreement_teachers_harass_diff','allegations_binary']] ###Output _____no_output_____ ###Markdown Parent model for school survey agreement ###Code #school demographics: parents = smf.logit(formula = 'agreement_parents_harass_diff ~ total_enrollment + perc_female + perc_black + perc_hispanic + \ perc_students_with_disabilities + perc_english_language_learners + perc_free_lunch + \ C(school_grade_category2, Treatment(reference="High")) + \ C(school_type2) + C(doe_or_charter)', data = final).fit() parents.summary() ###Output _____no_output_____ ###Markdown Student model for school survey agreement ###Code #school demographics: students = smf.logit(formula = 'agreement_students_harass_diff ~ total_enrollment + perc_female + perc_black + perc_hispanic + \ perc_students_with_disabilities + perc_english_language_learners + perc_free_lunch + \ C(school_grade_category2, Treatment(reference="High")) + \ C(school_type2) + C(doe_or_charter)', data = final_students).fit() parents.summary() ###Output _____no_output_____ ###Markdown Teacher model for school survey agreement ###Code #school demographics: teacher = smf.logit(formula = 'agreement_teachers_harass_diff ~ total_enrollment + perc_female + perc_black + perc_hispanic + \ perc_students_with_disabilities + perc_english_language_learners + perc_free_lunch + \ C(school_grade_category2, Treatment(reference="High")) + \ C(school_type2) + C(doe_or_charter)', data = final).fit() teacher.summary() ###Output _____no_output_____ ###Markdown Course Co-occurence AnalysisLearning Analytics, Visual Analytics @ UBCCraig Thompson, CTLT Academic programs often prescribe some number of official pathways. However, students may also choose to take combinations of courses other than those we intend.We'd like to reveal those patterns. ![desire path](https://live.staticflickr.com/3203/2847766967_8e7ae25768_h.jpg)[Desire path](https://flic.kr/p/5kDxUt) by [wetwebwork](https://www.flickr.com/photos/wetwebwork/][/url]), on Flickr [(CC BY 2.0)](https://creativecommons.org/licenses/by/2.0/) Data we have- For every student who earns a degree, we have a record of all the courses they took and counted towards their degree requirements.- We've limited the dataset to courses from a single department.- Our dataset is two dimensional **binary indicator matrix**: - Across the horizontal axis: all the courses offered by the department - Down the vertical axis: IDs for each student who earned a degree - For each student/course pair we indicate whether the student took the course - This is fake data ###Code df.head(20) ###Output _____no_output_____ ###Markdown Data we don't have- We don't have data for non-majors or anyone who did not complete their degree.- We don't have performance data, so we don't know how well any student did in any particular course.- We don't have any temporal information, so we don't know: - Which courses students took in sequence - Whether they took a pair of courses in back to back terms or with gaps - Which courses they took in concurrently About the analysis- We are doing an exploratory analysis. This is not experimental.- We will try to answer questions about *what* has happened, but we are unable to address *why*.- We'd like to say "students are discovering their own pathways through our planned degrees". The reality is that students may be taking these groupings of courses because they: - Fit nicely in their timetable - Are offered by instructors they like - Have a reputation of being easy or fun courses - Have free or inexpensive textbooks - Are the only courses left at registration time Analysis via clusteringCommon questions:- What does an "average" student look like, in terms of the courses they study?- If there were $N$ prototypical students, what would they look like?Answer:- We can formulate a *mathematically* average student, but there is no *pedagogically meaningful* average student.- This sort of analysis is messy and hard to interpret.- We'll do it anyway just to see! ###Code im = plt.imshow(df.head(100), cmap=plt.cm.binary) # most common courses df.sum().sort_values(ascending=False).head(10) # how many courses does each student take? df.sum(axis=1).value_counts().sort_index().plot(kind='bar'); # helper functions for clustering students in course-space def cluster(n, df): kmedoids = KMedoids(n_clusters=n, metric='manhattan', random_state=0).fit(df) nearest_medoid = kmedoids.predict(df) distances = kmedoids.transform(df) nearest_distance = distances[[np.arange(distances.shape[0])],nearest_medoid].T return (kmedoids, nearest_medoid, distances, nearest_distance) def describe_clusters(kmedoids, nearest_medoid, distances, nearest_distance): plt.figure(figsize=(10, 10)) for i in range(kmedoids.cluster_centers_.shape[0]): print("cluster", i+1, "centroid:", list(df.columns[kmedoids.cluster_centers_[i,:] == 1])) print("number of students in this cluster:", (nearest_medoid == i).sum()) cluster_member_distances = nearest_distance[nearest_medoid == i] if cluster_member_distances.size > 0: print("minimum distance to centroid:", cluster_member_distances.min()) print("maximum distance to centroid:", cluster_member_distances.max()) print("mean distance to centroid:", cluster_member_distances.mean()) print("median distance to centroid:", np.median(cluster_member_distances)) print() plt.plot(sorted(cluster_member_distances)) describe_clusters(*cluster(4, df)) ###Output _____no_output_____ ###Markdown Lessons (re-)learned- Course enrolment datasets are big, and hard to construct a clear mental picture of.- We're working with (only) 50 students and 22 courses.- Within academic programs, there aren't usually clear, strong, non-prescribed patterns at the level of whole-enrolment historiesSo, let's try something different... HistoryWhat other domains work with similarly shaped data? Consumer purchases!- Each individual shopper collects a bunch of items- When a customer checks out, a sales invoice is generated listing all the items that were purchased togetherFrom all the sales invoices, we may wish to look for patterns in consumer behaviour:- Are there items that are **frequently** purchased together?- Are some items good **predictors** of other items being purchased?Why would someone care?- If consumers buy hot dogs whenever they buy hotdog buns, then grocery stores can attempt to manipulate custormers into buying hotdogs by putting hotdog buns on sale. **Profit!** Content warningThe following slides contain math. Set theory- a *set* is an unordered collection of distinct objects.- For this analysis, each student's course enrolment history is being treated as a set. Sets are often written like this: $\{a,b,c\}$- All the student enrolment histories are jointly represented as a collection of sets. - They are not a set-of-sets, because sets have distinct elements, and two students are able to have exactly the same course enrolment history. - So, this collection of sets is called a *multiset* or a *bag*, to denote that it may contain duplicate elements. Frequent itemsetsGiven a multiset (such as a stack of grocery store receipts, or a table of student-course enrolments), how do we find the frequently occurring subsets (or itemsets)?Example: Given $[\{a\},\{a,b\},\{a,c\},\{a,b,c,d\}]$We can see that:- $\{a\}$ occurs in all 4 sets- $\{a,b\}$ and $\{a,c\}$ each occur in 2 sets \begin{align}&\mathrm{Apriori}(T,\epsilon)\\&\quad L_1 \gets \{\textrm{large 1 item sets}\}\\&\quad k \gets 2\\&\quad \textbf{while}\ L_{k-1} \neq \emptyset\\&\quad \quad C_k \gets \{c = a \cup \{b\} \mid a \in L_{k-1} \land b \notin a, \{s \subseteq c \mid |s| = k - 1 \} \subseteq L_{k-1} \}\\&\quad \quad \textbf{for}\ \textrm{transactions}\ t \in T\\&\quad \quad \quad D_t \gets \{c \in C_k \mid c \subseteq t \}\\&\quad \quad \quad \textbf{for}\ \textrm{candidates}\ c \in D_t\\&\quad \quad \quad \quad count[c] \gets count[c] + 1\\&\quad \quad L_k \gets \{c \in C_k \mid count[c] \geq \epsilon \}\\&\quad \quad k \gets k + 1\\&\quad \textbf{return} \bigcup_k L_k\end{align}Rakesh Agrawal and Ramakrishnan Srikant. 1994. Fast Algorithms for Mining Association Rules in Large Databases. In Proceedings of the 20th International Conference on Very Large Data Bases (VLDB ’94). Morgan Kaufmann Publishers Inc., San Francisco, CA, USA, 487–499. ( > 26k citations!) Let $X$ be an itemset and $T$ be the set of transactions/records in the database\begin{align}&\textrm{Support}(X) = \frac{\mid \{t \in T \mid X \subseteq t \}\mid }{\mid T \mid}\end{align}*Support* indicates how frequently a given itemset appears in the transactions of the database.- A support of 1 indicates the itemset appears in every transaction.- A support of 0.5 indicates the itemset appears in half of the transactions. ###Code course_frequency = apriori(df, min_support=np.nextafter(0,1), max_len=1, use_colnames=True) course_frequency['course'] = course_frequency['itemsets'].apply(lambda x: set(x).pop()) course_frequency['course_number'] = course_frequency['course'].apply(lambda x: x[4:]) course_frequency[['support', 'course']].sort_values(by='support',ascending=False) cf = course_frequency[['support', 'course']].set_index('course').sort_values(by='support',ascending=False) def f(limit): cf.head(limit).plot(kind='bar') i = interact(f, limit=(1,20)) frequent_itemsets = apriori(df, min_support=np.nextafter(0,1), max_len=2, use_colnames=True) frequent_itemsets.sort_values(by='support',ascending=False) ###Output _____no_output_____ ###Markdown Association rules\begin{equation*}X \Rightarrow Y, \textrm{where}\ X,Y \subseteq I\end{equation*}X is called the *antecedent* and Y is the *consequent*.$I$ is the set of all items (e.g. courses).example: $\textrm{Math110} \Rightarrow \textrm{Math210}$ would be read as "if Math110, then Math210".Now we have a notation for a relationship between two itemsets (in this case, the two itemsets each contain a single item), but we need to describe the *qualities* of that relationship...Rakesh Agrawal, Tomasz Imieliński, and Arun Swami. 1993. Mining association rules between sets of items in large databases. In Proceedings of the 1993 ACM SIGMOD international conference on Management of data (SIGMOD ’93). Association for Computing Machinery, New York, NY, USA, 207–216. DOI:https://doi.org/10.1145/170035.170072 (> 22k citations!) Metrics for quantifying association rules: Support- *Antecedent Support*: indicates how frequently the antecedent item set appears in the database.$$\textrm{Antecedent Support}(X \Rightarrow Y) = \frac{\mid \{t \in T \mid X \subseteq t \}\mid }{\mid T \mid}$$- *Consequent Support*: indicates how frequently the consequent item set appears in the database.$$\textrm{Consequent Support}(X \Rightarrow Y) = \frac{\mid \{t \in T \mid Y \subseteq t \}\mid }{\mid T \mid}$$- *(Rule) Support*: indicates how frequently the all them items of the antecedent and consequent jointly appear in the database.$$\textrm{Support}(X \Rightarrow Y) = \frac{\mid \{t \in T \mid X \cup Y \subseteq t \}\mid }{\mid T \mid}$$ Metrics for quantifying association rules: Confidence$$\textrm{Confidence}(X \Rightarrow Y) = \frac{ \textrm{Support}(X \Rightarrow Y) }{ \textrm{Support}(X) }$$*Confidence*: the ratio of rule support to antecedent support. - Or, given that the antecedent has been observed, how likely are we to also observe the consequent?If a rule has high confidence, and the antecedent is observed, then we can be fairly confident that the consequent will be observed as well. Metrics for quantifying association rules: Lift$$\textrm{Lift}(X \Rightarrow Y) = \frac{ \textrm{Confidence}(X \Rightarrow Y) }{ \textrm{Support}(Y) }$$*Lift*: ratio of confidence to consequent support. Lift is a measure of how much more often the antecedent and the consequent occur together than would be expected if they were statistically independent. When the antecedent of a rule with high lift is observed, we can be more confident that the consequent will also be observed.Confidence and lift are both descriptors of the "power" of a rule. ###Code rules = association_rules(frequent_itemsets, metric="support", min_threshold=np.nextafter(0,1)) rules['antecedent_course'] = rules['antecedents'].apply(lambda x: set(x).pop()) rules['consequent_course'] = rules['consequents'].apply(lambda x: set(x).pop()) rules['antecedent_course_number'] = rules['antecedent_course'].apply(lambda x: int(x[4:])) rules['consequent_course_number'] = rules['consequent_course'].apply(lambda x: int(x[4:])) rules['antecedent_year_level'] = rules['antecedent_course_number'].apply(lambda x: x//100 ) rules['consequent_year_level'] = rules['consequent_course_number'].apply(lambda x: x//100) rules pairwise_rules = rules[(rules['antecedent_year_level']==3) & (rules['consequent_year_level']==3)] pairwise_support = pairwise_rules.pivot(index='antecedent_course',columns='consequent_course',values='support').fillna(0) ax = sns.heatmap(pairwise_support, xticklabels=True, yticklabels=True, cmap='BuPu') pairwise_rules = rules[(rules['antecedent_year_level']==3) & (rules['consequent_year_level']==3)] pairwise_confidence = pairwise_rules.pivot(index='antecedent_course',columns='consequent_course',values='confidence').fillna(0) ax = sns.heatmap(pairwise_confidence, xticklabels=True, yticklabels=True, cmap='BuPu') pairwise_rules = rules[(rules['antecedent_year_level']==3) & (rules['consequent_year_level']==3)] pairwise_lift = pairwise_rules.pivot(index='antecedent_course',columns='consequent_course',values='lift').fillna(0.1) #pairwise_lift = pairwise_lift.applymap(lambda x: x if x >=1 else 0.01) ax = sns.heatmap(pairwise_lift, xticklabels=True, yticklabels=True, cmap='BuPu', norm=LogNorm()) # exploring 'significant' rules sig_rules = rules[ (rules['support'] > 0.01) #& (rules['antecedent support'] > 0.01) #& (rules['consequent support'] > 0.01) & (rules['antecedent_year_level'] <= rules['consequent_year_level']) & (rules['confidence'] > 0.5) & (rules['lift'] > 1.5) ].sort_values(by='lift',ascending=False) sig_rules def plot_rules(sig_rules): antecedents = sig_rules[['antecedent_course','antecedent_course_number']] antecedents.columns = ['course','course_number'] consequents = sig_rules[['consequent_course','consequent_course_number']] consequents.columns = ['course','course_number'] figure_courses = pd.concat([antecedents, consequents]).drop_duplicates() dot = Digraph() for course in figure_courses.itertuples(): dot.node(str(course.course_number),course.course) for association in sig_rules.itertuples(): dot.edge(str(association.antecedent_course_number), str(association.consequent_course_number), label=f"{association.lift:.2f}") dot.graph_attr['overlap'] = 'False' dot.engine = 'neato' return dot dot = plot_rules(sig_rules) dot ###Output _____no_output_____ ###Markdown Fake News websites data analysisWill use data downloaded from CrowdTangle's "historical data" feature rather than making multiple requests to the API. The latter option would end up taking longer due to API limitations.The data was downloaded on several .csv files, saved on `./data/in`.Time period for the analysis:* Start - 2019-01-01* End - 2021-03-27 ###Code import requests import json import pandas as pd import numpy as np from datetime import datetime import timeit import time import glob import matplotlib.pyplot as plt import seaborn as sb %matplotlib inline ###Output _____no_output_____ ###Markdown Get list of pages on each categoryGiven that the .csv files generated by CrowdTangle do not specify from which list they come from, it will be necessary to make API calls go get the IDs of pages related to each list.The lists are:* 'least-biased' : '1525935'* 'conspiracy-pseudoscience' : '1525936'* 'pro-science' : '1525937' ###Code lists = { 'least-biased' : '1525935', 'conspiracy-pseudoscience' : '1525936', 'pro-science' : '1525937' } token = open('./ctoken').read() def generate_account_list_url(listid, token=token): ''' Generates the API URL for the get request with the lists of accounts. ARGS: ListId = The id of the list for which to retrieve accounts. This is provided as a path variable in the URL Token = API Token Returns: STR - CrowdTangle API URL, for getting IDs of accounts in a list ''' return 'https://api.crowdtangle.com/lists/{}/accounts?token={}&count=100'.format(listid, token) platformid_to_list = dict() for listname, listid in lists.items(): print(listname) page = 0 nextpage = True url = generate_account_list_url(listid) while nextpage: page += 1 print('DOWNLOADING PAGE', page) re = requests.get(url) for account in re.json()['result']['accounts']: platformid_to_list[account['platformId']] = listname if 'nextPage' in re.json()['result']['pagination']: url = re.json()['result']['pagination']['nextPage'] time.sleep(10) else: nextpage = False ###Output least-biased DOWNLOADING PAGE 1 DOWNLOADING PAGE 2 DOWNLOADING PAGE 3 DOWNLOADING PAGE 4 conspiracy-pseudoscience DOWNLOADING PAGE 1 DOWNLOADING PAGE 2 pro-science DOWNLOADING PAGE 1 DOWNLOADING PAGE 2 ###Markdown Creates and cleans DFData was downloaded on several .csv files. Merge them into one single DF.*Note: yes, this is will probably use up a lot of RAM. I have recently bought 32gb, though, so I am going to use it ;)* ###Code path = './data/in' files = glob.glob(path + '/*.csv') df_list = [] for filename in files: df = pd.read_csv(filename, index_col=None, low_memory=False, dtype={'Facebook Id' : str}) df_list.append(df) df = pd.concat(df_list, axis=0, ignore_index=True) ###Output _____no_output_____ ###Markdown CleaningRemove unnecessary columns and pages with under 100 average followers, the same threshold used by NYU researchers for [this article](https://medium.com/cybersecurity-for-democracy/far-right-news-sources-on-facebook-more-engaging-e04a01efae90). ###Code df.columns columns_to_drop = ['User Name', 'Page Category', 'Page Admin Top Country', 'Page Description', 'Sponsor Id', 'Page Created','Likes at Posting', 'Post Created Date', 'Post Created Time', 'Video Length', 'Total Interactions', 'Video Share Status', 'Is Video Owner?', 'Post Views', 'Total Views For All Crossposts', 'Overperforming Score (weighted — Likes 1x Shares 1x Comments 1x Love 1x Wow 1x Haha 1x Sad 1x Angry 1x Care 1x )'] df.drop(columns_to_drop, axis = 1, inplace=True) # TURN ALL REACTIONS INTO ONE COLUMN df['Reactions'] = df[['Likes', 'Love', 'Wow', 'Haha', 'Sad', 'Angry','Care']].sum(axis=1) columns_to_drop = ['Likes', 'Love', 'Wow', 'Haha', 'Sad', 'Angry','Care'] df.drop(columns_to_drop, axis = 1, inplace=True) ''' This part will recreate the Total Interactions column. My computer is in PT-BR and CrowdTangle uses commas in their decimal separator. The workaround for this is so dramatic that it is easier to just recreate the column. ''' df['Total Interactions'] = df[['Reactions', 'Comments', 'Shares']].sum(axis=1) ###Output _____no_output_____ ###Markdown Lists pages below the 100 avg. followers threshold ###Code grouped_by_followers = df.groupby('Facebook Id').agg({'Followers at Posting' : 'mean'}) grouped_by_followers['Followers at Posting'].min() ###Output _____no_output_____ ###Markdown None of the pages fall under the threshold, so no action is necessary. Renames columnsTo avoid mistakes later, all column names will be turned to lower case and will have no spaces. ###Code column_names = list() for c in df.columns: column_names.append(c.lower().replace(' ', '_')) df.columns = column_names ###Output _____no_output_____ ###Markdown Add category column ###Code def check_category(facebookid, platformid_to_list=platformid_to_list): ''' Checks the Facebook ID and finds it in the dictionary with category names. Returns category. ARGS: facebookid - STR - id to be found platformid_to_list - List of IDs and their categories RETURN: 'least-biased'|'conspiracy-pseudoscience'|'pro-science' ''' return platformid_to_list[facebookid] df['category'] = df['facebook_id'].apply(lambda x: check_category(x)) # CHECKS FOR ERRORS df[df['category'].isna()] ###Output _____no_output_____ ###Markdown Removes duplicates ###Code len(df) df.drop_duplicates(inplace=True) len(df) ###Output _____no_output_____ ###Markdown Converts post creation date to datetime ###Code df['post_created'] = pd.to_datetime(df['post_created']) ###Output C:\Users\rapha\OneDrive\python\science-fakenews-facebook\env\lib\site-packages\dateutil\parser\_parser.py:1218: UnknownTimezoneWarning: tzname EST identified but not understood. Pass `tzinfos` argument in order to correctly return a timezone-aware datetime. In a future version, this will raise an exception. category=UnknownTimezoneWarning) C:\Users\rapha\OneDrive\python\science-fakenews-facebook\env\lib\site-packages\dateutil\parser\_parser.py:1218: UnknownTimezoneWarning: tzname EDT identified but not understood. Pass `tzinfos` argument in order to correctly return a timezone-aware datetime. In a future version, this will raise an exception. category=UnknownTimezoneWarning) ###Markdown Removes pages not available after 2021The analysis will focus on the trends for the past few months, so it makes no sense to include in the analysis pages that have no data after 2021. ###Code # CHECKS IF THERE ARE PAGES THAT LACK 2021 DATA posts_per_year = df.groupby('facebook_id').resample('Y', on='post_created').count()[['facebook_id']] posts_per_year.columns = ['count'] posts_per_year.reset_index()['post_created'].value_counts() january_first_21 = datetime.strptime('2021-01-01','%Y-%m-%d') pages_before_2021 = df[df['post_created'] < january_first_21]['facebook_id'].unique() pages_in_2021 = df[df['post_created'] > january_first_21]['facebook_id'].unique() # GENERATES A LIST OF PAGES THAT ARE NOT IN 2021 pages_to_remove = list(np.setdiff1d(pages_before_2021, pages_in_2021)) df = df[~df['facebook_id'].isin(pages_to_remove)].reset_index(drop=True) ###Output _____no_output_____ ###Markdown Analysis ###Code df.head() df.columns df.dtypes df.describe() ###Output _____no_output_____ ###Markdown Data distributionPlots histograms for the pages average of followers and interactions ###Code df_page_average = df.groupby(['category','facebook_id'], as_index=False).mean() df_page_average.head() bins = np.arange(1000000, df_page_average['followers_at_posting'].max()+1000000, 1000000) g = sb.FacetGrid(data = df_page_average, col = 'category', col_wrap = 3) g.map(plt.hist, 'followers_at_posting', bins=bins) g.set_titles('{col_name}'); g.fig.set_size_inches(20,5) g = sb.FacetGrid(data = df_page_average, col = 'category', col_wrap = 3) g.map(plt.hist, 'total_interactions', bins=30) g.set_titles('{col_name}'); g.fig.set_size_inches(20,5) df.sort_values(['total_interactions'], ascending=False).head() df_page_average[df_page_average['followers_at_posting']>15000000] df_page_average[df_page_average['total_interactions']>50000] ###Output _____no_output_____ ###Markdown There are some outliers in the data. Some huge pages, such as the WHO, will be removed.The threshold will be set to 1.5 million average followers and posts over 50 thousand interactions. ###Code pages_to_remove = list(df_page_average[df_page_average['followers_at_posting']>15000000]['facebook_id']) df = df[~df['facebook_id'].isin(pages_to_remove)].reset_index(drop=True) pages_to_remove = list(df_page_average[df_page_average['total_interactions']>50000]['facebook_id']) df = df[~df['facebook_id'].isin(pages_to_remove)].reset_index(drop=True) ###Output _____no_output_____ ###Markdown Interaction per thousand followers ###Code df['intactions_to_follow_ratio'] = (df['total_interactions'] / df['followers_at_posting'])*1000 ###Output _____no_output_____ ###Markdown Time comparison ###Code df_general_agg = df.groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_general_agg df_2021_agg = df[df['post_created'] > '2021'].groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_2021_agg df_2020_agg = df[df['post_created'] < '2021'].groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_2020_agg # COMPARES for k, v in lists.items(): ratio_2020 = df_2020_agg.loc[k]['intactions_to_follow_ratio'] ratio_2021 = df_2021_agg.loc[k]['intactions_to_follow_ratio'] print(k, 'ratio:', (ratio_2021-ratio_2020)/ratio_2020) follows_2020 = df_2020_agg.loc[k]['followers_at_posting'] follows_2021 = df_2021_agg.loc[k]['followers_at_posting'] print(k, 'follows:', (follows_2021-follows_2020)/follows_2020) print('') df.groupby('category').resample('M', on='post_created').mean()[['intactions_to_follow_ratio']].unstack(level=0).plot(kind='line') ###Output _____no_output_____ ###Markdown Exports to Excel to make this same graph a little prettier ###Code df_to_export =df.groupby('category').resample('M', on='post_created').mean()[['intactions_to_follow_ratio', 'followers_at_posting', 'reactions', 'shares', 'comments']].unstack(level=0) df_to_export.to_excel('./data/out/time_series.xlsx') ###Output _____no_output_____ ###Markdown Vaccines and Covid analysisThis part of the analysis will focus only on posts about vaccines and covid. ###Code df.columns df['all_texts'] = df[['message','image_text', 'link_text', 'description']].apply( lambda x: ','.join(x.dropna().astype(str)), axis =1) df.head() df_vaccine = df[df['all_texts'].str.contains('vaccine|vaccination')] df_vaccine.groupby('category').resample('M', on='post_created').mean()[['intactions_to_follow_ratio']].unstack(level=0).plot(kind='line') df_vaccine.groupby('category').resample('M', on='post_created').count()[['url']].unstack(level=0).plot(kind='line') df_vaccine_agg = df_vaccine.groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_vaccine_agg df_vaccine_agg_21 = df_vaccine[df_vaccine['post_created'] > '2021'].groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_vaccine_agg_21 df_vaccine_agg_20 = df_vaccine[df_vaccine['post_created'] < '2021'].groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_vaccine_agg_20 # COMPARES for k, v in lists.items(): ratio_2020 = df_vaccine_agg_20.loc[k]['intactions_to_follow_ratio'] ratio_2021 = df_vaccine_agg_21.loc[k]['intactions_to_follow_ratio'] print(k, 'ratio:', (ratio_2021-ratio_2020)/ratio_2020) shares_2020 = df_vaccine_agg_20.loc[k]['shares'] shares_2021 = df_vaccine_agg_21.loc[k]['shares'] print(k, 'shares:', (shares_2021-shares_2020)/shares_2020) print('') ###Output least-biased ratio: -0.1289134174343198 least-biased shares: -0.516550744676836 conspiracy-pseudoscience ratio: -0.3727788691403627 conspiracy-pseudoscience shares: -0.26458470170750653 pro-science ratio: -0.30568180208326373 pro-science shares: -0.19035270269373356 ###Markdown Mentioning Covid ###Code df_covid = df[df['post_created'] > '2020-01-01'] df_covid = df_covid[df_covid['all_texts'].str.contains('covid|corona|pandemic|lockdown|sars-cov')] df_covid.groupby('category').resample('M', on='post_created').mean()[['intactions_to_follow_ratio']].unstack(level=0).plot(kind='line') df_covid.groupby('category').resample('M', on='post_created').count()[['url']].unstack(level=0).plot(kind='line') df_covid_agg = df_covid.groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_covid_agg df_covid_agg_21 = df_covid[df_covid['post_created'] > '2021'].groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_covid_agg_21 df_covid_agg_20 = df_covid[df_covid['post_created'] < '2021'].groupby('category').agg({'facebook_id' : 'nunique', 'followers_at_posting' : 'mean', 'comments' : 'mean', 'shares' : 'mean', 'reactions' : 'mean', 'intactions_to_follow_ratio' : 'mean'}) df_covid_agg_20 # COMPARES for k, v in lists.items(): ratio_2020 = df_covid_agg_20.loc[k]['intactions_to_follow_ratio'] ratio_2021 = df_covid_agg_21.loc[k]['intactions_to_follow_ratio'] print(k, 'ratio:', (ratio_2021-ratio_2020)/ratio_2020) shares_2020 = df_covid_agg_20.loc[k]['shares'] shares_2021 = df_covid_agg_21.loc[k]['shares'] print(k, 'shares:', (shares_2021-shares_2020)/shares_2020) print('') ###Output least-biased ratio: -0.17223082853926036 least-biased shares: -0.537887201359583 conspiracy-pseudoscience ratio: -0.2819580565575689 conspiracy-pseudoscience shares: -0.48770243897102883 pro-science ratio: -0.21483026034165886 pro-science shares: -0.12395791149121203 ###Markdown Read the data from GP, XGB, and FFNN ###Code df = pd.read_csv("comparison.csv") ###Output _____no_output_____ ###Markdown Read the ChemProp data ###Code cp_df = pd.read_csv("cp_comparison.csv") ###Output _____no_output_____ ###Markdown Merge the two datasets ###Code df = df.merge(cp_df,on=["dataset","split"]) ###Output _____no_output_____ ###Markdown Label the datasets with random and scaffold splits ###Code df['random'] = [x.startswith("RND") for x in df.split] ###Output _____no_output_____ ###Markdown Split the datasets into two dataframes, one for scaffold splits and one for random splits ###Code df_rnd = df.query("random") df_scaf = df.query("random == False") df_rnd df_scaf ###Output _____no_output_____ ###Markdown A simple function to count the number of lines in a file, we'll use this to order the datasets from smallest to largest ###Code def count_lines(file_name): return sum(1 for line in open(file_name)) ###Output _____no_output_____ ###Markdown Put the datasets in order from smallest to largest ###Code line_counts = [[x.split("/")[-1].replace(".smi",""),count_lines(x)] for x in glob("data/*.smi")] df_line_count = pd.DataFrame(line_counts,columns=['dataset','count']) df_line_count.sort_values("count",inplace=True) sort_order = df_line_count.dataset.values ###Output _____no_output_____ ###Markdown Create the y-axis labels for the boxplots with the number of molecules in the dataset and the dataset name ###Code target_labels = [f"{a} {b}" for a,b in df_line_count[["dataset","count"]].values] ###Output _____no_output_____ ###Markdown A function to draw boxplots showing performance over multiple folds of cross validation ###Code def draw_boxplots(df,title): r2_cols = ["dataset"] + [x for x in df.columns if x.find("r2") > 0] rms_cols = ["dataset"] + [x for x in df.columns if x.find("rms") > 0] r2_df = df[r2_cols].melt(id_vars="dataset") rms_df = df[rms_cols].melt(id_vars="dataset") r2_df.columns = ['Dataset',"algorithm","R2"] rms_df.columns = ['Dataset',"algorithm","RMSE"] r2_df['Method'] = [x.split("_")[0].upper() for x in r2_df.algorithm] rms_df['Method'] = [x.split("_")[0].upper() for x in rms_df.algorithm] sns.set(rc={'figure.figsize': (15, 18)}) sns.set_context('talk') ax = sns.boxplot(x="R2",y="Dataset",data=r2_df,orient="h",hue="Method",order=sort_order) for i in range(0,len(df.dataset.unique())): ax.axhline(0.5+i,linestyle="--",color="grey") ax.set(xlabel="R${^2}$") ax.set(yticklabels=target_labels) ax.set(title=title) plt.show() plt.tight_layout() ax.figure.savefig(title.replace(" ","_")+"_r2.png",bbox_inches='tight') ax = sns.boxplot(x="RMSE",y="Dataset",data=rms_df,orient="h",hue="Method",order=sort_order) for i in range(0,len(df.dataset.unique())): ax.axhline(0.5+i,linestyle="--",color="grey") ax.set(title=title) ax.set(yticklabels=target_labels) plt.show() ax.figure.savefig(title.replace(" ","_")+"_rmse.png",bbox_inches='tight'); draw_boxplots(df_rnd,"Random Split") draw_boxplots(df_scaf,"Scaffold Split") ###Output _____no_output_____ ###Markdown ANALYSIS NOTEBOOK - DONNELLY 2019 PLOS ONE Patrick M. Donnelly University of Washington September 25, 2020 ###Code # import necessary databases and libraries import pandas as pd import numpy as np from scipy import stats # pull data from data folder in repository data = pd.read_csv('data/data.csv') ###Output _____no_output_____ ###Markdown Demographics TableT-tests and Wilcoxon signed rank tests for Demographics Table 1 Age ###Code stats.wilcoxon(corr_data.visit_age, corr_data_cntrl.visit_age) ###Output _____no_output_____ ###Markdown Gender ###Code stats.wilcoxon(corr_data.gender, corr_data_cntrl.gender) ###Output _____no_output_____ ###Markdown Norm-referenced Measures ###Code # WJ Basic Reading Skills composite stats.ttest_ind(corr_data.wj_brs, corr_data_cntrl.wj_brs) # TOWRE-2 Index stats.ttest_ind(corr_data.twre_index, corr_data_cntrl.twre_index) # WASI-II FS-2 Composite stats.ttest_ind(corr_data.wasi_fs2, corr_data_cntrl.wasi_fs2) # CTOPP-2 Phonological Awareness composite stats.ttest_ind(corr_data.ctopp_pa, corr_data_cntrl.ctopp_pa) # CTOPP-2 Rapid Naming composite stats.ttest_ind(corr_data.ctopp_rapid, corr_data_cntrl.ctopp_rapid) ###Output _____no_output_____ ###Markdown Correlation Analysis ###Code # look at difference scores and practice metrics data_sifted = data[['record_id','int_session', 'gender', 'pigs_casecontrol', 'word_acc_diff', 'pseudo_acc_diff', 'first_acc_diff', 'second_rate_diff', 'pigs_practice_numstories', 'visit_age', 'wj_brs', 'twre_index', 'ctopp_rapid', 'wasi_fs2', 'ctopp_pa', 'ctopp_pm']] # look just at intervention participants corr_data = data_sifted[data_sifted['pigs_casecontrol'] == 1] corr_data_cntrl = data_sifted[data_sifted['pigs_casecontrol'] == 0] # Look just at session 2 for data clarity corr_data = corr_data[corr_data['int_session'] == 2] corr_data_cntrl = corr_data_cntrl[corr_data_cntrl['int_session'] == 2] ###Output _____no_output_____ ###Markdown Growth and Practice - Intervention Group ###Code stats.pearsonr(corr_data['word_acc_diff'], corr_data['pigs_practice_numstories']) stats.pearsonr(corr_data['pseudo_acc_diff'], corr_data['pigs_practice_numstories']) ###Output _____no_output_____ ###Markdown Growth and Practice - Control Group ###Code stats.pearsonr(corr_data_cntrl['word_acc_diff'], corr_data_cntrl['pigs_practice_numstories']) stats.pearsonr(corr_data_cntrl['pseudo_acc_diff'], corr_data_cntrl['pigs_practice_numstories']) ###Output _____no_output_____ ###Markdown Real Word Decoding & Predictors ###Code stats.pearsonr(corr_data['word_acc_diff'], corr_data['visit_age']) stats.pearsonr(corr_data['word_acc_diff'], corr_data['wasi_fs2']) stats.pearsonr(corr_data['word_acc_diff'], corr_data['ctopp_pa']) stats.pearsonr(corr_data['word_acc_diff'], corr_data['ctopp_pm']) ###Output _____no_output_____ ###Markdown Pseudo Word Decoding & Predictors ###Code stats.pearsonr(corr_data['pseudo_acc_diff'], corr_data['visit_age']) stats.pearsonr(corr_data['pseudo_acc_diff'], corr_data['wasi_fs2']) stats.pearsonr(corr_data['pseudo_acc_diff'], corr_data['ctopp_pa']) stats.pearsonr(corr_data['pseudo_acc_diff'], corr_data['ctopp_pm']) ###Output _____no_output_____ ###Markdown Passage Reading Accuracy & Predictors ###Code # resift data so that nan-removal is only affected by nans in accuracy data_accuracy = data[['record_id','int_session', 'pigs_casecontrol', 'word_acc_diff', 'pseudo_acc_diff', 'first_acc_diff', 'pigs_practice_numstories', 'visit_age', 'wj_brs', 'twre_index', 'ctopp_rapid', 'wasi_fs2', 'ctopp_pa', 'ctopp_pm']] # look just at intervention participants corr_accuracy = data_accuracy[data_accuracy['pigs_casecontrol'] == 1] corr_accuracy_cntrl = data_accuracy[data_accuracy['pigs_casecontrol'] == 0] corr_accuracy = corr_accuracy[corr_accuracy['int_session'] == 2].dropna() corr_accuracy_cntrl = corr_accuracy_cntrl[corr_accuracy_cntrl['int_session'] == 2].dropna() stats.pearsonr(corr_accuracy['first_acc_diff'], corr_accuracy['visit_age']) stats.pearsonr(corr_accuracy['first_acc_diff'], corr_accuracy['wasi_fs2']) stats.pearsonr(corr_accuracy['first_acc_diff'], corr_accuracy['ctopp_pa']) stats.pearsonr(corr_accuracy['first_acc_diff'], corr_accuracy['ctopp_pm']) ###Output _____no_output_____ ###Markdown Passage Reading Rate & Predictors ###Code # resift data so that nan-removal is only affected by nans in rate data_rate = data[['record_id','int_session', 'pigs_casecontrol', 'word_acc_diff', 'pseudo_acc_diff', 'second_rate_diff', 'pigs_practice_numstories', 'visit_age', 'wj_brs', 'twre_index', 'ctopp_rapid', 'wasi_fs2', 'ctopp_pa', 'ctopp_pm']] # look just at intervention participants corr_rate = data_rate[data_rate['pigs_casecontrol'] == 1] corr_rate_cntrl = data_rate[data_rate['pigs_casecontrol'] == 0] corr_rate = corr_rate[corr_rate['int_session'] == 2].dropna() corr_rate_cntrl = corr_rate_cntrl[corr_rate_cntrl['int_session'] == 2].dropna() stats.pearsonr(corr_rate['second_rate_diff'], corr_rate['visit_age']) stats.pearsonr(corr_rate['second_rate_diff'], corr_rate['wasi_fs2']) stats.pearsonr(corr_rate['second_rate_diff'], corr_rate['ctopp_pa']) stats.pearsonr(corr_rate['second_rate_diff'], corr_rate['ctopp_pm']) ###Output _____no_output_____ ###Markdown Effect Size Analyses Real Word data structure most relevant is corr_data for intervention group and corr_data_cntrl for control group ###Code x = corr_data.word_acc_diff y = corr_data_cntrl.word_acc_diff d = (np.mean(x) - np.mean(y)) / np.sqrt((np.std(x, ddof=1) ** 2 + np.std(y, ddof=1) ** 2) / 2.0) print("Cohen's d: ",d) ###Output Cohen's d: 0.5686864296949145 ###Markdown Pseudo Word ###Code x = corr_data.pseudo_acc_diff y = corr_data_cntrl.pseudo_acc_diff d = (np.mean(x) - np.mean(y)) / np.sqrt((np.std(x, ddof=1) ** 2 + np.std(y, ddof=1) ** 2) / 2.0) print("Cohen's d: ",d) ###Output Cohen's d: 0.7429769651763583 ###Markdown Passage Accuracy ###Code x = corr_accuracy.first_acc_diff y = corr_accuracy_cntrl.first_acc_diff d = (np.mean(x) - np.mean(y)) / np.sqrt((np.std(x, ddof=1) ** 2 + np.std(y, ddof=1) ** 2) / 2.0) print("Cohen's d: ",d) ###Output Cohen's d: 0.3635296154143578 ###Markdown Passage Rate ###Code x = corr_rate.second_rate_diff y = corr_rate_cntrl.second_rate_diff d = (np.mean(x) - np.mean(y)) / np.sqrt((np.std(x, ddof=1) ** 2 + np.std(y, ddof=1) ** 2) / 2.0) print("Cohen's d: ",d) ###Output Cohen's d: 0.1270477151527451 ###Markdown What makes a movie a commercial success? A data science approach to dissect the economics of movie-making business Section 1: Business UnderstandingIn this notebook, I will use the IMDb publlic dataset and visualization tools in order to answer improtant questions about what factors lead to a commercial success of a movie. The key questions tht I will try to answer are as follows:1. Do certain movie genres make more money than others?2. Does the amount of funding for a movie have an impact on commercial success?3. What impact does duration have on the success of a movie?4. Do viewer ratings have an impact on how well a movie will do in the Box Office?5. Does the number of votes impact the success of a movie?Answering these questions could dramatically improve the decision processes underlying moie production. Section 2: Data UnderstandingThe IMDB movie dataset covers over 80000 movies and accounts for all the basic attributes one would expect such as duration, genre, country, language, and gross income. The dataset can be accessed here: https://www.imdb.com/interfaces/The following codeblock enables me to import the data and convert into a Pandas Dataframe ###Code #import necessary libraries import pandas as pd import os import sys import seaborn as sns import matplotlib.pyplot as plt from forex_python.converter import CurrencyRates cwd = os.getcwd() import re import math import numpy as np pd.reset_option('^display.', silent=True) np.set_printoptions(suppress=True) imdb_df = pd.read_csv(cwd+'/datasets/imdb.csv') #import imdb csv ###Output _____no_output_____ ###Markdown Section 3: Data PreparationIn this section, we will try to understand the dataset on a colummn by column basis and figure out which columns are valauble and how we could still make the most out of seemingly not valuable ones and also address issues related to missing data. ###Code imdb_df.columns #Printing columns to understand the dataset imdb_df.isna().sum()/imdb_df.shape[0] * 100 #Let's get a macroview of which columns are useful and which ones aren't #we will drop the Nan rows from output and also from metscore since 84% of its values are missing imdb_df = imdb_df.drop(columns=['metascore']) #Then, we will remove the rows from imdb_df that do not have worldwide & usa revenue numbers as this is the output we are looking to compare with imdb_df = imdb_df.dropna(subset=['worlwide_gross_income']) #Genre column can serve as a great categorical variable imdb_df['genre'] = imdb_df['genre'].str.replace(' ', '') # But first, we need to split the genres separated by commas genre_encoded = imdb_df['genre'].str.get_dummies(sep=',') #We encode the genres by using get_dummies genre_encoded #Now, we will make use of the encoded genre column imdb_df = pd.concat([imdb_df,genre_encoded], axis=1) #join the encoded data with original dataframe imdb_df.drop(columns=['genre']) #drop the original genre column #Next, we will attempt at converting the income related columns to one unified currency - USD c = CurrencyRates() #instantiating the forex conversion module def get_symbol(price): """ function for reading in the price and returning the currency inputs: - price: amount in local currency outputs: - currency: currency of the local price """ import re pattern = r'(\D*)\d*\.?\d*(\D*)' g = re.match(pattern,price).groups() return g[0] def return_USD(budget): """ function for reading in the currency and converting to USD inputs: - price: amount in local currency outputs: - price_in_USD: amount in USD """ if budget!='nan': if '$' not in budget: try: return c.get_rate(get_symbol(budget).strip(), 'USD') * int(re.findall('\d+', budget)[0]) except: return float('NaN') else: return int(re.findall('\d+', budget)[0]) else: return float('NaN') #lambda function for applying the USD conversion to the budget column imdb_df['budget'] = imdb_df['budget'].apply(lambda x: return_USD(str(x))) imdb_df #similarly, we'll convert the worldwide_gross_income and usa_gross_icome to USD imdb_df['worlwide_gross_income'] = imdb_df['worlwide_gross_income'].apply(lambda x: return_USD(str(x))) imdb_df['usa_gross_income'] = imdb_df['usa_gross_income'].apply(lambda x: return_USD(str(x))) imdb_df.to_csv(cwd+'/datasets/imdb_clean.csv') #we will save the cleaned up dataframe to a csv in order to create a milestone ###Output _____no_output_____ ###Markdown We will now address the next few steps sequentially for each question Section 3.1 Prepare data for question 1First question - Do certain genres make more $ than others? ###Code #We will extract the grenres columns and save them into a new dataframe imdb_genres_df = imdb_df[['worlwide_gross_income','Animation', 'Biography', 'Comedy', 'Crime', 'Documentary', 'Drama', 'Family', 'Fantasy', 'Film-Noir', 'History', 'Horror', 'Music', 'Musical', 'Mystery', 'Romance', 'Sci-Fi', 'Sport', 'Thriller', 'War', 'Western' ]] ###Output _____no_output_____ ###Markdown Section 4: Data ModelingWe are not applying any machine learning techniques so we will skip this section Section 5: Evaluating results Section 5.1 Evlauting results for Question 1Question: First question - Do certain genres make more $ than others?We will make use of seaborn to generate a heatmap of correlations between various genres and the worldwide gross income ###Code # fig, ax = plt.subplots(figsize=(15,15)) #instantiate the plot income_corr = imdb_genres_df.corr() #calculate correlation mask = np.zeros_like(income_corr[['worlwide_gross_income']], dtype=np.bool) #masking all the 1 values since they don't add any value mask[np.triu_indices_from(mask)] = True #masking list sns.heatmap(income_corr[['worlwide_gross_income']].sort_values(by=['worlwide_gross_income'],ascending=False), annot=True, fmt=".2f",linewidths=.5, ax=ax, vmin=-1, square=True, mask = mask, cmap='coolwarm'); ###Output _____no_output_____ ###Markdown Sci-fi, animation, and fantasy are clear winners. Drama and romance have a negative correlation implying that these genres lead to unimpressive returns. Section 5.2 Evlauting results for Question 2Question 2 - Does the amount of funding for a movie have an impact on commercial success?We will generate a scatter plot of the budget vs worldwide_gross_income to assess the distribution ###Code imdb_df.plot.scatter(x='budget', y='worlwide_gross_income', c='DarkBlue', figsize=(20,10),style='plain') #simple scatter plot generation function that defines the axes and size of plot ###Output _____no_output_____ ###Markdown Based on the above plot, we can somewhat infer that budget and gross income are correlated. Let's see if we can draw a regression line to fit the plot ###Code sns.lmplot(x='budget',y='worlwide_gross_income',data=imdb_df,fit_reg=True,line_kws={'color': 'red'},height=8, aspect=2) #Clearly, there is correlation. Let's calculate the Pearson correltion between the two columns. imdb_df['budget'].corr(imdb_df['worlwide_gross_income']) ###Output _____no_output_____ ###Markdown Conclusion: Budget and worldwide gross income are highly correlated Section 5.3 Evlauting results for Question 3Question 2 - What impact does duration have on the success of a movie? ###Code #Let's get an idea what the duration distribution looks like imdb_df['duration'].describe() #We will generate a scatter plot of the duration vs worldwide_gross_income to assess the distribution imdb_df.plot.scatter(x='duration', y='worlwide_gross_income', c='DarkBlue', figsize=(20,10)) #The average length of a movie in our database is 105 minutes. Anything less or more tends to taper off the commercial value. #We will seperate the duration into buckets imdb_df['duration_binned'] = pd.cut(imdb_df['duration'], [0,30,60,90,120,150,180,210,240,270,300]) #We will then generate a bar chart distribution imdb_df.groupby('duration_binned')['worlwide_gross_income'].mean().plot.bar() #It seems the ideal movie falls within the bucket of 180 minutes to 210 minutes. imdb_df.groupby('duration_binned')['worlwide_gross_income'].count().plot.bar() #Turns out that the average commercial value in the 180-210 bucket which is high seems to be driven by a small number of highly successful movies. imdb_df.groupby('duration')['worlwide_gross_income'].mean().idxmax() #For context, let's understand which movie is the source of greatest success ###Output _____no_output_____ ###Markdown Conclusion: For production studios, perhaps this means pushing to fall within this bucket if they’ve got other variables right. But if they want to play it safe, falling within the 120 to 150 minutes will be a safer bet. Section 5.4 Evlauting results for Question 4Question 4 - Do viewer ratings have an impact on how well a movie will do in the Box Office? ###Code #We will generate a scatter plot of the avg_vote vs worldwide_gross_income to assess the distribution imdb_df.plot.scatter(x='avg_vote', y='worlwide_gross_income', c='DarkBlue',figsize=(20,10)) #We will draw a regression line to see if there's some correlation sns.lmplot(x='avg_vote',y='worlwide_gross_income',data=imdb_df,fit_reg=True,line_kws={'color': 'red'},height=8, aspect=2) #Shocking! Let's calculate the Pearson correltion between the two columns. imdb_df['avg_vote'].corr(imdb_df['worlwide_gross_income']) ###Output _____no_output_____ ###Markdown Conclusion: The average user rating has very little to no impact on worldwide gross income. In fact, the correlation between the two is just 13%! This is yet another incentive for movie studios to continue doing what they do best, and care little about ratings they receive from the audience. Section 5.5 Evaluating results for Question 5Question 5 - Does the number of votes impact the success of a movie?Similar to my approach in Question 4, I will perform an analysis and derive the correlation between the numbers of votes and the corresponding worldwide gross income. ###Code sns.lmplot(x='votes',y='worlwide_gross_income',data=imdb_df,fit_reg=True,line_kws={'color': 'red'},height=8, aspect=2) #Clearly, there is correlation. Let's calculate the Pearson correltion between the two columns. imdb_df['votes'].corr(imdb_df['worlwide_gross_income']) ###Output _____no_output_____ ###Markdown Data analysis portion ###Code import pandas as pd import numpy as np df = pd.read_csv("test.csv") df = df.replace("--",np.nan) df.head() df.info() df["Greencard Processing Time"] = df["Greencard Processing Time"].astype(str) split_function = lambda x: x.split()[0] df["Greencard Processing Time"] = df["Greencard Processing Time"].apply(split_function) # df["Greencard Processing Time"] df["Greencard Processing Time"].astype(float).describe() ###Output _____no_output_____ ###Markdown Analyzing GOOG, AAPL & FB 2010-2020 ###Code from matplotlib import pyplot as plt import numpy as np import pandas as pd import datetime import seaborn as sns from pandas_datareader import data as pdr from datetime import date, timedelta import yfinance as yf import os from pathlib import Path from statsmodels.tsa.stattools import adfuller from statsmodels.graphics.tsaplots import plot_acf, plot_pacf from sklearn.metrics import mean_squared_error yf.pdr_override() STOCKS = ["AAPL", "GOOG", "FB"] LAST_N_DAYS = 10 * 365 DATADIR = "data" SIGNIFICANCE_LEVEL = 0.05 !mkdir -p $DATADIR today = date.today() start_date = today - timedelta(days=LAST_N_DAYS) dfs = dict() for stock in STOCKS: filename = Path(DATADIR) / f"{stock}_{today}.csv" if filename.exists(): dfs[stock] = pd.read_csv(filename).set_index("Date") else: dfs[stock] = pdr.get_data_yahoo(stock, start=start_date, end=today) dfs[stock].to_csv(filename) df = pd.DataFrame({k: v.Close for k, v in dfs.items()}) returns = (df.shift(-1) - df) / df returns.head() returns.describe() fig = plt.figure(dpi=100) for stock in STOCKS: ax = sns.lineplot(x=df.index, y=df[stock]) fig.legend(labels=STOCKS) plt.ylabel("Ticker") plt.xlabel("Date") ax.set_xticks(ax.get_xticks()[::500]) plt.title("Stock Dynamics 2010-2020") plt.show() for stock in STOCKS: X = df[stock].dropna().values result = adfuller(X) if result[1] < SIGNIFICANCE_LEVEL: print(f"{stock} is stationary by the Augmented Dickey-Fuller test.") else: print(f"{stock} is NOT stationary by the Augmented Dickey-Fuller test.") ###Output AAPL is NOT stationary by the Augmented Dickey-Fuller test. GOOG is NOT stationary by the Augmented Dickey-Fuller test. FB is NOT stationary by the Augmented Dickey-Fuller test. ###Markdown Autocorrelation Analysis ###Code for stock in STOCKS: X = df[stock].dropna() plot_acf(X, title=f"{stock} Autocorrelation") plt.show() for stock in STOCKS: X = df[stock].dropna() plot_pacf(X, title=f"{stock} Partial Autocorrelation") plt.show() ###Output _____no_output_____ ###Markdown Profit & Loss ###Code def model_pnl(n_models): fig = plt.figure(dpi=140, figsize=(20, 10)) idx = 0 for model_idx in range(n_models): pnl = returns * np.random.normal(size=returns.shape) for stock_idx, stock in enumerate(STOCKS): idx += 1 plt.subplot(n_models, len(STOCKS) * 2, idx) pnl[stock].plot(title=f"{stock} PNL") idx += 1 plt.subplot(n_models, len(STOCKS) * 2, idx) pnl[stock].cumsum().plot(title=f"{stock} Cum. PNL") plt.tight_layout() fig.autofmt_xdate() plt.show() model_pnl(3) ###Output _____no_output_____ ###Markdown Scratchpad ###Code def hit_rate(returns, prediction): return (np.sign(prediction) == np.sign(returns)).mean(axis=1) def approximate_sharpe_ratio(series): return series.mean(axis=1) / series.std(axis=1) def plot_sharpe_ratio(returns, n_draws=1000, acc="hit_rate"): for stock in STOCKS: stock_returns = returns[stock].dropna() sim_stock_pnl = pd.DataFrame({draw: stock_returns for draw in range(n_draws)}) plt.title(f"{stock} SR vs {acc}") plt.xlabel(acc) plt.ylabel("SR") if acc == "hit_rate": data = pd.DataFrame( { "sr": approximate_sharpe_ratio(sim_stock_pnl), "hit_rate": hit_rate(stock_returns, sim_stock_pnl), }, index=sim_stock_pnl.index ) elif acc == "rmse": data = pd.DataFrame( { "sr": approximate_sharpe_ratio(sim_stock_pnl), "rmse": mean_squared_error(stock_returns, sim_stock_pnl), } ) sns.boxplot(x="hit_rate", y="sr", data=data) plt.show() plot_sharpe_ratio(returns, acc="hit_rate") from alpha_vantage.timeseries import TimeSeries from ipython_secrets import get_secret ALPHA_VANTAGE_API_KEY = get_secret("ALPHA_VANTAGE_API_KEY") ts = TimeSeries(key=ALPHA_VANTAGE_API_KEY, output_format="pandas", indexing_type="date") def build_df(stocks=STOCKS): cols = dict() for stock in stocks: data, meta = ts.get_daily(symbol=stock, outputsize="full") cols[stock] = data.rename(columns={"4. close": "close"})["close"] return pd.DataFrame(cols) df = build_df() now = datetime.datetime.now() train_df = df[now - df.index <= datetime.timedelta(days=LAST_N_DAYS)] ###Output _____no_output_____ ###Markdown Questions - For each participant: - number of messages - words per message - most used words - number of emojis - most used emojis- Sentiment analysis: - group sentiment over time - sentiment index of each participant - pie chart of message sentiments - worst and best message and from who - wordcloud Library Imports ###Code import pandas as pd import matplotlib.pyplot as plt from tqdm import tqdm from nltk.corpus import stopwords from textblob import TextBlob import operator from collections import Counter import emoji import requests import json from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer import asyncio import concurrent import re from functools import partial from pandas.api.types import CategoricalDtype from datetime import datetime from wordcloud import WordCloud %matplotlib inline ###Output _____no_output_____ ###Markdown Some details about the file. ###Code data = "data/chat.txt" language = 'portuguese' language_code = 'pt' table = pd.DataFrame(columns=('date', 'time', 'sender', 'message')) ###Output _____no_output_____ ###Markdown Processing the file and building the dataframe: ###Code with open(data) as f: raw_message = "" counter = 0 for line in tqdm(f): if line.startswith('['): # date datePattern = '(\d+/\d+/\d+)' try: date = re.search(datePattern, raw_message).group(0) except AttributeError: date = "No date" # time timePattern = '(\d+:\d+:\d+)' try: time = re.search(timePattern, raw_message).group(0) except AttributeError: time = "No Time" # sender personPattern = '((?<=]).+?(?=:))' try: person = re.search(personPattern, raw_message).group(0).replace("] ", "") except AttributeError: person = "No Person" # message messagePattern = '(:\s).*' try: text = re.search(messagePattern, raw_message).group(0).replace(": ", "") except AttributeError: text = "No message" table.loc[counter] = [date, time, person, text] counter += 1 raw_message = line else: raw_message += line ###Output 13524it [00:19, 700.64it/s] ###Markdown We clean the imports and print the head of the dataframe: ###Code table = table[~table.message.str.contains("omitted")] table = table[~table.message.str.contains("No message")] table = table[~table.message.str.contains("Messages to this group are")] table = table[~table.date.str.contains("No date")] table.head() ###Output _____no_output_____ ###Markdown Participant comparison ###Code table.groupby('sender').message.count().plot(kind='barh') plt.title('Total Messages send by each participant') table['message_size'] = table.message.str.split().str.len() table.groupby('sender').message_size.count().plot(kind='barh') plt.title('Words per message for each participant') senders = list(set(table.sender)) raw_text = {} for sender in senders: raw_text[sender] = "" for idx, row in table.iterrows(): sender = row.sender message = row.message raw_text[sender] += message + " " for sender in senders: # clean words and extract most used bad_words = stopwords.words(language) blob = list(TextBlob(raw_text[sender]).lower().words) clean_blob = [word for word in blob if word not in bad_words] top_words = Counter(clean_blob).most_common()[0:5] print(f"\nTop words for {sender}:") for element in top_words: print(f"{element[0]} with {element[1]} uses.") # get most used emojis emoji_list = [] for item in clean_blob: if item in emoji.UNICODE_EMOJI: emoji_list.append(item) top_emoji = Counter(emoji_list).most_common()[0:3] print(f"\nTop emojis for {sender}:") for element in top_emoji: print(f"{element[0]} with {element[1]} uses.") # create a cloud of words for each participant print(f"\nCloud for {sender}:") stopwords_set = set(bad_words) wc = WordCloud(stopwords=stopwords_set).generate(raw_text[sender]) plt.figure() plt.imshow(wc, interpolation="bilinear") plt.axis("off") plt.show() print('-' * 20) ###Output Top words for Pai: boa with 250 uses. ló with 137 uses. docas with 129 uses. catocas with 116 uses. é with 110 uses. Top emojis for Pai: ❤ with 11 uses. 👍 with 9 uses. 🤙 with 5 uses. Cloud for Pai: ###Markdown Sentiment Analysis ###Code def convert_to_weekday(date_string): day_names = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun'] datetime_object = datetime.strptime(date_string, '%d/%m/%Y') return day_names[datetime_object.weekday()] cats = ['Mon', 'Tue', 'Wed', 'Thur', 'Fri', 'Sat', 'Sun'] cat_type = CategoricalDtype(categories=cats, ordered=True) table['weekday'] = [convert_to_weekday(element) for element in table['date']] table.groupby('weekday').message.count().reindex(cats).plot(kind='bar') plt.title('Total messages per weekday') sender = senders[3] a = table[(table['sender'] == sender)] a.groupby('weekday').message.count().reindex(cats).plot(kind='bar') plt.title(f"Total messages per weekday for {sender}") def happy_message(message): if '!' in message: return True else: return False table['happy_message'] = [happy_message(message) for message in table['message']] #table.groupby('happy_message').message.count().plot(kind='bar') #plt.title(f"Are messages happy?") happy_percentage = table['happy_message'].sum() / table['message'].count() * 100 sad_percentage = 100 - happy_percentage data = [happy_percentage, sad_percentage] labels = ['happy', 'not happy'] plt.pie(data, labels=labels, autopct='%1.1f%%') happyness_ratios = [] for sender in senders: personal = table[(table['sender']== sender)] happyness_ratio = personal.happy_message.sum() / personal.message.count() happyness_ratios.append(happyness_ratio) plt.bar(senders, happyness_ratios) plt.xticks(rotation=90) plt.title('Happiness Ratios') table['date_datetime'] = pd.to_datetime(table['date'], format='%d/%m/%Y') table['time_datetime'] = pd.to_datetime(table['time'], format='%H:%M:%S') # I could do mean table.groupby(table.date_datetime.dt.month).happy_message.count().plot() plt.title('Happy messages throughout the year') table.groupby(table.date_datetime.dt.day).happy_message.sum().plot(label='Happy messages') #table.groupby(table.date_datetime.dt.day).message.count().plot(label='Total messages') plt.title('Happy messages throughout the month') plt.legend() table.groupby(table.date_datetime.dt.dayofweek).happy_message.sum().plot(label='Happy messages') #table.groupby(table.date_datetime.dt.dayofweek).message.count().plot(label='Total messages') plt.title('Happy messages throughout the week') plt.legend() plt.xticks(range(len(cats)), cats) table.groupby(table.time_datetime.dt.hour).happy_message.sum().plot(label='Happy messages') #table.groupby(table.time_datetime.dt.hour).message.count().plot(label='Total messages') plt.title('Happy messages throughout the day') plt.legend() ###Output _____no_output_____ ###Markdown Estimating text loss in Middle Dutch chivalric epics This English-language, Python notebook accompanies the following publication:> Mike Kestemont and Folgert Karsdorp, "Het Atlantis van de Middelnederlandse ridderepiek. Een schatting van het tekstverlies met methodes uit de ecodiversiteit". *Spiegel der letteren* (2020).All figures and numbers were prepared using the code below. Future updates of the code and data will be managed in an open [Github repository](https://github.com/mikekestemont/chivalric_diversity). The code block below loads all (third-party) packages and modules necessary to run the module. These can be installed from the file `requirements.txt`: pip install -r requirements.txt ###Code from functools import partial from itertools import product import numpy as np np.random.seed(12345) from scipy.special import erfinv import pandas as pd import matplotlib.pyplot as plt plt.style.use("tufte.mplstyle") plt.rcParams["text.usetex"] = False %matplotlib inline import scipy.stats as stats from scipy.special import gammaln ###Output _____no_output_____ ###Markdown Data We load the data from the spreadsheet file `mnl.xlsx`: ###Code mnl = pd.read_excel('mnl.xlsx', header=None, names=('text', 'witness')) mnl.head(10) ###Output _____no_output_____ ###Markdown We are only interested in the count data, i.e. the number of witnesses per text (the technical term is "abundance data"). ###Code mnl.groupby('text').size().sort_values(ascending=False).head() ###Output _____no_output_____ ###Markdown The counts per text can be plotted as follows: ###Code fig, ax = plt.subplots(figsize=(10,18)) mnl.groupby('text').size().sort_values(ascending=True).plot.barh(ax=ax); ax.set(xlabel='aantal handschriften', ylabel='', title='Distributie van de (ons bekende) ridderepische teksten over tekstgetuigen') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.savefig('output/Fig1.jpeg', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown Yet a different perspective is to list the size of the frequency bins that we can distinguish within the manuscript counts: ###Code types = mnl.groupby('text').size().sort_values(ascending=False).value_counts().sort_index() types = types.to_frame(name='aantal teksten') types['aantal handschriften'] = types.index types.to_excel('output/Tab1.xlsx') types ###Output _____no_output_____ ###Markdown Finally, we define the auxiliary function `species_richness` to count the number of unique texts in the data (i.e. the number of non-zero counts): ###Code def species_richness(counts): return np.sum(counts > 0) print('# unique texts:', species_richness(mnl.groupby('text').size())) print('# witnesses:', len(mnl)) ###Output # unique texts: 74 # witnesses: 164 ###Markdown Jackknife The following function computes the first-order Jackknife estimate, on the basis of the abundance data in our data frame, as well as a confidence interval (.95 be default). This approach is detailed in the following paper:> K. Burnham & W. Overton, "Robust Estimation of Population Size When Capture Probabilities Vary Among Animals". *Ecology* (1979), 927-936. ###Code def jackknife(data, conf_lvl=0.95): jack_stat = species_richness(data) x = np.array(sum([[i] * c for i, c in enumerate(data, 1)], [])) index = np.arange(x.shape[0]) vals = [] for i in range(x.shape[0]): t = x[index != i] vals.append(species_richness(np.bincount(t))) mean_jack_stat = np.mean(vals) bias = (x.shape[0] - 1) * (mean_jack_stat - jack_stat) estimate = jack_stat - bias std_err = np.sqrt( (x.shape[0] - 1) * np.mean((mean_jack_stat - vals) * (mean_jack_stat - vals), axis=0) ) z_score = np.sqrt(2.0) * erfinv(conf_lvl) conf_interval = estimate + z_score * np.array((-std_err, std_err)) return estimate, std_err, conf_interval results = jackknife(mnl.groupby('text').size()) print('jackknife-estimate (order=1):', results[0], results[-1]) ###Output jackknife-estimate (order=1): 117.73170731707278 [106.64468284 128.8187318 ] ###Markdown This implementation is verbose and uses an explicit `for`-loop, which iteratively leaves out observations and tracks the drops in diversity that follow from this operation. In the code blocks below we show that the same estimate can also be obtained in a fully analytical fashion. First we calculate the frequency counts for each unique text: ###Code num_per_text = mnl.groupby('text').size() num_per_text ###Output _____no_output_____ ###Markdown Next, we store the species richness (the number of unique texts) in $t$: ###Code t = species_richness(num_per_text) t ###Output _____no_output_____ ###Markdown Then we set $s$ to the number of texts that are only attested in a single witness: ###Code s = sum(num_per_text == 1) s ###Output _____no_output_____ ###Markdown Only the $s$ texts that occur once will affect the species richness during the iterative Jackknife procedure. We can therefore predict that we will obtain the following deviations when applying the bootstrap: ###Code mu = (((t - s) * t) + (s * (t - 1))) / t mu ###Output _____no_output_____ ###Markdown That means that we can calculate the bias as follows: ###Code bias = (t - 1) * (mu - t) bias ###Output _____no_output_____ ###Markdown To account for this bias, we can subtract it from the original species richness in the observed data: ###Code t - bias ###Output _____no_output_____ ###Markdown Simple example ###Code counts = [5, 4, 3, 3, 1, 1, 1, 1, 1] names = 'ABCDEFGHI' data = zip(counts, names) df = pd.DataFrame(zip(names, counts), columns=('naam', 'mss')) df.to_excel('output/Tab2.xlsx') df print('total # of witnesses:', df['mss'].sum()) species_richness(df['mss']) jackknife(df['mss']) data = np.array(df['mss']) x = np.array(sum([[i]*c for i, c in enumerate(data, 1)], [])) tradition = [names[i - 1] for i in x] print(tradition) bootstrap = [] for i in range(len(tradition)): tradition_ = [tradition[j] for j in range(len(tradition)) if i != j] bootstrap.append(( (i + 1), tradition[i], ''.join(tradition_), len(set(tradition_)), len(set(tradition_)) - len(set(tradition)))) df = pd.DataFrame(bootstrap, columns=('iteration', 'leftout', 'imputed tradition', 'richness', 'error')) df.to_excel('output/Tab3.xlsx') df mean_estimate = np.mean(df['richness']) print('Average estimate:', mean_estimate) print('Bias:', mean_estimate - 9) bias = 19 * (mean_estimate - 9) bias corrected = 9 - bias corrected conf_lvl = .95 std_err = np.sqrt( 19 * np.mean((mean_estimate - df['richness']) * (mean_estimate - df['richness']), axis=0)) z_score = np.sqrt(2.0) * erfinv(conf_lvl) conf_interval = corrected + z_score * np.array((-std_err, std_err)) conf_interval ###Output _____no_output_____ ###Markdown Chao1 In the paper we eventually opt for the more recent, non-parametric formula "Chao1", which is described in this paper:> A. Chao & L. Jost, ‘Estimating diversity and entropy profiles via discovery rates of new species". *Methods in Ecology and Evolution* (2015), 873-882.Because we have "doubletons" in our data, we use can the following formula, where:- $\hat{f_0}$ is the (theoretical) number of non-observed species/texts;- $f_1$ is the number of species/texts attested exactly once ("singletons");- $f_2$ is the number of species/texts attested exactly twice ("doubletons");- $n$ is the total number of individuals/manuscripts in the observed data.\begin{equation}\hat{f_0} = \frac{(n - 1)}{n} \frac{f_1^2}{2f_2}\end{equation}The code block below returns the full, theoretical species richness as etimated by Chao1, i.e. it adds the estimated $\hat{f_0}$ to the species richness that was observed in the sample: ###Code def chao_richness(x): x, n = x[x > 0], x.sum() t = x.shape[0] f1, f2 = (x == 1).sum(), (x == 2).sum() return t + (n - 1) / n * ((f1 ** 2 / 2 / f2) if f2 > 0 else (f1 * (f1 - 1) / 2)) ###Output _____no_output_____ ###Markdown If we apply this function to our data, we obtain an even higher (but arguably more realistic) estimate of the loss in textual diversity for this literature. Note, however, that this estimate is still a theoretical *minimum estimate*, since the original loss could still be higher. ###Code chao_richness(num_per_text) ###Output _____no_output_____ ###Markdown Instead of reporting just this number, we apply a bootstrapped procedure in which we sample from the material using a multinomial distribution (see the Appendix Chao and Jost, 2015) and apply Chao1 to the resulting samples. This procedure allows us to calculate a .95 confidence interval for this value. ###Code def bt_prob(x): x, n = x[x > 0], x.sum() f1, f2 = (x == 1).sum(), (x == 2).sum() C = 1 - f1 / n * (((n - 1) * f1 / ((n - 1) * f1 + 2 * f2)) if f2 > 0 else ((n - 1) * (f1 - 1) / ((n - 1) * (f1 - 1) + 2)) if f1 > 0 else 0) W = (1 - C) / np.sum(x / n * (1 - x / n) ** n) p = x / n * (1 - W * (1 - x / n) ** n) f0 = np.ceil(((n - 1) / n * f1 ** 2 / (2 * f2)) if f2 > 0 else ((n - 1) / n * f1 * (f1 - 1) / 2)) p0 = (1 - C) / f0 p = np.hstack((p, np.array([p0 for i in np.arange(f0)]))) return p def bootstrap(x, n_iter=1000, conf=.95): # define a multinomial probability distribution # for the bootstrap procedure to sample from: p, n = bt_prob(x), x.sum() data_bt = np.random.multinomial(n, p, n_iter) pro = np.array([chao_richness(row) for row in data_bt]) pro_mean = pro.mean(0) lci_pro = -np.quantile(pro, (1 - conf) / 2, axis=0) + pro_mean uci_pro = np.quantile(pro, 1 - (1 - conf) / 2, axis=0) - pro_mean sd_pro = np.std(pro, axis=0) pro = pro_mean - pro return (lci_pro, uci_pro, sd_pro, pro) def chao_estimate(x, n_iter=1000, conf=0.95): pro = chao_richness(x) (lci_pro, uci_pro, sd_pro, bt_pro) = bootstrap(x, n_iter=n_iter, conf=conf) lci_pro, uci_pro = pro - lci_pro, pro + uci_pro bt_pro = pro - bt_pro return (lci_pro, uci_pro, bt_pro, pro) ###Output _____no_output_____ ###Markdown The following block applies this bootstrapped procedure to obtain the final estimates: ###Code lci_pro, uci_pro, bt_pro, pro = chao_estimate(num_per_text, n_iter=10000) print('pro:', pro) print('lci_pro:', lci_pro) print('uci_pro:', uci_pro) ###Output pro: 148.00750469043152 lci_pro: 106.21863495939421 uci_pro: 219.01578019221017 ###Markdown The array `bt_pro` contains the estimates that were collected during the bootstrap (1,000 iterations by default). Below, we plot the distribution of these numbers using a rainplot: ###Code import ptitprince as pt fig, ax = plt.subplots(figsize=(8, 6)) d = list([(x, 'bootstrap') for x in bt_pro]) bt = pd.DataFrame(d, columns=('bootstrap', 'type')) pt.RainCloud( data=bt, x="type", y="bootstrap", ax=ax, orient="h", alpha=.8, bw=.2, rain_alpha=.3, palette="Greys" ) ax.axvline(pro, c='black', ls='--') ax.axvline(uci_pro, c='darkgrey', ls='--') ax.axvline(lci_pro, c='darkgrey', ls='--') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.set_yticks([]) ax.set_ylabel('') plt.savefig('output/Fig2.png', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown The idea that there were at least 100 texts is not completely unlikely, but it is a veryconservative estimate, at the very bottom of the probability continuum. The estimate of ~148 manuscripts (or more) is much more plausible, which would mean that *at least half ofthe chivalric texts have been lost*. Just as 100 is an extremely optimisticestimate, ~219 is the most pessimistic estimate: in thatcase, only a third of the ever available chivalric epics would have been persisted throughtime, which is quite a dramatic, but not entirely unrealistic figure. Species accumulation curve In what preceded, we have investigated how many unique texts may have been lost, or, more positively, how many unique texts we may have not yet seen. In this concluding section, we investigate how many texts should be retrieved before we arrive at this diversity estimate. This new estimate provides us with information about the total population size, i.e. the total number of text witnesses. We follow Hsieh, Ma and Chao (2016) to compute this estimate using "Rarefaction Extrapolation". For details about this method, see:> Hsieh, Ma and Chao (2016): iNEXT: an R package for rarefaction and extrapolation ofspecies diversity. *Methods in Ecology and Evolution*, 7, 1451–1456. ###Code def bootstrap_re(x, fn=chao_richness, n_iter=1000, conf=.95): # define a multinomial probability distribution # for the bootstrap procedure to sample from: p, n = bt_prob(x), x.sum() data_bt = np.random.multinomial(n, p, n_iter) Dq = fn(x) pro = np.array([fn(row) for row in data_bt]) error = stats.norm.ppf(1 - (1 - conf) / 2) * np.std(pro, 0) lci_pro = Dq - error uci_pro = Dq + error sd_pro = np.std(pro, axis=0) return (lci_pro, uci_pro, sd_pro, Dq, ) def rarefaction_extrapolation(x, max_steps): x, n = x[x > 0], x.sum() def _sub(m): if m <= n: return np.sum(1 - np.array( [np.exp(gammaln(n - i + 1) + gammaln(n - m + 1) - gammaln(n - i - m + 1) - gammaln(n + 1)) if i <= (n - m) else 0 for i in x])) else: S = (x > 0).sum() f1, f2 = (x == 1).sum(), (x == 2).sum() f0 = ((n - 1) / n * f1 * (f1 - 1) / 2) if f2 == 0 else ((n - 1) / n * f1**2 / 2 / f2) A = n * f0 / (n * f0 + f1) return S if f1 == 0 else (S + f0 * (1 - A**(m - n))) return np.array([_sub(mi) for mi in range(1, max_steps)]) counts = np.bincount(mnl.groupby('text').size())[1:] # ignore zero x = np.array(sum([[i] * c for i, c in enumerate(counts, 1)], [])) ###Output _____no_output_____ ###Markdown Here too we use a bootstrap method with 100 samples: ###Code max_steps = 1000 lci_pro, uci_pro, sd_pro, Dq = bootstrap_re( x, fn=partial(rarefaction_extrapolation, max_steps=max_steps), n_iter=100 ) steps = np.arange(1, max_steps) interpolated = np.arange(1, max_steps) < x.sum() fig, ax = plt.subplots(figsize=(8, 6)) ax.plot(steps[interpolated], Dq[interpolated], color='C0') ax.plot(x.sum(), Dq[x.sum() - 1], 'o') ax.plot(steps[~interpolated], Dq[~interpolated], '--', color='C0') ax.fill_between(steps, lci_pro, uci_pro, alpha=0.3) ax.grid() ax.set(xlabel='# handschriften', ylabel='# teksten', title='Species Accumulation Curve') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.savefig('output/Fig3.png', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown SymPy 2022 Documentation Theme Survey Analysis MethodologySymPy ran a user survey about its documentation theme from February 5-19, 2022. The primary purpose of the survey was to guide the selection of a Sphinx theme for the SymPy Documentation at https://docs.sympy.org. A total of 22 people responded. The survey was done on Google Surveys and was shared on the SymPy public mailing list, the [@SymPy](https://twitter.com/SymPy) Twitter account, and a [SymPy discussion on GitHub](https://github.com/sympy/sympy/discussions/23055). The survey consisted of 14 questions, all of which were optional. The results of these responses are summarized here. We would like to thank everyone who took and shared the survey.Four themes were [chosen based on factors such as layout, navigation, performance, and accessibility](https://github.com/sympy/sympy/issues/22716) for evaluation by the SymPy community. Each theme was "prototyped" by - Applying the theme to the SymPy dev documentation - Removing SymPy Live, which has several problems, is [planned to be removed in the live documentation](https://github.com/sympy/sympy/issues/22835), and affects the formatting of the documentation site due to importing a style sheet - [Hosting them on GitHub Pages](https://bertiewooster.github.io/sympy-doc/)No attempt was made to customize the four themes because that is anticipated to be a time-consuming process with both technical (styling) and consensus-building components. Respondents were thus encouraged to focus on the layout, navigation, and interactive features, rather than the exact styling, for example colors.For each of the four themes, respondents were asked to - Rate the theme's usefulness of a scale of 1 (Not very useful) to 4 (Very useful) - Share what they liked and disliked SummaryA detailed analysis of the responses is provided below. At a high level, there are three main takeaways from the results.1. The themes can be divided into three ratings categories, where the rating scale was 1 (Not very useful) to 4 (Very useful): 1. Highest: Furo at 2.95. 2. Middle: PyData and Book, nearly tied at 2.85 and 2.86, respectively. 3. Lowest: Read the Docs (RTD) at 2.47.2. Most comments about themes, both likes and dislikes, were about formatting, look and feel, and navigation.3. We should proceed with the Furo theme, customizing it to address respondents' dislikes about its formatting. We can keep the PyData and Book themes in mind as backup options. ###Code import warnings warnings.filterwarnings('ignore') import pandas import seaborn import matplotlib.pyplot as plt import textwrap # Set the plot format to SVG for better quality plots from matplotlib_inline.backend_inline import set_matplotlib_formats set_matplotlib_formats('retina') %matplotlib inline df = pandas.read_csv('theme-responses.csv') # Set up columns, themes, colors timestamp, experience_level, pydata_rating, pydata_like, pydata_dislike, book_rating, book_like, book_dislike, furo_rating, furo_like, furo_dislike, rtd_rating, rtd_like, rtd_dislike, other_comments, = df.columns rating_cols = [pydata_rating, book_rating, furo_rating, rtd_rating] themes = ["PyData", "Book", "Furo", "RTD"] n_themes = len(themes) theme_colors = ["blue", "red", "yellow", "green"] n_responses = len(df) ###Output _____no_output_____ ###Markdown Experience Level The first question asked the respondents to place their SymPy experience level on a scale of 1 to 5, with 1 being "novice user" and 5 being "expert user".Most respondents self-reported a mid-level experience with SymPy. ###Code n_nr = df[experience_level].isna().sum() experience_cat_nr = pandas.Series({'0': n_nr}) experience_cats_r = df[experience_level].dropna().astype(int).value_counts(sort=False).sort_index() experience_cats = experience_cat_nr.append(experience_cats_r) percents_experience_cats = ["%.1f%%" % i for i in experience_cats/n_responses*100] ax = seaborn.countplot(df[experience_level].fillna(0).astype(int)) ax.bar_label(ax.containers[0], percents_experience_cats, label_type='center') ax.set_xticklabels(['No response', "1 Novice user", "2", "3", "4", "5 Expert user"]) max_width = 10 # Split x tick labels across multiple lines # https://stackoverflow.com/questions/57144682/split-string-xticks-into-multiple-lines-matplotlib xtl = ax.set_xticklabels(textwrap.fill(x.get_text(), max_width) for x in ax.get_xticklabels()) ###Output _____no_output_____ ###Markdown Theme Ratings The survey asked respondents to rate the usefulness of four themes on a 1-4 scale, with 1 being Not very useful and 4 being Very useful. The mean and standard deviation of the rating for each theme are expressed numerically and graphically as: ###Code df[rating_cols].describe().transpose()[["mean","std"]].round(2) # So seaborn can automatically plot standard deviations as error bars, # combine all ratings into one column, paired with theme all_themes = [] for theme in themes: this_theme = [theme] * n_responses all_themes += this_theme all_ratings = [] for col in rating_cols: this_theme_ratings = list(df[col]) all_ratings += this_theme_ratings df_combined = pandas.DataFrame(list(zip(all_themes, all_ratings)), columns = ['theme', 'rating']) rating_min = 1 rating_max = 4 num_bins = rating_max - rating_min + 1 rating_values = range(rating_min, rating_max + 1) t = seaborn.barplot( data=df_combined, x="theme", y="rating", capsize=0.2, errwidth=0.5, palette=theme_colors, alpha=.6, ) t.set_yticks(rating_values) t.bar_label(t.containers[0], label_type = 'center', fmt='%.2f') t.set(xlabel='', ylabel='How useful is each theme?\n1= Not very useful Very useful = 4') t.set(ylim=(rating_min,rating_max)) t.grid(False) ###Output _____no_output_____ ###Markdown Furo is the highest-rated theme by about 0.1 points. PyData and Book are virtually tied for second place. Read the Docs is rated lowest, about 0.5 points below Furo. Rating Distribution for Themes For each theme, a histogram displays the count of responses for each rating level, from 1 to 4, and the dashed vertical line indicates the mean rating. ###Code ## Functions to determine complimentary color ## https://stackoverflow.com/questions/40233986/python-is-there-a-function-or-formula-to-find-the-complementary-colour-of-a-rgb # Sum of the min & max of (a, b, c) def hilo(a, b, c): if c < b: b, c = c, b if b < a: a, b = b, a if c < b: b, c = c, b return a + c # Get complimentary color def complement(r, g, b): k = hilo(r, g, b) return tuple(k - u for u in (r, g, b)) import matplotlib import matplotlib.ticker as mticker fig, axes = plt.subplots(n_themes, figsize=(5, 15)) plt.subplots_adjust(hspace = 0) for theme_num, theme in enumerate(themes): graph = seaborn.histplot( ax=axes[theme_num], data=df, x = rating_cols[theme_num], bins = num_bins, binrange=[rating_min,rating_max], color=theme_colors[theme_num], alpha = 0.6, edgecolor="white" ) # Add vertical line at mean of each theme # Get RGB of bar's color bar_rgb = matplotlib.colors.to_rgb(theme_colors[theme_num]) line_rgb = complement(*bar_rgb) # https://datavizpyr.com/how-to-add-a-mean-median-line-to-a-seaborn-displot/ graph.axvline(x=df[rating_cols[theme_num]].mean(), ls='--', color=line_rgb, ymax = 0.95 ) graph.set(ylabel=themes[theme_num] + " count") graph.grid(False) # remove gridlines graph.set(yticklabels=[]) # remove y-axis tick labels # Add labels to bars: Percents theme_cats = df[rating_cols[theme_num]].dropna().astype(int).value_counts(sort=False).sort_index() # Ensure each bar has an entry in list denom = sum(theme_cats) / 100 percents_cats = [] for cat in range(rating_min, rating_max + 1): if cat in theme_cats: pct = theme_cats[cat] / denom percents_cats += ["%.0f%%" % pct] else: percents_cats += [""] l = graph.bar_label( graph.containers[0], percents_cats, label_type= 'center', # color=line_rgb, # color="black", bbox=dict( fc = "white", lw = 1, ) ) # Hide tick marks by making them zero length graph.tick_params(length = 0) if theme_num in range(1, n_themes - 2): # For graphs in the middle (neither top nor bottom), # remove x axis and tick labels graph.set(xlabel='') graph.set_xticklabels([]) else: # For graphs at top and bottom, # show x-axis title and tick labels # Fixing yticks with matplotlib.ticker "FixedLocator" # https://stackoverflow.com/questions/63723514/userwarning-fixedformatter-should-only-be-used-together-with-fixedlocator label_format = '{:,.0f}' ticks_loc = graph.get_xticks().tolist() graph.xaxis.set_major_locator(mticker.FixedLocator(ticks_loc)) graph.set_xticklabels([label_format.format(x) for x in ticks_loc]) # Center labels on bars (columns) # https://stackoverflow.com/questions/63516973/how-can-i-mark-xticks-at-the-center-of-bins-for-a-seaborn-distplot mids = [rect.get_x() + rect.get_width() / 2 for rect in graph.patches] graph.set_xticks(mids) graph.set(xlabel='How useful is each theme?') graph.set_xticklabels(['1\nNot very','2\n','3\n','4\nVery']) if theme_num == 0: graph.xaxis.set_ticks_position("top") graph.xaxis.set_label_position("top") ###Output _____no_output_____ ###Markdown For Furo, the mode is 4, Very useful. The mode of the other three themes is 3. Furo themeGiven that Furo is the highest-rated theme, it is worth considering other factors before deciding to proceed with it. Comments about FuroHere are consolidated lists of highlights from what respondents liked and disliked about Furo. - Like - Clean look and clear font - Left and right sidebars for site and page navigation, respectively - Has both light and dark themes, and is easy to switch between them- Dislike - Colors are distracting (for example, behind code blocks), too dark without enough contrast - Bold and highlighting seem a little cartoonish - Not more widely used in documentation for data science packages - Collapse of in-page navigation not optimal Other factors - Furo SymPy prototype gets excellent [Lighthouse scores](https://googlechrome.github.io/lighthouse/viewer/?psiurl=https%3A%2F%2Fbertiewooster.github.io%2Fsympy-doc%2Ffuro%2Fmodules%2Fassumptions%2Findex.html%23querying&strategy=desktop&category=performance&category=accessibility&category=best-practices&category=seo&category=pwa&utm_source=lh-chrome-ext) before any customization: - Performance: 100 - Accessibility: 98 - Best Practices: 100 - SEO (search engine optimization): 90 - Furo is well supported, having frequent updates - Furo's developer is very accessible, even [commenting on a SymPy thread](https://github.com/sympy/sympy/issues/22716issuecomment-1013016667) without our asking them - ["Pretty much every color on the screen is customizable"](https://pradyunsg.me/furo/customisation/colors/defining-overrides-for-defaults) per Furo's developer so we should be able to address what respondents disliked about colors - Furo is the only theme that shows a fully expanded table of contents on the right sidebar - Furo was recommended by Joannah Nanjekye, who spent much time working on the documentation for [2021 Google Season of Docs](https://github.com/sympy/sympy/wiki/GSoD-2021-Report-Joannah-Nanjekye:-Reorganizing-the-SymPy-Documentation) RecommendationFor the above reasons, we should proceed with Furo as the new Sphinx theme. Customizing the theme should address some of the deficits of the prototype, such as colors.Should there be some unexpected reason we cannot customize Furo as desired, we could try PyData or Book. Other comments from respondentsFinally, nine people responded to "Are there any other comments you'd like to make?". Here is a summary of some things that stood out. - All four options are good.- Whichever theme you go with it’ll be an improvement.- Please use that nice dark mode Appendix: All comments from respondentsFor the sake of completeness, all comments are shown below. ###Code def print_answers(col): i = 1 for e, v in df[[experience_level,col]].iloc: if pandas.isna(v): continue print(f"{i}. {v.strip()} (experience level: {int(e) if not pandas.isna(e) else 'N/A'})\n") i += 1 tag = "---" for name, values in df.iteritems(): if "like" in str(name).lower(): print(tag + " " + name + " " + tag) print_answers(name) ###Output --- What do you LIKE about the PyData theme? --- 1. search easy to find, updating position in doc on right (experience level: 5) 2. It is a neat theme (experience level: 4) 3. Clear, succint, very little clutter (experience level: 5) 4. I like the clean layout. (experience level: 4) 5. It is neat and simple, with left and right sidebars proving useful. The top sidebar is also quite convenient since scrolling on the left sidebar would be reduced as opposed to themes which lack the top sidebar. (experience level: 3) 6. clear view without distractions (experience level: 2) 7. Flat design, style uniformity accros sur the data exosystem, maintainability of a shared product (experience level: N/A) 8. The docstring rendering is easier to read than the old docs page. Better colors and less clutter. Fits on screen better. (experience level: 3) 9. Readable, not a huge shift (experience level: 3) 10. Desktop: Clean look. The categories across the top. The search box in a fixed position on the left navbar. Good highlighting format (for ?highlight=xxx in URL). Good differentiation between regular text, links (bold, blue), and code (pink). Good permalink setup: ¶ appears when link text moused over, then ¶ highlights when moused over. Code blocks are clearly delineated (using gray box) and their background is the same as rest of page. Easy to triple-click to select a line of code from a code block. Phone: Fairly easy to copy code from a code block. (experience level: 3) 11. It's very clean looking. Easy to navigate. (experience level: 3) 12. It looks neat and has a floating content menu. (experience level: 5) 13. Reminds me of scipy (experience level: 4) 14. it's clean (experience level: 4) --- What do you DISLIKE about the PyData theme? --- 1. Looks kinda incomplete (experience level: 4) 2. 3 levels of nesting (top, left, right) was not instantly obvious for how to use. (experience level: 5) 3. I am bothered by the way useful links switch from side-to-side. I do understand the the links at right are to anchors on the particular page. However, sometimes having links on one side, but not the other did not seem natural and was initially confusing. (experience level: 4) 4. Left sidebar occupies a lot of space on the screen. (experience level: 3) 5. nothing (experience level: 2) 6. The first thing I did was click "API ref" in the right side menu, but it didn't take me to a new page. I would expect selecting from a menu on the right would then show new content about that topic. It needs more sympy colors to feel like sympy's documentation. The front page is quite boring with only four big headers. If you look at matplotlib, numpy, pandas, etc. the front page is very engaging with the graphics and big buttons. You have to click too many times to drill down to seeing an actual page with information on it. In the old docs you have a big ToC on the front page and one click usually gets you to useful information. Most pages feel too short. Web browsers can scroll (infinitely). It's preferable to make longer pages with hyperlink targets and table of contents menus. (experience level: 3) 7. White background, black text. Could use more links or tables of contents. (experience level: 3) 8. Desktop: In left navbar, not super-obvious which item this page is (highlighting not that strong). Distinction between h2 and h3 not that obvious, especially when h2 text is lowercase and h3 text is uppercase. Phone: Initial view of many pages (home, search) wastes a lot of vertical space. When tap a link in tree at top of page, there's no visible indication that the page content changed because link tree takes up entire screen height. (experience level: 3) 9. I don't like the right-hand TOC that only expands the section you're currently in. (experience level: 3) 10. Nothing in particular but if possible there should be an option for dark mode. (experience level: 5) 11. Doesn't remind me of sympy (experience level: 4) 12. content is too narrow (experience level: 4) --- What do you LIKE about the Book theme? --- 1. Simple and minimalistic (experience level: 4) 2. Clean, intuitive (experience level: 5) 3. Good clean styling. Accordion navigation at left. Easy to find way to collapse left hand navigation pane. (experience level: 4) 4. Collapsible sidebar and full screen mode would help to view docs better once users find what they are looking for. (experience level: 3) 5. clean view (experience level: 2) 6. I like the font (experience level: 3) 7. Desktop: Clear differentiation of headings from regular text, and h2 from h3; and current section in left navbar; due to blue color. Clear differentiation of function syntax and parameters due to background color. Permalinks nicely handled: ¶ appears when mouse over link text, then gets darker when mouse over ¶. Phone: Pretty good use of vertical space. Page content is front and center, and nicely presented when go to a new page. Previous and Next links at bottom of page give visitor suggestions of where to go next. (experience level: 3) 8. Again, very clean and easy to navigate. Works well on my phone, too. (experience level: 3) 9. it's appealing to read (experience level: 4) --- What do you DISLIKE about the Book theme? --- 1. I don't like the expandable index as much as I like the top selection of doc + left index; I also find the larger logo overpowering of the important element (like search and index). (experience level: 5) 2. top bar, that menu button, full screen toggle and download button will hardly ever be used, yet they consume precious vertical space. (experience level: 5) 3. SymPy logo takes up a lot of space on every page. Code indents seem off in some pages. (experience level: 3) 4. top controls distract me ) (experience level: 2) 5. I can't really tell the difference in this one and the first one I was shown. So all the same comments apply. (experience level: 3) 6. White background (experience level: 3) 7. Phone: Icons at top right (fullscreen and download) unlikely to be used often, and draw visitor's attention. No index (link tree) for within current page. No constant reminder of which site I'm on--could we add "SymPy" or the logo to the header, between hamburger menu and two icons at top right? (experience level: 3) 8. Same as pydata: I don't like the right-hand TOC that only expands the section you're currently in. (experience level: 3) 9. the contest has got to be really organized in this format (experience level: 4) --- What do you LIKE about the Furo theme? --- 1. The sidebar for contents is pretty cool (experience level: 4) 2. Clean, intuitive and puts all vertical space to use. (experience level: 5) 3. Almost as good as book. Clean theme, easy to navigate. (experience level: 4) 4. The inbuilt dark mode could be useful. (experience level: 3) 5. I like that right and left menus are collapsable. Many times I checked Sympy documentation using my tablet and I like to have a bigger are dedicated to the document I’m reading. (experience level: 1) 6. nothing (experience level: 2) 7. The dark theme button is right here, I find this layout very easy on the eye (experience level: N/A) 8. Black background, clear font, THIS IS THE ONE (experience level: 3) 9. Desktop: Clear differentiation between headings and regular text, and h2 from h3. Pretty clear which is current section on left navbar due to bolding. Permalink setup pretty good: ¶ appears when mouse over link text, cursor turns to hand when mouse over ¶. Phone: Having two hamburger menus, one for site tree and one for sections-on-this-page tree. Always displays site title at top. (experience level: 3) 10. * I like the right-hand TOC where you always see all sections. For me, this is much better than the ones (book and pydata) where it only expands the section you're currently in. * I think this one just "looks" the best overall. (experience level: 3) 11. As before, clean and easy to navigate. Also, I like the light and dark theme options. Easy on the eyes. (experience level: 3) 12. In my opinion it is the perfect theme. (experience level: 5) 13. It's dark. I like dark (experience level: 4) 14. looks nice (experience level: 4) --- What do you DISLIKE about the Furo theme? --- 1. bold/highlighting seems a little cartoonish; I prefer a cleaner style (experience level: 5) 2. The lack of a secondary color makes it look unfinished (experience level: 4) 3. Nothing in particular (experience level: 5) 4. Does not collapse in-page navigation as well as 'book'. Also not as much easy changing of the view. (experience level: 4) 5. SymPy logo takes up a lot of space on every page. (experience level: 3) 6. too dark without sufficient contrast (experience level: 2) 7. That it’s not more widely used in data science docs (experience level: N/A) 8. Same comment as last. Looks practically the same as the prior two. Same comments apply. (experience level: 3) 9. Nothing (experience level: 3) 10. Desktop: Not a big fan of background color in code blocks; could be improved by making the color lighter (less saturated). Phone: Bit of an "interference effect" when scroll vertically as top title bar hides (?) page content. (experience level: 3) 11. colors are distracting (experience level: 4) --- What do you LIKE about the Read the Docs (RTD) theme? --- 1. I like the "stickies" like notes on the page and that IDE examples seem less intrusive (experience level: 5) 2. The colors are nice (experience level: 4) 3. Conventional, i.e. familiar to many users (experience level: 5) 4. Very familiar interface as this is used by lots of standard documentation. Easy to navigate. All the quicklinks on one side. (experience level: 4) 5. User friendly interface. Familiar theme, therefore could attract many users. (experience level: 3) 6. bright and colorfull (experience level: 2) 7. Simple, effective (experience level: N/A) 8. I like this one the best! The menu on the left works as expected. You click and it takes you to a new page of info. And then the menu expands letting you quickly navigate to new relevant content. I think if that big blue square in the top left was sympy green (and probably other blues need to be swapped to greens) then we have a winner! (experience level: 3) 9. Ehh (experience level: 3) 10. Desktop: Headings are nice and bold. Clear differentiation of h2 from h3. Using increasingly opaque colors in left navbar demonstrates where in site tree visitor is. Permalinks pretty good: ¶ appears when mouse over link text, cursor changes when mouse over ¶. Phone: . (experience level: 3) 11. Nice and familiar. (experience level: 3) --- What do you DISLIKE about the Read the Docs (RTD) theme? --- 1. I kind of like to know where the Next and Previous buttons are taking me. (experience level: 5) 2. I'd like the side bar to be collapsible (experience level: 4) 3. One cannot expand subsections of the Reference documentation directly to the left, but is forced to click the links in the body. Easier to get lost on big pages since it lacks the "on-page-navigation" bar to the right. (experience level: 5) 4. Does not have the easy view customization of 'book' (experience level: 4) 5. Lack of right sidebar to filter topics on a particular page. (experience level: 3) 6. I find the other three themes clearer. (experience level: 1) 7. colours distract from text (experience level: 2) 8. Seems devoid of personality, this theme is far too popular for its own good (experience level: N/A) 9. Needs green in colors. Needs more engaging front page. There is a lot of prose style docs (often module docstring) in the API. That really needs to be move into one of the other big 4 groups of the documentation. The api should strictly be the docstrings of classes, functions, etc. (experience level: 3) 10. It’s not the fur theme (experience level: 3) 11. Previous and Next links don't display what those page titles are (until visitor mouses over). Desktop: Not a big fan of color backgrounds of left navbar and especially to the right of page content; could be improved by changing colors. Determining which page vistior is on, in left navbar, could be easier: highlighting of current page is link a little weak. Phone: Very much dislike how left navbar pushes page content to the right; prefer overlay style of other themes. Very much dislike that there's no way to navigate to another page, or jump to another section of this page, after visitor scrolls down, because the hamburger menu isn't sticky. (experience level: 3) 12. left-hand TOC has issues e.g. Try going to "Reference Documentation" > "Topics". Now under "Topics" you see the same sections as "Reference Documentation" repeated again. Now click "Topics" in here, and you actually get into "Topics". (experience level: 3) 13. Again it looks like any other python project website. It doesn't stand out in particular. (experience level: 5) 14. too old fashioned (experience level: 4) --- Are there any other comments you'd like to make? --- 1. Thanks for organizing this! (experience level: 5) 2. None in particular, looks great! (experience level: 5) 3. Book is cleaner looking and allows the viewer more adaptations of the display. However, it is likely to be less familiar and a little harder to navigate than rtd for most people. I think either would be acceptable. Book seems a little more 'modern'. The 'modernity' will probably only last for a couple of years as styles change so rapidly. (experience level: 4) 4. All four options are good. (experience level: 1) 5. thank you for your work on SymPy. (experience level: 2) 6. Whichever theme you go with it’ll be an improvement. Thank you for taking the time to implement this and to ask for feedback ! (experience level: N/A) 7. The first 3 all look the same and have poorly designed menus that don't function as expected. It also seems that there are two menus on some, which is confusing. The last one RTD is really the only one that looks functional to me. (experience level: 3) 8. Please use that nice dark mode (experience level: 3) 9. PyData, Book, and Furo would all be good choices. Category names (SymPy Tutorial, SymPy Guides, Explanation, Reference Documentation, Miscellaneous) should be shortened, for example remove "SymPy", change "Reference Documentation" to API(?). (experience level: 3) ###Markdown Author: Abhinav Nadh ThirupathiRun this notebook top to bottom to reproduce the results ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv("data/study/study_data.csv",low_memory=False) ###Output _____no_output_____ ###Markdown Data Normalization ###Code from scipy import stats cols = data.columns.values # Groups the companies by 'Years Since Founded' and standardizes non-binary features in each group for col in cols[:-2]: if col.startswith('Details.Description') or col.startswith('Website.') or col.startswith('Overview') or col.startswith('Education') or col.startswith('Major'): if col not in ["Overview.Gender.Agender", "Overview.Gender.Non-Binary"]: data[col] = data.groupby('Details.Years Since Founded')[col].transform(lambda x : stats.zscore(x,ddof=1,nan_policy='omit')) ###Output _____no_output_____ ###Markdown LOOCV ###Code # Splits the data into features and target Y = data[data.columns[-2:]].copy() X = data.drop(columns=['Target', 'Details.Years Since Founded']) import xgboost as xgb xg = xgb.XGBClassifier(random_state=1) xg.fit(X,Y['Target']) ###Output _____no_output_____ ###Markdown Permutation Importance ###Code from sklearn import inspection r = inspection.permutation_importance(xg, X, Y['Target'], n_repeats=3160, random_state=1, n_jobs=-1) for i in r.importances_mean.argsort()[::-1]: if r.importances_mean[i] - 2 * r.importances_std[i] > 0: print("{:<8}: {:.3f} +/- {:.3f}".format(X.columns.values[i],r.importances_mean[i],r.importances_std[i])) ###Output _____no_output_____ ###Markdown SHAP Feature Importance ###Code import shap shap_values = shap.TreeExplainer(xg).shap_values(X) pd.DataFrame((zip(X.columns[np.argsort(np.abs(shap_values).mean(0))], np.abs(shap_values).mean(0)[np.argsort(np.abs(shap_values).mean(0))])), columns=["Feature", "Importance" ]).sort_values(by=['Importance'], ascending=False) shap.summary_plot(shap_values, X, plot_type="bar") ###Output _____no_output_____ ###Markdown Performance Metrics ###Code import xgboost as xgb from sklearn import model_selection from sklearn import metrics xg1 = xgb.XGBClassifier(random_state=1) Y_proba = model_selection.cross_val_predict(xg1, X, Y['Target'], cv=model_selection.LeaveOneOut(), n_jobs=-1, method='predict_proba') Y_hat = np.argsort(Y_proba,axis=1)[:,1] Y_proba1 = Y_proba[:,1] print("AUC : ", metrics.roc_auc_score(Y['Target'], Y_proba1)) print("Accuracy : ", metrics.accuracy_score(Y['Target'], Y_hat)) print("Precision : ", metrics.precision_score(Y['Target'], Y_hat)) print("Recall : ", metrics.recall_score(Y['Target'], Y_hat)) print("F-score : ", metrics.f1_score(Y['Target'], Y_hat)) print("Brier Score: ", metrics.brier_score_loss(Y['Target'], Y_hat)) ###Output _____no_output_____ ###Markdown Prediction Thresholds ###Code fpr, tpr, thresholds = metrics.roc_curve(Y['Target'], Y_proba1) print('{:<30}{:<30}'.format('FPR', 'TPR', 'Threshold')) for x, y, z in zip(fpr,tpr,thresholds): print('{:<30}{:<30}{:<30}'.format(x, y, z)) ###Output _____no_output_____ ###Markdown Reliability Diagram ###Code from sklearn import calibration probs = Y_proba1 fraction_of_positives, mean_predicted_value = calibration.calibration_curve(Y['Target'], probs, n_bins = 10) ax1 = plt.figure() plt.plot(mean_predicted_value, fraction_of_positives, marker = '.', label = 'XGBoost') plt.xlabel('Mean Predicted Value') plt.ylabel('Fraction of Positives') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Preparation ###Code import pandas as pd import numpy as np import msgpack with open('reviewers.msgpack', 'rb') as reviewers_file: reviewers_data = msgpack.load(reviewers_file) with open('reviews.msgpack', 'rb') as reviews_file: reviews_data = msgpack.load(reviews_file) reviewers_data.append({ b'is_publication': False, b'key': b'swarmer', b'name': b'Anton Barkovsky', b'publication_link': None, b'publication_title': None, }) my_reviews = { 'blade-runner-2049': 100, 'baby-driver': 85, 'dunkirk': 80, 'loveless-2017': 95, 'kiss-kiss-bang-bang': 80, 'zero-dark-thirty': 85, 'sicario': 100, 'rogue-one': 90, 'the-prestige': 90, 'the-martian': 90, 'the-big-lebowski': 90, 'gran-torino': 90, 'citizenfour': 90, 'snowden': 80, 'arrival': 80, 'mulholland-dr': 80, 'the-danish-girl': 70, 'the-theory-of-everything': 80, 'the-big-short': 90, 'edge-of-tomorrow': 80, 'carol': 90, 'drive': 85, 'warcraft': 80, 'a-clockwork-orange': 80, 'the-hateful-eight': 80, 'apocalypse-now': 90, 'the-descendants': 80, 'the-social-network': 85, 'star-wars-episode-vii---the-force-awakens': 80, 'the-best-offer': 70, 'in-the-loop': 80, 'fight-club': 80, 'batman-begins': 80, 'the-fault-in-our-stars': 80, 'the-spectacular-now': 70, 'children-of-men': 90, 'ex-machina': 90, 'the-kings-speech': 90, 'the-imitation-game': 80, 'what-we-do-in-the-shadows': 80, 'up-in-the-air': 70, 'argo': 90, 'interstellar': 85, 'guardians-of-the-galaxy': 70, 'inglourious-basterds': 80, 'the-avengers-2012': 70, 'serenity': 80, '5050': 70, 'hot-fuzz': 90, 'her': 90, 'moon': 90, 'about-time': 80, 'the-hurt-locker': 100, 'silver-linings-playbook': 80, 'the-hunger-games-catching-fire': 80, 'american-hustle': 70, 'the-wolf-of-wall-street': 80, 'dr-strangelove-or-how-i-learned-to-stop-worrying-and-love-the-bomb': 100, 'blade-runner': 85, 'the-perks-of-being-a-wallflower': 80, 'the-lives-of-others': 100, 'its-a-wonderful-life': 90, 'the-dark-knight': 90, 'pulp-fiction': 90, 'star-wars-episode-iv---a-new-hope': 80, 'the-godfather': 90, 'inception': 100, 'forrest-gump': 90, 'star-wars-episode-vi---return-of-the-jedi': 80, 'the-lord-of-the-rings-the-fellowship-of-the-ring': 70, 'pirates-of-the-caribbean-the-curse-of-the-black-pearl': 80, 'the-matrix': 90, 'star-wars-episode-v---the-empire-strikes-back': 80, 'gladiator': 100, 'the-godfather-part-ii': 90, 'black-swan': 80, 'the-lord-of-the-rings-the-return-of-the-king': 70, 'eternal-sunshine-of-the-spotless-mind': 80, 'the-good-the-bad-and-the-ugly-re-release': 90, 'the-lord-of-the-rings-the-two-towers': 70, 'amelie': 90, } reviews_data.extend([ { b'date': None, b'film': key.encode('utf-8'), b'movie_link': None, b'movie_title': None, b'pub_title': None, b'review_link': None, b'reviewer': b'swarmer', b'score': str(score).encode('utf-8'), } for key, score in my_reviews.items() ]) reviewers = sorted(set( reviewer[b'key'].decode('utf-8') for reviewer in reviewers_data if not reviewer[b'is_publication'] )) reviewers_index = {key: i for i, key in enumerate(reviewers)} swarmer_index = reviewers_index['swarmer'] films = sorted(set(review[b'film'].decode('utf-8') for review in reviews_data)) films_index = {key: i for i, key in enumerate(films)} matrix = np.empty((len(films), len(reviewers))) matrix[:] = np.nan vals, counts = numpy.unique(matrix, return_counts=True, axis=None) for review in reviews_data: reviewer_key = review[b'reviewer'].decode('utf-8') if reviewer_key not in reviewers_index: continue film_row = films_index[review[b'film'].decode('utf-8')] reviewer_col = reviewers_index[reviewer_key] matrix[film_row, reviewer_col] = float(review[b'score'].decode('utf-8')) matrix_df = pd.DataFrame(matrix) ###Output _____no_output_____ ###Markdown Similar reviewers ###Code reviewer_correlation_matrix = matrix_df.corr(min_periods=10) top_reviewer_corrs = reviewer_correlation_matrix[swarmer_index].nlargest(10) top_reviewer_corrs.index = top_reviewer_corrs.index.map(lambda i: reviewers[i]) top_reviewer_corrs def common_films(rkey1, rkey2): rid1, rid2 = reviewers_index[rkey1], reviewers_index[rkey2] col1 = matrix[:, rid1] col2 = matrix[:, rid2] for i, (score1, score2) in enumerate(zip(col1, col2)): if np.isnan(score1) or np.isnan(score2): continue print(f'{films[i]}: {reviewers[rid1]}={score1}, {reviewers[rid2]}={score2}') common_films('swarmer', 'carrie-rickey') ###Output batman-begins: swarmer=80.0, carrie-rickey=63.0 drive: swarmer=85.0, carrie-rickey=75.0 gran-torino: swarmer=90.0, carrie-rickey=75.0 in-the-loop: swarmer=80.0, carrie-rickey=75.0 pirates-of-the-caribbean-the-curse-of-the-black-pearl: swarmer=80.0, carrie-rickey=75.0 the-dark-knight: swarmer=90.0, carrie-rickey=75.0 the-kings-speech: swarmer=90.0, carrie-rickey=100.0 the-lives-of-others: swarmer=100.0, carrie-rickey=100.0 the-lord-of-the-rings-the-two-towers: swarmer=70.0, carrie-rickey=75.0 the-perks-of-being-a-wallflower: swarmer=80.0, carrie-rickey=75.0 the-social-network: swarmer=85.0, carrie-rickey=100.0 ###Markdown Similar films ###Code matrix_df_t = matrix_df.transpose() film_correlation_matrix = matrix_df_t.corr(min_periods=20) stacked = film_correlation_matrix.stack() stacked = stacked[stacked.index] stacked = stacked[stacked.index.get_level_values(0) < stacked.index.get_level_values(1)] top_film_corrs = stacked[stacked != 1.0].nlargest(20) top_film_corrs.index = top_film_corrs.index.map(lambda i: (films[i[0]], films[i[1]])) top_film_corrs ###Output _____no_output_____ ###Markdown Dissimilar films ###Code bottom_film_corrs = stacked[stacked != 1.0].nsmallest(20) bottom_film_corrs.index = bottom_film_corrs.index.map(lambda i: (films[i[0]], films[i[1]])) bottom_film_corrs ###Output _____no_output_____ ###Markdown 샤프 지수 최대화 ###Code import scipy.optimize as sco opts = max_sharpe_point(rets) plt.scatter(pvols, prets, c=prets/pvols, marker='o', cmap=mpl.cm.jet) plt.grid(True) plt.xlabel('expected volatility') plt.ylabel('expected return') plt.colorbar(label='Sharpe ratio') pt_opts = statistics(opts, rets).round(3) plt.scatter(pt_opts[1], pt_opts[0], marker="*", s=500, alpha=0.5) plt.show() ###Output _____no_output_____ ###Markdown 포트폴리오 분산 최대화 ###Code optv = min_variance_point(rets) plt.scatter(pvols, prets, c=prets/pvols, marker='o', cmap=mpl.cm.jet) plt.grid(True) plt.xlabel('expected volatility') plt.ylabel('expected return') plt.colorbar(label='Sharpe ratio') pt_optv = statistics(optv, rets).round(3) plt.scatter(pt_optv[1], pt_optv[0], marker="*", s=500, alpha=0.5) plt.show() ###Output _____no_output_____ ###Markdown 효율적 투자선 ###Code bnds = tuple((0, 1) for x in range(noa)) statistics_rets = partial(statistics, ret_df=rets) def min_func_port(weights): return statistics_rets(weights)[1] %%time trets = np.linspace(0.0, 0.1, 20) tvols = [] for tret in trets: cons = ({'type': 'eq', 'fun': lambda x: statistics(x, rets)[0] - tret}, {'type': 'eq', 'fun': lambda x: np.sum(x) - 1}) res = sco.minimize(min_func_port, noa * [1. / noa,], method='SLSQP', bounds=bnds, constraints=cons) tvols.append(res['fun']) tvols = np.array(tvols) plt.scatter(pvols, prets, c=prets / pvols, marker='o', cmap=mpl.cm.jet) # 무작위 포트폴리오 plt.scatter(tvols, trets, c=trets / tvols, marker='x', s=70, linewidth=2, cmap=mpl.cm.jet) # 효율적 투자선 plt.plot(statistics(opts, rets)[1], statistics(opts, rets)[0], 'r*', markersize=30) # 최대 샤프 지수를 가진 포트폴리오 plt.plot(statistics(optv, rets)[1], statistics(optv, rets)[0], 'y*', markersize=30) # 최소 분산 포트폴리오 plt.grid(True) plt.xlabel('expected volatility') plt.ylabel('expected return') plt.colorbar(label='Sharpe ratio') plt.show() ###Output _____no_output_____ ###Markdown Data Cleaning & Translation ###Code # Filtering year of birth df[['day', 'month','birthyear']] = df['birthday'].str.split(" ", 2, expand=True) df.drop(['birthday','day', 'month'], axis=1, inplace=True) # Filtering year of status decision df[['day', 'month','date']] = df['decision-date'].str.split(" ", 2, expand=True) df.drop(['decision-date','day', 'month'], axis=1, inplace=True) # Age df['age'] = df['date'].astype(int) - df['birthyear'].astype(int) # Translating status df.replace({"status": status_translation}, inplace=True) df.replace({"military_category": rank_translation}, inplace=True) # dtype df['birthyear'] = df['birthyear'].astype(int) df['date'] = df['date'].astype(int) # Invalid Date filters df = df[df['date']>2019] df = df[df['birthyear']!=2021] df = df[df['birthyear']!=2020] df.head(5) def hist_by_category(df: object, column: str, title: str, x: str, y: str, kind: str) -> None: """ This function plots barchart for a given dataframe column. --- Args: df (object): pandas DataFrame column(str): column name title (str): figure title x (str): x axis title y (str): y axis title kind (str): plot type (bar, barh, hist..) Returns: None """ # Creating Figure & Axes fig, ax = plt.subplots(figsize=(16,9)) ax = df[column].value_counts(sort=True).plot(kind=kind) # Setting Labels ax.set_title( title, fontsize=20, pad=20) ax.set_xlabel(x, fontsize=15) ax.set_ylabel(y, fontsize=15) # Legend & Grid ax.grid(linestyle=":", color='#696969') # Watermark ax.text(0.99, 0.01, '© Github/Geometrein', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='#606060', fontsize=15, alpha = 0.9) column = 'military_category' title = "Servicemen by Category" x = 'Category of Servicemen' y = 'Number of Servicemen' hist_by_category(df, column, title, x, y, 'bar') column = 'status' title = "Servicemen Status" x = 'Status of Servicemen' y = 'Number of Servicemen' hist_by_category(df, column, title, x, y,'bar') ###Output _____no_output_____ ###Markdown Causalities--- ###Code deaths_df = df[df['status'] == 'deceased'] deaths_df['age'].describe() column = 'military_category' title = "Deaths by Category" x = 'Category of Servicemen' y = 'Number of Servicemen' hist_by_category(deaths_df, column, title, x, y,'bar') ###Output _____no_output_____ ###Markdown Deaths by Age ###Code column = 'age' title = "Number of Deaths by Age during the Second Nagorno-Karabakh war." x = 'Age of Servicemen' y = 'Number of Deaths' # Creating Figure & Axes fig, ax = plt.subplots(figsize=(16,9)) ax.hist(deaths_df[column], bins = range(18,75), rwidth=0.5, align='left') # Setting Labels ax.set_title( title, fontsize=15, pad=10) ax.set_xlabel(x, fontsize=15) ax.set_ylabel(y, fontsize=15) ax.set_xticks(range(18, 75, 1)) ax.set_yticks(range(0, 800, 100)) # Legend & Grid ax.grid(linestyle=":", color='#696969') # Watermark ax.text(0.99, 0.01, '© Github/Geometrein', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='#606060', fontsize=15, alpha = 0.9 ) conscrips = deaths_df[deaths_df['military_category'] == 'conscript'] contractors = deaths_df[deaths_df['military_category'] == 'contractor'] reserve = deaths_df[deaths_df['military_category'] == 'reserve'] data = [conscrips['age'], contractors['age'], reserve['age']] title = "Age by Military Category." x = 'Age of Servicemen' # Creating Figure & Axes fig, ax = plt.subplots(figsize=(16,9)) medianprops = dict(linestyle='-', linewidth=2.5, color='white') box = ax.boxplot(data, vert=False, patch_artist=True, widths=0.7, whis = 1, medianprops=medianprops) # Setting Labels ax.set_title( title, fontsize=15, pad=10) ax.set_xlabel(x, fontsize=15) ax.set_yticklabels(['Conscript', 'Contractor', 'Reserve']) # Legend & Grid ax.grid(linestyle=":", color='#696969') # Watermark ax.text(0.99, 0.01, '© Github/Geometrein', verticalalignment='bottom', horizontalalignment='right', transform=ax.transAxes, color='#606060', fontsize=15, alpha = 0.9 ) ###Output _____no_output_____ ###Markdown Analysis ###Code import datetime import random import matplotlib.pyplot as plt %matplotlib inline ###Output _____no_output_____ ###Markdown Load the Data ###Code from faces import FaceShard from emotions import EmotionShard from behavior import WindowShard, ScreenShard from mirror import Mirror from config import EMOTIONLOG, WINDOWLOG, SCREENSHOT_DIR, MIRRORLOG, FACE_DIR shards = [] shards.append(EmotionShard(logfile=EMOTIONLOG)) shards.append(FaceShard(FACE_DIR)) shards.append(WindowShard(logfile=WINDOWLOG)) shards.append(ScreenShard(logdir=SCREENSHOT_DIR)) mirror = Mirror(shards=shards, lens=None, logfile=MIRRORLOG) states = mirror.remember(from_date=datetime.datetime(year=2020, month=11, day=1)) ###Output _____no_output_____ ###Markdown Have a Look at States with Specific Emotions ###Code # Let's consider the more interesting ones by filtering emotions = set([state['emotions'][0]['emotion'] for state in states if len(state['emotions'])>0]) # Filter by detected emotion ids_by_emotion = {} for emotion in emotions: ids_by_emotion[emotion] = [state['ID'] for state in states if len(state['emotions'])>0 and state['emotions'][0]['emotion']==emotion] ids_by_emotion.keys() emotion = 'anger' ids = sorted(ids_by_emotion[emotion]) print("%d relevant logs" % len(ids)) state_by_id = {state['ID']: state for state in states} # Find for which IDs we have a capture available ids = [i for i in ids if 'faces' in state_by_id[i] and len(state_by_id[i]['faces'])] print("%d relevant logs with captures" % len(ids)) # Find for which IDs we also have a screenshot ids = [i for i in ids if 'screenshot' in state_by_id[i] and state_by_id[i]['screenshot'] is not None] print("%d relevant logs with screenshots" % len(ids)) id_ = random.choice(ids) print(id_) state = state_by_id[id_] print("Detected emotion:", state['emotions'][0]['emotion']) print("Behavior at the time:", state['active_window']) #plt.figure(figsize=(15,15)) #plt.imshow(state['screenshot'][:, :, ::-1]) ###Output _____no_output_____ ###Markdown Display Emotions over Time ###Code x = [] y = [] for state in states: #x.append(id_) if len(state['emotions'])>0: x.append(datetime.datetime.fromisoformat(state['timestamp'])) y.append(state['emotions'][0]['emotion']) plt.plot(x, y, 'b.') ###Output _____no_output_____ ###Markdown CorrelationsLet's have a look at the behavior information and see if any terms correlate with any emotions. ###Code emotion = 'neutral' vocab = [] vocab_set = set(vocab) X = [] Y = [] for state in states: if len(state['emotions'])<1 or 'title' not in state['active_window']: continue info = state['active_window']['title'] X.append([0]*len(vocab)) # Simple tokenization tokens = [t.lower() for t in info.split()] # Create a bag of words vector # (This implementation is not efficient at all, but we are dealing with small datasets for now) for token in tokens: if token not in vocab_set: vocab.append(token) vocab_set.update([token]) X[-1].append(0) X[-1][vocab.index(token)] += 1 if state['emotions'][0]['emotion']==emotion: Y.append(1) else: Y.append(0) for i in range(len(X)): if len(X[i])<len(vocab): X[i].extend([0]*(len(vocab)-len(X[i]))) import numpy as np X = np.array(X) Y = np.array(Y) correlations = [] for ix,token in enumerate(vocab): correlations.append(np.corrcoef(X[:,ix], Y)[0,1]) args = np.argsort(correlations) print("Most negatively correlating:") for pos in args[:10]: print("-", vocab[pos], correlations[pos]) print("\nMost positively correlating:") for pos in args[::-1][:10]: print("-", vocab[pos], correlations[pos]) ###Output _____no_output_____ ###Markdown FASTGenomics Scanpy Analysis You might want to describe your analysis briefly here, if you are planning to share it. ###Code # Place all your Python imports here. import fgread import scanpy as sc # Place all your parameter values here. sc.settings.verbosity = 1 # scanpy verbosity: errors (0), warnings (1), info (2), hints (3) ###Output _____no_output_____ ###Markdown Raw DataFirst, the raw dataset(s) will be read into AnnData object(s). You can describe your data here using markdown or delete this text. ###Code # Print metadata of all attached datasets ds_info = fgread.ds_info() ds_info # Load the attached dataset fgread.load_data() # If multiple datasets are attached, you have to select one by its id or tile # Alternatively, if you started the analysis without datasets, load your data from elsewhere # (see our tutorial "How to Load Data in FASTGenomics (Python)") ###Output _____no_output_____ ###Markdown 1.Import Data ###Code # path to data RAW_DATA_FOLDER = '/Users/yogisharosarumaha/Documents/GitHub/predict_future_sales_kaggle/data/' #Load Data import pandas as pd items =pd.read_csv(os.path.join(RAW_DATA_FOLDER, 'items.csv')) item_categories =pd.read_csv(os.path.join(RAW_DATA_FOLDER,'item_categories.csv')) shops =pd.read_csv(os.path.join(RAW_DATA_FOLDER,'shops.csv')) train_df =pd.read_csv(os.path.join(RAW_DATA_FOLDER,'sales_train.csv')) test_df =pd.read_csv(os.path.join(RAW_DATA_FOLDER,'test.csv')) #Dataset informations print('items: ' + str(items.shape)) print() items.info(null_counts=True) print() print('-'*50) print('item_categories :' + str(item_categories.shape)) print() item_categories.info(null_counts=True) print() print('-'*50) print('shops :' + str(shops.shape)) print() shops.info(null_counts=True) print('train_df :' + str(train_df.shape) ) print() train_df.info(null_counts=True) print('-'*50) print() print('test_df :' + str(test_df.shape)) print() test_df.info(null_counts=True) print('-'*50) print('Proportion of unique item in train set : ' + str(train_df.item_id.nunique()) + ' / ' + str(items.item_id.nunique())) print('Proportion of unique item in test set : ' + str(test_df.item_id.nunique()) + ' / ' + str(items.item_id.nunique())) print() print('Proportion of unique shops in train set : ' + str(train_df.shop_id.nunique()) + ' / ' + str(shops.shop_id.nunique())) print('Proportion of unique shops in test set : ' + str(test_df.shop_id.nunique()) + ' / ' + str(shops.shop_id.nunique())) ###Output train_df :(2935849, 6) <class 'pandas.core.frame.DataFrame'> RangeIndex: 2935849 entries, 0 to 2935848 Data columns (total 6 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 date 2935849 non-null object 1 date_block_num 2935849 non-null int64 2 shop_id 2935849 non-null int64 3 item_id 2935849 non-null int64 4 item_price 2935849 non-null float64 5 item_cnt_day 2935849 non-null float64 dtypes: float64(2), int64(3), object(1) memory usage: 134.4+ MB -------------------------------------------------- test_df :(214200, 3) <class 'pandas.core.frame.DataFrame'> RangeIndex: 214200 entries, 0 to 214199 Data columns (total 3 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 ID 214200 non-null int64 1 shop_id 214200 non-null int64 2 item_id 214200 non-null int64 dtypes: int64(3) memory usage: 4.9 MB -------------------------------------------------- Proportion of unique item in train set : 21807 / 22170 Proportion of unique item in test set : 5100 / 22170 Proportion of unique shops in train set : 60 / 60 Proportion of unique shops in test set : 42 / 60 ###Markdown Data Overview ###Code print('Train_data Minimum Date: ' + train_df['date'].min()) print('Train_data Maximum Date: ' + train_df['date'].max()) ###Output Train_data Minimum Date: 01.01.2013 Train_data Maximum Date: 31.12.2014 ###Markdown 2. Data Cleaning ###Code #Display outlier for all variables #Visible outlier from item_price train_df.boxplot( rot=45) #Display outlier for item count in a day train_df.boxplot(column=['item_cnt_day']) #Remove outlier based on boxplot print('Data set size before remove outlier:', train_df.shape) train_df = train_df[(train_df.item_price < 300000 )& (train_df.item_cnt_day < 1000)] print('Data set size before remove outlier:', train_df.shape) #Display distribution of item count day plt.rcParams['figure.figsize'] = (13,7) sns.distplot(train_df['item_price'], color = 'red') plt.title('Distribution of Item Price',fontsize=20) plt.xlabel('Item price',fontsize=15) plt.ylabel('Density') plt.show() ###Output _____no_output_____ ###Markdown There's chunk of items with 0 item prices, this is considered as outlier ###Code #Display items count of day with negative numbers train_df[train_df['item_cnt_day'] < 0].head() #Item price should at least 1 and not 0 print('Data size before remove 0 item price:', train_df.shape) train_df = train_df.query('item_price > 0') print('Data size after remove 0 item price:', train_df.shape) ###Output Data size before remove 0 item price: (2935846, 6) Data size after remove 0 item price: (2935845, 6) ###Markdown 3. Data Transformation ###Code # Create column for date train_df['date'] = pd.to_datetime(train_df['date'], errors='coerce') # Create column for month train_df['month'] = pd.to_datetime(train_df['date'], errors='coerce') # Create column for year train_df['year'] = pd.to_datetime(train_df['date'], errors='coerce') # Create column for week train_df['week'] =pd.to_datetime(train_df['date'], errors='coerce') # View columns train_df.columns train_df.head() # Computing days with high demand plt.rcParams['figure.figsize'] = (15, 7) sns.countplot(train_df['date']) plt.title('Shops with busy days', fontsize = 20) plt.xlabel('Days', fontsize = 15) plt.ylabel('Frequency', fontsize = 15) plt.show() # Computing Months with high demands plt.rcParams['figure.figsize'] = (15, 7) sns.countplot(train_df['month'], palette = 'dark') plt.title('Shops with busy month', fontsize = 30) plt.xlabel('Months', fontsize = 15) plt.ylabel('Frequency', fontsize = 15) plt.show() # Convert data to Monthly # Dataset only for monthly data data = train_df.groupby([train_df['date'].apply(lambda x: x.strftime('%Y-%m')),'item_id','shop_id']).sum().reset_index() # Get important attributes to add for the data data = data[['date','item_id','shop_id','item_cnt_day']] # Select attributes to observe in the dataset data = data.pivot_table(index=['item_id','shop_id'], columns = 'date', values = 'item_cnt_day', fill_value = 0).reset_index() # looking at the newly prepared datset data.shape # Merge monthly sales data prepared to the test data set test_df=pd.merge(test_df, data, on = ['item_id', 'shop_id'], how = 'left') # filling the empty values test_df.fillna(0, inplace = True) # dataset check test_df.head() # Create Training data x_train = test_df.drop(['2015-10', 'item_id', 'shop_id'], axis = 1) y_train = test_df['2015-10'] # Omit first columns to predict sales data x_test = test_df.drop(['2013-01', 'item_id', 'shop_id'], axis = 1) # Dataset shape check print("Shape of x_train :", x_train.shape) print("Shape of x_test :", x_test.shape) print("Shape of y_test :", y_train.shape) # Splits data into training/testing from sklearn.model_selection import train_test_split x_train, x_valid, y_train, y_valid = train_test_split(x_train, y_train, test_size = 0.2, random_state = 0) # checking the shapes print("Shape of x_train :", x_train.shape) print("Shape of x_valid :", x_valid.shape) print("Shape of y_train :", y_train.shape) print("Shape of y_valid :", y_valid.shape) ###Output Shape of x_train : (171360, 36) Shape of x_valid : (42840, 36) Shape of y_train : (171360,) Shape of y_valid : (42840,) ###Markdown Modeling ###Code #Get time to run model ts = time.time() from lightgbm import LGBMRegressor model_lgb = LGBMRegressor( n_estimators=500, learning_rate=0.009, num_leaves=100, colsample_bytree=0.95, subsample=0.90, max_depth=10, reg_alpha=0.4, reg_lambda=0.1, min_split_gain=0.1, min_child_weight=40) model_lgb.fit(x_train, y_train) y_pred_lgb = model_lgb.predict(x_test) print("It took : " + str(time.time() - ts) + " to run") ###Output It took : 7.88634991645813 to run ###Markdown Generate Prediction ###Code # Test set and clip certain range y_pred_lgb = model_lgb.predict(x_test).clip(0., 20.) # File for submission preds = pd.DataFrame(y_pred_lgb, columns=['item_cnt_month']) preds.to_csv('submission.csv',index_label='ID') ###Output _____no_output_____ ###Markdown Most Important Variables ###Code import warnings warnings.simplefilter(action='ignore', category=FutureWarning) feature_imp = pd.DataFrame(sorted(zip(model_lgb.feature_importances_,x_train.columns)), columns=['Value','Feature']) plt.figure(figsize=(20, 10)) sns.barplot(x="Value", y="Feature", data=feature_imp.sort_values(by="Value", ascending=False)) plt.title('LightGBM Features (avg over folds)') plt.tight_layout() plt.show() plt.savefig('lgbm_importances-01.png') ###Output _____no_output_____ ###Markdown **Gather Data for Seattle and Boston** ###Code # read calendar seattle df_cal_s = pd.read_csv('./calendar_seattle.csv') # read calendar boston df_cal_b = pd.read_csv('./calendar_boston.csv') ###Output _____no_output_____ ###Markdown **Access Data** ###Code df_cal_s.head() # seattle df_cal_b.head() # boston ###Output _____no_output_____ ###Markdown Business Question 1How is the distribution of the home prices and are there differences between both cities?Data Preparation- dropping na price values because the na values dont provide information for this analysis- formatting datetime and using date as index- categorizing the price values in ranges to make the plot more expressive **Clean Data and analyze** ###Code # clean price values df_cal_s['price'] = df_cal_s['price'].replace({'\$':''}, regex = True).dropna().squeeze() df_cal_s['price'] = pd.to_numeric(df_cal_s['price'], errors='coerce') # format datetime df_cal_s['date'] = pd.to_datetime(df_cal_s[['date']].squeeze()) df_cal_s = df_cal_s.set_index('date') # calc avg price and occupancy rate print('Seattle') print("average price: ",df_cal_s['price'].mean()) print("occupancy rate (False: sold): ", df_cal_s['price'].isna().value_counts() / len(df_cal_s['price']) * 100) # clean price values df_cal_b['price'] = df_cal_b['price'].replace({'\$':''}, regex = True).dropna().squeeze() df_cal_b['price'] = pd.to_numeric(df_cal_b['price'], errors='coerce') # format datetime df_cal_b['date'] = pd.to_datetime(df_cal_b[['date']].squeeze()) df_cal_b = df_cal_b.set_index('date') # calc avg price and occupancy rate print('Boston') print("average price: ",df_cal_b['price'].mean()) print("occupancy rate (False: sold): ", df_cal_b['price'].isna().value_counts() / len(df_cal_b['price']) * 100) ###Output Seattle average price: 137.19222676140043 occupancy rate (False: sold): False 67.010986 True 32.989014 Name: price, dtype: float64 Boston average price: 192.45390955690283 occupancy rate (False: sold): True 51.067775 False 48.932225 Name: price, dtype: float64 ###Markdown **Data understanding:**- The average price is having a big different between both cities. Should be analysed if that´s changing with time.- The utilization of the homes seems to be different as well. The percentage of _False_ means the homes are sold. So in Boston there are much more home that are free. The offer seems to be much higher than the request. **Visualise data** ###Code # making a figure fig = plt.figure() # getting categories cat_s = pd.cut(df_cal_s['price'], bins=[0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 500, 1000, 3000], include_lowest=True) cat_b = pd.cut(df_cal_b['price'], bins=[0, 25, 50, 75, 100, 125, 150, 175, 200, 225, 250, 300, 500, 1000, 3000], include_lowest=True) # count categories cat_counts_s = cat_s.value_counts(sort=False)/len(df_cal_s) cat_counts_b = cat_b.value_counts(sort=False)/len(df_cal_b) # plot categories cat_counts_s.plot(kind='bar', color='c', width = 0.4, position=1, label='Seattle', legend=True) cat_counts_b.plot(kind='bar', color='b', width = 0.4, position=0, label='Boston', legend=True) # plot layout plt.ylabel("price distribution") plt.tight_layout() plt.show() # save fig fig.savefig('./occupany.png') ###Output _____no_output_____ ###Markdown Are there price changings during the year and is it caused by any events?- groupby date and using the mean value of all listings at the same time- rotating the date to make the axis ticks readable **Visualise data** ###Code # Start and end of the date range to extract start, end = '2014-01', '2023-01' # Plot daily and weekly resampled time series together fig, ax = plt.subplots() ax.plot(df_cal_s.loc[start:end, 'price'].groupby('date').mean(), marker='.', linestyle='-', color='c', markersize=1, label='Seattle') ax.plot(df_cal_b.loc[start:end, 'price'].groupby('date').mean(), marker='.', linestyle='-', color='b', markersize=1, label='Boston') ax.set_ylabel('avg price [$]') ax.legend() plt.xticks(rotation=90) plt.tight_layout() fig = ax.get_figure() fig.savefig('./avg_price.png') ###Output _____no_output_____ ###Markdown **Data understanding:**- in Jan/Feb/March the prices are low but rise untill midsommer and go down again untill the winter months- crazy price drop in Boston - maybe the prices were too high and the request for the homes were too low- in April there must have been a local event in Boston causing this price peak not used analysis - I wanted to make a plot about the utilization of the homes. ###Code #print(df_cal_s) df_s = df_cal_s[df_cal_s.available != 'f'] #df_b = df_cal_b[df_cal_s.available != 'f'] auslastung_s = df_s.groupby('date')['available'].value_counts() #auslastung_b = df_b.groupby('date')['available'].value_counts() print(auslastung) auslastung_s.plot() #auslastung_b.plot() ###Output _____no_output_____ ###Markdown Are there different weighted influences for the total review score value?Making a linear model to predict the **review_scores_rating** to see which coefs are most significant. Comparing the output of seattle and boston. including some functions of the lesson ###Code def create_dummy_df(df, cat_cols, dummy_na): ''' INPUT: df - pandas dataframe with categorical variables you want to dummy cat_cols - list of strings that are associated with names of the categorical columns dummy_na - Bool holding whether you want to dummy NA vals of categorical columns or not OUTPUT: df - a new dataframe that has the following characteristics: 1. contains all columns that were not specified as categorical 2. removes all the original columns in cat_cols 3. dummy columns for each of the categorical columns in cat_cols 4. if dummy_na is True - it also contains dummy columns for the NaN values 5. Use a prefix of the column name with an underscore (_) for separating ''' for col in cat_cols: try: # for each cat add dummy var, drop original column df = pd.concat([df.drop(col, axis=1), pd.get_dummies(df[col], prefix=col, prefix_sep='_', drop_first=True, dummy_na=dummy_na)], axis=1) except: continue return df def clean_fit_linear_mod(df, response_col, cat_cols, dummy_na, test_size=.3, rand_state=42): ''' INPUT: df - a dataframe holding all the variables of interest response_col - a string holding the name of the column cat_cols - list of strings that are associated with names of the categorical columns dummy_na - Bool holding whether you want to dummy NA vals of categorical columns or not test_size - a float between [0,1] about what proportion of data should be in the test dataset rand_state - an int that is provided as the random state for splitting the data into training and test OUTPUT: test_score - float - r2 score on the test data train_score - float - r2 score on the test data lm_model - model object from sklearn X_train, X_test, y_train, y_test - output from sklearn train test split used for optimal model Your function should: 1. Drop the rows with missing response values 2. Drop columns with NaN for all the values 3. Use create_dummy_df to dummy categorical columns 4. Fill the mean of the column for any missing values 5. Split your data into an X matrix and a response vector y 6. Create training and test sets of data 7. Instantiate a LinearRegression model with normalized data 8. Fit your model to the training data 9. Predict the response for the training data and the test data 10. Obtain an rsquared value for both the training and test data ''' # Drop the rows with missing response values df = df.dropna(subset=[response_col], axis=0) # Drop columns with all NaN values df = df.dropna(how='all', axis=1) # Dummy categorical variables df = create_dummy_df(df, cat_cols, dummy_na) # Mean function fill_mean = lambda col: col.fillna(col.mean()) # Fill the mean df = df.apply(fill_mean, axis=0) # Split into explanatory and response variables X = df.drop(columns=[response_col], axis=1) y = df[response_col] # Split into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=test_size, random_state=rand_state) lm_model = LinearRegression(normalize=True) # Instantiate lm_model.fit(X_train, y_train) # Fit # Predict using your model y_test_preds = lm_model.predict(X_test) y_train_preds = lm_model.predict(X_train) # Score using your model test_score = r2_score(y_test, y_test_preds) train_score = r2_score(y_train, y_train_preds) return test_score, train_score, lm_model, X_train, X_test, y_train, y_test def coef_weights(coefficients, X_train): ''' INPUT: coefficients - the coefficients of the linear model X_train - the training data, so the column names can be used OUTPUT: coefs_df - a dataframe holding the coefficient, estimate, and abs(estimate) Provides a dataframe that can be used to understand the most influential coefficients in a linear model by providing the coefficient estimates along with the name of the variable attached to the coefficient. ''' coefs_df = pd.DataFrame() coefs_df['est_int'] = X_train.columns coefs_df['coefs'] = lm_model.coef_ coefs_df['abs_coefs'] = np.abs(lm_model.coef_) coefs_df = coefs_df.sort_values('abs_coefs', ascending=False) return coefs_df ###Output _____no_output_____ ###Markdown **Gather & Assess Data** ###Code # Read in linstings data and store in a list df_lis_s = pd.read_csv('./listings_seattle.csv') df_lis_b = pd.read_csv('./listings_boston.csv') df_lists = [df_lis_s, df_lis_b] ###Output _____no_output_____ ###Markdown **Clean data - analyze and model** ###Code # Loop for seattle and boston for df_list in df_lists: # Filter for categorical variables df_cat = df_list.select_dtypes(include=[np.number]) cat_cols_lst = df_cat.select_dtypes(include=['object']).columns # Value of interest: response_col = 'review_scores_rating' # Clean and fit linear model test_score, train_score, lm_model, X_train, X_test, y_train, y_test = clean_fit_linear_mod(df_cat, 'review_scores_rating', cat_cols_lst, dummy_na=False) print("test_score, train_score: ", test_score, train_score) # Calc the coef weights coef_df = coef_weights(lm_model.coef_, X_train) ###Output test_score, train_score: -190.06134734358062 -212.10421669598512 test_score, train_score: 0.7075743811567 0.7986075716094313 ###Markdown **Visualize coefs with weights** ###Code # relevant for my analysis are just the review scores review_scores = ['review_scores_location','review_scores_value','review_scores_cleanliness','review_scores_checkin', 'review_scores_accuracy','review_scores_communication'] # Show the 20 most significant influencing variables print(coef_df.head(20)) ###Output est_int coefs abs_coefs 25 review_scores_value 2.929826 2.929826 21 review_scores_cleanliness 2.703228 2.703228 22 review_scores_checkin 1.688343 1.688343 23 review_scores_communication 1.650156 1.650156 6 longitude 1.495893 1.495893 20 review_scores_accuracy 1.473371 1.473371 5 latitude 1.330772 1.330772 24 review_scores_location 0.612614 0.612614 9 bedrooms 0.330221 0.330221 27 reviews_per_month -0.249368 0.249368 8 bathrooms 0.199281 0.199281 7 accommodates -0.189503 0.189503 10 beds 0.175778 0.175778 12 guests_included 0.088851 0.088851 15 availability_30 -0.034356 0.034356 13 minimum_nights -0.024564 0.024564 26 calculated_host_listings_count -0.017771 0.017771 16 availability_60 0.010719 0.010719 19 number_of_reviews 0.006389 0.006389 3 host_listings_count 0.002396 0.002396 ###Markdown Statistical analyses for the Percolation Theory SimulatorThe purpose of this notebook is to analyze the phenomena of Percolation.1. We want to see if the percolation threshold depends on the size.2. We want to analyze the distribution when the sample size gets increasingly bigger.For this purpose we want to import the `api_utils` library, which implements the `APIConnector` class. ###Code from api_utils import APIConnector ###Output _____no_output_____ ###Markdown Now we want to define the server address, port and API path. ###Code SERVER_ADDRESS = "0.0.0.0" SERVER_PORT = "5000" SERVER_PATH = "simulation/simulate" ac = APIConnector(SERVER_ADDRESS, SERVER_PORT, SERVER_PATH) print(ac.base_path) ###Output http://0.0.0.0:5000/simulation/simulate/ ###Markdown 1. How does size affect the Percolation Threshold?The purpose of this section is to analyze if size affects the percolation threshold (which is defined as the probability of a cell site to be open). Data generationFirst thing we need to do is to generate some simulation data. Simulation is done by using a minimum size of $n = 1$ and a maximum size of $n = 20$ (thus avoiding complex simulations due to the lattice increasing). Sample size will be $sample\_size = 100$, to reduce the standard error due to the sampling procedure. ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt min_size = 1 max_size = 20 sample_size = 100 # Run only once. It might take up to 10 minutes sample_thresholds = [ac.get_data(n, sample_size).get("threshold") for n in range(min_size, max_size + 1)] ###Output _____no_output_____ ###Markdown Data VisualizationLet's now visualize the results. ###Code plt.title("Percolation Threshold by size") plt.xlabel("Size") plt.ylabel("Threshold") plt.bar(range(min_size, max_size + 1), sample_thresholds) plt.xticks(range(min_size, max_size + 1)) plt.show() ###Output _____no_output_____ ###Markdown Hypothesis Testing using _Chi-Squared Test_From a first sight, we see that, except for size one, all the threshold are roughly equal. If we want to be rigorous about our statements, we might use the statistical framework, in particular we can use the _Chi-Squared Test_ and see if these differences are truly relevant (_Alternative Hypothesis_) or they are just due to random chance (_Null Hypothesis_).It's trivial to understand why for size one the threshold is 1: in order for the system to percolate, the only site has to be open.Having clarified this, and realizing that the percolation threshold is just the proportion of open sites, we can apply the _Chi-Squared Test_ using the relevant `scipy.stats` modules. ###Code from scipy.stats import chisquare chi2, pval = chisquare(sample_thresholds) print(f"Calculated chi2 statistic is {chi2} and p-value {pval}") ###Output Calculated chi2 statistic is 0.9768659203176914 and p-value 0.9999999993722517 ###Markdown ConclusionWith such a huge p-value (0.99) it's impossible to reject the null hypothesis, therefore we can easily affirm that __the percolation threshold is not affected by the size__. 2. Distribution Analysis as the sample size variesLet's now see what varying the sample size causes to the distribution. Even though this is a purely statistical matter, we also want to see the shape of the distribution and we want to compare it with the Normal Distribution. DataSince we realized that the threshold does not vary with size (for $n \gt 1$), we can choose $n = 10$ and our sample size will vary in the range $[20,\ 200]$ with a step of $20$. For each of these samples, we see perform a normality test to see whether the distribution is normal or not. ###Code from scipy.stats import normaltest n_sample_size = 10 min_sample_size = 20 max_sample_size = 200 step = 20 resulting_pvals = [] for sample_size in range(min_sample_size, max_sample_size + 1, step): sample = ac.get_data(n_sample_size, sample_size).get("results") resulting_pvals += [normaltest(sample)[1]] resulting_pvals = np.array(resulting_pvals) ###Output _____no_output_____ ###Markdown AnalysisLet's check for which sample size the normality condition holds true. To do so, we choose a significance level of $\alpha = 0.05$, and when the resulting p-value is greater than such level, we can affirm that the sample comes from the normal distribution. Otherwise, we have to reject such hypothesis. ###Code alpha = 0.05 np.where(resulting_pvals > alpha)[0].tolist() ###Output _____no_output_____ ###Markdown The results look interesting, but it would be nice to repeat the process different times (let's say 20), and see if the results hold again. What we are going to do is: for each size we keep track how many times the sample is normal, and see if there's consistency among the results. ###Code repeat = 20 results = [0 for _ in range(min_sample_size, max_sample_size + 1, step)] for _ in range(repeat): resulting_pvals = [] for sample_size in range(min_sample_size, max_sample_size + 1, step): sample = ac.get_data(n_sample_size, sample_size).get("results") resulting_pvals += [normaltest(sample)[1]] resulting_pvals = np.array(resulting_pvals) for index in np.where(resulting_pvals > alpha)[0].tolist(): results[index] += 1 frequencies = [result / repeat for result in results] for i, frequency in enumerate(frequencies): print(f"For size {min_sample_size + i * step}, the sample resulted normal {frequency * 100}% times.") ###Output For size 20, the sample resulted normal 75.0% times. For size 40, the sample resulted normal 95.0% times. For size 60, the sample resulted normal 75.0% times. For size 80, the sample resulted normal 40.0% times. For size 100, the sample resulted normal 20.0% times. For size 120, the sample resulted normal 5.0% times. For size 140, the sample resulted normal 0.0% times. For size 160, the sample resulted normal 0.0% times. For size 180, the sample resulted normal 0.0% times. For size 200, the sample resulted normal 0.0% times. ###Markdown Atlantic Hurricanes from 2005-2015 ###Code import pandas as pd import numpy as np from matplotlib import pyplot as plt data = pd.read_csv("https://people.sc.fsu.edu/~jburkardt/data/csv/hurricanes.csv") data df = data.iloc[:,np.r_[2:len(data.columns)]] df.columns = ['2005', '2006', '2007', '2008', '2009', '2010', '2011', '2012', '2013', '2014', '2015'] yearly_totals = df.sum(axis=0) yearly_totals plt.title('# Hurricanes and Tropical Storms in the Atlantic') yearly_totals.plot.bar() ###Output _____no_output_____ ###Markdown Manuscript Figures 3.1 Optimization of A21 Complexes--- ###Code # ==> Fig. 2 <== data = stdbas x = [x * 3 for x in range(1, len(data)+1)] titles = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} boxcolors = ['pink', 'lightblue'] dcom_patch = mpatches.Patch(color='pink', label='A21 $\Delta$COM Signed Error') lrmsd_patch = mpatches.Patch(color='lightblue', label='A21 LRMSD') # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } boxprops = {'linewidth': 1.5} medianprops = dict(linestyle='-', linewidth=1.5, color='k') medianprops_dcom = dict(linestyle='-', linewidth=1.5, color='cyan') medianprops_lrmsd = dict(linestyle='-', linewidth=1.5, color='m') whiskerprops = dict(linestyle='-', linewidth=1.5, color='k') k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean dCOM', linewidth=0) plt.rcParams['figure.figsize'] = [10,15] f, axarr = plt.subplots(3, 1, figsize=(10,15), sharex=True) k = 0 for m in mt.columns.levels[0][1:]: # Plot i = 0 for b in stdbas: dCOM_data = a21_serr.loc[idx['a24'], idx[m,b,'dCOM']].values.reshape(-1,1) lrmsd_data = a21_serr.loc[idx['a24'], idx[m,b,'LRMSD']].values.reshape(-1,1) bp = axarr[k].boxplot(dCOM_data, positions=[x[i]-1], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, showfliers=False, widths=0.5, patch_artist=True) bx = axarr[k].boxplot(lrmsd_data, positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) for patch in bp['boxes']: patch.set_facecolor(boxcolors[0]) for patch in bx['boxes']: patch.set_facecolor(boxcolors[1]) i += 1 # Plot Options plt.xticks([i-0.5 for i in x], data) axarr[k].set_xlim(x[0] - 1.5, x[-1] + 0.5) axarr[k].set_ylim(-0.3, 0.3) axarr[k].set_ylabel('A21 $\Delta$COM Signed Error & LRMSD ($\AA$)') axarr[k].hlines(0, 0, x[-1] + 1, linestyle='--', linewidth=1, zorder=1) plt.legend(handles=[dcom_patch, lrmsd_patch], loc='lower right', fontsize='x-large') axarr[k].fill_between(np.arange(x[0]-4,x[-1]+2), -0.1, 0.1, facecolor='grey', alpha=0.1) axarr[k].fill_between(np.arange(x[0]-4,x[-1]+2), -0.05, 0.05, facecolor='grey', alpha=0.2) axarr[k].fill_between(np.arange(x[0]-4,x[-1]+2), -0.01, 0.01, facecolor='grey', alpha=0.3) k += 1 # ==> Fig. 3a <== plt.rcParams["figure.figsize"] = [10,5] x = [x * 3 for x in range(1, len(mt.columns.levels[0][1:])+1)] ticklabels = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-b97-d3': 'DF-B97-D3', 'df-m05-2x': 'DF-M05-2X'} titles = {'DZ': 'cc-pVDZ', 'TZ': 'cc-pVTZ', 'aDZ': 'aug-cc-pVDZ', 'aTZ': 'aug-cc-pVTZ'} # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean LRMSD', linewidth=0) for b in stdbas: plt.figure(figsize=(10,5)) boxes = mt.loc[idx['a24'], idx[list(ticklabels.keys())[:],b,'LRMSD']].plot.box(whis='range', showmeans=True, positions=x, meanprops=meanprops) i = 0 hb_dots = mx_dots = dd_dots = [] for m in mt.columns.levels[0][1:]: hb = plt.scatter([x[i] - 1.5]*len(a24_hb), mt.loc[idx['a24', a24_hb], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='r', label='HB Subset Members') mx = plt.scatter([x[i] - 1]*len(a24_mx), mt.loc[idx['a24', a24_mx], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='g', label='MX Subset Members') dd = plt.scatter([x[i] - 0.5]*len(a24_dd), mt.loc[idx['a24', a24_dd], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='b', label='DD Subset Members') i+=1 plt.xlim(0.5, x[-1] + 0.5) plt.ylim(0, 0.55) if b == 'aTZ' else None plt.xticks([i-0.75 for i in x], [ticklabels[i] for i in mt.columns.levels[0][1:-2]]) plt.ylabel('LRMSD of Optimized Geometry ($\AA$)') plt.title(titles[b]) plt.legend(handles=[hb, mx, dd, k_square]) ax = plt.gca() ax.fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.1, facecolor='grey', alpha=0.1) ax.fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.05, facecolor='grey', alpha=0.2) ax.fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.01, facecolor='grey', alpha=0.3) # ==> Fig. 3b <== plt.rcParams["figure.figsize"] = [10,5] x = [x * 3 for x in range(1, len(stdbas))] ticklabels = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-b97-d3': 'DF-B97-D3', 'df-m05-2x': 'DF-M05-2X'} titles = {'DZ': 'cc-pVDZ', 'TZ': 'cc-pVTZ', 'aDZ': 'aug-cc-pVDZ', 'aTZ': 'aug-cc-pVTZ'} # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean LRMSD', linewidth=0) for b in mt.columns.levels[1][1:]: # Plot plt.rcParams["figure.figsize"] = [10,5] fig = plt.figure(figsize=(10,5)) bp = a21_serr.loc[idx['a24'], idx[:,b,'dCOM']].plot.box(whis='range', showmeans=True, positions=x, meanprops=meanprops) i = 0 for m in mt.columns.levels[0][1:]: hb = plt.scatter([x[i] - 1.5]*len(a24_hb), a21_serr.loc[idx['a24', a24_hb], idx[m,b,'dCOM']], facecolors='none', edgecolors='r', label='HB Subset Members') mx = plt.scatter([x[i] - 1]*len(a24_mx), a21_serr.loc[idx['a24', a24_mx], idx[m,b,'dCOM']], facecolors='none', edgecolors='g', label='MX Subset Members') dd = plt.scatter([x[i] - 0.5]*len(a24_dd), a21_serr.loc[idx['a24', a24_dd], idx[m,b,'dCOM']], facecolors='none', edgecolors='b', label='DD Subset Members') i+=1 # Plot Options plt.xlim(0.5, x[-1] + 0.5) plt.ylim(-0.15, 0.3) if b == 'aTZ' else None plt.xticks([i-0.75 for i in x], [ticklabels[i] for i in mt.columns.levels[0][1:]]) plt.ylabel('A21 dCOM Signed Error ($\AA$)') plt.title(titles[b]) plt.legend(handles=[hb, mx, dd, k_square]) ax = plt.gca() ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.1, 0.1, facecolor='grey', alpha=0.1) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.05, 0.05, facecolor='grey', alpha=0.2) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.01, 0.01, facecolor='grey', alpha=0.3) ###Output _____no_output_____ ###Markdown 3.2 Prediction of Optimal Intermolecular Separation in NBC7x and HBC6 Interaction Energy Scans---- ###Code # ==> Fig. 4 <== plt.rcParams['figure.figsize'] = [8,6] mtdlabel = {'df-b3lyp-d3': 'B3LYP-D3', 'df-b97-d3': 'B97-D3', 'df-m05-2x': 'M05-2X', 'REF': 'CCSD(T)/CBS'} dbse_label = {'hbc6': 'HBC6', 'nbc10ext': 'NBC7x'} system_id = {'faoofaoo': '1', 'faonfaon': '2', 'fannfann': '3', 'faoofaon': '4', 'faonfann': '5', 'faoofann': '6', 'BzBz-S': '1', 'BzBz-T': '2', 'BzH2S': '4', 'BzMe': '5', 'MeMe': '6', 'PyPy-S2': '7', 'PyPy-T3': '8' } bas_label = {'DZ': 'cc-pVDZ', 'aDZ': 'aug-cc-pVDZ', 'TZ': 'cc-pVTZ', 'aTZ': 'aug-cc-pVTZ'} colors = ['r','b','g'] markers = ['s','>','*'] d = 'hbc6' b = 'DZ' cp = 'unCP' s = 'fannfann' if s != 'faoofann': minie = [] maxie = [] curvemins = [] j = 0 for m in scans.columns.levels[0][1:]: curve = scans.loc[idx[d,s], idx[m,b,cp]] plt.plot(curve[0], curve[1], color=colors[j], marker=markers[j], label=mtdlabel[m]) pesmin = pes.loc[idx[d,s], idx[m,b,cp]] plt.vlines(pesmin, -30, curve.min(), linestyle='--', color=colors[j], linewidth=2) minie.append(curve[1].min()) maxie.append(curve[1].max()) curvemins.append(pesmin) j+=1 # Plot reference curve ref = scans.loc[idx[d,s], idx['REF']].values[0] minie.append(ref[1].min()) maxie.append(ref[1].max()) plt.plot(ref[0],ref[1],'ko-', label=mtdlabel['REF'],zorder=5) refmin = pes.loc[idx[d,s], idx['REF']].values[0] plt.vlines(refmin, -30, ref.min(), linestyle='--', color='k', linewidth=2) curvemins.append(refmin) print(max(maxie)) # Plot Options plt.xlim(ref[0].min()-0.05, refmin+.9) plt.ylim(min(minie) - 2,1) plt.minorticks_on() ax = plt.gca() ax.tick_params(axis='y',which='minor',bottom='off') plt.xlabel('Intermolecular Separation, $R$ ($\AA$)',fontsize='xx-large') plt.ylabel('Interaction Energy (kcal/mol)',fontsize='xx-large') plt.legend(loc='upper left',fontsize='x-large')#, ncol=2) # Create inset axins = zoomed_inset_axes(ax, 2, loc=1) j=0 for m in scans.columns.levels[0][1:]: curve = scans.loc[idx[d,s], idx[m,b,cp]] axins.plot(curve[0], curve[1], color=colors[j], marker=markers[j], label=mtdlabel[m]) pesmin = pes.loc[idx[d,s], idx[m,b,cp]] axins.vlines(pesmin, -30, curve.min(), linestyle='--', color=colors[j], linewidth=2) j+=1 axins.plot(ref[0],ref[1],'ko-', label=mtdlabel['REF']) axins.vlines(refmin, -30, ref.min(), linestyle='--', color='k', linewidth=2) mins = np.array(curvemins) axins.set_xlim(mins.min()-0.05, mins.max()+0.05) # apply the x-limits axins.set_ylim(min(minie) - 1,max(minie) + 1) # apply the y-limits axins.xaxis.set_tick_params(labelsize=12) axins.yaxis.set_tick_params(labelsize=12) axins.minorticks_on() axins.tick_params(axis='y',which='minor',bottom='on') from mpl_toolkits.axes_grid1.inset_locator import mark_inset mark_inset(ax, axins, loc1=2, loc2=4, fc="none", ec="silver", ls='--', zorder=0) else: minie = [] maxie = [] curvemins = [] j = 0 for m in scans.columns.levels[0][1:]: curve = scans.loc[idx[d,s], idx[m,b,cp]] plt.plot(curve[0], curve[1], color=colors[j], marker=markers[j], label=mtdlabel[m]) j+=1 # Plot reference curve ref = scans.loc[idx[d,s], idx['REF']].values[0] plt.plot(ref[0],ref[1],'ko-', label=mtdlabel['REF'],zorder=5) # Plot Options plt.title('%s-%s: %s Curves with the %s basis' % (dbse_label[d], system_id[s], cp, bas_label[b])) plt.hlines(0,0,12,linestyle='-',linewidth=1) plt.xlim(ref[0].min()-0.1, ref[0].max()+.1) #plt.ylim(min(minie) - 2,12) plt.ylim(-28, 8) plt.minorticks_on() ax = plt.gca() ax.tick_params(axis='y',which='minor',bottom='off') plt.xlabel('Intermolecular Separation, $R$ ($\AA$)',fontsize='xx-large') plt.ylabel('Interaction Energy (kcal/mol)',fontsize='xx-large') plt.legend(loc='upper left',fontsize='x-large',ncol=2) # ==> Fig. 5 <== m = mt.columns.levels[0][1:] x = [x * 3 for x in range(1, len(stdbas)+1)] titles = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} boxcolors = ['xkcd:light red','lightblue','lightgreen'] b3lyp_patch = mpatches.Patch(color='xkcd:light red', label='DF-B3LYP-D3') b97_patch = mpatches.Patch(color='lightblue', label='DF-B97-D3') m05_patch = mpatches.Patch(color='lightgreen', label='DF-M05-2X') # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh'} boxprops = {'linewidth': 1.5} medianprops = dict(linestyle='-', linewidth=1.5, color='k') medianprops_dcom = dict(linestyle='-', linewidth=1.5, color='cyan') medianprops_lrmsd = dict(linestyle='-', linewidth=1.5, color='m') whiskerprops = dict(linestyle='-', linewidth=1.5, color='k') k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, linewidth=0) plt.rcParams['figure.figsize'] = [20,10] f, axarr = plt.subplots(2, 2, figsize=(20,10), sharex=True) # ==> Plot <== # Plot NBC7x/CP on axarr[0,0] for i in range(len(stdbas)): b1 = axarr[0,0].boxplot(pes_err.loc[idx['nbc10ext', nbc7], idx[m[0],stdbas[i],'CP']].values.reshape(-1,1), positions=[x[i]-0.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, showfliers=False, widths=0.5, patch_artist=True) b2 = axarr[0,0].boxplot(pes_err.loc[idx['nbc10ext', nbc7], idx[m[1],stdbas[i],'CP']].values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) b3 = axarr[0,0].boxplot(pes_err.loc[idx['nbc10ext', nbc7], idx[m[2],stdbas[i],'CP']].values.reshape(-1,1), positions=[x[i]+.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) for patch in b1['boxes']: patch.set_facecolor(boxcolors[0]) for patch in b2['boxes']: patch.set_facecolor(boxcolors[1]) for patch in b3['boxes']: patch.set_facecolor(boxcolors[2]) # Plot NBC7x/unCP on axarr[0,1] for i in range(len(stdbas)): b1 = axarr[0,1].boxplot(pes_err.loc[idx['nbc10ext', nbc7], idx[m[0],stdbas[i],'unCP']].values.reshape(-1,1), positions=[x[i]-0.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, showfliers=False, widths=0.5, patch_artist=True) b2 = axarr[0,1].boxplot(pes_err.loc[idx['nbc10ext', nbc7], idx[m[1],stdbas[i],'unCP']].values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) b3 = axarr[0,1].boxplot(pes_err.loc[idx['nbc10ext', nbc7], idx[m[2],stdbas[i],'unCP']].values.reshape(-1,1), positions=[x[i]+.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) for patch in b1['boxes']: patch.set_facecolor(boxcolors[0]) for patch in b2['boxes']: patch.set_facecolor(boxcolors[1]) for patch in b3['boxes']: patch.set_facecolor(boxcolors[2]) # Plot HBC6/CP on axarr[1,0] for i in range(len(stdbas)): b1 = axarr[1,0].boxplot(pes_err.loc[idx['hbc6', hbc6], idx[m[0],stdbas[i],'CP']].dropna().values.reshape(-1,1), positions=[x[i]-0.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, showfliers=False, widths=0.5, patch_artist=True) b2 = axarr[1,0].boxplot(pes_err.loc[idx['hbc6', hbc6], idx[m[1],stdbas[i],'CP']].dropna().values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) b3 = axarr[1,0].boxplot(pes_err.loc[idx['hbc6', hbc6], idx[m[2],stdbas[i],'CP']].dropna().values.reshape(-1,1), positions=[x[i]+.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) for patch in b1['boxes']: patch.set_facecolor(boxcolors[0]) for patch in b2['boxes']: patch.set_facecolor(boxcolors[1]) for patch in b3['boxes']: patch.set_facecolor(boxcolors[2]) # Plot NBC7x/unCP on axarr[1,1] for i in range(len(stdbas)): b1 = axarr[1,1].boxplot(pes_err.loc[idx['hbc6', hbc6], idx[m[0],stdbas[i],'unCP']].dropna().values.reshape(-1,1), positions=[x[i]-0.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, showfliers=False, widths=0.5, patch_artist=True) b2 = axarr[1,1].boxplot(pes_err.loc[idx['hbc6', hbc6], idx[m[1],stdbas[i],'unCP']].dropna().values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) b3 = axarr[1,1].boxplot(pes_err.loc[idx['hbc6', hbc6], idx[m[2],stdbas[i],'unCP']].dropna().values.reshape(-1,1), positions=[x[i]+.65], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) for patch in b1['boxes']: patch.set_facecolor(boxcolors[0]) for patch in b2['boxes']: patch.set_facecolor(boxcolors[1]) for patch in b3['boxes']: patch.set_facecolor(boxcolors[2]) # ==> Plot Options <== plt.xticks([i for i in x], stdbas) axarr[0,0].set_xlim(x[0] - 1.5, x[-1] + 1.5) # NBC7x: CP axarr[0,0].set_title('(a) NBC7x: CP Curves') axarr[0,0].set_ylabel('$\Delta$COM Signed Error ($\AA$)',fontsize='x-large') axarr[0,0].hlines(0, 0, x[-1] + 5, linestyle='--', linewidth=1, zorder=1) axarr[0,0].set_ylim(-0.16, 0.25) axarr[0,0].fill_between(np.arange(x[0]-4,x[-1]+5), -0.1, 0.1, facecolor='grey', alpha=0.1) axarr[0,0].fill_between(np.arange(x[0]-4,x[-1]+5), -0.05, 0.05, facecolor='grey', alpha=0.2) axarr[0,0].fill_between(np.arange(x[0]-4,x[-1]+5), -0.01, 0.01, facecolor='grey', alpha=0.3) # NBC7x: unCP axarr[0,1].set_title('(b) NBC7x: unCP Curves') axarr[0,1].set_ylabel('$\Delta$COM Signed Error ($\AA$)',fontsize='x-large') axarr[0,1].set_ylim(-0.16, 0.25) axarr[0,1].hlines(0, 0, x[-1] + 5, linestyle='--', linewidth=1, zorder=1) axarr[0,1].fill_between(np.arange(x[0]-4,x[-1]+5), -0.1, 0.1, facecolor='grey', alpha=0.1) axarr[0,1].fill_between(np.arange(x[0]-4,x[-1]+5), -0.05, 0.05, facecolor='grey', alpha=0.2) axarr[0,1].fill_between(np.arange(x[0]-4,x[-1]+5), -0.01, 0.01, facecolor='grey', alpha=0.3) # HBC6: CP axarr[1,0].set_title('(c) HBC6: CP Curves') axarr[1,0].set_ylabel('$\Delta$COM Signed Error ($\AA$)',fontsize='x-large') axarr[1,0].set_ylim(-0.13, 0.15) axarr[1,0].hlines(0, 0, x[-1] + 5, linestyle='--', linewidth=1, zorder=1) axarr[1,0].fill_between(np.arange(x[0]-4,x[-1]+5), -0.1, 0.1, facecolor='grey', alpha=0.1) axarr[1,0].fill_between(np.arange(x[0]-4,x[-1]+5), -0.05, 0.05, facecolor='grey', alpha=0.2) axarr[1,0].fill_between(np.arange(x[0]-4,x[-1]+5), -0.01, 0.01, facecolor='grey', alpha=0.3) # HBC6: unCP axarr[1,1].set_title('(d) HBC6: unCP Curves') axarr[1,1].set_ylabel('$\Delta$COM Signed Error ($\AA$)',fontsize='x-large') axarr[1,1].set_ylim(-0.13, 0.15) axarr[1,1].hlines(0, 0, x[-1] + 5, linestyle='--', linewidth=1, zorder=1) axarr[1,1].fill_between(np.arange(x[0]-4,x[-1]+5), -0.1, 0.1, facecolor='grey', alpha=0.1) axarr[1,1].fill_between(np.arange(x[0]-4,x[-1]+5), -0.05, 0.05, facecolor='grey', alpha=0.2) axarr[1,1].fill_between(np.arange(x[0]-4,x[-1]+5), -0.01, 0.01, facecolor='grey', alpha=0.3) plt.legend(handles=[b3lyp_patch, b97_patch, m05_patch], loc='upper center', fontsize='x-large', ncol=3) ###Output _____no_output_____ ###Markdown Supporting Information--- ###Code # ==> Figs. S-3 -- S-5 <== x = [x * 3 for x in range(1, len(stdbas)+1)] titles = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } #k_square = mpatches.Patch(color='k', label='The red data') k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean LRMSD', linewidth=0) for j in range(len(mt.columns.levels[0][1:])): m = mt.columns.levels[0][1:][j] plt.figure(figsize=(10,5)) i = 0 for b in mt.reindex(columns=stdbas, level=1).columns.levels[1]: bx = plt.boxplot(mt.loc[idx['a24'], idx[m,b,'LRMSD']].values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, widths=0.5) hb = plt.scatter([x[i] - 1.5]*len(a24_hb), mt.loc[idx['a24', a24_hb], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='r', label='HB Subset Members') mx = plt.scatter([x[i] - 1]*len(a24_mx), mt.loc[idx['a24', a24_mx], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='g', label='MX Subset Members') dd = plt.scatter([x[i] - 0.5]*len(a24_dd), mt.loc[idx['a24', a24_dd], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='b', label='DD Subset Members') i+=1 plt.xlim(0.5, x[-1] + 0.5) plt.xticks([i-0.75 for i in x], stdbas) plt.ylabel('LRMSD of Optimized Geometry ($\AA$)') plt.title(titles[m]) plt.legend(handles=[hb, mx, dd, k_square]) ax = plt.gca() ax.fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.1, facecolor='grey', alpha=0.1) ax.fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.05, facecolor='grey', alpha=0.2) ax.fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.01, facecolor='grey', alpha=0.3) # ==> Figs. S-6 -- S-8 <== x = [x * 3 for x in range(1, len(stdbas)+1)] titles = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } boxprops = {'linewidth': 1.5} medianprops = dict(linestyle='-', linewidth=1.5, color='cyan') whiskerprops = dict(linestyle='-', linewidth=1.5, color='k') k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean dCOM', linewidth=0) for m in mt.columns.levels[0][1:]: # Plot plt.rcParams["figure.figsize"] = [10,5] fig = plt.figure(figsize=(10,5)) bp = a21_serr.loc[idx['a24'], idx[m,:,'dCOM']].plot.box(whis='range', showmeans=True, positions=x, meanprops=meanprops) i = 0 for b in mt.columns.levels[1][1:]: hb = plt.scatter([x[i] - 1.5]*len(a24_hb), a21_serr.loc[idx['a24', a24_hb], idx[m,b,'dCOM']], facecolors='none', edgecolors='r', label='HB Subset Members') mx = plt.scatter([x[i] - 1]*len(a24_mx), a21_serr.loc[idx['a24', a24_mx], idx[m,b,'dCOM']], facecolors='none', edgecolors='g', label='MX Subset Members') dd = plt.scatter([x[i] - 0.5]*len(a24_dd), a21_serr.loc[idx['a24', a24_dd], idx[m,b,'dCOM']], facecolors='none', edgecolors='b', label='DD Subset Members') i+=1 # Plot options plt.xlim(1, x[-1] + 0.5) plt.xticks([i-0.75 for i in x], stdbas) plt.ylabel('A21 dCOM Signed Error ($\AA$)') plt.hlines(0, 0, x[-1] + 1, linestyle='--', linewidth=1, zorder=1) plt.title(titles[m]) plt.legend(handles=[hb, mx, dd, k_square], loc='best', ncol=2) ax = plt.gca() ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.1, 0.1, facecolor='grey', alpha=0.1) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.05, 0.05, facecolor='grey', alpha=0.2) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.01, 0.01, facecolor='grey', alpha=0.3) # ==> Figs. S-15 -- S-118 <== plt.rcParams['figure.figsize'] = [8,6] mtdlabel = {'df-b3lyp-d3': 'B3LYP-D3', 'df-b97-d3': 'B97-D3', 'df-m05-2x': 'M05-2X', 'REF': 'CCSD(T)/CBS'} dbse_label = {'hbc6': 'HBC6', 'nbc10ext': 'NBC7x'} system_id = {'hbc6': {'faoofaoo': '1', 'faonfaon': '2', 'fannfann': '3', 'faoofaon': '4', 'faonfann': '5', 'faoofann': '6'}, 'nbc10ext': {'BzBz-S': '1', 'BzBz-T': '2', 'BzH2S': '4', 'BzMe': '5', 'MeMe': '6', 'PyPy-S2': '7', 'PyPy-T3': '8'} } bas_label = {'DZ': 'cc-pVDZ', 'aDZ': 'aug-cc-pVDZ', 'TZ': 'cc-pVTZ', 'aTZ': 'aug-cc-pVTZ'} colors = ['r','b','g'] markers = ['s','>','*'] for d in system_id.keys(): for s in system_id[d].keys(): for b in stdbas: for cp in ['CP', 'unCP']: if s != 'faoofann': # Plot DFT fig = plt.figure() minie = [] maxie = [] curvemins = [] j = 0 for m in scans.columns.levels[0][1:]: curve = scans.loc[idx[d,s], idx[m,b,cp]] plt.plot(curve[0], curve[1], color=colors[j], marker=markers[j], label=mtdlabel[m]) pesmin = pes.loc[idx[d,s], idx[m,b,cp]] plt.vlines(pesmin, -30, curve.min(), linestyle='--', color=colors[j], linewidth=2) minie.append(curve[1].min()) maxie.append(curve[1].max()) if pesmin > 0: curvemins.append(pesmin) j+=1 # Plot reference curve ref = scans.loc[idx[d,s], idx['REF']].values[0] minie.append(ref[1].min()) maxie.append(ref[1].max()) plt.plot(ref[0],ref[1],'ko-', label=mtdlabel['REF'],zorder=5) refmin = pes.loc[idx[d,s], idx['REF']].values[0] plt.vlines(refmin, -50, ref.min(), linestyle='--', color='k', linewidth=2) curvemins.append(refmin) # Plot Options plt.title('%s-%s: %s Curves with the %s basis' % (dbse_label[d], system_id[d][s], cp, bas_label[b])) plt.hlines(0,0,12,linestyle='-',linewidth=1) plt.xlim(ref[0].min()-0.05, refmin+1) plt.ylim(min(minie) - 2,max(maxie) + 5) plt.minorticks_on() ax = plt.gca() ax.tick_params(axis='y',which='minor',bottom='off') plt.xlabel('Intermolecular Separation, $R$ ($\AA$)',fontsize='xx-large') plt.ylabel('Interaction Energy (kcal/mol)',fontsize='xx-large') plt.legend(loc='upper left',fontsize='x-large')#,ncol=2) # Create inset axins = zoomed_inset_axes(ax, 2, loc=1) j=0 for m in scans.columns.levels[0][1:]: curve = scans.loc[idx[d,s], idx[m,b,cp]] axins.plot(curve[0], curve[1], color=colors[j], marker=markers[j], label=mtdlabel[m]) pesmin = pes.loc[idx[d,s], idx[m,b,cp]] axins.vlines(pesmin, -30, curve.min(), linestyle='--', color=colors[j], linewidth=2) j+=1 axins.plot(ref[0],ref[1],'ko-', label=mtdlabel['REF']) axins.vlines(refmin, -50, ref.min(), linestyle='--', color='k', linewidth=2) axins.hlines(0,0,12,linestyle='-',color='k',linewidth=1) mins = np.array(curvemins) axins.set_xlim(mins.min()-0.05, mins.max()+0.05) # apply the x-limits if d=='nbc10ext': axins.set_ylim(min(minie) - 0.5,max(minie) + 0.5) # apply the y-limits else: axins.set_ylim(min(minie) - 1,max(minie) + 1) # apply the y-limits axins.xaxis.set_tick_params(labelsize=12) axins.yaxis.set_tick_params(labelsize=12) mark_inset(ax, axins, loc1=2, loc2=4, fc="white", ec="silver", ls='--', zorder=0) else: fig = plt.figure() j = 0 for m in scans.columns.levels[0][1:]: curve = scans.loc[idx['hbc6','faoofann'], idx[m,b,cp]] plt.plot(curve[0], curve[1], color=colors[j], marker=markers[j], label=mtdlabel[m]) j+=1 # Plot reference curve ref = scans.loc[idx['hbc6','faoofann'], idx['REF']].values[0] plt.plot(ref[0],ref[1],'ko-', label=mtdlabel['REF'],zorder=5) # Plot Options plt.title('%s-%s: %s Curves with the %s basis' % (dbse_label['hbc6'], system_id['hbc6']['faoofann'], cp, bas_label[b])) plt.hlines(0,0,12,linestyle='-',linewidth=1) plt.xlim(ref[0].min()-0.1, ref[0].max()+.1) plt.ylim(-32, 8) plt.minorticks_on() ax = plt.gca() ax.tick_params(axis='y',which='minor',bottom='off') plt.xlabel('Intermolecular Separation, $R$ ($\AA$)',fontsize='xx-large') plt.ylabel('Interaction Energy (kcal/mol)',fontsize='xx-large') plt.legend(loc='upper left',fontsize='x-large',ncol=2) ###Output _____no_output_____ ###Markdown Additional Figures ###Code # ==> LRMSD Boxplots: Grouped by Basis Set (subplots) <== x = [x * 3 for x in range(1, len(mt.columns.levels[0][1:])+1)] xticklabels = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} titles = {'DZ': 'cc-pVDZ', 'TZ': 'cc-pVTZ', 'aDZ': 'aug-cc-pVDZ', 'aTZ': 'aug-cc-pVTZ'} # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean LRMSD', linewidth=0) plt.rcParams["figure.figsize"] = [10,20] f, axarr = plt.subplots(4, 1, sharex=True, figsize=(10,20)) j = 0 for b in stdbas: i = 0 hb_dots = mx_dots = dd_dots = [] for m in mt.columns.levels[0][1:]: bx = axarr[j].boxplot(mt.loc[idx['a24'], idx[m,b,'LRMSD']].values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, widths=0.5) hb = axarr[j].scatter([x[i] - 1.5]*len(a24_hb), mt.loc[idx['a24', a24_hb], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='r', label='HB Subset Members') mx = axarr[j].scatter([x[i] - 1]*len(a24_mx), mt.loc[idx['a24', a24_mx], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='g', label='MX Subset Members') dd = axarr[j].scatter([x[i] - 0.5]*len(a24_dd), mt.loc[idx['a24', a24_dd], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='b', label='DD Subset Members') i+=1 axarr[j].set_xlim(x[0] - 2, x[-1] + 0.5) axarr[j].set_ylim(0, 0.6) if b == 'aTZ' else None plt.xticks([i-0.75 for i in x], [xticklabels[m] for m in mt.columns.levels[0][1:-2]])#, rotation=45) axarr[j].set_ylabel('LRMSD of Optimized Geometry ($\AA$)') axarr[j].set_title(titles[b]) plt.legend(handles=[hb, mx, dd, k_square], loc='best') axarr[j].fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.1, facecolor='grey', alpha=0.1) axarr[j].fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.05, facecolor='grey', alpha=0.2) axarr[j].fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.01, facecolor='grey', alpha=0.3) j += 1 # ==> LRMSD Boxplots: Grouped by Method (subplots) <== x = [x * 3 for x in range(1, len(stdbas)+1)] titles = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean LRMSD', linewidth=0) plt.rcParams["figure.figsize"] = [10,15] f, axarr = plt.subplots(3, 1, sharex=True, figsize=(10,15)) #mt = mt.reindex(columns=dtz, level=1) for j in range(len(mt.columns.levels[0][1:])): i = 0 m = mt.columns.levels[0][1:][j] for b in mt.reindex(columns=stdbas, level=1).columns.levels[1]: bx = axarr[j].boxplot(mt.loc[idx['a24'], idx[m,b,'LRMSD']].values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, widths=0.5) hb = axarr[j].scatter([x[i] - 1.5]*len(a24_hb), mt.loc[idx['a24',a24_hb], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='r', label='HB Subset Members') mx = axarr[j].scatter([x[i] - 1]*len(a24_mx), mt.loc[idx['a24',a24_mx], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='g', label='MX Subset Members') dd = axarr[j].scatter([x[i] - 0.5]*len(a24_dd), mt.loc[idx['a24',a24_dd], idx[m,b,'LRMSD']].values, facecolors='none', edgecolors='b', label='DD Subset Members') i+=1 axarr[j].set_xlim(0.5, x[-1] + 0.5) axarr[j].set_ylim(0, 0.7) if m == 'df-m05-2x' else None plt.xticks([i-0.75 for i in x], stdbas, rotation=45) axarr[j].set_ylabel('LRMSD of Optimized Geometry ($\AA$)') axarr[j].set_title(titles[m]) plt.legend(handles=[hb, mx, dd, k_square], loc='best') #ax = plt.gca() axarr[j].fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.1, facecolor='grey', alpha=0.1) axarr[j].fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.05, facecolor='grey', alpha=0.2) axarr[j].fill_between(np.arange(x[0]-4,x[-1]+2), 0, 0.01, facecolor='grey', alpha=0.3) # ==> Plotting LRMSD & dCOM SE: Box & Whisker (indiv plots) <== data = XZ + aXZ x = [x * 3 for x in range(1, len(data)+1)] titles = {'df-b3lyp-d3': 'DF-B3LYP-D3', 'df-wpbe-d3': 'DF-$\omega$PBE-D3', 'df-b97-d3': 'DF-B97-D3', 'df-wb97x-d': 'DF-$\omega$B97X-D', 'df-m05-2x': 'DF-M05-2X'} boxcolors = ['pink', 'lightblue'] dcom_patch = mpatches.Patch(color='pink', label='A21 dCOM Signed Error') lrmsd_patch = mpatches.Patch(color='lightblue', label='A21 LRMSD') # Boxplot & legend options meanprops = {'marker': 's', 'markeredgecolor': 'k', 'markerfacecolor': 'k', 'label': 'blargh', #'markersize': 5 } boxprops = {'linewidth': 1.5} medianprops = dict(linestyle='-', linewidth=1.5, color='k') medianprops_dcom = dict(linestyle='-', linewidth=1.5, color='cyan') medianprops_lrmsd = dict(linestyle='-', linewidth=1.5, color='m') whiskerprops = dict(linestyle='-', linewidth=1.5, color='k') k_square = mlines.Line2D([], [], color='k', marker='s', markersize=7, label='A21 Mean dCOM', linewidth=0) for m in mt.columns.levels[0][1:]: # Plot plt.rcParams['figure.figsize'] = [10,5] fig = plt.figure(figsize=(10,5)) ax = plt.gca() for i in range(len(data)): bp = ax.boxplot(a21_serr.loc[idx['a24'], idx[m,data[i],'dCOM']].values.reshape(-1,1), positions=[x[i]-1], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, showfliers=False, widths=0.5, patch_artist=True) bx = ax.boxplot(mt.loc[idx['a24'], idx[m,data[i],'LRMSD']].values.reshape(-1,1), positions=[x[i]], whis='range', showmeans=True, meanprops=meanprops, medianprops=medianprops, widths=0.5, patch_artist=True) for patch in bp['boxes']: patch.set_facecolor(boxcolors[0]) for patch in bx['boxes']: patch.set_facecolor(boxcolors[1]) # Plot Options plt.xticks([i-0.5 for i in x], data) ax.set_xlim(x[0] - 1.5, x[-1] + 0.5) ax.set_ylim(-0.4, 0.7) if m == 'df-m05-2x' else None ax.set_ylabel('A21 $\Delta$COM Signed Error & LRMSD ($\AA$)') plt.hlines(0, 0, x[-1] + 1, linestyle='--', linewidth=1, zorder=1) ax.set_title(titles[m]) plt.legend(handles=[dcom_patch, lrmsd_patch], loc='lower center', ncol=2) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.1, 0.1, facecolor='grey', alpha=0.1) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.05, 0.05, facecolor='grey', alpha=0.2) ax.fill_between(np.arange(x[0]-4,x[-1]+2), -0.01, 0.01, facecolor='grey', alpha=0.3) ###Output _____no_output_____ ###Markdown Things to try* [a Treemap](https://vega.github.io/vega/examples/treemap/) ###Code from sqlalchemy import create_engine engine = create_engine(f"sqlite:///birdnest.db") import pandas as pd import altair as alt from spotclient import Client import models db = models.Database() session = models.get_session() session = models.get_session() playlist = session.query(models.Playlist).first() pdf = pd.DataFrame(playlist.to_json(True)) from functools import reduce pljson = map(lambda x: x.to_json(True),session.query(models.Playlist)) cumpl = [] # seems like I should be able to do this with reduce but it's erroring for pl in pljson: cumpl.extend(pl) [x for x in cumpl if x['name'] == 'Ghost Riders In The Sky'] len(cumpl) alt.Chart(alt.Data(values=cumpl[:1000])).mark_bar().encode( alt.X('name:N', title='', sort='y',axis=alt.Axis(labels=False)), alt.Y('acousticness:Q', title='acousticness'), tooltip=alt.Tooltip(['name:N','artists:N','acousticness:Q','time_signature:Q', 'track_id:N']), color=alt.condition(alt.datum.acousticness > .9, alt.value('red'), alt.value('lightgrey')) ).properties(width=500) c2 = list(map(lambda d: dict((k,v) for k,v in d.items() if k in ['name','artists','acousticness','time_signature', 'track_id']), cumpl)) alt.Chart(alt.Data(values=c2[:1000])).mark_bar().encode( alt.X('name:N', title='', sort='y',axis=alt.Axis(labels=False)), alt.Y('acousticness:Q', title='acousticness'), tooltip=alt.Tooltip(['name:N','artists:N','acousticness:Q','time_signature:Q', 'track_id:N']), color=alt.condition(alt.datum.acousticness > .9, alt.value('red'), alt.value('lightgrey')) ).properties(width=500) alt.Chart(alt.Data(values=playlist.to_json(True))).mark_bar().encode( alt.X('energy:Q',bin=True, title='Energy (histogram)'), alt.Y(aggregate='count',type='quantitative', title='Number of tracks')) ) def playlist_as_df(cols=None): if cols is None: af_clause = 'af.*' elif isinstance(cols,str): af_clause = cols else: clause_cols = [] for c in cols: if not c.startswith('af.'): c = f"af.{c}" clause_cols.append(c) af_clause = ','.join(clause_cols) SQL = f""" SELECT p.date, p.name playlist_name, p.playlist_id, t.name, GROUP_CONCAT(a.name,';') artist, t.duration_ms, {af_clause} FROM playlist p, playlist_track pt, track t, track_artist ta, artist a, audio_features af where t.track_id = ta.track_id and ta.artist_id = a.artist_id and p.playlist_id = pt.playlist_id and pt.track_id = t.track_id and af.track_id = t.track_id group by t.name """ engine = create_engine(f"sqlite:///birdnest.db") return pd.read_sql(SQL, engine) sql = ''' select artist.name, count(*) count from artist, track_artist, playlist_track where artist.artist_id = track_artist.artist_id and track_artist.track_id = playlist_track.track_id group by artist.name ''' artists_df = pd.read_sql(sql,engine) alt.Chart artists_df.sort_values('count',ascending=False).head() alt.Chart(artists_df[artists_df['count'] >= 5].sort_values('count',ascending=False)).mark_bar().encode( x=alt.X('count',title='times played'), y=alt.Y('name',sort='-x', title='Artist') ) alt.Chart(artists_df.groupby('count').count().reset_index().rename(columns={ 'name': '# Artists played X times' })).mark_bar().encode( x=alt.X('# Artists played X times'), y=alt.Y('count:N',sort='-y'), tooltip=['count', '# Artists played X times'] ) ###Output _____no_output_____ ###Markdown Genre frequencyGenres attach to artists, not tracks, tracks can have multiple artists... the meaning of this is suspect but was curious ###Code # sql = ''' select track.name track, genre.name genre from track, track_artist, artist_genre, genre where track.track_id = track_artist.track_id and track_artist.artist_id = artist_genre.artist_id and artist_genre.genre_id = genre.genre_id ''' df = pd.read_sql(sql,engine).groupby('genre').count().rename(columns={'track': 'tracks'}).reset_index() alt.Chart(df.sort_values('tracks',ascending=False).head(50)).mark_bar().encode( x='tracks', y=alt.Y('genre:N',sort='-x') ) def playlist_stats(df): """ Given a dataframe, produce a summarization in the same shape as AudioFeature, but aggregated. For now, aggregated as the sum of (each feature * track length) but that could become switchable. 'key', 'mode': probably the mode for each set, and another for the two as a unit? 'tempo': average 'time_signature', maybe mode or mode 'acousticness', 'danceability', 'energy', 'instrumentalness', 'liveness', 'loudness', 'speechiness', 'valence' """ for df = df df['gross_valence'] = df['valence'] * df['duration_ms'] df.groupby('playlist_name').sum()[['gross_valence']].sort_values('gross_valence',ascending=False) print(duration) previewless = session.query(models.Track).filter(models.Track.preview_url == None).all() t_info = Client().tracks([t.spotify_id for t in previewless[:10]]) "{:,}".format(10000) alt.Chart(alt.Data(values=list(artist_count))).mark_bar().encode( x=alt.X('count:Q',title='times played'), y=alt.Y('name:N',sort='-x', title='Artist') ).transform_filter(datum.count >= ) q = session.query(models.Track) q #pd.read_sqjoin.jo.statement,session.bind) ###Output _____no_output_____ ###Markdown ![title](image/title.png) THIS REPOSITORY IS CREATED BY:Ng Crew1. Sebastian Cahyo Ardhi Iswara 11031741742. Adli Farhan Ibrahim 1103174092 ![title](image/workflow.png) PROJECT WORKFLOW:1. Data Collection2. Data Preprocessing3. Data Normalization4. Model Training5. Model Validation DEPEDENCY TO RUN THIS PROJECT:1. Python 3.XX (Im using 3.77)2. Jupyterlab (For run ipynb / notebook)3. Pandas (For data analysis and processing)4. matplotlib (For data visualization and Dependency for seaborn)5. seaborn (For data visualization)4. Sklearn (For data preprocessing and machine learning algorithm) I. MODULE IMPORTimport the module that we use to on this project ###Code import pandas as pd from matplotlib import pyplot as plt import seaborn as sns import numpy as np from sklearn.preprocessing import RobustScaler from sklearn.model_selection import train_test_split from sklearn.linear_model import LogisticRegression from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn.model_selection import RandomizedSearchCV ###Output _____no_output_____ ###Markdown 1. DATA COLLECTIONwe need to collect our data. We use Bank Marketing Data Set from UCI Dataset, the goals of this dataset is to campaigns bank term deposit subcribe dataset source: https://archive.ics.uci.edu/ml/datasets/Bank+Marketing![title](image/dataset.png) bank client data:1 - age (numeric)2 - job : type of job (categorical: 'admin.','blue-collar','entrepreneur','housemaid','management','retired','self-employed','services','student','technician','unemployed','unknown')3 - marital : marital status (categorical: 'divorced','married','single','unknown'; note: 'divorced' means divorced or widowed)4 - education (categorical: 'basic.4y','basic.6y','basic.9y','high.school','illiterate','professional.course','university.degree','unknown')5 - default: has credit in default? (categorical: 'no','yes','unknown')6 - housing: has housing loan? (categorical: 'no','yes','unknown')7 - loan: has personal loan? (categorical: 'no','yes','unknown') related with the last contact of the current campaign:8 - contact: contact communication type (categorical: 'cellular','telephone')9 - month: last contact month of year (categorical: 'jan', 'feb', 'mar', ..., 'nov', 'dec')10 - day_of_week: last contact day of the week (categorical: 'mon','tue','wed','thu','fri')11 - duration: last contact duration, in seconds (numeric). Important note: this attribute highly affects the output target (e.g., if duration=0 then y='no'). Yet, the duration is not known before a call is performed. Also, after the end of the call y is obviously known. Thus, this input should only be included for benchmark purposes and should be discarded if the intention is to have a realistic predictive model. other attributes:12 - campaign: number of contacts performed during this campaign and for this client (numeric, includes last contact)13 - pdays: number of days that passed by after the client was last contacted from a previous campaign (numeric; 999 means client was not previously contacted)14 - previous: number of contacts performed before this campaign and for this client (numeric)15 - poutcome: outcome of the previous marketing campaign (categorical: 'failure','nonexistent','success') social and economic context attributes16 - emp.var.rate: employment variation rate - quarterly indicator (numeric)17 - cons.price.idx: consumer price index - monthly indicator (numeric)18 - cons.conf.idx: consumer confidence index - monthly indicator (numeric)19 - euribor3m: euribor 3 month rate - daily indicator (numeric)20 - nr.employed: number of employees - quarterly indicator (numeric)Output variable (desired target):21 - y - has the client subscribed a term deposit? (binary: 'yes','no') ###Code pd.set_option('display.max_columns', None) df = pd.read_csv('dataset/bank-additional-full.csv',sep=';') df.head() df.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 41188 entries, 0 to 41187 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 age 41188 non-null int64 1 job 41188 non-null object 2 marital 41188 non-null object 3 education 41188 non-null object 4 default 41188 non-null object 5 housing 41188 non-null object 6 loan 41188 non-null object 7 contact 41188 non-null object 8 month 41188 non-null object 9 day_of_week 41188 non-null object 10 duration 41188 non-null int64 11 campaign 41188 non-null int64 12 pdays 41188 non-null int64 13 previous 41188 non-null int64 14 poutcome 41188 non-null object 15 emp.var.rate 41188 non-null float64 16 cons.price.idx 41188 non-null float64 17 cons.conf.idx 41188 non-null float64 18 euribor3m 41188 non-null float64 19 nr.employed 41188 non-null float64 20 y 41188 non-null object dtypes: float64(5), int64(5), object(11) memory usage: 6.6+ MB ###Markdown 2. DATA PREPROCESSINGafter the data already loaded, we must check the data is there a duplicate data or null value because machine learning algorithm can take it ###Code df.isna().sum() / len(df) for col in df.columns: print(f'{df[col].value_counts()}\n') ###Output 31 1947 32 1846 33 1833 36 1780 35 1759 ... 89 2 91 2 87 1 94 1 95 1 Name: age, Length: 78, dtype: int64 admin. 10422 blue-collar 9254 technician 6743 services 3969 management 2924 retired 1720 entrepreneur 1456 self-employed 1421 housemaid 1060 unemployed 1014 student 875 unknown 330 Name: job, dtype: int64 married 24928 single 11568 divorced 4612 unknown 80 Name: marital, dtype: int64 university.degree 12168 high.school 9515 basic.9y 6045 professional.course 5243 basic.4y 4176 basic.6y 2292 unknown 1731 illiterate 18 Name: education, dtype: int64 no 32588 unknown 8597 yes 3 Name: default, dtype: int64 yes 21576 no 18622 unknown 990 Name: housing, dtype: int64 no 33950 yes 6248 unknown 990 Name: loan, dtype: int64 cellular 26144 telephone 15044 Name: contact, dtype: int64 may 13769 jul 7174 aug 6178 jun 5318 nov 4101 apr 2632 oct 718 sep 570 mar 546 dec 182 Name: month, dtype: int64 thu 8623 mon 8514 wed 8134 tue 8090 fri 7827 Name: day_of_week, dtype: int64 85 170 90 170 136 168 73 167 124 164 ... 1108 1 980 1 4918 1 2453 1 2015 1 Name: duration, Length: 1544, dtype: int64 1 17642 2 10570 3 5341 4 2651 5 1599 6 979 7 629 8 400 9 283 10 225 11 177 12 125 13 92 14 69 17 58 15 51 16 51 18 33 20 30 19 26 21 24 22 17 23 16 24 15 27 11 29 10 25 8 26 8 28 8 30 7 31 7 35 5 33 4 32 4 34 3 40 2 42 2 43 2 37 1 39 1 41 1 56 1 Name: campaign, dtype: int64 999 39673 3 439 6 412 4 118 9 64 2 61 7 60 12 58 10 52 5 46 13 36 11 28 1 26 15 24 14 20 8 18 0 15 16 11 17 8 18 7 19 3 22 3 21 2 26 1 20 1 25 1 27 1 Name: pdays, dtype: int64 0 35563 1 4561 2 754 3 216 4 70 5 18 6 5 7 1 Name: previous, dtype: int64 nonexistent 35563 failure 4252 success 1373 Name: poutcome, dtype: int64 1.4 16234 -1.8 9184 1.1 7763 -0.1 3683 -2.9 1663 -3.4 1071 -1.7 773 -1.1 635 -3.0 172 -0.2 10 Name: emp.var.rate, dtype: int64 93.994 7763 93.918 6685 92.893 5794 93.444 5175 94.465 4374 93.200 3616 93.075 2458 92.201 770 92.963 715 92.431 447 92.649 357 94.215 311 94.199 303 92.843 282 92.379 267 93.369 264 94.027 233 94.055 229 93.876 212 94.601 204 92.469 178 93.749 174 92.713 172 94.767 128 93.798 67 92.756 10 Name: cons.price.idx, dtype: int64 -36.4 7763 -42.7 6685 -46.2 5794 -36.1 5175 -41.8 4374 -42.0 3616 -47.1 2458 -31.4 770 -40.8 715 -26.9 447 -30.1 357 -40.3 311 -37.5 303 -50.0 282 -29.8 267 -34.8 264 -38.3 233 -39.8 229 -40.0 212 -49.5 204 -33.6 178 -34.6 174 -33.0 172 -50.8 128 -40.4 67 -45.9 10 Name: cons.conf.idx, dtype: int64 4.857 2868 4.962 2613 4.963 2487 4.961 1902 4.856 1210 ... 1.045 1 0.956 1 0.933 1 3.282 1 0.996 1 Name: euribor3m, Length: 316, dtype: int64 5228.1 16234 5099.1 8534 5191.0 7763 5195.8 3683 5076.2 1663 5017.5 1071 4991.6 773 5008.7 650 4963.6 635 5023.5 172 5176.3 10 Name: nr.employed, dtype: int64 no 36548 yes 4640 Name: y, dtype: int64 ###Markdown job,marital,education,default,housing,loan have a unknown value, we can assume that unknown value is equal to NaN / missing value, so we must remove it ###Code df_new = df[(df['job'] != 'unknown') & (df['marital'] != 'unknown') & (df['education'] != 'unknown') & (df['default'] != 'unknown') & (df['housing'] != 'unknown') & (df['loan'] != 'unknown')] for col in df_new.columns: print(f'{df_new[col].value_counts()}\n\n') ###Output 31 1643 32 1555 33 1524 30 1441 34 1431 ... 91 2 89 2 94 1 87 1 95 1 Name: age, Length: 76, dtype: int64 admin. 8737 blue-collar 5675 technician 5473 services 2857 management 2311 retired 1216 self-employed 1092 entrepreneur 1089 unemployed 738 housemaid 690 student 610 Name: job, dtype: int64 married 17492 single 9443 divorced 3553 Name: marital, dtype: int64 university.degree 10412 high.school 7699 professional.course 4321 basic.9y 4276 basic.4y 2380 basic.6y 1389 illiterate 11 Name: education, dtype: int64 no 30485 yes 3 Name: default, dtype: int64 yes 16521 no 13967 Name: housing, dtype: int64 no 25720 yes 4768 Name: loan, dtype: int64 cellular 20443 telephone 10045 Name: contact, dtype: int64 may 9733 jul 5081 aug 4673 jun 3614 nov 3496 apr 2115 oct 642 sep 495 mar 482 dec 157 Name: month, dtype: int64 thu 6395 mon 6279 wed 6125 tue 5955 fri 5734 Name: day_of_week, dtype: int64 90 134 85 128 72 122 104 121 111 121 ... 2680 1 745 1 2516 1 1058 1 2486 1 Name: duration, Length: 1441, dtype: int64 1 13246 2 7873 3 3905 4 1937 5 1156 6 696 7 440 8 283 9 195 10 164 11 124 12 89 13 54 14 48 17 41 15 30 16 30 18 23 20 21 19 18 23 14 21 14 24 11 22 11 29 8 27 7 30 7 25 6 28 6 31 5 26 5 35 4 32 4 33 3 40 2 34 2 42 2 37 1 41 1 43 1 39 1 Name: campaign, dtype: int64 999 29178 3 381 6 363 4 102 2 53 9 53 12 50 7 50 5 43 10 40 13 33 11 25 15 22 1 21 14 17 0 14 8 13 16 8 17 6 18 5 19 3 22 3 21 2 25 1 26 1 27 1 Name: pdays, dtype: int64 0 25836 1 3752 2 633 3 190 4 56 5 16 6 4 7 1 Name: previous, dtype: int64 nonexistent 25836 failure 3461 success 1191 Name: poutcome, dtype: int64 1.4 11220 -1.8 7392 1.1 4938 -0.1 3117 -2.9 1461 -3.4 951 -1.7 687 -1.1 565 -3.0 147 -0.2 10 Name: emp.var.rate, dtype: int64 93.994 4938 93.918 4646 92.893 4616 93.444 3798 93.200 3054 94.465 2776 93.075 1970 92.201 676 92.963 628 92.431 396 92.649 326 94.215 278 94.199 266 92.843 261 92.379 229 93.369 221 94.055 210 94.027 199 94.601 183 93.876 179 92.469 157 92.713 147 93.749 145 94.767 116 93.798 63 92.756 10 Name: cons.price.idx, dtype: int64 -36.4 4938 -42.7 4646 -46.2 4616 -36.1 3798 -42.0 3054 -41.8 2776 -47.1 1970 -31.4 676 -40.8 628 -26.9 396 -30.1 326 -40.3 278 -37.5 266 -50.0 261 -29.8 229 -34.8 221 -39.8 210 -38.3 199 -49.5 183 -40.0 179 -33.6 157 -33.0 147 -34.6 145 -50.8 116 -40.4 63 -45.9 10 Name: cons.conf.idx, dtype: int64 4.857 1836 4.963 1808 4.962 1803 4.961 1225 1.405 885 ... 3.053 1 0.969 1 1.047 1 3.669 1 0.933 1 Name: euribor3m, Length: 314, dtype: int64 5228.1 11220 5099.1 6847 5191.0 4938 5195.8 3117 5076.2 1461 5017.5 951 4991.6 687 4963.6 565 5008.7 545 5023.5 147 5176.3 10 Name: nr.employed, dtype: int64 no 26629 yes 3859 Name: y, dtype: int64 ###Markdown Dataset is already NaN free, lets check is there duplicate instance or not ###Code df_new.shape ###Output _____no_output_____ ###Markdown The total NaN Value of our data is about 25% ###Code df_new[df_new.duplicated() == True].shape ###Output _____no_output_____ ###Markdown our dataset has 10 duplicate data, we need to elimate duplicate data ###Code df_new = df_new.drop_duplicates(keep='last') df_new.shape df_new.head() sns.set() sns.set_palette('rainbow') plt.figure(figsize=[30,20]) plt.subplot(4,2,1) sns.countplot(df_new['job'],hue=df_new['y']) plt.subplot(4,2,2) sns.countplot(df_new['marital'],hue=df_new['y']) plt.subplot(4,2,3) sns.countplot(df_new['education'],hue=df_new['y']) plt.subplot(4,2,4) sns.countplot(df_new['housing'],hue=df_new['y']) plt.subplot(4,2,5) sns.countplot(df_new['loan'],hue=df_new['y']) plt.subplot(4,2,6) sns.countplot(df_new['month'],hue=df_new['y']) plt.subplot(4,2,7) sns.countplot(df_new['day_of_week'],hue=df_new['y']) ###Output _____no_output_____ ###Markdown our customer have high chance rate to accept our marketing with these criteria:* Admin Job* University Degree* Dont have loan* Thuesday* Married* Have House* In May ###Code sns.set() corr = df_new.corr() mask = np.triu(np.ones_like(corr, dtype=bool)) plt.figure(figsize=[15,10]) plt.title('THE CORRELATION OF FEATURE IN THIS DATASET',fontweight='bold') sns.heatmap(corr, mask=mask, cmap='Blues', center=0, linewidths=1, annot=True, fmt=".2f") plt.show() ###Output _____no_output_____ ###Markdown There 3 column that have feature that has high corelation, we must drop these feature so our model can get work well ###Code df_new = df_new.drop(['euribor3m','nr.employed','cons.price.idx'],axis=1) sns.set() corr = df_new.corr() mask = np.triu(np.ones_like(corr, dtype=bool)) plt.figure(figsize=[15,10]) plt.title('THE CORRELATION OF FEATURE IN THIS DATASET',fontweight='bold') sns.heatmap(corr, mask=mask, cmap='Blues', center=0, linewidths=1, annot=True, fmt=".2f") plt.show() ###Output _____no_output_____ ###Markdown Our data is clean, lets check our target variable balance ###Code sns.set_palette('coolwarm') sns.countplot(df_new['y']) plt.title('DIFFERENCE BETWEEN NO AND YES',fontweight='bold') plt.show() df_new['y'].value_counts() / len(df_new) ###Output _____no_output_____ ###Markdown Our data is not well balance, this not good, our model can't predict well if we still use this data, we must balance the target variable in 1:1 ratio ###Code y_no = df_new[df_new['y'] == 'no'] y_yes = df_new[df_new['y'] == 'yes'] dummy = df_new y_no = y_no.sample(len(y_yes),random_state=46) df_new = pd.concat([y_no,y_yes]) sns.set_palette('coolwarm') sns.countplot(df_new['y']) plt.title('DIFFERENCE BETWEEN NO AND YES',fontweight='bold') plt.show() ###Output _____no_output_____ ###Markdown 4. DATA NORMALIZATION ![title](image/robustscaler.png) ###Code numeric = ['age','duration','campaign','pdays','previous','emp.var.rate','cons.conf.idx'] for col in df_new[numeric]: df_new[col] = RobustScaler().fit_transform(df_new[[col]]) dummy[col] = RobustScaler().fit_transform(dummy[[col]]) ###Output _____no_output_____ ###Markdown Our data right now well balance and already normalization using robustscaler too, lets split our data into feature X and target variable y ###Code y = df_new['y'] X = df_new.drop('y',axis=1) y_dummy = dummy['y'] X_dummy = dummy.drop('y',axis=1) #OneHot Encoder X = pd.get_dummies(X) X_dummy = pd.get_dummies(X_dummy) X.head() ###Output _____no_output_____ ###Markdown 4. Model TrainingBefore we do model training, we must split the data to 2 type, which is training data and test data ![title](image/logistic.png) ###Code X_train, X_test, y_train, y_test = train_test_split(X,y,test_size=0.25,stratify=y,random_state=46) X_train_dum, X_test_dum, y_train_dum, y_test_dum = train_test_split(X_dummy,y_dummy,test_size=0.25,stratify=y_dummy,random_state=46) ###Output _____no_output_____ ###Markdown Fit our Logistic Regression model to our dataset ###Code lr = LogisticRegression() lr.fit(X_train,y_train) lr_dummy = LogisticRegression() lr_dummy.fit(X_train_dum,y_train_dum) ###Output _____no_output_____ ###Markdown Check the accuracy ###Code print(accuracy_score(y_test,lr.predict(X_test))) ###Output 0.8522550544323484 ###Markdown ![title](image/confusionmatrix.jpg) Check the Confusion_Matrix and F1 Score of our data ###Code print(confusion_matrix(y_test,lr.predict(X_test))) ###Output [[806 158] [127 838]] ###Markdown ![title](image/f1.png) ###Code print(classification_report(y_test,lr.predict(X_test))) print(accuracy_score(y_test_dum,lr_dummy.predict(X_test_dum))) print(classification_report(y_test_dum,lr_dummy.predict(X_test_dum))) ###Output precision recall f1-score support no 0.92 0.97 0.94 6655 yes 0.67 0.43 0.52 965 accuracy 0.90 7620 macro avg 0.79 0.70 0.73 7620 weighted avg 0.89 0.90 0.89 7620 ###Markdown 5. Hyperparameter Tuning-+ 80% of F1 Score, not bad, but we want to push our limit to the boundary, so right now we will hypterparameter tuning our model ###Code lr.get_params().keys() param = {'C' : [0.0001,0.001,0.01,0.1,1], 'class_weight' : ['dict','balanced',None], 'dual' : [True,False], 'fit_intercept' : [True,False], 'intercept_scaling' : [0.0001,0.001,0.01,0.1,1], 'l1_ratio' : [0.0001,0.001,0.01,0.1,1], 'max_iter' : [1,100,1000], 'multi_class' : ['auto','ovr','multinominal'],'penalty' : ['l1','l2','none','liblinear'] , 'random_state' : [46,48], 'solver' : ['newton-cg','lbfgs','liblinear','sag','saga'], 'tol' : [0.0001,0.001,0.01,0.1,1], 'verbose' : [0.0001,0.001,0.01,0.1,1], 'warm_start' : [True,False]} lr_new = RandomizedSearchCV(LogisticRegression(),param,random_state=46,n_iter=20) lr_new.fit(X_train,y_train) lr_new.best_params_ ###Output _____no_output_____ ###Markdown Now we know, that our best hyperparameter setting is above ###Code print(accuracy_score(y_test,lr_new.predict(X_test))) print(classification_report(y_test,lr_new.predict(X_test))) display(df_new.iloc[46]) display(X.iloc[46]) print(f'Hasil prediksi dari data di row 46 adalah {lr_new.predict(X.iloc[[46]])}') ###Output Hasil prediksi dari data di row 46 adalah ['no'] ###Markdown analysis for getting evidence ###Code import time import pathlib from os.path import isfile import math import torch import numpy as np import models from utils import * from data import DataLoader class config(object): def __init__(self): self.dataset = 'cifar10' self.arch = 'resnet' self.layers = 14 self.ckpt = 'ckpt_best.pth' self.bn = False self.width_mult = 1.0 self.cuda = True self.types = ['max', 'min', 'avg', 'median', 'threshold'] self.threshold = 0.7 self.gpuids = [0] def main(): global opt, arch_name, all_dist opt = config() # set model name arch_name = set_arch_name(opt) print('\n=> creating model \'{}\''.format(arch_name)) model = models.__dict__[opt.arch](data=opt.dataset, num_layers=opt.layers, width_mult=opt.width_mult, batch_norm=opt.bn) if model is None: print('==> unavailable model parameters!! exit...\n') exit() # checkpoint file ckpt_dir = pathlib.Path('checkpoint') dir_path = ckpt_dir / arch_name / opt.dataset ckpt_file = dir_path / opt.ckpt if isfile(ckpt_file): print('==> Loading Checkpoint \'{}\''.format(opt.ckpt)) checkpoint = load_model(model, ckpt_file, main_gpu=None, use_cuda=False) print('===> Loaded Checkpoint \'{}\' (epoch {})'.format( opt.ckpt, checkpoint['epoch'])) print(f'\n==> Get and Calculate distribution of absolute PCC') all_dist = get_dist_abs_pcc(model) print('\n===> done') return else: print('==> no Checkpoint found at \'{}\''.format( opt.ckpt)) return def get_dist_abs_pcc(model): w_kernel = get_kernel(model, opt) num_layer = len(w_kernel) dist_dict = {} for type in opt.types: dist_all = [] for i in tqdm(range(num_layer), ncols=80, unit='layer'): ref_layer = torch.Tensor(w_kernel[i]) if opt.arch in hasDiffLayersArchs: ref_layer = ref_layer.view(-1, 9) else: ref_layer = ref_layer.view(len(w_kernel[i]), -1) ref_length = ref_layer.size()[0] ref_mean = ref_layer.mean(dim=1, keepdim=True) ref_norm = ref_layer - ref_mean ref_norm_sq = (ref_norm * ref_norm).sum(dim=1) ref_norm_sq_rt = torch.sqrt(ref_norm_sq) dist = [] for j in range(i+1, num_layer): cur_weight = torch.Tensor(w_kernel[j]) # change kernels to dw-kernel if opt.arch in hasDiffLayersArchs: cur_weight = cur_weight.view(-1, 9) else: cur_weight = cur_weight.view(len(w_kernel[j]), -1) cur_length = cur_weight.size()[0] cur_mean = cur_weight.mean(dim=1, keepdim=True) cur_norm = cur_weight - cur_mean cur_norm_sq_rt = torch.sqrt((cur_norm * cur_norm).sum(dim=1)) cur_dist = [] for k in range(cur_length): numer = torch.matmul(cur_norm[k], ref_norm.T) denom = ref_norm_sq_rt * cur_norm_sq_rt[k] pcc = numer / denom abs_pcc = torch.abs(pcc) if type == 'max': cur_dist.append(torch.max(abs_pcc).item()) elif type == 'min': cur_dist.append(torch.min(abs_pcc).item()) elif type == 'avg': cur_dist.append(torch.mean(abs_pcc).item()) elif type == 'median': cur_dist.append(torch.median(abs_pcc).item()) elif type == 'threshold': num_over_thr = torch.sum(torch.ge(abs_pcc, opt.threshold)).item() ratio_over_thr = num_over_thr / len(abs_pcc) cur_dist.append(ratio_over_thr) dist.append(cur_dist) dist_all.append(dist) dist_dict[type] = dist_all print(dist_dict.keys()) return dist_dict if __name__ == '__main__': start_time = time.time() main() elapsed_time = time.time() - start_time print("====> total time: {:.2f}s".format(elapsed_time)) ###Output 0%| | 0/13 [00:00<?, ?layer/s] => creating model 'resnet14' ==> Loading Checkpoint 'ckpt_best.pth' ===> Loaded Checkpoint 'ckpt_best.pth' (epoch 189) ==> Get and Calculate distribution of absolute PCC 100%|████████████████████████████████████████| 13/13 [00:04<00:00, 2.80layer/s] 100%|████████████████████████████████████████| 13/13 [00:04<00:00, 2.79layer/s] 100%|████████████████████████████████████████| 13/13 [00:05<00:00, 2.44layer/s] 100%|████████████████████████████████████████| 13/13 [00:06<00:00, 1.90layer/s] 100%|████████████████████████████████████████| 13/13 [00:06<00:00, 1.94layer/s]dict_keys(['max', 'min', 'avg', 'median', 'threshold']) ===> done ====> total time: 28.21s ###Markdown Draw total histogram ###Code import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter # make directory dir_plots = pathlib.Path('Histograms') / arch_name / opt.dataset / 'total' dir_plots.mkdir(parents=True, exist_ok=True) print('Drawing total histograms...\n') for i in tqdm(range(len(all_dist['max'])), ncols=80, unit='layer'): for j in range(len(all_dist['max'][i])): cur_num = i + j + 1 num_pcc = len(all_dist['max'][i][j]) plt.style.use('seaborn-deep') fig, ax = plt.subplots(figsize=(8,6), dpi=150) list_ymax = [] for type in all_dist.keys(): if type == 'threshold': continue cur_dist = all_dist[type][i][j] y_vals, x_vals, e_ = ax.hist(cur_dist, label=type, alpha=0.75, bins=min(num_pcc, 256)) ymax = round((max(y_vals) / num_pcc) + 0.02, 2) list_ymax.append(ymax) y_max = max(list_ymax) ax.set_yticks(ticks=np.arange(0.0, y_max * num_pcc, 0.01 * num_pcc)) ax.set_ylim(ax.get_yticks()[0], ax.get_yticks()[-1]) ax.set_xlim(-0.01, 1.01) ax.yaxis.set_major_formatter(PercentFormatter(xmax=num_pcc)) plt.legend(loc='upper right') plt.savefig(dir_plots / 'abs_pcc_ref{:02d}_cur{:02d}.png'.format(i, cur_num), bbox_inches='tight', dpi=150) plt.clf() print('\nDone!!!') ###Output 0%| | 0/13 [00:00<?, ?layer/s]Drawing total histograms... 100%|████████████████████████████████████████| 13/13 [02:06<00:00, 9.70s/layer] Done!!! ###Markdown Draw all histogram ###Code import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter for type in all_dist.keys(): # make directory type_name = type if type == 'threshold': type_name += str(opt.threshold) dir_plots = pathlib.Path('Histograms') / arch_name / opt.dataset / type_name dir_plots.mkdir(parents=True, exist_ok=True) print(f'Drawing all histograms (type: {type_name})...\n') for i in tqdm(range(len(all_dist[type])), ncols=80, unit='layer'): for j in range(len(all_dist[type][i])): cur_dist = all_dist[type][i][j] num_pcc = len(cur_dist) min_pcc = min(cur_dist) max_pcc = max(cur_dist) med_pcc = np.median(cur_dist) avg_pcc = np.mean(cur_dist) var_pcc = np.var(cur_dist) std_pcc = np.std(cur_dist) textstr = '\n'.join(( r'$\min=%.6f$' % (min_pcc, ), r'$\max=%.6f$' % (max_pcc, ), r'$\mathrm{median}=%.6f$' % (med_pcc, ), r'$\mu=%.6f$' % (avg_pcc, ), r'$\sigma^{2}=%.6f$' % (var_pcc, ), r'$\sigma=%.6f$' % (std_pcc, ))) plt.style.use('seaborn-deep') fig, ax = plt.subplots(figsize=(8,6), dpi=150) cur_num = i + j + 1 y_vals, x_vals, e_ = ax.hist(cur_dist, bins=min(num_pcc, 256)) y_max = round((max(y_vals) / num_pcc) + 0.02, 2) ax.set_yticks(ticks=np.arange(0.0, y_max * num_pcc, 0.01 * num_pcc)) ax.set_ylim(ax.get_yticks()[0], ax.get_yticks()[-1]) ax.set_xlim(-0.01, 1.01) ax.yaxis.set_major_formatter(PercentFormatter(xmax=num_pcc)) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='lightsteelblue', alpha=0.5) # place a text box in upper left in axes coords ax.text(0.03, 0.96, textstr, transform=ax.transAxes, fontsize=9, verticalalignment='top', bbox=props) plt.savefig(dir_plots / 'abs_pcc_ref{:02d}_cur{:02d}.png'.format(i, cur_num), bbox_inches='tight', dpi=150) plt.clf() print('\nDone!!!') ###Output 0%| | 0/13 [00:00<?, ?layer/s]Drawing all histograms (type: max)... 100%|████████████████████████████████████████| 13/13 [00:52<00:00, 4.06s/layer] 0%| | 0/13 [00:00<?, ?layer/s]Drawing all histograms (type: min)... 100%|████████████████████████████████████████| 13/13 [00:49<00:00, 3.83s/layer] 0%| | 0/13 [00:00<?, ?layer/s]Drawing all histograms (type: avg)... 100%|████████████████████████████████████████| 13/13 [00:57<00:00, 4.42s/layer] 0%| | 0/13 [00:00<?, ?layer/s]Drawing all histograms (type: median)... 100%|████████████████████████████████████████| 13/13 [00:50<00:00, 3.86s/layer] 0%| | 0/13 [00:00<?, ?layer/s]Drawing all histograms (type: threshold0.4)... 100%|████████████████████████████████████████| 13/13 [00:51<00:00, 3.98s/layer] Done!!! ###Markdown Draw total merge histogram ###Code import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter # make directory dir_plots = pathlib.Path('Histograms') / arch_name / opt.dataset / 'merged' dir_plots.mkdir(parents=True, exist_ok=True) print('Drawing total histograms...\n') plt.style.use('seaborn-deep') fig, axs = plt.subplots(nrows=opt.layers-1, ncols=opt.layers-1, figsize=(80,60), dpi=150) for i in tqdm(range(len(all_dist['max'])), ncols=80, unit='layer'): for j in range(len(all_dist['max'][i])): cur_num = i + j + 1 num_pcc = len(all_dist['max'][i][j]) list_ymax = [] for type in all_dist.keys(): if type == 'threshold': continue cur_dist = all_dist[type][i][j] y_vals, x_vals, e_ = axs[i,cur_num].hist(cur_dist, label=type, alpha=0.75, bins=min(num_pcc, 256)) ymax = round((max(y_vals) / num_pcc) + 0.02, 2) list_ymax.append(ymax) y_max = max(list_ymax) axs[i,cur_num].set_yticks(ticks=np.arange(0.0, y_max * num_pcc, 0.01 * num_pcc)) axs[i,cur_num].set_ylim(axs[i,cur_num].get_yticks()[0], axs[i,cur_num].get_yticks()[-1]) axs[i,cur_num].set_xlim(-0.01, 1.01) axs[i,cur_num].yaxis.set_major_formatter(PercentFormatter(xmax=num_pcc)) if i == 0 and j == len(all_dist['max'][i]) - 1: axs[i,cur_num].legend(loc='center', bbox_to_anchor=(1.2, 0), ncol=1, fontsize=15) # plt.legend(loc='upper right') # plt.tight_layout() plt.savefig(dir_plots / 'total.png', bbox_inches='tight', dpi=150) # plt.show() plt.clf() ###Output Drawing total histograms... 100%|████████████████████████████████████████| 13/13 [00:47<00:00, 3.63s/layer] ###Markdown Draw histograms of weights each layer ###Code import time import pathlib from os.path import isfile import math import torch import numpy as np import models from utils import * from data import DataLoader import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter class config(object): def __init__(self): self.dataset = 'cifar10' self.arch = 'resnet' self.layers = 14 self.ckpt = 'ckpt_best.pth' self.bn = False self.width_mult = 1.0 self.cuda = True self.types = ['max', 'min', 'avg', 'median', 'threshold'] self.threshold = 0.4 self.gpuids = [0] def main(): opt = config() # set model name arch_name = set_arch_name(opt) print('\n=> creating model \'{}\''.format(arch_name)) model = models.__dict__[opt.arch](data=opt.dataset, num_layers=opt.layers, width_mult=opt.width_mult, batch_norm=opt.bn) if model is None: print('==> unavailable model parameters!! exit...\n') exit() # checkpoint file ckpt_dir = pathlib.Path('checkpoint') dir_path = ckpt_dir / arch_name / opt.dataset ckpt_file = dir_path / opt.ckpt if isfile(ckpt_file): print('==> Loading Checkpoint \'{}\''.format(opt.ckpt)) checkpoint = load_model(model, ckpt_file, main_gpu=None, use_cuda=False) print('===> Loaded Checkpoint \'{}\' (epoch {})'.format( opt.ckpt, checkpoint['epoch'])) else: print('==> no Checkpoint found at \'{}\''.format( opt.ckpt)) return # make directory dir_plots = pathlib.Path('Histograms') / arch_name / opt.dataset / 'conv_weights' dir_plots.mkdir(parents=True, exist_ok=True) w_kernel = get_kernel(model, opt) num_layer = len(w_kernel) print('Drawing convolution weights histogram...\n') for i in tqdm(range(num_layer), ncols=80, unit='layer'): cur_w = np.reshape(w_kernel[i], (-1)).tolist() num_w = len(cur_w) min_w = min(cur_w) max_w = max(cur_w) med_w = np.median(cur_w) avg_w = np.mean(cur_w) var_w = np.var(cur_w) std_w = np.std(cur_w) textstr = '\n'.join(( r'$\mathrm{\# weights}=%d$' % (num_w, ), r'$\min=%.6f$' % (min_w, ), r'$\max=%.6f$' % (max_w, ), r'$\mathrm{median}=%.6f$' % (med_w, ), r'$\mu=%.6f$' % (avg_w, ), r'$\sigma^{2}=%.6f$' % (var_w, ), r'$\sigma=%.6f$' % (std_w, ))) plt.style.use('seaborn-deep') fig, ax = plt.subplots(figsize=(8,6), dpi=150) y_vals, x_vals, e_ = ax.hist(cur_w, alpha=0.75, bins=min(num_w, 256)) y_max = round((max(y_vals) / num_w) + 0.02, 2) ax.set_yticks(ticks=np.arange(0.0, y_max * num_w, 0.01 * num_w)) ax.set_ylim(ax.get_yticks()[0], ax.get_yticks()[-1]) ax.yaxis.set_major_formatter(PercentFormatter(xmax=num_w)) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='lightsteelblue', alpha=0.5) # place a text box in upper left in axes coords ax.text(0.03, 0.96, textstr, transform=ax.transAxes, fontsize=9, verticalalignment='top', bbox=props) plt.savefig(dir_plots / 'Weights_in_Layer{0:02d}.png'.format(i), bbox_inches='tight', dpi=150) plt.clf() if __name__ == '__main__': start_time = time.time() main() elapsed_time = time.time() - start_time print("====> total time: {:.2f}s".format(elapsed_time)) torch.__version__ ###Output _____no_output_____ ###Markdown zip histogram folder ###Code import zipfile import os plots_zip = zipfile.ZipFile('Histograms.zip', 'w') for folder, subfolders, files in os.walk('Histograms'): for file in files: if file.endswith('.png'): plots_zip.write(os.path.join(folder, file), os.path.relpath(os.path.join(folder, file), 'Histograms'), compress_type = zipfile.ZIP_DEFLATED) plots_zip.close() ###Output _____no_output_____ ###Markdown torch profiler test ###Code import torch.nn as nn import torch.backends.cudnn as cudnn import torch.autograd.profiler as profiler def main(): global opt, arch_name, all_dist opt = config() # set model name arch_name = set_arch_name(opt) print('\n=> creating model \'{}\''.format(arch_name)) model = models.__dict__[opt.arch](data=opt.dataset, num_layers=opt.layers, width_mult=opt.width_mult, batch_norm=opt.bn) if model is None: print('==> unavailable model parameters!! exit...\n') exit() if opt.cuda: torch.cuda.set_device(opt.gpuids[0]) with torch.cuda.device(opt.gpuids[0]): model = model.cuda() model = nn.DataParallel(model, device_ids=opt.gpuids, output_device=opt.gpuids[0]) cudnn.benchmark = True # checkpoint file ckpt_dir = pathlib.Path('checkpoint') dir_path = ckpt_dir / arch_name / opt.dataset ckpt_file = dir_path / opt.ckpt if isfile(ckpt_file): print('==> Loading Checkpoint \'{}\''.format(opt.ckpt)) checkpoint = load_model(model, ckpt_file, main_gpu=opt.gpuids[0], use_cuda=opt.cuda) print('===> Loaded Checkpoint \'{}\' (epoch {})'.format( opt.ckpt, checkpoint['epoch'])) inputs = torch.randn(256, 3, 32, 32).cuda() with profiler.profile(use_cuda=True, profile_memory=True, record_shapes=True) as prof: model(inputs) print(prof.key_averages().table(sort_by="cuda_memory_usage")) prof.export_chrome_trace("trace.json") return else: print('==> no Checkpoint found at \'{}\''.format( opt.ckpt)) return if __name__ == '__main__': start_time = time.time() main() elapsed_time = time.time() - start_time print("====> total time: {:.2f}s".format(elapsed_time)) ###Output => creating model 'resnet14' ==> Loading Checkpoint 'ckpt_best.pth' ===> Loaded Checkpoint 'ckpt_best.pth' (epoch 189) -------------------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- Name Self CPU total % Self CPU total CPU total % CPU total CPU time avg CUDA total % CUDA total CUDA time avg CPU Mem Self CPU Mem CUDA Mem Self CUDA Mem Number of Calls -------------------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- empty 6.73% 660.294us 6.73% 660.294us 5.412us 1.19% 433.409us 3.553us 0 b 0 b 337.24 Mb 337.24 Mb 122 batch_norm 1.12% 110.248us 37.81% 3.707ms 247.149us 10.86% 3.961ms 264.053us 0 b 0 b 141.01 Mb 0 b 15 _batch_norm_impl_index 3.90% 382.729us 36.68% 3.597ms 239.799us 10.69% 3.900ms 260.028us 0 b 0 b 141.01 Mb 0 b 15 cudnn_batch_norm 24.87% 2.439ms 30.65% 3.005ms 200.337us 9.57% 3.490ms 232.653us 0 b 0 b 141.01 Mb 0 b 15 empty_like 0.88% 86.724us 1.90% 186.238us 12.416us 0.34% 124.929us 8.329us 0 b 0 b 141.00 Mb 0 b 15 conv2d 1.00% 97.848us 42.61% 4.178ms 278.515us 14.41% 5.256ms 350.432us 0 b 0 b 140.00 Mb 0 b 15 convolution 1.04% 102.310us 41.61% 4.080ms 271.992us 14.24% 5.196ms 346.377us 0 b 0 b 140.00 Mb 0 b 15 _convolution 4.58% 448.866us 40.57% 3.978ms 265.171us 14.06% 5.130ms 341.969us 0 b 0 b 140.00 Mb 0 b 15 cudnn_convolution 24.41% 2.393ms 33.35% 3.270ms 217.994us 12.69% 4.630ms 308.691us 0 b 0 b 140.00 Mb -56.15 Mb 15 adaptive_avg_pool2d 0.28% 27.292us 1.38% 135.294us 135.294us 0.29% 106.496us 106.496us 0 b 0 b 64.00 Kb 0 b 1 mean 0.47% 46.321us 0.57% 56.184us 56.184us 0.14% 52.225us 52.225us 0 b 0 b 64.00 Kb 0 b 1 resize_ 0.84% 82.585us 0.84% 82.585us 2.664us 0.17% 63.202us 2.039us 0 b 0 b 10.00 Kb 10.00 Kb 31 addmm 1.26% 124.013us 1.68% 164.586us 164.586us 0.29% 105.473us 105.473us 0 b 0 b 10.00 Kb 0 b 1 add 3.40% 333.778us 4.38% 429.530us 28.635us 0.58% 209.918us 13.995us 0 b 0 b 7.50 Kb 0 b 15 Scatter 0.50% 49.092us 1.18% 116.032us 116.032us 0.32% 115.936us 115.936us 0 b 0 b 0 b 0 b 1 chunk 0.13% 12.851us 0.65% 63.498us 63.498us 0.17% 63.168us 63.168us 0 b 0 b 0 b 0 b 1 size 7.52% 737.481us 7.52% 737.481us 2.269us 1.76% 642.136us 1.976us 0 b 0 b 0 b 0 b 325 split 0.18% 17.900us 0.48% 47.283us 47.283us 0.13% 47.648us 47.648us 0 b 0 b 0 b 0 b 1 narrow 0.11% 10.792us 0.27% 26.601us 26.601us 0.07% 26.528us 26.528us 0 b 0 b 0 b 0 b 1 slice 0.09% 8.758us 0.14% 13.529us 13.529us 0.04% 13.472us 13.472us 0 b 0 b 0 b 0 b 1 as_strided 0.14% 13.486us 0.14% 13.486us 3.372us 0.03% 10.078us 2.520us 0 b 0 b 0 b 0 b 4 to 0.04% 3.442us 0.04% 3.442us 3.442us 0.01% 3.296us 3.296us 0 b 0 b 0 b 0 b 1 contiguous 2.91% 285.138us 2.91% 285.138us 2.357us 0.66% 242.463us 2.004us 0 b 0 b 0 b 0 b 121 stride 1.48% 145.112us 1.48% 145.112us 2.303us 0.34% 125.348us 1.990us 0 b 0 b 0 b 0 b 63 is_complex 0.44% 42.684us 0.44% 42.684us 2.846us 0.08% 28.671us 1.911us 0 b 0 b 0 b 0 b 15 view 1.36% 133.020us 1.36% 133.020us 7.390us 0.21% 77.826us 4.324us 0 b 0 b 0 b 0 b 18 relu_ 5.98% 586.799us 7.61% 746.437us 57.418us 2.93% 1.069ms 82.235us 0 b 0 b 0 b 0 b 13 threshold_ 1.63% 159.638us 1.63% 159.638us 12.280us 1.96% 714.755us 54.981us 0 b 0 b 0 b 0 b 13 add_ 2.19% 215.185us 2.19% 215.185us 35.864us 1.54% 560.128us 93.355us 0 b 0 b 0 b 0 b 6 flatten 0.10% 10.197us 0.43% 42.042us 42.042us 0.08% 29.696us 29.696us 0 b 0 b 0 b 0 b 1 reshape 0.07% 6.650us 0.30% 29.779us 29.779us 0.06% 21.503us 21.503us 0 b 0 b 0 b 0 b 1 t 0.20% 20.056us 0.29% 28.476us 28.476us 0.05% 17.408us 17.408us 0 b 0 b 0 b 0 b 1 transpose 0.05% 5.389us 0.09% 8.420us 8.420us 0.02% 6.145us 6.145us 0 b 0 b 0 b 0 b 1 expand 0.06% 6.131us 0.09% 8.373us 8.373us 0.02% 6.144us 6.144us 0 b 0 b 0 b 0 b 1 -------------------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- --------------- Self CPU time total: 9.805ms CUDA time total: 36.480ms ====> total time: 0.16s ###Markdown heatmap of number of most similar kernel ###Code import time import pathlib from os.path import isfile import math import torch import numpy as np import models from utils import * from data import DataLoader import matplotlib matplotlib.use('Agg') import matplotlib.pyplot as plt from matplotlib.ticker import PercentFormatter class config(object): def __init__(self): self.dataset = 'cifar10' self.arch = 'resnet' self.layers = 14 self.ckpt = 'ckpt_best.pth' self.bn = False self.width_mult = 1.0 self.cuda = True self.threshold = 0.4 self.gpuids = [0] def main(): global opt, arch_name, all_dist opt = config() # set model name arch_name = set_arch_name(opt) print('\n=> creating model \'{}\''.format(arch_name)) model = models.__dict__[opt.arch](data=opt.dataset, num_layers=opt.layers, width_mult=opt.width_mult, batch_norm=opt.bn) if model is None: print('==> unavailable model parameters!! exit...\n') exit() # checkpoint file ckpt_dir = pathlib.Path('checkpoint') dir_path = ckpt_dir / arch_name / opt.dataset ckpt_file = dir_path / opt.ckpt if isfile(ckpt_file): print('==> Loading Checkpoint \'{}\'..'.format(opt.ckpt)) checkpoint = load_model(model, ckpt_file, main_gpu=None, use_cuda=False) print('===> Loaded Checkpoint \'{}\' (epoch {})'.format( opt.ckpt, checkpoint['epoch'])) print(f'\n==> Get and Calculate distribution of absolute PCC..') all_dist = get_dist_abs_pcc(model) print('\n===> done') print('\n==> Draw histogram..') histograms(all_dist) return else: print('==> no Checkpoint found at \'{}\''.format( opt.ckpt)) return def get_dist_abs_pcc(model): w_kernel = get_kernel(model, opt) num_layer = len(w_kernel) dist_all = [] for i in tqdm(range(num_layer), ncols=80, unit='layer'): ref_layer = torch.Tensor(w_kernel[i]) if opt.arch in hasDiffLayersArchs: ref_layer = ref_layer.view(-1, 9) else: ref_layer = ref_layer.view(len(w_kernel[i]), -1) ref_length = ref_layer.size()[0] ref_mean = ref_layer.mean(dim=1, keepdim=True) ref_norm = ref_layer - ref_mean ref_norm_sq_rt = torch.sqrt((ref_norm * ref_norm).sum(dim=1)) dist = [] for j in range(i+1, num_layer): cur_weight = torch.Tensor(w_kernel[j]) # change kernels to dw-kernel if opt.arch in hasDiffLayersArchs: cur_weight = cur_weight.view(-1, 9) else: cur_weight = cur_weight.view(len(w_kernel[j]), -1) cur_length = cur_weight.size()[0] cur_mean = cur_weight.mean(dim=1, keepdim=True) cur_norm = cur_weight - cur_mean cur_norm_sq_rt = torch.sqrt((cur_norm * cur_norm).sum(dim=1)) cur_dist = [] for k in range(cur_length): numer = torch.matmul(cur_norm[k], ref_norm.T) denom = ref_norm_sq_rt * cur_norm_sq_rt[k] pcc = numer / denom abs_pcc = torch.abs(pcc) cur_dist.append(torch.max(abs_pcc).item()) dist.append(cur_dist) dist_all.append(dist) return dist_all def histograms(all_dist): # make directory dir_plots = pathlib.Path('Histograms') / arch_name / opt.dataset / 'heatmap_N_maxpcc' dir_plots.mkdir(parents=True, exist_ok=True) # calculate histogram_dist = [] heatmap_dist = [] for j in range(len(all_dist[0])): cur_num = j+1 max_nums = [] max_layer_nums = [] for k in range(len(all_dist[0][j])): cur_max = 0.0 max_ref_layer_num = 0 for i in range(cur_num): if cur_max < all_dist[i][j-i][k]: cur_max = all_dist[i][j-i][k] max_ref_layer_num = i max_nums.append(cur_max) max_layer_nums.append(max_ref_layer_num) histogram_dist.append(max_nums) heatmap_dist.append(max_layer_nums) # draw heatmap print('===> Draw heatmap...') plt.clf() num_layer = len(all_dist) heatmap_cnt = np.zeros((num_layer,num_layer)) for i in range(1, num_layer): for j in range(len(heatmap_dist[i-1])): similar_layer_num = heatmap_dist[i-1][j] heatmap_cnt[i][similar_layer_num] += 100 heatmap_cnt[i] = heatmap_cnt[i] / len(heatmap_dist[i-1]) heatmap_cnt = heatmap_cnt.transpose() fig = plt.pcolor(heatmap_cnt, cmap='hot') plt.xticks(np.arange(0.5, num_layer, 1), ["{}".format(x) for x in range(num_layer)]) plt.yticks(np.arange(0.5, num_layer, 1), ["{}".format(x) for x in range(num_layer)]) plt.xlabel('Source layer', fontsize=12) plt.ylabel('Target layer', fontsize=12) plt.colorbar() plt.savefig(dir_plots / 'heatmap.png', figsize=(8,6), dpi=150, bbox_inches='tight') plt.clf() print('====> done') # draw histograms print('===> Draw histograms...') for i in tqdm(range(len(histogram_dist)), ncols=80, unit='layer'): cur_pcc = histogram_dist[i] num_pcc = len(cur_pcc) min_pcc = min(cur_pcc) max_pcc = max(cur_pcc) med_pcc = np.median(cur_pcc) avg_pcc = np.mean(cur_pcc) var_pcc = np.var(cur_pcc) std_pcc = np.std(cur_pcc) textstr = '\n'.join(( r'$\mathrm{\# weights}=%d$' % (num_pcc, ), r'$\min=%.6f$' % (min_pcc, ), r'$\max=%.6f$' % (max_pcc, ), r'$\mathrm{median}=%.6f$' % (med_pcc, ), r'$\mu=%.6f$' % (avg_pcc, ), r'$\sigma^{2}=%.6f$' % (var_pcc, ), r'$\sigma=%.6f$' % (std_pcc, ))) plt.style.use('seaborn-deep') fig, ax = plt.subplots(figsize=(8,6), dpi=150) y_vals, x_vals, e_ = ax.hist(cur_pcc, alpha=0.75, bins=min(num_pcc, 256)) y_max = round((max(y_vals) / num_pcc) + 0.02, 2) ax.set_yticks(ticks=np.arange(0.0, y_max * num_pcc, 0.01 * num_pcc)) ax.set_ylim(ax.get_yticks()[0], ax.get_yticks()[-1]) ax.set_xlim(-0.01, 1.01) ax.yaxis.set_major_formatter(PercentFormatter(xmax=num_pcc)) # these are matplotlib.patch.Patch properties props = dict(boxstyle='round', facecolor='lightsteelblue', alpha=0.5) # place a text box in upper left in axes coords ax.text(0.03, 0.96, textstr, transform=ax.transAxes, fontsize=9, verticalalignment='top', bbox=props) plt.savefig(dir_plots / 'Max_PCCs_in_cur{:02d}.png'.format(i+1), bbox_inches='tight', dpi=150) plt.clf() print('====> done') if __name__ == '__main__': start_time = time.time() main() elapsed_time = time.time() - start_time print("====> total time: {:.2f}s".format(elapsed_time)) ###Output _____no_output_____ ###Markdown Load data ###Code # Default toy model paths = { '01' : 'data/stream_01.csv' } streams = {s : pd.read_csv(p, dtype=int) for s, p in paths.items()} # # Prophesee # paths = { # '01' : '../data_prophesee/moorea_2019-02-18_000_td_2928500000_2988500000_td.csv' # } # streams = {s : pd.read_csv(p, dtype=int) for s, p in paths.items()} # for s, df in streams.items(): # df['y'] = 719 - df['y'] # # Stereo iniviation # paths = { # '01' : '../data_inivation/stream_1.csv', # '02' : '../data_inivation/stream_2.csv' # } # streams = {s : pd.read_csv(p, dtype=int) for s, p in paths.items()} streams['01'].info() streams['01'][:10] timestamp_min = 1e99 for s, df in streams.items(): print('\nStream: ', s) print('x_min:', df['x'].min()) print('x_max:', df['x'].max()) print('y_min:', df['y'].min()) print('y_max:', df['y'].max()) print('Timestamp_min:', df['timestamp'].min()) print('Timestamp_max:', df['timestamp'].max()) print('Timestamp diff:', df['timestamp'].max() - df['timestamp'].min()) print('Average number of events per timestamp:',len(df.index)/(df['timestamp'].max() - df['timestamp'].min())) timestamp_min = min(df['timestamp'].min(), timestamp_min) ###Output Stream: 01 x_min: 40 x_max: 160 y_min: 40 y_max: 160 Timestamp_min: 0 Timestamp_max: 99999 Timestamp diff: 99999 Average number of events per timestamp: 1.000010000100001 ###Markdown Set starting timestamp to zero. The code below assumes that the starting timestamp is 0. ###Code for s, df in streams.items(): df['timestamp'] -= timestamp_min print(df['timestamp'].min()) ###Output 0 ###Markdown Load event annotations if they already exist. Put them in the same folder as original csv file and add "_anno.csv" ###Code for s, df in streams.items(): path_anno = paths[s].replace('.csv', '_anno.csv') if os.path.exists(path_anno): print('Loading: {}'.format(path_anno)) df['anno'] = pd.read_csv(path_anno, dtype=int) ###Output _____no_output_____ ###Markdown Initial studies Take sample of each stream ###Code num_sample = 100000 samples = {s:df.sample(n=num_sample) for s, df in streams.items()} ###Output _____no_output_____ ###Markdown Lets see how is event polarity distributed as a function of a timestamp. ###Code df_hist = pd.DataFrame({ 'Stream #1 (p=0)' : samples['01']['timestamp'][samples['01']['p']==0], 'Stream #1 (p=1)' : samples['01']['timestamp'][samples['01']['p']==1], }); df_hist.plot_bokeh(kind='hist', bins=100, title='Sample of events as function of timestamp.', xlabel='Timestamp', xticks=[]); ###Output _____no_output_____ ###Markdown Event video ###Code event_tool = utils.EventTool(streams) # bokeh part app = Application(FunctionHandler(event_tool.app_function)) show(app) ###Output _____no_output_____ ###Markdown travelTime AnalysisDifferent analyses of data collected using https://github.com/amadeuspzs/travelTime/blob/master/travelTime.py ###Code %matplotlib inline import pandas as pd, matplotlib.pyplot as plt, matplotlib.dates as dates, math from datetime import datetime from utils import find_weeks, find_days # custom from pytz import timezone from detect_peaks import detect_peaks from ipywidgets import interact, interactive, fixed, interact_manual ###Output _____no_output_____ ###Markdown Load data ###Code filename = 'data/home-montauk.csv' tz = timezone('US/Eastern') data = pd.read_csv(filename) data.head(5) ###Output _____no_output_____ ###Markdown Convert the unix timestamp to a datetime object: ###Code data.Timestamp=data.apply(lambda row: datetime.fromtimestamp(int(row['Timestamp']),tz),axis=1) data.head(5) ###Output _____no_output_____ ###Markdown Add a new column with the duration in hours ###Code data['Duration(h)']=data.apply(lambda row: float(row['Duration(s)'])/(60*60),axis=1) data.head(5) ###Output _____no_output_____ ###Markdown Let's have a quick visualization: ###Code ax = data.plot(x='Timestamp',y='Duration(h)') ###Output _____no_output_____ ###Markdown Week by Week plotsIdentify weeks in the dataset and plot them: ###Code weeks = find_weeks(data) num_cols = 2 num_rows = int(math.ceil(len(weeks) / float(num_cols))) ylim = [min([min(data[week[0]:week[1]+1]['Duration(h)']) for week in weeks]), max([max(data[week[0]:week[1]+1]['Duration(h)']) for week in weeks])] plt.figure(1,figsize=(14, 7)) for e, week in enumerate(weeks): ax = plt.subplot(num_rows,num_cols,e+1) data[week[0]:week[1]].plot(x='Timestamp',y='Duration(h)',ax=ax) ax.grid() ax.set_ylim(ylim) plt.tight_layout() ###Output _____no_output_____ ###Markdown Day plotsPick a day to compare across weeks: ###Code days = find_days(data,5) #Friday num_cols = 3 num_rows = int(math.ceil(len(weeks) / float(num_cols))) ylim = [min([min(data[day[0]:day[1]+1]['Duration(h)']) for day in days]), max([max(data[day[0]:day[1]+1]['Duration(h)']) for day in days])] plt.figure(1,figsize=(14, 7)) for e, day in enumerate(days): ax = plt.subplot(num_rows,num_cols,e+1) data[day[0]:day[1]].plot(x='Timestamp',y='Duration(h)',ax=ax) ax.xaxis.set_major_formatter(dates.DateFormatter('%H',tz)) ax.xaxis.set_major_locator(dates.HourLocator(interval=1)) ax.grid() ax.set_ylim(ylim) plt.tight_layout() ###Output _____no_output_____ ###Markdown Peak/valley detectionDetect highs and lows ###Code week = find_weeks(data)[2] # choose one week week_data = data[week[0]:week[1]+1] @interact(mpd=50,mph=1.0) def peaks(mpd, mph): indexes = detect_peaks(week_data['Duration(h)'],mpd=mpd,mph=mph,show=True) for index in indexes: print week_data.iloc[[index]].Timestamp.dt.strftime("%a %H:%M").values[0] @interact(mpd=130) def peaks(mpd): indexes = detect_peaks(week_data['Duration(h)'],valley=True,mpd=mpd,show=True) for index in indexes: print week_data.iloc[[index]].Timestamp.dt.strftime("%a %H:%M").values[0] ###Output _____no_output_____ ###Markdown Walmart sales data analysis AimTo predict aggregate monthly sales using Regression models over Walmart dataset. ###Code import pandas as pd ###Output _____no_output_____ ###Markdown Loading Data into dataframes ###Code train = pd.read_csv("./data/train.csv") stores = pd.read_csv("./data/stores.csv") features = pd.read_csv("./data/features.csv") ###Output _____no_output_____ ###Markdown Exploring data **Total rows are 8190.****There are twelve columns.** ###Code features.info() #can be shown on the web page ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 8190 entries, 0 to 8189 Data columns (total 12 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 Store 8190 non-null int64 1 Date 8190 non-null object 2 Temperature 8190 non-null float64 3 Fuel_Price 8190 non-null float64 4 MarkDown1 4032 non-null float64 5 MarkDown2 2921 non-null float64 6 MarkDown3 3613 non-null float64 7 MarkDown4 3464 non-null float64 8 MarkDown5 4050 non-null float64 9 CPI 7605 non-null float64 10 Unemployment 7605 non-null float64 11 IsHoliday 8190 non-null bool dtypes: bool(1), float64(9), int64(1), object(1) memory usage: 712.0+ KB ###Markdown - Date is recognised as an "Object" by pandas.- It means that it is not recognised as any pre-defined Python type Getting an overview of data ###Code features.describe() #can also be shown on the web page # Analysis and calculations regarding quantitative columns # Including object # Date column features.describe(include=object) # Including object # Date column features.describe(include=bool) features.count() # Counting Null values features.isna().sum() print(len(stores)) stores.isna().sum() print(len(train)) train.isna().sum() ###Output 421570 ###Markdown Import and quality check: wiki json data ###Code file_dir = 'C://git repos/movies_ETL/data/' file_name = f'{file_dir}wikipedia-movies.json' with open(file_name, mode='r') as file: wiki_movies_raw = json.load(file) len(wiki_movies_raw) # check quality of first records wiki_movies_raw[:5] # check quality of last records wiki_movies_raw[-5:] # check some records in the middle wiki_movies_raw[3600:3605] ###Output _____no_output_____ ###Markdown Import and quality check: kaggle ###Code kaggle_metadata = pd.read_csv(f'{file_dir}movies_metadata.csv', low_memory=False) ratings = pd.read_csv(f'{file_dir}ratings.csv') kaggle_metadata.count() kaggle_metadata.head() kaggle_metadata.tail() kaggle_metadata.sample(n=5) ratings.count() ratings.head() ratings.tail() ratings.sample(n=5) wiki_movies_raw_df = pd.DataFrame(wiki_movies_raw) wiki_movies_raw_df # 193 cols! wiki_movies_raw_df.count() wiki_movies_raw_df.columns.tolist() ###Output _____no_output_____ ###Markdown Wiki column analysis ###Code # List comprehension to narrow down wiki set wiki_movies = [movie for movie in wiki_movies_raw if ('Director' in movie or 'Directed by' in movie) and 'imdb_link' in movie] len(wiki_movies) wiki_movies_df = pd.DataFrame(wiki_movies) wiki_movies_df wiki_movies_df.columns.tolist() #only four records? is that accurate? wiki_movies_df.loc[wiki_movies_df['No. of episodes'].notnull()] wiki_movies = [movie for movie in wiki_movies_raw if ('Director' in movie or 'Directed by' in movie) and 'imdb_link' in movie and 'No. of episodes' not in movie] len(wiki_movies) def clean_movie(movie): movie = dict(movie) # creates a non-destructive copy. DON'T UNDERSTAND THIS SYNTAX # Clean alternate titles alt_titles = dict() languages = ['Arabic', 'Cantonese', 'Chinese', 'French', 'Hangul', 'Hebrew', 'Hepburn', 'Japanese', 'Literally', 'Mandarin', 'McCune–Reischauer', 'Polish', 'Revised Romanization', 'Romanized', 'Russian', 'Simplified', 'Traditional', 'Yiddish'] for language in languages: if language in movie: alt_titles[language] = movie[language] movie.pop(language) if len(alt_titles) > 0: movie['alt_titles'] = alt_titles def change_column_name(old_name, new_name): if old_name in movie: movie[new_name] = movie.pop(old_name) change_column_name('Country of origin', 'Country') change_column_name('Directed by', 'Director(s)') change_column_name('Director', 'Director(s)') change_column_name('Distributed by', 'Distributor') change_column_name('Edited by', 'Editor(s)') change_column_name('Length', 'Running time') change_column_name('Produced by', 'Producer(s)') change_column_name('Producer', 'Producer(s)') change_column_name('Written by', 'Writer(s)') return movie ###Output _____no_output_____ ###Markdown Clean up language data ###Code # wiki_movies_df[wiki_movies_df['Arabic'].notnull()] # skill drill: go through each column and determine which ones hold alternate titles sorted(wiki_movies_df.columns.tolist()) # Full list (I think): # Arabic # Cantonese # Chinese # French # Hangul # Hebrew # Hepburn # Japanese # Literally # Mandarin # McCune–Reischauer # Polish # Revised Romanization # Romanized # Russian # Simplified # Traditional # Yiddish # wiki_movies_df[wiki_movies_df['Arabic'].notnull()] # wiki_movies_df[wiki_movies_df['Arabic'].notnull()] # movie = clean_movie(wiki_movies_df.iloc[6838]) # movie # Run clean movies function to get columns lined up etc clean_movies = [clean_movie(movie) for movie in wiki_movies] wiki_movies_df = pd.DataFrame(clean_movies) sorted(wiki_movies_df.columns.tolist()) ###Output _____no_output_____ ###Markdown IMDB ID parsing ###Code wiki_movies_df['imdb_link'] # it's regex time!! Remove dupes in accordance with standard IMDB ID wiki_movies_df['imdb_id'] = wiki_movies_df['imdb_link'].str.extract(r'(tt\d{7})') print(len(wiki_movies_df)) wiki_movies_df.drop_duplicates(subset='imdb_id', inplace=True) print(len(wiki_movies_df)) wiki_movies_df.head() ###Output 7076 7033 ###Markdown Remove cols with limited usages (< 10%) ###Code # how many of these values are null in each col? # This stuff *clearly* needs to be consolidated with some titles # wiki_movies_df[[column for column in wiki_movies_df.columns]].count() # [[column,wiki_movies_df[column].isnull().sum()] for column in wiki_movies_df.columns] # [[column,wiki_movies_df[column].isnull().sum()] for column in wiki_movies_df.columns if wiki_movies_df[column].isnull().sum() > len(wiki_movies_df) * .9] wiki_columns_to_keep = [column for column in wiki_movies_df.columns if wiki_movies_df[column].isnull().sum() < len(wiki_movies_df) * .9] wiki_movies_df = wiki_movies_df[wiki_columns_to_keep] wiki_movies_df ###Output _____no_output_____ ###Markdown Get field types to see which need to be converted to int/date/etc ###Code wiki_movies_df.dtypes ###Output _____no_output_____ ###Markdown clean box office data ###Code box_office = wiki_movies_df['Box office'].dropna() box_office.count() # not using this: lambda funciton instead on next cell def is_not_a_string(x): return type(x) != str # 135 non-string box_office[box_office.map(is_not_a_string)] box_office = box_office.apply(lambda x: ' '.join(x) if type(x) == list else x) box_office[box_office.map(lambda x: type(x) != str)] import re # regex module box_office[box_office.map(lambda x: type(x) != str)] # capture refined million/billion results form_one = r"\$\s*\d+\.?\d*\s*[mb]illi?on" box_office.str.contains(form_one, flags=re.IGNORECASE, na=False).sum() form_two = r"\$\s*\d{1,3}(?:[,\.]\d{3})+(?!\s[mb]illi?on)" box_office.str.contains(form_two, flags=re.IGNORECASE, na=False).sum() box_office = box_office.str.replace(r'\$.*[-—–](?![a-z])', '$', regex=True) matches_form_one = box_office.str.contains(form_one, flags=re.IGNORECASE, na=False) matches_form_two = box_office.str.contains(form_two, flags=re.IGNORECASE, na=False) box_office[~matches_form_one & ~matches_form_two] box_office.str.extract(f'({form_one}|{form_two})') ###Output _____no_output_____ ###Markdown Parse dollars func: move me to name space / func delcaration area somewhere else ###Code def parse_dollars(s): # if s is not a string, return NaN if type(s) != str: return np.nan # if input is of form $###.# million if re.match(r"\$\s*\d+\.?\d*\s*milli?on", s, flags=re.IGNORECASE): # remove dollar sign and " million" s = re.sub('\$|\s|[a-zA-Z]','',s) # convert to float and multiply by a million value = float(s) * 10**6 # return value return value # if input is of the form $###.# billion elif re.match(r"\$\s*\d+\.?\d*\s*billi?on", s, flags=re.IGNORECASE): # remove dollar sign and ' billion' s = re.sub('\$|\s|[a-zA-Z]','',s) # convert to float and multiply by a billion value = float(s) * 10**9 # return value return value # if input is of the form $###,###,### elif re.match(r"\$\s*\d{1,3}(?:[,\.]\d{3})+(?!\s[mb]illi?on)", s, flags=re.IGNORECASE): # remove dollar sign and commas s = re.sub('\$|,','',s) # convert to float value = float(s) # return value return value # otherwise, return NaN else: return np.nan wiki_movies_df['box_office'] = box_office.str.extract(pat=f'({form_one}|{form_two})', flags=re.IGNORECASE)[0].apply(parse_dollars) wiki_movies_df[['box_office', 'Box office']] wiki_movies_df.drop('Box office', axis=1, inplace=True) wiki_movies_df.drop('box office', axis=1, inplace=True) ###Output _____no_output_____ ###Markdown Clean the budget data ###Code budget = wiki_movies_df['Budget'].dropna() budget = budget.map(lambda x: ' '.join(x) if type(x) == list else x) #remove specified ranges budget = budget.str.replace(r'\$.*[-—–](?![a-z])' , '$', regex=True) # for value in budget: # print(value) matches_form_one = budget.str.contains(form_one, flags=re.IGNORECASE, na=False) matches_form_two = budget.str.contains(form_two, flags=re.IGNORECASE, na=False) budget[~matches_form_one & ~matches_form_two] # get rid of strings budget = budget.str.replace(r'\[\d+\]\s*', '') budget[~matches_form_one & ~matches_form_two] wiki_movies_df['budget'] = budget.str.extract(f'({form_one}|{form_two})', flags=re.IGNORECASE)[0].apply(parse_dollars) wiki_movies_df.drop('Budget', axis=1, inplace=True) wiki_movies_df['budget'] ###Output _____no_output_____ ###Markdown parse release date ###Code # PARSE THE DATE release_date = wiki_movies_df['Release date'].dropna().apply(lambda x: ' '.join(x) if type(x) == list else x) release_date.head(50) # match string one: Month Name, 1-2 digits, 4 digit year date_pat_1 = r"\w*\s\d{1,2},\s\d{4}" matches_pat_1 = release_date.str.contains(date_pat_1, flags=re.IGNORECASE, na=False) # matches_pat_1.head(50) # pattern 2: yyyy-dd-mm date_pat_2 = r"\d{4}[-—–]\d{2}[-—–]\d{2}" matches_pat_2 = release_date.str.contains(date_pat_2, flags=re.IGNORECASE, na=False) # matches_pat_2.head(50) # pattern 3: month name, year date_pat_3 = r"\w{3,10}\s\d{4}" matches_pat_3 = release_date.str.contains(date_pat_3, flags=re.IGNORECASE, na=False) # release_date[matches_pat_3].sample(50) # pattern 4: four letter year date_pat_4 = r"\d{4}" matches_pat_4 = release_date.str.contains(date_pat_4, flags=re.IGNORECASE, na=False) # release_date[~matches_pat_1 & ~matches_pat_2 & ~matches_pat_3 & matches_pat_4].sample(50) wiki_movies_df['release_date'] = pd.to_datetime( release_date.str.extract(f'({date_pat_1}|{date_pat_2}|{date_pat_3}|{date_pat_4})')[0], infer_datetime_format=True, errors='coerce') wiki_movies_df ###Output _____no_output_____ ###Markdown Parse running time ###Code # wiki_movies_df['Running time'].dropna().sample(50) running_time = wiki_movies_df['Running time'].dropna().apply(lambda x: ' '.join(x) if type(x) == list else x) # running_time runtime_pat_0 = "\d+\s*ho?u?r?s?\s*\d*" matches_pat_0 = running_time.str.contains(runtime_pat_0, flags=re.IGNORECASE, na=False) runtime_pat_1 = r'\d{1,3}\s*min' matches_pat_1 = running_time.str.contains(runtime_pat_1, flags=re.IGNORECASE, na=False) # running_time[~matches_pat_0 & ~matches_pat_1] running_time_extract = running_time.str.extract(r"(\d+)\s*ho?u?r?s?\s*(\d*)|(\d{1,3})\s*m") running_time_extract running_time_extract = running_time_extract.apply(lambda col: pd.to_numeric(col, errors='coerce')).fillna(0) wiki_movies_df['running_time'] = running_time_extract.apply(lambda row: row[0]*60 + row[1] if row[2] == 0 else row[2], axis=1) wiki_movies_df.drop('Running time', axis=1, inplace=True) # wiki_movies_df[['Running time', 'running_time']].sample(50) ###Output _____no_output_____ ###Markdown Clean the Kaggle data ###Code kaggle_metadata kaggle_metadata[["popularity", "poster_path", "production_companies", "status", "tagline", "vote_average"]] #bad data here!! summaries. kaggle_metadata["adult"].value_counts() kaggle_metadata[~kaggle_metadata['adult'].isin(['True','False'])] kaggle_metadata = kaggle_metadata[kaggle_metadata['adult'] == 'False'].drop('adult', axis='columns') kaggle_metadata['video'].value_counts() # convert to bool kaggle_metadata['video'] = kaggle_metadata['video'] == 'True' kaggle_metadata.dtypes # no non-numeric budget cols. very nice! kaggle_metadata[kaggle_metadata['budget'].str.isnumeric() == False] kaggle_metadata['budget'] = kaggle_metadata['budget'].astype(int) # no non-numeric ids either. kaggle_metadata[kaggle_metadata['id'].str.isnumeric() == False] kaggle_metadata['id'] = pd.to_numeric(kaggle_metadata['id'], errors='raise') # why does popularity show up as non-numeric? kaggle_metadata[kaggle_metadata['popularity'].str.isnumeric() == False] kaggle_metadata.dtypes kaggle_metadata['popularity'] = pd.to_numeric(kaggle_metadata['popularity'], errors='raise') ratings.info(null_counts=True) # looks reasonable, let's assign to timestamp value pd.to_datetime(ratings['timestamp'], unit='s') ratings['timestamp'] = pd.to_datetime(ratings['timestamp'], unit='s') ratings.head() ###Output _____no_output_____ ###Markdown Poke around ratings value and run statistical analysis ###Code pd.options.display.float_format = '{:20,.2f}'.format ratings['rating'].plot(kind='hist') ratings['rating'].describe() ###Output _____no_output_____ ###Markdown Merge data sets ###Code movies_df = pd.merge(wiki_movies_df, kaggle_metadata, on='imdb_id', suffixes=['_wiki','_kaggle']) movies_df # i thought i dropped the box office col? # matching criteria on the above seems to be disregarding capitalization # why is release date not in here? movies_df.columns # movies_df[['box office', 'box_office']] ###Output _____no_output_____ ###Markdown Analysis of duplicative column merge| wikipedia | kaggle | result || --- | --- | --- || title_wiki | title_kaggle | drop wiki || running_time | runtime | keep kaggle, fill in with wiki data if missing || budget_wiki | budget_kaggle | keep kagle; fill in zeroes with wiki data || box_office | revenue | keep kagle; fill in zeroes with wiki data || release_date_wiki | release_date_kaggle | Drop wikipedia || Language | original_language | drop wikipedia || Production company(s) | production_companies | Drop wikipedia. | ###Code movies_df[['title_wiki', 'title_kaggle']] movies_df[movies_df['title_wiki'] != movies_df['title_kaggle']][['title_wiki','title_kaggle']] # going with kaggle data based on clarity above. vetting quality movies_df[(movies_df['title_kaggle'] == '') | (movies_df['title_kaggle'].isnull())] # eventually: build a scatterplot to determine runtime. movies_df.fillna(0).plot(x='running_time', y='runtime', kind='scatter') movies_df.fillna(0).plot(x='budget_wiki', y='budget_kaggle', kind='scatter') # movies_df[['budget_wiki', 'budget_kaggle']].dtypes movies_df.fillna(0).plot(x='box_office', y='revenue', kind='scatter') movies_df.fillna(0)[movies_df['box_office'] < 10**9].plot(x='box_office', y='revenue', kind='scatter') # why is this not working? movies_df[['release_date_wiki', 'release_date_kaggle']].fillna(0).plot(x='release_date_wiki', y='release_date_kaggle', style='.') movies_df[(movies_df['release_date_wiki'] > '1996-01-01') & (movies_df['release_date_kaggle'] < '1965-01-01')] movies_df = movies_df.drop(movies_df[(movies_df['release_date_wiki'] > '1996-01-01') & (movies_df['release_date_kaggle'] < '1965-01-01')].index) # too many nulls in wiki here! release date patterns are not great # movies_df[movies_df['release_date_wiki'].isnull()] movies_df[movies_df['release_date_kaggle'].isnull()] # lists in language col unsupported by value counts. mutable objects not hashable # movies_df['Language'].value_counts() movies_df['Language'].apply(lambda x: tuple(x) if type(x) == list else x).value_counts() movies_df['original_language'].value_counts(dropna=False) # movies_df[['Production company ', 'productioncompanies ', 'production_companies']].sample(50) movies_df[['production_companies']].notnull().value_counts() movies_df.columns ###Output _____no_output_____ ###Markdown Init column merge based on analysis ###Code movies_df.drop(columns=['title_wiki', 'release_date_wiki', 'Language', 'Productioncompany ', 'Productioncompanies '], inplace=True) movies_df.columns def fill_missing_kaggle_data(df, kaggle_column, wiki_column): df[kaggle_column] = df.apply( lambda row: row[wiki_column] if row[kaggle_column] == 0 else row[kaggle_column] , axis = 1) df.drop(columns=wiki_column, inplace=True) fill_missing_kaggle_data(movies_df, kaggle_column='runtime', wiki_column='running_time') fill_missing_kaggle_data(movies_df, kaggle_column='budget_kaggle', wiki_column='budget_wiki') fill_missing_kaggle_data(movies_df, kaggle_column='revenue', wiki_column='box_office') # next value_count check for col in movies_df.columns: lists_to_tuples = lambda x: tuple(x) if type(x) == list else x value_counts = movies_df[col].apply(lists_to_tuples).value_counts(dropna=False) num_values = len(value_counts) if num_values == 1: print(col) # skill drill: replace above with list comprehension lists_to_tuples = lambda x: tuple(x) if type(x) == list else x print([col for col in movies_df.columns if len(movies_df[col].apply(lists_to_tuples).value_counts(dropna=False)) == 1]) movies_df['video'].value_counts(dropna=False) # movies_df.loc[:, ['imdb_id','id','title_kaggle','original_title','tagline','belongs_to_collection','url','imdb_link', # 'runtime','budget_kaggle','revenue','release_date_kaggle','popularity','vote_average','vote_count', # 'genres','original_language','overview','spoken_languages','Country', # 'production_companies','production_countries','Distributor', # 'Producer(s)','Director','Starring','Cinematography','Editor(s)','Writer(s)','Composer(s)','Based on' # ]]\ movies_df.loc[:, ['imdb_id','id','title_kaggle','original_title','tagline','belongs_to_collection','url','imdb_link', 'runtime','budget_kaggle','revenue','release_date_kaggle','popularity','vote_average','vote_count', 'genres','original_language','overview','spoken_languages','Country', 'production_companies','production_countries','Distributor', 'Producer(s)','Starring','Cinematography','Editor(s)','Writer(s)','Based on' ]] movies_df.rename({'id':'kaggle_id', 'title_kaggle':'title', 'url':'wikipedia_url', 'budget_kaggle':'budget', 'release_date_kaggle':'release_date', 'Country':'country', 'Distributor':'distributor', 'Producer(s)':'producers', 'Director':'director', 'Starring':'starring', 'Cinematography':'cinematography', 'Editor(s)':'editors', 'Writer(s)':'writers', 'Composer(s)':'composers', 'Based on':'based_on' }, axis='columns', inplace=True) movies_df ###Output _____no_output_____ ###Markdown Merge rating data ###Code rating_counts = ratings.groupby(['movieId','rating'], as_index=False).count() \ .rename({'userId':'count'}, axis=1) \ .pivot(index='movieId', columns='rating', values='count') rating_counts.columns = ['rating_' + str(col) for col in rating_counts.columns] rating_counts movies_with_ratings_df = pd.merge(movies_df, rating_counts, left_on='kaggle_id', right_index=True, how='left') movies_with_ratings_df[rating_counts.columns] = movies_with_ratings_df[rating_counts.columns].fillna(0) movies_with_ratings_df.sample(50) ###Output _____no_output_____ ###Markdown Import data to psotgres ###Code # CONNECTION STRING TEMPLATE: "postgresql://[user]:[password]@[location]:[port]/[database]" db_string = f"postgresql://postgres:{db_password}@127.0.0.1:5432/movie_data" engine = create_engine(db_string) movies_df.to_sql(name='movies', con=engine, if_exists='replace') ratings.count() ### Export data to Postgres db. # do not run me yet. 26m+ records, so 27 chunks rows_imported = 0 for data in pd.read_csv(f'{file_dir}ratings.csv', chunksize=1000000): start_time = time.time() print(f"Importing rows {rows_imported} through {rows_imported + len(data)}...", end='') data.to_sql(name='ratings', con=engine, if_exists='append') rows_imported += len(data) print(f'Complete. {time.time() - start_time} seconds elapsed.') ###Output Importing rows 0 through 1000000...Complete. 24.349302768707275 seconds elapsed. Importing rows 1000000 through 2000000...Complete. 24.126830339431763 seconds elapsed. Importing rows 2000000 through 3000000...Complete. 23.85095453262329 seconds elapsed. Importing rows 3000000 through 4000000...Complete. 23.537501335144043 seconds elapsed. Importing rows 4000000 through 5000000...Complete. 29.568344831466675 seconds elapsed. Importing rows 5000000 through 6000000...Complete. 25.218552112579346 seconds elapsed. Importing rows 6000000 through 7000000...Complete. 26.988013982772827 seconds elapsed. Importing rows 7000000 through 8000000...Complete. 29.5069739818573 seconds elapsed. Importing rows 8000000 through 9000000...Complete. 28.95828080177307 seconds elapsed. Importing rows 9000000 through 10000000...Complete. 26.633777141571045 seconds elapsed. Importing rows 10000000 through 11000000...Complete. 25.27502179145813 seconds elapsed. Importing rows 11000000 through 12000000...Complete. 25.12024974822998 seconds elapsed. Importing rows 12000000 through 13000000...Complete. 29.118918657302856 seconds elapsed. Importing rows 13000000 through 14000000...Complete. 29.758862495422363 seconds elapsed. Importing rows 14000000 through 15000000...Complete. 27.570640325546265 seconds elapsed. Importing rows 15000000 through 16000000...Complete. 27.411759614944458 seconds elapsed. Importing rows 16000000 through 17000000...Complete. 25.803762674331665 seconds elapsed. Importing rows 17000000 through 18000000...Complete. 24.299041509628296 seconds elapsed. Importing rows 18000000 through 19000000...Complete. 25.393224477767944 seconds elapsed. Importing rows 19000000 through 20000000...Complete. 26.41280436515808 seconds elapsed. Importing rows 20000000 through 21000000...Complete. 25.334113836288452 seconds elapsed. Importing rows 21000000 through 22000000...Complete. 22.99605417251587 seconds elapsed. Importing rows 22000000 through 23000000...Complete. 26.940511465072632 seconds elapsed. Importing rows 23000000 through 24000000...Complete. 26.68484115600586 seconds elapsed. Importing rows 24000000 through 25000000...Complete. 25.545124530792236 seconds elapsed. Importing rows 25000000 through 26000000...Complete. 26.5877742767334 seconds elapsed. Importing rows 26000000 through 26024289...Complete. 0.6482179164886475 seconds elapsed. ###Markdown How many questions (including dimensions) and how many participants? ###Code df.shape # 55 participants, # 90 dimensions ###Output _____no_output_____ ###Markdown Demographics ###Code # Age (Q3) print(df['Q3'].value_counts(normalize=True)) # Gender (Q9) print(df['Q1'].value_counts(normalize=True)) # Income (Q5) print(df['Q5'].value_counts(normalize=True)) # Race (Q9) print(df['Q9'].value_counts(normalize=True)) # Education (Q4) print(df['Q4'].value_counts(normalize=True)) # Marital Status (Q7) print(df['Q7'].value_counts(normalize=True)) # Work related use (need to find the correlation between # this answer and the people who said they were students) print(df['Q38'].value_counts(normalize=True)) # How much do you use your phone print(df['Q16'].value_counts(normalize=True)) # How long have you had a smartphone? print(df['Q24'].value_counts(normalize=True)) # How many smartphones do you have? print(df['Q25'].value_counts(normalize=True)) # How many other devices do you have? print(df['Q26'].value_counts(normalize=True)) # Cell plan on your phone # Phone Time print(df['Q27_1'].value_counts(normalize=True)) # Text print(df['Q27_2'].value_counts(normalize=True)) # Data Access print(df['Q27_3'].value_counts(normalize=True)) # Security demographics # Do you apply security measures to ensure privacy/security? print(df['Q28'].value_counts(normalize=True)) print(df['Q29']) # hide notifications print(df['Q30'].value_counts(normalize=True)) # camera limit print(df['Q33'].value_counts(normalize=True)) # biometrics security print(df['Q36'].value_counts(normalize=True)) # smartlock features print(df['Q57'].value_counts(normalize=True)) # get a permissiveness based on group import math groups = [["Q21_0_"+str(i)+"_RANK" for i in range(1,11)], ["Q21_1_"+str(i)+"_RANK" for i in range(1,11)], ["Q21_2_"+str(i)+"_RANK" for i in range(1,11)]] # a singler person's permissiveness score in group0 # perm_score = [j for j in (df[i][0] for i in group0) if not math.isnan(j)] # all of them now # g0list = [[j for j in (df[i][k] for i in group0) if not math.isnan(j)] for k in range(len(df.index))] # average for each person # person_avg_perm = [(sum(k)/len(k)) for k in [[j for j in (df[i][k] for i in group1) if not math.isnan(j)] for k in range(len(df.index))] if len(k) != 0] # average for an entire group # sum([(sum(k)/len(k)) for k in [[j for j in (df[i][k] for i in group1) if not math.isnan(j)] for k in range(len(df.index))] if len(k) != 0])/len(df.index) # average for each groups # [(sum([(sum(k)/len(k)) for k in [[j for j in (df[i][k] for i in l) if not math.isnan(j)] for k in range(len(df.index))] if len(k) != 0])/len(df.index)) for l in groups] # normalize it avg_norm_perms = [m/5 for m in [(sum([(sum(k)/len(k)) for k in [[j for j in (df[i][k] for i in l) if not math.isnan(j)] for k in range(len(df.index))] if len(k) != 0])/len(df.index)) for l in groups]] print(avg_norm_perms) # so like, cool, there is a directional decrease in permissivenes for these groups. # But I notice that this question could be interpreted in multiple ways. # I am more concerened with security of a stranger because they are unknown and could fuck shit up # I am more concered with security of my parents because I am more permisive with them meaning they have # access to more sensitive data # run anova from scipy.stats import f_oneway from scipy.stats import kruskal values = [[(sum(k)/len(k)) for k in [[j for j in (df[i][k] for i in l) if not math.isnan(j)] for k in range(len(df.index))] if len(k) != 0] for l in groups] g0 = values[0] g1 = values[1] g2 = values[2] f_oneway(g0,g1,g2) # get a permisiveness based on subgroup # sum of permisivness for a single subgroup for a single person # sum(i for i in[df[j[0]][0] for j in groups] if not math.isnan(i)) # sum of permisivness for a single subgroup for all people # sum(i for i in[df[j[0]][k] for j in groups for k in range(len(df.index))]if not math.isnan(i)) # now for all subgroups #[sum(i for i in[df[j[l]][k] for j in groups for k in range(len(df.index))]if not math.isnan(i)) for l in range(len(groups[0]))] all_subs = [[i for i in[df[j[l]][k] for j in groups for k in range(len(df.index))]if not math.isnan(i)] for l in range(len(groups[0]))] # ([sum(i)/len(i) for i in all_subs]) # average them # [m/len(df.index) for m in [sum(i for i in[df[j[l]][k] for j in groups for k in range(len(df.index))]if not math.isnan(i)) for l in range(len(groups[0]))]] #find any floor or ceilings print("number of floors and ceilings: " + str(len([j for j in [sum(i)/len(i) for i in all_subs] if j < 2 or j > 4]))+"\n") # normalize it avg_sub_perms = [j/5 for j in [sum(i)/len(i) for i in all_subs]] group_names = ["Parent/Guardian\t","Sibling\t\t","Child\t\t","Other Family\t","Friend\t\t","Roommate\t","Significant Other","Work Associate\t","Acquaintance\t","Stranger\t"] for i in range(len(group_names)): print(group_names[i] +"\t" + str(avg_sub_perms[i])) # After child, work associate is more permissive than any other? interesting. Now I could have done this calculation # wrong or this is because 50% of our responders are ages 18-24. Child I understand because its a parent child relastionship # but after that, work associate then roomate. I'm surpirsed that significant other is so lower and Im surprised that # friend is the lowest. But this could be explained in a few ways. The relationship you have with your co workers # is different than with your friends. If i gitve my phone to a friend, they will probably lookup porn or prank call/text # someone so I'll be less lenient with them. # In terms of SO, at 18-24, very few peers have a stable long term SO and so it could be why its lower than I thought it # would. But i could be biased as I would give my SO free reign of my phone. # Two main reasons why aquaintence is so high comes to mind. first) you don't know them well and vis versa and so # its not like youre going to go snooping on an aquantence's phone like you may have done with your friend. # or) aquaintences don't know our passwords or phone lays like us so people trust built in phone security. # take for example, some acquaintence asks to use our phone. I know they can't access any personal data because # 1) I probably will be right there watching and 2) because they cant access my bank or stuff. My friends on the other # hand could easily know my password or have thier fingerprint in my phone so they could. And I'm more likely to leave # my phone out of sight with my friend than an aquaintence. This is self reported so there is some bias. # The same goes for a roomate. idk. my roomates have always been my friends so I'm bias. # Also now looking at it, i don't think we defined permissiveness on the survey and also these values could be skewed # because they are put in different groups. So maybe adding a weight to each of these depending on which group you put # them in? idk # If we wanted to expand for future work, we could look at which factors relate to the self reported permissiveness. # calculate anova between subgroups g0 = all_subs[0] g1 = all_subs[1] g2 = all_subs[2] g3 = all_subs[3] g4 = all_subs[4] g5 = all_subs[5] g6 = all_subs[6] g7 = all_subs[7] g8 = all_subs[8] g9 = all_subs[9] f_oneway(g0,g1,g2,g3,g4,g5,g6,g7,g8,g9) #F datafrom2009=[0.5416666667,0.325,0.2685185185,0.1825396825,0.9166666667,0.2803030303,0.1086956522,0.64,0.3066666667,0.1666666667,0.1666666667,0.08666666667,0.9761904762,0.9285714286,0.4841269841,0.2619047619,0.5227272727,0.4772727273,0.4318181818,0.3257575758,0.6066666667,0.5666666667,0.4347826087,0.14,0.5733333333,0.5733333333,0.5362318841,0.34,0.34,0.34,0.8684210526,0.798245614,0.298245614,0.1052631579,0.5972222222,0.5972222222,0.3680555556,0.475308642,0.3888888889,0.2307692308,0.2037037037,0.2037037037,0.6866666667,0.25,0.1730769231,0.696969697,0.5151515152,0.5] our_data=all_subs[0]+all_subs[1]+all_subs[2]+all_subs[3]+all_subs[4]+all_subs[5]+all_subs[6]+all_subs[7]+all_subs[8]+all_subs[9] od = [i/5 for i in our_data] new_groups = ["family\t","friends\t","aquaintance","stranger","work\t"] ourfam=[i/5 for i in all_subs[0]+all_subs[1]+all_subs[2]+all_subs[3]+all_subs[6]] theirfam=[0.5416666667,0.325,0.2685185185,0.64,0.9285714286,0.4772727273,0.9761904762,0.6066666667,0.5666666667,0.4347826087 ,0.34,0.8684210526,0.5972222222,0.475308642,0.2307692308,0.6866666667,0.696969697] of=[i/5 for i in all_subs[4]+all_subs[5]] tf=[0.2803030303,0.3066666667,0.4841269841,0.4318181818,0.5733333333,0.798245614,0.3888888889,0.25,0.5151515152] oa=[i/5 for i in all_subs[8]] ta=[0.2619047619,0.34,0.1052631579] os=[i/5 for i in all_subs[9]] ts=[0.14] ow=[i/5 for i in all_subs[7]] tw=[0.1825396825,0.1666666667,0.5227272727,0.34,0.298245614,0.2037037037,0.1730769231,0.5] all_stuff=[(ourfam,theirfam),(of,tf),(oa,ta),(os,ts),(ow,tw)] print("Group\t\tanova\t\tkruskal") for i in range(len(new_groups)): print(new_groups[i] +"\t" + str(f_oneway(all_stuff[i][0], all_stuff[i][1])[1])+"\t"+str(kruskal(all_stuff[i][0], all_stuff[i][1])[1])) print("as a whole") print("Anova, Kruskal:" +"\t" + str(f_oneway(datafrom2009,od)[1]) + "\t" + str(kruskal(datafrom2009,od)[1])) #high or low usage dic = {"Hardly ever":0, "Rarely":1, "Sometimes":2, "Often":3, "Very often":4} questions = ["Q13_1", "Q13_2","Q13_3","Q13_4","Q13_5","Q13_6","Q13_7","Q13_8","Q13_9","Q13_10","Q13_11","Q13_12","Q13_13","Q13_14","Q13_15","Q13_16"] g0 = [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) < 7] g1 = [i for i in range(len(df.index)) if 7 <= sum([dic[df[j][i]] for j in questions]) < 13] g2 = [i for i in range(len(df.index)) if 13 <= sum([dic[df[j][i]] for j in questions]) < 20] g3 = [i for i in range(len(df.index)) if 20 <= sum([dic[df[j][i]] for j in questions]) < 26] g4 = [i for i in range(len(df.index)) if 26 <= sum([dic[df[j][i]] for j in questions]) < 33] g5 = [i for i in range(len(df.index)) if 33 <= sum([dic[df[j][i]] for j in questions]) < 39] g6 = [i for i in range(len(df.index)) if 39 <= sum([dic[df[j][i]] for j in questions]) < 45] g7 = [i for i in range(len(df.index)) if 45 <= sum([dic[df[j][i]] for j in questions]) < 52] g8 = [i for i in range(len(df.index)) if 52 <= sum([dic[df[j][i]] for j in questions]) < 58] g9 = [i for i in range(len(df.index)) if 58 <= sum([dic[df[j][i]] for j in questions]) < 65] for i in range(len(gs)): print("group"+str(i)+": "+str(len(gs[i]))) hu = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) >= 42]]if not math.isnan(i)] for l in range(len(groups[0]))] lu = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) < 42]]if not math.isnan(i)] for l in range(len(groups[0]))] avg_hu_perms = [j/5 for j in [sum(i)/len(i) for i in hu]] avg_lu_perms = [j/5 for j in [sum(i)/len(i) for i in lu]] print("Group\t\t\tHigh Usage\t\tLow Usage") for i in range(len(group_names)): print(group_names[i] +"\t" + str(avg_hu_perms[i]) + "\t" + str(avg_lu_perms[i])) # anove between more secure and less secure groups print("Group\t\t\tanova\t\t\tkruskal") for i in range(len(group_names)): print(group_names[i] +"\t" + str(f_oneway(hu[i], lu[i])[1])+"\t"+str(kruskal(hu[i], lu[i])[1])) # anova as a whole # idk how to weight it so i just took the average of all permisivness for how permissive someone was as a whole print("anova: "+str(f_oneway([sum(i)/len(i) for i in hu], [sum(i)/len(i) for i in lu])[1])) print("kruskal: "+str(kruskal([sum(i)/len(i) for i in hu], [sum(i)/len(i) for i in lu])[1])) #getting permisiveness based on security answers dic = {"Yes, I use it":1, "Yes, I don't use it":0, "No":0} questions = ["Q30", "Q33","Q34","Q36","Q57"] ms = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) >= 3]]if not math.isnan(i)] for l in range(len(groups[0]))] ls = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) < 3]]if not math.isnan(i)] for l in range(len(groups[0]))] avg_ms_perms = [j/5 for j in [sum(i)/len(i) for i in ms]] avg_ls_perms = [j/5 for j in [sum(i)/len(i) for i in ls]] print("Group\t\t\tMore secure\t\tLess Secure") for i in range(len(group_names)): print(group_names[i] +"\t" + str(avg_ms_perms[i]) + "\t" + str(avg_ls_perms[i])) # anove between more secure and less secure groups print("Group\t\t\tanova\t\t\tkruskal") for i in range(len(group_names)): print(group_names[i] +"\t" + str(f_oneway(ms[i], ls[i])[1])+"\t"+str(kruskal(ms[i], ls[i])[1])) # anova as a whole # idk how to weight it so i just took the average of all permisivness for how permissive someone was as a whole print("anova: "+str(f_oneway([sum(i)/len(i) for i in ms], [sum(i)/len(i) for i in ls])[1])) print("kruskal: "+str(kruskal([sum(i)/len(i) for i in ms], [sum(i)/len(i) for i in ls])[1])) #getting permisiveness based on data answers dic = {"Unlimited":0, "Limited":1} questions = ["Q27_3"] ld = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) >= 1]]if not math.isnan(i)] for l in range(len(groups[0]))] ud = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) < 1]]if not math.isnan(i)] for l in range(len(groups[0]))] avg_ld_perms = [j/5 for j in [sum(i)/len(i) for i in ld]] avg_ud_perms = [j/5 for j in [sum(i)/len(i) for i in ud]] print("Group\t\t\tlimited data\t\tunlimited data") for i in range(len(group_names)): print(group_names[i] +"\t" + str(avg_ld_perms[i]) + "\t" + str(avg_ud_perms[i])) # anove between more ulimited data and limited data groups print("Group\t\t\tanova\t\t\tkruskal") for i in range(len(group_names)): print(group_names[i] +"\t" + str(f_oneway(ud[i], ld[i])[1])+"\t"+str(kruskal(ud[i], ld[i])[1])) # anova as a whole # idk how to weight it so i just took the average of all permisivness for how permissive someone was as a whole print("anova: "+str(f_oneway([sum(i)/len(i) for i in ud], [sum(i)/len(i) for i in ld])[1])) print("kruskal: "+str(kruskal([sum(i)/len(i) for i in ud], [sum(i)/len(i) for i in ld])[1])) #getting permisiveness based on type of phone dic = {"Apple device (eg: any iPhone)":1, "Android device (eg: any Samsung, LG, Motorola, OnePlus, Pixel, etc)":0, "Nokia":2} questions = ["Q11"] ap = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) == 1]]if not math.isnan(i)] for l in range(len(groups[0]))] an = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) == 0]]if not math.isnan(i)] for l in range(len(groups[0]))] nk = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) == 2]]if not math.isnan(i)] for l in range(len(groups[0]))] avg_ap_perms = [j/5 for j in [sum(i)/len(i) for i in ap]] avg_an_perms = [j/5 for j in [sum(i)/len(i) for i in an]] print("Group\t\t\tapple\t\t\tandroid") for i in range(len(group_names)): print(group_names[i] +"\t" + str(avg_ap_perms[i]) + "\t" + str(avg_an_perms[i])) # anove between more apple and android print("Group\t\t\tanova\t\t\tkruskal") for i in range(len(group_names)): print(group_names[i] +"\t" + str(f_oneway(an[i], ap[i])[1])+"\t"+str(kruskal(an[i], ap[i])[1])) # anova as a whole # idk how to weight it so i just took the average of all permisivness for how permissive someone was as a whole print("anova: "+str(f_oneway([sum(i)/len(i) for i in ap], [sum(i)/len(i) for i in an])[1])) print("kruskal: "+str(kruskal([sum(i)/len(i) for i in ap], [sum(i)/len(i) for i in an])[1])) #getting permisiveness based on work or not dic = {"A lot":4, "A great deal":5, "A moderate amount":3, "A little":1, "None at all":0} questions = ["Q38"] #index of people who are more or less secure #more_secure = [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) >= 3] #less_secure = [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) < 3] wp = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) >= 3]]if not math.isnan(i)] for l in range(len(groups[0]))] nw = [[i for i in[df[j[l]][k] for j in groups for k in [i for i in range(len(df.index)) if sum([dic[df[j][i]] for j in questions]) < 3]]if not math.isnan(i)] for l in range(len(groups[0]))] avg_wp_perms = [j/5 for j in [sum(i)/len(i) for i in wp]] avg_nw_perms = [j/5 for j in [sum(i)/len(i) for i in nw]] print("Group\t\t\tPhone for Work\t\tPhone for not work") for i in range(len(group_names)): print(group_names[i] +"\t" + str(avg_wp_perms[i]) + "\t" + str(avg_nw_perms[i])) # anove between more work and not work pgone print("Group\t\t\tanova\t\t\tkruskal") for i in range(len(group_names)): print(group_names[i] +"\t" + str(f_oneway(wp[i], nw[i])[1])+"\t"+str(kruskal(wp[i], nw[i])[1])) # anova as a whole # idk how to weight it so i just took the average of all permisivness for how permissive someone was as a whole print("anova: "+str(f_oneway([sum(i)/len(i) for i in wp], [sum(i)/len(i) for i in nw])[1])) print("kruskal: "+str(kruskal([sum(i)/len(i) for i in wp], [sum(i)/len(i) for i in nw])[1])) # plot frequency bins for each group # ie, how often each guest was put into each bin import matplotlib.pyplot as plt from matplotlib.pyplot import figure guests = [ "Parent/Guardian", "Sibling", "Child", "Other Family", "Friend", "Roommate", "Significant Other", "Work Associate", "Acquaintance", "Stranger" ] g = {x:[0,0,0,0] for x in guests} for guest in guests: for idx,row in enumerate(df[['Q21_'+str(i)+'_GROUP' for i in range(3)]].replace(np.nan, '', regex=True).values): if guest in row[0]: g[guest][0] += 1 elif guest in row[1]: g[guest][1] += 1 elif guest in row[2]: g[guest][2] += 1 else: g[guest][3] += 1 # # # todo # https://stackoverflow.com/questions/14270391/python-matplotlib-multiple-bars x = ['Q21_0_GROUP', 'Q21_1_GROUP', 'Q21_2_GROUP', 'Q21_3_GROUP'] fig, ax = plt.subplots(1, len(guests), figsize=(24,6)) for i in range(len(guests)): ax[i].bar(x, g[guests[i]]) ax[i].title.set_text(guests[i]) ax[i].set_ylim([0, 35]) # # test if there's any significant difference in people who classify # specific guests into the three different groups # with respect to security awareness # "security awareness" generated as follows # Q30, Q33, Q34, Q36, Q57 -> 2,1,0 # take average, divide by 2 sec_awareness = np.zeros(len(df)) # index i == participant for idx,row in enumerate(df[['Q30', 'Q33', 'Q34', 'Q36', 'Q57']].replace({"Yes, I use it":2,"Yes, I don't use it":1,"No":0}).values): sec_awareness[idx] = sum(row)/5 # print(sec_awareness) # do kruskal-wallis # for each guest type X # generate 3 populations -- X in gropu1, X in group2, X in group3 # k-w versus "security awareness" score guests = [ "Parent/Guardian", "Sibling", "Child", "Other Family", "Friend", "Roommate", "Significant Other", "Work Associate", "Acquaintance", "Stranger" ] for guest in guests: print(guest) g_conc = [] # "Definitely have security and privacy concerns when sharing" -> Q21_0_GROUP g_mild = [] # "Some security and privacy concerns when sharing" -> Q21_1_GROUP g_none = [] # "Definitely do not have security and privacy concerns when sharing" -> Q21_2_GROUP for idx,row in enumerate(df[['Q21_'+str(i)+'_GROUP' for i in range(3)]].replace(np.nan, '', regex=True).values): if guest in row[0]: g_conc.append(sec_awareness[idx]) elif guest in row[1]: g_mild.append(sec_awareness[idx]) elif guest in row[2]: g_none.append(sec_awareness[idx]) # # print(len(g_conc)) print(len(g_mild)) print(len(g_none)) print(kruskal(g_conc, g_mild, g_none)) print() # # -> no statistically significant difference # in population means (medians?) between those who categorized # <guest> in <concern-level> and "security awareness" score # possible to-dos # -- calculate "security awareness" another way # -- just use score to each individual question, instead of score average # -- do random-forest regression with the input feature vector # == the classifications of each guest, and the output # == whatever security awareness score we care about ###Output _____no_output_____ ###Markdown How to Pivot and Plot Data With PandasA big challenge of working with data is manipulating its format for the analysis at hand. To make things a bit more difficult, the "proper format" can depend on what you are trying to analyze, meaning we have to know how to melt, pivot, and transpose our data.In this article, we will discuss how to create a pivot table of aggregated data in order to make a stacked bar visualization of 2019 airline market share for the top 10 destination cities. All the code for this analysis is available on GitHub [here](https://github.com/stefmolin/airline-market-share-analysis) and can also be run using [this](https://mybinder.org/v2/gh/stefmolin/airline-market-share-analysis/master) Binder environment.We will be using 2019 flight statistics from the United States Department of Transportation’s Bureau of Transportation Statistics (available [here](https://www.transtats.bts.gov/DL_SelectFields.asp?gnoyr_VQ=FMF&QO_fu146_anzr=Nv4%20Pn44vr45)). It contains 321,409 rows and 41 columns: ###Code import pandas as pd df = pd.read_csv('865214564_T_T100_MARKET_ALL_CARRIER.zip') df.shape ###Output _____no_output_____ ###Markdown Each row contains monthly-aggregated information on flights operated by a variety of airline carriers, including both passenger and cargo service. Note that the columns are all in uppercase at the moment: ###Code df.columns ###Output _____no_output_____ ###Markdown To make the data easier to work with, we will transform the column names into lowercase using the `rename()` method: ###Code df = df.rename(lambda x: x.lower(), axis=1) df.head() ###Output _____no_output_____ ###Markdown For our analysis, we want to look at passenger airlines to find the 2019 market share of the top 5 carriers (based on total number of passengers in 2019). To do so, we first need to figure out which carriers were in the top 5. Remember, the data contains information on all types of flights, but we only want passenger flights, so we first query `df` for flights marked `F` in the `class` column (note that we need backticks to reference this column because `class` is a reserved keyword). Then, we group by the carrier name and sum each carrier's passenger counts. Finally, we call the `nlargest()` method to return only the top 5: ###Code # download flight class meanings at # https://www.transtats.bts.gov/Download_Lookup.asp?Y11x72=Y_fReiVPR_PYNff top_airlines = df.query('`class` == "F"')\ .groupby('unique_carrier_name').passengers.sum()\ .nlargest(5) top_airlines ###Output _____no_output_____ ###Markdown Note that the top 5 airlines also run flights of a different class, so we can't remove this filter for the rest of our analysis: ###Code df.loc[ df.unique_carrier_name.isin(top_airlines.index), 'class' ].value_counts() ###Output _____no_output_____ ###Markdown Now, we can create the pivot table; however, we cannot filter down to the top 5 airlines just yet, because, in order to get market share, we need to know the numbers for the other airlines as well. Therefore, we will build a pivot table that calculates the total number of passengers each airline flew to each destination city. To do so, we specify that we want the following in our call to the `pivot_table()` method:- Unique values in the `dest_city_name` column should be used as our row labels (the `index` argument)- Unique values in the `unique_carrier_name` column should be used as our column labels (the `columns` argument)- The values used for the aggregation should come from the `passengers` column (the `values` argument), and they should be summed (the `aggfunc` argument)- Row/column subtotals should be calculated (the `margins` argument)Finally, since we want to look at the top 10 destinations, we will sort the data in descending order using the `All` column, which contains the total passengers flown to each city in 2019 for all carriers combined (this was created by passing in `margins=True` in the call to the `pivot_table()` method): ###Code pivot = df.query('`class` == "F"').pivot_table( index='dest_city_name', columns='unique_carrier_name', values='passengers', aggfunc='sum', margins=True ).sort_values('All', ascending=False) pivot.head(10) ###Output _____no_output_____ ###Markdown Notice that the first row in the previous result is not a city, but rather, the subtotal by airline, so we will drop that row before selecting the first 10 rows of the sorted data: ###Code pivot = pivot.drop('All').head(10) ###Output _____no_output_____ ###Markdown Selecting the columns for the top 5 airlines now gives us the number of passengers that each airline flew to the top 10 cities. Note that we use `sort_index()` so that the resulting columns are displayed in alphabetical order: ###Code pivot[top_airlines.sort_index().index] ###Output _____no_output_____ ###Markdown Our data is now in the right format for a stacked bar plot showing passenger counts. To make this visualization, we call the `plot()` method on the previous result and specify that we want horizontal bars (`kind='barh'`) and that the different airlines should be stacked (`stacked=True`). Note that since we have the destinations sorted in descending order, Atlanta will be plotted on the bottom, so we call `invert_yaxis()` on the `Axes` object returned by `plot()` to flip the order: ###Code from matplotlib import ticker ax = pivot[top_airlines.sort_index().index].plot( kind='barh', stacked=True, title='2019 Passenger Totals\n(source: BTS)' ) ax.invert_yaxis() # put destinations with more passengers on top # formatting ax.set(xlabel='number of passengers', ylabel='destination') ax.legend(title='carrier') # shows x-axis in millions instead of scientific notation ax.xaxis.set_major_formatter(ticker.EngFormatter()) # removes the top and right lines from the figure to make it less boxy for spine in ['top', 'right']: ax.spines[spine].set_visible(False) ###Output _____no_output_____ ###Markdown One interesting thing to notice from the previous result is that Seattle is a top 10 destination, yet the top 5 carriers don't appear to be contributing as much to it as the rest of the destination cities, which are pretty much in the same order with the exception of Los Angeles. This could cause some confusion, so let's add in another stacked bar called `Other` that contains the passenger totals for all airlines not in the top 5. Since we calculated the `All` column when we created the pivot table, all we have to do here is add a column to our filtered data that contains the `All` column minus the top 5 airlines' passenger totals summed together. The plotting code only needs to be modified to shift the legend further out: ###Code ax = pivot[top_airlines.sort_index().index].assign( Other=lambda x: pivot.All - x.sum(axis=1) ).plot( kind='barh', stacked=True, title='2019 Passenger Totals\n(source: BTS)' ) ax.invert_yaxis() # formatting ax.set(xlabel='number of passengers', ylabel='destination') ax.xaxis.set_major_formatter(ticker.EngFormatter()) # shift legend to not cover the bars ax.legend(title='carrier', bbox_to_anchor=(0.7, 0), loc='lower left') for spine in ['top', 'right']: ax.spines[spine].set_visible(False) ###Output _____no_output_____ ###Markdown We can now clearly see that Atlanta had the most passengers arriving in 2019 and that flights from Delta Air Lines were the biggest contributor. But, we can do better by representing market share as the percentage of all passengers arriving in each destination city. In order to do that, we need to modify our pivot table by dividing each airline's passenger counts by the `All` column: ###Code normalized_pivot = \ pivot[top_airlines.sort_index().index].apply(lambda x: x / pivot.All) normalized_pivot ###Output _____no_output_____ ###Markdown Before plotting, we will also sort the bars by the total market share of the top 5 carriers. Viewing this information as percentages gives us a better idea of which carriers dominate which markets: Delta has by far the largest share of Atlanta and American Airlines has over 60% of Dallas/Fort Worth, while United has strong footholds in several markets: ###Code # determine sort order market_share_sorted = normalized_pivot.sum(axis=1).sort_values() ax = normalized_pivot.loc[market_share_sorted.index,:].plot( kind='barh', stacked=True, xlim=(0, 1), title='2019 Market Share\n(source: BTS)' ) # formatting ax.set(xlabel='percentage of all passengers', ylabel='destination') ax.legend(title='carrier', bbox_to_anchor=(0.7, 0), loc='lower left') # show x-axis as percentages ax.xaxis.set_major_formatter(ticker.PercentFormatter(xmax=1)) for spine in ['top', 'right']: ax.spines[spine].set_visible(False) ###Output _____no_output_____ ###Markdown As we noticed earlier, Seattle sticks out. The top 5 carriers have more than 50% combined market share for 9 out of the top 10 destinations, but not for Seattle. Using our pivot table, we can see that Alaska Airlines is the top carrier for Seattle: ###Code pivot.loc['Seattle, WA', :].nlargest(6) ###Output _____no_output_____ ###Markdown Initialize ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D from matplotlib.colors import ListedColormap plt.rcParams['figure.figsize'] = [14, 10] import seaborn as sns sns.set() from sklearn.decomposition import PCA from sklearn.manifold import TSNE from sklearn.model_selection import train_test_split from sklearn.preprocessing import MinMaxScaler, LabelEncoder from sklearn.ensemble import RandomForestClassifier from sklearn.metrics import confusion_matrix, accuracy_score, average_precision_score, f1_score, precision_score, recall_score, plot_confusion_matrix from sklearn.utils import compute_class_weight ###Output _____no_output_____ ###Markdown Load Data ###Code # Load the Data wine_df = pd.read_csv('data/winequality-red.csv', delimiter=";") wine_df.head() ###Output _____no_output_____ ###Markdown Descriptive Analysis ###Code # Check to see the datatypes of the columns and null values wine_df.info() # Statistical Definition of each feature wine_df.describe() ###Output _____no_output_____ ###Markdown Distribution Analysis ###Code # Distribution analysis for each feature wine_df.hist(bins=50) plt.show() ###Output _____no_output_____ ###Markdown Correlation Analysis ###Code # Correlation Analysis pearson_correlation = wine_df.corr(method="pearson") spearman_correlation = wine_df.corr(method="spearman") kendall_correlation = wine_df.corr(method="kendall") # Plot fig, axes = plt.subplots(1, 3, constrained_layout=True, figsize=(22, 8), sharex=True, sharey=True) sns.heatmap(pearson_correlation, annot=True, ax=axes[0], cbar=True) axes[0].title.set_text("Pearson") sns.heatmap(spearman_correlation, annot=True, ax=axes[1], cbar=True) axes[1].title.set_text("Spearman") sns.heatmap(kendall_correlation, annot=True, ax=axes[2], cbar=True) axes[2].title.set_text("Kendall") fig.suptitle("Correlations Analysis") plt.show() # Top ranked features pearson_selected_names = set(pearson_correlation.quality.sort_values(ascending=False)[:8].index.values.tolist()) spearman_selected_names = set(spearman_correlation.quality.sort_values(ascending=False)[:8].index.values.tolist()) kendall_selected_names = set(kendall_correlation.quality.sort_values(ascending=False)[:8].index.values.tolist()) # Unique features unique_features = set.intersection(pearson_selected_names, spearman_selected_names, kendall_selected_names) print(f"Unique Features: {unique_features}") # Get features and targets features_df = wine_df[unique_features].drop("quality", axis=1) targets_df = wine_df[unique_features].quality.to_frame() ###Output /var/folders/n6/n9jt2skd19lgk9k6kh7bnzhr0000gn/T/ipykernel_88278/984932227.py:2: FutureWarning: Passing a set as an indexer is deprecated and will raise in a future version. Use a list instead. features_df = wine_df[unique_features].drop("quality", axis=1) /var/folders/n6/n9jt2skd19lgk9k6kh7bnzhr0000gn/T/ipykernel_88278/984932227.py:3: FutureWarning: Passing a set as an indexer is deprecated and will raise in a future version. Use a list instead. targets_df = wine_df[unique_features].quality.to_frame() ###Markdown Dimensionality Reduction ###Code # Dimensionality Reduction pca2D = PCA(n_components=2).fit_transform(features_df.values) pca3D = PCA(n_components=3).fit_transform(features_df.values) fig = plt.figure(figsize=(22, 12), constrained_layout=True) fig.suptitle("PCA") # PCA with 2 Components ax = fig.add_subplot(2, 2, 1) ax.title.set_text("PCA with 2 Components") sns.scatterplot( x=pca2D[:, 0], y=pca2D[:, 1], hue=np.squeeze(targets_df.values), palette=sns.color_palette("hls", 6), legend="full", alpha=0.9, ax=ax ) # PCA with 3 Components ax = fig.add_subplot(2, 2, 2, projection='3d') ax.title.set_text("PCA with 3 Components") ax.scatter( xs=pca3D[:, 0], ys=pca3D[:, 1], zs=pca3D[:, 2], c=np.squeeze(targets_df.values), cmap='tab10', ) plt.show() ###Output _____no_output_____ ###Markdown Normalization and Splits ###Code # Train Test Split X_train, X_test, y_train, y_test = train_test_split(features_df.values, np.squeeze(targets_df.values), test_size=0.2, shuffle=True) # Encode the Labels label_encoder = LabelEncoder() label_encoder.fit(y_train) y_train = label_encoder.transform(y_train) y_test = label_encoder.transform(y_test) # Scale the data features_scaler = MinMaxScaler() features_scaler.fit(X_train) X_train = features_scaler.transform(X_train) X_test = features_scaler.transform(X_test) ###Output _____no_output_____ ###Markdown Random Forest ###Code classifier = RandomForestClassifier(n_estimators=500, class_weight="balanced", n_jobs=-1) print() print("----------Training Random Forest----------") print() classifier.fit(X_train, y_train) # Prediction of Testset y_pred = classifier.predict(X_test) # Confusion Matrix acc_score = accuracy_score(y_test, y_pred) f1 = f1_score(y_test, y_pred, average="micro") ps = precision_score(y_test, y_pred, average="micro") rs = recall_score(y_test, y_pred, average="micro") cm = confusion_matrix(y_test, y_pred) print('{:<23}: {:>10.2f}'.format('Accuracy Score', acc_score), sep='') print('{:<23}: {:>10.2f}'.format('f1 Score', f1), sep='') print('{:<23}: {:>10.2f}'.format('Precision Score', ps), sep='') print('{:<23}: {:>10.2f}'.format('Recall Score', rs), sep='') print() plot_confusion_matrix(classifier, X_test, y_test) plt.show() ###Output ----------Training Random Forest---------- Accuracy Score : 0.70 f1 Score : 0.70 Precision Score : 0.70 Recall Score : 0.70 ###Markdown Historical Market DevelopmentLet's first calculate the historical annual appreciation for real estate in Norway and the S&P500. ###Code real_estate_price_15_y = 73339 real_estate_price_0_y = 27308 snp500_price_15_y = 3235 snp500_price_0_y = 1186 hist_growth_rate_real_estate = math.pow(real_estate_price_15_y/real_estate_price_0_y, 1/15) - 1 hist_growth_rate_snp500 = math.pow(snp500_price_15_y/snp500_price_0_y, 1/15) - 1 print(f'Annual growth rate real estate for the last 15 years: {hist_growth_rate_real_estate:.2%}, ' f'annual growth rate S&P500 for the last 15 years: {hist_growth_rate_snp500:.2%}.') ###Output Annual growth rate real estate for the last 15 years: 6.81%, annual growth rate S&P500 for the last 15 years: 6.92%. ###Markdown Real Estate Profit At Various Overpayment LevelsHere, we fix the annual real estate growth rate to its historic levels and compare the real estate profit for various overpayment amounts. ###Code to_plot = history[(history.growth_rate_real_estate==round(hist_growth_rate_real_estate, 2)) & (history.growth_rate_stocks==history.growth_rate_stocks.min()) & (history.investment_amount==0)] for scenario in to_plot.scenario_name.unique(): subplot = history[history.scenario_name==scenario] plt.plot(subplot.month, subplot.current_profit_real_estate, label=scenario) plt.legend() plt.xlabel('month') plt.ylabel('profit_nok') plt.title('Real Estate Profit At Various Overpayment Levels') plt.show() ###Output _____no_output_____ ###Markdown As we can see, the overpayment amount influences primarily the number of payment terms. However, the profit is primarily influenced by time. This means that the compounding effect of the annual growth in the real estate market overpowers the reduction of expenses by paying less interest. Real Estate Profit At Various Growth Levels With No OverpaymentWe will now fix the overpayment to 0 and explore the real estate profit at various annual real estate growth levels. ###Code to_plot = history[(history.mortgage_overpayment_amount==0) & (history.growth_rate_stocks==history.growth_rate_stocks.min()) & (history.investment_amount==0)] for scenario in to_plot.scenario_name.unique(): subplot = history[history.scenario_name==scenario] plt.plot(subplot.month, subplot.current_profit_real_estate, label=scenario) plt.legend() plt.xlabel('month') plt.ylabel('profit_nok') plt.title('Real Estate Profit At Various Annual Growth Levels') plt.show() ###Output _____no_output_____ ###Markdown As expected, the real estate market grwoth rate has a significant influence on the real estate profit. If we extrapulate using the historic annual growth rates for the last 15 years, the expected profit is 2.8 MLN NOK in 30 years (without any mortgage overpayment). Real Estate And Stock Profit At Various Growth RatesHere we look at scenarios where the mortgage overpayment amount equals the investment amount in stocks. However the annual growth rates for stocks and the real estate market may differ. In addition, we are looking at the profit in 12 months. ###Code n_months = 12 fig = plt.figure(figsize=(14, 10)) for i, amount in enumerate(list(range(5000, 20001, 5000))): to_plot = history[(history.mortgage_overpayment_amount==amount) & (history.investment_amount==amount) & (history.month==n_months)].copy() ax = plt.subplot(2, 2, i+1) to_plot_pivot = pd.pivot_table(data=to_plot, index='growth_rate_real_estate', columns='growth_rate_stocks', values='profit_ratio') sns.heatmap(to_plot_pivot, annot=True) plt.title(f'Investment Amount: {amount}') plt.suptitle(f'Real Estate Profit As Percentage Of Stock Profit After {n_months} Months \nOver Various Annual Growth Rates For Real Estate And Stocks') plt.subplots_adjust(hspace=0.3) plt.show() ###Output _____no_output_____ ###Markdown As we expect, higher real estate market growth leads to higher real estate profit and vice versa. However, there are certain cases where even lower stock market growth outperforms a slightly higher one. Profit Ratio Over Equal Investment Levels And Growth RatesHere we look at scenarios where the real estate grwoth rate equals the stock market growth rate and the mortgage overpayment equals the stock investment amount. We will plot the profitability ratio over time. ###Code to_plot = history[(history.growth_rate_real_estate==history.growth_rate_stocks) & (history.mortgage_overpayment_amount==history.investment_amount) & (history.investment_amount>0) & (history.growth_rate_stocks==round(hist_growth_rate_real_estate, 2)) & (history.month<=60)].copy() for amount in to_plot.investment_amount.unique(): subplot = to_plot[to_plot.investment_amount==amount] plt.plot(subplot.month, subplot.profit_ratio, label=amount) plt.legend() plt.xlabel('month') plt.ylabel('profit_nok') plt.title('Profit Ratio Over Time') plt.show() ###Output _____no_output_____ ###Markdown At equal investment / overpayment levels and equal annual growth rates, stocks outperform real estate in the first year. However after a year and a half, in the scenario with smallest investment, real estate outperforms stocks. For all other scenarios (where the investment amount is more or equal to 10000 NOK), real estate starts outperforming the investment after 3 years. Equal Growth Rate, No Overpayment, Maximum InvestmentHere we look at scenarios where the growth rates are equal to the historic ones, there is no mortgage overpayment and the investment is set to its maximum of 20000 NOK. ###Code to_plot = history[(history.growth_rate_real_estate==round(hist_growth_rate_real_estate, 2)) & (history.mortgage_overpayment_amount==0) & (history.investment_amount==2e4) & (history.growth_rate_stocks==round(hist_growth_rate_snp500, 2))].copy() plt.plot(to_plot.month, to_plot.cumulative_profit_stocks, label='stocks') plt.plot(to_plot.month, to_plot.current_profit_real_estate, label='real_estate') plt.legend() plt.xlabel('month') plt.ylabel('profit_nok') plt.title('Profit Over Time') plt.show() ###Output _____no_output_____ ###Markdown As we can see, with a maximum investment level and no mortgage overpayment, the stock investment strongly outperforms the real estate investment in the first 15 years. After that, the investment amount's value diminishes compared to the inreased price index. In the second half of the mortgage annuity, the real estate keeps compounding and eventually outperforms the stocks at year 23. There are two events that influence this development, namely:* The real estate investment is made in bulk at the beginning;* The interest payments diminish as the principal gets repaid;Becasue of these, the real estate keeps increasing in value as the principal gets repaid and as the real estate market keeps compounding over the years. Equal Growth Rate Various Overpayment And Investment AmountsHere we look at equal growth rates and various overpayment and investment amounts. ###Code fig = plt.figure(figsize=(14, 12)) to_plot = history[(history.growth_rate_real_estate==history.growth_rate_stocks) & (history.growth_rate_stocks==round(hist_growth_rate_real_estate, 2))].copy() for amount in list(range(5000, 20001, 5000)): subplot_1 = to_plot[(to_plot.investment_amount==amount) & (to_plot.mortgage_overpayment_amount==0)] subplot_2 = to_plot[(to_plot.investment_amount==0) & (to_plot.mortgage_overpayment_amount==amount)] plt.plot(subplot_1.month, subplot_1.cumulative_profit_stocks, color='b', alpha=0.5) plt.plot(subplot_2.month, subplot_2.current_profit_real_estate, color='r', alpha=0.5) subplot_0 = to_plot[(to_plot.investment_amount==0) & (to_plot.mortgage_overpayment_amount==0)] plt.plot(subplot_0.month, subplot_0.current_profit_real_estate, color='r', alpha=0.5) cust_lines = [Line2D([0], [0], color='b', alpha=0.5, linewidth=4), Line2D([0], [0], color='r', alpha=0.5, linewidth=4)] plt.title(f'Profit Over Time For Growth Rate Of {hist_growth_rate_real_estate:.0%}', fontsize=20) plt.xlabel('month', fontsize=14, fontweight="bold") plt.ylabel('profit_nok', fontsize=14, fontweight="bold") plt.legend(cust_lines, ['stocks', 'real_estate']) plt.show() ###Output _____no_output_____ ###Markdown global ###Code data['time'].plot(); data['_speed'].plot(); data['_moveCount'].plot(); # c f o p over time # normalized c f o p over time # I vs E over time # I vs E normalized over time #ph.add_rolling(data, 20) #ph.plot_rolling(data, 20) #ph.plot_rollingN(data, 20) ###Output _____no_output_____ ###Markdown Cross ###Code ## time ## number of moves ## record data['_crossTime'].plot() data['_crossTime'].sort_values().head(5) ###Output _____no_output_____ ###Markdown F2L ###Code ## number of moves ## records data['f2lI'].plot() data['f2lE'].plot() data['f2lMoves'].plot() ###Output _____no_output_____ ###Markdown OLL ###Code # records d_oll = data.groupby('_ollCase') d_oll['_ollITime'].mean().sort_values().plot(kind='bar') d_oll['_ollETime'].mean().sort_values().plot(kind='bar') ###Output _____no_output_____ ###Markdown PLL ###Code # records pll = data.groupby('_pllCase') pll['_pllITime'].mean().sort_values().plot(kind='bar') pll['_pllETime'].mean().sort_values().plot(kind='bar') ###Output _____no_output_____ ###Markdown Add some columns that denote year and month ###Code df['year'] = pd.DatetimeIndex(df['ACQ_DATE']).year df['month'] = pd.DatetimeIndex(df['ACQ_DATE']).month ###Output _____no_output_____ ###Markdown Check we have a full years data for each year ###Code num_months = np.zeros(len(df['year'].unique()),) for i, year in enumerate(df['year'].unique()): num_months[i] = len(df.loc[df['year'] == year,'month'].unique()) fig, ax = plt.subplots(figsize = (10,5)) sns.barplot(x = df['year'].unique(), y = num_months, ax = ax) ax.set_xlabel('Year') ax.set_ylabel('Counts') ###Output _____no_output_____ ###Markdown Nope, drop year 2000 ###Code # drop year 2000 df = df.loc[df['year'] > 2000,:] # What's going on for 2019? - Missing october.. df.loc[df['year'] == 2019,'month'].unique() ###Output _____no_output_____ ###Markdown Exploratory data analysis ###Code fig, ax = plt.subplots(figsize = (10,5)) sns.barplot(x = df['year'].value_counts().index, y = df['year'].value_counts().values, ax = ax) ax.set_title('Fires per year') ax.set_xlabel('Year') ax.set_ylabel('Counts') years = (2016, 2017, 2018, 2019) fig, ax = plt.subplots(1,4, figsize = (25,5)) for i, year in enumerate(years): sns.barplot(x = df.loc[df['year'] == year,'month'].value_counts().index, y =df.loc[df['year'] == year,'month'].value_counts().values, ax = ax[i]) ax[i].set_title('Fires per month: ' + str(year)) ax[i].set_xlabel('Month') ax[i].set_ylabel('Counts') ###Output _____no_output_____ ###Markdown Spatial plots Plot the fires on Dec 31st 2019, during the big surge of bushfires ###Code my_date = df['ACQ_DATE'].unique()[-1] fig, ax = plt.subplots(figsize = (5,5)) ax.set_title(my_date) my_map.plot(ax = ax) df[df['ACQ_DATE'] == my_date].plot(ax = ax, column='BRIGHT_T31', cmap='hot') ###Output _____no_output_____ ###Markdown Let's look over a period of years, normalized by number of fires across the same period ###Code years = (2016, 2017, 2018, 2019) num_fires = np.zeros(1,) for year in years: num_fires = num_fires + df.loc[df['year'] == year,:].shape[0] fig, ax = plt.subplots(1,4, figsize = (25,5)) for i, year in enumerate(years): counts = df.loc[df['year'] == year,'postcode'].value_counts() my_map['counts'] = np.zeros(my_map.shape[0],) for postcode in counts.index: my_map.loc[my_map['code'] == postcode, 'counts'] = counts[postcode] / num_fires * 100 ax[i].set_title(year) my_map.plot(ax = ax[i], column = 'counts', cmap='OrRd', vmax = 4, legend=True) ###Output _____no_output_____ ###Markdown Fit a simple time series forecasting model ###Code # assemble dataframe of counts of fires per date df_proph = pd.DataFrame() df_proph['ds'] = df.groupby('ACQ_DATE').count().index df_proph['y'] = df.groupby('ACQ_DATE').count().iloc[:,0].values df_proph.head() # Make the prophet model and fit on the data my_prophet = Prophet(changepoint_prior_scale=0.15) my_prophet.fit(df_proph) # Make a future dataframe for 2 years my_forecast = my_prophet.make_future_dataframe(periods=365, freq='D') # Make predictions my_forecast = my_prophet.predict(my_forecast) my_prophet.plot(my_forecast, xlabel = 'Date', ylabel = 'Fire Counts') plt.title('Fire Counts'); ###Output _____no_output_____ ###Markdown Well, last yeaer certainly was a big ol' outlier ###Code # Plot the trends and patterns my_prophet.plot_components(my_forecast); ###Output _____no_output_____ ###Markdown Regional plots Let's pull out a region in NSW that regularly has fires ###Code postcodes = (2877, 2875, 2873, 2825, 2835) my_region = gpd.GeoDataFrame() df_region = pd.DataFrame() for postcode in postcodes: region_tmp = my_map[my_map['code'] == postcode] df_tmp = df.loc[df['postcode'] == postcode,:] my_region = pd.concat((my_region, region_tmp), axis = 0) df_region = pd.concat((df_region, df_tmp), axis = 0) fig, ax = plt.subplots(figsize = (5,5)) ax.set_title('postcode: ' + str(postcode)) my_map.plot(ax = ax) my_region.plot(ax = ax, color = 'g') df_region.plot(ax = ax, column='BRIGHT_T31', cmap='hot') fig, ax = plt.subplots(figsize = (10,5)) sns.barplot(x = df_region[['year','month']].groupby('year').count().index, y = df_region[['year','month']].groupby('year').count().values.reshape(-1), ax = ax) ax.set_xlabel('Year') ax.set_ylabel('Counts') ###Output _____no_output_____ ###Markdown Fit time series forecasting model ###Code # assemble dataframe of counts of fires per date df_proph = pd.DataFrame() df_proph['ds'] = df_region.groupby('ACQ_DATE').count().index df_proph['y'] = df_region.groupby('ACQ_DATE').count().iloc[:,0].values df_proph.head() # Make the prophet model and fit on the data my_prophet = Prophet(changepoint_prior_scale=0.15) my_prophet.fit(df_proph) # Make a future dataframe for 2 years my_forecast = my_prophet.make_future_dataframe(periods=365, freq='D') # Make predictions my_forecast = my_prophet.predict(my_forecast) my_prophet.plot(my_forecast, xlabel = 'Date', ylabel = 'Fire Counts') plt.title('Fire Counts'); # Plot the trends and patterns my_prophet.plot_components(my_forecast); ###Output _____no_output_____ ###Markdown Starbucks Challenge IntroductionThis data set contains simulated data that mimics customer behavior on the Starbucks rewards mobile app. Once every few days, Starbucks sends out an offer to users of the mobile app. An offer can be merely an advertisement for a drink or an actual offer such as a discount or BOGO (buy one get one free). Some users might not receive any offer during certain weeks. Not all users receive the same offer, and that is the challenge to solve with this data set.Your task is to combine transaction, demographic and offer data to determine which demographic groups respond best to which offer type. This data set is a simplified version of the real Starbucks app because the underlying simulator only has one product whereas Starbucks actually sells dozens of products.Every offer has a validity period before the offer expires. As an example, a BOGO offer might be valid for only 5 days. You'll see in the data set that informational offers have a validity period even though these ads are merely providing information about a product; for example, if an informational offer has 7 days of validity, you can assume the customer is feeling the influence of the offer for 7 days after receiving the advertisement.You'll be given transactional data showing user purchases made on the app including the timestamp of purchase and the amount of money spent on a purchase. This transactional data also has a record for each offer that a user receives as well as a record for when a user actually views the offer. There are also records for when a user completes an offer. Keep in mind as well that someone using the app might make a purchase through the app without having received an offer or seen an offer. ExampleTo give an example, a user could receive a discount offer buy 10 dollars get 2 off on Monday. The offer is valid for 10 days from receipt. If the customer accumulates at least 10 dollars in purchases during the validity period, the customer completes the offer.However, there are a few things to watch out for in this data set. Customers do not opt into the offers that they receive; in other words, a user can receive an offer, never actually view the offer, and still complete the offer. For example, a user might receive the "buy 10 dollars get 2 dollars off offer", but the user never opens the offer during the 10 day validity period. The customer spends 15 dollars during those ten days. There will be an offer completion record in the data set; however, the customer was not influenced by the offer because the customer never viewed the offer. Data SetsThe data is contained in three files:* portfolio.json - containing offer ids and meta data about each offer (duration, type, etc.)* profile.json - demographic data for each customer* transcript.json - records for transactions, offers received, offers viewed, and offers completedHere is the schema and explanation of each variable in the files:**portfolio.json*** id (string) - offer id* offer_type (string) - type of offer ie BOGO, discount, informational* difficulty (int) - minimum required spend to complete an offer* reward (int) - reward given for completing an offer* duration (int) - time for offer to be open, in days* channels (list of strings)**profile.json*** age (int) - age of the customer * became_member_on (int) - date when customer created an app account* gender (str) - gender of the customer (note some entries contain 'O' for other rather than M or F)* id (str) - customer id* income (float) - customer's income**transcript.json*** event (str) - record description (ie transaction, offer received, offer viewed, etc.)* person (str) - customer id* time (int) - time in hours since start of test. The data begins at time t=0* value - (dict of strings) - either an offer id or transaction amount depending on the record ###Code from matplotlib.colors import ListedColormap from tqdm import tqdm import matplotlib.patches as mpatches import matplotlib.pyplot as plt import pandasql as pdsql import seaborn as sns import pandas as pd import numpy as np import math import json plt.rcParams['patch.force_edgecolor']=True # read in the json files portfolio = pd.read_json('portfolio.json', orient='records', lines=True) profile = pd.read_json('profile.json', orient='records', lines=True) transcript = pd.read_json('transcript.json', orient='records', lines=True) ###Output _____no_output_____ ###Markdown ---- Questions If we can map the behaviour and find some specific patterns about customers behaviour in using offers, hopefully the marketing team will target the right customers to be able to increase the sales.Here are a few questions we are going to answer in this notebook.1. How much we loss because of the "unecessary offer"? 2. What kind of customers that often completed the offer without viewing it? 3. How is the income differentiate between customers type?Before we answer the questions, we are going to do the data wrangling process first to clean the data so it can be analyzed. --- Data Wrangling Portfolio ###Code portfolio ###Output _____no_output_____ ###Markdown For the portfolio dataframe, we want to convert the channels column into one-hot-encoding type of column so we can analyze it better. ###Code ## PORTFOLIO PREPROCESSING channels_list = list(np.unique(list(chain(*portfolio['channels'])))) for i in channels_list: portfolio[i] = portfolio['channels'].apply(lambda x: 1 if i in x else 0) portfolio.drop(columns=['channels'], inplace=True) portfolio ###Output _____no_output_____ ###Markdown Transcript ###Code transcript.head() ###Output _____no_output_____ ###Markdown For the transcript dataframe, we want to extract the values from column `value`. There are three values in that column which are `amount`, `offer_id`, and `reward`. This preprocessing will extract those values and convert it into columns. ###Code # Convert the dictionary value into columns and concatenate with the current dataframe value = pd.io.json.json_normalize(transcript['value']) transcript = pd.concat([transcript, value], axis=1).drop(columns=['value']) # Merge the offer_id column and offer id collumn so that it only has one column transcript['offer_id'] = np.where(pd.isnull(transcript['offer_id']), transcript['offer id'], transcript['offer_id']) transcript.drop(columns=['offer id'], inplace=True) # Fill the null values with 0 transcript.fillna(0, inplace=True) transcript.head() ###Output _____no_output_____ ###Markdown Profile ###Code profile.head() profile['income'].plot.hist() plt.title('The Distribution of Customers Income') plt.show() ###Output _____no_output_____ ###Markdown The distribution of income, we can see that it is positively skewed. ###Code profile['age'].plot.hist() plt.title('The Distribution of Customers Age') plt.show() ###Output _____no_output_____ ###Markdown **The high number of values of age 118* ###Code profile[profile['age']>100]['age'].unique() ###Output _____no_output_____ ###Markdown For this dataframe, there are quite high number of null values in the gender and income columns. If we see the data, we can also see that all of the rows with null values in gender and income also have the age 118 (and for this case, we assume the customers with the age > 100 are outliers, so we are gonna treat them the same).To handle this case, I am going to fill the null values in each column (and rows with age > 100) with the median and mode of that columns (mode for gender, median for age and income) of the specific day (from `became_member_on` column).So here is the plan to fix the data.- For the `gender` column, fill the null values with mode of that day (`became_member_on` column)- For the `income` column, fill the null values with median of that day (`became_member_on` column)- For the `age` column, change all of the value of 118 to median of that day (`became_member_on` column) ###Code # Convert the became_member_on into datetime type profile['became_member_on'] = pd.to_datetime(profile['became_member_on'], format='%Y%m%d') # Create a new column with the value of the difference days between the column became_member_on and the max days profile['difference_days'] = (profile['became_member_on'].max() - profile['became_member_on']).dt.days # Find median of age median_age_per_day = profile.groupby('became_member_on', as_index=False)['age'].median() # Find median of income median_income_per_day = profile.groupby('became_member_on', as_index=False)['income'].median() # Find mode of gender mode_gender_per_day = profile.groupby('became_member_on')['gender'].agg(lambda x: pd.Series.mode(x)) mode_gender_per_day_value = [i if isinstance(i, str) else 'M' for i in mode_gender_per_day] # Convert age 118 to the median of that day age_reference = dict(zip(median_age_per_day['became_member_on'], median_age_per_day['age'])) profile['age'] = profile['age'].replace({118: None, 101: None}).fillna(profile['became_member_on'].map(age_reference)) profile.loc[profile['age'] > 100, 'age'] = profile['age'].median() # Fill the null values in gender column with the mode gender_reference = dict(zip(mode_gender_per_day.index,mode_gender_per_day_value)) profile['gender'] = profile['gender'].fillna(profile['became_member_on'].map(gender_reference)) # Fill the null values in income column with the median income_reference = dict(zip(median_income_per_day['became_member_on'], median_income_per_day['income'])) profile['income'] = profile['income'].fillna(profile['became_member_on'].map(income_reference)) profile['income'].fillna(profile['income'].median(), inplace=True) profile['age'] = profile['age'].astype(int) profile.head() ###Output _____no_output_____ ###Markdown Combining the data In order to make it easier to analyze, we are going to compile the users activity history in one dataframe (this is gonna take a while, about 9-10 minutes).Each row in the dataframe represents each offer that was being sent to each user. So we can track each offer performance for each user or for specific segment of user.The `compiled_data` dataframe will have these columns:- `person`: each customer unique id- `offer_id`:offer id- `viewed`: did customer see the offer? `0` -> no and `1` -> yes- `completed`: did customer completed the offer? `0` -> no and `1` -> yes- `view_information`: shows whether the customer saw the informational offer or not (before completed the offer)- `time_completed`: how long the customer need for completing the offer (in hour, starts after they viewed the offer)- `reward`: reward of that specific offer- `offer_type`: type of offerThen we are going to merge the `compiled_data` with `profile` and `portfolio` dataframe. ###Code offer_reference = {} for i,j in zip(portfolio['id'], portfolio['offer_type']): offer_reference[i] = j offer_duration_reference = {} for i,j in zip(portfolio['id'], portfolio['duration']): offer_duration_reference[i] = j*24 full_data = [] # Iterate through each person for person in tqdm(list(transcript['person'].unique())): not_completed = {} received = [] active = [] total_data = {} information = [] for index, row in transcript[transcript['person'] == person].iterrows(): if row['event'] == 'offer received': # Everytime there is an offer received, do this received.append(row['offer_id']) key = row['offer_id'] + '-' + str(received.count(row['offer_id'])) not_completed[key] = row['time'] total_data[key] = [row['person'], row['offer_id'], 0, 0, 0, 0] if row['event'] == 'offer viewed': # If the customers have seen the informational offer if offer_reference[row['offer_id']] == 'informational': information.append(row['offer_id']) # Everytime the offer is viewed, do this active = list(filter(lambda x: x.split('-')[0] == row['offer_id'], list(not_completed.keys()))) # If there is only one offer_id active if len(active) == 1: # Only change the value if the offer is not completed yet if active[0] in not_completed: total_data[active[0]][2] = 1 # If there are more than one offer_id active else: for offer_id in active: if (row['time'] - not_completed[offer_id]) < offer_duration_reference[row['offer_id']]: if total_data[offer_id][2] == 1: continue total_data[offer_id][2] = 1 break if row['event'] == 'offer completed': # If the users completed the offer and have seen the informational offer info = False if len(information) > 0: info = True # Everytime the offer is completed, do this active = list(filter(lambda x: x.split('-')[0] == row['offer_id'], list(not_completed.keys()))) # If there is only one offer_id active if len(active) == 1: total_data[active[0]][3] = 1 total_data[active[0]][5] = row['time'] - not_completed[active[0]] not_completed.pop(active[0]) if info: total_data[active[0]][4] = 1 continue # If there is more that one offer_id active else: for offer_id in active: if (row['time'] - not_completed[offer_id]) < offer_duration_reference[row['offer_id']]: total_data[offer_id][3] = 1 total_data[offer_id][5] = row['time'] - not_completed[offer_id] not_completed.pop(offer_id) if info: total_data[offer_id][4] = 1 break for index, value in total_data.items(): full_data += [value] # Create a dataframe based on the compile result compiled_data = pd.DataFrame(full_data, columns=['person', 'offer_id', 'viewed', 'completed', 'view_information', 'time_completed']) compiled_data.head() # Merge with the portfolio and profile dataframe compiled_data_merged = compiled_data.merge(portfolio, left_on='offer_id', right_on='id').drop(columns=['id']) complete_data = compiled_data_merged.merge(profile, left_on='person', right_on='id').drop(columns=['id']) complete_data.head() ###Output _____no_output_____ ###Markdown --- Data Exploration In this section, we are going to explore the data to answer our questions in the previous section. 1. How much we actually loss We already have the compiled dataframe, where each row represents each offer sent to each user. Column `viewed` means whether the offer has been viewed by the customers or not.Now let's calculate how much we actually gave the `reward` to those customers who didn't actually view the offer. ###Code complete_data[(complete_data['viewed'] == 0) & (complete_data['completed'] == 1)]['reward'].sum() ###Output _____no_output_____ ###Markdown Based on the data in the experiment, **we actually "lost" USD 49,032 in revenue**.If we take a look at column `time` in dataframe `transcript`, we can get maximum value of 714, which means the maximum experiment time is 714 hours = 30 days, so we can assume that the experiment is running for 30 days or a month. With that being said, on average **we have a potential loss of 49,032 x 12 = USD 588,384 of revenue in a year.**Let's take a look deeper into the case and breakdown it. ###Code query = """ SELECT complete.offer_id, complete.offer_type, total_completed, total_completed_without_view, ROUND(((1.0*total_completed_without_view) / (1.0*total_completed))*100, 2) as total_completed_without_view_ratio, 100 - ROUND(((1.0*total_completed_without_view) / (1.0*total_completed))*100, 2) as total_completed_with_view_ratio, `loss ($)` FROM (SELECT offer_id, offer_type, COUNT(*) AS total_completed FROM complete_data WHERE completed = 1 GROUP BY offer_id) complete JOIN (SELECT offer_id, offer_type, COUNT(*) AS total_completed_without_view, SUM(reward) AS `loss ($)` FROM complete_data WHERE viewed = 0 AND completed = 1 GROUP BY offer_id) complete_not_view ON complete.offer_id = complete_not_view.offer_id ORDER BY total_completed_without_view_ratio DESC """ completed_without_view = pdsql.sqldf(query) completed_without_view table = completed_without_view.groupby('offer_type', as_index=False) \ .agg({'loss ($)': ['sum'], 'total_completed_without_view': ['sum']}) table.columns = [' '.join(col).strip() for col in table.columns.values] table viz = completed_without_view[['offer_id', 'loss ($)', 'offer_type']].set_index('offer_id') \ .sort_values('loss ($)') colors = tuple(np.where(viz['offer_type'] == 'discount', '#C6E5CC', '#6fb08e')) viz['loss ($)'].plot(kind='barh', color=colors, figsize=(10,5)) discount = mpatches.Patch(color='#C6E5CC', label='Discount') bogo = mpatches.Patch(color='#6fb08e', label='BOGO') plt.legend(handles=[bogo, discount]) plt.title('Total Loss for Each Offer Id') plt.xlabel('Loss ($)') plt.show() ###Output _____no_output_____ ###Markdown **Discount**Total: 5,391Loss: USD 17,802 **Buy One Get One (BOGO)**Total: 4,616Loss: USD 31,230 There are 8 offers, and **most of the loss are from BOGO offer**.Eventhough the total completed offer of discount is higher than BOGO, in fact **the total loss of BOGO offer is almost double the total loss of discount.** 2. Customers that complete the offer without viewing it before Let's take a look into gender specifically. Is there any difference in behaviour between Male, Female, and Others? ###Code query = """ SELECT complete.offer_type, complete.gender, complete.complete_without_view, complete_view.complete_with_view, (complete.complete_without_view + complete_view.complete_with_view) total_complete FROM (SELECT offer_type, gender, COUNT(*) complete_without_view FROM complete_data WHERE viewed = 0 AND completed = 1 GROUP BY offer_type, gender) complete JOIN (SELECT offer_type, gender, COUNT(*) complete_with_view FROM complete_data WHERE viewed = 1 AND completed = 1 GROUP BY offer_type, gender) complete_view ON complete.offer_type = complete_view.offer_type AND complete.gender = complete_view.gender """ user_demographic_summary = pdsql.sqldf(query) user_demographic_summary['complete_without_view_ratio'] = round((user_demographic_summary['complete_without_view'] / user_demographic_summary['total_complete']) * 100, 2) user_demographic_summary['complete_with_view_ratio'] = round((user_demographic_summary['complete_with_view'] / user_demographic_summary['total_complete']) * 100, 2) user_demographic_summary['gender'] = user_demographic_summary['gender'].map({'F': 'Female', 'M': 'Male', 'O': 'Others'}) user_demographic_summary fig, (ax, ax2) = plt.subplots(ncols=2, sharey=True) ax.title.set_text('BOGO Offer') ax.set_xlabel('Completeness Percentage') user_demographic_summary[user_demographic_summary['offer_type'] == 'bogo'] \ [['gender', 'complete_without_view_ratio', 'complete_with_view_ratio']] \ .set_index('gender') \ .plot(kind='barh', legend=False, stacked=True, colormap=ListedColormap(sns.color_palette("ch:2.5,-.2,dark=.6")), figsize=(13,5), ax=ax) ax2.title.set_text('Discount Offer') ax2.set_xlabel('Completeness Percentage') user_demographic_summary[user_demographic_summary['offer_type'] == 'discount'] \ [['gender', 'complete_without_view_ratio', 'complete_with_view_ratio']] \ .set_index('gender') \ .plot(kind='barh', stacked=True, colormap=ListedColormap(sns.color_palette("ch:2.5,-.2,dark=.6")), figsize=(13,5), ax=ax2) plt.legend(loc="upper left", bbox_to_anchor=(1,1.02)) plt.show() ###Output _____no_output_____ ###Markdown This visualization shows the percentages customers who complete the offer with and without viewing the offer.As we can see, in the BOGO Offer there is not much differencess between Male and Female, but **in the Discount Offer we can see that Female has slightly higher ratio than Male and Others, with 33.4% compared to 27.5% and 21.9% respectively**.It indicates that the Female tends to be less "discount-driven" than Male and Others. ###Code avg_spending = transcript[transcript['event'] == 'transaction'].merge(profile, left_on='person', right_on='id') \ .groupby('gender', as_index=False)['amount'] \ .mean() \ .rename(columns={'amount': 'average_spending_per_transaction'}) \ .sort_values('average_spending_per_transaction') avg_spending['gender'] = avg_spending['gender'].map({'F': 'Female', 'M': 'Male', 'O': 'Others'}) avg_spending avg_spending.set_index('gender').plot(kind='barh', color='#6fb08e', legend=False) plt.title('Average Spending per Transaction') plt.xlabel('Amount ($)') plt.show() ###Output _____no_output_____ ###Markdown The visualization also confirms our previous assumption about Female customers, it shows that **the average spending per transaction for Female is higher than Male and Others, with the average of USD 16,3 per transaction**. ###Code spending_distribution = transcript[transcript['event'] == 'transaction'].merge(profile, left_on='person', right_on='id') plt.hist(spending_distribution[spending_distribution['gender'] == 'M']['amount'], range=(0, 40), alpha=0.5, bins=40, label='Male') plt.hist(spending_distribution[spending_distribution['gender'] == 'F']['amount'], range=(0, 40), alpha=0.5, bins=40, label='Female') plt.legend(loc='upper right') plt.title('Spending per Transaction Distribution') plt.xlabel('Amount ($)') plt.show() ###Output _____no_output_____ ###Markdown The spending distribution of each gender also shows that most of the Male customers tend to spend less money, where Female customers seems balanced in all the population. 3. Differences in average income between customers type ###Code query = """ SELECT complete.offer_type, complete.complete_without_view_income, complete_view.complete_with_view_income FROM (SELECT offer_type, AVG(income) complete_without_view_income FROM complete_data WHERE viewed = 0 AND completed = 1 GROUP BY offer_type) complete JOIN (SELECT offer_type, AVG(income) complete_with_view_income FROM complete_data WHERE viewed = 1 AND completed = 1 GROUP BY offer_type) complete_view ON complete.offer_type = complete_view.offer_type """ income_differences = pdsql.sqldf(query) income_differences plt.figure(figsize=(12,5)) sns.barplot(data=income_differences.melt(id_vars='offer_type'), y='offer_type', x='value', hue='variable', palette=sns.color_palette("ch:2.5,-.2,dark=.05")) plt.legend(loc="upper left", bbox_to_anchor=(1,1.02)) plt.title('Average Income per Completeness and Offer Type') plt.xlabel('average income ($)') plt.show() ###Output _____no_output_____ ###Markdown Georgia LDU Closure Analysis (2012&ndash;2016) ###Code from helper import * show_dfs = False ###Output _____no_output_____ ###Markdown Datasets Patients- Data from the *Emory MCH Linked Vital Records Data Repository* (private data source) is used to identify per-patient birth data for births in 2011 by birthing LDU, payor status, race, ethnicity, and county of residence. ###Code # Load patient data. patients = pd.read_csv('data/patients.csv') show_df(patients, show_dfs) ###Output _____no_output_____ ###Markdown Labor & Delivery Units- Data from *Georgia Maternal and Infant Health Research Group (GMIHRG)* (private data source) is used to identify the LDUs of interest and their birth counts in 2008, 2011, and 2012; numbers of OBs, FPs, and CNMs in 2011 and 2016; and average ages of OBs in 2011 and 2016.- Data from the *Emory MCH Linked Vital Records Data Repository* (private data source) is used to obtain 2001 and 2011 number of births per-LDU to residents and non-residents of the county the LDU is in. It is also the source of LDU names that we consider standard.- Data from the [*U.S. Census Bureau*](https://www.census.gov/programs-surveys/geography/guidance/geo-areas/urban-rural/2010-urban-rural.html) is used to identify urban areas in 2010.- Data from [*Google Maps*](https://www.google.com/maps/d/u/0/edit?mid=1_xMZrJgPbcInCcq8CgdmwuncWMWSOoJj&usp=sharing) is used to identify, for each LDU, the closest (other) LDU (within Georgia), the number of driving miles to the closest LDU, the closest urban area (in any state), and the number of driving miles to the closest urban area in 2011. ###Code # Load LDU data. ldus = pd.read_csv('data/ldus.csv') show_df(ldus, show_dfs) ###Output _____no_output_____ ###Markdown Regional Data (Counties and PCSAs)- Data from [*OASIS*](https://oasis.state.ga.us) is used to obtain birth and population counts in 2001 and 2011 by county.- Data from the [*Office of Management and Budget (OMB)*](https://obamawhitehouse.archives.gov/sites/default/files/omb/bulletins/2013/b-13-01.pdf) is used to identify counties contained in the Atlanta-Sandy Springs-Roswell Metropolitan Statistical Area (MSA) based on the 2010 Census (see page 23).- Data from the [*U.S. Census Bureau*](https://data.census.gov/cedsci/table?q=&t=Income%20and%20Poverty&g=0400000US13%240500000&y=2011&tid=ACSST5Y2011.S1903) is used to obtain 2011 median household income by county.- Data from the [*Georgia Board of Health Care Workforce*](https://healthcareworkforce.georgia.gov/basic-physician-needs-reports-pcsa-primary-care-service-area) in the year 2008 is used to map counties to PCSAs. ###Code # Load county data. counties = pd.read_csv('data/counties.csv') show_df(counties, show_dfs) ###Output _____no_output_____ ###Markdown Determining the Sample Inclusion Criteria for Rural PCSAsPCSAs included in the sample are *rural*, meaning that in 2011:1. They did not contain any counties that were within the Atlanta MSA.2. They did not contain any counties with population at least 50,000.3. They contained exactly one LDU. ###Code # Construct a DataFrame of 96 PCSAs. pcsas = pd.DataFrame({'PCSA' : [x+1 for x in range(96)]}) # Identify PCSAs that have no counties in the Atlanta MSA. df = (counties.groupby('PCSA')['In MSA (2010)'].sum() == 0).to_frame('Inc. MSA') df1 = pcsas.join(df, on='PCSA') # Identify PCSAs whose counties all have population strictly less than 50K. df = (counties.groupby('PCSA')['Population'].max() < 50000).to_frame('Inc. Pop') df2 = pcsas.join(df, on='PCSA') # Identify PCSAs containing exactly one LDU. df = ldus.groupby('County').size().to_frame('# LDUs') df = counties.join(df, on='County') df = (df.groupby('PCSA')['# LDUs'].sum() == 1).to_frame('Inc. 1 LDU') df3 = pcsas.join(df, on='PCSA') # Determine which PCSAs are in sample. pcsas['In Sample'] = df1['Inc. MSA'] & df2['Inc. Pop'] & df3['Inc. 1 LDU'] show_df(pcsas, show_dfs) ###Output _____no_output_____ ###Markdown Narrowing Patients, LDUs, and Counties to the SampleWith the 30 PCSAs in sample identified, the three other datasets can be winnowed down. All calculations from here on out can safely assume, due to Inclusion Criteria 3, that there is a 1:1 correspondence between LDUs and PCSAs. ###Code # Collect the counties that are in sample. df1 = counties.join(pcsas.set_index('PCSA'), on='PCSA') s_counties = df1.drop(df1[df1['In Sample'].map(lambda x: not x)].index) del s_counties['In Sample'] # Collect the LDUs that are in sample. df2 = ldus.join(df1[['County', 'In Sample']].set_index('County'), on='County') s_ldus = df2.drop(df2[df2['In Sample'].map(lambda x: not x)].index) del s_ldus['In Sample'] # Collect the patients that are in sample. df3 = patients.join(df2[['LDU', 'In Sample']].set_index('LDU'), on='LDU') s_patients = df3.drop(df3[df3['In Sample'].map(lambda x: not x)].index) del s_patients['In Sample'] # Finally, collect the PCSAs that are in sample. s_pcsas = pcsas.drop(pcsas[pcsas['In Sample'].map(lambda x: not x)].index) del s_pcsas['In Sample'] ###Output _____no_output_____ ###Markdown Derived ColumnsBased on the raw data above, we derive a series of new columns at the patient, LDU, and PCSA levels. Patient Payor Types/Groups and ResidenceWe aggregate different payor statuses into types and groups according to the dictionaries below. We also identify which patients gave birth to an LDU within their county and PCSA of residence. ###Code # Assign patients their payor types. ptypes = {'Unknown': 'Other/Unknown', 'Champus': 'Commercial/Employer-Based', 'Medicaid': 'Medicaid', 'Commercial Insurance': 'Commercial/Employer-Based', 'Other Government Assistance': 'Other Govt.', 'Other': 'Other/Unknown', 'Self Pay': 'Self Pay'} s_patients['Payor Type'] = s_patients['Payor'].map(lambda x: ptypes[x]) # Assign patients their payor groups. pgroups = {'Commercial/Employer-Based': 'Commercial/Employer-Based', 'Medicaid': 'Assistance/Self Pay', 'Other Govt.': 'Assistance/Self Pay', 'Self Pay': 'Assistance/Self Pay', 'Other/Unknown': 'Other/Unknown'} s_patients['Payor Group'] = s_patients['Payor Type'].map(lambda x: pgroups[x]) # Use the counties of each LDU to identify whether patients gave birth in their # county of residence. df1 = s_patients.join(ldus[['LDU', 'County']].set_index('LDU'), on='LDU') s_patients['In Res. County'] = s_patients['Res. County'] == df1['County'] # Use the counties of each LDU and the mappings of counties to PCSAs to identify # whether patients gave birth in their PCSA of residence. df2 = s_patients.join(counties[['County', 'PCSA']].set_index('County'), \ on='Res. County') df3 = df1.join(counties[['County', 'PCSA']].set_index('County'), on='County') s_patients['In Res. PCSA'] = df2['PCSA'] == df3['PCSA'] show_df(s_patients, show_dfs) ###Output _____no_output_____ ###Markdown Patient Demographics, Payor Types/Groups, and Resident Births by LDUUsing the 2011 patient-level data in the above table, we aggregate the following measures by LDU:- Number of patients by race (Black, white, and other)- Number of patients by payor type (commercial/employer-based, Medicaid, self pay, other government, and other/unknown)- Number of patients by payor group (commercial/employer-based and assistance/self pay)- Number of patients in each pairwise intersection of Black vs. white and commercial/employer-based vs. assistance/self pay- Number of births to residents and non-residents of the LDU's county and PCSA ###Code # Count total number of patients per LDU. df1 = s_patients.groupby('LDU').size().to_frame('# Patients') s_ldus = s_ldus.join(df1, on='LDU') # Count patients by race per LDU. df1 = s_patients.groupby(['LDU', 'Race']).size().to_frame('#').reset_index() for race in ['Black or African-American', 'White']: df2 = df1[df1['Race'] == race] df2 = s_ldus.join(df2[['LDU', '#']].set_index('LDU'), on='LDU') s_ldus[race.split()[0] + ' Patients'] = df2['#'] s_ldus['Other/Unknown Race'] = s_ldus['# Patients'] - s_ldus['Black Patients'] \ - s_ldus['White Patients'] # Count patients by payor type per LDU. df1 = s_patients.groupby(['LDU', 'Payor Type']).size().to_frame('#').reset_index() for ptype in ['Commercial/Employer-Based', 'Medicaid', 'Self Pay', \ 'Other Govt.', 'Other/Unknown']: df2 = df1[df1['Payor Type'] == ptype] df2 = s_ldus.join(df2[['LDU', '#']].set_index('LDU'), on='LDU') s_ldus[ptype + ' Payors'] = df2['#'].fillna(0) # Count patients by payor group per LDU. df1 = s_patients.groupby(['LDU', 'Payor Group']).size().to_frame('#').reset_index() for pgroup in ['Commercial/Employer-Based', 'Assistance/Self Pay']: df2 = df1[df1['Payor Group'] == pgroup] df2 = s_ldus.join(df2[['LDU', '#']].set_index('LDU'), on='LDU') s_ldus[pgroup + ' Payors'] = df2['#'].fillna(0) # Count patients by intersection of race and payor groups. df1 = s_patients.groupby(['LDU', 'Race', 'Payor Group']).size()\ .to_frame('#').reset_index() for race, pgroup in product(['Black or African-American', 'White'], \ ['Commercial/Employer-Based', 'Assistance/Self Pay']): df2 = df1[(df1['Race'] == race) & (df1['Payor Group'] == pgroup)] df2 = s_ldus.join(df2[['LDU', '#']].set_index('LDU'), on='LDU') s_ldus[race.split()[0] + ' ' + pgroup] = df2['#'].fillna(0) # Count births to county and PCSA residents. for area in ['County', 'PCSA']: res_str = area + ' Res. Patients' nonres_str = area + ' Non-Res. Patients' df1 = s_patients.groupby(['LDU', 'In Res. ' + area]).size()\ .to_frame(res_str).reset_index() df2 = df1[df1['In Res. ' + area]] s_ldus = s_ldus.join(df2[['LDU', res_str]].set_index('LDU'), on='LDU') s_ldus[nonres_str] = s_ldus['# Patients'] - s_ldus[res_str] show_df(s_ldus, show_dfs) ###Output _____no_output_____ ###Markdown Provider Count and Load by LDUWe count providers by the number of OB equivalents per LDU in 2011 and use it to calculate the number of births per provider. An OB equivalent is calculated as:$$(\OBs) + \frac{1}{1.55} \cdot (\CNMs) + \frac{0.7}{1.55} \cdot (\FPs)$$We also identify the birth volume of the closest LDU. ###Code # Calculate OB equivalents and births per provider. s_ldus['OB Equiv.'] = s_ldus['# OBs'] + s_ldus['# CNMs'] / 1.55 \ + (0.7/1.55) * s_ldus['# FPs'] s_ldus['Births per Provider'] = s_ldus['# Births'] / s_ldus['OB Equiv.'] # Get the 2011 birth volume at the closest LDU. s_ldus = s_ldus.join(ldus[['LDU', '# Births']].set_index('LDU'), \ on='Closest GA LDU', rsuffix=' at Closest GA LDU') show_df(s_ldus, show_dfs) ###Output _____no_output_____ ###Markdown County Birth Volume and Population Demographics by PCSAWe additionally calculate, per-PCSA: the birth volume (2011), population (2011), female population (2011), Black female population (2011), white female population (2011), other female population (2011), and household income (2011). Median household income is available on a per-county basis; to calculate a PCSA's household income, we take a weighted average of its counties' median household incomes weighted by each county's proportion of the PCSA population. Mathematically, for a PCSA $p$ containing counties $c_1, \ldots, c_k$ we have:$$\text{income}(p) = \sum_{i=1}^k \left(\frac{\text{population}(c_i)}{\text{population}(p)}\right) \cdot \text{income}(c_i) = \frac{1}{\text{population}(p)} \cdot \sum_{i=1}^k \text{population}(c_i) \cdot \text{income}(c_i)$$ ###Code # Calculate the birth volume per-PCSA in 2011, the total population per-PCSA in # 2011, and the female populations per-PCSA in 2011. for m in ['# Births', 'Population', 'Females 15-44']: s_pcsas = s_pcsas.join(s_counties.groupby('PCSA')[m].sum().to_frame(m), \ on='PCSA') # Calculate populations of Black, white, and other race females by PCSA. for m in ['Black Females 15-44', 'White Females 15-44']: df = s_counties.groupby('PCSA')[m].sum().to_frame('#') df = s_pcsas.join(df, on='PCSA') s_pcsas[m] = df['#'] s_pcsas['Other Females 15-44'] = s_pcsas['Females 15-44'] \ - s_pcsas['Black Females 15-44'] \ - s_pcsas['White Females 15-44'] # Calculate the median household income per-PCSA using population-weighted # proportions by county. df = s_counties.groupby('PCSA')\ .apply(lambda x: (x['Population']*x['Median Household Income'])\ .sum()).to_frame('incprod') df = s_pcsas.join(df, on='PCSA') s_pcsas['Household Income'] = df['incprod'] / df['Population'] ###Output _____no_output_____ ###Markdown Finally, we identify which PCSAs had LDUs that closed (recall the assumption of 1:1 LDU:PCSA correspondence by Inclusion Criterium 3). ###Code close_str = 'Closed 2012-2016' df = s_ldus.groupby('County')[close_str].sum().to_frame(close_str) df = s_counties[['County', 'PCSA']].join(df, on='County').fillna(0) df = df.groupby('PCSA')[close_str].sum().to_frame(close_str) s_pcsas = s_pcsas.join(df, on='PCSA') show_df(s_pcsas, show_dfs) ###Output _____no_output_____ ###Markdown Dumping the Processed DataWe write the processed patient, LDU, county, and PCSA data to file for easier inspection. ###Code s_pcsas.to_csv('data/processed_pcsas.csv') s_counties.to_csv('data/processed_counties.csv') s_ldus.to_csv('data/processed_ldus.csv') s_patients.to_csv('data/processed_patients.csv') ###Output _____no_output_____ ###Markdown AnalysisThere are two classes of measures $m$ that we report statistics on.1. *Counts* (e.g., the number of births in a given year, household incomes, or populations), for which we report the total $\sum_{p \in P} m(p)$ and, for each subset of $P^{open}, P^{closed} \subseteq P$, the: - Median: $median(\{m(p) : p \in P^{open/closed}\})$ - Min: $min(\{m(p) : p \in P^{open/closed}\})$ - Max: $max(\{m(p) : p \in P^{open/closed}\})$ - p-value of a [Mann-Whitney U rank test](https://docs.scipy.org/doc/scipy/reference/generated/scipy.stats.mannwhitneyu.htmlscipy.stats.mannwhitneyu) on $\{m(p) : p \in P^{open}\}$ vs. $\{m(p) : p \in P^{closed}\}$2. *Proportions* (e.g., the percentage of the female population in a given PCSA that is Black), for which we report the same statistics as for Counts (but the total remains the raw total, not the sum of the proportions). Odds Ratios An odds ratio for Black and white populations by PCSA is investigated against LDU closure status. ###Code two_by_two(s_pcsas, 'Black Females 15-44', 'White Females 15-44') ###Output Black Females 15-44, Closed: 8,494.00 White Females 15-44, Closed: 17,795.00 Black Females 15-44, Open: 45,326.00 White Females 15-44, Open: 101,442.00 ###Markdown Using the [OpenEpi](https://openepi.com/TwobyTwo/TwobyTwo.htm) calculator, we obtain an odds ratio of $1.068 \in [1.039, 1.099]$. An odds ratio for Black and white patients with known payor groups is investigated against LDU closure status. ###Code # Create a temporary DataFrame combining known payor groups. df = s_ldus['Closed 2012-2016'].to_frame() df['Black Known Payor Group'] = s_ldus['Black Commercial/Employer-Based'] \ + s_ldus['Black Assistance/Self Pay'] df['White Known Payor Group'] = s_ldus['White Commercial/Employer-Based'] \ + s_ldus['White Assistance/Self Pay'] two_by_two(df, 'Black Known Payor Group', 'White Known Payor Group') ###Output Black Known Payor Group, Closed: 399.00 White Known Payor Group, Closed: 444.00 Black Known Payor Group, Open: 3,214.00 White Known Payor Group, Open: 5,212.00 ###Markdown Using the [OpenEpi](https://openepi.com/TwobyTwo/TwobyTwo.htm) calculator, we obtain an odds ratio of $1.457 \in [1.264, 1.680]$.To check if payor group is confounding, we further partition these black and white patients counts by payor groups "Assistance/Self Pay" and "Commercial/Employer-Based". ###Code for pgroup in ['Assistance/Self Pay', 'Commercial/Employer-Based']: two_by_two(s_ldus, 'Black '+pgroup, 'White '+pgroup) print() ###Output Black Assistance/Self Pay, Closed: 378.00 White Assistance/Self Pay, Closed: 372.00 Black Assistance/Self Pay, Open: 2,982.00 White Assistance/Self Pay, Open: 3,876.00 Black Commercial/Employer-Based, Closed: 21.00 White Commercial/Employer-Based, Closed: 72.00 Black Commercial/Employer-Based, Open: 232.00 White Commercial/Employer-Based, Open: 1,336.00 ###Markdown Using the [OpenEpi](https://openepi.com/TwobyTwo/TwobyTwo.htm) calculator on these strata, we obtain a Cochran-Mantel-Haenszel adjusted odds ratio of $1.344 \in [1.163, 1.553]$. An odds ratio for Assistance/Self Pay and Commercial/Employer-Based patient payor groups is investigated against LDU closure status. ###Code two_by_two(s_ldus, 'Assistance/Self Pay Payors', 'Commercial/Employer-Based Payors') ###Output Assistance/Self Pay Payors, Closed: 827.00 Commercial/Employer-Based Payors, Closed: 97.00 Assistance/Self Pay Payors, Open: 8,062.00 Commercial/Employer-Based Payors, Open: 1,654.00 ###Markdown Using the [OpenEpi](https://openepi.com/TwobyTwo/TwobyTwo.htm) calculator, we obtain an odds ratio of $1.749 \in [1.408, 2.173]$. An odds ratio for PCSA resident patients vs. PCSA non-resident patients is investigated against LDU closure status. ###Code two_by_two(s_ldus, 'PCSA Res. Patients', 'PCSA Non-Res. Patients') ###Output PCSA Res. Patients, Closed: 753.00 PCSA Non-Res. Patients, Closed: 370.00 PCSA Res. Patients, Open: 6,511.00 PCSA Non-Res. Patients, Open: 4,658.00 ###Markdown Using the [OpenEpi](https://openepi.com/TwobyTwo/TwobyTwo.htm) calculator, we obtain an odds ratio of $1.456 \in [1.278, 1.658]$. Table 1: Race and Payor Group by LDU Closure Status (2011) PCSA DataEach PCSA's 2011 total population ("Population"), 2011 female population ("Females 15-44"), and 2011 household income ("Household Income") are investigated as Counts.Each PCSA's 2011 Black female population ("Black Females 15-44"), white female population ("White Females 15-44"), and other race female population ("Other Females 15-44") are investigated as Proportions. ###Code # Count measure statistics. for m in ['Population', 'Females 15-44', 'Household Income']: count_stats(s_pcsas, m) print() # Proportion measure statistics. for m in ['Black Females 15-44', 'White Females 15-44', 'Other Females 15-44']: proportion_stats(s_pcsas, m, 'Females 15-44') print() ###Output Population ---------- Total: 935,890.000 Open: median=26,827.000 (9,679.000 - 61,530.000) Closed: median=23,035.500 (17,125.000 - 31,086.000) Mann-Whit: pval=0.250633658 Females 15-44 ------------- Total: 178,044.000 Open: median=5,053.500 (1,646.000 - 12,226.000) Closed: median=4,397.500 (3,281.000 - 6,405.000) Mann-Whit: pval=0.296230053 Household Income ---------------- Total: 1,049,522.682 Open: median=34,248.881 (31,123.253 - 43,146.000) Closed: median=33,588.500 (30,427.000 - 43,704.000) Mann-Whit: pval=0.630949434 % Black Females 15-44 --------------------- Total: 53,820.000 Open: median=30.163% (0.884% - 53.831%) Closed: median=34.450% (1.530% - 54.653%) Mann-Whit: pval=0.595269252 % White Females 15-44 --------------------- Total: 119,237.000 Open: median=67.419% (42.783% - 97.054%) Closed: median=63.439% (43.491% - 95.706%) Mann-Whit: pval=0.667427898 % Other Females 15-44 --------------------- Total: 4,987.000 Open: median=2.582% (1.707% - 4.466%) Closed: median=2.102% (1.652% - 2.763%) Mann-Whit: pval=0.028637110 ###Markdown Patient Race by LDUEach LDU's Black patients ("Black Patients"), white patients ("White Patients"), and other race patients ("Other/Unknown Race") are investigated as Proportions. ###Code for m in ['Black Patients', 'White Patients', 'Other/Unknown Race']: proportion_stats(s_ldus, m, '# Patients') print() ###Output % Black Patients ---------------- Total: 4,101.000 Open: median=31.851% (0.392% - 66.667%) Closed: median=41.918% (1.463% - 72.487%) Mann-Whit: pval=0.402128752 % White Patients ---------------- Total: 6,713.000 Open: median=56.038% (22.180% - 94.828%) Closed: median=40.285% (25.397% - 95.122%) Mann-Whit: pval=0.493941308 % Other/Unknown Race -------------------- Total: 1,478.000 Open: median=9.444% (3.072% - 45.113%) Closed: median=3.844% (2.116% - 27.193%) Mann-Whit: pval=0.173998568 ###Markdown Patient Insurance by LDUEach LDU's breakdown of patients by payor type ("Commercial/Employer-Based", "Medicaid", "Self Pay", "Other Govt.", and "Other/Unknown") are investigated as Proportions. ###Code for ptype in ['Commercial/Employer-Based', 'Medicaid', 'Self Pay', \ 'Other Govt.', 'Other/Unknown']: proportion_stats(s_ldus, ptype+' Payors', '# Patients') print() ###Output % Commercial/Employer-Based Payors ---------------------------------- Total: 1,751.000 Open: median=10.798% (0.196% - 30.508%) Closed: median=5.264% (3.285% - 25.366%) Mann-Whit: pval=0.157773567 % Medicaid Payors ----------------- Total: 7,390.000 Open: median=71.435% (5.501% - 91.892%) Closed: median=62.939% (29.268% - 94.545%) Mann-Whit: pval=0.781194897 % Self Pay Payors ----------------- Total: 921.000 Open: median=4.447% (0.000% - 39.850%) Closed: median=4.343% (0.000% - 26.496%) Mann-Whit: pval=0.979852638 % Other Govt. Payors -------------------- Total: 578.000 Open: median=0.343% (0.000% - 62.069%) Closed: median=0.427% (0.000% - 2.555%) Mann-Whit: pval=0.781194897 % Other/Unknown Payors ---------------------- Total: 1,652.000 Open: median=1.375% (0.000% - 86.531%) Closed: median=11.419% (0.000% - 43.415%) Mann-Whit: pval=0.526704560 ###Markdown Table 2: Birth Volume and Location by LDU Closure Status (2011)The number of births by PCSA (" Births) is investigated as a Count measure. ###Code count_stats(s_pcsas, '# Births') ###Output # Births -------- Total: 11,976.000 Open: median=365.000 (101.000 - 776.000) Closed: median=313.000 (213.000 - 361.000) Mann-Whit: pval=0.493941308 ###Markdown Each LDU's 2011 birth volume (" Births") is investigated as a Count measure. ###Code count_stats(s_ldus, '# Births') ###Output # Births -------- Total: 12,452.000 Open: median=435.500 (111.000 - 1,105.000) Closed: median=197.000 (110.000 - 274.000) Mann-Whit: pval=0.002684519 ###Markdown Each LDU's 2011 birth volume at the nearest Georgia LDU (" Births at Closest GA LDU"), distance to nearest Georgia LDU ("Miles to Closest GA LDU"), and distance to nearest urban area ("Miles to Closest Urban Area") are investigated as Counts. ###Code for m in ['# Births at Closest GA LDU', 'Miles to Closest GA LDU', \ 'Miles to Closest Urban Area']: count_stats(s_ldus, m) print() ###Output # Births at Closest GA LDU -------------------------- Total: 18,519.000 Open: median=327.000 (110.000 - 2,569.000) Closed: median=773.500 (118.000 - 3,454.000) Mann-Whit: pval=0.064681066 Miles to Closest GA LDU ----------------------- Total: 700.000 Open: median=24.500 (7.000 - 34.000) Closed: median=25.000 (19.000 - 32.000) Mann-Whit: pval=0.595269252 Miles to Closest Urban Area --------------------------- Total: 1,314.000 Open: median=41.500 (26.000 - 64.000) Closed: median=41.500 (21.000 - 69.000) Mann-Whit: pval=0.742624732 ###Markdown Each LDU's 2011 number of births to county residents ("County Res. Patients") is investigated as a Proportion. ###Code proportion_stats(s_ldus, 'County Res. Patients', '# Patients') ###Output % County Res. Patients ---------------------- Total: 6,710.000 Open: median=55.198% (6.518% - 89.723%) Closed: median=66.140% (48.718% - 88.182%) Mann-Whit: pval=0.092526630 ###Markdown Table 3: Obstetric Providers by LDU Closure StatusEach LDU's providers expressed as the number of OBs (" OBs"), CNMs (" CNMs"), FPs (" FPs"), and OB eqivalents ("OB Equiv.") as well as the average annual birth volume per provider ("Births per Provider") and average OB age ("Ave. OB Age") are investigated as Counts. ###Code for m in ['# OBs', '# CNMs', '# FPs', 'OB Equiv.', 'Births per Provider', \ 'Ave. OB Age']: count_stats(s_ldus, m) print() ###Output # OBs ----- Total: 79.000 Open: median=3.000 (0.000 - 6.000) Closed: median=1.500 (1.000 - 2.000) Mann-Whit: pval=0.043787630 # CNMs ------ Total: 15.000 Open: median=0.000 (0.000 - 4.000) Closed: median=0.000 (0.000 - 1.000) Mann-Whit: pval=0.939655593 # FPs ----- Total: 11.000 Open: median=0.000 (0.000 - 4.000) Closed: median=0.000 (0.000 - 2.000) Mann-Whit: pval=0.526704560 OB Equiv. --------- Total: 93.645 Open: median=3.000 (1.000 - 7.935) Closed: median=2.000 (1.645 - 2.097) Mann-Whit: pval=0.043787630 Births per Provider ------------------- Total: 3,974.626 Open: median=133.638 (55.500 - 233.000) Closed: median=108.250 (55.000 - 143.966) Mann-Whit: pval=0.033120290 Ave. OB Age ----------- Total: 1,252.800 Open: median=46.000 (40.000 - 59.500) Closed: median=48.000 (45.000 - 60.000) Mann-Whit: pval=0.308300395 ###Markdown Figure 1: Median Proportions of Black Women per PCSA and LDU ###Code labels = ['% Black Women 14-45 Years Old\nper PCSA (2011)', \ '% Black Birthing Patients\nper LDU (2011)'] openvals = [30.163, 31.851] closedvals = [34.450, 41.918] pvals = [0.595269252, 0.402128752] plot_medians(labels, openvals, closedvals, pvals, fmt='{:.2f}%', anno='-fig1') ###Output _____no_output_____ ###Markdown Figure 2: Median Birth Volumes and Provider Loads ###Code labels = ['PCSA Birth Volume', 'LDU Birth Volume', 'Births at Nearest LDU', \ 'Average Annual Births\nper Provider'] openvals = [365, 435.5, 327, 133.638] closedvals = [313, 197, 773.5, 108.250] pvals = [0.493941308, 0.002684519, 0.064681066, 0.033120290] plot_medians(labels, openvals, closedvals, pvals, fmt='{:.1f}', anno='-fig2') ###Output _____no_output_____ ###Markdown ![title](file/title.png) THIS REPOSITORY IS CREATED TO ACCOMPLISH DICODING: MACHINE LEARNING FOR BEGINNER CLASS ASSIGNMENTS ###Code from google.colab import drive drive.mount('/content/drive') ###Output Go to this URL in a browser: https://accounts.google.com/o/oauth2/auth?client_id=947318989803-6bn6qk8qdgf4n4g3pfee6491hc0brc4i.apps.googleusercontent.com&redirect_uri=urn%3aietf%3awg%3aoauth%3a2.0%3aoob&response_type=code&scope=email%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdocs.test%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive%20https%3a%2f%2fwww.googleapis.com%2fauth%2fdrive.photos.readonly%20https%3a%2f%2fwww.googleapis.com%2fauth%2fpeopleapi.readonly Enter your authorization code: ·········· Mounted at /content/drive ###Markdown 1. RENAME IMAGE WITH IT'S FOLDER NAME ###Code import os #get dataset path path = r'/content/drive/My Drive/dataset' #loop over dataset folder for folder in os.listdir(path): #if value inside folder are real folder if os.path.isdir(os.path.join(path,folder)): #create new path ipath = os.path.join(path,folder) #then iterate it again over new path for i, img in enumerate(os.listdir(ipath)): #rename image inside it with it's folder name os.rename(os.path.join(ipath,img),os.path.join(ipath,folder+str(i)+'.png')) ###Output _____no_output_____ ###Markdown 2. STORE IMAGE AND ITS LABEL TO VARIABLE ###Code import os import re from skimage.io import imread, imsave from skimage.transform import resize from skimage.filters import median import numpy as np from sklearn.preprocessing import LabelEncoder imagedata = [] imagelabel = [] #get dataset path path = r'/content/drive/My Drive/dataset' #loop over dataset folder for folder in os.listdir(path): #if value inside folder are real folder if os.path.isdir(os.path.join(path,folder)): #create new path ipath = os.path.join(path,folder) #then iterate it again over new path for i, img in enumerate(os.listdir(ipath)): #search image name & create it as label label = re.match('[a-zA-Z]+',img) label = label.group() #read image, resize it then apply median filter image = imread(os.path.join(ipath,img)) image = resize(image,(150,150)) image = median(image) #save image and label imagelabel.append(label) imagedata.append(image) from matplotlib import pyplot as plt from skimage.filters import median from skimage.color import rgb2gray from skimage.feature import canny median = median(image) gray = rgb2gray(image) graym = rgb2gray(median) cannyy = canny(gray,sigma=2) #visualize normal image plt.figure(figsize=[10,5]) plt.subplot(1,5,1) plt.imshow(image) plt.title('normal') #visualize median filter image plt.subplot(1,5,2) plt.imshow(median) plt.title('median') #visualize grayscale filter image plt.subplot(1,5,3) plt.imshow(gray,cmap='gray') plt.title('grayscale') #visualize grayscale + median filter image plt.subplot(1,5,4) plt.imshow(graym,cmap='gray') plt.title('grayscale + median') #visualize canny filter image plt.subplot(1,5,5) plt.imshow(cannyy,cmap='gray') plt.title('canny') plt.show() ###Output _____no_output_____ ###Markdown BECAUSE KERAS IMAGEDATAGENERATOR CANT TAKE GRAYSCALE IMAGE, WE USE MEDIAN FILTER BECAUSE THIS FILTER CONTRAST IS GOOD FOR FEATURE EXTRACTION ###Code from keras.utils import to_categorical #input image into imagedata imagedata = np.array(imagedata) #transform label into labelencoder one imagelabell = LabelEncoder().fit_transform(imagelabel) #after labelencoder, transform our label into onehot (because our label is nominal not ordinal, we must remember this) imagelabell = to_categorical(imagelabell,num_classes=3,dtype='float') from sklearn.model_selection import train_test_split #split our dataset into 80% training data and 20 % test data X_train, X_test, y_train, y_test = train_test_split(imagedata, imagelabell, test_size=0.2) from keras.preprocessing.image import ImageDataGenerator #create training data generator train_datagen = ImageDataGenerator( rotation_range= 45, horizontal_flip= True, vertical_flip= True, brightness_range=[0.5,1] ) #create test data generator test_datagen = ImageDataGenerator( rotation_range= 45, horizontal_flip= True, vertical_flip= True, brightness_range=[0.5,1] ) #flow our traning data train_generator = train_datagen.flow( X_train, y_train, batch_size = 32, shuffle = True, ) #flow our test data test_generator = test_datagen.flow( X_test, y_test, batch_size = 1, shuffle= True, ) from matplotlib import pyplot as plt #input our train data generator into variable imgs, labels = next(train_generator) #change the format of our image img = np.array(imgs).astype(np.uint8) #setting our matplotlib figure size fig = plt.figure(figsize=[25,100]) #create loop for output our generated train dataset and the label for i in range(len(img)): sp = fig.add_subplot(len(img),len(img)/2,i+1) sp.axis('off') sp.set_title(labels[i], fontsize=16) plt.imshow(img[i]) from keras.models import Sequential from keras.layers import Conv2D, MaxPool2D, Flatten, Dense, Dropout from keras.callbacks.callbacks import EarlyStopping, ModelCheckpoint #create sequential neural network model = Sequential() #add convolutional layer with 32 node, 3x3 kernel size and input shape of 150x150x pixel and 3 color channel, activate our activation layer = 'relu' model.add(Conv2D(32,3,3, input_shape=(150,150,3), activation='relu')) model.add(MaxPool2D(pool_size=(2,2))) #add convolutional layer with 32 node, 3x3 kernel size and input shape of 150x150x pixel and 3 color channel, activate our activation function = 'relu' model.add(Conv2D(32,3,3, input_shape=(150,150,3), activation='relu')) model.add(MaxPool2D(pool_size=(2,2))) #add convolutional layer with 32 node, 3x3 kernel size and input shape of 150x150x pixel and 3 color channel, activate our activation function = 'relu' model.add(Conv2D(64,3,3, input_shape=(150,150,3), activation='relu')) model.add(MaxPool2D(pool_size=(2,2))) #add convolutional layer with 64 node, 3x3 kernel size and input shape of 150x150x pixel and 3 color channel, activate our activation function = 'relu' model.add(Flatten()) model.add(Dense(64, activation='relu')) #dropout some of neuron to avoid death neuron model.add(Dropout(0.5)) #output layer, because our model is multiclass category, we use softmax activation function, dont forget our label are 3, so create 3 node output model.add(Dense(3, activation='softmax')) #compile for model with these parameter model.compile(loss='categorical_crossentropy', optimizer='adam', metrics=['accuracy'], ) #create early stopping that stop our training when val_loss not decreasing about 3 epoch stopping = EarlyStopping(monitor = 'val_loss', patience = 3, mode = 'min', restore_best_weights = True, ) #fit our model with these parameter history = model.fit( x=X_train, y=y_train, batch_size=32, epochs=100, validation_data= (X_test, y_test), shuffle=True, use_multiprocessing=True, callbacks = [stopping] ) #Our convolutional neural network summary model.summary() import seaborn as sns #create list of number training, because our earlystop is activated at epoch 12, then set np arrage to 0,12 n_train = np.arange(0,12) sns.set() #set our matplotlib figure plt.figure(figsize=[20,10]) plt.subplot(1,2,1) plt.title('SUMMARY OF MODEL LOSS',fontweight='bold') sns.lineplot(n_train,history.history['loss'], label='training_loss') sns.lineplot(n_train,history.history['val_loss'], label='test_loss') plt.ylabel('Loss') plt.xlabel('Epoch') plt.subplot(1,2,2) plt.title('SUMMARY OF MODEL ACCURACY',fontweight='bold') sns.lineplot(n_train,history.history['accuracy'], label='training_accuracy') sns.lineplot(n_train,history.history['val_accuracy'], label='testing_accuracy') plt.xlabel('Epoch') plt.ylabel('Accuracy') plt.legend() plt.show() #output our training summary plt.savefig('/content/drive/My Drive/summary.png') from sklearn.metrics import classification_report, accuracy_score #check our accuracy and f1 score (mandatory) predict = model.predict(X_test) print(f'accuracy of our model is\t:\t{accuracy_score(y_test.argmax(axis=1), predict.argmax(axis=1))}%\n\n') print(classification_report(y_test.argmax(axis=1), predict.argmax(axis=1))) #save our model so when we need our model again we can just load it model.save_weights('/content/drive/My Drive/dataset/mymodel.h5') import numpy as np from google.colab import files from keras.preprocessing import image import matplotlib.pyplot as plt %matplotlib inline uploaded = files.upload() for fn in uploaded.keys(): # predicting images path = fn img = image.load_img(path, target_size=(150,150)) imgplot = plt.imshow(img) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = model.predict(images, batch_size=10) label = str(classes) if label == '[[1. 0. 0.]]': print('PHOTO IS PAPER') elif label == '[[0. 1. 0.]]': print('PHOTO IS ROCK') elif label == '[[0. 0. 1.]]': print('PHOTO IS SCRISSORS') import numpy as np from google.colab import files from keras.preprocessing import image import matplotlib.pyplot as plt %matplotlib inline uploaded = files.upload() for fn in uploaded.keys(): # predicting images path = fn img = image.load_img(path, target_size=(150,150)) imgplot = plt.imshow(img) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = model.predict(images, batch_size=10) label = str(classes) if label == '[[1. 0. 0.]]': print('PHOTO IS PAPER') elif label == '[[0. 1. 0.]]': print('PHOTO IS ROCK') elif label == '[[0. 0. 1.]]': print('PHOTO IS SCRISSORS') import numpy as np from google.colab import files from keras.preprocessing import image import matplotlib.pyplot as plt %matplotlib inline uploaded = files.upload() for fn in uploaded.keys(): # predicting images path = fn img = image.load_img(path, target_size=(150,150)) imgplot = plt.imshow(img) x = image.img_to_array(img) x = np.expand_dims(x, axis=0) images = np.vstack([x]) classes = model.predict(images, batch_size=10) label = str(classes) if label == '[[1. 0. 0.]]': print('PHOTO IS PAPER') elif label == '[[0. 1. 0.]]': print('PHOTO IS ROCK') elif label == '[[0. 0. 1.]]': print('PHOTO IS SCRISSORS') ###Output _____no_output_____ ###Markdown The Tidy Data ###Code doc1.sample(20) ###Output _____no_output_____ ###Markdown Show me all highlights ###Code doc1[doc1['hl-id'].notnull()].groupby("hl-id")['word'].apply(lambda x: " ".join(x)) ###Output _____no_output_____ ###Markdown Show me all my annotations ###Code doc1[doc1['is-annotation']].groupby("hl-id")['word'].apply(lambda x: " ".join(x)) ###Output _____no_output_____ ###Markdown Show me tagged sections ###Code sids = set(doc1[doc1.tag]['section-id']) doc1[doc1['section-id'].isin(sids)].groupby("section-id")['word'].apply(lambda x: " ".join(x)) ###Output _____no_output_____ ###Markdown Plot of the most frequent words for each section ###Code doc1.groupby("section")['word'].apply(lambda x: nltk.FreqDist(x)) ###Output _____no_output_____ ###Markdown Pokemon GO shiny rates: a Bayesian perspective[The Silph Road](https://thesilphroad.com/) is the largest online and in-person network of Pokemon GO players and researchers. We investigate the question of how accurate their proposed shiny rates are by putting on our Bayesian hat, setting the "consensus" shiny rate as our prior, and using Silph field studies as observed data. Background: Silph, shinies, and statisticsThe Silph Road organizes regional groups of Pokemon GO players, sets up in-person tournaments, and conducts field studies to learn about game mechanics of Pokemon GO. Of particular interest to us here is the *shiny rate*, which is the probability that a Pokemon found in the wild will be shiny (for non-Pokemon players, this just means it's rare and specially coloured; it's like a trophy). Though not publicized by the game developer Niantic, this rate has been of great interest to Pokemon GO players (after all, shinies are not too far off from loot boxes).Silph publishes [field studies](https://thesilphroad.com/science/oddish-shiny-rates/) to determine shiny rates, and these studies have resulted in two consensus rates: one "standard" rate of 1/450 (used for the vast majority of Pokemon), and one "boosted" rate of 1/150 (used during certain events). Recently, however, those rates have been [called into question](https://old.reddit.com/r/TheSilphRoad/comments/dd79zk/its_time_to_rethink_the_assumed_shiny_rates_from/) on the Silph subreddit, saying that they are not consistent with the collected data. I am going to re-examine these findings from a Bayesian perspective. MethodologyI went through the Silph archives looking for their shiny rate publications posted this year, and gathered them into a file `rates.csv`. The null rows in this file were the result of Silph not reporting their exact numbers (e.g., see [Spoink](https://thesilphroad.com/science/lunar-new-year-boosted-lucky-rates/) ("over 16,500 Spoink") and [Adventure Week](https://thesilphroad.com/science/quick-discovery/adventure-week-shiny-rates/) ("over 30,000 encounters each")). I chose to keep these in the dataset in case someone asks "what happened?" Additionally, the presence of two rows from the Gligar event were the result of an apparent change in the shiny rate after ~24 hours, which I am taking to be fact. ###Code import pandas as pd rates = pd.read_csv("rates.csv") rates.sample(5) ###Output _____no_output_____ ###Markdown Let's compute the "rarity", defined as `n_encounters / n_shinies`. A rarity R means that we saw shinies with a rate of 1 in R. ###Code rates["rarity"] = rates["n_encounters"] / rates["n_shiny"] rates = rates.dropna() rates.sample(5) ###Output _____no_output_____ ###Markdown Domain knowledge tells us that there are three classes of shiny rates here: a highly boosted one (around 1 in 60, for Alolan Exeggutor and Meltan), one boosted one (which Silph claims to be 1 in 150), and one normal one (which Silph claims to be 1 in 450). We can use this to partition the dataset manuallly, discarding the highly boosted samples because they're not relevant to this debate. ###Code boosted = rates[rates["rarity"].between(70, 200)].sort_values("date").reset_index(drop=True) unboosted = rates[rates["rarity"] > 200].sort_values("date").reset_index(drop=True) boosted unboosted ###Output _____no_output_____ ###Markdown Let's start with the proposed boosted shiny rate of 1 in 150. We'll come back to the standard one later. The boosted shiny rate: the Bayesian wayFrequentist statistics would construct a confidence interval on these rates--it's a simple proportions test--and call it a day. Indeed, that's what both Silph (see every publication they put out) and [critics of Silph](https://old.reddit.com/r/TheSilphRoad/comments/dd6ln1/world_wide_oddish_shiny_rates/f2egcsx/) have done. After constructing this confidence interval, we simply check if 1/150 lies within it.But we can do better than this yes/no response. Given that we believe that the boosted shiny rate is 1 in 150, the Bayesian way of thinking provides us with a natural way of incorporating this into our analysis: as a prior. ###Code import arviz as az import pymc3 as pm az.style.use("fivethirtyeight") ###Output _____no_output_____ ###Markdown Setting priorsLet's use a [Beta](https://en.m.wikipedia.org/wiki/Beta_distribution) prior over p, since a Beta can be used as a distribution over probabilities. Using the [success rate interpretation](https://stats.stackexchange.com/a/47782) of the Beta, our prior will be fairly weak: equivalent to having seen 10 shinies in 1500 encounters. Put otherwise, our prior is that anything between 1 in 100 and 1 in 300 is plausible.We'll add a second variable, rarity, which is 1 / p as defined before. This makes it easier to use phrases like "1 in 150" or "1 in N," and is more intuitive when talking about extremely small probabilities. Through the rest of this document, we'll mostly focus on the plots of the rarity. ###Code with pm.Model() as model: p = pm.Beta("p", alpha=10, beta=1490) rarity = pm.Deterministic("rarity", 1. / p) prior_samples = pm.sample_prior_predictive(samples=10000, model=model) axes = az.plot_density( prior_samples, var_names=["p", "rarity"], point_estimate=None, credible_interval=0.99, shade=0.5, figsize=(12, 4), ) ###Output _____no_output_____ ###Markdown From this, we can see that while 1/150 is at the center of our prior beliefs, we wouldn't be surprised with a rarity of 1 in 100 or 1 in 200 either. This is without having collected any data--if *all* we had heard was "the shiny rate is 1 in 150," but we weren't sure about that 150 number, this plot represents a plausible range of values. Adding dataOne advantage of the Bayesian approach is that it lets us add as much or as little data as we have. We will demonstrate how our beliefs in the shiny rate change over time as we show our model more data (i.e., as we progress through time and have more shinies released). ###Code from typing import Tuple def encounters_and_shiny(df: pd.DataFrame, species_name: str) -> Tuple[float, float]: """Given a species name, retrieve the number of encounters and number of shinies""" row = df[df.name == species_name].iloc[0] return (row["n_encounters"], row["n_shiny"]) assert encounters_and_shiny(boosted, "sneasel") == (1588, 13) assert encounters_and_shiny(unboosted, "sentret") == (19297, 54) ###Output _____no_output_____ ###Markdown Beacuse each encounter is independently shiny with probability p, a binomial distribution is appropriate for modeling the number of shinies we see. We will use Markov Chain Monte Carlo to learn the likely distributions over our parameters (shiny rate and rarity). In lay terms, we will try to infer a distribution of most probable values for those parameters, little by little as we see more data. We'll start with just Bronzor. ###Code with model: n_encounters, n_shiny = encounters_and_shiny(boosted, "bronzor") bronzor = pm.Binomial("bronzor", n=n_encounters, p=p, observed=n_shiny) trace = pm.sample(1000, chains=4) _ = az.plot_trace(trace) ###Output _____no_output_____ ###Markdown This plot represents what we might have believed in February 2019, after seeing 15 out of 2479 shinies for Bronzor. The left curves represent the likely ranges for the shiny rate p and the rarity 1-in-N. For those unfamiliar with MCMC, ignore the fuzzy-caterpillar-like plots on the right; for those familiar with it, this model exhibits excellent sampling behavior.Notice how we're already seeing that these distributions are a little bit tighter. We see virtually no likelihood of the rate being 1 in 300 now, but earlier we did. Meanwhile, 1 in 150 remains a highly likely shiny rate given our limited data.Let's add the next Pokemon we had an event for, Horsea. ###Code with model: n_encounters, n_shiny = encounters_and_shiny(boosted, "horsea") horsea = pm.Binomial("horsea", n=n_encounters, p=p, observed=n_shiny) trace = pm.sample(1000, chains=4) _ = az.plot_trace(trace) ###Output _____no_output_____ ###Markdown Because we observed a rate of 1 in 114 for Poliwag, the likelihood for the rarity has now shifted much further left. It is now almost entirely implausible for the shiny rate to be any lower than 1 in 200, and even 1 in 150 is starting to look unlikely.The next shiny released was Nidoran M. ###Code with model: n_encounters, n_shiny = encounters_and_shiny(boosted, "nidoran_m") nidoran_m = pm.Binomial("nidoran_m", n=n_encounters, p=p, observed=n_shiny) trace = pm.sample(1000, chains=4) _ = az.plot_trace(trace) ###Output _____no_output_____ ###Markdown Nidoran's observed rarity was 1 in 107 over 5700 encounters, shifting our rarity curve evne further left, and now it's becoming more clear that 1 in 150 is a pretty unlikely shiny rate. Let's do this one more time for Sneasel. ###Code with model: n_encounters, n_shiny = encounters_and_shiny(boosted, "sneasel") sneasel = pm.Binomial("sneasel", n=n_encounters, p=p, observed=n_shiny) trace = pm.sample(1000, chains=4) _ = az.plot_trace(trace) ###Output _____no_output_____ ###Markdown At this point (perhaps earlier) I would feel confident saying that the shiny rate, whatever it is, is not 1 in 150. The Sneasel event happened in July 2019, and I'm writing this in October, so clearly that wasn't enough for the Pokemon GO community. Fortunately, four more events happened between then and now, and we can pass them all at once. ###Code with model: n_encounters, n_shiny = encounters_and_shiny(boosted, "poliwag") poliwag = pm.Binomial("poliwag", n=n_encounters, p=p, observed=n_shiny) n_encounters, n_shiny = encounters_and_shiny(boosted, "gligar_later") gligar = pm.Binomial("gligar", n=n_encounters, p=p, observed=n_shiny) n_encounters, n_shiny = encounters_and_shiny(boosted, "yanma") yanma = pm.Binomial("yanma", n=n_encounters, p=p, observed=n_shiny) n_encounters, n_shiny = encounters_and_shiny(boosted, "oddish") oddish = pm.Binomial("oddish", n=n_encounters, p=p, observed=n_shiny) trace = pm.sample(1000, chains=4) _ = az.plot_trace(trace) ###Output _____no_output_____ ###Markdown We can confidently say that **it is extremely unlikely that the boosted shiny rate is 1 in 150.** It is much more plausible that the rate is in the neighborhood of 1 in 120, as 150 hasn't even registered on our posterior plot of the rarity.Notice how natural a fit the Bayesian way of thinking was: we have some prior beliefs (that the rate is 1 in 150), and some data (the Silph studies), and we can marry the two together to get a posterior (the plot we see above). It's clear that the data do not support our prior beliefs, but that's okay; we're researchers, and that's how this is supposed to work. The normal shiny rate (supposedly 1 in 450)Let's look next at the normal shiny rate, which is supposedly 1 in 450. For brevity's sake, I won't take us through the step-by-step process again, but rather pass all the data at once. ###Code with pm.Model() as model: p = pm.Beta("p", alpha=10, beta=4490) rarity = pm.Deterministic("rarity", 1. / p) prior_samples = pm.sample_prior_predictive(samples=10000, model=model) axes = az.plot_density( prior_samples, var_names=["p", "rarity"], point_estimate=None, credible_interval=0.99, shade=0.5, figsize=(12, 4), ) ###Output _____no_output_____ ###Markdown Our prior is again relatively uninformative because we're not very confident in the particular value of 1 in 450. Let's add the data. ###Code with model: for name in unboosted.name.values: n_encounters, n_shiny = encounters_and_shiny(unboosted, name) _ = pm.Binomial(name, n=n_encounters, p=p, observed=n_shiny) trace = pm.sample(2000, chains=4) _ = az.plot_trace(trace) ###Output _____no_output_____ ###Markdown Second Head ###Code model_dir = '/home/lizhaochen/fyp/fyp-long-tail-recognition/logs/ImageNet_LT/stage1/e90_0.2/e90_0.2.pth' checkpoint = torch.load(model_dir, map_location=torch.device('cpu')) model_state = checkpoint['state_dict_best'] print(model_state.keys()) first_dot_product = torch.norm(model_state['classifier']['module.fc.weight'], 2, 1, keepdim=True).squeeze(1).tolist() second_dot_product = torch.norm(model_state['second_dot_product']['module.fc.weight'], 2, 1, keepdim=True).squeeze(1).tolist() ###Output _____no_output_____ ###Markdown Learnable Logits Weight ###Code model_dir = '/home/lizhaochen/fyp/fyp-long-tail-recognition/logs/ImageNet_LT/stage1/ImageNet_LT_90_coslrres50/ImageNet_LT_90_coslrres50_with_weight.pth' checkpoint = torch.load(model_dir, map_location=torch.device('cpu')) model_state = checkpoint['state_dict_best'] print(model_state.keys()) w1 = model_state['w1']['module.logitsweight'].tolist() w2 = model_state['w2']['module.logitsweight'].tolist() ###Output _____no_output_____ ###Markdown Number of Effective Samples ###Code df = pd.read_csv("./analysis/label.csv") df.head() df.sort_values(by='label_count', ascending=False).reset_index().label_count.plot(xlabel='class index', ylabel='number of training samples') df['w1'] = w1 df['w2'] = w2 df['cls_norm_ce'] = first_dot_product df['cls_norm_cekl'] = second_dot_product df_sorted = df.sort_values(by="label_count", ascending=False) df_sorted['w1'].reset_index()['w1'].plot(xlabel='class index sorted from low to high', ylabel='w1') df_sorted['cls_norm_ce'].reset_index()['cls_norm_ce'].plot(legend=True) df_sorted['cls_norm_cekl'].reset_index()['cls_norm_cekl'].plot(legend=True) df_sorted['w2'].reset_index()['w2'].plot(xlabel='class index sorted from low to high', ylabel='w2') ###Output _____no_output_____ ###Markdown Temperature Softmax ###Code a = torch.tensor([7., 5., 2., 5., 10., 3.]) result = [] x = [0,1,2,3,4,5] for t in [0.1, 1, 2, 10]: result.append(torch.nn.functional.softmax(a/t).tolist()) fig, axs = plt.subplots(2, 2) axs[0, 0].bar(x, result[0]) axs[0, 0].set_title('T=0.1') axs[0, 0].set_xticks(x) axs[0, 1].bar(x, result[1]) axs[0, 1].set_title('T=1') axs[0, 1].set_xticks(x) axs[1, 0].bar(x, result[2]) axs[1, 0].set_title('T=2') axs[1, 0].set_xticks(x) axs[1, 1].bar(x, result[3]) axs[1, 1].set_title('T=10') axs[1, 1].set_xticks(x) for ax in axs.flat: ax.set(xlabel='class', ylabel='probability') # Hide x labels and tick labels for top plots and y ticks for right plots. for ax in axs.flat: ax.label_outer() ###Output _____no_output_____ ###Markdown sigmoid attention weight ###Code df = pd.read_csv("sigmoid_weight.csv") df_sorted = df.sort_values(by="freq") df_sorted.reset_index().plot(x='freq', y='w') with open("test_loss_dict.pkl", 'rb') as f: data = pickle.load(f) ###Output _____no_output_____ ###Markdown SQLAlchemy Homework - Surfs Up! ###Code %matplotlib inline from matplotlib import style style.use('fivethirtyeight') import matplotlib.pyplot as plt import seaborn as sns import numpy as np import scipy.stats as stats import pandas as pd import datetime as dt ###Output _____no_output_____ ###Markdown Reflect Tables into SQLAlchemy ORM ###Code # Python SQL toolkit and Object Relational Mapper import sqlalchemy from sqlalchemy.ext.automap import automap_base from sqlalchemy.orm import Session from sqlalchemy import create_engine, func from sqlalchemy import inspect engine = create_engine("sqlite:///Resources/hawaii.sqlite") # reflect an existing database into a new model Base = automap_base() # reflect the tables Base.prepare(engine, reflect=True) # We can view all of the classes that automap found Base.classes.keys() # Base.metadata.tables # Save references to each table Measurement = Base.classes.measurement Station = Base.classes.station # print columns of the measurement table inspector = inspect(engine) cols = inspector.get_columns('Measurement') for col in cols: print(col['name'], col['type']) # print columns of the station table cols = inspector.get_columns('Station') for col in cols: print(col['name'], col['type']) # Create our session (link) from Python to the DB session = Session(engine) ###Output _____no_output_____ ###Markdown Exploratory Climate Analysis Precipitation Analysis ###Code # Design a query to retrieve the last 12 months of precipitation data and plot the results # acquiring the last date of the data point last_date_sel = ["Select date From Measurement Group By date Order By date Desc"] last_date = engine.execute(*last_date_sel).fetchone() # design a query to retrieve the last 12 months of precipitation data and plot the results # determining date of last 12 month date from data point last_12m_date = dt.datetime.strptime(last_date[0],"%Y-%m-%d") - dt.timedelta(days = 365) # query to retrieve precipitation data in the last 12 months (grouped by month) precip_by_month = session.query(func.strftime("%m",Measurement.date), func.sum(Measurement.prcp)).\ group_by(func.strftime("%m",Measurement.date)).\ filter(Measurement.date >= last_12m_date) # converting to dataframe precip_by_month_df = pd.DataFrame(precip_by_month,columns={'month':precip_by_month[0],'prcp':precip_by_month[1]}) precip_by_month_df.head() # Use Pandas Plotting with Matplotlib to plot the data # plotting precipitation data in the last 12 months # setting figure size plt.figure(figsize=(18,8)); # defining horizontal bar chart plt.barh(precip_by_month_df.month, precip_by_month_df.prcp) # setting title & labels plt.xlabel('Precipitation [inches]') plt.ylabel('Month') plt.title('Precipitation in 12 months [08-2016 till 08-2017]') plt.grid(True); #plt.savefig('Images/precipitation_by_month.png') # displaying the chart plt.show() # Calculate the date 1 year ago from the last data point in the database # retrieving last date data point from given dataset last_date_sel = ["Select date From Measurement Group By date Order By date Desc"] last_date = engine.execute(*last_date_sel).fetchone() one_year_ago = dt.datetime.strptime(last_date[0], "%Y-%m-%d") - dt.timedelta(days = 365) print('--------------------------------------------------------') print(f' The date 1 year ago from the data point is {one_year_ago.strftime("%Y-%m-%d")}.') print('---------------------------------------------------------') # Perform a query to retrieve the data and precipitation scores # retrieving precipitation data in the last 12 month (by date), ordering by date data = session.query(Measurement.date, Measurement.prcp).\ filter(Measurement.date >= last_12m_date).\ group_by(Measurement.date) # verifying data returning from query for row in data.limit(5): print(row) # save the query results as a Pandas DataFrame and set the index to the date column # sort the dataframe by date measure_df = pd.DataFrame(data, columns=['Date', 'Precipitation']).sort_values('Date').set_index('Date') # removing NaN values in the dataset measure_df = measure_df.dropna() # reseting index measure_df.reset_index(inplace=True) # Use Pandas to calcualte the summary statistics for the precipitation data measure_df.describe() # plotting chart for precipitation measure_df.plot('Date','Precipitation', color='b',figsize=(12,8), legend='Precipitation'); # setting labels plt.xticks(rotation=90,horizontalalignment='right', fontweight='light', fontsize='small'); plt.ylabel('Inches') plt.xlabel('Date') #plt.savefig('Images/precipitation.png') plt.show() # max, min precipitation max_prcp = measure_df.Precipitation.max() min_prcp = measure_df.Precipitation.min() print('------------------------------------------------------------------') print(f' The maximum and minimum precipitation recorded is: {max_prcp} inches, and {min_prcp} inches') print('------------------------------------------------------------------') # average precipitation by month by_month_measure_df = measure_df.copy() by_month_measure_df['Date'] = by_month_measure_df['Date'].apply(lambda x: x[5:7]) avg_by_month_df = by_month_measure_df.groupby('Date').mean() avg_by_month_df.reset_index(inplace=True) avg_by_month_df.head() print('----------------------------------------------------------------------------------') print(f'The average precipitation [Inches] by month recorded in the dataset is as follows:') print('----------------------------------------------------------------------------------') for row in avg_by_month_df.iterrows(): print(f' {row[1][0]} : {round(row[0:2][1][1],2)}') ###Output ---------------------------------------------------------------------------------- The average precipitation [Inches] by month recorded in the dataset is as follows: ---------------------------------------------------------------------------------- 01 : 0.01 02 : 0.13 03 : 0.09 04 : 0.07 05 : 0.09 06 : 0.01 07 : 0.01 08 : 0.01 09 : 0.08 10 : 0.02 11 : 0.02 12 : 0.06 ###Markdown Station Analysis ###Code # Design a query to show how many stations are available in this dataset? station_counts = session.query(Station.station).count() stations_name = session.query(Measurement.station).distinct().all() print('-------------------------------------------------') print(f' There are {station_counts} stations available in the dataset.') print('-------------------------------------------------') stations_name # What are the most active stations? (i.e. what stations have the most rows)? query = ["Select station, count(station) From Measurement Group By station Order By count(station) Desc"] most_active = engine.execute(*query).fetchone() print('---------------------------------------------------------------------------------') print(f'The most active station is {most_active[0]} with total number of measurement is at {most_active[1]}.') print('---------------------------------------------------------------------------------') # List the stations and the counts in descending order. query = ["Select station, count(station) From Measurement Group By station Order By count(station) Desc"] station_list = engine.execute(*query).fetchall() print('---------------------------------------------------------') print('List the stations and the counts in descending order:') print('---------------------------------------------------------') i = 1 for station in station_list: print(' ',i,')', station[0],': ', station[1]) i +=1 # Using the station id from the previous query, calculate the lowest temperature recorded, # highest temperature recorded, and average temperature of the most active station? sel_station = 'USC00519281' lowest_temp = session.query(func.min(Measurement.tobs)).\ filter(Measurement.station == sel_station).\ group_by(Measurement.station) # highest temperature highest_temp = session.query(func.max(Measurement.tobs)).\ filter(Measurement.station == sel_station).\ group_by(Measurement.station) # avergage temperature avg_temp = session.query(func.avg(Measurement.tobs)).\ filter(Measurement.station == sel_station).\ group_by(Measurement.station, Measurement.date) print('--------------------------------------------------------------------------------') print(f' Station {sel_station} recorded lowest: {round(lowest_temp[0][0],2)}F,\ average: {round(avg_temp[0][0],2)}F, and highest: {round(highest_temp[0][0],2)}F') print('--------------------------------------------------------------------------------') # Choose the station with the highest number of temperature observations. # Query the last 12 months of temperature observation data for this station and plot the results as a histogram sel_station = 'USC00519281' Sel = [Measurement.date, Measurement.tobs] sel_station_data = session.query(*Sel).filter(Measurement.date >= one_year_ago).\ filter(Measurement.station == sel_station) # convert to dataframe sel_station_df = pd.DataFrame(sel_station_data, columns=['Date', 'Temperature']).sort_values('Date').set_index('Date') sel_station_df #.reset_index(inplace=True) sel_station_df.head() # plotting the results as a histogram plt.figure(figsize=(10,8)); ax = sel_station_df.plot.hist(bins=12, alpha=0.75, figsize=(10,8), color='b'); # setting labels and title plt.ylabel('Frequency') plt.xlabel('Temperature [F]') plt.grid(True) plt.title(f'Temperature in last 12 months at the station {sel_station}') #plt.savefig('Images/station-histogram.png') plt.show() ###Output _____no_output_____ ###Markdown Bonus: Challenge Assignment Temperature Analysis I * Hawaii is reputed to enjoy mild weather all year. Is there a meaningful difference between the temperature in, for example, June and December? ###Code # retrieving average temperature by month across all years avg_tmp_by_month = session.query(func.strftime("%Y-%m",Measurement.date), func.avg(Measurement.tobs)).\ group_by(func.strftime("%Y-%m",Measurement.date)) # converting to dataframe avg_tmp_df = pd.DataFrame(avg_tmp_by_month, columns=['Month', 'Temp']) avg_tmp_df.head() # re-setting to month format (mm) avg_tmp_df.Month = avg_tmp_df.Month.apply(lambda x: x[5:7]) # filtering average temperature for the month of June & December jun_dec_avg_tmp = avg_tmp_df.loc[(avg_tmp_df["Month"] =='06') | (avg_tmp_df["Month"] =='12'),] jun_dec_avg_tmp.head() ###Output _____no_output_____ ###Markdown • Use the t-test to determine whether the difference in the means, if any, is statistically significant. Will you use a paired t-test, or an unpaired t-test? Why? ###Code jun_dec_avg_tmp.boxplot("Temp", by="Month", figsize=(8, 8)); plt.show() #jun_avg_tmp.boxplot("Temp", by="Month", figsize=(10, 8)) jun_avg_tmp = avg_tmp_df.loc[avg_tmp_df["Month"] =='06',] dec_avg_tmp = avg_tmp_df.loc[avg_tmp_df["Month"] =='12',] stats.ttest_ind(jun_avg_tmp.Temp, dec_avg_tmp.Temp, equal_var=False) ###Output _____no_output_____ ###Markdown * Use the t-test to determine whether the difference in the means, if any, is statistically significant. Will you use a paired t-test, or an unpaired t-test? Why? Hypothesis test:The null hypothesis is that the average temperature in June and December is different and the alternative hypothesisis there is no different in average temperature between June and December.First, looking at the above box chart, the average temperature in June and December in Hawaii is vastly different.As pvalue is much greater than 0.05, there isn't enough evidence to reject the above null hypothesis. t-testBased on the calculation, the t-test is statistically significant. In this test, we use a paired t-test because we want to compare the average temperature in June vs December (two samples) month extracting from the same population data. Temperature Analysis II ###Code # This function called `calc_temps` will accept start date and end date in the format '%Y-%m-%d' # and return the minimum, average, and maximum temperatures for that range of dates def calc_temps(start_date, end_date): """TMIN, TAVG, and TMAX for a list of dates. Args: start_date (string): A date string in the format %Y-%m-%d end_date (string): A date string in the format %Y-%m-%d Returns: TMIN, TAVE, and TMAX """ return session.query(func.min(Measurement.tobs), func.round(func.avg(Measurement.tobs),1), func.max(Measurement.tobs)).\ filter(Measurement.date >= start_date).filter(Measurement.date <= end_date).all() # function usage example print(calc_temps('2012-02-28', '2012-03-05')) # Use your previous function `calc_temps` to calculate the tmin, tavg, and tmax # for your trip using the previous year's data for those same dates. # assigning dates for planning trip arrival_date = "2017-01-12" departure_date = "2017-01-20" temp_during_trip = calc_temps(arrival_date, departure_date) print('---------------------------------------------------------------------------------------------') print(f'The lowest, average and highest temperature during the period {arrival_date} till {departure_date}:') print(f' {temp_during_trip[0][0]:.1f}F, {temp_during_trip[0][1]:.1f}F and {temp_during_trip[0][2]:.1f}F') print('---------------------------------------------------------------------------------------------') # Plot the results from your previous query as a bar chart. # Use the average temperature for the y value # Use the peak-to-peak (tmax-tmin) value as the y error bar (yerr) fig, ax = plt.subplots(1, 1, figsize=(6,9)) ax.bar([1], temp_during_trip[0][1], yerr=temp_during_trip[0][2]-temp_during_trip[0][0], width=0.8, color='pink'); # setting range values for x & y axis ax.set_xlim(0.08, 1.8) ax.set_ylim(0, 100) # Use "Trip Avg Temp" as your Title and set the axis labels plt.title('Trip Avg Temp') plt.ylabel('Temp(F)') # turning off x ticks labels plt.xticks([1],('')) # saving image #plt.savefig('Images/temperature.png') # displaying the chart plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Daily Rainfall Average ###Code # Calculate the total amount of rainfall per weather station for your trip dates using the previous year's matching dates. # Sort this in descending order by precipitation amount and list the station, name, latitude, longitude, and elevation Sel = [Measurement.station, Station.name, Station.latitude, \ Station.longitude, Station.elevation, func.sum(Measurement.prcp)] # joining Measurement and Station tables by attribute 'station' total_rainfall = session.query(*Sel).filter(Measurement.date >= arrival_date).\ filter(Measurement.date <= departure_date).\ filter(Measurement.station == Station.station).\ group_by(Measurement.station, Station.name,\ Station.latitude, Station.longitude, Station.elevation).\ order_by(func.sum(Measurement.prcp).desc()).all() # verifying the results total_rainfall # Create a query that will calculate the daily normals # (i.e. the averages for tmin, tmax, and tavg for all historic data matching a specific month and day) def daily_normals(date): """Daily Normals. Args: date (str): A date string in the format '%m-%d' Returns: A list of tuples containing the daily normals, tmin, tavg, and tmax """ sel = [func.min(Measurement.tobs), func.round(func.avg(Measurement.tobs),1), func.max(Measurement.tobs)] return session.query(*sel).filter(func.strftime("%m-%d", Measurement.date) == date).all() daily_normals("01-01") # calculate the daily normals for your trip # push each tuple of calculations into a list called `normals` # assigning dates for planning trip arrival_date = "2017-01-12" departure_date = "2017-01-20" # Set the start and end date of the trip m_arrival_date = dt.datetime.strptime(arrival_date, '%Y-%m-%d') m_departure_date = dt.datetime.strptime(departure_date, '%Y-%m-%d') # Use the start and end date to create a range of dates range_dates = (m_departure_date - m_arrival_date).days + 1 # placing the range of dates into the list in text format dates_lst = pd.date_range(start=arrival_date, periods=range_dates, freq='D') dates_lst = dates_lst.astype(str) # Strip off the year and save a list of %m-%d strings stped_dates_lst = [x[5:] for x in dates_lst] # Loop through the list of %m-%d strings and calculate the normals for each date normals_lst = [daily_normals(day)[0] for day in stped_dates_lst] #normals_lst # Load the previous query results into a Pandas DataFrame and add the `trip_dates` range as the `date` index normals_df = pd.DataFrame(normals_lst, columns=['tmin', 'tavg', 'tmax']) # add the `trip_dates` range as the `date` index normals_df['Date'] = dates_lst # setting 'date' as index normals_df = normals_df.set_index('Date') #normals_df.head() # Plot the daily normals as an area plot with `stacked=False` ax = normals_df.plot.area(stacked=False, rot=90, figsize=(12,8)); # setting x ticks, y axis labels plt.xticks(rotation=45,horizontalalignment='right', fontweight='light', fontsize='small'); plt.ylabel('Temperature (F)') plt.legend(loc='best') #plt.xlable('Date') # setting range for x, y axis plt.xlim(0, len(normals_df)) plt.ylim(0, max(normals_df['tmax'])) plt.tight_layout() # saving image to file #plt.savefig('Images/daily-normals.png') # displaying the chart plt.show() ###Output _____no_output_____ ###Markdown Final assignmentCalculate in Python basic statistics like min/average/max number of: * students per teacher broken down by the type of school, * students per school broken down by their year of birth, in each district (polish ‘gmina’) and in total for cities and rural districts. ###Code from schoolstat.prepare_tables import tables from time import time t1 = time() schools, dist_popul, popul = tables(file1, file2, file3, 2018, 2020, 2020, differences_file) print(time()-t1) print(schools.shape) schools.head() print(dist_popul.shape) dist_popul.head() print(popul.shape) popul from schoolstat.stats import group_students_per_teacher, students_per_school, group_students_per_school, filter_stats ###Output _____no_output_____ ###Markdown students per teacher broken down by the type of school, in each district ###Code d1 = group_students_per_teacher(schools, 'Gmina') d1 filter_stats(d1, 'Świdnik') filter_stats(d1, i2='Liceum ogólnokształcące') ###Output _____no_output_____ ###Markdown students per teacher broken down by the type of school, in total for cities and rural districts ###Code d2 = group_students_per_teacher(schools, 'Miasto czy wieś') d2 filter_stats(d2, i2='Przedszkole') ###Output _____no_output_____ ###Markdown students per school broken down by their year of birth, in each district ###Code d3 = students_per_school(dist_popul) d3 filter_stats(d3, 'Warszawa') group_students_per_school(dist_popul, by='Rok urodzenia') ###Output _____no_output_____ ###Markdown students per school broken down by their year of birth, in total for cities and rural districts ###Code d4 = students_per_school(popul) d4 filter_stats(d4, i2=2004) group_students_per_school(popul, by='Miasto czy wieś') ###Output _____no_output_____ ###Markdown Plots ###Code import matplotlib.pyplot as plt d = filter_stats(d1, 'Świdnik').droplevel(1) d.plot(kind='bar', y='avg', figsize=(8,6), legend=False) plt.title('Świdnik: średnia liczba uczniów na nauczyciela') plt.show() fig, axs = plt.subplots(2, 2) types = ['Przedszkole', 'Szkoła podstawowa', 'Liceum ogólnokształcące', 'Technikum'] d00 = filter_stats(d2, i2=types[0]).droplevel(1) d01 = filter_stats(d2, i2=types[1]).droplevel(1) d10 = filter_stats(d2, i2=types[2]).droplevel(1) d11 = filter_stats(d2, i2=types[3]).droplevel(1) lab = 'Liczba uczniów na nauczyciela' plt.suptitle('Średnia liczba uczniów na nauczyciela w mieście i na wsi', fontsize='x-large') d00.plot(ax=axs[0, 0], kind='bar', y=['avg'], title=types[0], ylabel=lab, rot=0, figsize=(15, 8), xlabel='', legend=False) d01.plot(ax=axs[0, 1], kind='bar', y=['avg'], title=types[1], ylabel=lab, rot=0, figsize=(15, 8), xlabel='', legend=False) d10.plot(ax=axs[1, 0], kind='bar', y=['avg'], title=types[2], ylabel=lab, rot=0, figsize=(15, 8), xlabel='', legend=False) d11.plot(ax=axs[1, 1], kind='bar', y=['avg'], title=types[3], ylabel=lab, rot=0, figsize=(15, 8), xlabel='', legend=False) plt.show() d = filter_stats(d3, 'Warszawa').droplevel(1) d.plot(title='Warszawa: średnia liczba uczniów na szkołę', figsize=(8,5)) plt.show() d = filter_stats(d4, 'W') d.plot(title='Gminy wiejskie: średnia liczba uczniów na szkołę', figsize=(8,5)) plt.show() ###Output _____no_output_____ ###Markdown Basic data exploration ###Code board = Board() df = pd.read_csv('stored_runs/1000_hands_000.csv') df.head() sum(df['result']=='EUCHRE')/len(df) df.value_counts('caller') df.value_counts('result') def read_all_hands(folder='stored_runs/', use_tqdm=True): df = None iterable = notebook.tqdm(os.listdir(folder)) if use_tqdm else os.listdir(folder) folder = folder + '/' if folder[-1] != '/' else folder dict_list = [] for file in iterable: if '.csv' not in file: continue dict_list.append(pd.read_csv(folder+file).to_dict('list')) final_df = pd.DataFrame.from_dict(dict_list) return(final_df) df = read_all_hands() for caller in range(4): sub = df[df['caller']==caller] print('PLAYER %i:' %caller) print('Called it %.1f%% of the time' %(len(sub)/len(df)*100)) print('First round %.1f%% of their calls' %(sum(sub['round']==1)/len(sub)*100)) print('Swept it %.1f%% of their calls' %(sum(sub['result']=='Sweep')/len(sub)*100)) print('Singled %.1f%% of their calls' %(sum(sub['result']=='Single')/len(sub)*100)) print('Was euchred %.1f%% of their calls' %(sum(sub['result']=='EUCHRE')/len(sub)*100)) p, op = ['points02', 'points13'] if caller%2==0 else ['points13', 'points02'] print('Avg points per call: %.2f' %( (sum(sub[p])-sum(sub[op]))/len(sub) )) print() ###Output PLAYER 0: Called it 31.9% of the time First round 69.5% of their calls Swept it 8.3% of their calls Singled 58.2% of their calls Was euchred 33.5% of their calls Avg points per call: 0.08 PLAYER 1: Called it 27.5% of the time First round 83.2% of their calls Swept it 24.4% of their calls Singled 65.0% of their calls Was euchred 10.6% of their calls Avg points per call: 0.93 PLAYER 2: Called it 18.4% of the time First round 89.6% of their calls Swept it 4.5% of their calls Singled 58.5% of their calls Was euchred 37.1% of their calls Avg points per call: -0.07 PLAYER 3: Called it 22.3% of the time First round 96.7% of their calls Swept it 26.6% of their calls Singled 69.3% of their calls Was euchred 4.1% of their calls Avg points per call: 1.14 ###Markdown Consider conservative players ###Code p0 = make_conservative_player(0) p2 = make_conservative_player(2) board = Board(p0=p0, p2=p2) if 'stored_runs' in os.listdir(): os.system('rm -r stored_runs') for epoch in notebook.tqdm(range(100)): for hand in range(1000): board.play_hand() board.writeout() print('Done!') df = read_all_hands() df['caller_trueid'] = df.progress_apply(caller_trueid, axis=1) df['caller_points'] = df.progress_apply(lambda x: 4*(x['result']=='Loner') + 2*(x['result']=='Sweep') + 1*(x['result']=='Single') - 2*(x['result']=='EUCHRE'), axis=1) calls = [df[df['caller_trueid']==i] for i in range(4)] for i in range(4): sub = calls[i] print('PLAYER %i:' %i) print('Called it %.1f%% of the time' %(len(sub)/len(df)*100)) print('First round %.1f%% of their calls' %(sum(sub['round']==1)/len(sub)*100)) print('Swept it %.1f%% of their calls' %(sum(sub['result']=='Sweep')/len(sub)*100)) print('Singled %.1f%% of their calls' %(sum(sub['result']=='Single')/len(sub)*100)) print('Was euchred %.1f%% of their calls' %(sum(sub['result']=='EUCHRE')/len(sub)*100)) #p, op = ['points02', 'points13'] if i%2==0 else ['points13', 'points02'] #print('Avg points per call: %.2f' %( (sum(sub[p])-sum(sub[op]))/len(sub) )) print('Avg points per call: %.2f' %(sum(sub['caller_points'])/len(sub))) print() points = [calls[i]['caller_points'].sum() for i in range(4)] print('AGGRESSIVE POINTS: %i (avg %.2f points per hand)' %(points[1]+points[3], (points[1]+points[3])/len(df))) print('CONSERVATIVE POINTS: %i (avg %.2f points per hand)' %(points[0]+points[2], (points[0]+points[2])/len(df))) ###Output AGGRESSIVE POINTS: 32694 (avg 0.33 points per hand) CONSERVATIVE POINTS: 25451 (avg 0.25 points per hand) ###Markdown Make the plot of aggressiveness vs performance ###Code thresholds = range(55, 101, 5) performance, error = search_performance(thresholds) import matplotlib.pyplot as plt plt.plot(thresholds, performance) plt.fill_between(thresholds, performance+np.sqrt(1e4)*error, performance-np.sqrt(1e4)*error, alpha=0.2, facecolor='gray') plt.xlabel('Calling threshold') plt.ylabel('Points in 10,000 hands') plt.show() ###Output _____no_output_____ ###Markdown Preliminarily, looks like 70ish is best. Let's look run a wide search again, but with finer specificity in the thresholds ###Code thresholds2 = range(55, 101, 1) performance2, error2 = search_performance(thresholds2, prnt=False) # last time took about 3-4 minutes, should make this take about 15-20 plt.plot(thresholds2, performance2) plt.fill_between(thresholds2, performance2+np.sqrt(1e4)*error2, performance2-np.sqrt(1e4)*error2, alpha=0.2, facecolor='gray') plt.xlabel('Calling threshold') plt.ylabel('Points in 10,000 hands') plt.title('Threshold vs performance (opp = 70)') if 'figs' not in os.listdir(): os.mkdir('figs') plt.savefig('figs/threshold_vs_performance_shallow.png') plt.show() ###Output _____no_output_____ ###Markdown Make this plot for three different opponent sets ###Code thresholds = range(60, 101, 1) opp_thresholds = [65, 80, 100] performance3 = {op_thresh : search_performance(thresholds, opp_thresh=op_thresh, prnt=False) for op_thresh in opp_thresholds} # should take like 45 minutes for op_thresh in opp_thresholds: plt.plot(thresholds, performance3[op_thresh][0], label='opp = ' + str(op_thresh)) plt.fill_between(thresholds, performance3[op_thresh][0]+np.sqrt(1e4)*performance3[op_thresh][1], performance3[op_thresh][0]-np.sqrt(1e4)*performance3[op_thresh][1], alpha=0.2, facecolor='gray') plt.xlabel('Calling threshold') plt.ylabel('Points per 10,000 games') plt.legend() plt.title('Varying opponent thresholds') plt.savefig('figs/threshold_vs_performance_varyopp.png') plt.show() ###Output _____no_output_____ ###Markdown Make the plot, but with more trials ###Code multiprocessing.cpu_count() #search_performance_parallel(args=(thresholds[i], i, n_epochs, n_hands, None, folder, None, os.getcwd()))) search_performance_parallel(70, 0, 1, 100, None, 'thresh70', None, 'thresholds') %%time # goal is to do a million each, so 10^2 epochs x 10^4 hands per epoch seems fine thresholds=range(70,92) parallel_search_wrapper(thresholds=thresholds, n_epochs=1e2, n_hands=1e4, ROOT_DIR='thresholds/') ###Output ###Markdown Metric should be $\Delta$ points, not total pointsIf the opponents call it always, you get 0 called points, but you might euchre them a lot, meaning you get more points than them Making the original graph (threshold vs performance, 55-100, shallow), but with this new understanding ###Code %%time parallel_search_wrapper(thresholds=range(55,101), n_epochs=10, n_hands=1000, ROOT_DIR='thresholds') %%time get_performance(ROOT_DIR=os.path.join(os.getcwd(), 'thresholds'), use_mp=True, amount_tqdm=2) df = pd.read_csv('thresholds/performance.csv').sort_values('Threshold') points, error = df['TotalSum']-df['OppSum'], np.sqrt(df['TotalStd']**2 + df['OppStd']**2) plt.plot(df['Threshold'], points) plt.fill_between(df['Threshold'], points+error, points-error, alpha=0.2, facecolor='gray') plt.xlabel('Calling threshold') plt.ylabel('Net points in 10,000 hands') mx_thresh = df[(df['TotalSum']-df['OppSum'])==(df['TotalSum']-df['OppSum']).max()]['Threshold'] plt.title('Threshold vs performance (opp = 70, max at %i)' %mx_thresh) if 'figs' not in os.listdir(): os.mkdir('figs') plt.savefig('figs/threshold_vs_performance_shallow.png') plt.show() ###Output _____no_output_____ ###Markdown Making the second graph, thresh vs performance for varying opp thresholds ###Code for opp_thresh in [60, 80, 100]: print() print('OPP THRESHOLD:', opp_thresh) parallel_search_wrapper(thresholds=range(65,106), n_epochs=100, n_hands=1000, ROOT_DIR='thresholds', opp_thresh=opp_thresh) print('Getting performance...') get_performance(ROOT_DIR=os.path.join(os.getcwd(), 'thresholds'), use_mp=True, amount_tqdm=0,\ outfile='performance_100k_oppthresh'+str(opp_thresh)+'.csv') maxes = [] for opp_thresh in [60, 80, 100]: df = pd.read_csv('thresholds/performance_100k_oppthresh' + str(opp_thresh)+'.csv').sort_values('Threshold') df = df[df['TotalHands'] > 10000] points, error = df['TotalSum']-df['OppSum'], np.sqrt(df['TotalStd']**2 + df['OppStd']**2) plt.plot(df['Threshold'], points, label='Opp thresh = ' + str(opp_thresh)) plt.fill_between(df['Threshold'], points+error, points-error, alpha=0.2, facecolor='gray') maxes.append(df[(df['TotalSum']-df['OppSum'])==(df['TotalSum']-df['OppSum']).max()]['Threshold']) plt.xlabel('Calling threshold') plt.ylabel('Net points in 100,000 hands') plt.title('Threshold vs performance (maxes at %i, %i, %i)' %(maxes[0], maxes[1], maxes[2])) plt.legend() if 'figs' not in os.listdir(): os.mkdir('figs') plt.savefig('figs/threshold_vs_performance_varyopp.png') plt.show() board = Board() for i in range(100): board.play_hand() board.writeout(folder='testing', keep_results=False, ROOT_DIR='thresholds') ###Output _____no_output_____ ###Markdown Making the 3rd plot, thresh vs performance deep ###Code %%time parallel_search_wrapper(thresholds=range(70,94), n_epochs=100, n_hands=10000, ROOT_DIR='thresholds', opp_thresh=70) %%time get_performance(ROOT_DIR=os.path.join(os.getcwd(), 'thresholds'), use_mp=True, amount_tqdm=1) df = pd.read_csv('thresholds/performance_1M.csv').sort_values('Threshold') df = df[df['TotalHands']==int(1e6)] points, error = df['TotalSum']-df['OppSum'], np.sqrt(df['TotalStd']**2 + df['OppStd']**2) plt.plot(df['Threshold'], points) plt.fill_between(df['Threshold'], points+error, points-error, alpha=0.2, facecolor='gray') plt.xlabel('Calling threshold') plt.ylabel('Points in 1,000,000 hands') mx_thresh = df[(df['TotalSum']-df['OppSum'])==(df['TotalSum']-df['OppSum']).max()]['Threshold'] plt.title('Threshold vs performance (opp = 70, max at %i)' %mx_thresh) if 'figs' not in os.listdir(): os.mkdir('figs') plt.savefig('figs/threshold_vs_performance_deep.png') plt.show() ###Output _____no_output_____ ###Markdown Using data made on HPC ###Code df = pd.read_csv('thresholds/performance_10M.csv').sort_values('Threshold') df = df[df['TotalHands']==int(1e7)] points, error = df['TotalSum']-df['OppSum'], np.sqrt(df['TotalStd']**2 + df['OppStd']**2) plt.plot(df['Threshold'], points) plt.fill_between(df['Threshold'], points+error, points-error, alpha=0.2, facecolor='gray') plt.xlabel('Calling threshold') plt.ylabel('Points in 10 million hands') mx_thresh = df[(df['TotalSum']-df['OppSum'])==(df['TotalSum']-df['OppSum']).max()]['Threshold'] plt.title('Threshold vs performance (opp = 70, max at %i)' %mx_thresh) if 'figs' not in os.listdir(): os.mkdir('figs') plt.savefig('figs/threshold_vs_performance_superdeep.png') plt.show() ###Output _____no_output_____ ###Markdown Standard Imports Just matplotlib and seaborn for viz right now, interaction via bokeh might be added at a later date ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt from os import listdir import seaborn as sns ###Output _____no_output_____ ###Markdown Log Data Imports Find all the log files in the log directory ###Code files = listdir('logs') log_files = [] for file in files: if (file.endswith('.log')) * ("Event" in file): log_files.append(file) else: print('FYI - Non event log file detected and ignored in data folder - ', file) print('Succesfully identified', len(log_files), 'log file(s)') ###Output FYI - Non event log file detected and ignored in data folder - csv_user_log_db.csv FYI - Non event log file detected and ignored in data folder - WAM_Conditions_1582392450.631387.log Succesfully identified 1 log file(s) ###Markdown Import the log files into a list of lists ###Code raw_log_import_list = [] ignored_lines = [] for log_file_name in log_files: raw_file = open('logs\\' + str(log_file_name)) raw_log_import_list.append(raw_file) file_data_table = [] for raw_file in raw_log_import_list: file_line = raw_file.readline() while file_line: try: date = file_line[0:10] time = file_line[11:23] event = file_line.split('Event(')[1][0:5].split('-')[0] log_event_detail = file_line[73:].split('{')[1][:-4].split(', \'') file_data_table.append((raw_file,date,time,event,log_event_detail)) except: ignored_lines.append((raw_file,file_line)) file_line = raw_file.readline() raw_file.close() len(file_data_table) file_data_table ###Output _____no_output_____ ###Markdown for the hit events, take the next ratings and append them (you append in history, as that is the most current, not exactly sure hwo I should do that right nowtry next line and if it's rating then refresh, else assume old ratings are current (but include a timestamp on them)') ###Code cols = ['file', 'date', 'time', 'step', 'actual_hit', 'margin_hit', 'comm_hit', 'pos_x', 'pos_y', 'distance', 'relative_loc', 'skill_vs_luck_rating', 'hit_confidence', 'score', 'score_inc', 'mole_loc_x', 'mole_loc_y'] df = pd.DataFrame(columns = cols) tmp_table = [] score = 0 step = 0 for line in file_data_table: file = line[0] date = line[1] time = line[2] event = line[3] step += 1 if event == '10': mole_loc = line[4][0].split(': ')[1] mole_loc = mole_loc.split(',') mole_loc_x = mole_loc[0] mole_loc_y = mole_loc[1] if len(tmp_lst) < 14: tmp_table += t 'actual_hit'= None 'margin_hit'= None 'comm_hit' = None 'pos_x' = None 'pos_y' = None 'distance' = None 'relative_loc' = None 'skill_vs_luck_rating' = None 'hit_confidence' = None 'score' = None 'score_inc' = None 'mole_loc_x' = None 'mole_loc_y' = None elif event == '9': hits = line[4][0][11:] hits = hits[:-1] hits = hits.split(', ') actual_hit = bool(hits[0]) margin_hit = bool(hits[1]) comm_hit = bool(hits[2]) pos = ((line[4][1])[7:])[:-1] pos = pos.split(', ') pos_x = pos[0] pos_y = pos[1] distance = (line[4][0])[11:] relative_loc = ((line[4][3])[16:])[:-1] relative_loc = relative_loc.split(', ') relative_loc_x = relative_loc[0] relative_loc_y = relative_loc[1] hit_found = True elif event == '7': skill_vs_luck_rating = line[4][0].split(': ')[1] hit_confidence = line[4][1].split(': ')[1] rating_found *= True elif event == '11': score = line[4][1].split(': ')[1] tmp_table #Cast the columns to numbers df['pos_x'] = df['pos_x'].astype('float') df['pos_y'] = df['pos_y'].astype('float') df['relative_loc_x'] = df['relative_loc_x'].astype('float') df['relative_loc_y'] = df['relative_loc_y'].astype('float') df['hit_conf'] = df['hit_conf'].astype('float') df['reward_conf'] = df['reward_conf'].astype('float') df['player_skill'] = df['player_skill'].astype('float') df['distance'] = df['relative_loc_x']**2 + df['relative_loc_y']**2 df['distance'] = df['distance']**0.5 event_list = [] count = 1 file_prev = False for file in df['file']: if file == file_prev: event_list.append(count) count += 1 else: count = 1 event_list.append(count) file_prev = file df['event_seq'] = event_list df = df.assign(id=df['file'].astype('category').cat.codes) df_lookup = df[['file', 'id']] df = df.drop(columns = ['file']) %matplotlib inline df = df[['id', 'event_seq', 'event', 'pos_x', 'pos_y', 'relative_loc_x', 'relative_loc_y', 'distance', 'hit_conf', 'reward_conf', 'player_skill']] ###Output _____no_output_____ ###Markdown Data Analysis Imported Data, Basic Stats ###Code print('Number of unique files, and hence participant data sets -', len(df['id'].unique())) df.describe().round(2) ###Output Number of unique files, and hence participant data sets - 0 ###Markdown Heatmap Correlations Between Variables ###Code plt.figure(figsize=(10,10)) sns.heatmap(df.corr()) ###Output _____no_output_____ ###Markdown Time Series Plot Between Self Ratings & Absolute Distance From Mole ###Code df_norm = df df_norm['distance'] = df_norm['distance']/df['distance'].max() df_norm['hit_conf'] = df_norm['hit_conf']/7 df_norm['reward_conf'] = df_norm['reward_conf']/7 df_norm['player_skill'] = df_norm['player_skill']/7 df_sns = pd.melt(df_norm[['event_seq','distance', 'hit_conf', 'reward_conf', 'player_skill']], 'event_seq', var_name='cols', value_name='vals') sns.lineplot(x="event_seq", y="vals", hue="cols", data=df_sns) ###Output _____no_output_____ ###Markdown XY Scatterplot, Detailing Location of Hits vs Mole ###Code x = df['relative_loc_x'] y = df['relative_loc_y'] plt.scatter(x, y, alpha=0.5) plt.show() ###Output _____no_output_____ ###Markdown Violin Plots, Describing Distributions of Variables ###Code # plot sns.set_style('ticks') fig, ax = plt.subplots() # the size of A4 paper fig.set_size_inches(11.7, 8.27) sns.violinplot(data=df[cols[4:6]], inner="points", ax=ax, alpha=0.5) sns.despine() # plot sns.set_style('ticks') fig, ax = plt.subplots() # the size of A4 paper fig.set_size_inches(11.7, 8.27) sns.violinplot(data=df[cols[6:8]], inner="points", ax=ax, alpha=0.5) sns.despine() sns.set_style('ticks') fig, ax = plt.subplots() # the size of A4 paper fig.set_size_inches(11.7, 8.27) sns.violinplot(data=df[cols[8:]], inner="points", ax=ax, alpha=0.5) sns.despine() %matplotlib inline df['relative_loc_x'].plot.hist(bins=12, alpha=0.5) df['relative_loc_y'].plot.hist(bins=12, alpha=0.5) df['hit_conf'].plot.hist(alpha=0.5) df['reward_conf'].plot.hist(alpha=0.5) df['player_skill'].plot.hist(alpha=0.5) ###Output _____no_output_____ ###Markdown Demo This is the demo to showcase some analysis process. For the analysis for each task, we have provided a corresponding class. ###Code # import analysis tools from analysis import SUMStat, D2TStat, WMTStat def truncate_print(l, n=10): """ Print the first n items of a list""" for i, x in enumerate(l): if i == n: print('...') break print(x) ###Output _____no_output_____ ###Markdown Summarization For all summarization datasets, including **REALSumm**, **SummEval** and **Newsroom**, the analysis tools are the same. ###Code summ_stat = SUMStat('SUM/REALSumm/final_p.pkl') # The path to the scored file, _p means we have prompted metrics ###Output _____no_output_____ ###Markdown See what metrics are out there.Since there are a lot, including P, R, F variants for some metrics as well as prompted metrics, we only print a truncated version of metrics ###Code print('[All metrics]') truncate_print(summ_stat.metrics) # change to print if you want to see all metrics print('[Automatic metrics]') truncate_print(summ_stat.auto_metrics) print('[Human metrics]') truncate_print(summ_stat.human_metrics) ###Output [All metrics] litepyramid_recall bert_score_p bert_score_r bert_score_f mover_score bart_score_src_hypo bart_score_hypo_ref bart_score_ref_hypo bart_score_avg_f bart_score_harm_f ... [Automatic metrics] bert_score_p bert_score_r bert_score_f mover_score bart_score_src_hypo bart_score_hypo_ref bart_score_ref_hypo bart_score_avg_f bart_score_harm_f bart_score_cnn_src_hypo ... [Human metrics] litepyramid_recall ###Markdown We can choose some metrics that we are interested in to conduct analysis. For example, in **REALSumm**, we use recall-based metrics (e.g. bert_score_r, rouge1_r, bart_score_cnn_hypo_ref, ...)For others, we use F-based metrics (for metrics that only consider hypo and ref) and src->hypo (for generation based metrics like bart_score and prism) ###Code valid_metrics = [ 'rouge1_r', 'rouge2_r', 'rougel_r', 'bert_score_r', 'mover_score', 'prism_hypo_ref', 'bart_score_cnn_hypo_ref' ] # The first argument is the human metric considered. # The second argument is a list of considered automatic metrics, can omit it if all automatic metrics are considered summ_stat.evaluate_summary('litepyramid_recall', valid_metrics) ###Output Human metric: litepyramid_recall metric spearman kendalltau ----------------------- ---------- ------------ rouge1_r 0.497526 0.407974 rougel_r 0.488254 0.402523 bart_score_cnn_hypo_ref 0.474608 0.374497 bert_score_r 0.440398 0.346489 rouge2_r 0.4233 0.353119 prism_hypo_ref 0.411005 0.323994 mover_score 0.372353 0.290156 ###Markdown We can also see the performance of some prompt-based metrics. ###Code valid_metrics = [ 'bart_score_cnn_hypo_ref_de_id est', 'bart_score_cnn_hypo_ref_de_Videlicet', 'bart_score_cnn_hypo_ref_de_To give an instance', 'bart_score_cnn_hypo_ref_de_To give an example', 'bart_score_cnn_hypo_ref_de_As an illustration' ] summ_stat.evaluate_summary('litepyramid_recall', valid_metrics) ###Output Human metric: litepyramid_recall metric spearman kendalltau ---------------------------------------------- ---------- ------------ bart_score_cnn_hypo_ref_de_id est 0.49539 0.392728 bart_score_cnn_hypo_ref_de_Videlicet 0.491011 0.388237 bart_score_cnn_hypo_ref_de_To give an instance 0.49081 0.387054 bart_score_cnn_hypo_ref_de_To give an example 0.489033 0.38625 bart_score_cnn_hypo_ref_de_As an illustration 0.488977 0.385511 ###Markdown To combine prompt-based metrics, run the following ###Code summ_stat.combine_prompt() summ_stat.evaluate_summary('litepyramid_recall', ['bart_score_cnn_hypo_ref_de']) ###Output Human metric: litepyramid_recall metric spearman kendalltau -------------------------- ---------- ------------ bart_score_cnn_hypo_ref_de 0.48784 0.386398 ###Markdown To conduct bootstrapping significant test, we provide the *sig_test_two ( )* and *sig_test ( )* method. ###Code # The first two arguments are metrics that should be compared, the third argument is the human metric. m1 = 'bart_score_cnn_hypo_ref' m2 = 'bert_score_r' result = summ_stat.sig_test_two(m1, m2, 'litepyramid_recall') if result == 1: print(f'{m1} is significantly better than {m2}') elif result == -1: print(f'{m2} is significantly better than {m1}') else: print('cannot decide') # The first arguments are a list of metrics considered # The second argument is the human metric summ_stat.sig_test(['rouge1_r', 'bart_score_cnn_hypo_ref', 'bert_score_r'], 'litepyramid_recall') ###Output 100%|██████████| 1000/1000 [01:28<00:00, 11.32it/s] 100%|██████████| 1000/1000 [01:24<00:00, 11.81it/s] 100%|██████████| 1000/1000 [01:26<00:00, 11.55it/s] ###Markdown Factuality We use **Rank19** dataset and **QAGS_CNN** dataset to showcase some basic usages. The former uses accuracy as its evaluation metric while the latter uses pearson correlation. Rank19 We first print out the factuality accuracy obtained using different metrics for the **Rank19** dataset. ###Code fact_stat = SUMStat('SUM/Rank19/final_p.pkl') fact_stat.combine_prompt() # Set valid metrics valid_metrics = [ 'rouge1_f', 'rouge2_f', 'rougel_f', 'bert_score_f', 'mover_score', 'prism_src_hypo', 'bart_score_cnn_src_hypo', 'bart_score_cnn_src_hypo_de' ] # Print accuracy, take a list of metrics fact_stat.get_fact_acc(valid_metrics) ###Output metric acc -------------------------- -------- bart_score_cnn_src_hypo 0.836461 bart_score_cnn_src_hypo_de 0.796247 prism_src_hypo 0.780161 bert_score_f 0.713137 mover_score 0.713137 rouge2_f 0.630027 rougel_f 0.587131 rouge1_f 0.568365 ###Markdown Below are some methods that help to facilitate the siginificant test. ###Code m1 = 'bart_score_cnn_src_hypo' m2 = 'bert_score_f' result = fact_stat.fact_acc_sig_test_two(m1, m2) if result == 1: print(f'{m1} is significantly better than {m2}') elif result == -1: print(f'{m2} is significantly better than {m1}') else: print('cannot decide') # Take a list of metrics, print the best metrics fact_stat.fact_acc_sig_test(['bart_score_cnn_src_hypo', 'prism_src_hypo', 'bert_score_f']) ###Output 100%|██████████| 1000/1000 [00:00<00:00, 2082.68it/s] 100%|██████████| 1000/1000 [00:01<00:00, 666.78it/s] 100%|██████████| 1000/1000 [00:01<00:00, 614.94it/s] ###Markdown QAGS_CNN ###Code fact_stat = SUMStat('SUM/QAGS_CNN/final_p.pkl') fact_stat.combine_prompt() # Set valid metrics valid_metrics = [ 'rouge1_f', 'rouge2_f', 'rougel_f', 'bert_score_f', 'mover_score', 'prism_src_hypo', 'bart_score_cnn_src_hypo', 'bart_score_cnn_src_hypo_de' ] # Print accuracy, take a list of metrics fact_stat.get_fact_pearson(valid_metrics) m1 = 'bart_score_cnn_src_hypo' m2 = 'bert_score_f' result = fact_stat.fact_pearson_sig_test_two(m1, m2) if result == 1: print(f'{m1} is significantly better than {m2}') elif result == -1: print(f'{m2} is significantly better than {m1}') else: print('cannot decide') # Take a list of metrics, print the best metrics fact_stat.fact_pearson_sig_test(['bart_score_cnn_src_hypo', 'prism_src_hypo', 'bert_score_f']) ###Output 100%|██████████| 1000/1000 [00:00<00:00, 1986.75it/s] 100%|██████████| 1000/1000 [00:00<00:00, 1156.13it/s] 100%|██████████| 1000/1000 [00:00<00:00, 1173.93it/s] ###Markdown Data-to-Text For all data-to-text datasets, including **BAGEL**, **SFHOT** and **SFRES**, the analysis tools are the same. ###Code d2t_stat = D2TStat('D2T/BAGEL/final_p.pkl') d2t_stat.combine_prompt() # combine the prompt-based resutls ###Output _____no_output_____ ###Markdown See what metrics are out there. For data-to-text datasets, the human metrics are *informativeness*, *naturalness* and *quality*. ###Code print('[All metrics]') truncate_print(d2t_stat.metrics) # change to print if you want to see all metrics print('[Automatic metrics]') truncate_print(d2t_stat.auto_metrics) print('[Human metrics]') truncate_print(d2t_stat.human_metrics) ###Output [All metrics] informativeness naturalness quality bert_score_p bert_score_r bert_score_f mover_score bart_score_ref_hypo bart_score_hypo_ref bart_score_avg_f ... [Automatic metrics] bert_score_p bert_score_r bert_score_f mover_score bart_score_ref_hypo bart_score_hypo_ref bart_score_avg_f bart_score_harm_f bart_score_cnn_ref_hypo bart_score_cnn_hypo_ref ... [Human metrics] informativeness naturalness quality ###Markdown We can print out the correlation w.r.t. human judgement as below. ###Code # Set valid metrics valid_metrics = [ 'rouge1_f', 'rouge2_f', 'rougel_f', 'bert_score_f', 'mover_score', 'prism_avg', 'bart_score_para_avg_f', 'bart_score_para_avg_f_de' ] # The first argument is human metric while the latter is a list of metrics considered. d2t_stat.evaluate_text('informativeness', valid_metrics) ###Output Human metric: informativeness metric spearman kendalltau ------------------------ ---------- ------------ bart_score_para_avg_f_de 0.335997 0.248525 bart_score_para_avg_f 0.329896 0.246686 prism_avg 0.304946 0.224797 bert_score_f 0.289118 0.217179 mover_score 0.283694 0.20884 rouge1_f 0.234338 0.177972 rouge2_f 0.198585 0.151011 rougel_f 0.188592 0.145508 ###Markdown To perform significant test, use *sig_test_two ( )* method ###Code m1 = 'bart_score_para_avg_f' m2 = 'prism_avg' # The first two arguments are metrics that should be compared, the third argument is the human metric. result = d2t_stat.sig_test_two(m1, m2, 'informativeness') if result == 1: print(f'{m1} is significantly better than {m2}') elif result == -1: print(f'{m2} is significantly better than {m1}') else: print('cannot decide') ###Output 100%|██████████| 1000/1000 [01:19<00:00, 12.54it/s] ###Markdown Machine Translation For all language pairs, the analysis tools are the same. We begin by looking at reference length statistics. ###Code wmt_stat = WMTStat('WMT/kk-en/final_p.pkl') wmt_stat.print_ref_len() ###Output Mean reference length: 17.75 Max reference length: 180 Min reference length: 1 20% percentile: 10.0 80% percentile: 25.0 90% percentile: 31.0 ###Markdown Next, we print out k-tau for all automatic metrics. ###Code print('All metrics') print(wmt_stat.metrics) # Print out all metrics print('\n') print('All k-tau') wmt_stat.print_ktau() print('\n') print('k-tau for some metrics') wmt_stat.print_ktau(['prism', 'bart_score_para']) ###Output 64%|██████▎ | 7/11 [00:00<00:00, 69.64it/s] ###Markdown To print out the k-tau over certain reference length, run the following. ###Code print('All k-tau') wmt_stat.print_len_ktau(15, 25) print('\n') print('k-tau for some metrics') wmt_stat.print_len_ktau(15, 25, ['prism', 'bart_score_para']) ###Output 100%|██████████| 9728/9728 [00:00<00:00, 648147.63it/s] 100%|██████████| 11/11 [00:00<00:00, 179.12it/s] 100%|██████████| 9728/9728 [00:00<00:00, 625838.84it/s] 100%|██████████| 2/2 [00:00<00:00, 194.46it/s] ###Markdown To perform significant test, use *sig_test_two ()* ###Code m1 = 'bart_score_para' m2 = 'bleurt' # The first two arguments are metrics that should be compared, the third argument is the human metric. result = wmt_stat.sig_test_two(m1, m2) if result == 1: print(f'{m1} is significantly better than {m2}') elif result == -1: print(f'{m2} is significantly better than {m1}') else: print('cannot decide') ###Output 100%|██████████| 1000/1000 [00:33<00:00, 29.77it/s] ###Markdown Attribute Description:Attribute | Description----------|-------------`Invoice No` | Invoice ID, encoded as Label`StockCode` | Unique code per stock, encoded as Label`Description` | The Description, encoded as Label`Quantity` | Quantity purchased`InvoiceDate` | Date of purchase`UnitPrice` | The target value, price of every product`CustomerID` | Unique Identifier for every country`Country` | Country of sales, encoded as Label Target`UnitPrice` is the target. Performance MeasureRMSE (Root Mean Square Error) ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns from scipy import stats from sklearn import preprocessing import utility_functions as uf ###Output _____no_output_____ ###Markdown Initial Data Analysis ###Code data = pd.read_csv("data/Train.csv") test = pd.read_csv("data/Test.csv") data.head() print("Shape of:") print("-"*10) print("\t Training data:", data.shape) print("\t Test data:", test.shape) ###Output Shape of: ---------- Training data: (284780, 8) Test data: (122049, 7) ###Markdown Drop duplicates ###Code print(f"There are {data[data.duplicated(keep=False)].shape[0]} duplicates in training data") data = data.drop_duplicates(ignore_index=True) ###Output _____no_output_____ ###Markdown Missing Value Check and Type casting ###Code print("Number of Nulls in Training data:", data.isna().sum()\ .sum()) print("Number of Nulls in Test data:", test.isna().sum()\ .sum()) data.info() ###### change dtypes to appropriate data types as applicable ####### categorical_cols = ['InvoiceNo', 'StockCode', 'Description', 'CustomerID', 'Country'] # convert to string data[categorical_cols] = data.loc[:,categorical_cols].astype('object') # convert to datetime data['InvoiceDate'] = pd.to_datetime(data.loc[:,'InvoiceDate']) data.describe() # drop(columns=['year','month','day_of_week','hour','minutes','day_of_month']).describe() # corr = data[['Quantity', 'UnitPrice']].corr(method='spearman') corr = data.corr(method='spearman') mask = np.triu(np.ones_like(corr, dtype=bool)) sns.heatmap(corr, annot=True, mask=mask, cbar=False) plt.title("Spearman Correlation plot") plt.tight_layout() plt.xticks(ticks=[0,1], labels=['Quantity', ''], ) plt.yticks(ticks=[0,1], labels=['','UnitPrice']) plt.show() ###Output _____no_output_____ ###Markdown Observations- There were $5093$ duplicate records in training data taht have been dropped.- No missing values have been found.- Both `Quantity` and `UnitPrice` have outliers. The severity of which needs to be further analysed. Although we will be limited in our ability to deal with outliers in `UnitPrice` since it is the target.- Minimum for `Quantity` is -80995 which seems improbable and also observe that maximum is 80995. It will be further analysed. Engineer Temporal Features from `InvoiceDate` ###Code data['year'] = data.InvoiceDate.dt.year data['month'] = data.InvoiceDate.dt.month data['day'] = data.InvoiceDate.dt.dayofweek # Monday=0, Sunday=6 data['hour'] = data.InvoiceDate.dt.hour data['minutes'] = data.InvoiceDate.dt.minute data['day_of_month'] = data.InvoiceDate.dt.day data.head() ###Output _____no_output_____ ###Markdown General Hypothesis $Q$: Does every Invoice has only one Associated customer?$A:$ Yes every Invoice has only one unique customer associated with it. As shown below: ###Code # No of unique InvoiceID print("Number of unique invoices: ", data.InvoiceNo.nunique()) print('-'*70) print("Number of Invoices with Number of unique customers !=1 :", (data.groupby('InvoiceNo')['CustomerID'].nunique() != 1).sum() ) ###Output Number of unique invoices: 20971 ---------------------------------------------------------------------- Number of Invoices with Number of unique customers !=1 : 0 ###Markdown UNivariate ANalysis of Variables `UnitPrice` $\Longrightarrow$ Target variable ###Code data.UnitPrice.describe() # iqr # UNITPrice q1, q3 = np.percentile(data.UnitPrice, [25, 75]) UP_iqr = q3 - q1 UP_max_threshold = q3 + 1.5 * UP_iqr ## LOG of UnitPrice q1, q3 = np.percentile(np.log(data.UnitPrice + np.full_like(data.UnitPrice, fill_value=0.0001)), [25, 75]) iqr = q3 - q1 log_max_threshold = q3 + 1.5 * iqr log_median = np.percentile(np.log(data.UnitPrice + np.full_like(data.UnitPrice, fill_value=0.0001)), 50) fig, ax = plt.subplots(1, 4, figsize=(20,5)) plt.subplot(ax[0]) # sns.boxplot(x=data.UnitPrice) sns.kdeplot(x=data.UnitPrice) plt.yticks([]) plt.ylabel('') plt.title("Many Outliers present.\n Median = 1.95, Q3 = 3.75") plt.subplot(ax[1]) sns.boxplot(x=np.log(data.UnitPrice + np.full_like(data.UnitPrice, fill_value=0.0001))) plt.xlabel('') plt.title("Box plot for Log of UnitPrice") plt.subplot(ax[2]) plt.plot(data.UnitPrice, np.ones_like(data.UnitPrice), 'o', alpha=0.5) plt.vlines(UP_max_threshold, 0.96, 1.04, linestyles='dashed', colors='g', label='q3+1.5*IQR = 7.5') plt.yticks([]) plt.legend() # plt.xlim(right=5000) plt.title("UnitPrice distribution") plt.subplot(ax[3]) plt.plot(np.log(data.UnitPrice + np.full_like(data.UnitPrice, fill_value=0.0001)), np.ones_like(data.UnitPrice), 'o', alpha=0.4, linewidth=0.5) plt.vlines(log_max_threshold, 0.96, 1.04, linestyles='dashed', colors='g', label=f'q3+1.5*IQR = {round(max_threshold,2)}') plt.vlines(log_median, 0.96, 1.04, linestyles='dashed', colors='lime', label=f'median = {round(median,2)}') plt.yticks([]) # remove y-ticks plt.legend(loc='upper left') # plt.xlim(right=5000) plt.title(f"UnitPrice (Log transformed) distribution") plt.show() a = np.log(data.UnitPrice + np.full_like(data.UnitPrice, fill_value=0.0001)) print(f"{round(len(data.UnitPrice[data.UnitPrice>UP_max_threshold])/len(data.UnitPrice) * 100,0)}\ % of observations are above Max threshold in UnitPrice") print(f"{round(len(a[a>log_max_threshold])/len(a) * 100,2)}\ % of observations are above Max threshold in Log of UnitPrice") ###Output 9.0% of observations are above Max threshold in UnitPrice 0.37% of observations are above Max threshold in Log of UnitPrice ###Markdown Observation from analysis of `UnitPrice`- Taking Log reduced the Outliers from $\approx 9\%$ to $0.37\%$.- Log transformation will be used on UnitPrice, $\because$ it reduces the number of outliers significantly. ###Code # jitter added data['log_UnitPrice'] = np.log(data.UnitPrice + np.full_like(data.UnitPrice, fill_value=0.01)) ###Output _____no_output_____ ###Markdown `Quantity`From above Initaial analysis wkt. there are some discrepencies in Quantity values. We will explore them in depth. ###Code print(f"Number records where quantity is zero: {data[data.Quantity==0].shape[0]}") print(f"Number of records where quantity < zero: {data[data.Quantity<0].shape[0]}") ###Output Number records where quantity is zero: 0 Number of records where quantity < zero: 6153 ###Markdown Analysing `-ve` order QuantitiesPossibilities are that the negative quantities are either- mistakenly recorded as negative quantity or- result of negative proration such as return orders [(refer)](https://knowledgecenter.zuora.com/BB_Introducing_Z_Business/How_Do_I_._._./How_do_I_handle_a_negative_invoice%3F).It has been noticed that negative quantities are present even in the test set, thus reducing the chances of it being being data entry error.\This also takes away the possibility of dropping such records from analysis. Although the negative quatities are very small fraction of both the training as well as test datasets(as shown below). ###Code print("Percentage of observations with negative quantity in Training data:", round(data[data.Quantity < 0].shape[0] / data.shape[0] * 100 ,2) ) print("-"*100) print("Percentage of observations with negative quantity in Test data:", round(test[test.Quantity < 0].shape[0] / test.shape[0] * 100 ,2) ) data['Quantity_pos'] = data.Quantity.apply(lambda x: 'POS' if x>=0 else 'NEG') fig, ax = plt.subplots(1,2, figsize=(10, 4), sharey=True) plt.subplot(ax[0]) sns.boxplot(y='Quantity_pos', x='UnitPrice', data=data, hue='Quantity_pos') plt.xlim(right=5000) plt.title("Box plot of UnitPrice") plt.subplot(ax[1]) sns.boxplot(y='Quantity_pos', x='log_UnitPrice', data=data, hue='Quantity_pos') plt.ylabel('') plt.yticks([]) plt.title("Box plot of UnitPrice(log applied)") plt.suptitle("Difficult to visually differenciate between the Groups (Positive and negative Quantity)") plt.tight_layout() plt.show() data.groupby('Quantity_pos')['UnitPrice'].describe().round(3) ###Output _____no_output_____ ###Markdown Statistical test (Mann-Whitney U Test)- Although Relationship is not exactly Linear (that would indicate Normal distribution), but it is Linear enough give the large sample size.- Levene's test of Homogeneity of variance is violated. But if ratio of Largest: Smallest group is reasonable ($\approx$ 1.5 times), then violation of this assumption should not cause any major issue.However, the ratio is too high ($\approx$ 45 times). Thus violation is serious.Keeping in view above points the Non - parametric variant of the t-test, **Mann-Whitney U Test** is used. Normality test ###Code stats.probplot(data.log_UnitPrice, plot=plt) plt.title(f"Normal Probability Plot\nNo of Observations: {data.log_UnitPrice.shape[0]}") plt.ylabel("Log (UnitPrice)") plt.show() ###Output _____no_output_____ ###Markdown Levene's test of Homogeneity ###Code stat, p = stats.levene(data.UnitPrice[data.Quantity_pos=='POS'], data.UnitPrice[data.Quantity_pos=='NEG']) is_significant = lambda p_value: 'Significant' if p_value<=0.05 else 'NOT Significant' print(f"Levenes test is {is_significant(p)}, with p = {round(p, 4)}.") if is_significant(p).strip().lower() == 'significant': print("Thus, assumption of Homogeneity of Variance is Violated.") else: print("Thus, assumption of Homogeneity of Variance is Not violated. ") print(f"Ratio of Largest: Smallest = \ {round(data[data.Quantity_pos=='POS'].shape[0]/data[data.Quantity_pos=='NEG'].shape[0],0)}" ) ###Output Ratio of Largest: Smallest = 45.0 ###Markdown Mann-Whitney U Test$H_0$: The distribution of UnitPrice is **same across categories** ie. POS and NEG Quantitites.\$H_a$: The distribution of UnitPrice is **not same across categories** ie. POS and NEG Quantitites. ###Code stat, p = stats.mannwhitneyu(x=data.UnitPrice[data.Quantity_pos=='POS'], y=data.UnitPrice[data.Quantity_pos=='NEG'], alternative='two-sided') if p < 0.05: print(f"Mann-Whitney test is Significant (p={round(p, 4)}), meaning the distribution of UnitPrice is sepearate across groups.") else: print(f"The test is Not significant (p={round(p, 4)}), meaning the distribution of UnitPrice is same across groups. ") ###Output Mann-Whitney test is Significant (p=0.0), meaning the distribution of UnitPrice is sepearate across groups. ###Markdown Observation from Quantities divided into POS and NEG categories- Negative quantities are result of **negative proration**.- There is **statistically significant difference** in distribution of UnitPrice for **Postive and negative quantities**.- Thus `Quantity_pos` **may** prove to be a **useful feature** to any future predcitive model. ###Code plt.scatter(data.Quantity, data.log_UnitPrice, alpha=0.3, color='r') plt.xlabel('Quantity') plt.ylabel("Log (UnitPrice)") plt.xlim(-1000, 1500) rho = r"$\rho$" plt.title(f"Very weak Linear correlation with Target variable\n{rho} = {round(stats.pearsonr(data.Quantity, data.log_UnitPrice)[0], 2)}") plt.show() ###Output _____no_output_____ ###Markdown Treating `Quantity` distribution$\rightarrow$ Check Natural distribution \$\rightarrow$ Scale by Mean/Median (depending on outliers in distribution) \$\rightarrow$ Power Transformation \$\rightarrow$ Thresholding\$\rightarrow$ Which observations are above Threshold\$\rightarrow$ **Log Transformation** is **not an option** due to Negative values in the quantity data. ###Code quant_YJ = preprocessing.PowerTransformer().fit_transform(data.Quantity.values.reshape(-1,1)) quant_scaled = preprocessing.StandardScaler().fit_transform(data.Quantity.values.reshape(-1,1)) def median_transformation(variable): ''' z = (x - u) / s ''' median = np.median(variable) mad = stats.median_abs_deviation(variable, nan_policy='omit') return pd.Series(variable).apply(lambda x: (x-median)/mad) quant_med_scaled = median_transformation(data.Quantity) ### Box plots ######### fig, ax = plt.subplots(1,3, figsize=(15, 5)) plt.subplot(ax[0]) sns.boxplot(x=data.Quantity) x_lim = (-100, 100) plt.xlim(x_lim) extreme_outliers = r"$\bf{Extreme \ Outliers}$" plt.title(f"Quantitiy Distribution - zoomed in {x_lim}.\n \ Presence of {extreme_outliers}.\n \ Min = {data.Quantity.min().round(2)}, Median = {data.Quantity.median()}, Max = {data.Quantity.max()}") plt.xlabel('') plt.subplot(ax[1]) sns.boxplot(x=quant_YJ) x_lim = (-10, 20) plt.xlim(x_lim) plt.title(f"Quantity Yeo Johnson transformed. - zoomed in {x_lim}.\n \ Min = {quant_YJ.min().round(2)}, Median = {np.median(quant_YJ).round(2)}, Max = {quant_YJ.max().round(2)}" ) plt.xlabel('') plt.subplot(ax[2]) sns.boxplot(x=quant_med_scaled) x_lim = (-100, 100) plt.xlim(x_lim) plt.title(f"Quantity Median scaled - zoomed in {x_lim}.\n \ Min = {quant_med_scaled.min().round(2)}, Median = {quant_med_scaled.median().round(2)}, Max = {quant_med_scaled.max().round(2)}" ) plt.xlabel('') plt.tight_layout() # plt.show() ### Distribution Plots #### fig, ax = plt.subplots(1,4, figsize=(20,5)) plt.subplot(ax[0]) # x_lim = (-100, 100) sns.kdeplot(data.Quantity) plt.xlabel('') # plt.xlim(x_lim) plt.yticks([]) plt.ylabel('') plt.title("Quantity") plt.subplot(ax[1]) x_lim = (-10, 20) sns.kdeplot(pd.Series(quant_YJ.reshape(len(quant_YJ)))) plt.xlim(x_lim) plt.yticks([]) plt.ylabel('') plt.title("Yeo Johnson Transformed") plt.subplot(ax[2]) x_lim = (-10, 20) sns.kdeplot(pd.Series(quant_scaled.reshape(len(quant_scaled)))) plt.xlim(x_lim) plt.yticks([]) plt.ylabel('') plt.title("Standard scaled") plt.subplot(ax[3]) # x_lim = (-100, 100) sns.kdeplot(quant_med_scaled) plt.xlabel('') # plt.xlim(x_lim) plt.yticks([]) plt.ylabel('') plt.title("Median Scaled") # sns.kdeplot(pd.Series(quant_med_scaled.reshape(len(quant_med_scaled)))) plt.suptitle("Most of the observations are concentrated around a small range. Extreme Outliers need to be treated") plt.show() print('Range for Quantity: ', data.Quantity.max() - data.Quantity.min()) print('Range for Quantity - Yeo Johnson Transformed: ', (quant_YJ.max() - quant_YJ.min()).round(2)) print('Range for Quantity - Median Scaled: ', quant_med_scaled.max() - quant_med_scaled.min()) print('Range for Quantity - Standard Scaled: ', (quant_scaled.max() - quant_scaled.min()).round(2)) ###Output Range for Quantity: 161990 Range for Quantity - Yeo Johnson Transformed: 543.86 Range for Quantity - Median Scaled: 40497.5 Range for Quantity - Standard Scaled: 546.41 ###Markdown Thresholded data- Thresholded data- Yeo Johnson Transformed thresholded data- Median transformed thresholded data ###Code # Thresholded Quantity data quant_thresholded = uf.threshold_data(data.Quantity)['th_data'] # Yeo Johnson Transformed thresholded data quant_th_YJ = preprocessing.PowerTransformer().fit_transform(quant_thresholded.values.reshape(-1,1))\ .reshape(len(quant_thresholded)) # median scaled quantity thresholded quant_med_th = uf.threshold_data(quant_med_scaled)['th_data'].values.reshape(len(quant_med_scaled)) fig, ax = plt.subplots(1,3, figsize=(15,5)) plt.subplot(ax[0]) sns.kdeplot(quant_thresholded) plt.title(f"Thresholded Quantity data.\n\ Minimum = {quant_thresholded.min().round(2)}, Median = {quant_thresholded.median().round(2)}, Maximum = {quant_thresholded.max().round(2)}" ) plt.yticks([]) plt.ylabel('') plt.subplot(ax[1]) sns.kdeplot(quant_th_YJ) plt.title(f"Yeo Johnson Transformed Thresholded data.\n\ Minimum = {quant_th_YJ.min().round(2)}, Median = {np.median(quant_th_YJ).round(2)}, Maximum = {quant_th_YJ.max().round(2)}" ) plt.yticks([]) plt.ylabel('') plt.subplot(ax[2]) sns.kdeplot(quant_med_th, color='lime') plt.title(f"Median Transformed Thresholded data.\n\ Minimum = {quant_med_th.min().round(2)}, Median = {np.median(quant_med_th).round(2)}, Maximum = {quant_med_th.max().round(2)}" ) plt.yticks([]) plt.ylabel('') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Takeaway from `Quantity`- Quantity NEG/POS category can be a good feature.- Standard scaled and Median Transformed Quantity thresholded data will be experimented with while modelling. ###Code data['Quantity_pos'] = data.Quantity.apply(lambda x: 'POS' if x>=0 else 'NEG') ###Output _____no_output_____ ###Markdown `Country` ###Code print(f"There are data from {data.Country.nunique()} countries.") data.InvoiceNo.nunique() len(set(data.InvoiceNo.unique())\ .intersection(set(test.InvoiceNo.unique())) ) data.InvoiceDate = pd.to_datetime(data.InvoiceDate) # data.rename(columns={'day':'day_of_week'}, inplace=True) data.Description.nunique() data[data.InvoiceNo==6141].shape data[data.InvoiceNo==6141] ###Output _____no_output_____ ###Markdown Basic Mean modelling ###Code data.UnitPrice.mean() predicted = ###Output _____no_output_____ ###Markdown EDA ###Code stats.probplot(response, dist="norm", plot=pylab) pylab.show() stats.probplot(control_runs, dist="norm", plot=pylab) pylab.show() ###Output _____no_output_____ ###Markdown We see that both the trial run and control run response values are very nearly normally-distributed. ###Code n = run_order.shape[0] x_axis = [[i] for i in range(1, int(n / 2) + 1)] plt.scatter(x_axis, control_runs, color='g' * int(n/2), label='Control Runs') plt.scatter(x_axis, response, color='r' * int(n/2), label='Trial Runs') plt.title('Run Order Plot') plt.xlabel('Run Order') plt.ylabel('Average Heart Rate') plt.legend() plt.show() ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:3: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated. Use an explicit list instead. This is separate from the ipykernel package so we can avoid doing imports until /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:4: MatplotlibDeprecationWarning: Using a string of single character colors as a color sequence is deprecated. Use an explicit list instead. after removing the cwd from sys.path. ###Markdown We see that the control run values are roughly stable throughout the experiment, with no obvious increase over time, suggesting that the chosen wash-out period of one day between trials is in fact a sufficient rest period. We also note that four of the trial runs are associated with markedly elevated response values even as the control runs associated with them are not noticeably elevated above the other control runs. This suggests that the factor levels associated with runs 4, 5, 7, and 8 lead to an increased average heart rate over those associated with the other four trial runs. ###Code low_factor = response[design_mat[:,i] == -1] high_factor= response[design_mat[:,i] == -1] n_factors = design_mat.shape[1] for i in range(n_factors): low_factor = response[design_mat[:,i] == -1] high_factor= response[design_mat[:,i] == 1] factors = np.hstack((low_factor.reshape(-1,1), high_factor.reshape(-1,1))) plt.boxplot(factors, positions=(-1,1), ) plt.title('Box Plot for Factor %s' % int(i+1)) plt.show() ###Output _____no_output_____ ###Markdown We see a marked difference in average response between the low and high levels of factor two, and a slightly smaller though still noticeable separation for factors four and three. Factor one appears to have no clear separation between the levels, algthough the variance in the low level runs is greater than in the high level runs. Fit Linear Models ###Code colnames = list(factor_labels.keys()) + ['heart_rate'] data = pd.DataFrame(np.hstack((design_mat, response.reshape(-1,1))), columns=colnames) data from statsmodels.formula.api import ols mod = ols('heart_rate ~ t_awake + fasting + coffee + t_run', data=data) res = mod.fit() table = sm.stats.anova_lm(res, typ=2) print(res.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: heart_rate R-squared: 0.971 Model: OLS Adj. R-squared: 0.932 Method: Least Squares F-statistic: 24.94 Date: Fri, 03 Dec 2021 Prob (F-statistic): 0.0123 Time: 21:08:39 Log-Likelihood: -13.969 No. Observations: 8 AIC: 37.94 Df Residuals: 3 BIC: 38.33 Df Model: 4 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 165.1000 0.801 206.174 0.000 162.552 167.648 t_awake -1.1750 0.801 -1.467 0.239 -3.723 1.373 fasting -7.3000 0.801 -9.116 0.003 -9.848 -4.752 coffee 1.1500 0.801 1.436 0.246 -1.398 3.698 t_run -2.8250 0.801 -3.528 0.039 -5.373 -0.277 ============================================================================== Omnibus: 7.249 Durbin-Watson: 2.971 Prob(Omnibus): 0.027 Jarque-Bera (JB): 1.245 Skew: -0.027 Prob(JB): 0.536 Kurtosis: 1.068 Cond. No. 1.00 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ###Markdown We see that factors two and four (`fasting` and `t_run`, respectively) are associated with effects which are signficant at the $5\%$ level, whereas factors one and three are not.Thus it appears that `fasting` has a large negative effect on heart rate. Runs 4, 5, 7, and 8, in which I was not fasting, had noticeable spikes in heart rate. To test this, we re-fit with just the fasting indicator and `t_run`: ###Code from statsmodels.formula.api import ols mod = ols('heart_rate ~ fasting + t_run', data=data) res = mod.fit() table = sm.stats.anova_lm(res, typ=2) print(res.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: heart_rate R-squared: 0.930 Model: OLS Adj. R-squared: 0.902 Method: Least Squares F-statistic: 33.11 Date: Fri, 03 Dec 2021 Prob (F-statistic): 0.00131 Time: 21:27:13 Log-Likelihood: -17.479 No. Observations: 8 AIC: 40.96 Df Residuals: 5 BIC: 41.20 Df Model: 2 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 165.1000 0.962 171.628 0.000 162.627 167.573 fasting -7.3000 0.962 -7.589 0.001 -9.773 -4.827 t_run -2.8250 0.962 -2.937 0.032 -5.298 -0.352 ============================================================================== Omnibus: 0.052 Durbin-Watson: 2.205 Prob(Omnibus): 0.974 Jarque-Bera (JB): 0.227 Skew: 0.135 Prob(JB): 0.893 Kurtosis: 2.220 Cond. No. 1.00 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. ###Markdown Looking at the R-squared value and noting that all of the effects are significant, it appears that this simpler model has a satisfactory fit. ###Code plt.scatter(data['fasting'], res.resid) plt.title('Residuals for Factor Two (`fasting`)') plt.xlabel('Level') plt.ylabel('Residual') plt.show() plt.scatter(data['t_run'], res.resid) plt.title('Residuals for Factor Four (`t_run`)') plt.xlabel('Level') plt.ylabel('Residual') plt.show() plt.scatter(res.fittedvalues, res.resid) plt.title('Residuals Versus Predicted Heart Rate') plt.xlabel('Predicted Heart Rate') plt.ylabel('Residual') plt.show() ###Output _____no_output_____ ###Markdown We see that the residuals associated with the model fit are evenly distributed about the origin. Note that the pairing present in the residual plots is a product of the design itself. Conclusions Based on the above analysis, factors two and four appear to have a significant effect on average heart rate during exercise, whereas factors one and three do not. We see that factor two is a associated with a large negative effect on average heart rate, which suggests that running while fasting leads to a reduced average heart rate versus running on a full stomach. We also see that factor four is associated with a negative effect on the response, suggesting that taking a day off between runs may lead to a lower average heart rate during the exercise.Anecdotally, running with a full stomach certainly feels much more difficult than running on an empty stomach, as does running on back to back days. This suggests that the results obtained are in accord with my own experience. ###Code paces = np.loadtxt('/content/paces.txt') paces_c, paces_t = paces.reshape(-1,2).T n = run_order.shape[0] x_axis = [[i] for i in range(1, int(n / 2) + 1)] plt.scatter(x_axis, paces_c, color='g' * int(n/2), label='Control Runs') plt.scatter(x_axis, paces_t, color='r' * int(n/2), label='Trial Runs') plt.title('Average Pace Per Run (Both Control and Trial)') plt.xlabel('Run Order') plt.ylabel('Average Pace (in seconds)') plt.hlines(510, 1, 8, label='Target pace (in seconds)') plt.legend() plt.show() plt.scatter(data['heart_rate'], data['pace']) plt.title('Average Heart Rate Versus Pace') plt.xlabel('Average Heart Rate') plt.ylabel('Average Pace (in seconds)') min_hr = data['heart_rate'].min() max_hr = data['heart_rate'].max() plt.hlines(510, min_hr, max_hr, label='Target pace (in seconds)') plt.legend() plt.show() data['pace'] = paces_t from statsmodels.formula.api import ols mod = ols('heart_rate ~ pace', data=data) res = mod.fit() table = sm.stats.anova_lm(res, typ=2) print(res.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: heart_rate R-squared: 0.070 Model: OLS Adj. R-squared: -0.085 Method: Least Squares F-statistic: 0.4518 Date: Fri, 03 Dec 2021 Prob (F-statistic): 0.526 Time: 22:53:25 Log-Likelihood: -27.813 No. Observations: 8 AIC: 59.63 Df Residuals: 6 BIC: 59.79 Df Model: 1 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 377.7200 316.331 1.194 0.278 -396.314 1151.754 pace -0.4184 0.622 -0.672 0.526 -1.941 1.105 ============================================================================== Omnibus: 0.212 Durbin-Watson: 1.461 Prob(Omnibus): 0.900 Jarque-Bera (JB): 0.354 Skew: -0.243 Prob(JB): 0.838 Kurtosis: 2.090 Cond. No. 5.03e+04 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 5.03e+04. This might indicate that there are strong multicollinearity or other numerical problems. ###Markdown Unsurprisingly, pace appears to be (slightly) negatively correlated with average heart rate (i.e. as one runs faster, one's heart rate increases). The effect, however, is very small, likely resulting from the small variation in pace between runs. ###Code np.std(data['pace']) ###Output _____no_output_____ ###Markdown With the standard deviation above, roughly 5 seconds per mile or less than one percent of the average pace, it is likely that the differences in heart rate attributable to differences in pace would be small, which is borne out by the results of the regression above. If I had not attempted to match pace between runs, then we would expect to identify a much stronger relationship between pace and heart rate. But because there is little variation in pace, the effect of other factors on average heart rate appears to outweigh that of pace in this sample. To verify that the results of the analysis above are not significantly affected by `pace`, we add `pace` to the full regression model as a covariate. ###Code from statsmodels.formula.api import ols mod = ols('heart_rate ~ t_awake + fasting + coffee + t_run + pace', data=data) res = mod.fit() table = sm.stats.anova_lm(res, typ=2) print(res.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: heart_rate R-squared: 0.992 Model: OLS Adj. R-squared: 0.971 Method: Least Squares F-statistic: 47.22 Date: Fri, 03 Dec 2021 Prob (F-statistic): 0.0209 Time: 22:53:25 Log-Likelihood: -8.9857 No. Observations: 8 AIC: 29.97 Df Residuals: 2 BIC: 30.45 Df Model: 5 Covariance Type: nonrobust ============================================================================== coef std err t P>|t| [0.025 0.975] ------------------------------------------------------------------------------ Intercept 3.0227 72.844 0.041 0.971 -310.399 316.444 t_awake -1.6447 0.567 -2.901 0.101 -4.084 0.794 fasting -7.8502 0.581 -13.505 0.005 -10.351 -5.349 coffee 0.3731 0.631 0.591 0.615 -2.344 3.090 t_run -3.2544 0.560 -5.808 0.028 -5.665 -0.843 pace 0.3189 0.143 2.225 0.156 -0.298 0.936 ============================================================================== Omnibus: 0.345 Durbin-Watson: 2.180 Prob(Omnibus): 0.842 Jarque-Bera (JB): 0.432 Skew: 0.254 Prob(JB): 0.806 Kurtosis: 1.981 Cond. No. 7.04e+04 ============================================================================== Warnings: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 7.04e+04. This might indicate that there are strong multicollinearity or other numerical problems. ###Markdown There are 577 rows and 101 columns. We got rid of the null values and filtered coins mined greather than 0. The columns are for the different values of algorithm and prooftype elements, whichs is around 100 different values. ###Code # Standardize your dataset from sklearn.preprocessing import StandardScaler scaler = StandardScaler() crypto_scaled = scaler.fit_transform(X) # Perform dimensionality reduction with PCA from sklearn.decomposition import PCA pca = PCA(n_components=0.9) crypto_pca = pca.fit_transform(crypto_scaled) crypto_pca_df = pd.DataFrame(crypto_pca) crypto_pca_df ###Output _____no_output_____ ###Markdown The amount of columns reduced to 77 ###Code # Further reduce the dataset dimensions with t-SNE and visually inspect the results. from sklearn.manifold import TSNE tsne = TSNE(learning_rate=35) tsne_features = tsne.fit_transform(crypto_pca_df) tsne_features.shape ###Output _____no_output_____ ###Markdown Only 2 columns are left ###Code # Plot import matplotlib.pyplot as plt plt.scatter(tsne_features[:,0], tsne_features[:,1]) plt.show() # Use a for-loop to determine the inertia for each k between 1 through 10 from sklearn.cluster import KMeans inertia = [] # Same as k = list(range(1, 11)) k = [1,2,3,4,5,6,7,8,9,10] # Looking for the best k for i in k: km = KMeans(n_clusters=i, random_state=0) km.fit(df_iris) inertia.append(km.inertia_) ###Output _____no_output_____ ###Markdown 1) Imports, load and prepare data ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Data extracted from: https://www.realclearpolitics.com/epolls/2020/president/2020_elections_electoral_college_map.htmlMethodology: States with clear runaway favorite are fully attributed to that candidate and excluded from analysis ###Code # load data df = pd.read_excel('ElectionPolls.xlsx',delimiter=',') df # add column that indicates whether state is battleground state df['Battleground'] = (df['Poll Trump'] != 0) * (df['Poll Trump'] != 100) # compute electoral collage votes from non-battleground states trump_solid = (df.loc[~df['Battleground']]['Electoral College Votes'].to_numpy() * (df.loc[~df['Battleground']]['Poll Trump'].to_numpy() > df.loc[~df['Battleground']]['Poll Biden'].to_numpy())).sum() biden_solid = (df.loc[~df['Battleground']]['Electoral College Votes'].to_numpy() * (df.loc[~df['Battleground']]['Poll Trump'].to_numpy() < df.loc[~df['Battleground']]['Poll Biden'].to_numpy())).sum() print('Votes from non-battleground states for Trump: {}\nVotes from non-battleground states for Biden: {}'.format(trump_solid, biden_solid)) # create arrays for votes from battleground states and poll results per candidate votes = df.loc[df['Battleground']]['Electoral College Votes'].to_numpy() trump = df.loc[df['Battleground']]['Poll Trump'].to_numpy() biden = df.loc[df['Battleground']]['Poll Biden'].to_numpy() size = len(votes) ###Output _____no_output_____ ###Markdown 2) Election simulation **Methodology for election simulation:****1) Nation-level noise:** One candidate gets a fixed bonus (and the other the same fixed deduction), that is same for all states. This bonus/deduction is drawn from a normal distribution with mean 0 and standard deviation as provided by the 'nation_sigma' parameter. Nation-level noise is intended to model a nation-wide bias of the polls toward one candidate. (Base case: 0.5 p.p.)**2) State-level noise:** One candidate gets a fixed bonus (and the other the same fixed deduction), that is different in each state and independent across states. This bonus/deduction is drawn from a normal distribution with mean 0 and standard deviation as provided by the 'state_sigma' parameter. State-level noise is intended to model a polls inherent uncertainty. (Base case: 3.5 p.p.)**3) Trump bonus/deduction:** Explicit bonus for Trump and deduction for Biden as provided by the parameter 'trump_bonus'. This parameter can be used to manually change the poll prediction by the same percentage points across all states. It can be used to model a polling bias towards one candidate. (Base case: 0)**4) Number of iterations:** Indicates the number of simulation iterations and is provided by the parameter 'n_runs' (Default: 1 million) ###Code def simulate_election(sigma_state, sigma_nation, trump_bonus=0, n_runs=1000000): ''' Simulates election outcomes per state for n_runs simulation iterations. Parameters: sigma_state: standard deviation of normal distribution for noise on state-level (independent across states) sigma_nation: standard deviation of normal distribution for noise on nation-level (same for all states) trump_bonus: bonus for trump (default: 0) n_runs: number of simulation iterations (default: 1 million) ''' res = np.zeros([n_runs,size]) for i in range(n_runs): nation_noise = np.random.normal() * sigma_nation state_noise = np.random.normal(size=size) * sigma_state trump_pred = trump + nation_noise + state_noise + trump_bonus biden_pred = biden - nation_noise - state_noise - trump_bonus res[i,] = trump_pred > biden_pred return res def get_stats(sim_result): ''' Computes summary statistics for simulation result. ''' mean = (sim_result * votes).sum(axis=1).mean() + trump_solid std = (sim_result * votes).sum(axis=1).std() median = np.median((sim_result * votes).sum(axis=1)) + trump_solid mode = np.argmax(np.bincount(np.array((sim_result * votes).sum(axis=1),dtype='int'))) + trump_solid trump_prob = (((sim_result * votes).sum(axis=1) + trump_solid) >= 270).sum()/sim_result.shape[0] state_probs = sim_result.mean(axis=0) res = {'mean':mean, 'std': std, 'median': median, 'mode': mode, 'trump_prob': trump_prob, 'state_probs': [state_probs]} return res # Get base case simulation results base_pred = simulate_election(3.5,0.5) base_stats = get_stats(pred) # set simulation parameters for scenario analysis state_sigma = [1,2,3,4,5] nation_sigma = [.25,.5,1,1.5,2] trump_bonus = [0,.5,1,2] # run simulations for scenario analysis res = pd.DataFrame() count = 0 n_iterations = len(state_sigma) * len(nation_sigma) * len(trump_bonus) print('Total iterations: ', n_iterations) for ss in state_sigma: for ns in nation_sigma: for tb in trump_bonus: stats = get_stats(simulate_election(ss,ns,tb)) stats['state_sigma'] = ss stats['nation_sigma'] = ns stats['trump_bonus'] = tb res = res.append(pd.DataFrame(stats)) count += 1 print('Completed iteration: ', count) res res.to_pickle('./results/results.pkl') ###Output _____no_output_____ ###Markdown 3) Visualize simulation results ###Code colors = {'grey': '#666666', 'dark_blue': '#000045', 'light_blue': '#009dff', 'orange': '#ff9100'} plt.figure(figsize=(15,10)) plt.hist(trump_solid + (base_pred * votes).sum(axis=1),bins=300, density=True, alpha=.5, color='blue') plt.plot([base_stats['mode'],base_stats['mode']],[0,.016], linestyle='--', linewidth=1, color='black', label='most frequent value') plt.plot([base_stats['mean'],base_stats['mean']],[0,.016], linestyle='-', linewidth=1, color='black', label='mean') plt.plot([base_stats['median'],base_stats['median']],[0,.016], linestyle='dashdot', linewidth=1, color='black', label='median') plt.plot([270,270],[0,.016], linestyle='dashdot', linewidth=1, color='red', label='Votes required for victory') plt.xlim(120,320) plt.title('Base case: Frequency distribution of predicted electoral votes for Trump', fontweight='bold', fontsize=14) plt.xlabel('Electoral votes', fontsize=14) plt.ylabel('Frequency', fontsize=14) plt.legend() plt.savefig('./plots/base_case_histogram.png', dpi=600) # Base case statistics base_stats labels = df.loc[df['Battleground']].apply(lambda x: "{} ({})".format(x['State '],x['Electoral College Votes']), axis=1) x = np.arange(len(labels)) width = .7 fig,ax = plt.subplots(figsize=(15,10)) ax.barh(x, base_pred.mean(axis=0),width) ax.plot([.5,.5],[-1,len(labels)], linestyle='-', color='black', label='50% threshold') ax.plot([.3,.3],[-1,len(labels)], linestyle='--', color='red', label='required threshold for trump victory') ax.set_yticks(x) ax.set_yticklabels(labels) ax.set_ylabel('State (votes)',fontsize=14) ax.set_xlabel('Probability of Trump victory',fontsize=14) ax.set_title('Base case: Probability of Trump victory in battleground states',fontsize=16,fontweight='bold') fig.legend(loc='upper right', bbox_to_anchor=(0.99, 0.96)) fig.tight_layout() plt.savefig('./plots/base_case_stateProbs.png', dpi=600) n_scenarios = len(state_sigma) * len(nation_sigma) x = np.arange(n_scenarios) label = res.loc[res['trump_bonus'] == 0].apply(lambda x: (x['state_sigma'],x['nation_sigma']), axis=1).to_numpy() i = 0 fig,ax = plt.subplots(figsize=(15,10)) ax.plot(x,res.loc[res['trump_bonus'] == 0, 'trump_prob'], color='black', label='No Trump bonus') ax.plot(x,res.loc[res['trump_bonus'] == 0.5, 'trump_prob'], color=colors['orange'], label='0.5% Trump bonus') ax.plot(x,res.loc[res['trump_bonus'] == 1, 'trump_prob'], color=colors['light_blue'], label='1% Trump bonus') ax.plot(x,res.loc[res['trump_bonus'] == 2, 'trump_prob'], color='red', label='2% Trump bonus') ax.set_xticks([],[]) ax.set_ylabel('Probability of Trump victory',fontsize=14) ax.set_title('Scenario analysis: Probability of Trump victory',fontsize=16,fontweight='bold') ax.set_xticks(x) ax.set_xlabel('Parameters (state_sigma, nation_sigma)',fontsize=14) ax.set_xticklabels(label, rotation=90) fig.legend(loc='upper right', bbox_to_anchor=(0.82, 0.86)) plt.savefig('./plots/scenario_analysis_victory_probability.png', dpi=600) n_scenarios = len(state_sigma) * len(nation_sigma) x = np.arange(n_scenarios) label = res.loc[res['trump_bonus'] == 0].apply(lambda x: (x['state_sigma'],x['nation_sigma']), axis=1).to_numpy() fig,axs = plt.subplots(3,1,figsize=(15,15)) i = 0 axs[i].errorbar(x,res.loc[res['trump_bonus'] == 0, 'mean'], yerr=res.loc[res['trump_bonus'] == 0, 'std'], color='black', alpha=.5) axs[i].plot([0,n_scenarios],[270,270], linestyle='--', color='red') axs[i].scatter(x,res.loc[res['trump_bonus'] == 0, 'mean'], color='black') axs[i].scatter(x,res.loc[res['trump_bonus'] == 0, 'mode'], color=colors['orange']) axs[i].scatter(x,res.loc[res['trump_bonus'] == 0, 'median'], color='green') axs[i].set_xticks([],[]) axs[i].set_ylabel('Trump votes',fontsize=14) axs[i].set_title('Scenario analysis: No Trump bonus',fontsize=14,fontweight='bold') i = 1 axs[i].errorbar(x,res.loc[res['trump_bonus'] == i, 'mean'], yerr=res.loc[res['trump_bonus'] == i, 'std'], color='black', alpha=.5) axs[i].plot([0,n_scenarios],[270,270], linestyle='--', color='red') axs[i].scatter(x,res.loc[res['trump_bonus'] == i, 'mean'], color='black') axs[i].scatter(x,res.loc[res['trump_bonus'] == i, 'mode'], color=colors['orange']) axs[i].scatter(x,res.loc[res['trump_bonus'] == i, 'median'], color='green') axs[i].set_xticks([],[]) axs[i].set_ylabel('Trump votes',fontsize=14) axs[i].set_title('Scenario analysis: 1% Trump bonus',fontsize=14,fontweight='bold') i = 2 axs[i].errorbar(x,res.loc[res['trump_bonus'] == i, 'mean'], yerr=res.loc[res['trump_bonus'] == i, 'std'], color='black', alpha=.5) axs[i].plot([0,n_scenarios],[270,270], linestyle='--', color='red', label='Required votes for victory') axs[i].scatter(x,res.loc[res['trump_bonus'] == i, 'mean'], color='black', label='prediction mean') axs[i].scatter(x,res.loc[res['trump_bonus'] == i, 'mode'], color=colors['orange'], label='prediction most frequent outcome') axs[i].scatter(x,res.loc[res['trump_bonus'] == i, 'median'], color='green', label='prediction median') axs[i].set_xticks(x) axs[i].set_xlabel('Parameters (state_sigma, nation_sigma)',fontsize=14) axs[i].set_ylabel('Trump votes',fontsize=14) axs[i].set_title('Scenario analysis: 2% Trump bonus',fontsize=14,fontweight='bold') axs[i].set_xticklabels(label, rotation=90) fig.legend(loc='lower right') plt.savefig('./plots/scenario_analysis_details.png', dpi=600) ###Output _____no_output_____ ###Markdown [Dask Dashboard](localhost:8787) Load / Clean Data xkcd datasetFirst we load in the xkcd dataset from https://www.explainxkcd.comThis dataset has 2388 xkcd comics run on (22 November 2020)Each row has the following features:* **xkcd**: The link to the official xkcd comic URL* **xkcd_num**: The extracted comic number from the URL* **Title**: The link to the Explain XKCD wiki page for that comic* **Image**: Link to a backup hosted image of the XKCD comic* **Date**: The original date of publication of the comic* **TitleText**: Title of the comic* **Explanation**: A community explanation of the comic deciphering the sometimes pithyor cryptic humor* **Transcript**: If the comic has characters speaking, this section has the text of thecomic. ###Code # Process explain xkcd data links_df = dd.read_parquet("./data/xkcd/links_df.parquet") # .set_index("Title") # There is a bug in the data collection which is caused by this surprise: # https://www.explainxkcd.com/wiki/index.php/Disappearing_Sunday_Update # its a comic with the same id which he speculates will break automated system. Sure # broke mine! links_df = links_df[links_df["TitleText"] != "Disappearing Sunday Update"].set_index("Title") pages_df = dd.read_parquet("./data/xkcd/pages_df.parquet", blocksize=None) # .set_index("Title") pages_df = pages_df.drop_duplicates() xkcd_df = dd.merge(links_df, pages_df, how='left', on="Title") xkcd_df["xkcd_num"] = xkcd_df["xkcd"].apply( lambda url: int(URL(url).path.replace("/", "")), meta='str' ) print(xkcd_df.columns) CURR_MAX_COMIC = xkcd_df["xkcd_num"].max().compute() xkcd_df.head() ###Output _____no_output_____ ###Markdown reddit datasetNext we load in the reddit dataset which is a collection of every reference of an xkcdurl on Reddit.This dataset has 313485 samples and 9 features. The comments are collected from 2007 to2019, inclusive.Each sample has the following features:* **body**: The text in the comment body (should have an xkcd url)* **author**: The reddit user's name* **score**: The comment's score (should be >= 1)* **permalink**: The permalink to the comment* **parent_***: The previous four attributes for the child comment's parent.* **xkcd**: The xkcd comic url extracted from the child comment* **xkcd_num**: The comic number extracted from the URL ###Code %%time # Process reddit data file_names = [ *list(map(str, range(2007, 2015))), *[f"{year}_{month:02d}" for year in range(2015, 2020) for month in range(1, 13)] ] reddit_dfs = [ dd.read_parquet(f"./data/reddit/{file_name}.parquet") for file_name in file_names ] reddit_df = dd.concat(reddit_dfs, ignore_index=True) print(reddit_df.columns) reddit_df.tail() %%time # Clean up reddit_df # remove null rows in important columns reddit_df = reddit_df[~( reddit_df["xkcd"].isnull() | reddit_df["parent_body"].isnull() | reddit_df["body"].isnull() )] # # Cannot remove individual rows in dask # # remove malformed row # reddit_df = reddit_df.drop(labels=[52737], axis=1) # Clean up multiple versions of URL to singular version # (i.e. m.xkcd, ending with slash, without slash, etc...) reddit_df["xkcd"] = reddit_df["xkcd"].apply( lambda url: "https://xkcd.com/" + URL(url).path.replace("/", ""), meta=str ) # Drop invalid comic numbers # the convert_dtype=False is required here because some annoying people used invalid URLs # with really large numbers reddit_df["xkcd_url_type"] = reddit_df["xkcd"].apply(lambda url: URL(url), meta=URL) def convert_to_num(url): url_num = int(url.path[1:]) if url_num < 1 or url_num > CURR_MAX_COMIC: return -1 else: return url_num # Add URL --> number column reddit_df["xkcd_num"] = reddit_df["xkcd_url_type"].apply(convert_to_num, meta=int) reddit_df = reddit_df[ (reddit_df["xkcd_num"] > 0) & ~reddit_df["xkcd_num"].isnull() ] # naive remove samples with xkcd in parent # likely over fit signal (e.g. reminds of this specific xkcd 33) # or low signal... (e.g. does anyone have the xkcd link) reddit_df = reddit_df[~reddit_df["parent_body"].str.contains("xkcd")] def strip_markdown(sample): html = markdown(sample) return ''.join(BeautifulSoup(html).findAll(text=True)) # strip markdown from text # technically we don't use the child body comment so we don't have to do this # reddit_df["body"] = reddit_df["body"].apply(unmark, meta=str) reddit_df["parent_body"] = reddit_df["parent_body"].apply(strip_markdown, meta=str) reddit_df.compute() %%time # what are the most common referenced xkcds on Reddit? # For some reason value_counts does not work with modin dataframes print(reddit_df["xkcd"].value_counts().nlargest(15).compute()) %%time # how many xkcds have never been referenced on Reddit? xkcds = dd.from_pandas(pd.Series(range(1, CURR_MAX_COMIC+1), name="xkcds"), npartitions=1) # reddit_set = set(reddit_df["xkcd_num"].tolist()) num = (~xkcds.isin(reddit_df["xkcd_num"].unique().compute().tolist())).sum().compute() print(f"Number of unreferenced xkcds: {num}") print(f"Percentage of total: {num / len(xkcds) * 100:.2f}%") %%time # simple tfidf model that uses the explanations from explain xkcd tfidf = TfidfVectorizer(strip_accents='ascii', stop_words='english', ngram_range=(1, 6), min_df=0.03) exp_vec = tfidf.fit_transform(xkcd_df['Explanation'].compute()) reddit_vec = tfidf.transform(reddit_df['parent_body'].compute()) %%time y = reddit_df["xkcd_num"].values.compute().reshape((-1, 1)) # subtract 1 from y so that the xkcd numbers are 0 indexed y -= 1 cos_y_hat = cosine_similarity(reddit_vec, exp_vec) def accuracy_n(y, y_hat, n=1): """Calculate the top-n accuracy given predicted class probabilities""" # arg sort along the rows top_n = np.argsort(y_hat, 1)[:, -n:] return np.mean(np.fromiter(( 1 if y[k] in top_n[k] else 0 for k in range(len(top_n)) ), dtype=np.int8)) %%time top_1 = accuracy_n(y, cos_y_hat) top_5 = accuracy_n(y, cos_y_hat, n=5) print(f"Top-1 Acc: {top_1*100:.3f}%") print(f"Top-5 Acc: {top_5*100:.3f}%") # BM25 class BM25Transformer(BaseEstimator, TransformerMixin): """ Parameters ---------- use_idf : boolean, optional (default=True) k1 : float, optional (default=2.0) b : float, optional (default=0.75) References ---------- Okapi BM25: a non-binary model - Introduction to Information Retrieval http://nlp.stanford.edu/IR-book/html/htmledition/okapi-bm25-a-non-binary-model-1.html """ def __init__(self, use_idf=True, k1=2.0, b=0.75): self.use_idf = use_idf self.k1 = k1 self.b = b def fit(self, X): """ Parameters ---------- X : sparse matrix, [n_samples, n_features] document-term matrix """ if not sp.issparse(X): X = sp.csc_matrix(X) if self.use_idf: n_samples, n_features = X.shape df = _document_frequency(X) idf = np.log((n_samples - df + 0.5) / (df + 0.5)) self._idf_diag = sp.spdiags(idf, diags=0, m=n_features, n=n_features) return self def transform(self, X, copy=True): """ Parameters ---------- X : sparse matrix, [n_samples, n_features] document-term matrix copy : boolean, optional (default=True) """ if hasattr(X, 'dtype') and np.issubdtype(X.dtype, np.float): # preserve float family dtype X = sp.csr_matrix(X, copy=copy) else: # convert counts or binary occurrences to floats X = sp.csr_matrix(X, dtype=np.float64, copy=copy) n_samples, n_features = X.shape # Document length (number of terms) in each row # Shape is (n_samples, 1) dl = X.sum(axis=1) # Number of non-zero elements in each row # Shape is (n_samples, ) sz = X.indptr[1:] - X.indptr[0:-1] # In each row, repeat `dl` for `sz` times # Shape is (sum(sz), ) # Example # ------- # dl = [4, 5, 6] # sz = [1, 2, 3] # rep = [4, 5, 5, 6, 6, 6] rep = np.repeat(np.asarray(dl), sz) # Average document length # Scalar value avgdl = np.average(dl) # Compute BM25 score only for non-zero elements data = X.data * (self.k1 + 1) / (X.data + self.k1 * (1 - self.b + self.b * rep / avgdl)) X = sp.csr_matrix((data, X.indices, X.indptr), shape=X.shape) if self.use_idf: check_is_fitted(self, '_idf_diag', 'idf vector is not fitted') expected_n_features = self._idf_diag.shape[0] if n_features != expected_n_features: raise ValueError("Input has n_features=%d while the model" " has been trained with n_features=%d" % ( n_features, expected_n_features)) # *= doesn't work X = X * self._idf_diag return X re_stopwords = re.compile(r'\b(' + r'|'.join(stopwords.words('english')) + r')\b\s*') # remove stop words and punctuation replace_vec = np.vectorize( lambda item: re_stopwords.sub('', item).translate(str.maketrans('', '', string.punctuation)) ) class StopWordRemover(BaseEstimator, TransformerMixin): def fit(self, X, y=None): return self def transform(self, X): return replace_vec(X) StopWordRemover().fit_transform(np.array([ ["This is a test", "hello %world this is a test."], ["another one", "of how well"], ["hello world, today is a good day.", "this works."] ])) %%time # TODO: Look into dask_ml to replace these custom transformers so # they can be a lot faster p = Pipeline([ ('stop', StopWordRemover()), ('count_vec', CountVectorizer(ngram_range=(1, 6))), ('bm25', BM25Transformer()), ]) exp_vec2 = p.fit_transform(xkcd_df['Explanation']) reddit_vec2 = p.transform(reddit_df['parent_body']) cos_y_hat2 = cosine_similarity(reddit_vec2, exp_vec2) top_1 = accuracy_n(y, cos_y_hat2) top_5 = accuracy_n(y, cos_y_hat2, n=5) print(f"Top-1 Acc: {top_1*100:.3f}%") print(f"Top-5 Acc: {top_5*100:.3f}%") %%time # This takes about 10 minutes right now X_train_raw, X_test_raw, y_train, y_test = train_test_split(reddit_df['parent_body'], reddit_df["xkcd_num"] - 1, test_size=0.25) xgb_pipe = clone(p) X_train = xgb_pipe.fit_transform(X_train_raw) X_test = xgb_pipe.transform(X_test_raw) eval_set = [(X_train, y_train), (X_test, y_test)] # TODO: Fix bug attribute to_delayed not found (basically everything works up until this point) # clf = XGBClassifier() # clf.fit(X_train, y_train, eval_set=eval_set) # clf.score(X_test_raw, y_test) ###Output _____no_output_____ ###Markdown Analyzing Real vs. Fake News Article Headlines 📰Author:[Navraj Narula](http://navierula.github.io)Data Source: [Randomly-Collected Fake News Dataset](https://github.com/BenjaminDHorne/fakenewsdata1)Resources Consulted: [Text Mining with R](http://tidytextmining.com)[R: Text Classification using a K Nearest Neighbour Model](http://garonfolo.dk/herbert/2015/05/r-text-classification-using-a-k-nearest-neighbour-model/) ###Code # turn off warnings options(warn=-1) # import libraries library(dplyr) library(e1071) library(ggplot2) library(tidytext) library(stringr) library(RColorBrewer) library(tm) library(class) library(SnowballC) # load in dataset mydata = read.csv("cleaned_data/headlines.txt",sep="\t",stringsAsFactors = FALSE,col.names=c("text", "status"),fill=TRUE) # remove rows with empty values mydata = mydata[!apply(mydata, 1, function(x) any(x=="")),] # preview the first five rows # (mostly fake articles at the top) head(mydata) # preview the last five rows # (mostly real articles at the bottom) tail(mydata) # calculate term/word frequency for words present in articles news_words <- mydata %>% unnest_tokens(word, text) %>% count(status, word, sort = TRUE) %>% ungroup() total_words <- news_words %>% group_by(status) %>% summarize(total = sum(n)) news_words <- left_join(news_words, total_words) news_words ###Output Joining, by = "status" ###Markdown From the table above, we can see that the word "trump" is not only the most commonly used word in real news article headlines, but also the most commonly used world overall. This makes sense given the past election cycle. Out of 633 total words that appeared in real news article headlines, the word "trump" appeared 28 times, or rather 4.4% overall.In fake news article headlines, the most commonly used word was "obama," and following that, "trump" once again. These words appeared 20 out of 842 times and 19 out of 842 times. Respectively, 2.3% and 2.2%. ###Code # visualize word counts in buckets ggplot(news_words, aes(n/total, fill = status)) + geom_histogram(show.legend = TRUE,binwidth = 30,color="black") + facet_wrap(~status, ncol = 4) ###Output _____no_output_____ ###Markdown The visualization above simply counts the number of words present in each type of headline. For fake news headlines, the total number of words is 842. The total number of words for real news headlines is 633. Considering the fact that the particular dataset that I am using contains less real news headlines rather than fake news articles, the counts make sense. ###Code sprintf("The number of real news headlines in my dataset is: %d", str_count(mydata, "real")[2]) sprintf("The number of fake news headlines in my dataset is: %d", str_count(mydata, "fake")[2]) # calculate frequency by rank, using Zipf's law freq_by_rank <- news_words %>% group_by(status) %>% mutate(rank = row_number(), `term frequency` = n/total) freq_by_rank ###Output _____no_output_____ ###Markdown The rank describes the rank of each word in the frequency table. It is plotted below, showing a constant negative slope. ###Code myColors <- c("gold4", "mediumorchid4") # plot Zipf's law freq_by_rank %>% ggplot(aes(rank, `term frequency`, col=status)) + geom_line(size = 3, alpha = 0.8) + scale_x_log10() + scale_y_log10() + scale_color_manual(values=myColors) ###Output _____no_output_____ ###Markdown From the above graph, we can see that words associate with real news headlines have a higher rank - which is not surprising. I will now use TF-IDF (Term Frequency–Inverse Document Frequency) to find the most relevant word for each article headline. According to [tidytextmining](http://tidytextmining.com/tfidf.htmlterm-frequency-in-jane-austens-novels), "the idea of tf-idf is to find the important words for the content of each document by decreasing the weight for commonly used words and increasing the weight for words that are not used very much in a collection or corpus of documents."TF-IDF may be a good method to use in regards to understanding contents of a document (or headline, in our case) because it finds words that are common, but not too common. This perhaps get rids of words that are unnecessary or irrelevant. ###Code news_words <- news_words %>% bind_tf_idf(word, status, n) news_words ###Output _____no_output_____ ###Markdown We can see that tf-idf scores are ZERO for words that are very common. They appear in both types of news headlines. The idf will be low for such words and higher for words that appear in fewer headlines. ###Code # order terms by highest tf-idf score news_words %>% select(-total) %>% arrange(desc(tf_idf)) myColors <- c("rosybrown3", "darkseagreen4") # plot top 30 words by tf-idf plot_ <- news_words %>% arrange(desc(tf_idf)) %>% mutate(word = factor(word, levels = rev(unique(word)))) plot_ %>% top_n(30) %>% ggplot(aes(word, tf_idf, fill = status)) + geom_bar(stat="identity") + scale_fill_manual(values=myColors) + #scale_fill instead of scale_col to fill color manually labs(x = "words", y = "tf-idf") + coord_flip() myColors <- c("lightpink1", "cornflowerblue") # plot by grouping for top 25 words plot_ %>% group_by(status) %>% top_n(25) %>% ungroup %>% ggplot(aes(word, tf_idf, fill = status)) + geom_col(show.legend = FALSE) + labs(x = "word", y = "tf-idf") + facet_wrap(~status, ncol = 2, scales = "free") + scale_fill_manual(values=myColors) + coord_flip() ###Output Selecting by tf_idf ###Markdown News Classifier Using K-Nearest Neighbors Algorithm ###Code # turn off warnings options(warn=-1) #install.packages("RTextTools") #try installing this as a package # set seed value set.seed(100) # generate headlines corpus headlines <- Corpus(VectorSource(mydata$text)) # clean headlines headlines <- tm_map(headlines, content_transformer(tolower)) headlines <- tm_map(headlines, removeNumbers) headlines <- tm_map(headlines, removeWords, stopwords("english")) headlines <- tm_map(headlines, removePunctuation) headlines <- tm_map(headlines, stripWhitespace) headlines <- tm_map(headlines, stemDocument, language = "english") # create document-term matrix dtm <- DocumentTermMatrix(headlines) # transforms document-term matrix to dataframe mat.mydata <- as.data.frame(data.matrix(dtm), stringsAsfactors = FALSE) # column bind on status mat.mydata <- cbind(mat.mydata, mydata$status) # Change name of new column to "status" colnames(mat.mydata)[ncol(mat.mydata)] <- "status" all <- 0 max = -Inf for (i in 1:1000) { # split data into train and test sets train <- sample(nrow(mat.mydata), ceiling(nrow(mat.mydata) * .50)) test <- (1:nrow(mat.mydata))[- train] # assign classifier classifier <- mat.mydata[, "status"] modeldata <- mat.mydata[,!colnames(mat.mydata) %in% "status"] # make predictions using knn algo knn_predictions <- knn(modeldata[train, ], modeldata[test, ], classifier[train]) # create confusion matrix confusion_matrix <- table("Predictions" = knn_predictions, Actual = classifier[test]) accuracy <- sum(diag(confusion_matrix))/length(test) * 100 all = all + accuracy if (accuracy > max) { max <- accuracy # find max accuracy print(max) print(confusion_matrix) } } all/1000 ###Output _____no_output_____ ###Markdown Dataset Dataset creation ###Code # Load words dataset table words = load_words('data/database/words.csv') words.head() # Retrieve dictionaries mapping lemma tuples to numeric value w2i, i2w = map_words(words) # Map lemmas to node numbers words['node'] = words.apply(lambda w: w2i[(w.text, w.pos)], axis=1) words.head() # Load tweets dataset table tweets = load_tweets('data/database/tweets.csv') tweets.head() ###Output _____no_output_____ ###Markdown Dataset statistics Number of tweets ###Code # Define words from tweets of 2017 and the ones from tweets of 2018 tweets_2017 = tweets.id_str[tweets.created_at.dt.year == 2017].values tweets_2018 = tweets.id_str[tweets.created_at.dt.year == 2018].values # Show tweets distribution fig, ax = plt.subplots(figsize=(7.5, 5)) _ = ax.set_title('Tweet count for 2017 and 2018 analyzed period', fontsize=18) _ = ax.bar(['2017'], [len(tweets_2017)]) _ = ax.bar(['2018'], [len(tweets_2018)]) _ = plt.savefig('images/analysis/tweet_counts.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Words count ###Code # Show word counts in tweets of 2017 and 2018 respectively fig, ax = plt.subplots(figsize=(7.5, 5)) _ = ax.set_title('Word count for 2017 and 2018 analyzed period', fontsize=18) _ = ax.bar(['2017'], sum(words.tweet.isin(tweets_2017))) _ = ax.bar(['2018'], sum(words.tweet.isin(tweets_2018))) _ = plt.savefig('images/analysis/words_counts.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Unique words count ###Code # Show unique word counts in tweets of 2017 and 2018 respectively unique_words_2017 = words.text[words.tweet.isin(tweets_2017)].unique() unique_words_2018 = words.text[words.tweet.isin(tweets_2018)].unique() fig, ax = plt.subplots(figsize=(7.5, 5)) _ = ax.set_title('Word count for 2017 and 2018 analyzed period') _ = ax.bar(['2017'], unique_words_2017.shape[0]) _ = ax.bar(['2018'], unique_words_2018.shape[0]) _ = plt.savefig('images/analysis/nodes_counts.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Tweets lengths distributionsHistogram shows the distribution of tweet lengths in either 2017's and 2018'2 network. The difference in the two distributions is due to the fact that in november 2017 the allowed tweet lengths in term of characters has been duplicated by Twitter itself. ###Code # Compute length of each tweet, for either words and characters tweets_ = tweets.loc[:, ['id_str']] tweets_['len_words'] = tweets.apply(lambda t: len(t.text.split(' ')), axis=1) tweets_['len_chars'] = tweets.apply(lambda t: len(t.text), axis=1) # Get 2017 and 2018 tweets tweets_2017_ = tweets_[tweets_['id_str'].isin(tweets_2017)] tweets_2018_ = tweets_[tweets_['id_str'].isin(tweets_2018)] # Show distribution of words number per tweet in 2017 and 2018 fig, axs = plt.subplots(1, 2, figsize=(10, 5)) # Word lengths _ = axs[0].set_title('Number of words per tweet',fontsize=18) _ = axs[0].hist(tweets_2017_['len_words'], bins=25, density=True, alpha=.7) _ = axs[0].hist(tweets_2018_['len_words'], bins=50, density=True, alpha=.7) _ = axs[0].legend(['Tweet length in 2017', 'Tweet length in 2018']) # Charactes lengths _ = axs[1].set_title('Number of characters per tweet', fontsize=18) _ = axs[1].hist(tweets_2017_['len_chars'], bins=25, density=True, alpha=.7) _ = axs[1].hist(tweets_2018_['len_chars'], bins=50, density=True, alpha=.7) _ = axs[1].legend(['Tweet length in 2017', 'Tweet length in 2018']) # Make plot _ = plt.savefig('images/analysis/tweet_len_distr.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Network creation Edges creation ###Code # Define years under examination years = [2017, 2018] # Define edges for 2017 and 2018 (as Pandas DataFrames) edges = dict() # Define edges for each network for y in years: # Get id of tweets for current year tweet_ids = tweets.id_str[tweets.created_at.dt.year == y] # Compute edges for current year edges[y] = get_edges(words[words.tweet.isin(tweet_ids)]) # Save vocabularies to disk np.save('data/edges_w2i.npy', w2i) # Save tuple to index vocabulary np.save('data/edges_i2w.npy', i2w) # Save index to tuple vocabulary # Save edges to disk edges_ = [*years] # Loop through each edges table for i, y in enumerate(years): # Add year column edges_[i] = edges[y].copy() edges_[i]['year'] = y # Concatenate DataFrames edges_ = pd.concat(edges_, axis=0) # Save dataframe to disk edges_.to_csv('data/database/edges.csv', index=False) print('Edges for 2017\'s network') edges[2017].head() print('Edges for 2018\'s network') edges[2018].head() ###Output Edges for 2018's network ###Markdown Adjacency matricesCompute upper triangular adjacency matrices for either 2017's and 2018's networks. Note: adjacency matrices are saved by default to avoid recomputing. ###Code # Define networks container network = dict() # Create newtorks for y in years: network[y] = nx.from_pandas_edgelist(edges[y], source='node_x', target='node_y', edge_attr=True, create_using=nx.Graph) # Get numpy adjacency matrices adj_matrix = dict() for y in years: adj_matrix[y] = nx.to_numpy_matrix(network[y]) # Show adjacency matrices fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # Print adjacency matrix for each network for i, y in enumerate(years): _ = axs[i].set_title('{:d}\'s network adjacency matrix'.format(y)) _ = axs[i].imshow(np.minimum(adj_matrix[y], np.ones(adj_matrix[y].shape))) _ = plt.show() adj_matrix[2017].shape ###Output _____no_output_____ ###Markdown Summary statisticsCompute mean, density, and other summary statistics for both 2017's and 2018's networks ###Code # Initialize summary statistics mean = {} density = {} std = {} # Compute mean and density for y in years: x = adj_matrix[y] # Get adjacency matrix for current network n = x.shape[0] # Get dimension of the adjacency matrix mean[y] = x.sum() / n**2 std[y] = ( ((x - mean[y])**2).sum() / (n**2 - 1) )**.5 density[y] = np.minimum(x, np.ones((n, n))).sum() / n**2 # Print out results for y in years: print('{:d}\'s network has mean={:.04f}, standard deviation={:.04f} and density={:.04f}'.format(y, mean[y], std[y], density[y])) # Show summary statistics graphically fig, axs = plt.subplots(1, 3, figsize=(12, 5)) _ = axs[0].set_title('Mean',fontsize=15) _ = axs[1].set_title('Standard deviation',fontsize=15) _ = axs[2].set_title('Density',fontsize=15) # Print scores for either 2017 and 2018 for y in years: _ = axs[0].bar(str(y), mean[y]) _ = axs[1].bar(str(y), std[y]) _ = axs[2].bar(str(y), density[y]) # Make plot _ = plt.savefig('images/analysis/net_stats.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Degrees analysis ###Code # Compare degrees graphically fig, ax = plt.subplots(figsize=(30, 5)) _ = fig.suptitle('Distribution of the networks degrees') _ = ax.hist(get_degree(network[2017]), bins=500, alpha=0.7) _ = ax.hist(get_degree(network[2018]), bins=500, alpha=0.7) _ = ax.set_xlim(0, 200) _ = ax.legend(['Degree of the network in 2017', 'Degree of the network in 2018']) _ = plt.savefig('images/analysis/degree_hist.png') _ = plt.show() # Define function for computing degree analysis (compute pdf, cdf, ...) def make_degree_analysis(network): """ Input: - degrees Pandas Series node (index) maps to its degree (value) Output: - degree: list of degrees - counts: list containing count for each degree - pdf (probability distribution function): list - cdf (cumulative distribution function): list """ # Get number of times a degree appeared in the network degree = get_degree(network) degree, count = np.unique(degree.values, return_counts=True) pdf = count / np.sum(count) # Compute pdf cdf = list(1 - np.cumsum(pdf))[:-1] + [0] # Compute cdf # Return computed statistics return degree, count, pdf, cdf # Define function for plotting degree analysis def plot_degree_analysis(network): # Initialize plot fig, axs = plt.subplots(1, 3, figsize=(12, 5)) _ = axs[0].set_title('Probability Distribution',fontsize=14) _ = axs[1].set_title('Log-log Probability Distribution',fontsize=14) _ = axs[2].set_title('Log-log Cumulative Distribution',fontsize=14) # Create plot fore each network for i, y in enumerate(network.keys()): # Compute degree statistics k, count, pdf, cdf = make_degree_analysis(network[y]) # Make plots _ = axs[0].plot(k, pdf, 'o', alpha=.7) _ = axs[1].loglog(k, pdf, 'o', alpha=.7) _ = axs[2].loglog(k, cdf, 'o', alpha=.7) # Show plots _ = [axs[i].legend([str(y) for y in network.keys()], loc='upper right') for i in range(3)] _ = plt.savefig('images/analysis/degree_distr.png') _ = plt.show() # Plot pdf, cdf, log-log, ... of each network plot_degree_analysis(network) ###Output _____no_output_____ ###Markdown Scale-free property Power law estimation ###Code # Estimate power law parameters for each network # Initialize power law parameters power_law = { 2017: {'k_sat': 4}, 2018: {'k_sat': 7} } # Define parameters for each network for i, y in enumerate(years): # Get the unique values of degree and their counts degree = get_degree(network[y]) k, count = np.unique(degree, return_counts=True) k_sat = power_law[y]['k_sat'] # Define minumum and maximum k (degree) power_law[y]['k_min'] = k_min = np.min(k) power_law[y]['k_max'] = k_max = np.max(k) # Estimate parameters n = degree[k_sat:].shape[0] gamma = 1 + n / np.sum(np.log(degree[k_sat:] / k_sat)) c = (gamma - 1) * k_sat ** (gamma - 1) # Compute cutoff cutoff = k_sat * n ** (1 / (gamma - 1)) # Store parameters power_law[y]['gamma'] = gamma power_law[y]['c'] = c power_law[y]['cutoff'] = cutoff # Pront out coefficients for y in power_law.keys(): # Retrieve parameters gamma, c, cutoff = power_law[y]['gamma'], power_law[y]['c'], power_law[y]['cutoff'] k_min, k_max = power_law[y]['k_min'], power_law[y]['k_max'] # Print results out = 'Power law estimated parameters for {:d}\'s network:\n' out += ' gamma={:.03f}, c={:.03f}, cutoff={:.03f}, min.degree={:d}, max.degree={:d}' print(out.format(y, gamma, c, cutoff, k_min, k_max)) # Define regression lines values for either 2017 and 2018 distributions # Define regression lines container regression_line = {} # Define maximum degree, for both years together k_max = np.max([power_law[y]['k_max'] for y in power_law.keys()]) # Compute regression lines for y in power_law.keys(): # Retrieve parameters gamma and c gamma = power_law[y]['gamma'] c = power_law[y]['c'] # Compute regression line regression_line[y] = c * np.arange(1, k_max) ** (1 - gamma) / (gamma - 1) # Plot results fig, ax = plt.subplots(figsize=(12, 5)) _ = ax.set_title('Log-log Cumulative Distribution Function',fontsize=15) # Print every network for i, y in enumerate(power_law.keys()): # Retrieve degree analysis values k, count, pdf, cdf = make_degree_analysis(network[y]) # Print dots _ = ax.loglog(k, cdf, 'o', alpha=.7, color=colors[i]) # Print regression line _ = ax.loglog(np.arange(1, k_max), regression_line[y], color=colors[i]) # Make plot _ = ax.legend(['2017']*2 + ['2018']*2, loc='lower left') _ = plt.savefig('images/analysis/power_law.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Small-world property Connected components ###Code # Extract cardinality of connected components and diameter of the giant component for both nets """# Initialize components container connected_components = {} # Compute giant component for every network for i, y in enumerate(network.keys()): # Compute connected component cc = sorted(nx.connected_components(network[y]), key=len, reverse=True) # Compute diameter of the giant component d = nx.diameter(network[y].subgraph(cc[0])) # Store the tuple (giant component, cardinality, diameter) connected_components[y] = [] connected_components[y].append({ 'component': cc[0], 'size': len(cc[0]), 'diameter': d }) # Store each component for component in cc[1:]: # Add component, without diameter connected_components[y].append({ 'component': component, 'size': len(component) }) # Save connected components to disk np.save('data/connected_components.npy', connected_components)""" # Load connected components from file connected_components = np.load('data/connected_components.npy', allow_pickle=True).item() # Show connected components info for each year for y in years: # Retrieve connected component cc = connected_components[y] # Show giant component info print('Network {:d}'.format(y)) print('Giant component has cardinality={:d} and diameter={:d}'.format(cc[0]['size'], cc[0]['diameter'])) # Store each component for j, component in enumerate(cc): if j == 0: continue # Show other components print('Connected component nr {:d} has cardinality={:d}'.format(j + 1, component['size'])) print() ###Output Network 2017 Giant component has cardinality=1665 and diameter=6 Connected component nr 2 has cardinality=4 Connected component nr 3 has cardinality=2 Connected component nr 4 has cardinality=2 Network 2018 Giant component has cardinality=1861 and diameter=5 Connected component nr 2 has cardinality=2 Connected component nr 3 has cardinality=2 ###Markdown Clustering coefficient ###Code # Compute and show chlustering coefficients # Compute clustering coefficients clust_coef = {y: pd.Series(nx.clustering(network[y], weight='weight')) for y in years} # Make plot fig, axs = plt.subplots(1, 2, figsize=(15, 8), sharey=True) # Loop through each network for i, y in enumerate(years): cc = clust_coef[y] _ = axs[i].set_title('{:d}\'s network'.format(y)) _ = axs[i].plot(cc.index.values, cc.values, 'x', mec=colors[i]) _ = axs[i].grid() # Show plot _ = plt.savefig('images/analysis/clust_coeff.png') _ = plt.show() giant = {y: connected_components[y][0]['component'] for y in years} # Compute the average shortest path length for both nets L = {y: nx.average_shortest_path_length(network[y].subgraph(giant[y]), weight='counts', method='floyd-warshall-numpy') for y in years} for y in years: print('Network {:d}'.format(y)) N = len(network[y].nodes) print('log N: {:.4f}'.format( np.log(N) )) print('log log N: {:.4f}'.format( np.log( np.log(N) ) )) print('Average shortest path length: {:.4f}'.format(L[y])) print('Average clustering coefficient: {:.4f}'.format(np.mean(clust_coef[y]))) print() ###Output Network 2017 log N: 7.4224 log log N: 2.0045 Average shortest path length: 2.7247 Average clustering coefficient: 0.0201 Network 2018 log N: 7.5310 log log N: 2.0190 Average shortest path length: 2.4799 Average clustering coefficient: 0.0079 ###Markdown Ranking Ranking of words Ranking by degree ###Code # Define subset (firs n-th) best = 20 # Make plot fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # Plot each network for i, y in enumerate(years): degree = get_degree(network[y]).sort_values(ascending=False) _ = axs[i].set_title('Best nodes in {:d}\'s network'.format(y)) _ = axs[i].bar(degree.index[:best].map(lambda x: str(i2w[x])), degree.values[:best], color=colors[i]) _ = axs[i].tick_params(axis='x', labelrotation=60) # Show plot _ = plt.savefig('images/analysis/words_rank_degree.png', bbox_inches='tight') _ = plt.show() ###Output _____no_output_____ ###Markdown Ranking by betweenness ###Code """# Compute betweenness centrality measure for nodes (on giant components) betweenness = {} for y in years: # Define giant component subgraph # giant_component = connected_components[y][0]['component'] # subgraph = nx.induced_subgraph(network[y], giant_component) # Compute betweenness betweenness[y] = nx.betweenness_centrality(network[y], weight='weight') # Save betweenness as numpy array np.save('data/betweenness.npy', betweenness)""" # Load betweenness betweenness = np.load('data/betweenness.npy', allow_pickle=True).item() # Define subset (firs n-th) best = 20 # Make plot fig, axs = plt.subplots(1, 2, figsize=(15, 5)) for i, y in enumerate(years): btw = pd.Series(betweenness[y]).sort_values(ascending=False) _ = axs[i].set_title('Best nodes in {:d}\'s network'.format(y)) _ = axs[i].bar(btw.index[:best].map(lambda x: str(i2w[x])), btw.values[:best], color=colors[i]) _ = axs[i].tick_params(axis='x', labelrotation=60) _ = plt.savefig('images/analysis/words_rank_btw.png', bbox_inches='tight') _ = plt.show() ###Output _____no_output_____ ###Markdown Ranking of verbs ###Code # Define verbs dictionary verbs2i = {w: w2i[w] for w in w2i.keys() if w[1] == 'V'} ###Output _____no_output_____ ###Markdown Ranking by degree ###Code # Define subset (firs n-th) best = 20 # Make plot fig, axs = plt.subplots(1, 2, figsize=(15, 5)) # Plot each network for i, y in enumerate(years): degree = get_degree( network[y].subgraph(list(set(network[y].nodes()) & set(verbs2i.values()))) ).sort_values(ascending=False) _ = axs[i].set_title('Best verbs in {:d}\'s network'.format(y)) _ = axs[i].bar(degree.index[:best].map(lambda x: str(i2w[x])), degree.values[:best], color=colors[i]) _ = axs[i].tick_params(axis='x', labelrotation=60) # Show plot _ = plt.savefig('images/analysis/verbs_rank_degree.png', bbox_inches='tight') _ = plt.show() ###Output _____no_output_____ ###Markdown Ranking by betweenness ###Code # Compute betweenness centrality measure for nodes (on giant components) """betweenness_verbs = {} for y in years: # Define giant component subgraph giant_component = connected_components[y][0]['component'] subgraph = nx.induced_subgraph(network[y], giant_component) # Compute betweenness betweenness_verbs[y] = nx.betweenness_centrality(subgraph.subgraph(list(set(network[y].nodes()) & set(verbs2i.values()))) ,weight='weight') # Save betweenness as numpy array np.save('data/betweenness_verbs.npy', betweenness_verbs)""" # Load betweenness betweenness_verbs = np.load('data/betweenness_verbs.npy', allow_pickle=True).item() # Define subset (firs n-th) best = 20 # Make plot fig, axs = plt.subplots(1, 2, figsize=(15, 5)) for i, y in enumerate(years): btw = pd.Series(betweenness_verbs[y]).sort_values(ascending=False) _ = axs[i].set_title('Best verbs in {:d}\'s network'.format(y)) _ = axs[i].bar(btw.index[:best].map(lambda x: str(i2w[x])), btw.values[:best], color=colors[i]) _ = axs[i].tick_params(axis='x', labelrotation=60) _ = plt.savefig('images/analysis/verbs_rank_btw.png', bbox_inches='tight') _ = plt.show() ###Output _____no_output_____ ###Markdown Analysis of ranking changes All words ###Code # Define subset (firs n-th) best = 100 nodes = set(network[2017].subgraph(connected_components[2017][0]['component']).nodes) & set(network[2018].subgraph( connected_components[2018][0]['component']).nodes) # Define percentage of change for btw rate_btw = { node : (betweenness[2017][node] - betweenness[2018][node]) / (betweenness[2017][node] + betweenness[2018][node]) for node in nodes if betweenness[2017][node] + betweenness[2018][node] != 0 } # Define percentage of change for degree degree17 = get_degree(network[2017]).sort_values(ascending=False) degree18 = get_degree(network[2018]).sort_values(ascending=False) rate_degree = { node : (degree17[node] - degree18[node]) / (degree17[node] + degree18[node]) for node in nodes } # Make plot fig, axs = plt.subplots(2, 1, figsize=(15, 10)) rate_btw = pd.Series(rate_btw).sort_values(ascending=False) _ = axs[0].set_title('Words with highest percentage of change in betweenness'.format(y)) _ = axs[0].bar(rate_btw.index[:best].map(lambda x: str(i2w[x])), rate_btw.values[:best]) _ = axs[0].tick_params(axis='x', labelrotation=90) rate_degree = pd.Series(rate_degree).sort_values(ascending=False) _ = axs[1].set_title('Words with highest percentage of change in degree'.format(y)) _ = axs[1].bar(rate_degree.index[:best].map(lambda x: str(i2w[x])), rate_degree.values[:best]) _ = axs[1].tick_params(axis='x', labelrotation=90) _ = plt.tight_layout() _ = plt.show() btw1 = sum(rate_btw == 1)/len(rate_btw) btw2 = sum(rate_btw == -1)/len(rate_btw) btw3 = sum(rate_btw == 0)/len(rate_btw) deg1 = sum(rate_degree == 1)/len(rate_degree) deg2 = sum(rate_degree == -1)/len(rate_degree) deg3 = sum(rate_degree == 0)/len(rate_degree) # Show node differences fig, ax = plt.subplots(1,2,figsize=(15, 5), sharey=True) _ = ax[0].set_title('Significative values for the betweenness change rate') _ = ax[0].bar(['% words with rate = 1'], [btw1]) _ = ax[0].bar(['% words with rate = -1'], [btw2]) _ = ax[0].bar(['% words with rate = 0'], [btw3]) _ = ax[1].set_title('Significative values for the degree change rate') _ = ax[1].bar(['% words with rate = 1'], [deg1]) _ = ax[1].bar(['% words with rate = -1'], [deg2]) _ = ax[1].bar(['% words with rate = 0'], [deg3]) _ = plt.tight_layout() _ = plt.savefig('images/analysis/words_change_rank.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Verbs ###Code # Define subset (firs n-th) best = 100 nodes_verbs = set(network[2017].subgraph( set(connected_components[2017][0]['component']) & set(verbs2i.values()) ).nodes) & set(network[2018].subgraph( set(connected_components[2018][0]['component']) & set(verbs2i.values()) ).nodes) # Define percentage of change for btw rate_btw_verbs = { node : (betweenness_verbs[2017][node] - betweenness_verbs[2018][node]) / (betweenness_verbs[2017][node] + betweenness_verbs[2018][node]) for node in nodes_verbs if betweenness_verbs[2017][node] + betweenness_verbs[2018][node] != 0 } # Define percentage pf change for degree degree17 = get_degree(network[2017]).sort_values(ascending=False) degree18 = get_degree(network[2018]).sort_values(ascending=False) rate_degree_verbs = { node : (degree17[node] - degree18[node]) / (degree17[node] + degree18[node]) for node in nodes_verbs } # Make plot fig, axs = plt.subplots(2, 1, figsize=(15, 10)) rate_btw_verbs = pd.Series(rate_btw_verbs).sort_values(ascending=False) _ = axs[0].set_title('Words with highest percentage of change in betweenness'.format(y)) _ = axs[0].bar(rate_btw_verbs.index[:best].map(lambda x: str(i2w[x])), rate_btw_verbs.values[:best]) _ = axs[0].tick_params(axis='x', labelrotation=90) rate_degree_verbs = pd.Series(rate_degree_verbs).sort_values(ascending=False) _ = axs[1].set_title('Words with highest percentage of change in degree'.format(y)) _ = axs[1].bar(rate_degree_verbs.index[:best].map(lambda x: str(i2w[x])), rate_degree_verbs.values[:best]) _ = axs[1].tick_params(axis='x', labelrotation=90) _ = plt.tight_layout() _ = plt.show() btw1 = sum(rate_btw_verbs == 1)/len(rate_btw_verbs) btw2 = sum(rate_btw_verbs == -1)/len(rate_btw_verbs) btw3 = sum(rate_btw_verbs == 0)/len(rate_btw_verbs) deg1 = sum(rate_degree_verbs == 1)/len(rate_degree_verbs) deg2 = sum(rate_degree_verbs == -1)/len(rate_degree_verbs) deg3 = sum(rate_degree_verbs == 0)/len(rate_degree_verbs) # Show node differences fig, ax = plt.subplots(1,2,figsize=(15, 5), sharey=True) _ = ax[0].set_title('Significative values for the betweenness change rate') _ = ax[0].bar(['% verbs with rate = 1'], [btw1]) _ = ax[0].bar(['% verbs with rate = -1'], [btw2]) _ = ax[0].bar(['% verbs with rate = 0'], [btw3]) _ = ax[1].set_title('Significative values for the degree change rate') _ = ax[1].bar(['% verbs with rate = 1'], [deg1]) _ = ax[1].bar(['% verbs with rate = -1'], [deg2]) _ = ax[1].bar(['% verbs with rate = 0'], [deg3]) _ = plt.tight_layout() _ = plt.savefig('images/analysis/verbs_change_rank.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Selected words ###Code sel_words = [('young', 'A'), ('harassment', 'N'), # big words that change size ('empower','V'), ('initiative', 'N'), ('discuss','V'), ('education', 'N'), ('dream','N'), ('dignity','N'), #positive 1 ('include','V'), ('safe','A'), ('prevent', 'V'), ('security','N'), #positive 2 ('work','V'), ('assault','N'), ('flee','V'), ('abuse','N')] #specific mask = [] for w in sel_words: if not w2i[w] in nodes: print(' "{}" word not in both networks'.format(w)) print() else: #print(' "{}" word degree change rate: {}'.format(w, rate_degree[w2i[w]])) print(' "{}" word btw change rate: {}'.format(w, rate_btw[w2i[w]])) print() ###Output "('young', 'A')" word btw change rate: 0.5296871007339359 "('harassment', 'N')" word btw change rate: -0.05028998860520895 "('empower', 'V')" word btw change rate: 0.07216030830213684 "('initiative', 'N')" word btw change rate: 0.7715624714437412 "('discuss', 'V')" word btw change rate: -0.12924016901000587 "('education', 'N')" word btw change rate: -0.2700762154848485 "('dream', 'N')" word btw change rate: 0.21523354362535313 "('dignity', 'N')" word btw change rate: 0.046040219761660006 "('include', 'V')" word btw change rate: 0.5071152819268543 "('safe', 'A')" word btw change rate: -0.2819714413634178 "('prevent', 'V')" word btw change rate: -0.21733776733256185 "('security', 'N')" word btw change rate: 0.10384015636067427 "('work', 'V')" word btw change rate: -0.5051204882438888 "('assault', 'N')" word not in both networks "('flee', 'V')" word btw change rate: 0.22556250492923832 "('abuse', 'N')" word btw change rate: -0.010238881034532703 ###Markdown Difference between sets of nodes ###Code x17 = len(set(network[2017].nodes) - set(network[2018].nodes))/len(set(network[2017].nodes)) * 100 print('Percentage of words in 2017 but not in 2018: {:d} %'.format(int(x17))) x18 = len(set(network[2018].nodes) - set(network[2017].nodes)) / len(set(network[2018])) * 100 print('Percentage of words in 2018 but not in 2017: {:d} %'.format(int(x18))) # Show node differences fig, ax = plt.subplots(figsize=(7.5, 5)) _ = ax.set_title('Difference between sets of nodes') _ = ax.bar(['2017 without 2018'], [x17]) _ = ax.bar(['2018 without 2017'], [x18]) _ = plt.savefig('images/analysis/node_sets_difference.png') _ = plt.show() ###Output _____no_output_____ ###Markdown Assortativity Degree assortativity ###Code print('Assortativity coefficient 2017:',nx.degree_assortativity_coefficient( network[2017], weight = 'counts' )) print('Assortativity coefficient 2018:',nx.degree_assortativity_coefficient( network[2018], weight = 'counts' )) ###Output Assortativity coefficient 2017: -0.10180140871856291 Assortativity coefficient 2018: -0.1421223782964965 ###Markdown Node assortativity by attribute ###Code print('Assortativity coefficient 2017:',nx.degree_assortativity_coefficient( network[2017].subgraph( list(set(network[y].nodes) & set(verbs2i.values()))), weight = 'counts' )) print('Assortativity coefficient 2018:',nx.degree_assortativity_coefficient( network[2018].subgraph( list(set(network[y].nodes) & set(verbs2i.values()))), weight = 'counts' )) ###Output Assortativity coefficient 2017: -0.10998348703149166 Assortativity coefficient 2018: -0.15877767026488898 ###Markdown Segmentation Method ComparisonMetrics: IoU(Intersection over Union), F1 score, false positive rate averaged on video frames ###Code seg_results = pd.read_csv(os.path.join(os.getcwd(), "seg_comparison.csv")) seg_results.head() seg_results.tail() seg_method = seg_results['seg method'].unique() table = [] for s in seg_method: table.append([str(s), np.mean(seg_results.loc[seg_results['seg method'] == s]['IoU']), np.mean(seg_results.loc[seg_results['seg method'] == s]['F1']), np.mean(seg_results.loc[seg_results['seg method'] == s]['FP rate'])]) print(tabulate(table, headers=['seg method', 'mIoU','F1','FP rate'])) ###Output seg method mIoU F1 FP rate ------------ -------- -------- --------- BackFlow 0.896087 0.939715 0.0879889 OSVOS 0.909781 0.950612 0.0719721 ###Markdown OSVOS performs better than BackFlow on three different metrics.Note that: FP rate is relatively more important for reconstruction, because it's worse if the background is involved in reconstructed model. ###Code sns.set_context({"figure.figsize":(12,10)}) sns.stripplot(x="seg method",y="IoU",data=seg_results,jitter=True,hue="object name", dodge=True) ###Output _____no_output_____ ###Markdown BackFlow works not so well on 'YcbBanana'. Reconstruction Algorithm ComparisonMetrics: mean usdf(unsigned distance fields) averaged on points in point-cloud, mean and RMS hausdorff distance( calculated bi-directionally) ###Code recon_results = pd.read_csv(os.path.join(os.getcwd(), "recon_comparison.csv")) recon_results.head() recon_results.tail() ###Output _____no_output_____ ###Markdown 'Data Path' 'Data': generated by grasping the object. 'Data_stuck': generated by resetting the object with the gripper and protecting from sliding. 'Reconstruction Method' 'point-to-plane': reconstructed with point-to-plane icp. 'robot-joints': reconstructed with robot end effector positions and orientations, e.g. center of two prismatic fingers for franka General performance of point-to-plane icp and robot-joints ###Code def evaluate(data, type= 'Reconstruction Method'): method = recon_results[type].unique() table = [] for m in method: table.append([str(m), np.mean(data.loc[data[type] == m]['mean usdf']), np.mean(data.loc[data[type] == m]['mean haus dist']), np.mean(data.loc[data[type] == m]['RMS haus dist'])]) print(tabulate(table, headers=[type, 'mean usdf','mean haus dist','RMS haus dist'])) print("general performance") evaluate(recon_results) ###Output general performance Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.327332 0.00190181 0.00286709 robot-joints 0.00247028 0.000988605 0.00151556 ###Markdown Performance on 'Data' or 'Data_stuck' ###Code print("Performance on 'Data'") evaluate(recon_results.loc[recon_results['Data Path'] == 'Data']) print("Performance on 'Data_stuck'") evaluate(recon_results.loc[recon_results['Data Path'] == 'Data_stuck']) sns.set_context({"figure.figsize":(12,10)}) sns.stripplot(x="Reconstruction Method",y="mean usdf",data=recon_results,jitter=True,hue="Object Name", dodge=True) ###Output _____no_output_____ ###Markdown Point-to-plane work extremely bad on YcbTennisBall. So the general performance of point-to-plane looks much worse than robot-joints.\If YcbTennisBall is kicked out: ###Code recon_results_drop = recon_results[recon_results['Object Name']!='YcbTennisBall'] sns.set_context({"figure.figsize":(12,10)}) sns.stripplot(x="Reconstruction Method",y="mean usdf",data=recon_results_drop,jitter=True,hue="Object Name", dodge=True) print("general") evaluate(recon_results_drop) print("\n'Data'") evaluate(recon_results_drop.loc[recon_results_drop['Data Path'] == 'Data']) print("\n'Data_stuck'") evaluate(recon_results_drop.loc[recon_results_drop['Data Path'] == 'Data_stuck']) ###Output general Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.0109608 0.00183893 0.00267426 robot-joints 0.00253711 0.00103155 0.00160034 'Data' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.0192207 0.00281954 0.0039368 robot-joints 0.00380814 0.0015232 0.00226799 'Data_stuck' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00270094 0.00085832 0.00141172 robot-joints 0.00126607 0.000539897 0.00093268 ###Markdown drop YcbBanana ###Code recon_results_drop2 = recon_results[recon_results['Object Name']!='YcbTennisBall'][recon_results['Object Name']!='YcbBanana'] sns.set_context({"figure.figsize":(12,10)}) sns.stripplot(x="Reconstruction Method",y="mean usdf",data=recon_results_drop2,jitter=True,hue="Object Name", dodge=True) print("general") evaluate(recon_results_drop2) print("\n'Data'") evaluate(recon_results_drop2.loc[recon_results_drop2['Data Path'] == 'Data']) print("\n'Data_stuck'") evaluate(recon_results_drop2.loc[recon_results_drop2['Data Path'] == 'Data_stuck']) ###Output general Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00258523 0.000907076 0.00145407 robot-joints 0.00229762 0.00100571 0.00158859 'Data' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00243453 0.000909623 0.0014017 robot-joints 0.00336379 0.00145612 0.0021993 'Data_stuck' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00273594 0.000904529 0.00150643 robot-joints 0.00123146 0.000555293 0.000977875 ###Markdown Brief conclusion:\If reconstruction methods are performed on the object with significant features, point-to-plane ICP and robot-ee-info have the similar reconstruction performances generally.\In detail, point-to-plane works better than robot-ee-info on the dataset generated by directly grasping('Data'), and it's opposite for the dataset generated by resetting the object within the gripper('Data_stuck'). Segmented by BackFlow or by OSVOS ###Code print("all objects") evaluate(recon_results, type= 'Segmentation Method') print("\ndrop tennis ball") evaluate(recon_results_drop, type= 'Segmentation Method') print("\ndrop banana") evaluate(recon_results_drop2, type= 'Segmentation Method') ###Output all objects Segmentation Method mean usdf mean haus dist RMS haus dist --------------------- ----------- ---------------- --------------- BackFlow 0.326978 0.00175713 0.00256824 OSVOS 0.0028245 0.00113329 0.00181441 drop tennis ball Segmentation Method mean usdf mean haus dist RMS haus dist --------------------- ----------- ---------------- --------------- BackFlow 0.0112672 0.00181425 0.00261059 OSVOS 0.00223075 0.00105622 0.00166401 drop banana Segmentation Method mean usdf mean haus dist RMS haus dist --------------------- ----------- ---------------- --------------- BackFlow 0.0026617 0.000823804 0.00130877 OSVOS 0.00222116 0.00108898 0.00173389 ###Markdown Brief conclusion:\Segmentation Method influences the reconstruction performance. Generally, reconstruction following BackFlow has much worse performance than that following OSVOS. BackFlow ###Code recon_results_backflow = recon_results_drop2[recon_results_drop2['Segmentation Method'] == 'BackFlow'] sns.set_context({"figure.figsize":(12,8)}) sns.stripplot(x="Reconstruction Method",y="mean usdf",data=recon_results_backflow,jitter=True,hue="Object Name", dodge=True) print("general") evaluate(recon_results_backflow) print("\n'Data'") evaluate(recon_results_backflow.loc[recon_results_backflow['Data Path'] == 'Data']) print("\n'Data_stuck'") evaluate(recon_results_backflow.loc[recon_results_backflow['Data Path'] == 'Data_stuck']) ###Output general Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00253778 0.000649172 0.00103541 robot-joints 0.00278561 0.000998437 0.00158212 'Data' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.0028079 0.000701502 0.00108705 robot-joints 0.0039568 0.00144841 0.0021999 'Data_stuck' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00226766 0.000596841 0.000983779 robot-joints 0.00161442 0.000548466 0.000964341 ###Markdown OSVOS ###Code recon_results_osvos = recon_results_drop2[recon_results_drop2['Segmentation Method'] == 'OSVOS'] sns.set_context({"figure.figsize":(12,8)}) sns.stripplot(x="Reconstruction Method",y="mean usdf",data=recon_results_osvos,jitter=True,hue="Object Name", dodge=True) print("general") evaluate(recon_results_osvos) print("\n'Data'") evaluate(recon_results_osvos.loc[recon_results_osvos['Data Path'] == 'Data']) print("\n'Data_stuck'") evaluate(recon_results_osvos.loc[recon_results_osvos['Data Path'] == 'Data_stuck']) ###Output general Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00263268 0.00116498 0.00187272 robot-joints 0.00180964 0.00101298 0.00159506 'Data' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00206115 0.00111774 0.00171636 robot-joints 0.00277078 0.00146383 0.0021987 'Data_stuck' Reconstruction Method mean usdf mean haus dist RMS haus dist ----------------------- ----------- ---------------- --------------- point-to-plane 0.00320421 0.00121222 0.00202908 robot-joints 0.000848496 0.00056212 0.000991409 ###Markdown 全国書誌データを分析してみよう!!国立国会図書館では全国書誌データと呼ばれる書誌データを作成し、誰でも利用可能な形で提供しています。全国書誌データは以下のような特色があります。>全国書誌データは、国立国会図書館が網羅的に収集した国内出版物の標準的な書誌情報です。 >書店で一般に購入できる書籍などの納入率は、95%以上です。 >官庁出版物や地方自治体出版物など一般に流通しにくいものも多く含みます。 >刊行された出版物が国立国会図書館に届いてから、おおむね4日後に新着書誌情報として提供し、1か月程度で完成した書誌情報を提供しています。 [全国書誌データ提供](https://www.ndl.go.jp/jp/data/data_service/jnb/index.html)全国書誌データの利用は**無償**で、かつ**申請等も不要**です。データの取得方法としては2019年6月現在、以下の4種類が提供されています。(※[全国書誌データ提供サービス一覧](https://www.ndl.go.jp/jp/data/data_service/jnb/faq.html)も参照のこと。)* 検索用API図書館システムの検索画面等から、国立国会図書館サーチの書誌データを検索し、その結果を取得・表示することができます。 [検索用API](https://www.ndl.go.jp/jp/data/data_service/jnb/ndl_search.htmliss01) [APIのご利用について](https://iss.ndl.go.jp/information/api/)* ハーベスト用API国立国会図書館サーチからOAI-PMHにより書誌データを取得できます。全件収集等、大量のデータをまとめて取得することができます。 [ハーベスト用API](https://www.ndl.go.jp/jp/data/data_service/jnb/ndl_search.htmliss02) [国立国会図書館サーチが提供するOAI-PMH](https://iss.ndl.go.jp/information/api/api-lists/oai-pmh_info/) * RSS新着書誌情報、全国書誌及び全国書誌(電子書籍・電子雑誌編)を、国立国会図書館サーチの機能を用いてRSS形式(RSS2.0)で提供しています。 [国立国会図書館サーチが提供するRSS](https://iss.ndl.go.jp/information/api/api-lists/rss_info/2)* TSVファイル全国書誌(電子書籍・電子雑誌編)をTSVファイル(タブ区切り形式のテキストファイル)で提供しています。 [全国書誌(電子書籍・電子雑誌編)TSVファイル一覧](https://www.ndl.go.jp/jp/data/data_service/jnb/ebej_tsv.html)今回はこの全国書誌を利用して、1. ハーベスト用APIを利用した全件取得 2. 取得したデータの整形とクレンジング3. 結果の可視化 4. 応用編(グラフをアニメーションにする) を行っていきます。 基本的には上から順番にctrl+Enterを押していけば実行できます。 ###Code #必要なライブラリ群のインストール !pip install pycurl tqdm datetime pandas matplotlib seaborn ###Output _____no_output_____ ###Markdown 1. ハーベスト用APIを利用した全件取得適当なハーベスタを用意して必要な断面を全件収集してみましょう。 pythonで簡単なハーベスタを書いておきましたので、自己責任でご利用ください。 ###Code #(ハーベスタ)rdf/xmlを扱うための前準備 import os import xml.etree.ElementTree as ET import pycurl import time import codecs from io import StringIO,BytesIO #XMLの名前空間 OAI='{http://www.openarchives.org/OAI/2.0/}' dc ='{http://purl.org/dc/elements/1.1/}' dcndl='{http://ndl.go.jp/dcndl/terms/}' dcterms='{http://purl.org/dc/terms/}' rdf='{http://www.w3.org/1999/02/22-rdf-syntax-ns#}' rdfs='{http://www.w3.org/2000/01/rdf-schema#}' foaf='{http://xmlns.com/foaf/0.1/}' #ElementTree(xmlを解析するライブラリ)にも名前空間を登録 ET.register_namespace('',"http://www.openarchives.org/OAI/2.0/") ET.register_namespace('rdf', "http://www.w3.org/1999/02/22-rdf-syntax-ns#") ET.register_namespace('rdfs', "http://www.w3.org/2000/01/rdf-schema#") ET.register_namespace('dc',"http://purl.org/dc/elements/1.1/") ET.register_namespace('dcterms',"http://purl.org/dc/terms/") ET.register_namespace('dcndl',"http://ndl.go.jp/dcndl/terms/") ET.register_namespace('xsi',"http://www.w3.org/2001/XMLSchema-instance") ET.register_namespace('schemaLocation',"http://www.openarchives.org/OAI/2.0/oai_dc/ http://www.openarchives.org/OAI/2.0/oai_dc.xsd") ET.register_namespace('oai_dc',"http://www.openarchives.org/OAI/2.0/oai_dc/") ET.register_namespace('foaf',"http://xmlns.com/foaf/0.1/") ET.register_namespace('owl',"http://www.w3.org/2002/07/owl#") #ハーベスタ本体 from datetime import datetime, date, timedelta from tqdm import tqdm import time import os import xml.etree.ElementTree as ET import pycurl import time import codecs from io import StringIO,BytesIO import urllib.request class OAI_harvester: def __init__(self, outputxmlpath="xml_all.xml", prefixname="dcndl"): self.outputxml = outputxmlpath self.prefixname = prefixname self.resumptiontoken = None self.datasize = None with open(self.outputxml, 'wb') as f: print("initialize file") def _parse_xml_ndl(self): tree = ET.parse('oaitmp.xml') root = tree.getroot() with codecs.open(self.outputxml, 'a', "utf-8") as f: es_item = root.find(OAI + 'ListRecords').findall(OAI + 'record') for item in es_item: # OAI-PMHは「id <xml>」のようになっているので不要なid部分を消す if item.find(OAI + 'metadata') is None: continue item2 = item.find(OAI + 'metadata').find(rdf + 'RDF') item_id = item.find(OAI + 'metadata').find(rdf + 'RDF').find(dcndl + "BibAdminResource").attrib[ rdf + "about"].split("/")[-1] item_str = ET.tostring(item2, encoding='utf8', method='xml').decode() item_str = item_str.replace("\n", "") f.write(item_str + "\n") if root.find(OAI + 'ListRecords') is None: self.resumptiontoken = None return token = root.find(OAI + 'ListRecords').find(OAI + "resumptionToken") if token is None or token.text is None: self.resumptiontoken = None return self.datasize = token.attrib["completeListSize"] self.resumptiontoken = token.text def _download_xml(self, fromdate): # b = io.BytesIO() with open("oaitmp.xml", 'wb') as f: url = "http://iss.ndl.go.jp/api/oaipmh?verb=ListRecords" if self.resumptiontoken is not None: url += "&resumptionToken=" + self.resumptiontoken else: url += "&from=" + fromdate + "&metadataPrefix=" + self.prefixname + "&set=" + self.setname print(url) # print(url) try: data = urllib.request.urlopen(url) f.write(data.read()) http_code = data.getcode() if http_code == 200: retval = True else: retval = False except Exception as e: print(str(e)) retval = False return retval def getxml(self, setname, fromdate=None): self.setname = setname self.resumptiontoken = None if fromdate is None: # 最初の200件は条件を指定して取得する。fromとuntilで年度の期間を取得できるが、最大1年分 today = datetime.today() fromdate = datetime.strftime(today - timedelta(days=364), '%Y-%m-%d') self._download_xml(fromdate) self._parse_xml_ndl() print(self.datasize + "件見つかりました。200件ずつ取得します") if self.resumptiontoken is not None: self._parse_xml_ndl() for index in tqdm(range(int(self.datasize) // 200 + 1)): while not self._download_xml(fromdate): print("retry") time.sleep(1) # print("downloading file_count:",index) self._parse_xml_ndl() if self.resumptiontoken is None: break else: print("エラーです。set名を確認してください") ###Output _____no_output_____ ###Markdown 例えば「小説・物語」(日本十進分類法で913)に分類される全国書誌(iss-ndl-opac-national)の書誌データは以下のようにして全件取得できます。 **注意**: 「小説・物語」の場合、実行に2時間程度かかります。 取得済の断面をhttp://lab.ndl.go.jp/dataset/xml_913.zipからダウンロードできるようにしてあります。 ###Code oai=OAI_harvester(outputxmlpath="xml_913.xml") #実行時に下のコメントを外してください(誤操作防止) #oai.getxml(setname="iss-ndl-opac-national:913",fromdate="2018-06-19") ###Output _____no_output_____ ###Markdown 2. 取得したデータの整形とクレンジング1で取得したデータは1行に1書誌のxmlが収まった形式をしています。 まずは書誌がどんなデータ構造をしているのか覗いてみましょう。 ###Code from xml.dom import minidom with codecs.open("xml_novel.xml", "r","utf-8") as f: xmlsample=f.readline() xmlstr = minidom.parseString(xmlsample).toprettyxml(indent=" ") print(xmlstr) ###Output _____no_output_____ ###Markdown 書誌データの中身を見ると、タイトルや著者などのほか、「出版社」や「出版年」といった情報がわかります。 今回は出版社名に注目して、 **「小説・物語の分野で多くの本を出版しているのはどの出版社なのか、また出版年代ごとに変化はあるのか」** 調べてみましょう。 上で表示した書誌データを見る限り、 出版社は``` ```を使うとよさそうです。 出版年は``````を使ってみましょう。 また、XMLのままではデータの取り回しが不便なので、抽出したデータはpandasのデータフレームで管理します。 ###Code #書誌データから出版社名と出版年だけ取り出してデータフレームに加工する import pandas as pd with codecs.open("xml_novel.xml", "r","utf-8") as f: xmlsample=f.readline() publisherList=[] dateList=[] cnt=0 while xmlsample: cnt+=1 #if cnt%10000==0: # print(cnt) tree = ET.fromstring(xmlsample) #print(tree) #root = tree.getroot() publisher=tree.find(dcndl+'BibResource').find(dcterms+'publisher') publishername=publisher.find(foaf+'Agent').find(foaf+'name') publishdate=tree.find(dcndl+'BibResource').find(dcterms+'date') #cleandate=publishdate.text.replace(".*([0-9\.]+).*",r"\1",regex=True) #print(publishername.text,cleandate) #tmp_se = pd.Series( [ publishername.text, publishdate.text], index=analysis_df.columns ) #analysis_df = analysis_df.append( tmp_se, ignore_index=True ) publisherList.append(publishername.text) dateList.append(publishdate.text) xmlsample=f.readline() analysis_df = pd.DataFrame({'publisher':publisherList,'date':dateList}) print(analysis_df) ###Output _____no_output_____ ###Markdown このままでは出版年の中に「制作」や「19--」や\[2011\]のような変則的な表記が含まれてしまい、数値としての大小がわかりません。 出版年が西暦4桁の数値だけを抽出して持つようにデータをきれいにしましょう(このような処理を「クレンジング」と呼びます)。 ###Code #データのクレンジングをする cleandf=analysis_df.copy() #西暦4桁が含まれていれば抽出、含まれていなければ欠損値とする cleandf['date']=cleandf['date'].str.extract('([0-9]{4})') #欠損値を含む書誌を削除 cleandf=cleandf.dropna(how='any') #残った書誌データの出版年を数値にする cleandf['date']=cleandf['date'].astype("int") print("書誌データの出版年の分布") print(cleandf.describe()) print("\nきれいになった書誌データ") print(cleandf.head()) #csvとして書き出す #cleandf.to_csv("clean_novel.csv") ###Output _____no_output_____ ###Markdown 3. 結果の可視化データをきれいにしたので、いよいよ可視化をしてみましょう。出版年を追った時の出版数の推移を折れ線グラフで表してみます。 ###Code #ここから始めたい人 #cleandf=pd.read_csv("clean_novel.csv") #出版年ごとに集計してグラフにしてみる df = pd.DataFrame(cleandf.groupby('date').count()) df.columns=["count"] print(df["count"].sum()) #多い順ベスト10 print(df.nlargest(10, columns='count')) df.plot.line(title=u'小説・物語の出版数年次推移') #日本語文字化け対策 plt.rcParams['font.family'] = 'Yu Mincho' #出版社ごとに集計して多い順に表にしてみる grp_df=cleandf.groupby('publisher').count() grp_df.columns=["count"] print(grp_df.nlargest(20, columns='count')) grp_df.nlargest(20, columns='count').plot.bar(alpha=0.6, figsize=(15,8)) plt.title(u'小説・物語の出版数ランキング', size=16) ###Output _____no_output_____ ###Markdown 特定の出版年に絞り込んだランキングも出力可能です。1990年のランキングを見てみましょう。 ###Code year=2000 #year年に出版された書籍を出版社ごとに集計して多い順に表にしてみる grp_df=cleandf[cleandf['date']==year].groupby('publisher').count() grp_df.columns=["count"] #トップ20 print(grp_df.nlargest(20, columns='count')) grp_df.nlargest(20, columns='count').plot.bar(alpha=0.6, figsize=(8,8)) plt.title(u'小説・物語の出版数ランキング(%d)'% year, size=16) ###Output _____no_output_____ ###Markdown 4. 応用編(グラフをアニメーションにする) 最後に、グラフをアニメーションにしてみましょう。2000年以降、出版数でトップ10に入ったことのある出版社の出版数推移をアニメーションにしてみます。 ###Code %matplotlib nbagg import numpy as np import matplotlib.pyplot as plt import matplotlib.animation as animation publisherlist=[] for year in range(2000,2018): grp_df=cleandf[cleandf['date']==year].groupby('publisher').count() grp_df.columns=["count"] x=grp_df.nlargest(20, columns='count') publisherlist.extend(list(x.index)) #重複を取り除く publisherlist=list(set(publisherlist)) print(publisherlist) #描画の準備 fig,ax= plt.subplots(figsize=(12, 10)) ims = [] for year in range(2000,2019): #ttl = plt.text(0.5, 1.01, year, horizontalalignment='center', verticalalignment='bottom', transform=ax.transAxes) #txt = plt.text(year,year,year) grp_df=cleandf[cleandf["date"]==year].groupby("publisher").count().reset_index() grp_df.columns=["publisher","count"] grp_df=grp_df[grp_df["publisher"].isin(publisherlist)] #x=grp_df.nlargest(20, columns='count') #print(x["count"]) im = plt.barh(list(grp_df["publisher"]),grp_df["count"].values) #ax.text(.8,.8, "{}".format(year), transform=ax.transAxes) plt.title(u'小説・物語の出版数推移(2000年から2018年)', size=16) ims.append(im) ani = animation.ArtistAnimation(fig, ims, blit=False,interval=500) ani.save('出版推移.gif',writer='pillow') plt.show() ###Output _____no_output_____ ###Markdown Analysis of questions asked by school students OverviewThis is a report on the analysis of science questions asked by students of Telangana Social WelfareResidential schools, of classes VII to IX to the outreach volunteers of TIFR. The dataset contains a sample of 100 questions picked for this analysis. Analysis A good way to discover patterns in textual data is to classify the data and analyse the classes to find hidden trends. In the given dataset, given that the data contains questions asked by students, my basic intuition was to classify the data acording to the subject or field of science from which the question was asked. For example, the question 'How many stars are in the sky?' can be classified as an Astronomy question, 'Which is the biggest animal in Ocean?' is most certainly a Biology question, so on and so forth. After careful analysis and reading through the entire datatset multiple times to get a general feel of the distribuion of questions, I discovered another underlying criteria for classification - some questions were being asked to fill in gaps in the knowledge of students, for example 'Where do petrol and diesel come from?' or 'Which is the coldest place?'. I categorized these questions as 'Comprehension' type quesions, since they have a single factual answer from the science curriculum being taught to these students. But a good chunk of questions in the dataset were not Comprehension type, but were more exploratory in nature, questions that were clearly rooted in curiosity and application of existing knowledge. I categorized these questions as 'Curiosity' type. This classification criteria could provide a high level view of the scientific temperament and understanding among students. It could also help guage the effectiveness of the current curriculum and teaching methodology being used at these schools. For example, if majority of questions asked by students after a session or class are 'Comprehension' type questions, it would be safe to say that we need to improve or even rethink the teaching strategy or the course content. It could also help point out specific areas of the course that might need improvement - for example, if a lot of Comprehension type questions are from the Biology section, it could indicate that the course material might need tweaking or even that the instructor for that particular session could improve his/her method. An attached pdf document titled 'categorized_questions.pdf' contains the entire dataset classified into Comprehension and Curiosity type questions, as well as into fields of science they belong to. Another file, titled data.tsv contains the same labelled data in a format that's easily readable by machine learning libraries such as pandas, which makes it easy to work with datasets. We can load up this file to get some insight into our newly classified data. ###Code # imorting libraries to handle the dataset import pandas as pd import numpy as np # importing the dataset dataset = pd.read_csv('data.tsv', delimiter='\t') ###Output _____no_output_____ ###Markdown We can now look at a preview of this classified data: ###Code dataset.head(10) ###Output _____no_output_____ ###Markdown We can calculate the distribution of labels we assigned to the questions using our classification criterias: ###Code category_labels = ['Comprehension', 'Curiosity'] category_label_count = [] for label in category_labels: category_label_count.append(dataset['Category'].tolist().count(label)) category_label_count ###Output _____no_output_____ ###Markdown We can see that the **majority of questions (63%) are 'Curiosity' type** questions while the remaining (37%) are 'Comprehension' type. This indicates towards a general scietific temperament and curiosity among the students. Training a classifierSince the given data is a subset of an extensive dataset containing close to 40K questions asked by students, it is a good idea to train a classfier on a labelled sample data to learn the trends in data and use it to classify the entire dataset, instead of categorizing such a massive dataset by hand, which is inefficent and prone to errors. A common Natural Language Processing algorithm used in classification problems such as these is the 'Bag of Words' method, which breaks down each data point into a set of words that represents it. We then train a classifier to understand the corelations between a set of words and their label, which will enable the classfier to classify any unlabelled data. This strategy of NLP is known as Sentiment Analysis, and is frequently used to classfiy texts such as restaurant or movie reviews into positive or negative reviews. For example, reviews containing the keywords 'bad', 'terrible', 'poor' etc would indicate a negative review, while reviews containing the keywords 'great', 'excellent' etc indicates a positive review. Although it might seem like it, but this classification problem cannot be solved using the sentiment analysis method. It is possible for a human with an acceptable level of scientific knowledge and understanding to identify 'Curiosity' type questions among school students, because of the context he/she has. For example, to classify the question 'Do aliens exist?' as a 'Curiosity' type question, the classifier, human or machine, requires the context about the findings and limitaions of the human knowledge of Astronomy. We know intuitively that this is a curiosity driven question since we have not found any evidence of alien life so far and it is a question that has been asked through the centuries by many brilliant scientists. It is not practical to train a classfier that has such context about all branches of science. Also, it is not useful to try and use historical data to identify the Curiosity type questions, as in the example of the question on extraterrestrial life since science keeps evolving and moving forward, and the very nature of scientific curiosity makes it impossible to predict the direction it will take. Therefore, as a demonstration of how a classifier might be used to process the sample data, I will create and train a Naive-Bayes Classifier to categorise the questions in the sample into topics or branches of scientific study they belong to. ###Code # since the dataset is already imported we will proceed to clean the text # import the libraries to clean the text import re import nltk # two common and powerful methods to clean the data are # removing stopwords like 'the', 'a' etc # and stemming, which converts words like 'rained', 'raining' etc # to their root 'rain' # import the packages that will do this efficiently nltk.download('stopwords') from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer # save the text into a corpus of cleaned data corpus = [] # iterate through all questions and apply text # cleaning operations on each one of them print('An example of how the cleaning process works!\n') for i in range(0, 100): # replace all symbols and special characters with spaces # since we only want to process words/text question = re.sub('[^a-zA-Z]', ' ', dataset['Question'][i]) if i == 0: print('Replace all symbols and special characters with spaces since we only want to process words/text:') print("-"*50) print(question) # convert all text to lowercase question = question.lower() if i == 0: print('\nConvert all text to lowercase:') print("-"*50) print(question) # split the text into words to apply stemming to each word question = question.split() # import the stemming package ps = PorterStemmer() cleaned_question = [] # iterate through all the words in the question for word in question: # if word is not an english stopword, save the stemmed # version of word to cleaned_question if not word in set(stopwords.words('english')): cleaned_question.append(ps.stem(word)) if i == 0: print('\nRemove stop words and apply stemming:') print("-"*50) [print(i, end=" ") for i in cleaned_question] # append the cleaned text for the question to corpus corpus.append(cleaned_question) # create the Bag of Words model from sklearn.feature_extraction.text import CountVectorizer cv = CountVectorizer(max_features=1500, tokenizer=lambda doc: doc, lowercase=False) X = cv.fit_transform(corpus).toarray() y = dataset.iloc[:, 2].values # splitting the dataset into the Training set and Test set from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.20, random_state = 0) # fitting classifier to the Training set from sklearn.naive_bayes import GaussianNB classifier = GaussianNB() classifier.fit(X_train, y_train) # predicting the Test set results y_pred = classifier.predict(X_test) # calculating the accuracy score of the classifier from sklearn.metrics import accuracy_score score = accuracy_score(y_test, y_pred) score ###Output _____no_output_____ ###Markdown I picked the Naive-Bayes classification algorithm to build the classifier because it is the most widely used classificatin algorithm for sentiment analysis and is better suited to work with when the sample size is small, as opposed to the Decision-Tree classifier that tends to overfit to the data and has poor performance with small samples.The classifier did not do a good job of classifying our test data, as indicated by an accuracy score of 50%. There could be a number of reasons for the poor performance of our algorithm, most relevant of which is the tiny size of our training set. A sample size of 100 is very small when working with data such as science questions that can have a very high order of variation. With a bigger sample of labelled data, we might be able to achieve a better accuracy score. A bigger sample size will enable the classifier to better understand the corelations between the keywords in a question and it's label. For example, our sample did not have many instances of questions labelled 'Geology', therefore the classifier will have lower accuracy when trying to classify 'Geology' type questions. A larger dataset could correct this to some degree. To test the performance of our classifier on completely new data, I've created a test dataset from the student questions repository and labelled them by hand, just to have a value to measure the accuracy of classifier against. The classifier is already trained on the previous data and has no knowledge of the labels on the new data. It will read the questions in the new test dataset and try to predict the field of science the question belongs to. ###Code # importing the test dataset test_dataset = pd.read_csv('test_data.tsv', delimiter='\t') # perform text pre-processing test_corpus = [] for i in range(0, 130): question = re.sub('[^a-zA-Z]', ' ', test_dataset['Question'][i]) question = question.lower() question = question.split() ps = PorterStemmer() cleaned_question = [] for word in question: if not word in set(stopwords.words('english')): cleaned_question.append(ps.stem(word)) test_corpus.append(cleaned_question) # create a Bag of Words model for the test questions test_questions = cv.transform(test_corpus).toarray() # making the predictions using the classifier predicted_labels = classifier.predict(test_questions) # store the predicted labels for easier analysis with open('predictions.tsv', 'w') as file: file.write("Questions\tLabel (Manual)\tLabel (Classifier)\n") for i in range(0, 130): file.write(test_dataset['Question'][i] + "\t" + test_dataset['Field'][i] + "\t" + predicted_labels[i] + "\n") # display the predictions for analysis and verification predictions = pd.read_csv('predictions.tsv', delimiter='\t') predictions.head(10) ###Output _____no_output_____ ###Markdown wow that is a hideous, useless plot. Looks like women finish a predictable amount worse than men every year? I wonder how, across all years, age groups do. (That one might benefit from a gender split, more than the above) Also TODO: a map of the states & countries of Boston Marathon participants alltimes agegroups = range(15,90,5) agebins = pd.cut(alltimes['age'], agegroups, labels=['{}-{}'.format(age,age+5) for age in agegroups][:-1]) f, ax1 = plt.subplots(1) ax1.set_title("Boston Marathon times 2001-2014 by age group") seaborn.violinplot(pd.Series(alltimes.loc[:, "official"], name="time in minutes"), groupby=[alltimes.gender, agebins], ax=ax1) g = alltimes.groupby([agebins, alltimes.gender]) g.head() ###Code years = [] for year in range(2001, 2015): y = pd.read_csv("results/{}/results.csv".format(year), na_values="-")[["state"]] years.append(y) states = pd.concat(years, ignore_index=True).dropna() g = states.groupby("state") #.aggregate(len) h = g.count() import json json.dumps(h.to_dict()['state']) dict(sorted(h.to_dict().iteritems())) years = [] for year in range(2001, 2015): y = pd.read_csv("results/{}/results.csv".format(year), na_values="-")[["country"]] years.append(y) states = pd.concat(years, ignore_index=True).dropna() g = states.groupby("country") #.aggregate(len) h = g.count() json.dumps(h.to_dict()['country']) ###Output _____no_output_____ ###Markdown Textual Analysis of Modern British Philosophers- This is my course project for Digital Humanities course (Fall 17) at University of Georgia with Dr.William Kretzschmar.- Should be compatible with both Python 2 and 3- Parts of the codes in this notebook are benefited from this notebook https://github.com/brandomr/document_cluster/blob/master/cluster_analysis_web.ipynb- Tasks include: * keyword plotting and analysis; * Comparison of similarities of books based on TF-IDF (using scikit-learn); * Unsupervised classfication of books; * Prediction of the category of a book based on the aforementioned unsupervised classfication results * LDA analysis; * Sentimental analysis (using textblob) ###Code from __future__ import print_function try: import builtins except ImportError: import __builtin__ as builtins from __builtin__ import str from __future__ import unicode_literals from sklearn import feature_extraction #For extracting features import numpy as np #For basic scientific and numerical calculations import nltk #Natural Language ToolKit import pandas as pd #For dataframe processing import re #For regular expression import matplotlib.pyplot as plt #For plotting # %matplotlib inline from sklearn.metrics.pairwise import cosine_similarity from collections import defaultdict import os # for os.path.basename import matplotlib.pyplot as plt import matplotlib as mpl from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.cluster import KMeans from sklearn.feature_extraction import DictVectorizer from gensim import corpora, models, similarities from nltk.tag import pos_tag from sklearn.cluster import KMeans from sklearn.manifold import MDS from sklearn.naive_bayes import MultinomialNB from sklearn.feature_extraction.text import CountVectorizer from scipy.cluster.hierarchy import ward, dendrogram from sklearn.feature_extraction.text import TfidfTransformer from textblob import TextBlob from nltk.corpus import stopwords # Some Global Variables AUTHOR_FILES = ['Bentham.txt', 'Berkeley.txt','Hobbes.txt','Hume.txt','Locke.txt', 'Mill.txt', 'Sidgwick.txt'] # each txt file contains all searchable works from a single philosopher NUM_WORDS = 80 # show how many highly frequent words in the plots MORE_SW = False # whether we want more stop words BOOK_LIST = ['hobbes-leviathan', 'hobbes-liberty', 'hobbes-elements', 'hobbes-law', 'mill-liberty', 'mill-util','locke-understanding', 'locke-treatise', 'hume-treatise', 'hume-morals', 'hume-enquiry', 'berkeley-TOK','berkeley-TD', 'bentham-POM', 'bentham-FOG', 'mill-representative', #'burke-reflections','conway-nature','mill-comte','more-utopia', 'reid-mind', 'hume-religion'] # this is the booklist we will analyse. Must be in the same folder TEST_FILES = ['sidgwick.txt','machiavelli.txt','more-utopia','burke-reflections','smith-sentiments','smith-wealth', 'fedPapers', 'mill-logic', 'kant-CPR', 'russell-AOM', 'russell-external', 'russell-ideals', 'russell-mysticism', 'russell-POP', 'spinoza-ethica', 'spinoza-understanding','Shi-PC', 'Shi-equality', 'Shi-AM', 'Shi-MP'] NUM_CLUSTERS = 6 # how many clusters we want to categorize when we process different individual books. SENTIMENT_LIST = [] #Adding more stopwords. Providing the option of an aggressive word list. # nltk.download('stopwords') #Not necessary if you have done it once stop_words = list(set(stopwords.words('english'))) stop_words.append('\'s')#manually add 's into the stop word list (because it's annoying!) We may add more similar ones. if MORE_SW: #if we want to add more stop words and render a more aggressive stopword list with open('stopwords', 'r') as myfile: sw = [i.strip().split(' ') for i in myfile] sw1 = [val.lower() for sublist in sw for val in sublist] stop_words.extend(sw1) stop_words = set(stop_words) def tokenize(text): ''' Tokenize the words in a texts. If we need tokenize and stemming, we can comment this function and uncomment the function below. ''' tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] filtered_tokens = [] for token in tokens: if re.search('[a-zA-Z]', token): #only search English words and put them into tokens filtered_tokens.append(token.lower()) return (filtered_tokens) # from nltk.stem.snowball import SnowballStemmer # nltk.download('punkt') # stemmer = SnowballStemmer("english") # def tokenize(text): # tokens = [word for sent in nltk.sent_tokenize(text) for word in nltk.word_tokenize(sent)] # filtered_tokens = [] # for token in tokens: # if re.search('[a-zA-Z]', token): #only search English words and put them into tokens # if token.lower() not in stop_words: # filtered_tokens.append(token.lower()) # stems = [stemmer.stem(t) for t in filtered_tokens] # return stems # it turns out that stemming may not be a good choice... def word_count(text): ''' Count how many words in an author's work ''' chunk_dict = {} for i in text: i = i.encode('utf-8', 'ignore').lower() # i = str(i).lower() # we only need lower-case of an item in the word_chunk list. if i.decode('utf-8', 'ignore') not in stop_words: if chunk_dict.get(i.decode('utf-8', 'ignore')) is None: # we don't need the stopwords chunk_dict[i.decode('utf-8', 'ignore')] = 1 else: chunk_dict[i.decode('utf-8', 'ignore')] += 1 chunk_dict = sorted(chunk_dict.items(), key=lambda k_v: k_v[1], reverse=True) return chunk_dict # TD_count = word_count(h_tokens) def plot_wc(wc_list, author_name): ''' Plot the first NUM of words word count list, with the author name ''' wc_plot = dict(wc_list[0:NUM_WORDS]) plt.figure(num=None, figsize=(96,64), dpi=80, facecolor='w', edgecolor='k') plt.bar(range(len(wc_plot)), sorted(wc_plot.values(), reverse=True), align='center') plt.xticks(range(len(wc_plot)), wc_plot.keys(), fontsize = 64, rotation=85) plt.yticks(fontsize= 72) plt.xlabel('Words', fontsize=78) plt.ylabel('Occurances', fontsize=78) # plt.rcParams["figure.figsize"] = (32,24) plt.figtext(.5,.8,'Top ' + str(NUM_WORDS) + ' Words of ' + author_name, fontsize=96,ha='center') # plt.show() # if we want to show the plot # from here https://stackoverflow.com/questions/11373610/save-matplotlib-file-to-a-directory script_dir = os.path.dirname(os.path.abspath('analysis.ipynb')) results_dir = os.path.join(script_dir, 'keywordResults/') if not os.path.isdir(results_dir): os.makedirs(results_dir) plt.savefig(results_dir + author_name , dpi=100) plt.close() # Close the plot save memory import codecs def kw_plot(text): ''' Wrapper to process texts for all philosophers ''' with codecs.open('./authorCorpus/' + text, 'r', encoding='utf-8', errors='ignore') as file: t = file.read() author = (str(text)[:-4]) t_tokens = tokenize(t) t_count = word_count(t_tokens) t_plot = plot_wc(t_count, author) return t_plot for f in AUTHOR_FILES: print ('Processing ' + str(f) + '...') # %time kw_plot(f) print ("Done!") def read_book(booklist): read = [] # array to store processed individual books for b in booklist: with codecs.open('./authorBooks/' + b, 'r', encoding='utf-8', errors='ignore') as file: # with open('./authorBooks/' + b, 'r') as myfile: book_file = file.read() read.append(book_file) return read book_str_list = [] # BOOK_LIST.extend(TEST_FILES) #Optional! Just for fun! book_str_list = read_book(BOOK_LIST) print ('We are analyzing '+ str(len(book_str_list)) + ' books!') #Check whether if it's good def process_books(str_list): total_words = [] # Put all the tokenized words in a list for i in book_str_list: allwords_tokenized = tokenize(i) total_words.extend(allwords_tokenized) #define vectorizer parameters tfidf_vectorizer = TfidfVectorizer(max_df=0.9, max_features=1000000, min_df=0.1, stop_words=stop_words, use_idf=True, tokenizer=tokenize, ngram_range=(1,2)) print ('Processing Time:') tfidf_matrix = tfidf_vectorizer.fit_transform(str_list) print ('Now we have a matrix with the shape of' + str(tfidf_matrix.shape)) feature_terms = tfidf_vectorizer.get_feature_names() tokenized_v_frame = pd.DataFrame({'words': total_words}, index = total_words) return total_words, tfidf_matrix, feature_terms, tokenized_v_frame %time totalvocab_tokenized, tfidf_matrix, key_terms, vocab_frame = process_books(book_str_list) def kmcluster(matrix): ''' Unsupervised learning by using KMeans from sklearn; return a list of cluster indexes ''' km = KMeans(n_clusters=NUM_CLUSTERS, n_init = 60, max_iter=700, verbose = 0) %time km.fit(matrix) cluster_idx = km.labels_.tolist() centroids = km.cluster_centers_.argsort()[:, ::-1] #Finding the centroids return cluster_idx, centroids clusters, order_centroids = kmcluster(tfidf_matrix) print (clusters) def gen_frame(blist, c): ''' Generate a pandas data frame for the categorized results. Two arguments are book list containing only names, and assigned cluster categories. ''' cat = {'book_title': blist, "cluster":c} # Dictionary for categories frame = pd.DataFrame(cat, columns = ['book_title', 'cluster']) # put the dict above into a dataframe return frame frame = gen_frame(BOOK_LIST, clusters) frame.sort_values('cluster') def top_term(v_f, terms, centroids): print("Top terms per cluster: \n") tmp_dict = defaultdict(list) #temporary dictionary that appends top terms per cluster for i in range(NUM_CLUSTERS): print("Cluster %d words:" % i, end = '') for ind in centroids[i, :20]: #replace 60 with n words per cluster if str(v_f.ix[terms[ind].split(' ')].values.tolist()[0][0]) != 'nan': #get rid of extra 'nan' words print (' %s' % v_f.loc[terms[ind].split(' ')].values.tolist()[0][0], end =',') # yield v_f.ix[terms[ind].split(' ')].values.tolist()[0][0] tmp_dict[i].append(v_f.loc[terms[ind].split(' ')].values.tolist()[0][0]) print('\n') #add whitespace return tmp_dict cluster_dict = top_term(vocab_frame, key_terms, order_centroids) def cos_dist(matrix): return 1 - cosine_similarity(matrix) dist = cos_dist(tfidf_matrix) %matplotlib inline # MDS() def plot_similarity(clusters, plotlist, word_matrix): # convert two components as we're plotting points in a two-dimensional plane # "precomputed" because we provide a distance matrix # we will also specify `random_state` so the plot is reproducible. mds = MDS(n_components=2, dissimilarity="precomputed", random_state=1) pos = mds.fit_transform(dist) # shape (n_components, n_samples) xs, ys = pos[:, 0], pos[:, 1] #create data frame that has the result of the MDS plus the cluster numbers and titles df = pd.DataFrame(dict(x=xs, y=ys, label=clusters, title=plotlist)) #group by cluster groups = df.groupby('label') # print (df) # set up plot fig, ax = plt.subplots(figsize=(17, 9)) # set size cluster_colors = {0: '#1b9e77', 1: '#ffff00', 2: '#7570b3', 3: '#e7298a', 4: '#66a61e', 5:'#000000'} # for plotting # ax.margins(0.05) # Optional, just adds 5% padding to the autoscaling #iterate through groups to layer the plot #note that I use the cluster_name and cluster_color dicts with the 'name' lookup to return the appropriate color/label for name, group in groups: ax.plot(group.x, group.y, marker='o', linestyle='', ms=16, label=cluster_dict[name], color=cluster_colors[name], mec='none') ax.set_aspect('auto') ax.legend(numpoints=1, loc = 8, bbox_to_anchor=(0.005, -0.25), borderaxespad=0., mode = 'expand') #show legend with only 1 point ax.set_title('Similarities of Documents Based on Top Terms', fontdict={'fontsize': 20}) #add label in x,y position with the label as the book title for i in range(len(df)): ax.text(df.loc[i]['x'], df.loc[i]['y'], df.loc[i]['title'], size=16) return plt.show() #show the plot plot_similarity(clusters, BOOK_LIST, tfidf_matrix) import matplotlib %matplotlib inline linkage_matrix = ward(dist) #define the linkage_matrix using ward clustering pre-computed distances print (linkage_matrix.shape) fig, ax = plt.subplots(figsize=(15, 20)) # set size ax = dendrogram(linkage_matrix, orientation="right", labels=BOOK_LIST, leaf_font_size = 24); matplotlib.rcParams['lines.linewidth'] = 6 #uncomment below to save figure plt.savefig('ward_clusters_1208.png', dpi=200, figsize=(15, 20)) #save figure as ward_clusters plt.show() # plt.close() def train_test_clf(train_str_list, test_list): ''' Train a Naive Bayes Classifier based on word counts in the training string set ''' count_vect = CountVectorizer(tokenizer=tokenize, lowercase=False, stop_words = stop_words) train_counts = count_vect.fit_transform(train_str_list) tfidf_transformer = TfidfTransformer() train_matrix = tfidf_transformer.fit_transform(train_counts) clf = MultinomialNB().fit(train_counts, clusters) docs_new = [] for b in test_list: with codecs.open('./authorBooks/' + b, 'r', encoding='utf-8', errors='ignore') as file: docs_new.append(file.read()) doc_new_counts = count_vect.transform(docs_new) doc_new_tfidf = tfidf_transformer.transform(doc_new_counts) clf_result = clf.predict(doc_new_tfidf) # print (clf_result) frame_1 = gen_frame(BOOK_LIST, clusters) frame_2 = gen_frame(test_list, clf_result) # print (clusters, "\n", frame_1, '\n', frame_2) res_frame = pd.concat([frame_1, frame_2]) return clf_result, res_frame predicted, new_frame = train_test_clf(book_str_list, TEST_FILES) new_frame.sort_values('cluster') # Sorting Values nltk.download('averaged_perceptron_tagger') ### Using LDA for Topic Modeling def strip_propper(text): ''' POS Tagging ''' tagged = pos_tag(text.split()) non_pnouns = [word for word,pos in tagged if pos != 'NNP' and pos != 'NNPS'] return non_pnouns preprocess = [strip_propper(doc) for doc in book_str_list] def tag_tokenize(text): ''' Another Tokenizer (but used after POS tagging) ''' # tokens = [nltk.word_tokenize(word) for word in text] filtered_tokens = [] for token in text: if re.search('[a-zA-Z]', token): #only search English words and put them into tokens token = re.sub("[^a-zA-Z]", "", token) filtered_tokens.append(token.lower()) return (filtered_tokens) %time tokenized_text = [tag_tokenize(text) for text in preprocess] %time texts = [[word for word in text if word not in stop_words] for text in tokenized_text] def lda_model(text): dictionary = corpora.Dictionary(text) dictionary.filter_extremes(no_below = 1, no_above = 0.9) corpus = [dictionary.doc2bow(t) for t in text] lda = models.LdaModel(corpus, num_topics=6,id2word=dictionary,update_every=6,chunksize=10000,passes=100) return lda %time lda = lda_model(texts) #build lda model lda.show_topics() lda.num_topics topics_matrix = lda.show_topics(formatted=False, num_words=20) print (topics_matrix[1]) # topics_matrix = np.array(topics_matrix) topic_words = [] # topic_words = topics_matrix[:,:,1] for i,j in topics_matrix: topic_words.append([]) for k,l in j: topic_words[i].append(str(k)) for i in topic_words: print (i) print () from matplotlib import cm def pol_sub(title_list): ''' Polarization and Subjectivity Analysis. Just for fun! ''' book_s_list = read_book(title_list) df_dict = {'book_title': title_list, 'Polarity':[TextBlob(book).sentiment.polarity for book in book_s_list], 'Subjectivity': [TextBlob(book).sentiment.subjectivity for book in book_s_list]} res_df = pd.DataFrame(df_dict, columns = ['book_title', 'Polarity', 'Subjectivity']) ax = res_df.plot.scatter('Polarity', 'Subjectivity', figsize = (36,24), style=['o', 'rx'], fontsize = 28, s=300) matplotlib.rcParams.update({'font.size': 28, 'axes.labelsize' : 46}) res_df[['Polarity', 'Subjectivity','book_title']].apply(lambda x: ax.text(*x, fontsize=28),axis=1); return res_df if SENTIMENT_LIST == []: # Testing the files we have already SENTIMENT_LIST = list(BOOK_LIST) SENTIMENT_LIST.extend(TEST_FILES) SENTIMENT_LIST.extend(['rousseau-contract', 'engels-condition','marx-CM']) pol_sub(SENTIMENT_LIST) ###Output _____no_output_____ ###Markdown Appendix* Here is the appendix - Stopwords ###Code print (stop_words) #Helper Function to get rid of all the copyright info. import os, fnmatch def findReplace(directory, find, replace, filePattern): for path, dirs, files in os.walk(os.path.abspath(directory)): for filename in fnmatch.filter(files, filePattern): filepath = os.path.join(path, filename) with open(filepath) as f: s = f.read() s = s.replace(find, replace) with open(filepath, "w") as f: f.write(s) ###Output _____no_output_____ ###Markdown XAUUSD ###Code import quandl import pandas as pd import numpy as np # plotting modules import matplotlib.pyplot as plt import seaborn as sns from tqdm import tqdm import os import warnings import logging # scikit-learn modules from sklearn.preprocessing import StandardScaler, RobustScaler from sklearn.base import BaseEstimator, TransformerMixin from sklearn.pipeline import Pipeline from sklearn.model_selection import GridSearchCV from sklearn.neural_network import MLPClassifier from sklearn.neighbors import KNeighborsClassifier from sklearn.svm import SVC from sklearn.gaussian_process import GaussianProcessClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.ensemble import RandomForestClassifier, AdaBoostClassifier, GradientBoostingClassifier from sklearn.naive_bayes import GaussianNB from sklearn.discriminant_analysis import QuadraticDiscriminantAnalysis from sklearn.linear_model import LogisticRegression from sklearn.utils.validation import check_array # User defined modules from column_transformers.technical_indicators import MacdSignal, StochRsiSignal, StochasticRsi from column_transformers.base import BaseStrategy from column_transformers.dates import DateDummy from itertools import product from operator import itemgetter xau_ratios = [ "WGC/GOLD_DAILY_USD" #"WGC/GOLD_DAILY_EUR", # "WGC/GOLD_DAILY_TRY", # "WGC/GOLD_DAILY_JPY", #"WGC/GOLD_DAILY_GBP", # "WGC/GOLD_DAILY_CAD", # "WGC/GOLD_DAILY_CHF", # "WGC/GOLD_DAILY_VND", # "WGC/GOLD_DAILY_KRW", # "WGC/GOLD_DAILY_RUB", # "WGC/GOLD_DAILY_AUD", ] economic_indc = [] ###Output _____no_output_____ ###Markdown Quandl data termsAnyone seeking to use this code must first apply for an account with [Quandl](https://www.quandl.com) in order to receive an valid authetitciation key. ###Code DIR_NAME = os.path.abspath(os.path.join(os.getcwd(), '..')) FILEPATH = os.path.join(DIR_NAME, "auth.txt") with open(FILEPATH, "r") as f: authtoken = f.read(); ###Output _____no_output_____ ###Markdown Retrieve Data ###Code xau_df_dict = {} for ratio in tqdm(xau_ratios): name = ratio.lower().replace("/", "_") # get the ratio dataframe df = quandl.get(ratio, authtoken=authtoken, start_date = "1979-01-01") df.columns = ["price"] # check for missing business days if pd.infer_freq(df.index) != "B": logging.warn("Datetime frequency is not Business Days") xau_df_dict[name] = df ###Output 100%|██████████| 1/1 [00:03<00:00, 3.44s/it] ###Markdown Volatility ###Code annualization_factor = 252. window_size = [5, 10, 20, 60, 120] for ratio, df in tqdm(xau_df_dict.items()): start_date, end_date = df.index[0], df.index[-1] full_range = pd.date_range(start_date, end_date, freq = "B") if not np.array_equal(df.index, pd.date_range(start_date, end_date, freq="B")): logging.warning("\n{} is missing business days".format(ratio)) for window in window_size: df['{}d_market_vol'.format(window)] = np.sqrt( (annualization_factor/window) * df['price'].rolling(window).var(ddof=0)) ###Output 100%|██████████| 1/1 [00:00<00:00, 2.02it/s] ###Markdown Quandl Features ###Code features = [ "FRED/T10Y2Y", "RATEINF/INFLATION_USA", ] for ratio, df in xau_df_dict.items(): for feature in features: col_name = feature.lower().replace('/', '_') # get quandl features. `end_date` is set to df.index[-1] to match the price data data = quandl.get(feature, authtoken=authtoken, start_date = "1979-01-01", end_date = df.index[-1]) start_date, end_date = data.index[0], data.index[-1] # Some features contain missing data. To best simulate how the data would be ingested # realtime, the current value is forward filled. This achieved by resampling. if not np.array_equal(data.index, pd.date_range(start_date, end_date, freq="B")): logging.warning("\n\t{} is missing business days".format(feature)) df[col_name] = data df[:] = df.ffill() ###Output WARNING:root: FRED/T10Y2Y is missing business days WARNING:root: RATEINF/INFLATION_USA is missing business days ###Markdown Technical indicator features ###Code import talib technical_indicators= { # "MACD" : ("macd", "macdsignal", "macdhist"), # "STOCHRSI" : ("fastk", "fastd"), "MOM" : ("real"), "APO" : ('real'), "RSI" : ('real') } for ratio, df in xau_df_dict.items(): # talib requires market price data. starting price of $1 is taken # since absolute values are not important (preprocess scaling) price = df['price'].values for indicator, indicator_type in technical_indicators.items(): # Return the result for each indicator if indicator == 'STOCHRSI': result = getattr(talib, indicator)(price, fastd_matype = 8) else: result = getattr(talib, indicator)(price) if isinstance(result, np.ndarray): df[indicator.lower()] = result else: for f, r in zip(indicator_type, result): if f == indicator.lower(): df["{}".format(indicator.lower())] = r else: df["{}_{}".format(indicator.lower(), f)] = r ###Output _____no_output_____ ###Markdown Strategies ###Code class StochasticRsiStrategy(BaseStrategy): # ====================================================================== # Constants # ====================================================================== """ Define the indices of the price series and the to be insered indicators See Documentation for more information. """ PRICE = 0 FASTK, FASTD = 12, 13 def __init__(self, **kwargs): super().__init__(**kwargs) def price_indicator(self, X, timeperiod, fastk, fastd): ind = StochasticRsi(self.PRICE, timeperiod, fastk, fastd) return ind.fit_transform(X) def _long_signal(self, price_indicator, long_entry, long_exit): # Use np.insert if shift is greater than 1 signal_entry = price_indicator[:, self.FASTK] > long_entry signal_hold = price_indicator[:, self.FASTK] > long_exit # Define the long signal long = signal_entry | signal_hold return long[:-1] * 1 def _short_signal(self, price_indicator, short_entry, short_exit): #Use np.insert if shift is greater than 1 signal_entry = price_indicator[:, self.FASTK] < short_entry signal_hold = price_indicator[:, self.FASTK] <= short_exit # Define the long signal short = signal_entry | signal_hold return short[:-1] * -1 def x(self, X): X = check_array(X) return X[:, self.PRICE] class MacdStrategy(BaseStrategy): # ====================================================================== # Constants # ====================================================================== """ Define the indices of the price series and the to be insered indicators See Documentation for more information. """ PRICE = 0 MACD, MACD_SIGNAL, MACD_HIST = 1, 2, 3 # ====================================================================== # Constructors # ====================================================================== def __init__(self, **kwargs): super().__init__(**kwargs) def price_indicator(self, X, fast_period, slow_period, signal_period): real = X[:, self.PRICE] macd_statistics = talib.MACD( real, fastperiod = fast_period, slowperiod = slow_period, signalperiod = signal_period ) return np.c_[X, np.array(macd_statistics).T] def _long_signal(self, price_indicator): long = price_indicator[:,self.MACD] > price_indicator[:,self.MACD_SIGNAL] return long[:-1] * 1 def _short_signal(self, price_indicator): short = price_indicator[:, self.MACD] < price_indicator[:, self.MACD_SIGNAL] return short[:-1] * -1 usd = data[['price']] macd_params = dict(fast_period = range(5, 10),slow_period = range(20, 40),signal_period = range(5, 25, 5)) ind = MacdStrategy(**macd_params) arr = ind.fit_transform(usd) df = pd.DataFrame(arr, index = usd.index[1:]) df['long'] = (df[1] > df[2]).astype(int).shift(1) df['short'] = (df[1] < df[2]).astype(int).shift(1) df.dropna(inplace=True) x_long = df['long'].copy() x_short = df['short'].copy() def signal_transform(s, n=50): transforms = s.groupby([s, s.ne(1).cumsum()]).cumcount() return np.exp(-transforms / n) * s df['rets'] = df[0].pct_change() df['new_long'] = signal_transform(x_long) df['new_short'] = signal_transform(x_short) df['port'] = (df['new_long'] - df['new_short']) * df['rets'] (1 + df['port']).cumprod().plot() np.sqrt(252) * df['port'].mean() / df['port'].std(), np.sqrt(252) * df['rets'].mean() / df['rets'].std() df ###Output _____no_output_____ ###Markdown Plotting function to complete ###Code # longs = X_rsi.index[X_rsi['long'] == 1] # shorts = X_rsi.index[X_rsi['short'] == -1] # # start date positions of new long/short positions # long_indices_or_sections = np.arange(longs.size)[longs.to_series().diff() > pd.Timedelta('3D')] # short_indices_or_sections = np.arange(shorts.size)[shorts.to_series().diff() > pd.Timedelta('3D')] # long_date_regions = np.split(longs, long_indices_or_sections) # short_date_regions = np.split(shorts, short_indices_or_sections) # sns.set(rc={'figure.figsize':(16, 10)}) # fig, axes = plt.subplots(nrows=3, ncols=1) # df.loc['1990', 'alpha_perf'].plot(ax = axes[0]) # df.loc['1990', ['macd', 'macd_macdsignal']].plot(ax=axes[1]) # df.loc['1990', 'gold_perf'].plot(ax = axes[2]) # for l_period, s_period in zip(long_date_regions, short_date_regions): # for ax in axes: # ax.axvline(l_period[0], color='green', linewidth=1) # ax.axvline(s_period[0], color='green', linewidth=1) # ax.axvline(l_period[-1], color='red', linewidth=1) # ax.axvline(s_period[-1], color='red', linewidth=1) # ax.axvspan(l_period[0], l_period[-1], alpha = 0.1, color = 'green') # ax.axvspan(s_period[0], s_period[-1], alpha = 0.1, color = 'red') ###Output _____no_output_____ ###Markdown Data preprocessing ###Code from split._split import TrainValidateTest data = xau_df_dict['wgc_gold_daily_usd'].copy() # forward 5-day return data['target'] = data['price'].shift(-5).pct_change(5) # define training, validation and test data. The X and y data is split # after the column transformation pipeline has been executed. This is to # ensure the the X and y observations are aligned. tvt = TrainValidateTest(0.7, 0.15, 0.15) train_data, valid_data, test_data = tvt.transform(data) train_data['price'].values stoch_params = dict(timeperiod = range(10,20, 2), fastk = range(2, 5), fastd = range(2, 5), ob_region = range(45, 60, 5), os_region = range(0, 15, 5)) macd_params = dict(fast_period = range(5, 10),slow_period = range(20, 40),signal_period = range(5, 25, 5)) preprocess_pipeline = Pipeline([ ('stoch_ud_signal', StochasticRsiStrategy(**stoch_params)), ('macd_ud_signal', MacdStrategy(**macd_params)), #('date', DateDummy('weekday_name', 'month_name')), #('vol_diff', VolatilityDiff()), #('scalar', StandardScaler()) ]) train_prepared, valid_prepared, test_prepared = ( preprocess_pipeline.fit_transform(train_data), preprocess_pipeline.transform(valid_data), preprocess_pipeline.transform(test_data) ) train_prepared = train_prepared[~np.isnan(train_prepared).any(1), :] valid_prepared = valid_prepared[~np.isnan(valid_prepared).any(1), :] X_train = np.delete(train_prepared, [0, 11], axis=1) X_valid = np.delete(valid_prepared, [0, 11], axis=1) y_train = (train_prepared[:, 11] > 0).astype(int) y_valid = (valid_prepared[:, 11] > 0).astype(int) train_prepared[:, [0,15,16, 17]] ###Output _____no_output_____ ###Markdown Model Selection ###Code classifiers = [ SVC(gamma=2, C=1), LogisticRegression(), RandomForestClassifier(criterion='entropy', oob_score=True, n_jobs=-1, random_state= 0), MLPClassifier(alpha=1, max_iter=1000), AdaBoostClassifier(), GradientBoostingClassifier(n_estimators=100), ] results = {} for clf in tqdm(classifiers, unit='Model') : clf.fit(X_train, y_train) name = str(clf).split('(')[0] results[name] = { "train_score" : clf.score(X_train, y_train), "valid_score" : clf.score(X_valid, y_valid) } results sns.set(rc={'figure.figsize':(16, 10)}) prob_array=[-1,1] alpha_score = clf.predict_proba(X_train).dot(np.array(prob_array)) alpha_return = alpha_score * train_data.iloc[-alpha_score.size:, 11] plt.plot((1 + alpha_return).cumprod()) plt.plot(train_data['price'] / train_data['price'][0]) clf.get_params ###Output /home/joepy/anaconda3/lib/python3.7/site-packages/pandas/plotting/_converter.py:129: FutureWarning: Using an implicitly registered datetime converter for a matplotlib plotting method. The converter was registered by pandas on import. Future versions of pandas will require you to explicitly register matplotlib converters. To register the converters: >>> from pandas.plotting import register_matplotlib_converters >>> register_matplotlib_converters() warnings.warn(msg, FutureWarning) ###Markdown Model Evaluation ###Code from sklearn.model_selection import TimeSeriesSplit, GridSearchCV tscv = TimeSeriesSplit(n_splits = 10) clf = RandomForestClassifier(criterion='entropy', oob_score=True, n_jobs=-1, random_state= 0) rf_param_grid = { 'max_depth': [25, 35], 'min_samples_leaf': [5, 10], 'min_samples_split': [2, 5], 'n_estimators': [350, 400] } # search = GridSearchCV(estimator=clf, cv=tscv, param_grid=rf_param_grid) # search.fit(X_train, y_train) search.score(X_train, y_train), search.score(X_valid, y_valid), search.best_params_ from sklearn.model_selection import cross_val_score, cross_val_predict from sklearn.metrics import precision_score, recall_score, precision_recall_curve clf_parameters = { 'n_estimators': 900 , 'criterion': 'entropy', 'min_samples_leaf': 10, 'max_depth' : 25, 'min_samples_split': 2, 'oob_score': True, 'n_jobs': -1, 'random_state': 0} clf = RandomForestClassifier(**clf_parameters) cross_val_score(clf, X_train, y_train, cv=tscv, scoring='accuracy') confusion_matrix(y_train, y_train_pred) n_days = X_train.shape[0] n_features = X_train.shape[1] clf_parameters = { 'criterion': 'entropy', 'min_samples_leaf': 15, 'max_depth' : 25, 'min_samples_split': 8, 'oob_score': True, 'n_jobs': -1, 'random_state': 0} n_trees_l = [5, 1000, 1500] train_score = [] valid_score = [] oob_score = [] feature_importances = [] for n_trees in tqdm(n_trees_l, desc='Training Models', unit='Model'): clf = RandomForestClassifier(**clf_parameters) clf.fit(X_train, y_train) train_score.append(clf.score(X_train, y_train)) valid_score.append(clf.score(X_valid, y_valid)) #oob_score.append(clf.oob_score_) # feature_importances.append(clf.feature_importances_) def plot(xs, ys, labels, title='', x_label='', y_label=''): for x, y, label in zip(xs, ys, labels): plt.ylim((0.3, 0.9)) plt.plot(x, y, label=label) plt.title(title) plt.xlabel(x_label) plt.ylabel(y_label) plt.legend(bbox_to_anchor=(1.04, 1), borderaxespad=0) plt.show() plot([n_trees_l]*3, [train_score, valid_score, oob_score], ['train', 'validation', 'oob'], 'Random Forrest Accuracy', 'Number of Trees') def plot_learning_curve(estimator, title, X, y, ylim=None, cv=None, n_jobs=None, train_sizes=np.linspace(.1, 1.0, 5)): """ Generate a simple plot of the test and training learning curve. Parameters ---------- estimator : object type that implements the "fit" and "predict" methods An object of that type which is cloned for each validation. title : string Title for the chart. X : array-like, shape (n_samples, n_features) Training vector, where n_samples is the number of samples and n_features is the number of features. y : array-like, shape (n_samples) or (n_samples, n_features), optional Target relative to X for classification or regression; None for unsupervised learning. ylim : tuple, shape (ymin, ymax), optional Defines minimum and maximum yvalues plotted. cv : int, cross-validation generator or an iterable, optional Determines the cross-validation splitting strategy. Possible inputs for cv are: - None, to use the default 3-fold cross-validation, - integer, to specify the number of folds. - :term:`CV splitter`, - An iterable yielding (train, test) splits as arrays of indices. For integer/None inputs, if ``y`` is binary or multiclass, :class:`StratifiedKFold` used. If the estimator is not a classifier or if ``y`` is neither binary nor multiclass, :class:`KFold` is used. Refer :ref:`User Guide <cross_validation>` for the various cross-validators that can be used here. n_jobs : int or None, optional (default=None) Number of jobs to run in parallel. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` context. ``-1`` means using all processors. See :term:`Glossary <n_jobs>` for more details. train_sizes : array-like, shape (n_ticks,), dtype float or int Relative or absolute numbers of training examples that will be used to generate the learning curve. If the dtype is float, it is regarded as a fraction of the maximum size of the training set (that is determined by the selected validation method), i.e. it has to be within (0, 1]. Otherwise it is interpreted as absolute sizes of the training sets. Note that for classification the number of samples usually have to be big enough to contain at least one sample from each class. (default: np.linspace(0.1, 1.0, 5)) """ plt.figure() plt.title(title) if ylim is not None: plt.ylim(*ylim) plt.xlabel("Training examples") plt.ylabel("Score") train_sizes, train_scores, test_scores = learning_curve( estimator, X, y, cv=cv, n_jobs=n_jobs, train_sizes=train_sizes) train_scores_mean = np.mean(train_scores, axis=1) train_scores_std = np.std(train_scores, axis=1) test_scores_mean = np.mean(test_scores, axis=1) test_scores_std = np.std(test_scores, axis=1) plt.grid() plt.fill_between(train_sizes, train_scores_mean - train_scores_std, train_scores_mean + train_scores_std, alpha=0.1, color="r") plt.fill_between(train_sizes, test_scores_mean - test_scores_std, test_scores_mean + test_scores_std, alpha=0.1, color="g") plt.plot(train_sizes, train_scores_mean, 'o-', color="r", label="Training score") plt.plot(train_sizes, test_scores_mean, 'o-', color="g", label="Cross-validation score") plt.legend(loc="best") return plt plot_learning_curve(estimator, "lol", X, y, n_jobs =4, cv =cv, train_sizes=train_sizes) #learning_curve( #estimator, X, y, cv=cv, n_jobs=4, train_sizes=train_sizes) cv ###Output _____no_output_____ ###Markdown Result Analysis ###Code import numpy as np import pandas as pd df = pd.read_csv("result.csv") df["Memory"] = df["Memory"] / 1024 df.head() def get_time(df, size, cycle): return np.mean(df[ (df["Size"] == size) & (df["Cycle"] == cycle) ]["Time"]) def get_memory(df, size, cycle): return np.mean(df[ (df["Size"] == size) & (df["Cycle"] == cycle) ]["Memory"]) def merge(df): df2 = [] sizes = [1000000, 2000000, 4000000, 6000000, 8000000, 10000000, 20000000, 30000000, 40000000] for s in sizes: for i in range(0, 10): c = s / 10 * i x = { "Size": s, "Cycle": c } x["Time"] = get_time(df, s, c) x["Memory"] = get_memory(df, s, c) df2.append(x) df2 = pd.DataFrame(df2) return df2 df_running = merge(df[df["Algorithm"] == "RUNNING"]) df_reverse = merge(df[df["Algorithm"] == "REVERSE"]) df_pointself = merge(df[df["Algorithm"] == "POINTSELF"]) import matplotlib.pyplot as plt def plot(ax, t, size): ax.plot('Cycle', t, data=df_pointself[df_pointself["Size"]==size], marker='^', markerfacecolor='darkgreen', markersize=10, color='lightgreen', alpha=0.7, linewidth=2, label="POINTSELF") ax.plot('Cycle', t, data=df_reverse[df_reverse["Size"]==size], marker='o', markerfacecolor='red', markersize=10, color='pink', alpha=0.7, linewidth=2, label="REVERSE") ax.plot('Cycle', t, data=df_running[df_running["Size"]==size], marker='X', markerfacecolor='blue', markersize=10, color='skyblue', alpha=0.7, linewidth=2, label="RUNNING") ax.set_xlabel("Cycle Size") if t == "Time": ax.set_ylabel("Time (Seconds)") ax.set_title("Linked List Length: {}".format(size)) elif t == "Memory": ax.set_ylabel("Memory (MB)") ax.legend() fig, axes = plt.subplots(2, 3, figsize=(20, 10)) for i, t in enumerate(["Time", "Memory"]): for j, size in enumerate([4000000, 10000000, 20000000]): plot(axes[i][j], t, size) fig.savefig("report/fig.pdf".format(t, size), bbox_inches="tight") import matplotlib.pyplot as plt def plot2(ax, t, cycle): ax.plot('Size', t, data=df_pointself[df_pointself["Cycle"] / df_pointself["Size"] == cycle], marker='^', markerfacecolor='darkgreen', markersize=10, color='lightgreen', alpha=0.7, linewidth=2, label="POINTSELF") ax.plot('Size', t, data=df_reverse[df_reverse["Cycle"] / df_reverse["Size"] == cycle], marker='o', markerfacecolor='red', markersize=10, color='pink', alpha=0.7, linewidth=2, label="REVERSE") ax.plot('Size', t, data=df_running[df_running["Cycle"] / df_running["Size"] == cycle], marker='X', markerfacecolor='blue', markersize=10, color='skyblue', alpha=0.7, linewidth=2, label="RUNNING") ax.set_xlabel("Linked List Length") if t == "Time": ax.set_ylabel("Time (Seconds)") ax.set_title("Cycle Length / Total Length: {}".format(cycle)) elif t == "Memory": ax.set_ylabel("Memory (MB)") ax.legend() fig, axes = plt.subplots(2, 3, figsize=(20, 10)) for i, t in enumerate(["Time", "Memory"]): for j, cycle in enumerate([0.2, 0.5, 0.8]): plot2(axes[i][j], t, cycle) fig.savefig("report/fig2.pdf".format(t, size), bbox_inches="tight") ###Output _____no_output_____ ###Markdown hpc-montecarloGoogle Cloud Datalab notebook for analysis of montecarlo stock portfolio tutorial. See URL for detailed tutorial. In this notebook, we will load the simulation data from bigquery, then do some simple analysis. The first step is to load the bigquery python package into the notebook, and then connect to bigquery to extract the aggregate portfolio data. ###Code %load_ext google.cloud.bigquery %%bigquery df SELECT * FROM `montecarlo_outputs.portfolio` ###Output _____no_output_____ ###Markdown Now df contains portfolio as a pandas dataframe. Each row n represents a different simulation, and each column m represents the value of the portfolio m days into the simulation. Column 0 is the value of the portfolio before simulation, column 1 is the value after 1 day of simulation, and so on. We can plot the divergence of the simulations over time and see the spread. ###Code df.T.plot(legend=False) import matplotlib.pyplot as plt mean = df.mean().reset_index().iloc[:,-1] std = df.std().reset_index().iloc[:,-1] plt.errorbar(mean.index, mean, xerr=0.5, yerr=2*std, linestyle='-') plt.show() ###Output _____no_output_____ ###Markdown While this shows the general progression, we might be interested in the spread of values at the end of the simulations, day 252. Looking at this day in particular, we plat a histogram of the values. ###Code df.iloc[:,-1].hist(bins=100) df.iloc[:,-1].describe() ###Output _____no_output_____ ###Markdown We can also load the individual stock simulations as opposed to the aggregate portfolio valuation. Loading the data into a second data frame, we can then take a look at each of the FANG stocks to see the progression over the 1000 simulations. ###Code %%bigquery df2 SELECT * FROM `montecarlo_outputs.vartable` df2[df2.string_field_0 == 'FB'][1:10].T[3:].plot(legend=False) ###Output _____no_output_____ ###Markdown In case you get a lot of font warnings for matplotlib, use this to ignore them. ###Code import warnings warnings.filterwarnings("ignore") ###Output _____no_output_____ ###Markdown 加载函数 ###Code from common import read from common import plot_df, plot_district, plot import pandas as pd def plotCity(df): gp = df.groupby(['成交时间'])['成交价(元/平)'] res=pd.DataFrame({"volume":gp.size(),"median_price":gp.median(), "mean_price":gp.mean()}) res = res.iloc[:len(res),:] title = city res = plot(res, city, title, MA, ma_length, start_date) return res def plotAllDistrict(df): districts = list(df['下辖区'].unique()) res = {} for district in districts: if str(district) != 'nan': res[district] = plot_district(df, city, district, ma_length, start_date) return res ###Output _____no_output_____ ###Markdown 画各个城市的趋势图 ###Code import os MA = True ma_length = 30 start_date = '2015-01-01' cityList = ['北京', '上海', '深圳', '杭州', '广州', '长沙', '厦门', '宁波', '合肥', '成都','重庆','武汉', '西安','石家庄','苏州','南京', '大连', '青岛', '无锡', '保定', '温州', '廊坊', '天津'] #cityList = ['北京', '上海','深圳'] cityList = ['北京'] data = {} res = {} districtRes = {} for city in cityList: print(city) df = read(city) data[city] = df res[city] = plotCity(df) districtRes[city]=plotAllDistrict(df) df_new = df.loc[df['成交时间']>'2020-01-30'] df_new = df_new.loc[df_new['成交价(元/平)']>5000] len(df_new) def drawDown(res): dd = {} for district in res: try: dd[district] = (res[district]['mean_price'][-1]/res[district]['mean_price'].max()-1) except: pass dd = pd.DataFrame({'跌幅':dd}).sort_values('跌幅') dd['跌幅'] = ["%.2f%%"%(a*100) for a in dd['跌幅']] display(dd) #display(districtRes['北京']['海淀']) drawDown(districtRes['北京']) #计算城市排名 if not os.path.exists('fig/allcity'): os.makedirs('fig/allcity') os.system('rm fig/allcity/*') median = {} mean = {} yearChange = {} change = {} monthChange = {} for city in cityList: median[city] = int(res[city]['median_price'][-1]) mean[city] = int(res[city]['mean_price'][-1]) try: yearChange[city] = "%.2f%%"%(100 * (res[city]['median_price'][-1]/res[city]['median_price'][-365] - 1)) except: yearChange[city] = '数据不足' change[city] = "%.2f%%"%(100 * (res[city]['median_price'][-1]/res[city]['median_price'][-180] - 1)) monthChange[city] = "%.2f%%"%(100 * (res[city]['median_price'][-1]/res[city]['median_price'][-30] - 1)) cityRank = pd.DataFrame({'中位数':median, '均值':mean, '近一年':yearChange, '近半年':change, '近一个月':monthChange}).sort_values('中位数', ascending = False) cityRank['城市'] = cityRank.index cityRank.index = range(1, len(cityRank) + 1) cityRank = cityRank.loc[:,['城市', '中位数', '均值', '近一年', '近半年','近一个月']] display(cityRank) for index, row in cityRank.iterrows(): city = row['城市'] index = int(index) cmd = 'cp fig/%s/%s.png fig/allcity/%.2d.%s.png'%(city, city, index, city) os.system(cmd) ###Output _____no_output_____ ###Markdown 合并历史数据 ###Code from common import read cityList = ['北京', '上海', '深圳', '杭州', '广州', '长沙', '厦门', '宁波', '合肥', '成都','重庆','武汉', '西安','石家庄','苏州','南京', '大连', '温州'] for city in cityList: df = read(city) df.to_csv('data/all/%s.csv'%city, index=False) if not os.path.exists('data/res'): os.makedirs('data/res') for city in cityList: res[city].to_csv('data/res/'+city+'.csv') from common import read city = 'alltj' df = read(city) xiaoqu= open('xiaoqu/tjxiaoqu.txt', 'w') xiaoquList = df['小区'].unique() print(len(xiaoquList)) for xq in xiaoquList: if str(xq) != 'nan': xiaoqu.write(xq+'\n') xiaoqu.close() from common import read city = 'alltj' df = read(city) #df.drop_duplicates(subset=['链家编号']) print(df.columns) print(len(df)) df.to_csv(city+'.csv') df['土地年限'] from common import plot_dfs import pandas as pd def plotDianti(df): pd.options.display.max_columns = None df_dt= df.loc[df['电梯'] == '有'] df_ndt= df.loc[df['电梯'] != '有'] print('有电梯', len(df_dt)) print('无电梯',len(df_ndt)) plot_dfs([df_ndt,df_dt], '%s有无电梯'%city, ['无电梯', '电梯'], 30, '2015-01-01') for city in cityList: df = read(city) plotDianti(df) from common import plot_df df_sjs = df.loc[df['下辖区']=='石景山'] xiaoquList = df_sjs['小区'].unique() for xiaoqu in xiaoquList: plot_df(df_sjs.loc[df_sjs["小区"]== xiaoqu], "石景山", xiaoqu, True, 10) import pandas as pd x=df_sjs.groupby('小区') x_mean = x.mean() x_size = x.size() x_mean = x_mean.merge(pd.DataFrame({'size':x_size}), left_index = True, right_index = True) x_mean=x_mean.loc[x_size>=5] x_mean=x_mean.sort_values(by='成交价(元/平)', ascending=False).loc[:,["建筑面积","成交价(元/平)","售价(万)", 'size']] x_mean from common import plot, plot_dfs, plot_df MA = True ma_length = 10 def plot_xiaoqu(xiaoqu, df): df_xiaoqu = df.dropna(subset=['小区']) df_xiaoqu = df_xiaoqu.loc[df_xiaoqu['小区'].str.contains(xiaoqu)] #plot_dfs([df, df_xiaoqu], xiaoqu, ['全市', xiaoqu], ma_length, '2015-01-01') plot_df(df_xiaoqu, city, xiaoqu, MA, ma_length) ma_length = 30 #plot_xiaoqu('八角', data['北京']) plot_xiaoqu('观林园', df) pd.options.display.max_columns = None #df.loc[df['小区'].str.contains('团结湖南里')] df.loc[df['小区'].str.contains('爱乐')].sort_values(by='成交时间', ascending=False) #df.loc[df['小区'].str.contains('平乐园')].sort_values(by='成交时间', ascending=False) x=df.groupby('小区') x_mean = x.mean() x_size = x.size() #x_size x_mean=x_mean.loc[x_size>=1] x_mean=x_mean.sort_values(by='成交价(元/平)', ascending=False).loc[:,["建筑面积","成交价(元/平)","售价(万)"]] x_mean x_mean.index[:10] df.sort_values('售价(万)', ascending=False).loc[:,["小区", "建筑面积","成交价(元/平)", "售价(万)"]] df.sort_values('成交价(元/平)', ascending=False).loc[:,["小区", "建筑面积","成交价(元/平)", "售价(万)","成交时间"]] ma_length = 10 mean_price = df['成交价(元/平)'].mean() price_std = df['成交价(元/平)'].std() print('mean:', mean_price, 'std:', price_std) threshold = 1.3 #high_df = df.loc[df['成交价(元/平)']>= mean_price + threshold * price_std] #low_df = df.loc[df['成交价(元/平)']< mean_price - threshold* price_std] #medium_df = df.loc[df['成交价(元/平)']< mean_price + threshold * price_std] #medium_df = medium_df.loc[medium_df['成交价(元/平)']>= mean_price - threshold * price_std] sort_key = '成交价(元/平)'# #sort_key = '售价(万)' df = df.sort_values(sort_key, ascending = False) count = len(df)//3 high_df = df.iloc[:count] low_df = df.iloc[-count:] medium_df = df.iloc[count:-count] print(len(high_df), len(low_df), len(medium_df)) print(high_df[sort_key].mean(), medium_df[sort_key].mean(), low_df[sort_key].mean() ) ma_length = 30 def getPriceSeries(df): gp = df.groupby(['成交时间'])['成交价(元/平)'] res=pd.DataFrame({"volume":gp.size(),"median_price":gp.median(), "mean_price":gp.mean()}) res = res.sort_index() res = res.iloc[:len(res)-1] res = get_moving_average(res, ma_length) return res highSeries=getPriceSeries(high_df) mediumSeries=getPriceSeries(medium_df) lowSeries=getPriceSeries(low_df) fig, ax = plt.subplots() ax.plot(highSeries['mean_price']/highSeries['mean_price'][0]) ax.plot(mediumSeries['mean_price']/mediumSeries['mean_price'][0]) ax.plot(lowSeries['mean_price']/lowSeries['mean_price'][0]) plt.xticks(rotation=45) ax.legend(['high=%.f yuan'%(high_df[sort_key].mean()), 'medium=%.f yuan'%medium_df[sort_key].mean(), 'low=%.f yuan'%low_df[sort_key].mean()]) xticks = ax.xaxis.get_major_ticks() interval = len(xticks)// 10 ax.set_xticks(ax.get_xticks()[::interval]) 'done' plt.axis plt.plot(highSeries['median_price']/highSeries['median_price'][0]) plt.plot(mediumSeries['median_price']/mediumSeries['median_price'][0]) plt.plot(lowSeries['median_price']/lowSeries['median_price'][0]) plt.xticks(rotation=90) plt.legend(['high','medium', 'low']) def plotAllDistrict(df, ma_length = 10): districts = list(set(df['下辖区'])) legend = ['beijing'] data = [] gp = df.groupby(['成交时间'])['成交价(元/平)'] res=pd.DataFrame({"volume":gp.size(),"median_price":gp.median(), "mean_price":gp.mean()}) res = res.iloc[:len(res)-1,:] res = get_moving_average(res, ma_length) data.append(res) for district in districts: gp = df.loc[df['下辖区']==district].groupby(['成交时间']) res = pd.DataFrame({'volume':gp.size(),'mean_price':gp['成交价(元/平)'].mean(), 'median_price':gp['成交价(元/平)'].median()}) res = res.iloc[:len(res) -1,:] res = get_moving_average(res, ma_length) if len(res) < 1: continue data.append(res) title = pinyin(district) if district == '朝阳': title = 'chao yang' elif district == '长宁': title = 'chang ning' elif district == '闵行': title = 'min hang' else: title = " ".join([x[0] for x in title]) legend.append(title) for i in range(len(data)): plt.plot(data[i]['mean_price']/data[i]['mean_price'].iloc[0]) plt.xticks(rotation=90) plt.legend(legend) plotAllDistrict(df, 30) city = 'alltj' MA = True ma_length = 30 start_date = '2015-01-01' df = read(city) res = plotCity(df) plotAllDistrict(df) from common import read city = '天津' df = read(city) df.groupby('下辖区').size().sort_values() sum(df['下辖区']=='天津') [ a.split()[0] for a in '''和平 4312 北辰 4634 东丽 5512 红桥 5937 河北 6700 西青 10668 河东 12797 河西 16081 南开 25265'''.split('\n')] ###Output _____no_output_____ ###Markdown Facebook Report Domain List VerificationThe purpose of this notebook is to analyze the list of top domains provided by Facebook in their "transparency report Q3" with the corresponding top domain list from Citizen Browser during the same time. The hope is that we can use these two lists to show that our results are indeed correlated with the general trends seen on facebook in order to give us confidence in results we see from other parts of the data. ###Code %matplotlib inline import matplotlib.pyplot as plt import seaborn as sns import dataframe_image as dfi from matplotlib.ticker import FormatStrFormatter from tqdm.notebook import tqdm import numpy as np import pandas as pd import rbo from analysis import FBCBData, load_cb_unsponsored from utils import save_tabular data = FBCBData(load_cb=load_cb_unsponsored) ###Output Found query cache: data/query_cache/5482d4efb1ef9376d2a905594cb9fbec.csv ###Markdown First let's make the dataframe human readible to have a nice view for the methodology. ###Code fbcb = data.joined_domains() print(fbcb.info()) fbcb.index.names = ['Domain'] fbcb_clean = (fbcb .drop(columns=['Unnamed: 0'], errors='ignore') .rename(columns={ "unique_users_cb": "Unique Citizen Browser Users", "rank_cb": "Ranking Markup", "rank_fb": "Ranking Facebook", "unique_users_fb": "Unique Facebook Users", }) .head(20)) dfi.export(fbcb_clean, 'images/fig4.png') fbcb_clean fbcb_clean.to_clipboard() data.joined_domains(how='outer').sort_values('rank_cb').head(20) ###Output _____no_output_____ ###Markdown Domain CorrelationLet's look at the raw correlation between the domain rankings and the view counts. We assume that the p-values for the domain correlation is biased because the null hypothesis doesn't properlly consider our full ranking and only sees the partial, intesected, ranking with respect to the facebook report.The domain correlation is done by taking the "ranking facebook" and "ranking markup" columns from the above dataframe and feeding them into scipy.stats.kendalltau.The views correlation is done by taking the "Unique Users Markup" and "Unique Users Facebook" and feeding them into scipy.stats.spearmanr. ###Code print("Domain Correlation:", data.correlation_domains()) print("Views Correlation:", data.correlation_views()) ###Output Domain Correlation: KendalltauResult(correlation=0.4105263157894737, pvalue=0.011101359934968412) Views Correlation: SpearmanrResult(correlation=0.5678827028149745, pvalue=0.00900226017644768) ###Markdown P-Value SimulationIn order to calculate a more reasonable p-value, we sample from randomly generated full rankings of our domains and perform the same Kendall Tau correlation as above. The Markup's full ranking is shuffled, intersected with the Facebook ranking, and the correlation is performed (and outputted by the `random_sampler`). We are then able to calculate the one-sided p-value by seeing how many samples had a correlation lower than the correlation we calculate for our list. ###Code corr_random = [] corr, p = data.correlation_domains() random_sampler = data.correlation_domains_random() for _ in tqdm(range(500_000)): c, _ = next(random_sampler) corr_random.append(c) print("domains corr:", corr) print("approx p:", p) print("exact one-sided p:", sum(1 for c in corr_random if c >= corr) / len(corr_random)) plt.figure() sns.histplot(corr_random, stat='probability') plt.axvline(corr) plt.xlabel('Kendall Tau Correlation') plt.title('Correlation of full ranking vs randomly generated lists') plt.tight_layout() plt.savefig("images/fig2.png") plt.savefig("images/fig2.svg") plt.show() ###Output _____no_output_____ ###Markdown For posterity, we also calculate the RBO coefficient to see how much the intersection of the lists effects the results ###Code data.correlation_domains(method='rbo') ###Output _____no_output_____ ###Markdown Data VisualizationWe now dive a bit into the full dataset. Here, `df` is the full, non-intersected dataset. Note that all the `*_fb` fields are None except for those 20 domains from the facebook report. ###Code df = data.joined_domains(how='outer') df.describe() df.head() plt.figure() ax = sns.barplot(data=df.head(87), x='rank_cb', y='unique_users_cb') save_tabular("cb_top_87", df.head(87)[['rank_cb', 'unique_users_cb']]) ax.set_yscale('log') ax.set_ylabel("Number of unique users") ax.set_xlabel("Domain") ax.set_title("Unique user counts for top 87 domains") ax.set_xticks([]) ax.yaxis.set_minor_formatter(FormatStrFormatter("%.0f")) ax.yaxis.set_major_formatter(FormatStrFormatter("%.0f")) plt.tick_params(axis='y', which='minor') plt.tight_layout() plt.savefig("images/fig1a.png") plt.savefig("images/fig1a.svg") plt.show() plt.figure() ax = sns.barplot(data=fbcb.sort_values('rank_fb'), x='rank_fb', y='unique_users_fb') save_tabular("fb_top_20", fbcb.sort_values('rank_fb')[['rank_fb', 'unique_users_fb']]) # ax.set_yscale('log') ax.set_ylabel("Number of unique users") ax.set_xlabel("Domain") ax.set_title("Facebook user counts for top 20 domains") ax.set_xticks([]) ax.yaxis.set_minor_formatter(FormatStrFormatter("%.0f")) ax.yaxis.set_major_formatter(FormatStrFormatter("%.0f")) plt.tick_params(axis='y', which='minor') plt.tight_layout() plt.savefig("images/fig1b.png") plt.savefig("images/fig1b.svg") plt.show() ###Output _____no_output_____ ###Markdown RBO VerificationFor verification that the intersection of the two ranked lists isn't an overly biasing effect, we quickly calculate the [RBO](https://dl.acm.org/doi/abs/10.1145/1852102.1852106) of the two sets to make sure it is consistent with our results abobve ###Code cb = df.sort_values('rank_cb').index.to_list() fb = df.query('rank_fb > 0').sort_values('rank_fb').index.to_list() corr, _ = data.correlation_domains() r = rbo.RankingSimilarity(cb, fb) print("RBO Extrapolated (Eq. (32) from paper):", r.rbo_ext()) print("RBO Default:", r.rbo()) P = np.arange(0.05, 1, 0.025) Y = [r.rbo(p=p) for p in P] Y_ext = [r.rbo_ext(p=p) for p in P] f = plt.figure() plt.plot(P, Y, label='RBO') plt.plot(P, Y_ext, label='RBO Ext') # note: rbo and kendall aren't directly comparable, but it's a good smell test plt.axhline(y=corr, label='Kendall Tau') plt.legend() plt.xlabel("p (top-weightness)") plt.ylabel("RBO Coef") plt.show() ###Output RBO Extrapolated (Eq. (32) from paper): 0.6979801453080263 RBO Default: 0.6267565872809681 ###Markdown Views CorrelationNow just a quick dive into the correlation between the viewership numbers from the facebook report. ###Code data.correlation_views() plt.figure() g = sns.regplot(data=fbcb, x='unique_users_cb', y='unique_users_fb', n_boot=10_000) g.set_ylabel('Facebook Unique Users') g.set_xlabel('Citizen Browser Unique Users') g.yaxis.set_minor_formatter(FormatStrFormatter("%.0f")) g.yaxis.set_major_formatter(FormatStrFormatter("%.0f")) plt.tick_params(axis='y', which='minor') plt.tight_layout() plt.savefig("images/fig3.png") plt.savefig("images/fig3.svg") plt.show() a = np.vstack([ fbcb.unique_users_cb.to_numpy(), np.ones(20) ]).T b = fbcb.unique_users_fb.to_numpy()[..., np.newaxis] m, b = np.linalg.lstsq(a, b, rcond=-1)[0] print("slope:", m) print("int:", b) ###Output slope: [96742.13084853] int: [48969243.83136585] ###Markdown Domains with high viewership users ###Code df_hfu = data.high_frequency_users() df_hfu.sample(n=10) df_hfu.describe() ###Output _____no_output_____ ###Markdown We group by url_domain and do some aggregate statistics. We define a "High View User" as someone who saw a domain more than 90 times in our sample period. This represents seeing the domain at least once per day. ###Code dg = df_hfu.groupby('url_domain') domains = ( dg .agg({ "n_views": lambda d: (d > 90).sum(), }) .sort_values("n_views", ascending=False) .head(1000) .rename(columns={"n_views": "n_high_viewers"}) .merge( dg .agg({"n_views": "count"}) .sort_values("n_views", ascending=False) .head(1000) .rename(columns={'n_views': 'n_users'}), right_index=True, left_index=True, how='outer', ) ) domains['frac_high_viewers'] = domains.n_high_viewers / domains.n_users domains.describe() def get_domain_samples_raw(df, domains, field, N=25): return ( domains .sort_values(field, ascending=False) .head(N) .reset_index() .merge(df, on='url_domain') ) def get_domain_samples(domains, field, N=25): return domains.sort_values(field, ascending=False).head(N).reset_index() d = get_domain_samples_raw(df_hfu, domains, 'n_high_viewers') plt.figure() ax = sns.boxplot(data=d, x='url_domain', y='n_views') plt.xticks(rotation='vertical') ax.set_yscale('log') plt.xlabel('') plt.ylabel('Distribution of High View Users') plt.tight_layout() plt.show() d = get_domain_samples(domains, 'n_high_viewers') plt.figure() sns.barplot(data=d, x='url_domain', y='n_high_viewers') save_tabular('n_high_viewers', d[['url_domain', 'n_high_viewers']]) plt.xlabel('') plt.ylabel('Number of High View Users') plt.xticks(rotation='vertical') plt.tight_layout() plt.show() d = get_domain_samples(domains, 'n_high_viewers') plt.figure() sns.barplot(data=d, x='url_domain', y='frac_high_viewers') save_tabular('n_high_viewers_by_frac', d[['url_domain', 'frac_high_viewers']]) plt.xlabel('') plt.ylabel('Fraction of High View Users') plt.xticks(rotation='vertical') plt.tight_layout() plt.show() Q = df_hfu.groupby('url_domain').sum().reset_index().n_views.quantile(0.99) d = get_domain_samples( domains.query('n_users > @Q'), 'frac_high_viewers' ) plt.figure() sns.barplot(data=d, x='url_domain', y='frac_high_viewers') save_tabular('frac_high_viewers_99pct', d[['url_domain', 'frac_high_viewers']]) plt.xlabel('') plt.ylabel('Fraction of High View Users') plt.xticks(rotation='vertical') plt.tight_layout() plt.show() plt.figure() sns.histplot(data=domains, x='n_users') plt.show() ###Output _____no_output_____ ###Markdown Now let's look at just news domains ###Code domains_news = data.filter_news_sources(domains) d = get_domain_samples( domains_news, 'frac_high_viewers', N=50 ) plt.figure() sns.barplot(data=d, x='url_domain', y='frac_high_viewers', ) save_tabular('news_frac_high_viewers', d[['url_domain', 'frac_high_viewers']]) plt.xlabel('') plt.ylabel('Percentage of high viewership users') plt.xticks(rotation='vertical') plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Report on US-Healthcare Databas with Stastistical Analysis Health searches data contains the statistics of google searches made in US. To start our analysis, let's read the data into a pandas dataframe and also we look at the first 3 rows to understand the columns/data. ###Code import numpy as np import pandas as pd from IPython.display import display import matplotlib.pyplot as plt %matplotlib inline healthSearchData=pd.read_csv("RegionalInterestByConditionOverTime.csv") healthSearchData.head(3) ###Output _____no_output_____ ###Markdown For our study, we do not consider the "geoCode" column and lets drop it. This is because we already have the city name in a separate column and I would like to keep the data simple. ###Code healthSearchData = healthSearchData.drop(['geoCode'],axis=1) ###Output _____no_output_____ ###Markdown In the dataset, we have 9 medical conditions and the search data is from 2004 to 2017. Its soo refreshing to see data for more than 10 years. Anyway, now we plot year wise search change for the diseases available. ###Code #2004-2017 #cancer cardiovascular stroke depression rehab vaccine diarrhea obesity diabetes yearWiseMeam = {} for col in healthSearchData.columns: if '+' in col: year = col.split('+')[0] disease = col.split('+')[-1] if not disease in yearWiseMeam: yearWiseMeam[disease] = {} if not year in yearWiseMeam[disease]: yearWiseMeam[disease][year] = np.mean(list(healthSearchData[col])) plt.figure(figsize=(18, 6)) ax = plt.subplot(111) plt.title("Year wise google medical search", fontsize=20) ax.set_xticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13]) ax.set_xticklabels(list(yearWiseMeam['cancer'].keys())) lh = {} for disease in yearWiseMeam: lh[disease] = plt.plot(yearWiseMeam[disease].values()) plt.legend(lh, loc='best') ###Output _____no_output_____ ###Markdown It can be observed that the line plot has so many uneven jumps. Let's smooth the plot and visualise how the search looks like. This is just for observational benefits and need not be performed everytime. ###Code plt.figure(figsize=(18, 6)) ax = plt.subplot(111) plt.title("Year wise google medical search [smoothened]", fontsize=20) ax.set_xticks([0,1,2,3,4,5,6,7,8,9,10,11,12,13]) ax.set_xticklabels(list(yearWiseMeam['cancer'].keys())) lh = {} myLambda = 0.7 for disease in yearWiseMeam: tempList = list(yearWiseMeam[disease].values()) localMean = np.mean(tempList) smoothList = [] for x in tempList: smoothList.append(x + myLambda * (localMean - x)) lh[disease] = plt.plot(smoothList) plt.legend(lh, loc='best') ###Output _____no_output_____ ###Markdown Table of contentsFollowing CRISP-DM process [SECTION 1](section1) | Business understanding : Brief description Question 1 Question 2 Question 3 [SECTION 2](section2) | Data understanding [SECTION 3](section3) | Data preparation [SECTION 4](section4) | Evaluation of the results Question 1 Analyze Visualize Brief explanation for visualization Question 2 Analyze Visualize Brief explanation for visualization Question 3 Analyze Visualize Brief explanation for visualization Remark- Data modeling was not conducted for this analysis. - Please note that another round of data preparation will be performed to fine tune the data whenever necessary before the analysis of each question. --- SECTION 1 | Business understandingThis analysis is to expand understanding over the fast growing Airbnb business. For this purpose, Airbnb data were retrieved from Kaggle for two U.S. cities-Seattle and Boston, which includes information about Airbnb activities in 2016. [Question 1](question1) How well Airbnb business performed in 2016? Applying some straighforward hospitality performance evaluation metrics [Question 2](question2) How much growth potential did Airbnb have?Looking at number of new listings by year [Question 3](question3) Which neighborhood has more expensive listings?Using Python's GeoPandas libraries for geogrpahical mapping and visualization --- SECTION 2 | Data understanding Importing packages ###Code import numpy as np import pandas as pd from pandas.plotting import scatter_matrix import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline import os from zipfile import ZipFile from datetime import datetime # Matplotlib axis formatter from matplotlib.axis import Axis import matplotlib.ticker as ticker # Geopandas package import geopandas as gpd from shapely.geometry import Point, Polygon import descartes ###Output _____no_output_____ ###Markdown Reading Airbnb dataset ###Code DATA_PATH = os.path.join(os.getcwd(), 'data') FILE_PATH_SEATTLE = os.path.join(DATA_PATH, 'seattle.zip') FILE_PATH_BOSTON = os.path.join(DATA_PATH, 'boston.zip') def extract_df_from_airbnb_zipfile(PATH_ZIPFILE) : ''' Extract csv files from a zipfile and return a list of dataframes INPUT : file path to a zipfile to open OUTPUT : a dictionary that contains dataframes of files extracted from the zip file ''' zf = ZipFile(PATH_ZIPFILE) dfs = { text_file.filename : pd.read_csv(zf.open(text_file.filename )) for text_file in zf.infolist() if text_file.filename.endswith('.csv') } print('Printing a dictionary with filenames as keys') for filename in dfs.keys() : print(f'Filename (keys): {filename}') return dfs ###Output _____no_output_____ ###Markdown Seattle ###Code dfs_seattle = extract_df_from_airbnb_zipfile(FILE_PATH_SEATTLE) listings_seattle = dfs_seattle['listings.csv'] reviews_seattle = dfs_seattle['reviews.csv'] calendar_seattle = dfs_seattle['calendar.csv'] ###Output _____no_output_____ ###Markdown Boston ###Code dfs_boston = extract_df_from_airbnb_zipfile(FILE_PATH_BOSTON) calendar_boston = dfs_boston['calendar.csv'] listings_boston = dfs_boston['listings.csv'] reviews_boston = dfs_boston['reviews.csv'] ###Output _____no_output_____ ###Markdown Exploring the dataThe respective Airbnb datasets are downloaded from : - Seattle : https://www.kaggle.com/airbnb/seattle- Boston : https://www.kaggle.com/airbnb/boston Content- Listings, including full descriptions and average review score- Review, including unique id for each reviewer and detailed comments- Calendar, including listing id and the price and availability for that day Inspiration- Can you describe the vibe of each Seattle neighborhood using listing descriptions?- What are the busiest times of the year to visit Seattle? By how much do prices spike?- Is there a general upward trend of both new Airbnb listings and total Airbnb visitors to Seattle?Reference to the real use of the data: http://insideairbnb.com/seattle/ --- SECTION 3 | Data preparation Defining helper functionsCollect all helper functions to use in this notebook. ###Code # Helper function def convert_str_to_datetime(df, date_feature) : ''' Convert a series of date string to datetime object INPUT : a dataframe and a column that contains date data OUTPUT : a series in datetime dtype ''' date_conversion = lambda x : datetime.strptime(x, "%Y-%m-%d") return df[date_feature].apply(date_conversion) def break_date(df, date_feature) : ''' Break down a datetime object into year, month, day and save the information in new columns of input dataframe INPUT : a dataframe and a column that contains date data OUTPUT : a dataframe that adds 3 newly created date columns to the original dataframe ''' df_new = df.copy() df_new[date_feature] = convert_str_to_datetime(df_new, date_feature) df_new['year'] = df_new[date_feature].apply(lambda x : x.year) df_new['month'] = df_new[date_feature].apply(lambda x : x.month) df_new['day'] = df_new[date_feature].apply(lambda x : x.day) return df_new def convert_price_float(series) : ''' Wrangle the price column in object dtype by removing $, comma(,) sign and converting into float dtype INPUT : a pandas Series that contain Airbnb price (dtype: object) OUTPUT : an updated series with price data in float ''' # Remove $ & , sign from price rep = {'$':'', ',': ''} for old, new in rep.items() : series = series.str.replace(old, new) # convert date type to float series = series.astype(float) return series def convert_binary_num(series) : ''' Convert boolean notation t, f to numeric terms INPUT : series that contains t, f OUTPUT : a series that converted boolean notation into numeric values (1, 0) ''' series = series.map({ 't': 1, 'f':0 }) return series def plot_line_chart(x, height, layout_obj=False, rotation=False) : ''' Plot line chart with labels INPUT : values that needs appearing in x-axis(x) and y-axis(height) and layout_obj that contains customizable labe data, in case that x label needs 45 degree rotation, set rotation = True OUTPUT : line chart that contains the custom set labels ''' if ( layout_obj ) and ( not len(layout_obj) == 3 ): print('Length of layout_obj must be 3') raise title, xlabel, ylabel = layout_obj.values() plt.figure(figsize=(10,4)) plt.plot(x, height, marker='o') plt.title(title) plt.xlabel(xlabel); plt.ylabel(ylabel) plt.axhline(height.mean(), c='orange', ls='--') if rotation : plt.xticks(rotation=45); plt.show() def plot_bar_chart(x, height, layout_obj=False, rotation=False) : ''' Plot bar chart with labels INPUT : values that needs appearing in x-axis(x) and y-axis(height) and layout_obj that contains customizable labe data, in case that x label needs 45 degree rotation, set rotation = True OUTPUT : bar chart that contains the custom set labels ''' if ( layout_obj ) and ( not len(layout_obj) == 3 ): print('Length of layout_obj must be 3') raise title, xlabel, ylabel = layout_obj.values() plt.figure(figsize=(10,4)) plt.bar(x, height) plt.title(title) plt.xlabel(xlabel); plt.ylabel(ylabel) if rotation : plt.xticks(rotation=45); plt.show() def map_calendar_month(series) : ''' Map calendar month in numercial notation into more readable month name in string (mmm format) INPUT : a series that contains numeric month OUTPUT : an updated series that mapped month in string ''' try : series = series.map({ 1:'Jan', 2:'Feb', 3:'Mar', 4:'Apr', 5:'May', 6:'Jun', 7:'Jul', 8:'Aug', 9:'Sep', 10:'Oct', 11:'Nov', 12:'Dec' }) return series except : print('Failed mapping') return def create_points_geometry(series1, series2) : """ Create points from longitude, latitude data using GeoPandas module INPUT : series1 : longitude data series series2 : latitude data series OUTPUT : transformed geometry list which will be used as a parameter of GeoDataFrame """ return [Point(xy) for xy in zip(series1, series2)] ###Output _____no_output_____ ###Markdown Data cleaning `calendar` dataframeFor exploring Airbnb performances (related to **Question 1**) Cleaning Seattle clendar data ###Code # Copy a dataframe for data cleaning calendar_sea_copy = calendar_seattle.copy() calendar_sea_copy.info() # Check the data period # should be 365 days from 2016-01-04 to 2017-01-02 assert len(calendar_sea_copy.date.value_counts().index) == 365 # Convert t, f to binary int : available calendar_sea_copy.available = convert_binary_num(calendar_sea_copy.available) # Remove $ & , sign from price calendar_sea_copy.price = convert_price_float(calendar_sea_copy.price) # Saving the cleaned data calendar_sea_copy.to_csv('data/calendar_seattle_cleaned.csv', index=False) ###Output _____no_output_____ ###Markdown Cleaning Boston clendar data ###Code # Copy a dataframe for data cleaning calendar_bos_copy = calendar_boston.copy() calendar_sea_copy.info() # Check the data period assert len(calendar_bos_copy.date.value_counts().index) == 365 # Convert t, f to binary int : available calendar_bos_copy.available = convert_binary_num(calendar_bos_copy.available) # Remove $ & , sign from price calendar_bos_copy.price = convert_price_float(calendar_bos_copy.price) # Saving the cleaned data calendar_bos_copy.to_csv('data/calendar_boston_cleaned.csv', index=False) ###Output _____no_output_____ ###Markdown `listings` dataframeFor exploring supplier side and growth of Airbnb (related to **Question 2 & 3** ) Cleaning Seattle listings data ###Code # Copy a dataframe for data cleaning listings_sea_copy = listings_seattle.copy() listings_sea_copy.head(3) # Trim the dataset with features that are host related cols_host = listings_sea_copy.loc[:, listings_sea_copy.columns.str.contains('host')] extra_info = listings_sea_copy[['property_type', 'room_type', 'price']] host_original = cols_host.join(extra_info) print(host_original.shape) host_original.head(3) ###Output (3818, 22) ###Markdown Drop unnessary / repetitive featuresreturn host_clean_v0 dataframe ###Code # Drop unnecessary columns # calculated_host_listings_count are more accurate info drop_cols = ['host_url', 'host_thumbnail_url', 'host_picture_url', 'host_verifications', 'host_has_profile_pic', 'host_listings_count', 'host_total_listings_count'] host_clean_v0 = host_original.drop(columns = drop_cols).copy() #pd.options.display.max_row = None #host[host.duplicated(subset=['host_id'], keep=False)].sort_values(by='host_id') ###Output _____no_output_____ ###Markdown Drop duplicates ###Code # Check for duplicates ( host_clean_v0.drop_duplicates(subset=['host_id'], keep='last').shape[0] / host_clean_v0.shape[0] ) ###Output _____no_output_____ ###Markdown It looks that host_id is duplicated when a host has more than 1 hosting. Drop duplicates by host_id (not host_name!). 72% remain after removing duplicated rows, but it is rational to drop, and keep the last row (latest).return host_clean_v1 dataframe ###Code # Drop duplicates host_clean_v1 = host_clean_v0.drop_duplicates(subset=['host_id'], keep='last') ###Output _____no_output_____ ###Markdown Drop missing valuesIn this analysis, Airbnb’s growth potential will be evaluated by measuring the number of new hosts. The logic is that the more attractive is the Airbnb business, the more likely new hosts join and provide listings, which then will lead to market growth especially in supply side.`host_since` then is a feature to aggregate for the number of new listings by year.Therefore, the column shouldn't have any missing data.return host_clean_v2 dataframe ###Code # Check for null data in 'host_since' column host_clean_v1[host_clean_v1['host_since'].isnull()] # Drop 2 missing values by 'host_since' host_clean_v2 = host_clean_v1[host_clean_v1['host_since'].notnull()] ###Output _____no_output_____ ###Markdown Change to relevant data type`host_since` feature needs conversion to date time object. return host_clean_v3 dataframe ###Code # Convert into date time object\ host_clean_v3 = break_date(host_clean_v2, 'host_since') print(host_clean_v3.shape) host = host_clean_v3 ###Output _____no_output_____ ###Markdown Create wrangling function for listings dataframeChecked if seattle and boston dataframe share all features in common : there are three features that Seattle listings dataset do not have, which however are not relevant for this analysis. ###Code #listings_bos.columns.isin(listings_sea.columns) listings_boston.columns[12:15] ###Output _____no_output_____ ###Markdown ###Code def wrangle_airbnb_host_data(df) : ''' Wrangle 'listings' dataframe to extract features that are relevant for the analysis, drop duplicates and null values, and convert to the correct datatype INPUT : Airbnb listings dataframe (to be validated in this function) OUTPUT : cleaned dataframe ready for analysis ''' # Check if input dataframe is 'listings' dataset # Three three key columns must be inside the dataframe key_cols= ['host_id', 'host_since', 'calculated_host_listings_count'] if df.columns.isin(key_cols).sum() !=3 : print('Check if input dataframe is correct or data format has been changed') return print(f'Original dataframe has {df.shape[0]} x {df.shape[1]} dataset') df_copy = df.copy() # Drop uncessary columns host_related = df.loc[:, df.columns.str.contains('host')] extra_info = df[['property_type', 'room_type', 'price']] host_df = host_related.join(extra_info) drop_cols = ['host_url', 'host_thumbnail_url', 'host_picture_url', 'host_verifications', 'host_has_profile_pic', 'host_listings_count', 'host_total_listings_count'] host_df = host_df.drop(columns = drop_cols) # Drop duplicates host_df = host_df.drop_duplicates(subset=['host_id'], keep='last') # Drop null values for 'host_since' columns # 'host_since' is a key feature for new listings analysis # therefore dropping misisng values that are not providing any information host_df = host_df[host_df['host_since'].notnull()] # Convert into date time object host_df = break_date(host_df, 'host_since') print(f'After wrangling : returning {host_df.shape[0]} x {host_df.shape[1]} dataset') return host_df # To load cleaned dataframe ready for analysis listings_sea_cleaned = wrangle_airbnb_host_data(listings_seattle) listings_bos_cleaned = wrangle_airbnb_host_data(listings_boston) # Store the cleaned dataframe listings_sea_cleaned.to_csv('data/listings_seattle_cleaned.csv', index=False) listings_bos_cleaned.to_csv('data/listings_boston_cleaned.csv', index=False) ###Output _____no_output_____ ###Markdown --- SECTION 4 | Evaluation of the resultsIn this section, the following work will be performed- Data preparation- Analysis- Visualization- Brief explanation for visualization `QUESTION1` How well Airbnb business performed in 2016?Working with **`calendar`** dataframe for both Seattle and Boston airbnb dataset. I will work on Seattle data first and subsequently apply a function for wrangling and visualizing Boston data. ###Code # Load cleaned dataframes calendar_sea = pd.read_csv('data/calendar_seattle_cleaned.csv') calendar_bos = pd.read_csv('data/calendar_boston_cleaned.csv') ###Output _____no_output_____ ###Markdown Occupancy rate & price through the yearExplore Seattle calendar data first ###Code # Occpancy rate and price per day occ_price_seattle = calendar_sea.groupby('date').mean().drop(columns='listing_id') occ_price_seattle.columns = ['occ_rate', 'avg_rate'] occ_price_seattle.describe() ticks = np.arange(0, len(occ_price_seattle.index)+1, 30) labels = [occ_price_seattle.index[idx] for idx in ticks] date = occ_price_seattle.index rate_dict = [{'data': occ_price_seattle.occ_rate, 'desc': 'Occupancy Rate'}, {'data': occ_price_seattle.avg_rate, 'desc': 'Average Room Rate'}] fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(12,4)) for i in [0, 1] : axes[i].plot(date, rate_dict[i]['data']) axes[i].set_title('Seattle Airbnb ' + rate_dict[i]['desc'] + ' in 2016') axes[i].set_xlabel('Date') axes[i].set_ylabel(rate_dict[i]['desc']) axes[i].set_xticks(labels) axes[i].axhline(rate_dict[i]['data'].mean(), ls='--', color='orange', lw=1.5) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown In Seattle, the occupancy rate starts to increase from the beginning of 2016 until its first peak around early-April. It suddenly dips right after the April peak and stays idle until its second dip on early July. After that the trend starts to rise until the end of the year. When it comes to average room rate, it starts to increase from the beginning of the year until its peak near July. The room rate stays in the highest level for nearly 2 months until it slowly decreases and remains on the average level. Next, I will break the dates down into year, month and day for more detailed analysis. Monthly trend for occupancy rate and average room rate in 2016Airbnb Seattle The below code is to break the dates into year, month and day ###Code # Copy a dataframe monthly_analysis_seattle = calendar_sea.copy() # Convert into datetime object : date date_conversion = lambda x : datetime.strptime(x, "%Y-%m-%d") monthly_analysis_seattle.date = monthly_analysis_seattle .date.apply(date_conversion) # Insert year, month, day series into calendar dataframe monthly_analysis_seattle.insert(2, 'year', monthly_analysis_seattle.date.apply(lambda x : x.year)) monthly_analysis_seattle.insert(3, 'month', monthly_analysis_seattle.date.apply(lambda x : x.month)) monthly_analysis_seattle.insert(4, 'day', monthly_analysis_seattle.date.apply(lambda x : x.day)) ###Output _____no_output_____ ###Markdown The above codes take too much time, which will be improved for any later use with `break_date` function ###Code # Create a table that aggreates monthly average monthly_analysis_seattle = monthly_analysis_seattle.groupby('month').mean()[['available', 'price']] monthly_analysis_seattle.head() # Mapping integers to month name monthly_analysis_seattle.index = map_calendar_month(monthly_analysis_seattle.index) # Change column names monthly_analysis_seattle.columns = ['occ_rate', 'room_rate'] # Confirm the change monthly_analysis_seattle.head() date = monthly_analysis_seattle.index rate_dict = [{'data': monthly_analysis_seattle.occ_rate, 'desc': 'occupancy rate (%)'}, {'data': monthly_analysis_seattle.room_rate, 'desc': 'average room rate ($)'}] fig, axes = plt.subplots(nrows=2, ncols=1, sharex=True, figsize=(10, 5)) for i in [0, 1] : axes[i].plot(date, rate_dict[i]['data'], marker='o', lw=3) axes[i].set_title('Seattle Airbnb ' + rate_dict[i]['desc'] + ' in 2016') axes[i].set_ylabel(rate_dict[i]['desc']) axes[i].axhline(rate_dict[i]['data'].mean(), ls='--', color='orange', lw=1) axes[1].set_xlabel('month') fig.tight_layout() axes[0].set_yticks(np.arange(0.4, 0.8 + 0.2, 0.1)) axes[0].set_yticklabels([str(occ) for occ in range(40, 80 + 20, 10)]) axes[1].set_yticks(np.arange(100, 160 + 20, 20)) axes[1].set_yticklabels([str(price) for price in range(100, 160 + 20, 20)]) plt.show() ###Output _____no_output_____ ###Markdown The occupancy rate starts with the lowest level below 60% in the beginning of the year, and follows the increasing trend until March. As seen previously, there was a sudden dip April, which took effect in the occupancy rate in that month. The occupancy rate in July stays below the year's average level and it continues on in August. However, it gets recovered until its peak in December. Average room rates peak up in the summer period from Jun to August, whilst the higher price level may explain the lower occupancy level during the same period. However, is it good or bad? It is hard to see the performance by seperating the occupany rate and average room rate, and there is a metric that the hotel industry uses to measure the business performance, called RevPar. How about RevPar ? RevPAR, or revenue per available room, is a performance metric in the hotel industry that is calculated by dividing a hotel's total guestroom revenue by the room count and the number of days in the period being measured. https://en.wikipedia.org/wiki/RevPARIt can alternatively be calculated as $occupancy rate ( room occupied / available) x average room rate$. ###Code monthly_analysis_seattle['revpar'] = ( monthly_analysis_seattle.occ_rate * monthly_analysis_seattle.room_rate ) date = monthly_analysis_seattle.index revpar = monthly_analysis_seattle['revpar'] layout_obj = { 'title': 'RevPar Performance of AirBnb in Seattle in 2016', 'xlabel': 'month', 'ylabel': 'revenue per available room ($)' } plot_bar_chart(date, revpar, layout_obj, rotation=False) plt.savefig('assets/revparSeattle.png', format='png') plt.show() monthly_analysis_seattle['revpar'].sort_values(ascending=False) ###Output _____no_output_____ ###Markdown The RevPar is \\$99.45 in June, which is the second highest level through the year. It looks that the decrease in occupancy rate in August affected the RevPar but the performance in August is not too bad with \\$97.18. RevPar performance is quite steady from Q3 onwards, but a further study seems necessary to figure out why it started low in the beginning of the year. Supposedly there was a series of concerns around Airbnb that may have affected the confidence from consumer and hosts, as following:- Concerns over the company's affecting the local housing market affordability and some political consideration were expected whether to regulate the company's activity: [source1](https://www.seattletimes.com/business/airbnb-says-its-rentals-arent-affecting-housing-affordability/) [source2](https://www.geekwire.com/2016/seattle-regulates-airbnb-company-releases-study-showing-178m-annual-impact-local-economy/)- Airbnb will start collecting taxes in Washington state: [source](https://www.geekwire.com/2015/airbnb-will-start-collecting-taxes-in-washington-state-on-behalf-of-hosts) --- Extend the analysis to Boston dataUse functions (DRY principle) to perform the above CRISP-DM process Data explorationThe date period is not consistent across Seattle and Boston dataset! ###Code calendar_bos.date.sort_values() # Boston calendar data starts from 2016-09-06 calendar_sea.date.sort_values() ###Output _____no_output_____ ###Markdown There is an issue in date consistency between Seattle and Boston calendar data. Boston calendar data has a date range from 2016-09-06 to 2017-09-05, whereas Seattle data is for the period between 2016-01-04 and 2017-01-02.Therefore it is not a good idea to compare the two cities' performances by monthly. --- Comparison between Seattle and BostonThe transformed data shows daily average.Terminology used: - Occupancy rate : rooms rented out / total available rooms on a given day- Average room rate : average price of available rooms on a given day- Revpar : Occupancy rate x Average room rate, which is an aggregated meature to evaluate rental performance Create a new data table for comparative analysis ###Code def get_analysis_table(df) : ''' Create a new table customized for Airbnb performance analysis INPUT : calendar dataframe OUTPUT : a new dataframe with data (daily) as index and three key performance metrics as features - occupancy rate, average room rate and revpar ''' table = df.groupby('date').mean().drop(columns='listing_id') table.columns = ['occ_rate', 'avg_room_rate'] # daily table['revpar'] = table['occ_rate'] * table['avg_room_rate'] return table analysis_seattle = get_analysis_table(calendar_sea.copy()) analysis_boston = get_analysis_table(calendar_bos.copy()) ###Output _____no_output_____ ###Markdown Occupancy rate ###Code title = 'Airbnb occupany rate comparison (year 2016)\nSeattle and Boston' xlabel = 'occupancy rate' ylabel = 'count' fig, ax = plt.subplots(figsize=(12,4)) ax = sns.histplot(analysis_boston['occ_rate'], label='Boston') sns.histplot(analysis_seattle['occ_rate'], ax=ax, color='orange', label='Seattle'); ax.set(xlabel=xlabel, ylabel=ylabel, title=title); ax.set_xticks(np.arange(0, 1, 0.1)) ax.set_xticklabels(f'{i}%' for i in np.arange(0, 100, 10)) plt.legend() plt.savefig(fname='assets/occ.png', format='png') plt.show() ###Output _____no_output_____ ###Markdown Room rate ###Code title = 'Airbnb average room rate comparison (year 2016)\nSeattle and Boston' xlabel = 'room rate ($)' ylabel = 'count' fig, ax = plt.subplots(figsize=(12,4)) ax = sns.histplot(analysis_boston['avg_room_rate'], label='Boston') sns.histplot(analysis_seattle['avg_room_rate'], ax=ax, color='orange', label='Seattle'); ax.set(xlabel=xlabel, ylabel=ylabel, title=title); plt.legend() plt.savefig('assets/adr.png', format='png') plt.show() ###Output _____no_output_____ ###Markdown RevPar ###Code title = 'Airbnb revpar comparison (year 2016)\nSeattle and Boston' xlabel = 'revpar ($)' ylabel = 'count' fig, ax = plt.subplots(figsize=(10,4)) ax = sns.histplot(analysis_boston['revpar'], label='Boston') sns.histplot(analysis_seattle['revpar'], ax=ax, color='orange', label='Seattle'); ax.set(xlabel=xlabel, ylabel=ylabel, title=title); plt.legend() plt.savefig('assets/revpar.png', format='png') plt.show() print(f'SEATTLE:\n{analysis_seattle.describe()}') print() print(f'BOSTON:\n{analysis_boston.describe()}') ###Output SEATTLE: occ_rate avg_room_rate revpar count 365.000000 365.000000 365.000000 mean 0.670610 137.901783 92.507204 std 0.047899 9.860142 9.165813 min 0.454426 117.685413 55.479047 25% 0.647197 132.446443 90.289419 50% 0.674961 136.731206 94.582504 75% 0.702462 146.930502 97.844421 max 0.765322 157.480000 109.101886 BOSTON: occ_rate avg_room_rate revpar count 365.000000 365.000000 365.000000 mean 0.491284 201.165200 97.489904 std 0.076196 20.989130 10.679226 min 0.158951 177.023002 38.314278 25% 0.484663 186.764936 92.868935 50% 0.493865 196.100469 99.741495 75% 0.542666 205.207474 103.198550 max 0.615449 286.921977 119.380926 ###Markdown Overall, revpar performance is better in Boston than in Seattle. Although occupancy rate in Seattle is more stable (by standard deviation) and higher (67%, median) on average, the difference of average room rate between the two cities is larger. --- `QUESTION2` How much growth potential did Airbnb have?Earlier we saw the first quarater revpar performance in Seattle is low, due to both occupancy rate and revpar below the average level. To gain a better insight, I would like to explore supply side during the same period.Discovering the supply side, particularly in the following areas:- \ of new hostings : `host_since`, `calculated_host_listings_count`- number of super_host : `host_is_superhost`- hosting type: [`property_type`, `room_type`, `price`, ...] ###Code # Load cleaned dataframes host_seattle = pd.read_csv('data/listings_seattle_cleaned.csv') host_boston = pd.read_csv('data/listings_boston_cleaned.csv') ###Output _____no_output_____ ###Markdown Yearly growth of new listingsAggreated to the number of unique host id by year ###Code new_hosting_seattle = host_seattle.groupby('year').count()['host_id'] new_hosting_boston = host_boston.groupby('year').count()['host_id'] analysis_new_hostings = pd.concat([new_hosting_seattle.rename('new_hosting_seattle'), new_hosting_boston.rename('new_hosting_boston')], axis=1) analysis_new_hostings.plot.bar(figsize=(10,5), width=0.8, color=['#f39c12', '#1f77b4']) plt.title('New Airbnb Hostings in 2016\nSeattle and Boston area') plt.xlabel('') plt.ylabel('count') plt.xticks(rotation=0) plt.legend(labels=['Seattle', 'Boston'], loc='upper center', ncol=6) plt.savefig('assets/newListings.png', format='png') plt.show() ###Output _____no_output_____ ###Markdown The joining of new hosts has been growing rapidly (can say exponentially) since the establishment of Airbnb (2008) in both Seattle and Boston markets. The number of new hostings is larger in Seattle than Boston - may possibly be due to lots of reasons i.e. more favourable regulation, demographic, market acitivities, etc. However, the new hostings became significantly idle in 2016 for both Seattle and Boston markets. This may be resulted from error in data collection but assuming data is super reliable, new regulatatory move and tax policy may have made potential hosts to be more cautious in renting out their properties in Seattle as considered earlier during revpar analysis (resources can be found as below).- Concerns over the company's affecting the local housing market affordability and some political consideration were expected whether to regulate the company's activity: [source1](https://www.seattletimes.com/business/airbnb-says-its-rentals-arent-affecting-housing-affordability/) [source2](https://www.geekwire.com/2016/seattle-regulates-airbnb-company-releases-study-showing-178m-annual-impact-local-economy/)- Airbnb will start collecting taxes in Washington state: [source](https://www.geekwire.com/2015/airbnb-will-start-collecting-taxes-in-washington-state-on-behalf-of-hosts) EXTRA analysis of general hosting statistics To gain insights into hostings : `superhost`, `property_type`, `room_type`, `price` How much percentage superhost accounts for? ###Code is_superhost_sea = host_seattle.host_is_superhost.value_counts() is_superhost_bos = host_boston.host_is_superhost.value_counts() fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(12,4)) ax1.pie(is_superhost_sea, labels=['Not superhost', 'Superhost'], autopct='%1.1f%%', explode=(0, 0.1), colors=['#d3d3d3', '#f39c12']) ax2.pie(is_superhost_bos, labels=['Not superhost', 'Superhost'], autopct='%1.1f%%', explode=(0, 0.1), colors=['#d3d3d3', '#1f77b4']) ax1.set_title(f'Proportion of Superhost in Seattle') ax2.set_title(f'Proportion of Superhost in Boston') plt.savefig('assets/superhost.png', format='png') plt.show() ###Output _____no_output_____ ###Markdown **Terminology:**According to Aibnb, "Superhosts are experienced hosts who provide a shining example for other hosts, and extraordinary experiences for their guests." [Reference](https://www.airbnb.com/help/article/828/what-is-a-superhost)To retain Superhost status, hosts should satisfies the performance standards and other qualifications for the most recent 12 months from the review date. This suggests that superhosts represent dedicated property suppliers in a fairly consistent manner. Source at the link [here]((https://www.airbnb.com/superhost/terms) **Findings:**Nearly 20% of the total hostings are made by Superhost in Seattle as opposed to 12% in Boston. It suggests that overall rental room supply is more consistent and stable in Seattle with more dedicated property owners. On the other hand, it may also be a barrier to entry for potential hosts facing stornger competitions already existing.Whether this affected the sudden decrease in new listings in 2016 is not so obvious, and leaves a room for a further analysis, which however will not be covered in this notebook. Property type ###Code property_type_seattle = host_seattle.property_type.value_counts() property_type_boston = host_boston.property_type.value_counts() fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(12,4)) ax1.bar(property_type_seattle.index, property_type_seattle.values, color='orange') ax2.bar(property_type_boston.index, property_type_boston.values) ax1.set_title(f'Propery type in Seattle') ax2.set_title(f'Propery type in Boston') ax1.set_ylabel('count') # Two different ways to set xticks in subplot ax1.set_xticks(property_type_seattle.index) ax1.set_xticklabels(property_type_seattle.index, rotation=90) for tick in ax2.get_xticklabels() : tick.set_rotation(90) ###Output _____no_output_____ ###Markdown In 2016, House (46%) and Apartment (44%) were the most common types of properties in Seattle, whereas large proportion of hosts (nearly 72% of total) offered Apartment in Boston. Room type ###Code room_type_seattle = host_seattle.room_type.value_counts() room_type_boston = host_boston.room_type.value_counts() fig, (ax1, ax2) = plt.subplots(ncols=2, sharey=True, figsize=(10,4)) ax1.pie(room_type_seattle.values, labels=room_type_seattle.index, autopct='%1.1f%%') ax2.pie(room_type_boston.values, labels=room_type_boston.index, autopct='%1.1f%%') ax1.set_title(f'Room type in Seattle') ax2.set_title(f'Room type in Boston') plt.show() ###Output _____no_output_____ ###Markdown Hosts tended to rent out entire home/apartment as opposed to than shared / private room only in both Seattle and Boston. Room Price ###Code # Convert price into numercial variable host_seattle.price = convert_price_float(host_seattle.price) host_boston.price = convert_price_float(host_boston.price) plt.figure(figsize=(10,6)) plt.subplot(2,1,1) sns.boxplot(x=host_seattle.price, color='#f39c12') plt.title('Box Plot Statistics for Hosting Price\n(Unit: US Dollar)\n\nSeattle') plt.xlabel('') plt.xlim((0,400)) plt.subplot(2,1,2) sns.boxplot(x=host_boston.price) plt.title('Boston') plt.xlabel('') plt.xlim((0,400)) plt.tight_layout() plt.savefig('assets/priceStats.png', format='png') plt.show() ###Output _____no_output_____ ###Markdown Room price range is wider in Boston than Seattle. The median room price is also higher in Boston. --- `QUESTION3` Which neighborhood has more expensive listings? Leaving features that are only relevant to the analysis ###Code cols_neighbor = [ 'id', 'neighborhood_overview', 'street', 'neighbourhood', 'neighbourhood_cleansed', 'neighbourhood_group_cleansed', 'city', 'state', 'zipcode', 'market', 'smart_location', 'country_code', 'country', 'latitude', 'longitude', 'is_location_exact', 'property_type', 'room_type', 'accommodates', 'bathrooms', 'bedrooms', 'beds', 'bed_type', 'amenities', 'square_feet', 'price', 'availability_30', 'availability_60', 'availability_90', 'availability_365' ] neighbor_seattle_temp = listings_seattle[cols_neighbor].copy() neighbor_boston_temp = listings_boston[cols_neighbor].copy() neighbor_seattle_temp.columns ###Output _____no_output_____ ###Markdown Additional data cleaning ###Code def wrangle_airbnb_neighbor_data(df) : ''' Remove duplicates and convert to datatype relevant for the analysis INPUT : Airbnb 'listings' dataframe trimmed for neighborhood analysis OUTPUT : A new, cleaned dataframe ready for the analysis ''' print(f'Original dataframe: {df.shape}') df_clean = df.copy() isDuplicated = df_clean.duplicated(subset=['id'], keep=False).sum() if( isDuplicated != 0 ) : df_clean = df_clean.drop_duplicates(subset=['id'], keep='last') df_clean.price = convert_price_float(df_clean.price) print(f'Cleaned dataframe: {df.shape}') return df_clean neighbor_seattle = wrangle_airbnb_neighbor_data(neighbor_seattle_temp) neighbor_boston = wrangle_airbnb_neighbor_data(neighbor_boston_temp) ###Output Original dataframe: (3818, 30) Cleaned dataframe: (3818, 30) Original dataframe: (3585, 30) Cleaned dataframe: (3585, 30) ###Markdown GeoPandas mapping`geodata` folder contains shape files for Seattle and BostonReference: [GeoPandas 101: Plot any data with a latitude and longitude on a map](https://towardsdatascience.com/geopandas-101-plot-any-data-with-a-latitude-and-longitude-on-a-map-98e01944b972) Data source: - [City of Seattle](https://data-seattlecitygis.opendata.arcgis.com/datasets/city-clerk-neighborhoods)- [Boston GIS](https://bostonopendata-boston.opendata.arcgis.com/datasets/3525b0ee6e6b427f9aab5d0a1d0a1a28_0) ###Code # Load shape files seattle_map = gpd.read_file('geodata/seattle/City_Clerk_Neighborhoods.shp') boston_map = gpd.read_file('geodata/boston/Boston_Neighborhoods.shp') # Create a list of geometry points with longitude, latitude data geometry_seattle = create_points_geometry(neighbor_seattle['longitude'], neighbor_seattle['latitude']) geometry_boston = create_points_geometry(neighbor_boston['longitude'], neighbor_boston['latitude']) # Create GeoDataFrame and set coordinates reference system (crs) gdf_seattle = gpd.GeoDataFrame(neighbor_seattle, geometry = geometry_seattle) gdf_boston = gpd.GeoDataFrame(neighbor_boston, geometry = geometry_boston) # Additional feature 'geometry' added onto the original dataframes gdf_seattle.geometry[:2], gdf_boston.geometry[:2] ###Output _____no_output_____ ###Markdown Visualization and analysisCreating 4 price categories for visualization based on 5 number statistics (quartiles) Terminology :- $\text{\$\$\$\$}$ : Top 25%- $\text{\$\$\$}$ : Top 25% - 50%- $\text{\$\$}$ : Bottom 25% - 50%- $\text{\$}$ : Bottom 25% ###Code seattle_price_bins = gdf_seattle.price.describe()[3:] seattle_price_group = pd.cut(x=gdf_seattle.price, bins=seattle_price_bins.values, labels=['\$', '\$\$', '\$\$\$', '\$\$\$\$']) gdf_seattle['price_group'] = seattle_price_group # To create texts index for top priced neighorhoods neighbor_sea = gdf_seattle.groupby('neighbourhood_cleansed').mean() lat_lng_sea = neighbor_sea[['latitude', 'longitude', 'price']].sort_values(by='price', ascending=False) price_summary_sea = lat_lng_sea.price.describe()[3:] price_summary_sea seattle_map.plot(alpha=0.4, color='grey', figsize=(10, 10)) sns.scatterplot(data=gdf_seattle, x='longitude', y='latitude', hue='price_group', palette='Oranges') plt.title('Price map in Seattle') plt.xticks(rotation=45) plt.savefig('assets/seattlePriceMap.png', format='png') plt.show() # Simplified plot seattle_map.plot(alpha=0.4, color='grey', figsize=(9, 9)) plt.title('Price map by neighborhood') for i, values in enumerate(lat_lng_sea.itertuples()) : area, lat, lng, price = values if price > price_summary_sea[3]: plt.text(x=lng, y=lat+0.01, s='\$\$\$\$', backgroundcolor='#E74C3C', color='#f3f3f3') elif price > price_summary_sea[2] : plt.text(x=lng, y=lat+0.01, s='\$\$\$', backgroundcolor='#F39C12', color='#f3f3f3') elif price < price_summary_sea[1] : plt.text(x=lng, y=lat+0.01, s='\$\$', backgroundcolor='#F7DC6F') else: plt.text(x=lng, y=lat+0.01, s='\$', backgroundcolor='#FEF9E7') plt.xticks(rotation=45) plt.show() ###Output _____no_output_____ ###Markdown Rental price is generally higher around the central bay area, and gets cheaper as properities get away from the centeral Seattle. ###Code round(neighbor_sea['price'].nlargest(10), 2) ###Output _____no_output_____ ###Markdown Plotting Boston price distribution ###Code boston_price_bins = gdf_boston.price.describe()[3:] boston_price_group = pd.cut(x=gdf_boston.price, bins=boston_price_bins.values, labels=['\$', '\$\$', '\$\$\$', '\$\$\$\$']) gdf_boston['price_group'] = boston_price_group # To create texts index for top priced neighorhoods neighbor_bos = gdf_boston.groupby('neighbourhood_cleansed').mean() lat_lng_bos = neighbor_bos[['latitude', 'longitude', 'price']].sort_values(by='price', ascending=False) price_summary_bos = lat_lng_bos.price.describe()[3:] boston_map.plot(alpha=0.4, color='grey', figsize=(10,10)) sns.scatterplot(data=gdf_boston, x='longitude', y='latitude', hue='price_group', palette='Blues') plt.title('Price map in Boston') plt.xticks(rotation=45) # plt.savefig('assets/bostonPriceMap.png', format='png') plt.show() # Simplified plot boston_map.plot(alpha=0.4, color='grey', figsize=(7, 7)) plt.title('Price map by neighborhood') for i, values in enumerate(lat_lng_bos.itertuples()) : area, lat, lng, price = values if price > price_summary_bos[3]: plt.text(x=lng, y=lat+0.01, s='\$\$\$\$', backgroundcolor='#E74C3C', color='#f3f3f3') elif price > price_summary_bos[2] : plt.text(x=lng, y=lat+0.01, s='\$\$\$', backgroundcolor='#F39C12', color='#f3f3f3') elif price < price_summary_bos[1] : plt.text(x=lng, y=lat+0.01, s='\$\$', backgroundcolor='#F7DC6F') else: plt.text(x=lng, y=lat+0.01, s='\$', backgroundcolor='#FEF9E7') plt.xticks(rotation=45) plt.show() ###Output _____no_output_____ ###Markdown Just like Seattle, the listings in the downtown area are generally the most expensive in Boston, and the price gets lower as the location of properties is away from the center. ###Code round(neighbor_bos['price'].nlargest(10), 2) ###Output _____no_output_____ ###Markdown Evaluation of Search AlgorithmsThis notebook analyzes data generated from the five search algorithms used in the On The Town application. They are:* Depth-First Search* Breadth-First Search* Greedy Search* Uniform Cost Search* A Star SearchThe data were generated from the file `evaluation.ipynb`. ###Code import pandas as pd import plotly import plotly.graph_objs as go from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot init_notebook_mode(connected=True) plotly.tools.set_credentials_file(username='hangulu', api_key='xzmidZGzwl63Twl6sytL') # Read the results from the CSV file data = pd.read_csv("./data/simulation_results.csv") data.head() ###Output _____no_output_____ ###Markdown 900 tests were run. Each test was limited to 60 seconds of evaluation time, and the test itself comprised of running all 5 algorithms, sequentially, and recording:* whether a solution was reached* the time each took to reach a solution* the average sadness garnered by that solution. The following checks the percentage of times each algorithm returned no solution. ###Code # DFS dfs_no_soln = (data.dfs_sad.isna().sum()) / 900. print "DFS failed " + str((dfs_no_soln * 100)) + "% of the time." # BFS bfs_no_soln = (data.bfs_sad.isna().sum()) / 900. print "BFS failed " + str((bfs_no_soln * 100)) + "% of the time." # Greedy Search greedy_no_soln = (data.greedy_sad.isna().sum()) / 900. print "Greedy Search failed " + str((greedy_no_soln * 100)) + "% of the time." # UCS ucs_no_soln = (data.ucs_sad.isna().sum()) / 900. print "UCS failed " + str((ucs_no_soln * 100)) + "% of the time." # A* Search astar_no_soln = (data.astar_sad.isna().sum()) / 900. print "A* Search failed " + str((astar_no_soln * 100)) + "% of the time." ###Output DFS failed 32.0% of the time. BFS failed 88.88888888888889% of the time. Greedy Search failed 14.888888888888888% of the time. UCS failed 39.666666666666664% of the time. A* Search failed 15.88888888888889% of the time. ###Markdown The following are the results:* DFS failed 32.000% of the time.* BFS failed 88.889% of the time.* Greedy Search failed 14.889% of the time.* UCS failed 39.667% of the time.* A* Search failed 15.889% of the time.Next, the average time elapsed at each simulation is analyzed. This analysis ignores the number of times the algorithms took more than 1 minute to complete, and thus calculates the average length of the completed solution space. ###Code # DFS avg_dfs_time = (data[data.dfs_time < 60].dfs_time.sum()) / (data[data.dfs_time < 60].dfs_time.count()) print "When completed, DFS took " + str(avg_dfs_time) + " seconds on average." # BFS avg_bfs_time = (data[data.bfs_time < 60].bfs_time.sum()) / (data[data.bfs_time < 60].bfs_time.count()) print "When completed, BFS took " + str(avg_bfs_time) + " seconds on average." # Greedy avg_greedy_time = (data[data.greedy_time < 60].greedy_time.sum()) / (data[data.greedy_time < 60].greedy_time.count()) print "When completed, Greedy Search took " + str(avg_greedy_time) + " seconds on average." # UCS avg_ucs_time = (data[data.ucs_time < 60].ucs_time.sum()) / (data[data.ucs_time < 60].ucs_time.count()) print "When completed, UCS took " + str(avg_ucs_time) + " seconds on average." # A* Search avg_astar_time = (data[data.astar_time < 60].astar_time.sum()) / (data[data.astar_time < 60].astar_time.count()) print "When completed, A* Search took " + str(avg_astar_time) + " seconds on average." ###Output When completed, DFS took 0.28874309963650174 seconds on average. When completed, BFS took 10.948256943560294 seconds on average. When completed, Greedy Search took 1.047404620783899 seconds on average. When completed, UCS took 15.10807837055115 seconds on average. When completed, A* Search took 3.098107170896465 seconds on average. ###Markdown The following are the results:* When completed, DFS took 0.289 seconds on average.* When completed, BFS took 10.948 seconds on average.* When completed, Greedy Search took 1.047 seconds on average.* When completed, UCS took 15.108 seconds on average.* When completed, A* Search took 3.0981 seconds on average.Next, the average sadness generated at each simulation is analyzed. Again, this analysis ignores the times the algorithms failed (took more than 1 minute or did not find a solution). ###Code # DFS avg_dfs_sad = data.dfs_sad.mean() print "When completed, DFS produced an average sadness score of " + str(avg_dfs_sad) + "." # BFS avg_bfs_sad = data.bfs_sad.mean() print "When completed, BFS produced an average sadness score of " + str(avg_bfs_sad) + "." # Greedy avg_greedy_sad = data.greedy_sad.mean() print "When completed, Greedy Search produced an average sadness score of " + str(avg_greedy_sad) + "." # UCS avg_ucs_sad = data.ucs_sad.mean() print "When completed, UCS produced an average sadness score of " + str(avg_ucs_sad) + "." # A* Search avg_astar_sad = data.astar_sad.mean() print "When completed, A* Search produced an average sadness score of " + str(avg_astar_sad) + "." ###Output When completed, DFS produced an average sadness score of 28.1894960099. When completed, BFS produced an average sadness score of 26.9977561181. When completed, Greedy Search produced an average sadness score of 22.5920907814. When completed, UCS produced an average sadness score of 16.3321656619. When completed, A* Search produced an average sadness score of 19.0470854323. ###Markdown The following are the results:* When completed, DFS produced an average sadness score of 28.189.* When completed, BFS produced an average sadness score of 26.998.* When completed, Greedy Search produced an average sadness score of 22.592.* When completed, UCS produced an average sadness score of 16.332.* When completed, A* Search produced an average sadness score of 19.047.Next, the algorithms are compared graphically. The following graphs are constructed for comparison:* bar charts comparing the number of times each algorithm fails* histograms showing the distribution of time each algorithm takes* bar charts comparing the average time each algorithm takes* histograms showing the distribution of sadness scores* bar charts comparing the average sadness scores for each algorithm ###Code # Bar chart for tests failed trace = { 'x': ['DFS', 'BFS', 'Greedy', 'UCS', 'A*'], 'y': [32.0, 88.88888888888889, 14.888888888888888, 39.666666666666664, 15.88888888888889], 'type': 'bar', 'marker': dict(color='rgb(255, 121, 121)') } chart = [trace] layout = { 'xaxis': {'title': 'Search Algorithm'}, 'yaxis': {'title': 'Percentage Of Tests Failed (%)'}, 'title': 'Percentage Failure Of Each Search Algorithm' }; plotly.plotly.iplot({'data': chart, 'layout': layout}, filename='fail_bar') # Histogram for time dfs_time = data.dfs_time bfs_time = data.bfs_time greedy_time = data.greedy_time ucs_time = data.ucs_time astar_time = data.astar_time trace0 = go.Histogram(x=dfs_time, name='DFS') trace1 = go.Histogram(x=bfs_time, name='BFS') trace2 = go.Histogram(x=greedy_time, name='Greedy') trace3 = go.Histogram(x=ucs_time, name='UCS') trace4 = go.Histogram(x=astar_time, name='A*') fig = plotly.tools.make_subplots(rows=3, cols=2) fig.append_trace(trace0, 1, 1) fig.append_trace(trace1, 1, 2) fig.append_trace(trace2, 2, 1) fig.append_trace(trace3, 2, 2) fig.append_trace(trace4, 3, 1) fig['layout']['yaxis1'].update(title='Frequency', showgrid=False) fig['layout']['yaxis2'].update(title='Frequency', showgrid=False) fig['layout']['yaxis3'].update(title='Frequency', showgrid=False) fig['layout']['yaxis4'].update(title='Frequency', showgrid=False) fig['layout']['yaxis5'].update(title='Frequency', showgrid=False) fig['layout']['xaxis1'].update(title='DFS Evaluation Time (seconds)', showgrid=False) fig['layout']['xaxis2'].update(title='BFS Evaluation Time (seconds)', showgrid=False) fig['layout']['xaxis3'].update(title='Greedy Evaluation Time (seconds)', showgrid=False) fig['layout']['xaxis4'].update(title='UCS Evaluation Time (seconds)', showgrid=False) fig['layout']['xaxis5'].update(title='A* Evaluation Time (seconds)', showgrid=False) fig['layout'].update(title='Distribution Of Evaluation Time For Each Search Algorithm') plotly.plotly.iplot(fig, filename='time_hist') # Bar chart for time trace = { 'x': ['DFS', 'BFS', 'Greedy', 'UCS', 'A*'], 'y': [0.28874309963650174, 10.948256943560294, 1.047404620783899, 15.10807837055115, 3.098107170896465], 'type': 'bar', 'marker': dict(color='rgb(246, 229, 141)') } chart = [trace] layout = { 'xaxis': {'title': 'Search Algorithm'}, 'yaxis': {'title': 'Average Evaluation Time (seconds)'}, 'title': 'Average Evaluation Time Of Each Search Algorithm (When Complete)' }; plotly.plotly.iplot({'data': chart, 'layout': layout}, filename='time_bar') # Histogram for sadness dfs_sad = data.dfs_sad bfs_sad = data.bfs_sad greedy_sad = data.greedy_sad ucs_sad = data.ucs_sad astar_sad = data.astar_sad trace0 = go.Histogram(x=dfs_sad, name='DFS') trace1 = go.Histogram(x=bfs_sad, name='BFS') trace2 = go.Histogram(x=greedy_sad, name='Greedy') trace3 = go.Histogram(x=ucs_sad, name='UCS') trace4 = go.Histogram(x=astar_sad, name='A*') fig = plotly.tools.make_subplots(rows=3, cols=2) fig.append_trace(trace0, 1, 1) fig.append_trace(trace1, 1, 2) fig.append_trace(trace2, 2, 1) fig.append_trace(trace3, 2, 2) fig.append_trace(trace4, 3, 1) fig['layout']['yaxis1'].update(title='Frequency', showgrid=False) fig['layout']['yaxis2'].update(title='Frequency', showgrid=False) fig['layout']['yaxis3'].update(title='Frequency', showgrid=False) fig['layout']['yaxis4'].update(title='Frequency', showgrid=False) fig['layout']['yaxis5'].update(title='Frequency', showgrid=False) fig['layout']['xaxis1'].update(title='DFS Sadness', showgrid=False) fig['layout']['xaxis2'].update(title='BFS Sadness', showgrid=False) fig['layout']['xaxis3'].update(title='Greedy Sadness', showgrid=False) fig['layout']['xaxis4'].update(title='UCS Sadness', showgrid=False) fig['layout']['xaxis5'].update(title='A* Sadness', showgrid=False) fig['layout'].update(title='Distribution Of Sadness For Each Search Algorithm') plotly.plotly.iplot(fig, filename='sad_hist') # Bar chart for sadness trace = { 'x': ['DFS', 'BFS', 'Greedy', 'UCS', 'A*'], 'y': [28.1894960099, 26.9977561181, 22.5920907814, 16.3321656619, 19.0470854323], 'type': 'bar', 'marker': dict(color='rgb(186, 220, 88)') } chart = [trace] layout = { 'xaxis': {'title': 'Search Algorithm'}, 'yaxis': {'title': 'Average Sadness'}, 'title': 'Average Sadness Of Each Search Algorithm (When Complete)' }; plotly.plotly.iplot({'data': chart, 'layout': layout}, filename='sad_bar') ###Output _____no_output_____ ###Markdown Generating possible answersI generated all possible answers using the code in `nerdle.py`. This should be the same as the possible nerdle answers, as the number generated (17723) is the same as the number of possible solutions mentioned on the nerdle website.Some rules are covered [in the nerdle faq](https://faqs.nerdlegame.com/), but here's a summary: - The result (after =) must be a positive integer or 0. - Division is treated as normal division (not integer division/no rounding). - Lone 0's are not allowed in the LHS. - Trailing 0's are not allowed anywhere. - Negative numbers cannot be used (and you cannot use + as a unary operator) anywhere. - Order of operations apply. ###Code with open("all_answers.txt", "r") as f: data = f.read().splitlines() print(data[:5]) print(len(data)) frequencies: dict[int, Counter[str, int]]= {} for equation in data: for pos, char in enumerate(equation, 1): frequencies.setdefault(pos, Counter())[char] += 1 # frequencies[4] gives total counts for each symbol at the 4th position in the equation. frequencies[4].most_common(5) ###Output _____no_output_____ ###Markdown Frequency of each symbol across all answersShows the probability that, if you pick a random character from a random answer, it will be that symbol ###Code fig, ax = pyplot.subplots() totals = [] for symbol in SYMBOLS: total = sum(position[symbol] for position in frequencies.values()) totals.append(total) total_sum = sum(totals) totals = [i / total_sum for i in totals] ax.set_title("Frequency of occurences of each symbol over all solutions") ax.bar(SYMBOLS, totals) fig.savefig("plots/symbol_frequency.jpg") ###Output _____no_output_____ ###Markdown Probability of each symbol occuringSimilar to the last one, although only takes into account whether the symbol occurs *somewhere* in the solution, not how many times it occurs. ###Code fig, ax = pyplot.subplots() totals = [] for symbol in SYMBOLS: totals.append(sum(symbol in line for line in data) / len(data)) ax.set_title("Probability of occurence of each symbol in a given solution") ax.bar(SYMBOLS, totals) fig.savefig("plots/symbol_probability.jpg") ###Output _____no_output_____ ###Markdown Frequency of occurence of each symbol in a given position ###Code fig, ax = pyplot.subplots(nrows=4, ncols=2) ax = ax.flatten() fig.set_figheight(20) fig.set_figwidth(15) for n, position in enumerate(POSITIONS): totals = [] for symbol in SYMBOLS: totals.append(frequencies[int(position)][symbol]) totals = [i / len(data) for i in totals] ax[n].set_title(f"Frequency of occurence of symbols in position {position}") ax[n].bar(SYMBOLS, totals) fig.savefig("plots/frequency_of_symbols_per_position.jpg") ###Output _____no_output_____ ###Markdown Probability of occuring in a given position per symbolThis shows, for each symbol, the probability that it will be in a given position in the answer ###Code fig, ax = pyplot.subplots(nrows=5, ncols=3) ax = ax.flatten() fig.set_figheight(30) fig.set_figwidth(20) for n, symbol in enumerate(SYMBOLS): totals = [] for position in POSITIONS: totals.append(frequencies[int(position)][symbol]) total_sum = sum(totals) totals = [i / total_sum for i in totals] ax[n].set_title(f"Frequency of occurences, per position, of '{symbol}'") ax[n].bar(POSITIONS, totals) fig.savefig("plots/frequency_of_positions_per_symbol.jpg") ###Output _____no_output_____ ###Markdown Permutations of operators by frequencyThis shows the probability that a result will be made up of operators in a given order. For example `+` would be any answers involving just a `+` such as `12+34=46`. There are 20 possibilites ###Code operator_orders = Counter() for line in data: order = ''.join(i for i in line if i not in "0123456789").rstrip("=") operator_orders[order] += 1 / len(data) for pos, (form, prob) in enumerate(operator_orders.most_common(), 1): print(f'{pos:>2}) {form}: {prob*100:5.2f}%') ###Output 1) +: 18.79% 2) -: 18.79% 3) /: 6.93% 4) *: 6.93% 5) *-: 5.86% 6) -*: 4.01% 7) --: 3.89% 8) /-: 3.83% 9) *+: 3.68% 10) +*: 3.68% 11) ++: 3.64% 12) +-: 2.96% 13) -+: 2.96% 14) */: 2.60% 15) /*: 2.60% 16) **: 2.11% 17) //: 2.11% 18) -/: 1.77% 19) +/: 1.44% 20) /+: 1.44% ###Markdown Most Frequent Answer FormatsSimilar to the last one, although more interesting as it takes into account the number of digits between operators too. There are 44 possibilities. ###Code operator_orders = Counter() for line in data: order = ''.join("x" if i in "0123456789" else i for i in line) operator_orders[order] += 1 / len(data) for pos, (form, prob) in enumerate(operator_orders.most_common(), 1): print(f'{pos:>2}) {form}: {prob*100:5.2f}%') ###Output 1) xx+xx=xx: 18.28% 2) xx-xx=xx: 18.28% 3) xx-x*x=x: 4.01% 4) xx-x-x=x: 3.89% 5) xx/x-x=x: 3.83% 6) x*x+x=xx: 3.68% 7) x+x*x=xx: 3.68% 8) x+x+x=xx: 3.64% 9) xxx/xx=x: 3.46% 10) xxx/x=xx: 3.46% 11) xx*x=xxx: 3.46% 12) x*xx=xxx: 3.46% 13) x*x-xx=x: 2.84% 14) x*x-x=xx: 2.51% 15) x*x*x=xx: 2.11% 16) xx/x/x=x: 2.11% 17) x-xx/x=x: 1.38% 18) x+xx/x=x: 1.05% 19) xx/x+x=x: 1.05% 20) x+x-xx=x: 0.93% 21) x-xx+x=x: 0.93% 22) x+xx-x=x: 0.68% 23) x-x+xx=x: 0.68% 24) xx+x-x=x: 0.68% 25) xx-x+x=x: 0.68% 26) x+x-x=xx: 0.68% 27) x-x+x=xx: 0.68% 28) x*xx/x=x: 0.65% 29) x/x*xx=x: 0.65% 30) xx*x/x=x: 0.65% 31) xx/x*x=x: 0.65% 32) x*x/xx=x: 0.65% 33) x*x/x=xx: 0.65% 34) x/x*x=xx: 0.65% 35) x/xx*x=x: 0.65% 36) x+x/x=xx: 0.39% 37) x/x+x=xx: 0.39% 38) xx-x/x=x: 0.39% 39) x*xx-x=x: 0.25% 40) x+xx=xxx: 0.25% 41) xx*x-x=x: 0.25% 42) xxx-x=xx: 0.25% 43) xxx-xx=x: 0.25% 44) xx+x=xxx: 0.25% ###Markdown Sentiment Analysis In this notebook we aim at training out-of-core algorithm by using database with opinions (in Polish) about cars - see db_cars folder. Data loading Opinion classes are imbalanced i.e. the ratio of negative to positive opinions is only around 6%. Therefore, in order to obtain evenly distributed opinions we can either downsample majority class (positive) or upsample minority class (negative). First option for logistic regression classifier gives approx. 70% accuracy, whereas the second one - approx. 90%. ###Code import pandas as pd import os import re from sklearn.utils import resample basepath = './db_cars/data/' labels = {'pos': 1, 'neg': 0} # 1) Downsample majority class (positive opinions) def fetch_data_downsample(): df = pd.DataFrame() neg_numbers = {} # numbers of negative opinions in files for label in ['neg', 'pos']: path = os.path.join(basepath, label) for file in os.listdir(path): print(label, file) number = 0 for line in open(os.path.join(path, file), 'r', encoding='utf-8'): if line != '\n': # skip empty lines number += 1 text = re.sub('\n$', '', line) # remove end line sign df = df.append([[text, labels[label]]], ignore_index=True) if label == 'neg': neg_numbers[file] = number elif neg_numbers[file] == number: break df.columns = ['review', 'sentiment'] return df # 2) Upsample minority class (negative opinions) def fetch_data_upsample(): df = pd.DataFrame() for label in ['neg', 'pos']: path = os.path.join(basepath, label) for file in os.listdir(path): print(label, file) for line in open(os.path.join(path, file), 'r', encoding='utf-8'): if line != '\n': # skip empty lines text = re.sub('\n$', '', line) # remove end line sign df = df.append([[text, labels[label]]], ignore_index=False) df.columns = ['review', 'sentiment'] return upsample_minority(df) def upsample_minority(df): # Separate majority and minority classes df_minority = df[df.sentiment==0] df_majority = df[df.sentiment==1] # Upsample minority class majority_number = df['sentiment'].value_counts()[1] df_minority_upsampled = resample(df_minority, replace=True, # sample with replacement n_samples = majority_number, # to match majority class random_state=0) # Combine majority class with upsampled minority class return pd.concat([df_majority, df_minority_upsampled], ignore_index=True) #df = fetch_data_downsample() #db_path = './db_cars_downsampled.csv' df = fetch_data_upsample() db_path = './db_cars_upsampled.csv' ###Output neg peugeot neg kia neg hyundai neg mazda neg opel neg lancia neg renault neg citroen neg volkswagen neg ford neg ssangyong neg skoda neg nissan neg fiat neg mitsubishi pos peugeot pos kia pos hyundai pos mazda pos opel pos lancia pos renault pos citroen pos volkswagen pos ford pos ssangyong pos skoda pos nissan pos fiat pos mitsubishi ###Markdown Class counts: ###Code df['sentiment'].value_counts() ###Output _____no_output_____ ###Markdown Shuffling the DataFrame: ###Code import numpy as np np.random.seed(1) df = df.reindex(np.random.permutation(df.index)) ###Output _____no_output_____ ###Markdown Optional: saving the assembled data as CSV file: ###Code # df.to_csv(db_path, index=False) # uncomment this ! import pandas as pd df = pd.read_csv(db_path) df.head(5) ###Output _____no_output_____ ###Markdown Data processing - test Below we will process our data in order to get rid of meaningless words, endings etc. ###Code def get_file_content(basepath, file): path = os.path.join(basepath, file) with open(path, 'r', encoding='utf-8') as infile: return infile.read().split() basepath = './processing_tools/' stop_polish = get_file_content(basepath, 'stopwords_polish') stop_cars = get_file_content(basepath, 'stopwords_cars') # stop words stop = stop_polish + stop_cars # Polish endings endings = get_file_content(basepath, 'endings_polish') import re example = 'nie na 8/30, moglibysmy, oceniam na 29%. Jestem,naprawdę zadowolony i mimo, \ że już nie chciałem kupować :p :D po45 767 raz kolejny nowego \ auta ze względu:-) na;( dużą utratę wartości, \ to Lancia bardzo sku11tecznie 100 tys km iii osładza świadomość utraty finansowej45%. :)' polish_letters = [ ('ą','a'), ('ć','c'), ('ę','e'), ('ł','l'), ('ń','n'), ('ó','o'), ('ś','s'), ('ź','z'), ('ż','z')] def fetch_important(text): # fetch emoticons emoticons = re.findall('[:;=]-?[()DPp]', text) emoticons = [e.replace('-','') for e in emoticons] # fetch rates (e.g. 8/10 or 100%) rates = re.findall('(\d+/\d+|\d+%)', text) return emoticons + rates def preprocessor(text): # remove non-letter characters text = re.sub('\W+', ' ', text) # remove terms that contain digits text = re.sub('[\w]*\d+[\w]*', '', text) # to lower case text = text.lower() # remove Polish letters for (i, j) in polish_letters: text = re.sub(i, j, text) # join 'nie' with subsequent word text = re.sub('(^|\s)(nie)\s+', ' nie', text) return text print(preprocessor(example)) def remove_endings(word): for ending in endings: word = re.sub(ending+'$','', word) return word def tokenizer(text): # fetch important tokens (emoticons and rates) important = fetch_important(text) # clean text processed = preprocessor(text) # remove irrelevant words (one-letter, Polish, car-specific) words = [w for w in processed.split() if len(w) > 1 and w not in stop] # remove Polish endings tokens = [remove_endings(w) for w in words] return tokens + important example print(tokenizer(example)) ###Output ['niena', 'mogli', 'oceniam', 'naprawde', 'zadowolony', 'mimo', 'juz', 'niechcialem', 'kupowac', 'kolejny', 'nowego', 'auta', 'wzgledu', 'duza', 'utrate', 'wartosci', 'lancia', 'bardzo', 'osladza', 'swiadomosc', 'utraty', ':p', ':D', ':)', ';(', ':)', '8/30', '29%', '45%'] ###Markdown Out-of-core learning Training logistic regression model with SGDC classifier ###Code def stream_docs(path): with open(path, 'r') as csv: next(csv) # skip header for line in csv: text, label = line[:-3], int(line[-2]) yield text, label db_example = next(stream_docs(path = db_path)) print(db_example) print(tokenizer(db_example[0])) def get_minibatch(doc_stream, size): docs, y = [], [] try: for _ in range(size): text, label = next(doc_stream) docs.append(text) y.append(label) except StopIteration: return None, None return docs, y from sklearn.feature_extraction.text import HashingVectorizer from sklearn.linear_model import SGDClassifier vect = HashingVectorizer(decode_error='ignore', n_features=2**21, preprocessor=None, tokenizer=tokenizer) clf = SGDClassifier(loss='log', random_state=1, max_iter=1) doc_stream = stream_docs(path= db_path) classes = np.array([0, 1]) for _ in range(9): X_train, y_train = get_minibatch(doc_stream, size=2000) if not X_train: break X_train = vect.transform(X_train) clf.partial_fit(X_train, y_train, classes=classes) X_test, y_test = get_minibatch(doc_stream, size=2312) X_test = vect.transform(X_test) print('Accuracy: %.3f' % clf.score(X_test, y_test)) clf = clf.partial_fit(X_test, y_test) ###Output _____no_output_____ ###Markdown Serializaiton Saving objects that will be used by our vectorizer ###Code import pickle import os dest = os.path.join('carclassifier', 'pkl_objects') if not os.path.exists(dest): os.makedirs(dest) pickle.dump(stop, open(os.path.join(dest, 'stopwords.pkl'), 'wb'), protocol=4) pickle.dump(endings, open(os.path.join(dest, 'endings.pkl'), 'wb'), protocol=4) pickle.dump(clf, open(os.path.join(dest, 'classifier.pkl'), 'wb'), protocol=4) ###Output _____no_output_____ ###Markdown Saving the vectorizer into a `.py` file ###Code %%writefile carclassifier/vectorizer.py from sklearn.feature_extraction.text import HashingVectorizer import re import os import pickle cur_dir = os.path.dirname(__file__) stop = pickle.load(open( os.path.join(cur_dir, 'pkl_objects', 'stopwords.pkl'), 'rb')) endings = pickle.load(open( os.path.join(cur_dir, 'pkl_objects', 'endings.pkl'), 'rb')) polish_letters = [ ('ą','a'), ('ć','c'), ('ę','e'), ('ł','l'), ('ń','n'), ('ó','o'), ('ś','s'), ('ź','z'), ('ż','z')] def fetch_important(text): emoticons = re.findall('[:;=]-?[()DPp]', text) emoticons = [e.replace('-','') for e in emoticons] rates = re.findall('(\d+/\d+|\d+%)', text) return emoticons + rates def preprocessor(text): text = re.sub('\W+', ' ', text) text = re.sub('[\w]*\d+[\w]*', '', text) text = text.lower() for (i, j) in polish_letters: text = re.sub(i, j, text) text = re.sub('(^|\s)(nie)\s+', ' nie', text) return text def remove_endings(word): for ending in endings: word = re.sub(ending+'$','', word) return word def tokenizer(text): important = fetch_important(text) processed = preprocessor(text) words = [w for w in processed.split() if len(w) > 1 and w not in stop] tokens = [remove_endings(w) for w in words] return tokens + important vect = HashingVectorizer(decode_error='ignore', n_features=2**21, preprocessor=None, tokenizer=tokenizer) ###Output Overwriting carclassifier/vectorizer.py ###Markdown Now, we can check whether everything works properly ###Code import os os.chdir('carclassifier') import pickle import re import os from vectorizer import vect clf = pickle.load(open(os.path.join('pkl_objects', 'classifier.pkl'), 'rb')) import numpy as np labels = {0: 'negative', 1: 'positive'} example = ['Generalnie polecam ten samochód'] X = vect.transform(example) print('Prediction: %s\nProbability: %.2f%%' %\ (labels[clf.predict(X)[0]], clf.predict_proba(X).max()*100)) ###Output Prediction: positive Probability: 86.89% ###Markdown Creating a SQLite database SQLite database will store users' opinions ###Code import sqlite3 import os if os.path.exists('reviews.sqlite'): os.remove('reviews.sqlite') conn = sqlite3.connect('reviews.sqlite') c = conn.cursor() c.execute('CREATE TABLE review_db (review TEXT, sentiment INTEGER, date TEXT)') example1 = 'Generalnie polecam ten samochód' c.execute('INSERT INTO review_db (review, sentiment, date) VALUES (?, ?, DATETIME("now"))', (example1, 1)) example2 = 'Lepiej sobie darować' c.execute('INSERT INTO review_db (review, sentiment, date) VALUES (?, ?, DATETIME("now"))', (example2, 0)) conn.commit() conn.close() conn = sqlite3.connect('reviews.sqlite') c = conn.cursor() c.execute('SELECT * FROM review_db') results = c.fetchall() conn.close() print(results) ###Output [('Generalnie polecam ten samochód', 1, '2018-03-14 13:08:55'), ('Lepiej sobie darować', 0, '2018-03-14 13:08:55')] ###Markdown Analysis ###Code import os import gc import numpy as np from scipy import stats import pandas as pd import matplotlib.pyplot as plt from mpl_toolkits.axes_grid1 import make_axes_locatable import seaborn as sns %matplotlib notebook gc.collect() ###Output _____no_output_____ ###Markdown Set: "Alumnos" Read dataframe ###Code df_a = pd.read_csv('alumnos.csv') ###Output _____no_output_____ ###Markdown Select only those columns having relevant info ###Code aux_col = [x for x in df_a.columns if 'v' in x] ###Output _____no_output_____ ###Markdown Matrix scatter ###Code if False: sns.set(style='ticks') s_matrix = sns.pairplot(df_a[aux_col + ['curso']], hue='curso') s_matrix.savefig('alumnos.pdf', dpi=500, format='pdf') ###Output _____no_output_____ ###Markdown Define macro-variables Confianza (m1) / Adaptacion (m2) / Compromiso (m3) / Conciencia social (m4)Note some variables appears in more than in one macro-variable ###Code m1 = [13, 14, 15, 16, 17, 18, 20, 21, 22, 26, 27, 28, 29] m2 = [1, 10, 11, 22, 23, 25, 26] m3 = [2, 3, 4, 5, 6, 11, 12, 13, 18, 19, 23, 24, 25, 26, 30] m4 = [1, 7, 8, 9, 11, 15, 19, 22, 30] # m1 = ['v{0:02}'.format(n) for n in m1] m2 = ['v{0:02}'.format(n) for n in m2] m3 = ['v{0:02}'.format(n) for n in m3] m4 = ['v{0:02}'.format(n) for n in m4] equiv = { 'm1': 'Confianza', 'm2': 'Adaptacion', 'm3': 'Compromiso', 'm4': 'Conciencia Social', } ###Output _____no_output_____ ###Markdown Division per year ###Code y1 = df_a.loc[df_a['curso'] == 1] y4 = df_a.loc[df_a['curso'] == 4] y5 = df_a.loc[df_a['curso'] == 5] ###Output _____no_output_____ ###Markdown Define some lists to save correlation tests ###Code aux_stat, aux_pval, aux_yr, aux_mvar, aux_test = [], [], [], [], [] ###Output _____no_output_____ ###Markdown Statistical tests for the macro-variables: Tests for all variables at once inside each macro-variable ANOVA The one-way ANOVA tests the null hypothesis that two or more groups have the same population mean.* The samples are independent.* Each sample is from a normally distributed population.* The population standard deviations of the groups are all equal. This property is known as homoscedasticity. Doing the analysis for all the years ###Code m1_anova = stats.f_oneway(*[df_a[c].values for c in m1]) m2_anova = stats.f_oneway(*[df_a[c].values for c in m2]) m3_anova = stats.f_oneway(*[df_a[c].values for c in m3]) m4_anova = stats.f_oneway(*[df_a[c].values for c in m4]) aux_stat.append(m1_anova[0]) aux_pval.append(m1_anova[1]) aux_yr.append(-1) aux_mvar.append(equiv['m1']) aux_test.append('anova') aux_stat.append(m2_anova[0]) aux_pval.append(m2_anova[1]) aux_yr.append(-1) aux_mvar.append(equiv['m2']) aux_test.append('anova') aux_stat.append(m3_anova[0]) aux_pval.append(m3_anova[1]) aux_yr.append(-1) aux_mvar.append(equiv['m3']) aux_test.append('anova') aux_stat.append(m4_anova[0]) aux_pval.append(m4_anova[1]) aux_yr.append(-1) aux_mvar.append(equiv['m4']) aux_test.append('anova') ###Output _____no_output_____ ###Markdown For all the above ANOVA tests, the p-value allow us to reject the null hypothesis of the mean being the same for all the samples If we now do it year by year, lets see if that stands ###Code m1_y1_anova = stats.f_oneway(*[y1[c].values for c in m1]) m2_y1_anova = stats.f_oneway(*[y1[c].values for c in m2]) m3_y1_anova = stats.f_oneway(*[y1[c].values for c in m3]) m4_y1_anova = stats.f_oneway(*[y1[c].values for c in m4]) m1_y1_anova, m2_y1_anova, m3_y1_anova, m4_y1_anova aux_stat.append(m1_y1_anova[0]) aux_pval.append(m1_y1_anova[1]) aux_yr.append(1) aux_mvar.append(equiv['m1']) aux_test.append('anova') # aux_stat.append(m2_y1_anova[0]) aux_pval.append(m2_y1_anova[1]) aux_yr.append(1) aux_mvar.append(equiv['m2']) aux_test.append('anova') # aux_stat.append(m3_y1_anova[0]) aux_pval.append(m3_y1_anova[1]) aux_yr.append(1) aux_mvar.append(equiv['m3']) aux_test.append('anova') # aux_stat.append(m4_y1_anova[0]) aux_pval.append(m4_y1_anova[1]) aux_yr.append(1) aux_mvar.append(equiv['m4']) aux_test.append('anova') m1_y4_anova = stats.f_oneway(*[y4[c].values for c in m1]) m2_y4_anova = stats.f_oneway(*[y4[c].values for c in m2]) m3_y4_anova = stats.f_oneway(*[y4[c].values for c in m3]) m4_y4_anova = stats.f_oneway(*[y4[c].values for c in m4]) m1_y4_anova, m2_y4_anova, m3_y4_anova, m4_y4_anova aux_stat.append(m1_y4_anova[0]) aux_pval.append(m1_y4_anova[1]) aux_yr.append(4) aux_mvar.append(equiv['m1']) aux_test.append('anova') # aux_stat.append(m2_y4_anova[0]) aux_pval.append(m2_y4_anova[1]) aux_yr.append(4) aux_mvar.append(equiv['m2']) aux_test.append('anova') # aux_stat.append(m3_y4_anova[0]) aux_pval.append(m3_y4_anova[1]) aux_yr.append(4) aux_mvar.append(equiv['m3']) aux_test.append('anova') # aux_stat.append(m4_y4_anova[0]) aux_pval.append(m4_y4_anova[1]) aux_yr.append(4) aux_mvar.append(equiv['m4']) aux_test.append('anova') m1_y5_anova = stats.f_oneway(*[y5[c].values for c in m1]) m2_y5_anova = stats.f_oneway(*[y5[c].values for c in m2]) m3_y5_anova = stats.f_oneway(*[y5[c].values for c in m3]) m4_y5_anova = stats.f_oneway(*[y5[c].values for c in m4]) m1_y5_anova, m2_y5_anova, m3_y5_anova, m4_y5_anova aux_stat.append(m1_y5_anova[0]) aux_pval.append(m1_y5_anova[1]) aux_yr.append(5) aux_mvar.append(equiv['m1']) aux_test.append('anova') # aux_stat.append(m2_y5_anova[0]) aux_pval.append(m2_y5_anova[1]) aux_yr.append(5) aux_mvar.append(equiv['m2']) aux_test.append('anova') # aux_stat.append(m3_y5_anova[0]) aux_pval.append(m3_y5_anova[1]) aux_yr.append(5) aux_mvar.append(equiv['m3']) aux_test.append('anova') # aux_stat.append(m4_y5_anova[0]) aux_pval.append(m4_y5_anova[1]) aux_yr.append(5) aux_mvar.append(equiv['m4']) aux_test.append('anova') ###Output _____no_output_____ ###Markdown The ANOVA tests gave the following result: only for year=5 the m1 and m2 groups showed a strong agreement in their distribution. For year=4 the m1 group has p-value=0.088 and for m2 a p-value=0.033For interpreting [p-value](https://www.statsdirect.com/help/basics/p_values.htm) Kruskal-Wallis The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal. It is a non-parametric version of ANOVA. The test works on 2 or more independent samples, which may have different sizes. Note that rejecting the null hypothesis does not indicate which of the groups differs. Post-hoc comparisons between groups are required to determine which groups are different.Needs at least 5 measurements All years together ###Code m1_kruskal = stats.kruskal(*[df_a[c].values for c in m1]) m2_kruskal = stats.kruskal(*[df_a[c].values for c in m2]) m3_kruskal = stats.kruskal(*[df_a[c].values for c in m3]) m4_kruskal = stats.kruskal(*[df_a[c].values for c in m4]) m1_kruskal, m2_kruskal, m3_kruskal, m4_kruskal aux_stat.append(m1_kruskal[0]) aux_pval.append(m1_kruskal[1]) aux_yr.append(-1) aux_mvar.append(equiv['m1']) aux_test.append('kruskal-wallis') # aux_stat.append(m2_kruskal[0]) aux_pval.append(m2_kruskal[1]) aux_yr.append(-1) aux_mvar.append(equiv['m2']) aux_test.append('kruskal-wallis') # aux_stat.append(m3_kruskal[0]) aux_pval.append(m3_kruskal[1]) aux_yr.append(-1) aux_mvar.append(equiv['m3']) aux_test.append('kruskal-wallis') # aux_stat.append(m4_kruskal[0]) aux_pval.append(m4_kruskal[1]) aux_yr.append(-1) aux_mvar.append(equiv['m4']) aux_test.append('kruskal-wallis') m1_y1_kruskal = stats.kruskal(*[y1[c].values for c in m1]) m2_y1_kruskal = stats.kruskal(*[y1[c].values for c in m2]) m3_y1_kruskal = stats.kruskal(*[y1[c].values for c in m3]) m4_y1_kruskal = stats.kruskal(*[y1[c].values for c in m4]) m1_y1_kruskal, m2_y1_kruskal, m3_y1_kruskal, m4_y1_kruskal aux_stat.append(m1_y1_kruskal[0]) aux_pval.append(m1_y1_kruskal[1]) aux_yr.append(1) aux_mvar.append(equiv['m1']) aux_test.append('kruskal-wallis') # aux_stat.append(m2_y1_kruskal[0]) aux_pval.append(m2_y1_kruskal[1]) aux_yr.append(1) aux_mvar.append(equiv['m2']) aux_test.append('kruskal-wallis') # aux_stat.append(m3_y1_kruskal[0]) aux_pval.append(m3_y1_kruskal[1]) aux_yr.append(1) aux_mvar.append(equiv['m3']) aux_test.append('kruskal-wallis') # aux_stat.append(m4_y1_kruskal[0]) aux_pval.append(m4_y1_kruskal[1]) aux_yr.append(1) aux_mvar.append(equiv['m4']) aux_test.append('kruskal-wallis') m1_y4_kruskal = stats.kruskal(*[y4[c].values for c in m1]) m2_y4_kruskal = stats.kruskal(*[y4[c].values for c in m2]) m3_y4_kruskal = stats.kruskal(*[y4[c].values for c in m3]) m4_y4_kruskal = stats.kruskal(*[y4[c].values for c in m4]) m1_y4_kruskal, m2_y4_kruskal, m3_y4_kruskal, m4_y4_kruskal aux_stat.append(m1_y4_kruskal[0]) aux_pval.append(m1_y4_kruskal[1]) aux_yr.append(4) aux_mvar.append(equiv['m1']) aux_test.append('kruskal-wallis') # aux_stat.append(m2_y4_kruskal[0]) aux_pval.append(m2_y4_kruskal[1]) aux_yr.append(4) aux_mvar.append(equiv['m2']) aux_test.append('kruskal-wallis') # aux_stat.append(m3_y4_kruskal[0]) aux_pval.append(m3_y4_kruskal[1]) aux_yr.append(4) aux_mvar.append(equiv['m3']) aux_test.append('kruskal-wallis') # aux_stat.append(m4_y4_kruskal[0]) aux_pval.append(m4_y4_kruskal[1]) aux_yr.append(4) aux_mvar.append(equiv['m4']) aux_test.append('kruskal-wallis') m1_y5_kruskal = stats.kruskal(*[y5[c].values for c in m1]) m2_y5_kruskal = stats.kruskal(*[y5[c].values for c in m2]) m3_y5_kruskal = stats.kruskal(*[y5[c].values for c in m3]) m4_y5_kruskal = stats.kruskal(*[y5[c].values for c in m4]) m1_y5_kruskal, m2_y5_kruskal, m3_y5_kruskal, m4_y5_kruskal aux_stat.append(m1_y5_kruskal[0]) aux_pval.append(m1_y5_kruskal[1]) aux_yr.append(5) aux_mvar.append(equiv['m1']) aux_test.append('kruskal-wallis') # aux_stat.append(m2_y5_kruskal[0]) aux_pval.append(m2_y5_kruskal[1]) aux_yr.append(5) aux_mvar.append(equiv['m2']) aux_test.append('kruskal-wallis') # aux_stat.append(m3_y5_kruskal[0]) aux_pval.append(m3_y5_kruskal[1]) aux_yr.append(5) aux_mvar.append(equiv['m3']) aux_test.append('kruskal-wallis') # aux_stat.append(m4_y5_kruskal[0]) aux_pval.append(m4_y5_kruskal[1]) aux_yr.append(5) aux_mvar.append(equiv['m4']) aux_test.append('kruskal-wallis') ###Output _____no_output_____ ###Markdown For the Kruskal-Wallis (median test) the sample of year=5 has a strong support for H0, for m1 and m2. For m3 the p-value=0.0018. For year=4 m1 has p-value=0.0688 and m2 has p-value=0.0539 Save into pandas to be exported ###Code d = { 'estadistica': aux_stat, 'valor_p': aux_pval, 'curso': aux_yr, 'macro_variable': aux_mvar, 'test': aux_test, } df_anova_kruskal = pd.DataFrame(d) df_anova_kruskal.head() df_anova_kruskal.to_csv('Test_ANOVA_KruskalWallis_Alumnos.csv', header=True, index=False) ###Output _____no_output_____ ###Markdown Correlation inside the macro-variablesThe idea is to compare the correlation of some variables through time. In the other hand, to see how the correlation works inside some macro-variables, for a fixed period of time.https://www.datascience.com/blog/introduction-to-correlation-learn-data-science-tutorials ###Code def plot_corr_matrix(df, title, outname): fig, ax = plt.subplots(figsize=(5, 5)) im = ax.imshow(df.corr(method='spearman'), interpolation="nearest", cmap='bwr_r', vmin=-1, vmax=1) divider = make_axes_locatable(ax) cax = divider.append_axes("right", size="5%", pad=0.05) fig.colorbar(im, cax=cax) ax.set_title(title, color='dodgerblue') ax.set_xticklabels(df.columns) ax.set_yticklabels(df.columns) ticks = np.arange(0,len(df.columns),1) ax.set_xticks(ticks) ax.xaxis.set_tick_params(rotation=90) # plt.xticks(rotation=90) ax.set_yticks(ticks) plt.tight_layout() plt.savefig(outname, dpi=300, format='png') ###Output _____no_output_____ ###Markdown Correlation inside a macro-variable for all the years together ###Code plot_corr_matrix(df_a[m1], 'Correlacion en {0}, curso=todos'.format(equiv['m1']), 'matriz_corr_{0}_cursoTodos.png'.format(equiv['m1']),) plot_corr_matrix(df_a[m2], 'Correlacion en {0}, curso=todos'.format(equiv['m2']), 'matriz_corr_{0}_cursoTodos.png'.format(equiv['m2']),) plot_corr_matrix(df_a[m3], 'Correlacion en {0}, curso=todos'.format(equiv['m3']), 'matriz_corr_{0}_cursoTodos.png'.format(equiv['m3']),) plot_corr_matrix(df_a[m4], 'Correlacion en {0}, curso=todos'.format(equiv['m4']), 'matriz_corr_{0}_cursoTodos.png'.format(equiv['m4']),) ###Output _____no_output_____ ###Markdown Correlation for macro-variable 1, for the different years ###Code plot_corr_matrix(y1[m1], 'Correlacion en {0}, curso=1'.format(equiv['m1']), 'matriz_corr_{0}_curso1.png'.format(equiv['m1']),) plot_corr_matrix(y4[m1], 'Correlacion en {0}, curso=4'.format(equiv['m1']), 'matriz_corr_{0}_curso4.png'.format(equiv['m1']),) plot_corr_matrix(y5[m1], 'Correlacion en {0}, curso=5'.format(equiv['m1']), 'matriz_corr_{0}_curso5.png'.format(equiv['m1']),) ###Output _____no_output_____ ###Markdown Correlation for macro-variable 2, for the different years ###Code plot_corr_matrix(y1[m2], 'Correlacion en {0}, curso=1'.format(equiv['m2']), 'matriz_corr_{0}_curso1.png'.format(equiv['m2']),) plot_corr_matrix(y4[m2], 'Correlacion en {0}, curso=4'.format(equiv['m2']), 'matriz_corr_{0}_curso4.png'.format(equiv['m2']),) plot_corr_matrix(y5[m2], 'Correlacion en {0}, curso=5'.format(equiv['m2']), 'matriz_corr_{0}_curso5.png'.format(equiv['m2']),) ###Output _____no_output_____ ###Markdown Correlation for macro-variable 3, for the different years ###Code plot_corr_matrix(y1[m3], 'Correlacion en {0}, curso=1'.format(equiv['m3']), 'matriz_corr_{0}_curso1.png'.format(equiv['m3']),) plot_corr_matrix(y4[m3], 'Correlacion en {0}, curso=4'.format(equiv['m3']), 'matriz_corr_{0}_curso4.png'.format(equiv['m3']),) plot_corr_matrix(y5[m3], 'Correlacion en {0}, curso=5'.format(equiv['m3']), 'matriz_corr_{0}_curso5.png'.format(equiv['m3']),) ###Output _____no_output_____ ###Markdown Correlation for macro-variable 4, for the different years ###Code plot_corr_matrix(y1[m4], 'Correlacion en {0}, curso=1'.format(equiv['m4']), 'matriz_corr_{0}_curso1.png'.format(equiv['m4']),) plot_corr_matrix(y4[m4], 'Correlacion en {0}, curso=4'.format(equiv['m4']), 'matriz_corr_{0}_curso4.png'.format(equiv['m4']),) plot_corr_matrix(y5[m4], 'Correlacion en {0}, curso=5'.format(equiv['m4']), 'matriz_corr_{0}_curso5.png'.format(equiv['m4']),) ###Output _____no_output_____ ###Markdown Subset of variables Comments:Should be related: "compromiso" and "conciencia social". Also "confianza" and "adaptacion"Should evolve over time: "confianza", "adaptacion" and "conciencia social"Subset:* Confianza (m1): v14, v17* Adpatacion (m2): v10, v23* Compromiso (m3): v05, v12* Conciencia (m4): v11, v19Confianza (m1) / Adaptacion (m2) / Compromiso (m3) / Conciencia social (m4) Anderson-Darling test for some variables Analysis of the pairsOutput: A2, critical (25%, 10%, 5%, 2.5%, 1%), p-value ###Code sub_m1_all = stats.anderson_ksamp([df_a[c].values for c in ['v14', 'v17']]) sub_m1_y1 = stats.anderson_ksamp([y1[c].values for c in ['v14', 'v17']]) sub_m1_y4 = stats.anderson_ksamp([y4[c].values for c in ['v14', 'v17']]) sub_m1_y5 = stats.anderson_ksamp([y5[c].values for c in ['v14', 'v17']]) sub_m1_all, sub_m1_y1, sub_m1_y4, sub_m1_y5 sub_m2_all = stats.anderson_ksamp([df_a[c].values for c in ['v10', 'v23']]) sub_m2_y1 = stats.anderson_ksamp([y1[c].values for c in ['v10', 'v23']]) sub_m2_y4 = stats.anderson_ksamp([y4[c].values for c in ['v10', 'v23']]) sub_m2_y5 = stats.anderson_ksamp([y5[c].values for c in ['v10', 'v23']]) sub_m2_all, sub_m2_y1, sub_m2_y4, sub_m2_y5 sub_m3_all = stats.anderson_ksamp([df_a[c].values for c in ['v05', 'v12']]) sub_m3_y1 = stats.anderson_ksamp([y1[c].values for c in ['v05', 'v12']]) sub_m3_y4 = stats.anderson_ksamp([y4[c].values for c in ['v05', 'v12']]) sub_m3_y5 = stats.anderson_ksamp([y5[c].values for c in ['v05', 'v12']]) sub_m3_all, sub_m3_y1, sub_m3_y4, sub_m3_y5 sub_m4_all = stats.anderson_ksamp([df_a[c].values for c in ['v11', 'v19']]) sub_m4_y1 = stats.anderson_ksamp([y1[c].values for c in ['v11', 'v19']]) sub_m4_y4 = stats.anderson_ksamp([y4[c].values for c in ['v11', 'v19']]) sub_m4_y5 = stats.anderson_ksamp([y5[c].values for c in ['v11', 'v19']]) sub_m4_all, sub_m4_y1, sub_m4_y4, sub_m4_y5 ###Output _____no_output_____ ###Markdown 2D histograms between the variables showing higher AD test ###Code fig, ax = plt.subplots() ax.hist2d(y5['v14'], y5['v19']) ax.set_title('Test') ###Output _____no_output_____ ###Markdown 1. Data processingBefore we can begin analysing the data, we need to get it and "clean" it so that we can run computations on it. ###Code %matplotlib inline import ast import csv import numpy as np from collections import Counter import matplotlib import matplotlib.pyplot as plt # pretty plotting plt.style.use('ggplot') plt.rcParams['figure.figsize'] = [20, 5] # First lets parse the data reader = csv.reader(open("movie_recommendations.csv", "rb"), delimiter=",") data = list(reader) print data # The first row has header info and the second row is empty, so we can ignore them. # Note: the data is stored as strings, so we need to process it some more text_data = np.array(data[2:]) movie_titles = [unicode(title, 'utf-8') for title in text_data[:,0]] raw_movie_genres = text_data[:,1] raw_omkar_ratings = text_data[:,2] raw_imdb_ratings = text_data[:,3] # -SOON-> # raw_meta_critic_ratings = result[:,4] # raw_rotten_tomato_ratings = result[:,5] # Now lets normalize these ratings so they are between 0 and 1 from __future__ import division # so that python will evaluate 3/10 as a floating pt operation instead of an integer op def string_to_numpy(string_arr): tmp_list = [] for string_val in string_arr: if string_val is 'N/A': tmp_list.append(0) else: tmp_list.append(eval(string_val)) return np.asarray(tmp_list).astype("float") omkar_ratings = string_to_numpy(raw_omkar_ratings) imdb_ratings = string_to_numpy(raw_imdb_ratings) ###Output _____no_output_____ ###Markdown 2. AnalysisLets look at the raw data first: ###Code assert len(imdb_ratings) == len(movie_titles) # plt.xticks(range(len(imdb_ratings)), movie_titles, rotation=90) # <- too messy :( # Remember, we scalled all scores to [0,1]! plt.plot(imdb_ratings, alpha=0.5, label="IMDB rating") plt.plot(omkar_ratings, alpha=1.0, label="Omkar's rating") plt.legend() plt.title('Plotting Omkar and IMDB ratings (scaled to [0,1])') plt.show() ###Output _____no_output_____ ###Markdown _Phew!_ That's a pretty dense chart and on its own we can quickly surmise how closely related Omkar's ratings are w.r.t IMDB. For a single number statistic, let's look at [cross-correlation](https://en.wikipedia.org/wiki/Cross-correlation) between Omakar and IMDB: ###Code print "Overall IMDB corellation: ",np.corrcoef(omkar_ratings, imdb_ratings)[0,1] ###Output Overall IMDB corellation: 0.6404962063207162 ###Markdown On its own, the correlation doesn't tell us much. Let's look at where the largest difference between Omkar and IMDB come up: ###Code def analyze_diff(diff_omkar_imdb, title): print 'Max difference: ', diff_omkar_imdb.max() print 'Min difference: ', diff_omkar_imdb.min() print 'Mean: ', diff_omkar_imdb.mean() print 'Std dev: ', diff_omkar_imdb.std() below_1_sigma = np.array(diff_omkar_imdb < (diff_omkar_imdb.mean() - diff_omkar_imdb.std())) above_1_sigma = np.array(diff_omkar_imdb > (diff_omkar_imdb.mean() + diff_omkar_imdb.std())) # everything that's not 1 sigma above/below the mean rest = np.logical_not(below_1_sigma) & np.logical_not(above_1_sigma) _x_axis = np.arange(len(imdb_ratings)) plt.bar(_x_axis[above_1_sigma], diff_omkar_imdb[above_1_sigma], label='Above 1 $\sigma$') plt.bar(_x_axis[below_1_sigma], diff_omkar_imdb[below_1_sigma], label='Below 1 $\sigma$') plt.bar(_x_axis[rest], diff_omkar_imdb[rest], alpha=0.5, label='Within 2 $\sigma$') plt.legend() plt.title(title) high_positive_diff = [] high_negative_diff = [] for idx in range(len(movie_titles)): if above_1_sigma[idx]: high_positive_diff.append((movie_titles[idx], diff_omkar_imdb[idx])) if below_1_sigma[idx]: high_negative_diff.append((movie_titles[idx], diff_omkar_imdb[idx])) # Note: diff = Omkar - IMDB, so a positive score indicates Omkar rated a movie higher and vice versa print 'Movies that are above 1 sigma from the mean difference b/w Omkar and IMDB: (total: {})'.format(len(high_positive_diff)) for movie_title, diff in high_positive_diff: print '\tMovie: {}, diff: {}'.format(movie_title.encode('utf-8'), diff) print 'Movies that are below 1 sigma from the mean difference b/w Omkar and IMDB: (total: {})'.format(len(high_negative_diff)) for movie_title, diff in high_negative_diff: print '\tMovie: {}, diff: {}'.format(movie_title.encode('utf-8'), diff) return analyze_diff(omkar_ratings - imdb_ratings, 'Difference b/w Omkar and IMDB (both of which were first scaled to [0,1])') ###Output Max difference: 0.30000000000000004 Min difference: -0.16000000000000003 Mean: 0.041283185840707975 Std dev: 0.0667225093735769 Movies that are above 1 sigma from the mean difference b/w Omkar and IMDB: (total: 32) Movie: 5) Seven Psycopaths (2012), diff: 0.18 Movie: 7) Con Air (1997), diff: 0.12 Movie: 12) Silver Linings Playbook (2012), diff: 0.12 Movie: 13) Mere Dad Ki Maruti (2013), diff: 0.15 Movie: 21) Killer Joe (2011), diff: 0.13 Movie: 35) Stoker (2013), diff: 0.12 Movie: 38) Pacific Rim (2013) , diff: 0.2 Movie: 43) Only God Forgives (2013) , diff: 0.13 Movie: 71) Speed Racer (2008) , diff: 0.3 Movie: 80) Edge Of Tomorrow (2014), diff: 0.11 Movie: 84) The Guest (2014), diff: 0.13 Movie: 89) Boyhood (2014), diff: 0.11 Movie: 90) John Wick (2014), diff: 0.17 Movie: 92) Birdman (2014), diff: 0.13 Movie: 97) You're Next (2011), diff: 0.15 Movie: 118) The DUFF (2015), diff: 0.15 Movie: 126) Soul Plane (2004), diff: 0.26 Movie: 136) Wet Hot American Summer (2001), diff: 0.13 Movie: 148) Shoot 'Em Up (2007) , diff: 0.13 Movie: 161) Captain America: Civil War (2016), diff: 0.12 Movie: 162) Kapoor and Sons (2016), diff: 0.12 Movie: 165) Big Nothing (2006), diff: 0.12 Movie: 166) Dilwale (2015), diff: 0.17 Movie: 178) Ride Along 2 (2016), diff: 0.11 Movie: 184) xXx (2002), diff: 0.11 Movie: 197) Get Out (2017), diff: 0.13 Movie: 200) Kong: Skull Island (2017), diff: 0.13 Movie: 210) King Arthur: Legend of the Sword (2017), diff: 0.12 Movie: 216) Thor: Ragnarok (2017), diff: 0.11 Movie: 217) Star Wars: The Last Jedi (2017), diff: 0.17 Movie: 219) The Matrix (1999), diff: 0.13 Movie: 223) Johnny English (2003), diff: 0.18 Movies that are below 1 sigma from the mean difference b/w Omkar and IMDB: (total: 31) Movie: 2) Monty Python and the Holy Grail (1975), diff: -0.03 Movie: 11) Flight (2012), diff: -0.03 Movie: 28) The Game (1997), diff: -0.08 Movie: 39) Grosse Point Blank (1997), diff: -0.04 Movie: 41) It's A Boy Girl Thing (2006), diff: -0.03 Movie: 42) Carrie (1976) , diff: -0.04 Movie: 47) Udaan (2010) , diff: -0.12 Movie: 49) Office Space (1999) , diff: -0.08 Movie: 51) Videodrome (1983), diff: -0.13 Movie: 56) Following (1998) , diff: -0.06 Movie: 62) Good Will Hunting (1997) , diff: -0.03 Movie: 64) Being Cyrus (2005), diff: -0.03 Movie: 67) Inside Man (2006) , diff: -0.06 Movie: 78) Blade Runner (1982), diff: -0.12 Movie: 98) Jhankaar Beats (2003), diff: -0.03 Movie: 100) Whiplash (2014), diff: -0.05 Movie: 102) Queen (2013), diff: -0.03 Movie: 104) Sunset Blvd. (1950), diff: -0.05 Movie: 111) Mad Max 2: The Road Warrior, diff: -0.06 Movie: 112) Drishyam (2013), diff: -0.08 Movie: 125) Detective Byomkesh Bakshy! (2015), diff: -0.06 Movie: 128) Otto e Mezzo (8½) (1963), diff: -0.11 Movie: 141) Ant-Man (2015), diff: -0.03 Movie: 147) The Man From U.N.C.L.E. (2015), diff: -0.03 Movie: 155) Thani Oruvan (2015), diff: -0.16 Movie: 191) Ulidavaru Kandanthe (As Seen By The Rest) (2014), diff: -0.06 Movie: 201) Fast Five (2011), diff: -0.03 Movie: 209) Baby Driver (2017), diff: -0.07 Movie: 211) Dhuruvangal Pathinaaru (2016), diff: -0.16 Movie: 215) 3 Idiots (2009), diff: -0.04 Movie: 220) Goodfellas (1990), diff: -0.07 ###Markdown This is interesting: on average, it looks like Omkar rates movies ~4% higher than IMDB. With a standard deviation of ~6%, we see that Omkar tends to genrally be more generous with his ratings.Additionally, we can also look at the **absolute** difference b/w Omkar and IMDB in order to see which movies have very strong agreement b/w both datasets: ###Code analyze_diff(np.abs(omkar_ratings - imdb_ratings), 'Absolute difference b/w Omkar and IMDB (both of which were first scaled to [0,1])') ###Output Max difference: 0.30000000000000004 Min difference: 0.0 Mean: 0.061637168141592924 Std dev: 0.048549502507754805 Movies that are above 1 sigma from the mean difference b/w Omkar and IMDB: (total: 32) Movie: 5) Seven Psycopaths (2012), diff: 0.18 Movie: 7) Con Air (1997), diff: 0.12 Movie: 12) Silver Linings Playbook (2012), diff: 0.12 Movie: 13) Mere Dad Ki Maruti (2013), diff: 0.15 Movie: 21) Killer Joe (2011), diff: 0.13 Movie: 35) Stoker (2013), diff: 0.12 Movie: 38) Pacific Rim (2013) , diff: 0.2 Movie: 43) Only God Forgives (2013) , diff: 0.13 Movie: 47) Udaan (2010) , diff: 0.12 Movie: 51) Videodrome (1983), diff: 0.13 Movie: 71) Speed Racer (2008) , diff: 0.3 Movie: 78) Blade Runner (1982), diff: 0.12 Movie: 84) The Guest (2014), diff: 0.13 Movie: 90) John Wick (2014), diff: 0.17 Movie: 92) Birdman (2014), diff: 0.13 Movie: 97) You're Next (2011), diff: 0.15 Movie: 118) The DUFF (2015), diff: 0.15 Movie: 126) Soul Plane (2004), diff: 0.26 Movie: 136) Wet Hot American Summer (2001), diff: 0.13 Movie: 148) Shoot 'Em Up (2007) , diff: 0.13 Movie: 155) Thani Oruvan (2015), diff: 0.16 Movie: 161) Captain America: Civil War (2016), diff: 0.12 Movie: 162) Kapoor and Sons (2016), diff: 0.12 Movie: 165) Big Nothing (2006), diff: 0.12 Movie: 166) Dilwale (2015), diff: 0.17 Movie: 197) Get Out (2017), diff: 0.13 Movie: 200) Kong: Skull Island (2017), diff: 0.13 Movie: 210) King Arthur: Legend of the Sword (2017), diff: 0.12 Movie: 211) Dhuruvangal Pathinaaru (2016), diff: 0.16 Movie: 217) Star Wars: The Last Jedi (2017), diff: 0.17 Movie: 219) The Matrix (1999), diff: 0.13 Movie: 223) Johnny English (2003), diff: 0.18 Movies that are below 1 sigma from the mean difference b/w Omkar and IMDB: (total: 37) Movie: 10) Invincible (2006), diff: 0.01 Movie: 17) Death of a Superhero (2011), diff: 0.01 Movie: 29) The Breakfast Club (1985), diff: 0.01 Movie: 31) Warm Bodies (2013), diff: 0.01 Movie: 36) Murder By Numbers (2002), diff: 0.01 Movie: 40) Oblivion (2013), diff: 0.0 Movie: 44) Trance (2013), diff: 0.01 Movie: 46) Horrible Bosses (2011) , diff: 0.01 Movie: 48) Pawn Shop Chronicles (2013) , diff: 0.01 Movie: 50) Coffy (1973), diff: 0.01 Movie: 58) Violet & Daisy (2011), diff: 0.01 Movie: 59) We're The Millers (2013), diff: 0.0 Movie: 63) Evolution (2001), diff: 0.01 Movie: 65) Mou Gaan Dou (Infernal Affairs) (2002), diff: 0.01 Movie: 69) Hasee Toh Phasee (2014) , diff: 0.01 Movie: 75) The Grand Budapest Hotel (2014), diff: 0.01 Movie: 79) Troll Hunter (2010), diff: 0.0 Movie: 88) Gone Girl (2014), diff: 0.01 Movie: 91) Nightcrawler (2014), diff: 0.01 Movie: 93) The Little Death (2014), diff: 0.01 Movie: 94) Le Samourai (1967), diff: 0.01 Movie: 95) Blue Ruin (2013), diff: 0.01 Movie: 96) Le Cercle Rouge (1970) , diff: 0.01 Movie: 109) The One I Love (2014) , diff: 0.01 Movie: 110) Mad Max (1979), diff: 0.0 Movie: 115) Locke (2013), diff: 0.01 Movie: 138) Relatos Salvajes (Wild Tales) (2014) , diff: 0.01 Movie: 139) The Martian (2015) , diff: 0.0 Movie: 143) Star Wars: The Force Awakens (2015), diff: 0.0 Movie: 149) Straight Outta Compton (2015), diff: 0.01 Movie: 153) Buried (2010), diff: 0.0 Movie: 159) Pizza (2012), diff: 0.01 Movie: 167) Hot Fuzz (2007), diff: 0.01 Movie: 168) Zootopia/Zootropolis (2016), diff: 0.0 Movie: 179) Shaun Of The Dead (2004), diff: 0.0 Movie: 188) Arrival (2016), diff: 0.01 Movie: 199) Power Rangers (2017), diff: 0.0 ###Markdown Genre-based analysis ###Code # Num unique genres all_genres = [] for raw_genres in raw_movie_genres: genres = raw_genres.split('/') for genre in genres: word = genre.lower().strip() # spelling mistakes if word == 'crme': word = 'crime' elif word == 'myster': word = 'mystery' all_genres.append(word) unique_genres = sorted(set(all_genres)) counts = Counter(all_genres) print unique_genres print counts max_correlation = 0 max_corr_genre = 'N/A' for genre in unique_genres: use = [] for raw_genres in raw_movie_genres: use.append(genre in raw_genres.lower()) if sum(use) < 3: print '> Genre "{}" has too few examples ({})'.format(genre, counts[genre]) continue correlation = np.corrcoef(omkar_ratings[use], imdb_ratings[use])[0, 1] print 'Genre: {}, Num. data pts: {}, Correlation: {}'.format(genre, counts[genre], correlation) if correlation > max_correlation: max_correlation = correlation max_corr_genre = genre print "Max. correlated genre: {}, ({})".format(max_corr_genre, max_correlation) ###Output _____no_output_____ ###Markdown Now Let's Run the same algorithms with the same heuristics on the 3x3 puzzles ###Code start = time.time() run_experiment(experiment, three_by_three) elapsed = round(time.time()-start, 2) print(f'\n\nTotal of 2x50x5 = {2*50*5} puzzles solved in {elapsed} seconds') def generate_stats(experiment): prototype = { 'GBF': { 'hamming_distance': {}, 'manhattan_distance': {}, 'row_col_out_of_place': {}, 'euclidean_distance': {}, 'permutation_inversion': {} }, 'A*': { 'hamming_distance': {}, 'manhattan_distance': {}, 'row_col_out_of_place': {}, 'euclidean_distance': {}, 'permutation_inversion': {} } } global_stats = { (2,4): copy.deepcopy(prototype), (3,3): copy.deepcopy(prototype), } stats = {} timeouts = 0 result_count = 0 for heuristic in experiment: for algo in experiment[heuristic]['algos']: for shape in experiment[heuristic]['algos'][algo]['shape']: results = experiment[heuristic]['algos'][algo]['shape'][shape]['results'] runtimes = [r['runtime'] for r in results] costs = np.array([r['current_node'].total_cost for r in results]) num_visited_nodes = np.array([r['visited_nodes'] for r in results]) mean_runtime = np.mean(runtimes) mean_cost = np.mean(costs) mean_vis_nodes = np.mean(num_visited_nodes) global_stats[shape][algo][heuristic]['mean_runtime'] = mean_runtime global_stats[shape][algo][heuristic]['mean_cost'] = mean_cost global_stats[shape][algo][heuristic]['mean_visited_nodes'] = mean_vis_nodes global_stats[shape][algo][heuristic]['std_runtime'] = np.std(runtimes) global_stats[shape][algo][heuristic]['std_cost'] = np.std(costs) global_stats[shape][algo][heuristic]['std_visited_nodes'] = np.std(num_visited_nodes) timeouts += len([1 for r in results if not r['success']]) print(f'number of timeouts = {timeouts}.') return global_stats stats = generate_stats(experiment) '''here is a small sample of what the stats object looks like''' stats[(2,4)]['GBF']['hamming_distance'] ###Output number of timeouts = 0. ###Markdown We definitely did not expect any timeouts for algorithms A* and GBF as they are designed to be very fast but having the assurance is always nice. Let us now compare these heuristics. ###Code '''Calculating average runtime for each heuristic''' def plot_stats(stats, shape, algo): heuris_vs_runtime = {} heuris_vs_cost = {} heuris_vs_visited = {} for heuristic in stats[shape][algo]: alias = stats[shape][algo][heuristic] heuris_vs_runtime[heuristic] = round(alias['mean_runtime'], 2) heuris_vs_cost[heuristic] = round(alias['mean_cost'], 2) heuris_vs_visited[heuristic] = round(alias['mean_visited_nodes'], 2) print(heuris_vs_runtime) plt.barh(tuple(heuris_vs_runtime.keys()),heuris_vs_runtime.values()) plt.ylabel('Heuristics') plt.xlabel('Time in Seconds') plt.title(f'Mean runtime of {algo} on {shape[0]}x{shape[1]} puzzles') plt.show() print() print(heuris_vs_cost) plt.barh(tuple(heuris_vs_cost.keys()),heuris_vs_cost.values()) plt.ylabel('Heuristics') plt.xlabel('Cost') plt.title(f'Mean cost of {algo} on {shape[0]}x{shape[1]} puzzles') plt.show() print() print(heuris_vs_visited) plt.barh(tuple(heuris_vs_visited.keys()),heuris_vs_visited.values()) plt.ylabel('Heuristics') plt.xlabel('Number of Visited Nodes') plt.title(f'Mean search path of {algo} on {shape[0]}x{shape[1]} puzzles') plt.show() plot_stats(stats,(2,4),'A*') plot_stats(stats,(2,4),'GBF') plot_stats(stats,(3,3),'A*') plot_stats(stats,(3,3),'GBF') ###Output {'hamming_distance': 0.05, 'manhattan_distance': 0.04, 'row_col_out_of_place': 0.06, 'euclidean_distance': 0.04, 'permutation_inversion': 0.71} ###Markdown Bikers on the Fremont bridgeExample adapted from the [Data Science Handbook](https://jakevdp.github.io/PythonDataScienceHandbook/05.06-linear-regression.html) Set up: Download (and load) data ###Code # Download data(you can download it by uncommenting and runing this line of code) # !curl -o FremontBridge.csv https://data.seattle.gov/api/views/65db-xm6k/rows.csv?accessType=DOWNLOAD import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from sklearn.preprocessing import MinMaxScaler # scaling data from sklearn.model_selection import train_test_split # splitting data from sklearn.neighbors import KNeighborsRegressor # regressor from sklearn.model_selection import GridSearchCV # for grid search from sklearn.pipeline import make_pipeline # for making pipelines %matplotlib inline # Aggregate data to the daily level counts = pd.read_csv('data/FremontBridge.csv', index_col='Date', parse_dates=True) daily = counts.resample('d').sum() daily['Total'] = daily.sum(axis=1) daily = daily[['Total']] # remove other columns plt.figure(figsize=(15,5)) daily.Total.plot() daily[daily.Total == daily.Total.max()] ###Output _____no_output_____ ###Markdown Data Prep: Adding Features ###Code # Load weather data (downloaded from: https://www.ncdc.noaa.gov/cdo-web/search?datasetid=GHCND) weather = pd.read_csv('data/weather.csv', index_col='DATE', parse_dates=True) # Create dry_day column weather['dry_day'] = (weather['PRCP'] == 0).astype(int) # Join selected weather columns daily = daily.join(weather[['PRCP', 'dry_day', 'TMIN', 'TMAX']]) # Compute hours of daylight def hours_of_daylight(date, axis=23.44, latitude=47.61): """Compute the hours of daylight for the given date""" days = (date - pd.datetime(2000, 12, 21)).days m = (1. - np.tan(np.radians(latitude)) * np.tan(np.radians(axis) * np.cos(days * 2 * np.pi / 365.25))) return 24. * np.degrees(np.arccos(1 - np.clip(m, 0, 2))) / 180. daily['daylight_hrs'] = list(map(hours_of_daylight, daily.index)) daily[['daylight_hrs']].plot() plt.ylim(8, 17) ###Output _____no_output_____ ###Markdown Feature Generation: Categorical Variable(s) ###Code # Get dummy variables from categorical columns (alternative: sklearn OneHotEncoding) daily["day_of_week"] = daily.index.day_name() # daily["day_of_week"] = daily.index.dayofweek.astype(dtype="str") daily = pd.get_dummies(daily) daily.head() ###Output _____no_output_____ ###Markdown Abbreviated EDA ###Code # What is the relationship between bikers and temperature? plt.scatter(daily.TMAX, daily.Total, alpha = 0.2) plt.xlabel("Max Temperature") plt.ylabel("Total # Bikers in a Day") plt.show() # What is the relationship between bikers and date? plt.figure(figsize=(15,4)) daily.Total.plot() # What is the relationship between bikers and (min) temperature? plt.scatter(daily.TMIN, daily.Total, alpha = 0.2) plt.xlabel("Minimum Temperature") plt.ylabel("Total # Bikers in a Day") plt.show() # What is the distribution of bikers on dry/wet days? wet_days = daily[daily.dry_day == 0] dry_days = daily[daily.dry_day == 1] plt.hist(wet_days.Total, alpha = 0.3, label = "Wet") plt.hist(dry_days.Total, alpha = 0.3, label = "Dry") plt.legend() plt.show() # What is the relationship between bikers and precipitation? plt.scatter(daily.PRCP, daily.Total, alpha = 0.2) plt.xlabel("Precipitation") plt.ylabel("Total # Bikers in a Day") plt.show() # How does the number of bikers vary by temperature and wet/dry? plt.scatter(wet_days.TMAX, wet_days.Total, alpha = 0.3, label = "Wet") plt.scatter(dry_days.TMAX, dry_days.Total, alpha = 0.3, label = "Dry") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Modeling: KNN Regressor ###Code # Split data into training and testing data # Split into test/train data from sklearn.model_selection import train_test_split train_features, test_features, train_outcome, test_outcome = train_test_split( daily.drop("Total", axis = 1), daily.Total, test_size=0.10 ) # Create a scaler and your classifier scaler = MinMaxScaler() knn_clf = KNeighborsRegressor() # Define a pipeline that uses your scaler and classifier pipe = make_pipeline(scaler, knn_clf) # Define a grid to search through params = {"kneighborsregressor__n_neighbors":np.arange(1, 10)} # Perform a grid search of your pipeline grid_search = GridSearchCV(pipe, params, scoring="neg_mean_absolute_error") grid_search.fit(train_features, train_outcome) # Compare prediction to (test) data preds = grid_search.predict(test_features) plt.scatter(preds, test_outcome) plt.show() test_data = test_features.join(test_outcome) test_data["preds"] = grid_search.predict(test_features) plt.figure(figsize=(20, 5)) test_data.Total.plot(label = "Actual") test_data.preds.plot(label = "Predicted") plt.show() grid_search.score(test_features, test_outcome) ###Output _____no_output_____ ###Markdown Feature Generation: Polynomial Transformations ###Code # Add a polynomial transformation to the pipeline from sklearn.preprocessing import PolynomialFeatures poly = PolynomialFeatures() # Define a pipeline that includes the polynomial transformation pipe = make_pipeline(poly, scaler, knn_clf) # Define a grid to search through (including the degree of polynomial) param_grid = {'polynomialfeatures__degree':range(1, 4), 'kneighborsregressor__n_neighbors':range(1, 10), 'kneighborsregressor__weights':["uniform", "distance"]} # Perform a grid search of your pipeline grid_search = GridSearchCV(pipe, param_grid, scoring="neg_mean_absolute_error") grid_search.fit(train_features, train_outcome) grid_search.score(test_features, test_outcome) # Visualize time trends ###Output _____no_output_____ ###Markdown Error assessment: find systematic errors ###Code # Why are we getting this wrong? # Assess error by day of the week # Assess error by temperature and dry_day # Assess error by precipitation ###Output _____no_output_____ ###Markdown Feature Selection: Select best featuresAs a form of dimensionality reduction, only select the top percentile features that have a certain threshold of variance. ###Code # Create a percentile selector, add it to the pipeline # (alternatives a K selectors, PCA, or others) # Define a grid to search through (including the degree of polynomial AND percentile of best features) # Fit the model ###Output _____no_output_____ ###Markdown Analysis ###Code import numpy as np import scipy import math import random import matplotlib.pyplot as plt from env import * import utils def observed_function_f(xs, a, b, c, d, frequency): results = [] for x in xs: result = c * math.cos(a * x * frequency + b) + d results.append(result) return results def observed_function_f1(xs, a, b, c, d): return observed_function_f(xs, a, b, c, d, 1) def observed_function_f3(xs, a, b, c, d): return observed_function_f(xs, a, b, c, d, 3) def observed_function_f5(xs, a, b, c, d): return observed_function_f(xs, a, b, c, d, 5) def observed_function_f7(xs, a, b, c, d): return observed_function_f(xs, a, b, c, d, 7) def observed_function_f9(xs, a, b, c, d): return observed_function_f(xs, a, b, c, d, 9) ###Output _____no_output_____ ###Markdown extraction ###Code def plainQubitsExtraction(counts): return counts def separateQubitsExtraction(counts): ##### calculating number of qubits on the device and shots done experiments_count = len(counts) qubits_count = None shots = 0 one_experiment = counts[0] for key in one_experiment: shots += one_experiment[key] if qubits_count == None: qubits_count = len(key) ##### separating results for each qubit qs = [[0 for i in range(experiments_count)] for j in range(qubits_count)] ##### transforming results for i in range(experiments_count): counts_i = counts[i] for key in counts_i: j = 0 for v in key: # |0> = 1, |1> = -1 if v == "0": qs[j][i] += counts_i[key] elif v == "1": qs[j][i] -= counts_i[key] j += 1 ##### from qiskit arrangment to physical qs = qs[::-1] qs = np.array(qs) / shots return qs ###Output _____no_output_____ ###Markdown process ###Code # NB! experiments should be sorted by step offset # e.g. for step == 0.1 lets say # first batch contains results for parameter values 1, 2, 3 # next - for 1.1, 2.1, 3.1 # next - for 1.2, 2.2, 3.2 # ... def combine(experiments, parameter): all_counts = [] all_parameter_values = [] for experiment_name in experiments: counts, parameter_values = processParametrizedExperiment(experiment_name, THETA, plainQubitsExtraction) all_counts.append(counts) all_parameter_values.append(parameter_values) combined_counts = [] combined_parameter_values = [] experiments_count = len(all_counts) batch_count = len(all_counts[0]) for result_index in range(batch_count): for batch_index in range(experiments_count): combined_counts.append(all_counts[batch_index][result_index]) combined_parameter_values.append(all_parameter_values[batch_index][result_index]) return combined_counts, combined_parameter_values def processCombinedExperiment(experiment_names, parameter): counts, parameter_values = combine(experiment_names, parameter) qs = separateQubitsExtraction(counts) return qs, parameter_values def rebuildCounts(counts, desired_shots): measurements = [] for value in counts: observations = counts[value] for i in range(observations): measurements.append(value) new_measurements = random.sample(measurements, desired_shots) new_counts = {} for value in counts: new_counts[value] = new_measurements.count(value) return new_counts def processParametrizedExperiment(experiment_name, parameter, qubitsExtraction, shots = None): path = "../experiments/" + experiment_name + ".json" json_object = utils.retrieve(path) ##### retrieving experiment from the file parameters = json_object.get("parameters") parameter_values = parameters.get(str(parameter)) counts = json_object.get("counts") experiments_count = len(parameter_values) # == len(counts) if counts == None: ### retrive job from backend account_id = json_object["account"] device_id = json_object["backend"]["name"] device = qutils.backend(account_id, device_id) jobId = json_object["job"] job = device.retrieve_job(jobId) error_message = job.error_message() if error_message: print("ERROR: " + error_message, "\nEXPERIMENT: " + experiment_name) result = job.result() counts = [] for i in range(experiments_count): i_counts = result.get_counts(i) counts.append(i_counts) ### saving results locally utils.update(json_object, counts, path) if not shots == None: for i in range(len(counts)): i_counts = counts[i] counts[i] = rebuildCounts(i_counts, shots) return qubitsExtraction(counts), parameter_values def processExperiment(experiment_name): path = "experiments/" + experiment_name + ".json" json_object = utils.retrieve(path) ##### retrieving experiment from the file counts = json_object.get("counts") if counts == None: ### retrive job from backend account_id = json_object["account"] device_id = json_object["backend"]["name"] device = qutils.backend(account_id, device_id) jobId = json_object["job"] job = device.retrieve_job(jobId) error_message = job.error_message() if error_message: print("ERROR: " + error_message, "\nEXPERIMENT: " + experiment_name) result = job.result() counts = result.get_counts() ### saving results locally utils.update(json_object, counts, path) return counts def processParametrizedExperimentWithRealMeasurement(experiment_name, parameter, account_for_): counts, parameter_values = processParametrizedExperiment(experiment_name, parameter, plainQubitsExtraction) return utils.real_measurement(counts, account_for_) ###Output _____no_output_____ ###Markdown analyze ###Code def mean_square_error(A, B): return np.square(np.subtract(A, B)).mean() def analyzeExperiment(experiment_name, observed_function, shots = None): counts, parameter_values = processParametrizedExperiment(experiment_name, THETA, separateQubitsExtraction, shots) target_qubit_results = counts[0] xdata = parameter_values ydata = target_qubit_results fit_result = scipy.optimize.curve_fit(observed_function, xdata, ydata) fitted_params = fit_result[0] sim_results = observed_function(xdata, fitted_params[0], fitted_params[1], fitted_params[2], fitted_params[3]) return parameter_values, target_qubit_results, sim_results, fitted_params def analyzeExperiments(experiments_names, observed_functions, shots = None): for i in range(len(experiments_names)): experiment_name = experiments_names[i] observed_function = observed_functions[i] parameter_values, target_qubit_results, sim_results, fitted_params = analyzeExperiment(experiment_name, observed_function, shots) fitted_function = str(fitted_params[2]) + ' * cos(' + str(fitted_params[0]) \ + ' * x + ' + str(fitted_params[1]) + ') + ' + str(fitted_params[3]) mse = mean_square_error(target_qubit_results, sim_results) path_to_save_fig = None#"../experiments/" + a_experiment_name + "_fitted.pdf" utils.plot([parameter_values, parameter_values], [target_qubit_results, sim_results], curves_names = ['measured', fitted_function], title = 'Mean Square Error: ' + str(mse), x_name = 'parameter value', y_name = 'expectation', path_to_file = path_to_save_fig, include_ft = False) def resultsOfExperiments(experiments_names): for a_experiment_name in experiments_names: a_qs, a_parameter_values = processParametrizedExperiment(a_experiment_name, THETA, separateQubitsExtraction) path_to_save_fig = "../experiments/" + a_experiment_name + "_result.pdf" plot([a_parameter_values for i in range(len(a_qs))], a_qs) ###Output _____no_output_____ ###Markdown maximum likelyhood estimation ###Code # ML # theta_a - rotation # m_k - iterations of fusion # h_k - good outcomes # N_k - all the outcomes def L_k(theta_a, m_k, h_k, N_k): angle = (2 * m_k + 1) * theta_a sin_2 = pow(math.sin(angle), 2) cos_2 = pow(math.cos(angle), 2) result = pow(sin_2, h_k) * pow(cos_2, N_k - h_k) return result def L(theta_a, m_ks, h_ks, N_ks): result = 1 for i in range(len(m_ks)): m_k = m_ks[i] h_k = h_ks[i] N_k = N_ks[i] result *= L_k(theta_a, m_k, h_k, N_k) return result def MLE_L(param): global global_m_ks, global_h_ks, global_N_ks value = L(param, global_m_ks, global_h_ks, global_N_ks) return -value def ln_L_k(theta_a, m_k, h_k, N_k): angle = (2 * m_k + 1) * theta_a sin_2 = pow(math.sin(angle), 2) cos_2 = pow(math.cos(angle), 2) # we can do the following, because log(x) ~ log(x + "a little") a_little = 1e-323 sin_2 += a_little cos_2 += a_little result = h_k * math.log(sin_2) + (N_k - h_k) * math.log(cos_2) return result def ln_L(theta_a, m_ks, h_ks, N_ks): result = 0 for i in range(len(m_ks)): m_k = m_ks[i] h_k = h_ks[i] N_k = N_ks[i] result += ln_L_k(theta_a, m_k, h_k, N_k) return result def MLE_ln_L(param): global global_m_ks, global_h_ks, global_N_ks value = ln_L(param, global_m_ks, global_h_ks, global_N_ks) return -value a_experiments = #array of experiment names# a_range = range(len(a_experiments)) a_target_qubit_index = 0 theta_indeces = 75 global_m_ks = [i for i in a_range] global_N_ks = [100 for i in a_range] MLE_results = [] a_steps = 100 a_step = math.pi * 2 / a_steps MLE_points = [] gammas = [a_step * step for step in range(a_steps)] plt_gammas = [] plt_thetas = [] plt_MLE_ln_Ls = [] for a_theta_index in range(theta_indeces): global_h_ks = [] for i in a_range: a_experiment_name = a_experiments[i] a_shots = global_N_ks[i] a_qs, a_parameter_values = processParametrizedExperiment(a_experiment_name, THETA, plainQubitsExtraction, a_shots) h_k = 0 a_experiment_results = a_qs[a_theta_index] for outcome in a_experiment_results: if outcome[a_target_qubit_index] == '1': h_k += a_experiment_results[outcome] global_h_ks.append(h_k) plt_thetas.extend([a_parameter_values[a_theta_index] for i in range(a_steps)]) plt_gammas.extend(gammas) plt_MLE_ln_Ls.extend([MLE_ln_L(a_gamma) for a_gamma in gammas]) min_f = None min_gamma = None for a_gamma in gammas: current_min_gamma = scipy.optimize.fminbound(MLE_ln_L, a_gamma, a_gamma + a_step) current_min_f = MLE_ln_L(current_min_gamma) if min_f == None or min_f > current_min_f: min_gamma = current_min_gamma min_f = current_min_f optimized_result = pow(math.cos(min_gamma), 2) - pow(math.sin(min_gamma), 2) MLE_results.append(optimized_result) xs = a_parameter_values ys = MLE_results plt.plot(xs, ys) plt.show() for a_theta_index in range(theta_indeces): left_i = a_theta_index * a_steps right_i = (a_theta_index + 1) * a_steps xs = plt_gammas[left_i:right_i] ys = plt_MLE_ln_Ls[left_i:right_i] plt.plot(xs, ys) plt.show() ###Output _____no_output_____ ###Markdown We need to disregard id since that will have no predictive power (as an arbitrarily assigned variable). We also need to correctly handle date_recorded by converting it into time since epoch. Region_code and district_code are incorrectly designated as continuous variables but that does not matter since our dependent variable is categorical and so we will be using chi-square tests to assess statistical significance. ###Code # Removing date recorded (will handle later) and id categorical_indices = categorical_indices[1:] continuous_indices = continuous_indices[1:] transformed_features = features.copy(); transformed_features # Dropping waterpoint name transformed_features = transformed_features.drop('wpt_name', axis=1) for index in categorical_indices: transformed_features[index] = features[index].replace(features[index].unique(), np.arange(len(features[index].unique()))).astype('int') print("done with " + index) categorical_outcome = outcome['status_group'] categorical_outcome = categorical_outcome.replace(['functional', 'functional needs repair', 'non functional'], [0, 1, 2]).astype('int') categorical_outcome # Converting date_recorded to time since epoch epoch_time = [] for date in features['date_recorded']: date = datetime.strptime(date, '%Y-%m-%d') epoch_time.append(date.timestamp()) transformed_features['date_recorded'] = epoch_time for index in categorical_indices: table = pd.crosstab(transformed_features[index], categorical_outcome) c, p, dof, expected = chi2_contingency(table.values) print(index + ': ' + str(p)) for index in continuous_indices: table = pd.crosstab(transformed_features[index], categorical_outcome) c, p, dof, expected = chi2_contingency(table.values) print(index + ': ' + str(p)) ###Output funder: 0.0 installer: 0.0 wpt_name: 3.167496602060987e-15 basin: 0.0 subvillage: 0.0 region: 0.0 lga: 0.0 ward: 0.0 recorded_by: 1.0 scheme_management: 0.0 scheme_name: 0.0 extraction_type: 0.0 extraction_type_group: 0.0 extraction_type_class: 0.0 management: 0.0 management_group: 1.7446261385259768e-57 payment: 0.0 payment_type: 0.0 water_quality: 0.0 quality_group: 0.0 quantity: 0.0 quantity_group: 0.0 source: 0.0 source_type: 0.0 source_class: 1.983538119535752e-126 waterpoint_type: 0.0 waterpoint_type_group: 0.0 amount_tsh: 0.0 gps_height: 1.935832234019064e-40 longitude: 0.9999988241305058 latitude: 0.9999988211760183 num_private: 1.3700364563899945e-12 region_code: 0.0 district_code: 0.0 population: 1.2004595650770784e-174 public_meeting: 6.695873894822635e-63 permit: 1.5416464629999488e-15 construction_year: 0.0 ###Markdown Features that have a statistically significant difference with water pump condition:- wpt name- public meeting- permit- management group- source class- gps height- num private- populationwpt_name is the name of the water pump so we will not use that. ###Code column_selector = ['public_meeting', 'permit', 'management_group', 'source_class', 'gps_height', 'num_private', 'population'] fig, ax = plt.subplots() fig = sns.countplot(x="status_group", data=outcome) ax.set_title('State of Water Pumps in Tanzania') ax.set_xlabel('Water Pump State') ax.set_ylabel('Count of Occurrences') fig, ax = plt.subplots() fig = sns.countplot(x="permit", data=features) ax.set_title('Are Water Pumps in Tanzania Permitted or Not?') ax.set_xlabel('The Water Pump is Permitted') ax.set_ylabel('Count of Occurrences') groups = features['management_group'].unique() sizes = [] for group in groups: sizes.append(len(features.loc[features['management_group'] == group])) fig, ax = plt.subplots() plt.pie(sizes, labels=groups, autopct='%1.1f%%', shadow=True) ax.set_title('Management Groups for Tanzania Water Pumps') fig.set_size_inches(12,12) ###Output _____no_output_____ ###Markdown parastatal: separate from the government but activities serve the government ###Code fig, ax = plt.subplots() fig = sns.countplot(x="public_meeting", data=features) ax.set_title('Public Meeting before Pump Installation?') ax.set_xlabel('There was a Public Meeting Before Installation') ax.set_ylabel('Count of Occurrences') fig, ax = plt.subplots() fig = sns.countplot(x="source_class", data=features) ax.set_title('Water Source Type Distribution') ax.set_xlabel('Type of Water Source') ax.set_ylabel('Count of Occurrences') fig, ax = plt.subplots() fig = plt.scatter(x="id", y="population", data=features) ax.set_title('Population Distribution by Water Pump Id') ax.set_xlabel('Water Pump Id') ax.set_ylabel('Population around Water Pump') fig, ax = plt.subplots() fig = plt.scatter(x="id", y="num_private", data=features) ax.set_title('Private Water Pump Distribution by Water Pump Id') ax.set_xlabel('Water Pump Id') ax.set_ylabel('Private Water Pumps around Water Pump') train_features, test_features, train_outcome, test_outcome = train_test_split( transformed_features, # [column_selector] categorical_outcome, test_size=0.30 ) param_grid = {'criterion': ['gini', 'entropy']} grid = GridSearchCV(DecisionTreeClassifier(), param_grid, scoring="accuracy") grid.fit(train_features, train_outcome) grid.score(test_features, test_outcome) grid.best_params_ tree_test_predict = grid.predict(test_features) param_grid2 = {'n_neighbors':range(1, 11), 'weights': ['uniform', 'distance']} grid2 = GridSearchCV(KNeighborsClassifier(), param_grid2, scoring="accuracy") grid2.fit(train_features, train_outcome) grid2.score(test_features, test_outcome) grid2.best_params_ knn_test_predict = grid2.predict(test_features) ###Output _____no_output_____ ###Markdown It looks like the decision tree classifier does a lot better than the k nearest neighbors classifier. ###Code test_features = pd.DataFrame(test_features) test_features['prediction'] = tree_test_predict test_features['actual'] = test_outcome test_features.plot('actual', 'prediction', kind='scatter') plt.plot(test_features.actual, test_features.actual) plt.show() test_features['err'] = test_features['prediction'] - test_features['actual'] sns.violinplot(test_features['actual'], test_features['err']) feature_selector = RFECV(estimator=DecisionTreeClassifier(criterion='entropy'), step=1, scoring="accuracy").fit(transformed_features, categorical_outcome) columns = feature_selector.get_support(indices=True) colnames = transformed_features.columns[columns] transformed_features = transformed_features[colnames] clf = DecisionTreeClassifier(criterion='entropy') clf.fit(transformed_features, categorical_outcome) test_features = pd.read_csv('./data/TestFeatures.csv') test_features = test_features[colnames] ###Output _____no_output_____ ###Markdown We need to handle nulls and convert categorical data and dates to integers again. ###Code null_indices = test_features.columns[test_features.isna().any()].tolist() for index in null_indices: mode = test_features[index].mode().iloc[0] test_features[index].loc[pd.isnull(test_features[index])] = mode # Converting date_recorded to time since epoch epoch_time = [] for date in test_features['date_recorded']: date = datetime.strptime(date, '%Y-%m-%d') epoch_time.append(date.timestamp()) test_features['date_recorded'] = epoch_time categorical_indices = test_features.loc[:, test_features.dtypes == object].columns.values for index in categorical_indices: test_features[index] = test_features[index].replace(test_features[index].unique(), np.arange(len(test_features[index].unique()))).astype('int') print("done with " + index) predictions = clf.predict(test_features) test_outcome = pd.read_csv('./data/SubmissionFormat.csv') test_outcome['status_group'] = predictions test_outcome['status_group'] = test_outcome['status_group'].replace([0, 1, 2], ['functional', 'functional needs repair', 'non functional']) test_outcome.to_csv('./data/Submission.csv', index=False) ###Output _____no_output_____ ###Markdown Analysis section This is based off of [this](https://towardsdatascience.com/end-to-end-topic-modeling-in-python-latent-dirichlet-allocation-lda-35ce4ed6b3e0) guide. ###Code import pandas as pd import os import re from wordcloud import WordCloud from sklearn.feature_extraction.text import CountVectorizer from sklearn.decomposition import LatentDirichletAllocation as LDA import numpy as np import matplotlib.pyplot as plt import seaborn as sns import warnings warnings.filterwarnings("ignore", category=DeprecationWarning) from pyLDAvis import sklearn as sklearn_lda import pickle import pyLDAvis import xml.etree.ElementTree as ET #NOTE: this will need to be configured to pull from output.csv instead (work in progress) impact_statements['processed'] = impact_statements['content'].map(lambda x: re.sub('[^a-zA-Z0-9 ]', '', x)) impact_statements['processed'] = impact_statements['processed'].map(lambda x: x.lower()) #create a wordcloud # Join the different processed titles together. long_string = ','.join(list(impact_statements['processed'].values)) # Create a WordCloud object wordcloud = WordCloud(background_color="white", max_words=5000, contour_width=3, contour_color='steelblue') # Generate a word cloud wordcloud.generate(long_string) # Visualize the word cloud wordcloud.to_image() sns.set_style('whitegrid') %matplotlib inline # Helper function def plot_10_most_common_words(count_data, count_vectorizer): words = count_vectorizer.get_feature_names() total_counts = np.zeros(len(words)) for t in count_data: total_counts+=t.toarray()[0] count_dict = (zip(words, total_counts)) count_dict = sorted(count_dict, key=lambda x:x[1], reverse=True)[0:10] words = [w[0] for w in count_dict] counts = [w[1] for w in count_dict] x_pos = np.arange(len(words)) plt.figure(2, figsize=(15, 15/1.6180)) plt.subplot(title='10 most common words') sns.set_context("notebook", font_scale=1.25, rc={"lines.linewidth": 2.5}) sns.barplot(x_pos, counts, palette='husl') plt.xticks(x_pos, words, rotation=90) plt.xlabel('words') plt.ylabel('counts') plt.show() # Initialise the count vectorizer with the English stop words count_vectorizer = CountVectorizer(stop_words='english') # Fit and transform the processed titles count_data = count_vectorizer.fit_transform(impact_statements['processed']) # Visualise the 10 most common words plot_10_most_common_words(count_data, count_vectorizer) warnings.simplefilter("ignore", DeprecationWarning) # Helper function def print_topics(model, count_vectorizer, n_top_words): words = count_vectorizer.get_feature_names() for topic_idx, topic in enumerate(model.components_): print("\nTopic #%d:" % topic_idx) print(" ".join([words[i] for i in topic.argsort()[:-n_top_words - 1:-1]])) # Tweak the two parameters below number_topics = 4 number_words = 10 # Create and fit the LDA model lda = LDA(n_components=number_topics, n_jobs=-1) lda.fit(count_data) # Print the topics found by the LDA model print("Topics found via LDA:") print_topics(lda, count_vectorizer, number_words) #%%time LDAvis_data_filepath = os.path.join('./ldavis_prepared_'+str(number_topics)) # # this is a bit time consuming - make the if statement True # # if you want to execute visualization prep yourself #if 1 == 1: LDAvis_prepared = sklearn_lda.prepare(lda, count_data, count_vectorizer) with open(LDAvis_data_filepath, 'wb') as f: pickle.dump(LDAvis_prepared, f) # load the pre-prepared pyLDAvis data from disk with open(LDAvis_data_filepath, "rb") as f: LDAvis_prepared = pickle.load(f) pyLDAvis.save_html(LDAvis_prepared, './ldavis_prepared_'+ str(number_topics) +'.html') ###Output _____no_output_____ ###Markdown Data AnalysisWe would analyse the data to find valuable information.We would be doing the following analysis: - Are non STEM students more self-confident than STEM students and which one of them are more likely to become entrepreneurs? - Does competitiveness affect the physical health and mental disorder condition of a student? - If a student is influenced, then what matters more: confidence or projects? Is this different for STEM and non STEM students? - What is the relation between having mental disorder and self-confidence or self-reliance? How does it change with age? Is it different for people who do not have a mental disorder?- Is there a difference in the mental and physical health of people who may or may not become entrepreneurs?- Which traits are most and least helpful for being an entrepreneur and do these traits differ for people from and not from a city? - What is the correlation between a strong need to achieve something or the desire to take initiative and the probability of becoming an entrepreneur?- How does competitiveness change with age or degree?- Is there a relation between not having mental disorders and being influenced by someone? First we have to pre-preprocess data ###Code # import libraraies import pandas as pd import matplotlib.pyplot as plt import numpy as np def get_data() -> pd.DataFrame: # load data data = pd.read_csv('data.csv') # remove unwanted columns data = data.drop(columns=['ReasonsForLack'], axis=1) # saving the unique values for lable encoding values = {column: list(data[column].unique()) for column in data.columns.values} # Add a filed called is_stem which tells whether a student has taken a science degree or not stem_fields = ['Engineering Sciences', 'Medicine, Health Sciences', 'Mathematics or Natural Sciences'] data['is_stem'] = data['EducationSector'].apply(lambda val: 1 if val in stem_fields else 0) # Lable encode the following columns: IndividualProject, Gender, City, Influenced, MentalDisorder columns_to_lable = ['IndividualProject', 'Gender', 'City', 'Influenced', 'MentalDisorder'] for column in columns_to_lable: data[column] = data[column].apply(lambda val: values[column].index(val)) # Onehot encode the following columns : EducationSector, KeyTraits dummies_ed_sec = pd.get_dummies(data['EducationSector'], prefix='degree') dummies_traits = pd.get_dummies(data['KeyTraits'], prefix='trait') data = data.join(dummies_ed_sec.join(dummies_traits)).drop(columns=['EducationSector', 'KeyTraits']) return data ###Output _____no_output_____ ###Markdown Analysis 1 : Are non STEM students more self-confident than STEM students and which one of them are more likely to become entrepreneurs? ###Code data = get_data() # -- a) Relation to self confidence stem = data[data['is_stem'] == 1].groupby(['SelfConfidence']).count()['Age'] not_stem = data[data['is_stem'] == 0].groupby(['SelfConfidence']).count()['Age'] X = range(1, 6) stem = [stem[index] for index in X] stem = [(val * 100) / sum(stem) for val in stem] not_stem = [not_stem[index] for index in X] not_stem = [(val * 100) / sum(not_stem) for val in not_stem] X_axis = np.arange(len(X)) plt.bar(X_axis - 0.2, stem, 0.4, label = 'STEM') plt.bar(X_axis + 0.2, not_stem, 0.4, label = 'Non STEM') plt.xticks(X_axis, X) plt.xlabel("Lowest to Highest Confidence") plt.ylabel("percentage of Students") plt.legend() plt.show() # -- b) Relation to competency of being entrepreneur stem = data[data['is_stem'] == 1].groupby(['y']).count()['Age'] not_stem = data[data['is_stem'] == 0].groupby(['y']).count()['Age'] X = range(2) stem = [stem[index] for index in X] stem = [(val * 100) / sum(stem) for val in stem] not_stem = [not_stem[index] for index in X] not_stem = [(val * 100) / sum(not_stem) for val in not_stem] X_axis = np.arange(len(X)) plt.bar(X_axis - 0.2, stem, 0.4, label = 'STEM') plt.bar(X_axis + 0.2, not_stem, 0.4, label = 'Non STEM') plt.xticks(X_axis, ['incompetent', 'competent']) plt.xlabel("competency of being entrepreneur") plt.ylabel("percentage of Students") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell : - non STEM students are as self-confident as STEM students- both STEM and non STEM students have the same competency of being entrepreneur Analysis 2 : Does competitiveness affect the physical health and mental disorder condition of a student? ###Code data = get_data() # -- a) Relation to Mental Disorder Condition vals = data[data['MentalDisorder'] == 1].groupby(['Competitiveness']).count()['Age'] X = range(1, 6) y = [vals[index] for index in X] fig, ax = plt.subplots() ax.plot(X, y, '--') ax.scatter(X, y, marker='P', color='red') ax.set_xlabel('competitiveness') ax.set_ylabel('number of students with mental disorder') plt.show() # -- b) Relation to Physical health vals = data[data['GoodPhysicalHealth'] >= 3].groupby(['Competitiveness']).count()['Age'] X = range(1, 6) y = [vals[index] for index in X] fig, ax = plt.subplots() ax.plot(X, y, '--') ax.scatter(X, y, marker='P', color='red') ax.set_xlabel('competitiveness') ax.set_ylabel('number of students with good physical health') plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell : - as the competitiveness increase the number of students with mental disorder increase- as the competitiveness increase the number of students with good physical health increase Analysis 3 : If a student is influenced, then what matters more: confidence or projects? Is this different for STEM and non STEM students? ###Code data = get_data() # -- a) Relation of confidence and projects # Extracting confidence of influenced students very_influenced_confidence = data[data['Influenced'] == 1].groupby(['SelfConfidence']).count()['Age'] array_1 = [1, 2, 3, 4, 5] array_2 = [very_influenced_confidence[x] for x in array_1] high_conf = (array_2[3] + array_2[4]) * 100 / sum(array_2) # Extracting projects of influenced students very_influenced_projects = data[data['Influenced'] == 1].groupby(['IndividualProject']).count()['Age'] project_1 = [0, 1] project_2 = [very_influenced_projects[x] for x in project_1] ind_p = project_2[1] * 100 / sum(project_2) lis_1 = [high_conf, ind_p] lis_2 = ["High Self-Confidence", "Undertaken Project"] fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_2, lis_1, color='maroon', width=0.4) plt.ylabel("Percentage of students") plt.show() # -- b) Relation of confidence for STEM and Non STEM students # Extracting confidence for STEM students very_influenced_confidence_stem = data[(data['Influenced'] == 1) & (data["is_stem"] == 1)].groupby(['SelfConfidence']).count()['Age'] array_1 = [1, 2, 3, 4, 5] array_2 = [very_influenced_confidence_stem[x] for x in array_1] answer_confidence = (array_2[3] + array_2[4]) * 100 / sum(array_2) # Extracting confidence for non-STEM students very_influenced_confidence_non_stem = data[(data['Influenced'] == 1) & (data["is_stem"] == 0)].groupby(['SelfConfidence']).count()['Age'] array_2_non = [very_influenced_confidence_non_stem[x] for x in array_1] answer_confidence_non = (array_2_non[3] + array_2_non[4]) * 100 / sum(array_2_non) lis_1 = [answer_confidence, answer_confidence_non] lis_2 = ["STEM", "Non-STEM"] fig_3 = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_2, lis_1, color='maroon', width=0.4) plt.ylabel("Percentage of students with high self-confidence when influenced") plt.xlabel("Degree type of students") plt.show() # -- c) Relation of individual projects for STEM and Non STEM students # Extracting individual projects for STEM students very_influenced_project_stem = data[(data['Influenced'] == 1) & (data["is_stem"] == 1)].groupby(['IndividualProject']).count()['Age'] array_1_p = [0, 1] array_2_p = [very_influenced_project_stem[x] for x in array_1_p] answer = array_2_p[1] * 100 / sum(array_2_p) # Extracting individual projects for non-STEM students very_influenced_projects_non_stem = data[(data['Influenced'] == 1) & (data["is_stem"] == 0)].groupby(['IndividualProject']).count()['Age'] array_2_non_p = [very_influenced_projects_non_stem[x] for x in array_1_p] answer2 = array_2_non_p[1] * 100 / sum(array_2_non_p) lis = [answer, answer2] lis2 = ["STEM", "Non-STEM"] fig_2 = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis2, lis, color='maroon', width=0.4) plt.ylabel("Percentage of students undertaking individual projects when influenced") plt.xlabel("Degree type of students") plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell:- When a student is influenced, percentage of students undertaking projects andhaving high self-confidence is similar.- When a student is influenced, the percentage of STEM students and non-STEM studentswith high self-confidence is similar.- When a student is influenced, percentage of STEM students undertaking individual projects is slightlyhigher than non-STEM students.Note: High self-confidence is defined as a rating of 4 or 5 in self-confidence. Analysis 4 : What is the relation between having mental disorder and self-confidence or self-reliance? How does it change with age? Is it different for people who do not have a mental disorder? ###Code data = get_data() # a) Relation with self-confidence mental_disorder_conf = data[data['MentalDisorder'] == 1].groupby(['SelfConfidence']).count()['Age'] array_1 = [1, 2, 3, 4, 5] array_2 = [mental_disorder_conf[x] for x in array_1] high_conf = (array_2[3] + array_2[4]) * 100 / sum(array_2) # b) Relation with self-reliance mental_disorder_rel = data[data['MentalDisorder'] == 1].groupby(['SelfReliance']).count()['Age'] array_3 = [mental_disorder_rel[x] for x in array_1] high_rel = (array_3[3] + array_3[4]) * 100 / sum(array_3) lis_1 = [high_conf, high_rel] lis_2 = ["High Self-Confidence", "High Self-reliance"] fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_2, lis_1, color='maroon', width=0.4) plt.ylabel("Percentage of students") plt.show() # c) Change with age mental_disorder_age = data[data['MentalDisorder'] == 1] mental_disorder_full = mental_disorder_age.groupby('Age').count()['Gender'] mental_disorder_age_c = mental_disorder_age[mental_disorder_age["SelfConfidence"] >= 4].groupby('Age').count()['Gender'] lis = [x for x in range(17, 24)] lis.extend([25]) lis_2 = [mental_disorder_age_c[x] for x in lis] lis_3 = [mental_disorder_full[x] for x in lis] percentage = [] for x in range(len(lis_3)): percentage.append(lis_2[x] * 100 / lis_3[x]) res = {lis[i]: percentage[i] for i in range(len(percentage))} plt.bar(res.keys(), res.values()) plt.xlabel("Age of students with mental disorders") plt.ylabel("Percentage with high self-confidence") plt.show() mental_disorder_age_r = mental_disorder_age[mental_disorder_age["SelfReliance"] >= 4].groupby('Age').count()['Gender'] lis_r = [x for x in range(17, 23)] lis_2_r = [mental_disorder_age_r[x] for x in lis_r] lis_4 = [mental_disorder_full[x] for x in lis_r] percentage_r = [] for x in range(len(lis_4)): percentage_r.append(lis_2_r[x] * 100 / lis_4[x]) res_r = {lis_r[i]: percentage_r[i] for i in range(len(percentage_r))} plt.bar(res_r.keys(), res_r.values()) plt.xlabel("Age of students with mental disorders") plt.ylabel("Percentage with high self-reliance") plt.show() # d) Relation with self-confidence -- No mental disorder no_mental_disorder_conf = data[data['MentalDisorder'] == 0].groupby(['SelfConfidence']).count()['Age'] array_1 = [1, 2, 3, 4, 5] array_2 = [no_mental_disorder_conf[x] for x in array_1] high_conf_no = (array_2[3] + array_2[4]) * 100 / sum(array_2) # e) Relation with self-reliance -- No mental disorder no_mental_disorder_rel = data[data['MentalDisorder'] == 0].groupby(['SelfReliance']).count()['Age'] array_3 = [no_mental_disorder_rel[x] for x in array_1] high_rel_no = (array_3[3] + array_3[4]) * 100 / sum(array_3) lis_1 = [high_conf_no, high_rel_no] lis_2 = ["High Self-Confidence", "High Self-reliance"] fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_2, lis_1, color='maroon', width=0.4) plt.ylabel("Percentage of students") plt.show() # f) Change with age no_mental_disorder_age = data[data['MentalDisorder'] == 0] no_mental_disorder_full = no_mental_disorder_age.groupby('Age').count()['Gender'] no_mental_disorder_age_c = \ no_mental_disorder_age[no_mental_disorder_age["SelfConfidence"] >= 4].groupby('Age').count()['Gender'] lis = [x for x in range(18, 23)] lis.extend([24]) lis_2 = [no_mental_disorder_age_c[x] for x in lis] lis_3 = [no_mental_disorder_full[x] for x in lis] percentage = [] for x in range(len(lis_3)): percentage.append(lis_2[x] * 100 / lis_3[x]) res = {lis[i]: percentage[i] for i in range(len(percentage))} plt.bar(res.keys(), res.values()) plt.xlabel("Age of students without mental disorders") plt.ylabel("Percentage with high self-confidence") plt.show() no_mental_disorder_age_r = \ no_mental_disorder_age[no_mental_disorder_age["SelfReliance"] >= 4].groupby('Age').count()['Gender'] lis_r = [x for x in range(17, 23)] lis_r.extend([24]) lis_2_r = [no_mental_disorder_age_r[x] for x in lis_r] lis_4 = [no_mental_disorder_full[x] for x in lis_r] percentage_r = [] for x in range(len(lis_4)): percentage_r.append(lis_2_r[x] * 100 / lis_4[x]) res_r = {lis_r[i]: percentage_r[i] for i in range(len(percentage_r))} plt.bar(res_r.keys(), res_r.values()) plt.xlabel("Age of students without mental disorders") plt.ylabel("Percentage with high self-reliance") plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell : With mental disorder:- We find that more than half of the students with mental disorders have high self-confidence and self-reliance, and there is a slightly more percentage of these students having high self-reliance than high self-confidence. - We see that there is no significant difference in the percentage of students having mental disorders and having high self-confidence from age 17 to 23. However, there is a spike in the percentage at age 25, and there are no students who have a mental disorder and high self-confidence at age 24. - We see that the percentage of students with mental disorders and having high self-reliance increases till age 20, after which it again decreases. Without mental disorder:- We find that more than half of the students without mental disorders have high self-confidence and self-reliance, and there is a significantly more percentage of these students having high self-reliance than high self-confidence.- We see that the percentage of students having mental disorders and having high self-confidence from age 18 to 22 decreases. However, there is a spike in the percentage at age 24, and there are no students who have a mental disorder and high self-confidence at age 23.- We see that the percentage of students having mental disorders and having high self-reliance from age 17 to 21 gradually increases. However, there is a spike in the percentage at age 24, and there are no students who have a mental disorder and high self-reliance at age 23. There is also a significant decline in the percentage at age 22. Note:- High self-confidence is defined as a rating of 4 or 5 in self-confidence.- High self-reliance is defined as a rating of 4 or 5 in self-reliance.- In the analysis, zero percentages might be explained by the lack of data; however, the sudden spikes at ages 24 and 25 are worth further investigation. Analysis 5 : Is there a difference in the mental and physical health of people who may or may not become entrepreneurs? ###Code data = get_data() # -- a) Assosiation with Mental health fig, ax = plt.subplots() fig.set_size_inches(15.5, 7.5) counts = data[data['y'] == 1].groupby(['MentalDisorder']).count()['y'] another_counts = data[data['y'] == 0].groupby(['MentalDisorder']).count()['y'] ax.bar(['mental disorder - entrepreneur', 'no mental disorder - entrepreneur', 'mental disorder - not entrepreneurs', 'no mental disorder - not entrepreneur'], [counts[0], counts[1], another_counts[0], another_counts[1]]) ratio_1_calc = round(counts[0] / (counts[0] + another_counts[0]) * 1000) / 10 ratio_2_calc = round(counts[1] / (counts[1] + another_counts[1]) * 1000) / 10 ratio_1 = f'percentage of people with metal health disorder who have the potential to become entrepreneur : {ratio_1_calc}%' ratio_2 = f'percentage of people who are mentaly fit and have the potential to become entrepreneur : {ratio_2_calc}%' ax.set_xlabel('has mental disorder or not \n' + ratio_1 + '\n' + ratio_2) ax.set_ylabel('number of students who might become entreprenures') ax.set_title('Mental health vs no of students who can become entreprenures') plt.show() # -- b) Assosiation with Physical health fig, ax = plt.subplots() fig.set_size_inches(15.5, 7.5) counts = data[data['y'] == 1].groupby(['GoodPhysicalHealth']).count()['y'] another_counts = data[data['y'] == 0].groupby(['GoodPhysicalHealth']).count()['y'] ax.bar(['bad physical health - entrepreneur', 'good physical health - entrepreneur', 'bad physical health- not entrepreneur', 'good physical health - not entrepreneur'], [counts[1] + counts[2], counts[3] + counts[4] + counts[5], another_counts[1] + another_counts[2], another_counts[3] + another_counts[4] + another_counts[5]]) ratio_1_calc = round((counts[1] + counts[2]) / ((counts[1] + counts[2]) + (another_counts[1] + another_counts[2])) * 1000) / 10 ratio_2_calc = round((counts[3] + counts[4] + counts[5]) / ((counts[3] + counts[4] + counts[5]) + (another_counts[3] + another_counts[4] + another_counts[5])) * 1000) / 10 ratio_1 = f'percentage of people with bad physical health who have the potential to become entrepreneur : {ratio_1_calc}%' ratio_2 = f'percentage of people who are physically fit and have the potential to become entrepreneur : {ratio_2_calc}%' ax.set_xlabel('rating from worst to best physical health \n' + ratio_1 + '\n' + ratio_2) ax.set_ylabel('number of students who might become entreprenures') ax.set_title('Physical health vs no of students who can become entreprenures') plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell : - Mental disorder does not but Phyical health does Analysis 6 : Which traits are most and least helpful for being an entrepreneur and do these traits differ for people from and not from a city? ###Code data = get_data() traits = ['trait_Passion', 'trait_Positivity', 'trait_Resilience', 'trait_Vision', 'trait_Work Ethic'] def get_vals(d, is_remote = False): """Return no of entrepreneurs corresponding to traits""" if not is_remote: return [d[1][0][0][0][0], d[0][1][0][0][0], d[0][0][1][0][0], d[0][0][0][1][0], d[0][0][0][0][1]] return [d[1][0][0][0][0], d[0][1][0][0][0], 0, d[0][0][0][1][0], 0] def get_percent_vals(d, is_remote = False): """Return percentage of entrepreneurs corresponding to traits""" vals = get_vals(d, is_remote) return [(val * 100) / sum(vals) for val in vals] # -- a) Simple relation in traits and competency of being entrepreneur ploting_data = data[data['y'] == 1].groupby(traits).count()['Age'] plt.bar(traits, get_vals(ploting_data)) plt.xlabel("trait") plt.ylabel("Number of Students who have the competency of being entrepreneur") plt.show() # -- b) Difference in City and Remote query_city = 'y == 1 and City == 0' query_remote = 'y == 1 and City == 1' city = data.query(query_city).groupby(traits).count()['Age'] remote = data.query(query_remote).groupby(traits).count()['Age'] X_axis = np.arange(len(traits)) city_y = get_percent_vals(city, False) remote_y = get_percent_vals(remote, True) plt.bar(X_axis - 0.2, city_y, 0.4, label = 'City') plt.bar(X_axis + 0.2, remote_y, 0.4, label = 'Remote') plt.xticks(X_axis, traits) plt.xlabel("trait") plt.ylabel("Number of Students who have the competency of being entrepreneur") plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell : - The order is Positivity > Passion > Work ethic > Vision > Resiliance- The order is same for both city and remote areas. Analysis 7 : What is the correlation between a strong need to achieve something or the desire to take initiative and the probability of becoming an entrepreneur? ###Code data = get_data() # a) Strong need to achieve something strong_need = data[data['StrongNeedToAchieve'] >= 4].groupby('y').count()['Gender'] lis = [0, 1] full_need = data.groupby('y').count()['Gender'] lis_2 = [strong_need[x] for x in lis] lis_3 = [full_need[x] for x in lis] percentage = [] lis_4 = ["0", "1"] for x in range(len(lis_3)): percentage.append(lis_2[x] * 100 / lis_3[x]) fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_4, percentage, color='maroon', width=0.4) plt.ylabel("Percentage of students with high need to achieve something") plt.xlabel("Probability of becoming an entrepreneur") plt.show() # b) Desire to take initiative strong_desire = data[data['DesireToTakeInitiative'] >= 4].groupby('y').count()['Gender'] lis = [0, 1] full_desire = data.groupby('y').count()['Gender'] lis_2 = [strong_desire[x] for x in lis] lis_3 = [full_desire[x] for x in lis] percentage = [] lis_4 = ["0", "1"] for x in range(len(lis_3)): percentage.append(lis_2[x] * 100 / lis_3[x]) fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_4, percentage, color='maroon', width=0.4) plt.ylabel("Percentage of students with high desire to take initiative") plt.xlabel("Probability of becoming an entrepreneur") plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell:- We see that 60% of students with no probability of becoming an entrepreneur had a high need to achieve something, and 70% of students with probability of becoming an entrepreneur had a high need to achieve something. - We see that 55% of students with no probability of becoming an entrepreneur had a high desire to take initiative, and 70% of students with probability of becoming an entrepreneur had a high desire to take initiative. Note: - High desire to take initiative and high need to achieve something is defined as a rating of 4 or 5 on their respective scales. Analysis 8 : How does competitiveness change with age or degree? ###Code data = get_data() # a) Change with age change_with_age = data[data['Competitiveness'] >= 4].groupby('Age').count()['Gender'] lis = [x for x in range(17, 25)] full_age = data.groupby('Age').count()['Gender'] lis_2 = [change_with_age[x] for x in lis] lis_3 = [full_age[x] for x in lis] percentage = [] for x in range(len(lis_3)): percentage.append(lis_2[x] * 100 / lis_3[x]) res = {lis[i]: percentage[i] for i in range(len(percentage))} plt.bar(res.keys(), res.values()) plt.xlabel("Age of students") plt.ylabel("Percentage with high competitiveness") plt.show() # b) Change with degree change_with_degree = data[data['Competitiveness'] >= 4].groupby('is_stem').count()['Gender'] lis = [0, 1] full_degree = data.groupby('is_stem').count()['Gender'] lis_2 = [change_with_degree[x] for x in lis] lis_3 = [full_degree[x] for x in lis] percentage = [] for x in range(len(lis_3)): percentage.append(lis_2[x] * 100 / lis_3[x]) res = {lis[i]: percentage[i] for i in range(len(percentage))} lis_2 = ["Non-STEM Degree", "STEM Degree"] fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(lis_2, percentage, color='maroon', width=0.4) plt.ylabel("Percentage of students") plt.show() ###Output _____no_output_____ ###Markdown Conclusion in a Nutshell:- With age: We find that more that about 60% students have a high competitiveness at age 17. This percentage decreases for two years, and then increases at age 20, remaining almost the same for the upcoming ages. Then, there is a spike in the percentage at age 24.- With degree: We find that about 60% of STEM students have high competitiveness whereas 40% of non-STEM students have high competitiveness. Note:- High competitiveness is defined as a rating of 4 or 5 on competitiveness. Analysis 9 : Is there a relation between not having mental disorders and being influenced by someone? ###Code data = get_data() from data_preprocessing import data import matplotlib.pyplot as plt no_mental_disorder = data[data['MentalDisorder'] == 0].groupby("Influenced").count()['Age'] lis = [0, 1] lis_2 = [no_mental_disorder[x] for x in lis] influenced = lis_2[1] / sum(lis_2) mental_disorder = data[data['MentalDisorder'] == 1].groupby("Influenced").count()['Age'] lis_3 = [mental_disorder[x] for x in lis] influenced_1 = lis_3[1] / sum(lis_3) plot = [influenced, influenced_1] plot_1 = ["No mental disorder", "Mental disorder"] fig = plt.figure(figsize=(10, 6)) # creating the bar plot plt.bar(plot_1, plot, color='maroon', width=0.4) plt.ylabel("Percentage of students influenced") plt.show() ###Output _____no_output_____ ###Markdown Data Analysis ###Code from gensim.corpora import Dictionary from gensim.models import Phrases, TfidfModel from gensim.models.coherencemodel import CoherenceModel from gensim.models.ldamodel import LdaModel from gensim.models.phrases import Phraser # import math from matplotlib import pyplot as plt from nltk.corpus import stopwords from nltk.tokenize import sent_tokenize, word_tokenize import pandas as pd import pickle import re # from sklearn.cluster import KMeans # from sklearn.feature_extraction.text import TfidfVectorizer # from sklearn.mixture import GaussianMixture pd.options.mode.chained_assignment = None REVIEWS = './data/cellphone_reviews.json' ###Output _____no_output_____ ###Markdown Utils ###Code def flatten(lol): return [l for ll in lol for l in ll] ###Output _____no_output_____ ###Markdown Pre-processing ###Code reviews = pd.read_json(REVIEWS, lines=True) reviews['unhelpful'] = reviews['helpful'].apply(lambda x: x[1] - x[0]) reviews['helpful'] = reviews['helpful'].apply(lambda x: x[0]) reviews['reviewText'] = reviews['reviewText'].str.lower() reviews.drop_duplicates(inplace=True) reviews.head(5) ###Output _____no_output_____ ###Markdown Filtering for negative reviews ###Code negative_reviews = reviews.loc[reviews['overall'] <= 2] negative_reviews.head(5) ###Output _____no_output_____ ###Markdown Feature extraction ###Code STOP_WORDS = set(stopwords.words('english')) STOP_WORDS -= {'not', 'no'} def tokenizer(sentence): tokens = [re.sub('[\W_]+', '', word) \ for word in word_tokenize(sentence) \ if len(word) > 2 and word not in STOP_WORDS] return tokens def ngram(sent, n): """ Splits a sentence into n-grams. """ # Split sentence into words tokens = tokenizer(sent) # Zip n consecutive elements into tuples ngram_toks = zip(*[tokens[i:] for i in range(n)]) # Concat ngrams = [' '.join(tok) for tok in ngram_toks] filtered_ngrams = [ngram for ngram in ngrams \ if len(ngram) > 2] return filtered_ngrams corpus = negative_reviews['reviewText'].values all_sentences = flatten([sent_tokenize(review) for review in corpus]) all_valid_words = [tokenizer(sent) for sent in all_sentences] ###Output _____no_output_____ ###Markdown Building n-gram modelsAbandoned because `gensim` is not giving any phrases, mostly unigrams. ###Code # Check bigrams bigrams = Phrases(all_valid_words, min_count=3) bigram_mdl = Phraser(bigrams) for avw in all_valid_words[:50]: print(bigram_mdl[avw]) ###Output ['worked', 'first', 'week', 'charge', 'phone'] ['waste_money'] ['worked_great', 'first', 'couple_weeks', 'stopped', 'completely', 'basically', 'small', 'waste_money'] ['disappointed', 'nt', 'work', 'ipad'] ['get', 'buying', 'cheap', 'adapter'] ['week', 'one', 'side', 'works'] ['works', 'one', 'side', 'time'] ['connect', 'two', 'cables', 'one', 'side', 'stop_working', 'also', 'overheated', 'burning', 'fuses'] ['purchased', 'two', 'problem'] ['cheap', 'bad', 'quality'] ['nt', 'last_long'] ['worked_great', 'worked', 'cheap', 'piece_plastic', 'crap', 'nt', 'expected', 'last'] ['bought', 'could', 'use', 'charge', 'tab', 'time'] ['tab', 'not', 'recognize', 'high', 'power', 'port', 'either', 'charge', 'use', 'power', 'not', 'charge', 'powered'] ['could', 'give', 'usb', 'car_charger', 'stars', 'although', 'worked_fine', 'months', 'subsequently', 'died', 'mepros', 'has', 'usb_ports', 'charging', 'one', 'top', '21_amps'] ['bottom', 'slot', 'lower', 'presumably', '15', 'ampsfits', 'well', 'charging', 'socket', 'holds', 'tight'] ['ve', 'loose', 'charging', 'socketworks', 'well', 'charge', 'iphone', 'top', 'slot', 'bottom', 'slot', 'works', 'android_phones', 'except', 'high_end', 'oneshas', 'blue_led', 'light', 'tell', 'ready', 'chargethe', 'usb', 'sockets', 'seem', 'well', 'made', 'tightly', 'fit', 'cablespretty', 'solid', 'constructionit', 'cost', 'less', '2cons', 'it', 'died', 'monthsi', 'really_enjoyed', 'using', 'usb', 'charger'] ['rapidly', 'charged', 'iphone', 'worked_well', 'charging', 'phones', 'family_friends'] ['two', 'slot', 'design', 'makes', 'design', 'handy', 'slot', 'design', 'one', 'else', 'charge', 'device', 'unless', 'remove', 'cord'] ['course', 'charger', 'died', 'back', 'slot', 'design', 'using', 'beforeafter', 'months', 'began', 'notice', 'led_light', 'flickering'] ['less_week', 'later', 'quit_working', 'permanently'] ['not', 'sure', 'problem', 'faulty', 'wiring', 'bad', 'design', 'guess_ll', 'never', 'know'] ['thought', 'getting', 'another', 'since', 'cheap', 'thought', 'better'] ['maybe', 'cheap', 'simply', 'disposable', 'short_period', 'timefor', 'whatever_reason', 'died', 'forced', 'look', 'another', 'slot', 'design', 'nt', 'found', 'one', 'price_range', 'yet'] ['bought', 'tried', 'test', 'first', 'minutes', 'charging', 'felt', 'hot'] ['pulled', 'product', 'smelled', 'burnt'] ['tried', 'one', 'thing'] ['careful', 'one', 'could', 'fire_hazard', 'could_potentially', 'destroy', 'electrical', 'system'] ['loved', 'case', 'first', 'received', 'shortly', 'case', 'started_peel', 'first', 'not', 'know', 'looked', 'back', 'case', 'missing', 'spots'] ['guess', 'sometimes', 'good', 'deal', 'not', 'really', 'good', 'dealwould', 'not', 'purchase'] ['looked_like', 'used'] ['broken', 'got', 'paint_job', 'horriblei', 'would', 'never', 'get'] ['case', 'reason', 'peeling', 'nt', 'much', 'left', 'orginal', 'skin', 'loved', 'case', 'pink', 'favorite_color', 'would', 'nt', 'recommend', 'specific', 'one', 'anyone'] ['charger', 'lasted_week', 'stopped_charging', 'samsung_galaxy'] ['really', 'need', 'start', 'making', 'chargers', 'better', 've', 'thru', 'several'] [] ['junk'] ['product', 'must', 'miss', 'labeled'] ['not', 'get', 'samsung', 'phone', 'charge', 'oem', 'charger'] ['lights', 'phone', 'says', 'charging', 'nothing_happens'] ['not', 'sure', 'got_defective', 'product', 'upsetting', 'sit', 'car', 'hours', 'not', 'see', 'phone', 'recharge'] ['need', 'reliable', 'charger', 'not', 'purchase', 'productif', 'need', 'car_charger', 'samsung', 'would', 'recommend', 'motorola', 'vehicle', 'power_adapter'] ['charges_fast', 'dependable'] ['samsung', 'car_charger', 'stopped_working', 'within_month', 'period'] ['thought', 'fuse', 'blown', 'inside', 'unit', 'attempted', 'change', 've', 'noticed', 'nt', 'come_apart', 'like', 'vehicle', 'chargers'] ['great', 'price', 'right_box', 'plug', 'upload', 'sum', 'juice', 'nt', 'know', 'dropping', 'repeatedly', 'floorboard', 'occasionally', 'stuffing', 'console', 'hide', 'caused', 'failure', 'soon', 'green_light', 'failed', 'light', 'phones', 'display', 'showedit', 'nt', 'charging'] ['either', 'spend', 'several', 'dollars', 'one', 'witha', 'heavier', 'cordstronger', 'shell', 'treat', 'delicate', 'flower'] ['plugged', 'car', 'worked', 'first', 'couple_days'] ['nt', 'worked', 'since'] ['phone', 'not', 'even_recognize', 'plugged'] ['thing', 'worked_well', 'actually', 'functioned', 'today', 'stopped_working', 'past', 'day', 'return_window', 'days', 'give', 'takei', 'guessing', 'quality', 'might', 'not', 'great', 'stopped_working', 'knows', 'waste_money'] ['first', 'kind', 'cheaplooking', 'try', 'buy', 'cheapest', 'oem', 'car_charger', 'could', 'phone', 'forgiveable'] ['springs', 'side', 'nt', 'much_force', 'though', 'constantly', 'slipping', '12v', 'car', 'port'] ['cable', 'sturdy', 'rubber', 'near', 'connector', 'kind', 'stiff', 'makes', 'charging', 'operating', 'phone', 'bit', 'hassle'] ['held', 'well', 'since', 'purchased', 'thoughupdate', 'stopped_charging', 'month'] ['received', 'product', 'timely_manner', 'delightful', 'however', 'gave_gift', 'embarrassed', 'find', 'defective', 'item'] ['reimbursed', 'product', 'would', 'much', 'rather', 'product', 'worked', 'first_time'] ['worked_fine', 'days', 'change', 'cord', 'the', 'charger', 'working_fine', 'point', 'rather', 'send_back', 'bought', 'another', 'cord', 'sprint', '1900'] ['thought_would', 'samsung', 'product', 'look', 'like', 'cheap', 'counterfiet'] ['came', 'crushed', 'slow', 'charge', 'phone'] ['marking', 'legit', 'samsung', 'product', 'cord', 'stop_working', 'days'] ['not', 'upset', 'inexpensive', 'maybe', 'spend_little', 'buy', 'better', 'product', 'amazon'] ['work', 'worked_well'] ['charger', 'nt', 'charge', 'battery', 'samsung_galaxy', 'i9100', 'properlywhen', 'connect', 'screen', 'gets', 'frozen', 'cell', 'behaves', 'unusual', 'abnormal', 'way'] ['right', 'timewall', 'adapter', 'expected', 'works_well', 'dose_not', 'quickcharge', 'states', 'whole_reason', 'chose', 'chager', 'horribly', 'disappointing', 'inconvenient', 'micro_usb', 'useless', 'looks', 'acts', 'cheaply_made', 'dose_not', 'fit', 'well', 'ports', 'either', 'end', 'periodically', 'stop_working', 'phone', 'freeze', 'turn', 'periodically', 'well', 'know', 'usd', 'tried_several', 'devices', 'adapters', 'problems', 'never', 'order', 'amazon', 'two', 'orders', 'come', 'without', 'defect', 'wrong', 'probuct', 'ugh'] ['nutshell', 'not', 'oem', 'charger'] ['although', 'samsung', 'markings', 'nt', 'seat', 'well', 'samsung', 'phone'] ['means', 'either', 'meant', 'another', 'market', 'counterfeit'] ['said', 'would', 'nt', 'buy', 'againaugust', '2013', 'updatethe', 'seller', 'tried', 'make', 'amends', 'sending', 'three', 'replacement', 'chargers'] ['using', 'still', 'garbage'] ['not', 'charge', 'phone', 'fact', 'drains', 'phone'] ['must', 'counterfeit', 'product'] ['samsung', 'markings', 'not', 'charge', 'phone'] ['not', 'buy', 'product'] [] ['weeks', 'charger', 'fell_apart', 'taking', 'plug', 'not', 'strong', 'charger', 'would', 'asked', 'money', 'nt', 'even', 'worth'] ['one', 'came_broken', 'bottom', 'pice', 'snaps', 'sides', 'main', 'backing', 'inlay', 'piece'] ['came', 'scuffed', 'paint', 'pieces', 'not', 'click_together'] ['not', 'broken', 'would', 'like'] ['also', 'nt', 'three', 'click', 'pieces'] ['never', 'almost', 'bought', 'product', 'based', 'amazing', 'sounding', 'fake', 'reviews', 'provided', 'shills', 'powerbear'] ['look', 'positive_reviews', 'case', 'see', 'none', 'verified_purchases', 'yet', 'every', 'negative_review', 'one', 'course', 'verified_purchase'] ['means', 'everyone', 'actually', 'bought', 'used', 'product', 'thinks', 'crap'] ['furthermore', 'many_reviewers', 'posted', 'twice', 'product', 'per', 'color'] ['amazon', 'allows', 'beyond', 'not', 'point'] ['also', 'look', 'profiles', 'positive', 'reviewers', 'see', 'posted', 'multiple', 'positive_reviews', 'powerbear', 'products', 'many_reviews', 'carbon', 'copies'] ['beware', 'paid', 'shills'] ['watchout', 'positive_reviews', 'fake'] ['even', 'reviewed', 'twice', 'using', 'name'] ['sleazy', 'way', 'sell', 'item'] ['raving', 'friend', 'amazon', 'great', 'phone', 'cases', 'cheap', 'bought'] ['nt', 'even', 'fit', 'phone', 'right'] ['poorly_made'] ['bought', 'samsung_galaxy', 'seller', 'slow', 'getting', 'item'] ['also', 'notice', 'product', 'fit', 'sgs2', 'cut_outs', 'not', 'good'] ['cut', 'opening', 'small', 'power_button', 'also', 'extra', 'cut', 'reason'] ['fit', 'nice', 'gave_stars', 'bad', 'opening', 'phone', 'costly'] ['case', 'not', 'fit', 'phone', 'tad', 'small'] ['could', 'get', 'corners', 'case'] ['wound_buying', 'two', 'piece', 'case', 'cost', 'local_store'] ###Markdown N-gram generation ###Code negative_reviews.loc[:, 'reviewSents'] = negative_reviews['reviewText'] \ .apply(sent_tokenize) negative_reviews['unigrams'] = negative_reviews['reviewSents'] \ .apply(lambda sents: flatten([ngram(sent, 1) for sent in sents])) negative_reviews['bigrams'] = negative_reviews['reviewSents'] \ .apply(lambda sents: flatten([ngram(sent, 2) for sent in sents])) negative_reviews['ubgrams'] = negative_reviews['unigrams'] \ + negative_reviews['bigrams'] negative_reviews['trigrams'] = negative_reviews['reviewSents'] \ .apply(lambda sents: flatten([ngram(sent, 3) for sent in sents])) negative_reviews['ngrams'] = negative_reviews['unigrams'] \ + negative_reviews['bigrams'] \ + negative_reviews['trigrams'] negative_reviews.head(5) ###Output _____no_output_____ ###Markdown Topic Inference Estimating no. of topics (ngrams)> **Note:** Decreasing `u_mass` coherence values for all models, using `c_v` metric as measure instead. Also considered k-means based on TF-IDF, but that's "hard" clustering. ###Code def get_best_model(texts, max_topics, step=1): dictionary = Dictionary(texts) lda_corpus = [dictionary.doc2bow(text) for text in texts] est_topics = range(2, max_topics + step, step) lda_mdls = [] coh_vals = [] for i in est_topics: lda_mdl = LdaModel(lda_corpus, num_topics=i, id2word=dictionary, passes=3, alpha=[0.01] * i, eta=[0.01] * len(dictionary.keys())) lda_mdls.append(lda_mdl) coh_mdl = CoherenceModel(model=lda_mdl, texts=texts, corpus=lda_corpus, dictionary=dictionary, coherence='c_v') coh_vals.append(coh_mdl.get_coherence()) plt.plot(est_topics, coh_vals) plt.xlabel('Number of topics') plt.ylabel('Coherence values') plt.title('Elbow curve') plt.show() best_mdl = None best_cv = 0 for idx, cv in enumerate(coh_vals): if cv > best_cv: best_cv = cv best_mdl = lda_mdls[idx] return best_mdl ###Output _____no_output_____ ###Markdown Ngram version has decreasing `c_v` coherence values, not useful indetermining topic number ###Code ngram_texts = list(negative_reviews['ngrams'].values) best_ngram_model = get_best_model(ngram_texts, 20, 2) ###Output _____no_output_____ ###Markdown Too little trigrams occur in multiple reviews, cannot infer topicfrom topic words (overlaps). ###Code trigram_texts = list(negative_reviews['trigrams'].values) best_trigram_model = get_best_model(trigram_texts, 20, 2) ###Output _____no_output_____ ###Markdown A LDA model based on unigrams + bigrams with ~8 topics seems to be the best-performing model. ###Code ubgram_texts = list(negative_reviews['ubgrams'].values) best_ubgram_model = get_best_model(ubgram_texts, 20, 2) ###Output _____no_output_____ ###Markdown Optimal number of clusters extending to beyond 20, but doesn'tseem realistic. ###Code bigram_texts = list(negative_reviews['bigrams'].values) best_bigram_model = get_best_model(bigram_texts, 20, 2) ###Output _____no_output_____ ###Markdown Lower coherence values in general. ###Code unigram_texts = list(negative_reviews['unigrams'].values) best_unigram_model = get_best_model(unigram_texts, 20, 2) ###Output _____no_output_____ ###Markdown Looking at topic words ###Code NUM_TOPICS = 8 ubgram_texts = list(negative_reviews['ubgrams'].values) dictionary = Dictionary(ubgram_texts) lda_corpus = [dictionary.doc2bow(text) for text in ubgram_texts] best_lda_mdl = LdaModel(lda_corpus, num_topics=NUM_TOPICS, id2word=dictionary, passes=5, alpha=[0.01] * NUM_TOPICS, eta=[0.01] * len(dictionary.keys())) best_lda_mdl.show_topics(num_topics=NUM_TOPICS, num_words=15) best_lda_mdl.save('./reviews/model/lda_mdl.mm') ###Output _____no_output_____ ###Markdown Determining reasonsManual topic labelling, still problems with topic quality ###Code TOPIC_LABELS = { 0: 'cheap product, waste of money', 1: 'no protection', 2: 'faulty charging cable', 3: 'screen protector bubbles', 4: 'lousy sound quality', 5: 'does not work', 6: 'poor battery life', 7: 'case does not fit' } ###Output _____no_output_____ ###Markdown Applying LDA Model ###Code def review_topic(lda_mdl, dictionary, review_text): topic = None prob = 0 for t, p in lda_mdl[dictionary.doc2bow(review_text)]: if p > prob: topic = t return topic negative_reviews['topic_no'] = negative_reviews['ubgrams'] \ .apply(lambda x: review_topic(best_lda_mdl, dictionary, x)) topic_freq = pd.DataFrame(negative_reviews \ .groupby(['asin', 'topic_no'])['reviewText'] \ .agg(['count', list])) display(topic_freq.head(5)) topic_pcts = pd.merge(topic_freq, topic_freq.groupby(level=0)['count'] \ .apply(lambda x: x / x.sum()).rename('perc'), left_index=True, right_index=True) \ .reset_index() topic_pcts['topic'] = topic_pcts['topic_no'] \ .apply(lambda x: TOPIC_LABELS[x]) topic_pcts.head(5) ###Output _____no_output_____ ###Markdown Pickling output ###Code review_dict = {} for _, row in topic_pcts.iterrows(): pdt_asin = str(row['asin']) pdt_dict = {'reason': row['topic'], 'frequency': row['perc'], 'reviews': row['list']} if pdt_asin not in review_dict: review_dict[pdt_asin] = [pdt_dict] else: review_dict[pdt_asin].append(pdt_dict) with open('./reviews/saved_topics.pkl', 'wb') as out_pkl: pickle.dump(review_dict, out_pkl) ###Output _____no_output_____ ###Markdown Is Climate Change Real? How Do You Know? ###Code # make imports import pandas as pd import seaborn as sns import matplotlib.pyplot as plt import numpy as np from scipy import stats # read datasets (disasters) carbon_df = pd.read_csv('Data/carbon-emissions.csv') disasters_df = pd.read_csv('Data/natural-disaster-data/number-of-natural-disaster-events.csv') econ_df = pd.read_csv('Data/natural-disaster-data/economic-damage-from-natural-disasters.csv') ###Output _____no_output_____ ###Markdown 1: Getting a "Feel" For the Data[Link to natural disasters dataset.](https://www.kaggle.com/dataenergy/natural-disaster-data) ###Code # Look at the data for natural disasters disasters_df.head() # drop NaN values disasters_df = disasters_df.drop(columns='Code') econ_df = econ_df.drop(columns='Code') ###Output _____no_output_____ ###Markdown What Kinds of Values are There for "Entity"? ###Code disasters_df['Entity'].unique() ###Output _____no_output_____ ###Markdown Which Years Do We Have Data For? ###Code (disasters_df['Year'].min(), disasters_df['Year'].max()) ###Output _____no_output_____ ###Markdown 2: How Are the Natural Disasters Changing Over Time? Is Climate Change Real? Stats By the Decade: Measures of Central Tendency How does the mean number of natural disasters change by the decade? Functions to Compute Mean Amount of Disasters Annually, for a Given Decade ###Code def grab_decade(start_yr, y_c_data, interval=10): '''Return years and counts for only a specific interval length.''' end_yr = int(start_yr) + interval - 1 years = y_c_data[(y_c_data['years'] <= end_yr) & (y_c_data['years'] >= start_yr)] return years def compute_decade_mean(start_yr, y_c_data): '''Sum the number of total disasters over a given period of 10 years, returns the mean.''' years = grab_decade(start_yr, y_c_data) # compute and return the mean return years['counts'].sum() / 10 ###Output _____no_output_____ ###Markdown Function to Perform This Step for all Decades 1900-2010 ###Code def compute_means(y_c_data): '''Returns a dict of all mean number of disasters that occurred for every decade, 1900-2010.''' # compute the amount of decades in our data start_yr, end_yr = y_c_data['years'].min(), y_c_data['years'].max() decades = (end_yr - start_yr) // 10 # store all the means in a dict decade_means = dict() for i in range(start_yr, end_yr, 10): decade_means[f'{i}'] = compute_decade_mean(i, y_c_data) return decade_means # Calling the function ALL_DIS = 'All natural disasters' COUNT = 'Number of reported natural disasters (reported disasters)' counts = disasters_df[(disasters_df['Entity'] == ALL_DIS)][COUNT] # just the counts of all natural disasters, all years years = disasters_df[(disasters_df['Entity'] == ALL_DIS)]['Year'] # just the years y_c_data = pd.DataFrame(data={ 'years':years, 'counts':counts}) means_by_decade = compute_means(y_c_data) ###Output _____no_output_____ ###Markdown Plot of Changing Mean of Disaster Counts, By Decade ###Code plt.plot(list(means_by_decade.keys()), list(means_by_decade.values())) plt.xlabel('Decade Start Year') plt.ylabel('Annual Mean Disaster Count') plt.title('Change in Decade Mean for Natural Disasters, 1900-2010') plt.show() ###Output _____no_output_____ ###Markdown How does the median number of natural disasters change by decade?¶ Analogous Functions for the Medians By Decade ###Code def compute_decade_median(start_yr, y_c_data): '''Return the median of total disasters over a given period of 10 years.''' years = grab_decade(start_yr, y_c_data) # compute and return the median return years['counts'].median() def compute_medians(y_c_data): '''Returns a dict of all mean number of disasters that occurred for every decade, 1900-2010.''' # compute the amount of decades in our data start_yr, end_yr = y_c_data['years'].min(), y_c_data['years'].max() decades = (end_yr - start_yr) // 10 # store all the medians in a dict decade_medians = dict() for i in range(start_yr, end_yr, 10): decade_medians[f'{i}'] = compute_decade_median(i, y_c_data) return decade_medians medians_by_decade = compute_medians(y_c_data) ###Output _____no_output_____ ###Markdown Plot the Change in Disaster Count Median, By Decade ###Code plt.plot(list(medians_by_decade.keys()), list(medians_by_decade.values())) plt.xlabel('Decade Start Year') plt.ylabel('Median Disaster Count') plt.title('Change in Decade Median for Natural Disasters, 1900-2010') plt.show() ###Output _____no_output_____ ###Markdown Wait, what? Why the drop around 2000? Watch out! For people who only show you the data for the last decade, there's more if we look closely (at the annual data)! ###Code counts = disasters_df[(disasters_df['Entity'] == 'All natural disasters') & (disasters_df['Year'] >= 2000) & (disasters_df['Year'] <= 2010)]['Number of reported natural disasters (reported disasters)'] plt.plot(list(range(2000, 2011)), counts) plt.xlabel('Year') plt.ylabel('Annual Mean Disaster Count') plt.title('Change in Natural Disaster Count, 2000-2010') plt.show() ###Output _____no_output_____ ###Markdown Our Data is Subject to Regression to the Mean! How can we reach better conclusions*? **Without just getting more data* 3: Bayes' Theorem $ P(A|B) = \frac{P(A and B)}{P(A)} $ Given a year is between 2000-2018, what is the chance that it's number of total disasters is greater than the average number of disasters for all years 1900-2018? In our scenario: $ P(A|B) $ = P(Year Has More Natural Disasters than the Mean for All Years 1900-2018, Given Year is 2000-2018) $ P(A) $ = P(Year is Between 2000-2018) What is the mean number of total natural disasters annually, for all years 1900-2018? ###Code # find all rows reporting "all natural disasters" COUNT = 'Number of reported natural disasters (reported disasters)' all_disasters = disasters_df[disasters_df['Entity'] == 'All natural disasters'][COUNT] # sum them together, divide by their number mean_disasters = np.sum(all_disasters) / len(all_disasters) # print the mean mean_disasters ###Output _____no_output_____ ###Markdown How Many Years Between 1900-2018 Have More Than This Mean? ###Code count = 0 for num in all_disasters: if num > mean_disasters: count += 1 count ###Output _____no_output_____ ###Markdown Do all years 2000-2018 have more total disasters than the mean? ###Code all_disasters_years_and_counts = disasters_df[(disasters_df['Entity'] == 'All natural disasters')] years_2000_2018 = all_disasters_years_and_counts.tail(19) count = 0 for num in years_2000_2018['Number of reported natural disasters (reported disasters)']: if num > mean_disasters: count += 1 percent_val = round((count/19) * 100, 2) print(f'{percent_val}%') # have all these years surpassed the mean we calculated? ###Output 100.0% ###Markdown So, What's the Chance that a Year has an Above Average Number of Natural Disasters, given the year is 2000-2018, than the mean of all 118 years? ###Code print(f'{round((19/42) * 100, 2)}%') ###Output 45.24% ###Markdown Bayes' Theorem, pt. 2 Do we really need to set 2000 as our checkpoint? Given a year is between 2000-2018, what is the chance that it's number of total disasters is greater than the average number of disasters for all years 1900-2000? ###Code # slice the DataFrame by century disasters_20th = disasters_df[(disasters_df['Entity'] == 'All natural disasters') & (disasters_df['Year'] <= 1999) & (disasters_df['Year'] >= 1900)] disasters_21st = disasters_df[(disasters_df['Entity'] == 'All natural disasters') & (disasters_df['Year'] >= 2000) & (disasters_df['Year'] <= 2018)] # find the mean annual number of disasters in the 20th century mean_20th = disasters_20th[COUNT].values.mean() # compute the percent of years in the 21st century which is greater than this value percent_over = len(disasters_21st[disasters_21st[COUNT] > mean_20th]) / len(disasters_21st) * 100 print(f'{percent_over}%') ###Output 100.0% ###Markdown So how does the probability we're looking for, differ from the one before? ###Code # find the total number of years with counts above the mean_20th count_above_mean = len(all_disasters[all_disasters > mean_20th]) print(f'{round((18/count_above_mean) * 100, 2)}%') ###Output 37.5% ###Markdown 4: Distribution of Disasters What is the distribution of natural disasters over the years 1900-1999? 2000-2018? ###Code # let's take another look at that data all_disasters_years_and_counts ###Output _____no_output_____ ###Markdown Breaking it Down Even Further Years and Counts ###Code y_c_data ###Output _____no_output_____ ###Markdown Time Series Plot ###Code plt.plot(y_c_data['years'], y_c_data['counts']) plt.title('All Natural Disasters Globally, From 1900-2018') plt.ylabel('Total Count') plt.xlabel('Year') plt.show() ###Output _____no_output_____ ###Markdown Is the Distribution of Disasters "Balanced" Between the Centuries? What's the probability that any given natural disaster between 1900-2018, happened 1900-1999? ###Code def probability_for_interval(start_year, end_year): # take the sum of all natural disasters that occurred 1900-2018 sum_all = y_c_data['counts'].sum() # take the sum that happen over the interval yrs_in_range = y_c_data[(y_c_data['years'] < end_year) & (y_c_data['years'] > start_year)] sum_yrs = yrs_in_range['counts'].sum() # return the probability percent = round((sum_yrs/sum_all) * 100, 2) return percent prob_20th = probability_for_interval(1900, 2000) print(f'{prob_20th}%') ###Output 48.12% ###Markdown What About 2000-2018? ###Code prob_21st = probability_for_interval(2000, 2018) print(f'{prob_21st}%') plt.pie([prob_20th, prob_21st], labels=['20th', '21st']) plt.title('Relative Frequency of Natural Disasters in 20th & 21st Centuries') plt.show() ###Output _____no_output_____ ###Markdown 5: What Happens if We Remove Outliers? We need* to take a lot at our IQR! **because we don't have a normal distribution* ###Code def find_remove_outlier_iqr(disaster_counts): '''Remove the outliers from the dataset of annual total nautral disasters.''' # calculate interquartile range q25, q75 = np.percentile(disaster_counts, 25), np.percentile(disaster_counts, 75) iqr = q75 - q25 print(f'This is the IQR: {iqr}') # calculate the outlier cutoff cut_off = iqr * 1.5 lower, upper = q25 - cut_off, q75 + cut_off # identify outliers outliers = [x for x in disaster_counts if x < lower or x > upper] # remove outliers outliers_removed = [x for x in disaster_counts if x > lower and x < upper] return outliers print(f'Number of outliers removed from the data: {len(find_remove_outlier_iqr(counts))}') # show box plot counts = all_disasters_years_and_counts['Number of reported natural disasters (reported disasters)'] plt.boxplot(counts) plt.title("Box Plot of Annual Natural Disasters, 1900-2018") plt.ylabel("Count of Natural Disasters") plt.xlabel("Years 1900-2018") plt.show() ###Output _____no_output_____ ###Markdown 6: How Has the Amount of Carbon Emissions Looked Over the Turn of the Century? Getting a Feel of the Carbon Emissions Data This provides the monthly carbon emissions from electricity generation, by the Energy Information Administration.[Link to the dataset](https://www.kaggle.com/txtrouble/carbon-emissions). ###Code carbon_df.head(15) # carbon_df['Description'].values carbon_df.tail() # Types of energy in the dataset carbon_df['Description'].unique() ###Output _____no_output_____ ###Markdown Plot the Change in Carbon Emissions Annually, from 1973-2016 ###Code # store the annual emissions count in a dict years_emissions = dict() # just look at emissions from total electric output carbon_total = carbon_df[carbon_df['Description'] == 'Total Energy Electric Power Sector CO2 Emissions'] # traverse through the years for i in range(197300, 201700, 100): # find all the rows in the data for the year we're currently on year = carbon_total[(carbon_total['YYYYMM'] >= i) & (carbon_total['YYYYMM'] <= i + 12)] # sum the emissisons for that one year sum = 0.0 for value in year['Value']: # handle the invalid values if value == 'Not Available': value = 0.0 sum += float(value) # store it in the dict years_emissions[int(i/100)] = sum # Voila! A dict of all years and their emissions counts, 1973-2016 print(years_emissions) # One of the things to note in this data is that NaN values were replaced 0, but this is likely far from the # true number of emissions made that month plt.plot(list(years_emissions.keys()), list(years_emissions.values())) plt.title('Annual Carbon Emissions from Electricity Generation, 1973-2016') plt.xlabel('Year') plt.ylabel('Million Metric Tons of Carbon Dioxide') plt.show() ###Output _____no_output_____ ###Markdown Wait, emissions are going down? Remember, this Data was Only for the Emissions Produced for Electricity in the U.S.![Globally, emissions are up](https://www.wri.org/blog/2018/12/new-global-co2-emissions-numbers-are-they-re-not-good). 7: The (Economic) Cost of Natural Disasters Getting a Feel for the Economic Data[Link to dataset, same as for the natural disasters data.](https://www.kaggle.com/dataenergy/natural-disaster-data) ###Code econ_df.head() ###Output _____no_output_____ ###Markdown Let's Combine This DataFrame with the Disasters Data! ###Code # combining datasets df = disasters_df.rename(columns={'Number of reported natural disasters (reported disasters)': 'Disaster Count'}) df2 = econ_df.rename(columns={'Total economic damage from natural disasters (US$)':'Cost'}) df['Cost'] = df2['Cost'] df.head() ###Output _____no_output_____ ###Markdown Change in Economic Cost Over Time - Is it Normal? ###Code dollars = df[df['Entity'] == 'All natural disasters']['Cost'] plt.plot(years, dollars) plt.title('Cost of Nautral Disasters Globally, 1900-2018') plt.ylabel('Total Cost (USD)') plt.xlabel('Year') plt.show() ###Output _____no_output_____ ###Markdown Warning About the Above Time Series! I **do not** currently know whether or not the costs reported in the dataset are **adjusted for inflation.**If it turns out the costs are not, we can only take the distribution with a grain of salt. **We don't really know if the disasters are costlier in terms of value, or if it's just inflation making everything more expensive over time.** Heatmap ###Code # Credit to the Seaborn Documentation for inspiring this cell: https://seaborn.pydata.org/examples/many_pairwise_correlations.html sns.set(style="white") # Compute the correlation matrix corr = df.corr() # Generate a mask for the upper triangle mask = np.triu(np.ones_like(corr, dtype=np.bool)) # Set up the matplotlib figure f, ax = plt.subplots(figsize=(8, 8)) # Generate a custom diverging colormap cmap = sns.diverging_palette(220, 10, as_cmap=True) # Draw the heatmap with the mask and correct aspect ratio sns.heatmap(corr, mask=mask, cmap=cmap, vmax=.3, center=0, square=True, linewidths=.5, cbar_kws={"shrink": .5}, annot=True) plt.title('Covariance Between Costs Against Counts') plt.show() ###Output _____no_output_____ ###Markdown Correlations ###Code def pearson_corr(x, y): '''Given two lists of numbers x and y, return the value of their Pearson correlation coefficient.''' x_mean = np.mean(x) y_mean = np.mean(y) num = [(i - x_mean)*(j - y_mean) for i,j in zip(x,y)] den_1 = [(i - x_mean)**2 for i in x] den_2 = [(j - y_mean)**2 for j in y] correlation_x_y = np.sum(num)/np.sqrt(np.sum(den_1))/np.sqrt(np.sum(den_2)) return correlation_x_y # get a lists of the counts and the costs counts = df[(df['Entity'] == 'All natural disasters') & (df['Year'] <= 2018) & (df['Year'] >= 1900)]['Disaster Count'] costs = df[(df['Entity'] == 'All natural disasters') & (df['Year'] <= 2018) & (df['Year'] >= 1900)]['Cost'] corr_cost_count = pearson_corr(costs, counts) print(f'Correlation between cost of damages and disaster count: {corr_cost_count}.') ###Output Correlation between cost of damages and disaster count: 0.7547597509253345. ###Markdown Null Hypothesis We know that both the count and cost of total natural disasters annually, rises around the turn of the century. Someone may claim, The higher mean count of total natural disasters globally in the 21st century, will not cause more expensive costs due to disasters in this century than the one prior. Do we accept or reject this? 1 Sample T-Test**Why?**This is 1 sample because as I'm sure you realize, Earth is the only planet like Earth for which we humans can calculate economic challenges due to natural disasters.."The 1-sample t-test is used when we want to compare a sample mean to a population mean (which we already know)." [quote from iaingallagher blog, "t-tests in python"](https://iaingallagher.tumblr.com/post/50980987285/t-tests-in-python).In our scenario we can already calculate the mean cost of natural disasters for all years 1900-2018, and then use the t-test to conclude whether the years in the 21st century are exceptionally high, when there were higher numbers of natural disasters (as shown earlier). ###Code # 1-sample t-test # get a list of the costs of disasters for just the 21st century costs = df[df['Entity'] == 'All natural disasters']['Cost'].values costs_21 = df[(df['Entity'] == 'All natural disasters') & (df['Year'] <= 2018) & (df['Year'] >= 2000)]['Cost'].values # calculate the mean cost annually due to disasters, for whole population (1900-2018) pop_mean = costs.mean() # run the test t, p = stats.ttest_1samp(costs_21, pop_mean) # see the results print(f"The t-statistic is {t} and the p-value is {p}.") ###Output The t-statistic is 4.985294152328724 and the p-value is 9.584483881890286e-05. ###Markdown This example examines output from the `blob2d` example included in the `BOUT-dev` repo. \[It was tested with BOUT++ v4.3.2 from Fedora 34\].`blob2d` is a simplified model of an isolated 'blob' or 'filament'. These are coherent, field-aligned structures that are common in the scrape-off layer of tokamaks. `blob2d` represents the evolution only in the plane perpendicular to the magnetic field, with approximate closures describing parallel currents to the sheath and loss of density due to parallel flows. The 'blob' is created by initialising the simulation with a Gaussian density perturbation on a constant background.This notebook is strongly based on [the blob2d notebook in the xBOUT-examples](https://github.com/boutproject/xBOUT-examples/blob/master/blob2d/blob2d_example.ipynb).Contents:* Setup* Running the simulation* Load* Plot* Animate* Analyse Setup ###Code # set up matplotlib %matplotlib notebook from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = (16, 8) plt.rcParams.update({"font.size": 14}) import numpy as np from xbout import open_boutdataset # The physics model we are going to run import blob2d # The simulation requires a folder from which options are read, and output is written. path = "blob" # Make sure we have the folder "blob" and options file "BOUT.inp" is present blob2d.ensure_blob(path) # We must call init only once # Restart the kernel if you want to use a different working directory blob2d.bc.init(["-d", path]) ###Output _____no_output_____ ###Markdown Running the simulation===== ###Code # Only run simulation for 10 steps model = blob2d.Blob2D(nout=10) print("We are now running the simulation ... that might take some time ...") model.solve() print("The simulation is finished!") ###Output We are now running the simulation ... that might take some time ... ----------Parameters: ------------ Omega_i = 1.681764e+07 /s, c_s = 1.550006e+04 m/s, rho_s = 9.216552e-04 m delta_* = rho_s * (dn/n) * 9.372772e+00 The simulation is finished! ###Markdown Load==== First we need to open the Dataset.The chunks argument to `open_boutdataset()` is needed so that dask can paralleliseoperations over the time dimension (by default the chunk size is the size of thearrays in the files being loaded). Seehttp://xarray.pydata.org/en/stable/dask.htmlchunking-and-performance.For this example it doesn't matter, but for larger ones it can be very useful.Note: a warning from `open_boutdataset()` is expected. For `blob2d` the z-directionis a periodic, binormal direction with lengths normalised to the background hybridgyro-radius `rho_s=sqrt(T_e/m_i)`, rather than the usual toroidal angle. `'dz'` isused and `'ZMIN'` and `'ZMAX'` are ignored. ###Code ds = open_boutdataset(f"{path}/BOUT.dmp.*.nc", f"{path}/BOUT.inp", chunks={"t": 4}) # Use squeeze() to get rid of the y-dimension, which has length 1 as blob2d does not # simulate the parallel dimension. ds = ds.squeeze(drop=True) ###Output Read in: <xbout.BoutDataset> Contains: <xarray.Dataset> Dimensions: (t: 11, x: 260, y: 1, z: 256) Coordinates: * t (t) float64 0.0 50.0 100.0 150.0 200.0 ... 350.0 400.0 450.0 500.0 * x (x) int64 0 1 2 3 4 5 6 7 8 ... 252 253 254 255 256 257 258 259 * y (y) float64 0.5 * z (z) float64 0.0 0.3 0.6 0.9 1.2 1.5 ... 75.3 75.6 75.9 76.2 76.5 Data variables: dx (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> dy (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g11 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g22 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g33 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g12 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g13 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g23 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_11 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_22 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_33 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_12 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_13 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_23 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> J (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> Bxy (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> G1 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> G2 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> G3 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> phi (t, x, y, z) float64 dask.array<chunksize=(4, 260, 1, 256), meta=np.ndarray> ncalls (t) int32 dask.array<chunksize=(4,), meta=np.ndarray> ncalls_e (t) int32 dask.array<chunksize=(4,), meta=np.ndarray> ncalls_i (t) int32 dask.array<chunksize=(4,), meta=np.ndarray> n (t, x, y, z) float64 dask.array<chunksize=(4, 260, 1, 256), meta=np.ndarray> omega (t, x, y, z) float64 dask.array<chunksize=(4, 260, 1, 256), meta=np.ndarray> Attributes: BOUT_REVISION: Unknown metadata: {'BOUT_VERSION': 4.32, 'iteration': 9, 'zperiod': 1, 'MXS... options: # settings file for BOUT++\n#\n# Blob simulation in a 2D ... Metadata: { 'BOUT_VERSION': 4.32, 'MXG': 2, 'MXSUB': 256, 'MYG': 0, 'MYSUB': 1, 'MZ': 256, 'MZG': 0, 'MZSUB': 256, 'NXPE': 1, 'NYPE': 1, 'NZPE': 1, 'ZMAX': 1.0, 'ZMIN': 0.0, 'dz': 0.3, 'fine_interpolation_factor': 8, 'iteration': 9, 'ixseps1': 260, 'ixseps2': 260, 'jyseps1_1': -1, 'jyseps1_2': 0, 'jyseps2_1': 0, 'jyseps2_2': 0, 'keep_xboundaries': 1, 'keep_yboundaries': 0, 'nx': 260, 'ny': 1, 'ny_inner': 0, 'nz': 256, 'zperiod': 1} Options: <boutdata.data.BoutOptionsFile object at 0x7f6ec7b22280> ###Markdown We choose to create a 'coordinate' for the x-dimension from `dx`.This is not done generically because `dx` can have two-dimensional dependence\- as well as varying radially it can be different e.g. in core and PF regions.However, for a slab geometry like `blob2d`, `dx` is a constant so it can easilybe used to create a one-dimensional x-coordinate.This ensures we get a sensible aspect ratio in plots.A z-coordinate was already created from `dz`, because `dz` is always a scalar,so it can always be used to create a 1d 'dimension coordinate'. ###Code dx = ds["dx"].isel(x=0).values # Get rid of existing "x" coordinate, which is just the index values. ds = ds.drop("x") # Create a new coordinate, which is length in units of rho_s ds = ds.assign_coords(x=np.arange(ds.sizes["x"])*dx) ###Output _____no_output_____ ###Markdown Plot===Here we use xarray methods to plot simple slices. First make some plots of the initial state ###Code ds_initial = ds.isel(t=0) plt.figure() ax = plt.subplot(131) ax.set_aspect("equal") ds_initial["n"].plot(x="x", y="z") ax = plt.subplot(132) ax.set_aspect("equal") ds_initial["omega"].plot(x="x", y="z") ax = plt.subplot(133) ax.set_aspect("equal") ds_initial["phi"].plot(x="x", y="z") ###Output _____no_output_____ ###Markdown Plots at a time point during the blob evolution ###Code tind = 10 # Uses xarray methods to plot simple slices plt.figure() ax = plt.subplot(131) ax.set_aspect("equal") ds.isel(t=tind)["n"].plot(x="x", y="z") ax = plt.subplot(132) ax.set_aspect("equal") ds.isel(t=tind)["omega"].plot(x="x", y="z") ax = plt.subplot(133) ax.set_aspect("equal") ds.isel(t=tind)["phi"].plot(x="x", y="z") ###Output _____no_output_____ ###Markdown Slicing to a 1d Dataset automatically produces a 1d plot, herea radial density profile through the blob centre ###Code plt.figure() ds.isel(t=10, z=128)["n"].plot() ###Output _____no_output_____ ###Markdown Animate=======Use `xbout` methods through the `.bout` accessor to create animations. For a DataArray ###Code ds["n"].bout.animate2D(aspect="equal") ###Output n data passed has 3 dimensions - will use animatplot.blocks.Pcolormesh() ###Markdown Animate several fields from a Dataset with `animate_list()` ###Code ds.bout.animate_list(["n", "omega", "phi"], ncols=3, aspect="equal") ###Output _____no_output_____ ###Markdown DataArray objects can be passed to `animate_list()` (as long asthey all have the same time-axis length), e.g. to combine 1dand 2d plots.Keyword arguments to `animate_list()` can be passed lists (withas many entries as variables being plotted), to set a per-variablevalue.Animations can be saved by passing a 'save_as' argument giving a namefor the output file, producing a .gif file. ###Code ds.bout.animate_list(["n", "omega", "phi", ds["n"].isel(z=128)], aspect=["equal", "equal", "equal", "auto"], save_as="blob") ###Output _____no_output_____ ###Markdown Analyse=======Perform some analysis of the blob to demonstrate more `xarray` methods. Find the centre-of mass of the blob using `.integrate()` ([documentation](http://xarray.pydata.org/en/stable/generated/xarray.DataArray.integrate.html)). ###Code background_density = 1.0 delta_n = ds["n"] - background_density integrated_density = delta_n.integrate(dim=["x", "z"]) ds["CoM_x"] = (ds["x"]*delta_n).integrate(dim=["x", "z"]) / integrated_density ds["CoM_z"] = (ds["z"]*delta_n).integrate(dim=["x", "z"]) / integrated_density plt.figure() plt.subplot(121) ds["CoM_x"].plot() plt.subplot(122) ds["CoM_z"].plot() ###Output _____no_output_____ ###Markdown Find the blob velocity using `.differentiate()` ([documentation](http://xarray.pydata.org/en/stable/generated/xarray.DataArray.differentiate.html)).This is a somewhat crude method, using finite difference on the output timestep.It would be more accurate to calculate and integrate the ExB velocity. ###Code v_x = ds["CoM_x"].differentiate("t") v_z = ds["CoM_z"].differentiate("t") plt.figure() plt.subplot(121) v_x.plot() plt.ylabel("Radial CoM velocity") plt.subplot(122) v_z.plot() plt.ylabel("Binormal CoM velocity") ###Output _____no_output_____ ###Markdown Import library ###Code import matplotlib.pyplot as plt import numpy as np import pandas as pd import nltk import json ###Output _____no_output_____ ###Markdown Accept Rate ###Code import pyecharts.options as opts from pyecharts.charts import Bar, Line x_data = ["2009", "2010", "2011", "2012", "2013", "2014", "2015", "2016", "2017", "2018", "2019"] total_submission = [1105, 1219, 1400, 1467, 1420, 1678, 1838, 2403, 3240, 4856, 6743] accept = [263, 293, 308, 366, 359, 441, 403, 569, 678, 1011, 1429] rate = list(np.floor(1000 * np.array(accept) / np.array(total_submission)) / 10) bar = ( Bar(init_opts=opts.InitOpts(width="1000px", height="500px")) .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="Submission", yaxis_data=total_submission, label_opts=opts.LabelOpts(is_show=False), ) .add_yaxis( series_name="Accepted", yaxis_data=accept, label_opts=opts.LabelOpts(is_show=False), ) .extend_axis( yaxis=opts.AxisOpts( name="Accept Rate", type_="value", min_=0, max_=100, interval=20, axislabel_opts=opts.LabelOpts(formatter="{value}%"), ) ) .set_global_opts( tooltip_opts=opts.TooltipOpts( is_show=True, trigger="axis", axis_pointer_type="cross" ), xaxis_opts=opts.AxisOpts( type_="category", axispointer_opts=opts.AxisPointerOpts(is_show=True, type_="shadow"), ), yaxis_opts=opts.AxisOpts( name="Submission Number", type_="value", min_=0, max_=7000, interval=1000, axislabel_opts=opts.LabelOpts(formatter="{value}"), axistick_opts=opts.AxisTickOpts(is_show=True), splitline_opts=opts.SplitLineOpts(is_show=True), ), ) ) line = ( Line() .add_xaxis(xaxis_data=x_data) .add_yaxis( series_name="Accept Rate", yaxis_index=1, y_axis=rate, label_opts=opts.LabelOpts(is_show=False), ) ) # bar.overlap(line).render_notebook() ###Output _____no_output_____ ###Markdown load data ###Code with open('data/neurips2019.json') as fp: data_set = json.load(fp) for i, title in enumerate(data_set): print("NO.%d" % i, "paper's title : ", title) nltk.download('stopwords') from nltk.corpus import stopwords from collections import Counter print(stopwords.words('english')) stopwords_deep_learning = ['learning', 'network', 'neural', 'networks', 'deep', 'via', 'using', 'convolutional', 'single', 'data', 'method', 'based', 'beyond', 'model', 'algorithm', 'models', 'methods', 'evaluation', 'task', 'tasks', 'fast'] keyword_list = [] for i, title in enumerate(data_set): word_list = title.split(" ") word_list = list(set(word_list)) word_list_cleaned = [] for word in word_list: if not word.strip(): continue word = word.lower() if word not in stopwords.words('english') and word not in stopwords_deep_learning: #remove stopwords word_list_cleaned.append(word) for k in range(len(word_list_cleaned)): keyword_list.append(word_list_cleaned[k]) keyword_counter = Counter(keyword_list) print('{} different keywords before merging'.format(len(keyword_counter))) # Merge duplicates: CNNs and CNN duplicates = [] for k in keyword_counter: if k+'s' in keyword_counter: duplicates.append(k) for k in duplicates: keyword_counter[k] += keyword_counter[k+'s'] del keyword_counter[k+'s'] print('{} different keywords after merging'.format(len(keyword_counter))) print(keyword_counter) print("") # Show N most common keywords and their frequencies num_keyowrd = 120 keywords_counter_vis = keyword_counter.most_common(num_keyowrd) plt.rcdefaults() fig, ax = plt.subplots(figsize=(8, 20)) key = [k[0] for k in keywords_counter_vis] value = [k[1] for k in keywords_counter_vis] y_pos = np.arange(len(key)) ax.barh(y_pos, value, align='center', color='green', ecolor='black', log=True) ax.set_yticks(y_pos) ax.set_yticklabels(key, rotation=0, fontsize=8) ax.invert_yaxis() for i, v in enumerate(value): ax.text(v + 3, i + .25, str(v), color='black', fontsize=8) # ax.text(y_pos, value, str(value)) ax.set_xlabel('Frequency') ax.set_title('NeurIPS 2019 Submission Top {} Keywords'.format(num_keyowrd)) plt.show() # Show the word cloud forming by keywords from wordcloud import WordCloud NIPS = WordCloud(max_font_size=800, max_words=160, width=1280, height=640, background_color="black").generate(' '.join(['NeuIPS'] * 500)) wordcloud = WordCloud(max_font_size=64, max_words=160, width=1280, height=640, background_color="black").generate(' '.join(keyword_list)) plt.figure(figsize=(16, 8)) plt.imshow(NIPS, interpolation="bilinear", alpha=1) plt.imshow(wordcloud, interpolation="bilinear", alpha=.5) plt.axis("off") plt.show() import matplotlib ###Output _____no_output_____ ###Markdown Business Understanding In this project I would like to gain some insight about tech jobs / careers as I plan to shift career in mid-term and Stackoverflow's annual developer survey presents an excellent material for this. In the frame of this analysis, I will try to figure out - What are the different tech roles at all that represent the market? - What career satisfaction can be measured among various tech professionals? - What are the company profiles that employ people who attended bootcamps? Data Understanding I chose to analyse the provided dataset from Stack Overflow, which is an outcome of an annual survey of people using the site. (I have analysed the survey results of 2017.) The survey covers all sort of information like programming languages, salary, code style and various other information. The dataset I worked with includes more than 64000 responses from 213 countries around the world. The survey has collected significant amount of data points as therein more than 150 question were asked. ###Code import pandas as pd import matplotlib.pyplot as plt from collections import Counter ###Output _____no_output_____ ###Markdown To get a better understanding of the data I used for this analysis, first I look at the data itself. ###Code df = pd.read_csv("data/survey-results-public.csv") df.head() ###Output _____no_output_____ ###Markdown Let's get the size of the dataset (we know from the previous preview that it has 154 columns), the number of rows: ###Code n_rows = df.shape[0] n_rows ###Output _____no_output_____ ###Markdown Dealing with missing data is always important in the data science process. Thus below some statistics about this. ###Code no_nulls = set(df.columns[df.isnull().mean()==0]) print("The following columns are completely populated, no missing values identified:") no_nulls ###Output The following columns are completely populated, no missing values identified: ###Markdown Prepare ###Code # Filtering for interested regions only: df = df[df.Country.isin(['United Kingdom', 'Switzerland', 'Germany', 'Austria', 'Hungary'])] df.Country.value_counts() # Filtering for non empty Developer Type: df = df[df.DeveloperType.notnull()] # Creating stat dictionary about developer types devtyp_list_raw = str(tuple(df.DeveloperType.tolist())) \ .replace(";",",")\ .replace("'","")\ .replace("(","")\ .replace(")","")\ .split(", ") devtyp_list_raw devtyp_dict = dict(Counter(devtyp_list_raw)) devtyp_dict # Getting bootcamp attendees df_bc_attend = df[df.TimeAfterBootcamp.notnull()] ###Output _____no_output_____ ###Markdown Question1: Tech Roles / Developer Types ###Code # Analysing and sorting df_devtyp = pd.DataFrame.from_dict(devtyp_dict, orient="index") df_devtyp.rename(columns={0: 'cnt'}, inplace=True) df_devtyp.sort_values("cnt", ascending=True, inplace=True) df_devtyp # Visualizing (df_devtyp.cnt).plot(kind='barh', legend=None) ###Output _____no_output_____ ###Markdown The vast majority of responders work as Web / Desktop application developer in the selected region. The third most frequent role was the Mobile developer. Question2: Career Satisfaction ###Code # Visualization of overall career satisfaction score frequency df.CareerSatisfaction.hist() ###Output _____no_output_____ ###Markdown The tendency is very positive, there is a high level of satisfaction in the selected population. ###Code # Analyse mean career satisfaction scores per developer type dt = [] labels = [] for idx in df_devtyp.index: labels.append(idx) df_filt = df[df.DeveloperType.str.contains(idx)] dt.append(df_filt.CareerSatisfaction.mean()) df_careersat = pd.DataFrame(dt, index=labels) df_careersat.rename(columns={0:"meanCareerSatisfaction"}, inplace=True) df_careersat # Visualizing plt.plot(df_careersat.meanCareerSatisfaction, df_careersat.index, 'D') plt.grid(axis='y') ###Output _____no_output_____ ###Markdown In general, I found similar career satisfaction values across the observed disciplines — the means calculated among those responders who reside in the geographical areas of interest vary between 7.27 and 7.63. Question3: Opportunities with Bootcamps ###Code # Analysing bootcamp attendees employers by company type df_bc_attend.CompanyType.value_counts() # Analysing bootcamp attendees employers by company size df_bc_attend.CompanySize.value_counts() ###Output _____no_output_____ ###Markdown Machine Learning for Author Attribution - Analysis Genevieve Hayes 13th November 2018 Overview Author attribution "is the task of identifying the author of a given text from a (given) set of suspects (Mohsen et al. (2016))." This is a problem that can readily be framed as a text classification task, "where author represents a class (label) of a given text (Mohsen et al. (2016))," and as a result, recent research into author attribution analysis has focussed almost exclusively on the use of machine learning techniques.Prior to the advent of social media, author attribution analysis was typically applied to longer texts, such as books and letters. In fact, Forsyth and Holmes (1996) concluded that a text had to be a minimum of 250 words in length for the stylometric characteristics to be apparent. However, recent research (for example, Green and Sheppard (2013), Schwartz et al. (2013) and Shrestha et al. (2017)) has demonstrated the successful application of author attribution techniques to Twitter messages ("tweets"), which "average less than 25 words" in length and are "often less than 10" words long (Green and Sheppard (2013)). Tweets are currently limited to 280 characters, and prior to November 2017, were limited to 140 characters. As a result, "tweets are relatively self-contained and have smaller sentence length variance compared to excerpts from longer text (Schwartz et al. (2013))." It is possible that these characteristics are the reason why author attribution techniques, that have previously fallen apart when applied to shorter texts, have succeeded when applied to tweets. It is also possible that, had Forsyth and Holmes (1996) considered more modern machine learning algorithms in their analysis, such as support vector machines (SVMs) and neural networks, which were not in common use in 1996, that they would have drawn different conclusions about the minimum text length required to successfully identify the author of a text. In this analysis we explore these hypotheses by applying techniques that have been demonstrated to succeed in determining the authorship of tweets, to short, tweet-length, excerpts of longer works. In performing this analysis, we make use of a dataset comprising 68,000 sentence-long excerpts from the (fiction) works of eight classic authors. The dataset was created using novel texts sourced from [Project Gutenburg](https://www.gutenberg.org/), with chapter/section headings manually removed from the files prior to processing. To allow for the creation of a balanced dataset, for authors whose novels tended to be shorter in length, text excerpts were taken from multiple works.The novels used to create the dataset are as follows: |Author | Novels| Genre | Year of Publication||--------- |-------|-------|--------------------||Louisa May Alcott | *Little Women* |Coming of Age/Romance | 1869 ||Jane Austen| *Pride and Prejudice* and *Emma*|Romance | 1813/1815 ||Charlotte Bronte| *Jane Eyre* | Gothic Romance | 1847 ||Wilkie Collins | *The Woman in White* | Mystery | 1859 ||Arthur Conan Doyle | *A Study in Scarlet*, *The Sign of the Four* and *The Hound of the Baskervilles*| Mystery |1887/1890/1902| |L.M. Montgomery | *Anne of Green Gables* and *Anne of Avonlea* |Coming of Age | 1908/1909 ||Bram Stoker | *Dracula* | Horror | 1897||Mark Twain | *The Adventures of Tom Sawyer* and *The Adventures of Huckleberry Finn*|Coming of Age/Adventure|1876/1884| References Forsyth, R. and D. Holmes (1996). Feature finding for text classification. Literary and Linguistic Computing 11 (4), 163–174.Green, R. and J. Sheppard (2013). Comparing frequency- and style-based features for Twitter author identification. Proceedings of the Twenty-Sixth International Florida Artificial Intelligence Research Society Conference, 64–69.Mohsen, A., N. El-Makky, and N. Ghanem (2016). Author identification using deep learning. Proceedings of the 15th IEEE International Conference on Machine Learning and Applications, 898–903.Schwartz, R., O. Tsur, A. Rappoport, and M. Koppel (2013). Authorship attribution of micro-messages. Proceedings of the 2013 Conference on Empirical Methods in Natural Language Processing. Seattle, Washington, USA, 1880–1891.Shrestha, P., S. Sierra, F. Gonz´alez, P. Rosso, M. Montes-y G´omez, and T. Solorio (2017). Convolutional neural networks for authorship attribution of short texts. Proceedings of the 15th Conference of the European Chapter of the Association for Computational Linguistics: Volume 2, Short Papers. Valencia, Spain, 669–674. Import Packages and Load Data ###Code # Import packages import numpy as np import pandas as pd import chardet from collections import Counter import seaborn as sns import matplotlib.pyplot as plt import string import time # Display plots inline % matplotlib inline import nltk from nltk.corpus import stopwords from nltk.stem.porter import PorterStemmer from sklearn.model_selection import train_test_split, KFold from sklearn.preprocessing import MinMaxScaler, MaxAbsScaler from sklearn.feature_extraction.text import CountVectorizer, TfidfVectorizer from sklearn.model_selection import GridSearchCV from sklearn.metrics import accuracy_score, make_scorer, confusion_matrix from sklearn.metrics import precision_recall_fscore_support as score from sklearn.preprocessing import LabelBinarizer from sklearn.svm import SVC from keras.models import Model from keras.layers import Input, Dense, Flatten, Dropout, Embedding from keras.layers.convolutional import Conv1D, MaxPooling1D from keras.layers.merge import concatenate from keras.optimizers import Adam from keras.preprocessing.text import one_hot from keras.callbacks import ModelCheckpoint from scipy import sparse, stats # Download nltk - only need to run once nltk.download('stopwords') # Get encoding of data file with open("/data/author_data.csv", 'rb') as file: print(chardet.detect(file.read())) # Load data (uncomment relevant line) # Local version #data = pd.read_csv("author_data.csv", encoding="Windows-1252") # Floydhub version data = pd.read_csv("/data/author_data.csv", encoding="Windows-1252") print(data.head()) # Create feature (text) and label (author) lists text = list(data['text'].values) author = list(data['author'].values) print("The author dataset contains {} datapoints.".format(len(text))) ###Output The author dataset contains 68000 datapoints. ###Markdown Data Exploration **Explore the author (labels) data** ###Code # Check distribution of authors in the data Counter(author) ###Output _____no_output_____ ###Markdown As expected, our data is a balanced dataset containing 8,500 text excerpts from each of the 8 authors under consideration. There do not appear to be any corrupt or missing labels. **Explore the text data** Here are some examples of what the text data looks like: ###Code print(text[4000]) print(text[27000]) print(text[45000]) print(text[60000]) ###Output My heart was sore for you when I heard that," and he shook hands again, with such a sympathetic face that Jo felt as if no comfort could equal the look of the kind eyes, the grasp of the big, warm hand. ###Markdown Calculate and examine word count/length and character count statistics: ###Code # Create word count and character count lists word_count = [] char_count = [] for i in range(len(text)): word_count.append(len(text[i].split())) char_count.append(len(text[i])) # Convert lists to numpy arrays word_count = np.array(word_count) char_count = np.array(char_count) # Calculate average word lengths ave_length = np.array(char_count)/np.array(word_count) def get_stats(var): """Print summary statistics for a variable of interest. Args: var: array. Numpy array containing values for the variable of interest. Returns: None """ print("Min:", np.min(var)) print("Max:", np.max(var)) print("Mean:", np.mean(var)) print("Median", np.median(var)) print("1st percentile", np.percentile(var, 1)) print("95th percentile", np.percentile(var, 95)) print("99th percentile", np.percentile(var, 99)) print("99.5th Percentile", np.percentile(var, 99.5)) print("99.9th Percentile", np.percentile(var, 99.9)) print("Word count statistics") get_stats(word_count) # Plot word count distribution sns.distplot(word_count, kde = False, bins = 70, color = 'blue').set_title("Word Count Distribution") plt.xlabel('Excerpt Length (Words)') plt.ylabel('Count') plt.xlim(0, 100) plt.savefig("word_count.eps") print("\nCharacter count statistics") get_stats(char_count) # Plot character count distribution sns.distplot(char_count, kde = False, bins = 100, color = 'blue').set_title("Character Count Distribution") plt.xlabel('Excerpt Length (Characters)') plt.ylabel('Count') plt.xlim(0, 400) plt.savefig("char_count.eps") print("\nAverage length statistics") get_stats(ave_length) # Plot average excerpt length distribution sns.distplot(ave_length, kde = False, bins = 70, color = 'blue').set_title("Average Word Length Distribution") plt.xlabel('Average Excerpt Length (Characters)') plt.ylabel('Count') plt.xlim(0, 10) plt.savefig("ave_length.eps") ###Output _____no_output_____ ###Markdown The vast majority of text excerpts are under 100 words long, with an average length of around 18 words. However, there are a small number of outliers, including one excerpt containing over 250 words. At the opposite end of the spectrum, 1 percent of the text excerpts contain only 1 word each.On average, the text excerpts contain around 95 characters each, with the longest containing 1370 characters and the shortest, just 5 characters (sentences containing fewer than 5 characters were removed during the creation of the dataset). We would expect there to be a high correlation between word count and character count, so as a result, we shall just focus on further examining word count outliers, going forward and assume these are the same as the character count outliers.With regard to word length, the majority of the excerpts have an average word length of around 5.3 characters. However, there are also outliers in this distribution, including one excerpt with an average word length of 22.0 characters, and at the other end of the spectrum, an excerpt with an average word length of 2.5 characters.We explore these outliers below. ###Code # Get word count outliers word_outliers = np.where(word_count > 150) for i in word_outliers[0]: print("Excerpt {} - Length: {}".format(i, word_count[i])) print(text[i], "\n") word_outliers = np.where(word_count < 2) for i in word_outliers[0]: print("Excerpt {} - Length: {}".format(i, word_count[i])) print(text[i], "\n") ###Output Excerpt 17 - Length: 1 “Yes”. Excerpt 68 - Length: 1 Weston.] Excerpt 122 - Length: 1 Why?" Excerpt 220 - Length: 1 "Hindostanee". Excerpt 250 - Length: 1 me-yow”! Excerpt 312 - Length: 1 “Nobody. Excerpt 350 - Length: 1 “No”. Excerpt 411 - Length: 1 “Sir”! Excerpt 464 - Length: 1 “No”. Excerpt 484 - Length: 1 Hudson?' Excerpt 486 - Length: 1 "Yes. Excerpt 611 - Length: 1 "What!" Excerpt 719 - Length: 1 "Genius. Excerpt 765 - Length: 1 solution. Excerpt 775 - Length: 1 Politics. Excerpt 785 - Length: 1 “Sometimes. Excerpt 832 - Length: 1 Read". Excerpt 847 - Length: 1 “Why”? Excerpt 853 - Length: 1 "When?" Excerpt 1073 - Length: 1 'Never! Excerpt 1085 - Length: 1 “Indeed! Excerpt 1261 - Length: 1 “Mrs. Excerpt 1332 - Length: 1 “‘P.S. Excerpt 1554 - Length: 1 "Followed! Excerpt 1609 - Length: 1 my-soul-bless-my-soul! Excerpt 1610 - Length: 1 Well! Excerpt 1636 - Length: 1 “No”. Excerpt 1758 - Length: 1 Hartright!" Excerpt 1851 - Length: 1 "Abroad!" Excerpt 1869 - Length: 1 "Yes". Excerpt 1874 - Length: 1 “Never! Excerpt 1894 - Length: 1 "Yes. Excerpt 1902 - Length: 1 Lord! Excerpt 1940 - Length: 1 “Good! Excerpt 2208 - Length: 1 "Pooh! Excerpt 2230 - Length: 1 "Nonsense! Excerpt 2287 - Length: 1 Good-bye". Excerpt 2347 - Length: 1 "What! Excerpt 2360 - Length: 1 “Trouble! Excerpt 2383 - Length: 1 Well! Excerpt 2409 - Length: 1 “Dreadful! Excerpt 2504 - Length: 1 "The... Excerpt 2549 - Length: 1 Hark!" Excerpt 2671 - Length: 1 Come! Excerpt 2784 - Length: 1 "Iss!" Excerpt 2832 - Length: 1 "Exactly". Excerpt 2870 - Length: 1 'Bank-note!' Excerpt 2889 - Length: 1 Backsheesh. Excerpt 2965 - Length: 1 My-soul-bless-my-soul! Excerpt 2967 - Length: 1 Come! Excerpt 2989 - Length: 1 What! Excerpt 2990 - Length: 1 "Yes". Excerpt 3006 - Length: 1 “Mrs. Excerpt 3036 - Length: 1 "Laura! Excerpt 3086 - Length: 1 "Destroyed?" Excerpt 3163 - Length: 1 “Yes'm”. Excerpt 3207 - Length: 1 "Eleanor!" Excerpt 3224 - Length: 1 Laurence!'" Excerpt 3248 - Length: 1 “Boom”! Excerpt 3259 - Length: 1 Come!" Excerpt 3263 - Length: 1 Hartright?" Excerpt 3308 - Length: 1 "Nothing. Excerpt 3337 - Length: 1 "Certainly. Excerpt 3452 - Length: 1 station! Excerpt 3508 - Length: 1 "Yes". Excerpt 3568 - Length: 1 help!" Excerpt 3591 - Length: 1 Harker?" Excerpt 3609 - Length: 1 “Oh”! Excerpt 3778 - Length: 1 “Well”! Excerpt 3809 - Length: 1 Order! Excerpt 3828 - Length: 1 Good-bye. Excerpt 3858 - Length: 1 "Hum! Excerpt 3869 - Length: 1 Immense. Excerpt 3879 - Length: 1 Well! Excerpt 3993 - Length: 1 "Laura! Excerpt 4015 - Length: 1 "Laugh? Excerpt 4047 - Length: 1 “TOM”! Excerpt 4084 - Length: 1 Whitby. Excerpt 4157 - Length: 1 "Yes". Excerpt 4185 - Length: 1 "Yes. Excerpt 4194 - Length: 1 “Yes”. Excerpt 4210 - Length: 1 "What! Excerpt 4499 - Length: 1 “Well. Excerpt 4546 - Length: 1 "No". Excerpt 4590 - Length: 1 bang! Excerpt 4646 - Length: 1 Well! Excerpt 4785 - Length: 1 "Well?" Excerpt 4799 - Length: 1 "Yes". Excerpt 4829 - Length: 1 "Nonsense! Excerpt 4847 - Length: 1 talk!' Excerpt 4852 - Length: 1 “Three-and-twenty! Excerpt 4880 - Length: 1 "Certainly". Excerpt 5015 - Length: 1 “Yes. Excerpt 5124 - Length: 1 toll! Excerpt 5202 - Length: 1 “Mrs. Excerpt 5334 - Length: 1 "Pooh! Excerpt 5402 - Length: 1 "Indeed! Excerpt 5444 - Length: 1 Listen!" Excerpt 5448 - Length: 1 "Bravo!" Excerpt 5521 - Length: 1 solitude!" Excerpt 5675 - Length: 1 Ting-a-ling-ling! Excerpt 5704 - Length: 1 "No!" Excerpt 5760 - Length: 1 what?" Excerpt 5888 - Length: 1 "What! Excerpt 5985 - Length: 1 Horsewhipped! Excerpt 6072 - Length: 1 “Knightley”! Excerpt 6218 - Length: 1 "Yes". Excerpt 6357 - Length: 1 "Hark!" Excerpt 6406 - Length: 1 Quick! Excerpt 6546 - Length: 1 "Here!" Excerpt 6634 - Length: 1 "Yes! Excerpt 6648 - Length: 1 God!" Excerpt 6654 - Length: 1 Gilmore?" Excerpt 6663 - Length: 1 Well! Excerpt 6709 - Length: 1 Mary. Excerpt 6715 - Length: 1 Observe. Excerpt 6816 - Length: 1 Jane! Excerpt 6864 - Length: 1 “Mrs. Excerpt 6896 - Length: 1 raf'? Excerpt 6942 - Length: 1 When? Excerpt 6954 - Length: 1 "Halloa!" Excerpt 6986 - Length: 1 There! Excerpt 7068 - Length: 1 Come!" Excerpt 7080 - Length: 1 "Mrs. Excerpt 7116 - Length: 1 “She! Excerpt 7158 - Length: 1 “No”? Excerpt 7183 - Length: 1 “Dangerous”! Excerpt 7229 - Length: 1 "Aha!" Excerpt 7232 - Length: 1 "Exactly. Excerpt 7315 - Length: 1 Stay! Excerpt 7371 - Length: 1 Alas! Excerpt 7527 - Length: 1 Alas! Excerpt 7560 - Length: 1 Marry! Excerpt 7565 - Length: 1 Poole!" Excerpt 7634 - Length: 1 “Him? Excerpt 7699 - Length: 1 “Yes'm”. Excerpt 7701 - Length: 1 "No". Excerpt 7711 - Length: 1 “Oh”! Excerpt 7746 - Length: 1 “Mrs. Excerpt 7762 - Length: 1 "Halloa!" Excerpt 7836 - Length: 1 13th. Excerpt 7847 - Length: 1 “Good! Excerpt 7904 - Length: 1 "Sir?" Excerpt 7916 - Length: 1 "Master! Excerpt 7930 - Length: 1 “Indeed! Excerpt 7943 - Length: 1 Gilmore?" Excerpt 8025 - Length: 1 'See! Excerpt 8031 - Length: 1 “Tools”? Excerpt 8422 - Length: 1 "Exactly". Excerpt 8602 - Length: 1 Bistritz. Excerpt 8645 - Length: 1 Look! Excerpt 8796 - Length: 1 Come! Excerpt 8831 - Length: 1 "Speak! Excerpt 8862 - Length: 1 "Amen! Excerpt 8876 - Length: 1 "Yes. Excerpt 9022 - Length: 1 "You?" Excerpt 9126 - Length: 1 Good-night. Excerpt 9218 - Length: 1 toll!' Excerpt 9220 - Length: 1 SHOVE! Excerpt 9320 - Length: 1 "Benefactress! Excerpt 9326 - Length: 1 “Yes”. Excerpt 9378 - Length: 1 “Smarty! Excerpt 9444 - Length: 1 "Why?" Excerpt 9481 - Length: 1 "Exactly. Excerpt 9560 - Length: 1 “Why”? Excerpt 9589 - Length: 1 "Why?" Excerpt 9655 - Length: 1 "Entirely". Excerpt 9656 - Length: 1 "ART". Excerpt 9722 - Length: 1 “Yes”. Excerpt 9846 - Length: 1 Rochester?" Excerpt 9848 - Length: 1 John?" Excerpt 9947 - Length: 1 "Never!" Excerpt 10079 - Length: 1 "Quite". Excerpt 10144 - Length: 1 "What! Excerpt 10322 - Length: 1 “Very”. Excerpt 10326 - Length: 1 "Helen!" Excerpt 10391 - Length: 1 “‘Tention”! Excerpt 10462 - Length: 1 Rochester!" Excerpt 10521 - Length: 1 "Grandfather. Excerpt 10593 - Length: 1 “Certainly. Excerpt 10671 - Length: 1 "Humbug! Excerpt 10732 - Length: 1 "Percival! Excerpt 10735 - Length: 1 Good! Excerpt 10769 - Length: 1 (Amen!) Excerpt 10837 - Length: 1 Jane!" Excerpt 10888 - Length: 1 "Why?" Excerpt 11096 - Length: 1 "Distasteful! Excerpt 11336 - Length: 1 "Already?" Excerpt 11340 - Length: 1 "So!" Excerpt 11478 - Length: 1 Well? Excerpt 11501 - Length: 1 Rochester?" Excerpt 11694 - Length: 1 “You! Excerpt 11743 - Length: 1 “Nothing. Excerpt 11798 - Length: 1 (Aside.) Excerpt 11816 - Length: 1 "Jane!" Excerpt 11835 - Length: 1 "Right!" Excerpt 11883 - Length: 1 "Humbug! Excerpt 11962 - Length: 1 "Indeed!" Excerpt 11999 - Length: 1 Astronomy. Excerpt 12034 - Length: 1 "Excellent! Excerpt 12152 - Length: 1 Come! Excerpt 12184 - Length: 1 Bang! Excerpt 12230 - Length: 1 "What? Excerpt 12251 - Length: 1 “Money. Excerpt 12306 - Length: 1 "No". Excerpt 12446 - Length: 1 “Bingley”. Excerpt 12517 - Length: 1 “Well”! Excerpt 12552 - Length: 1 "Impossible! Excerpt 12630 - Length: 1 “Yes. Excerpt 12638 - Length: 1 "Good!" Excerpt 12643 - Length: 1 “What”! Excerpt 12686 - Length: 1 "Why?" Excerpt 12758 - Length: 1 "Iss!" Excerpt 12775 - Length: 1 'Soh!' Excerpt 12784 - Length: 1 “La”! Excerpt 12843 - Length: 1 Alas!" Excerpt 12873 - Length: 1 "Certainly. Excerpt 12883 - Length: 1 "Marian!" Excerpt 12885 - Length: 1 “Mrs. Excerpt 12991 - Length: 1 "Look!" Excerpt 13038 - Length: 1 "No". Excerpt 13039 - Length: 1 Reed?" Excerpt 13133 - Length: 1 "Illusion". Excerpt 13189 - Length: 1 come!" Excerpt 13195 - Length: 1 "Calm? Excerpt 13197 - Length: 1 Good-bye". Excerpt 13198 - Length: 1 Good-bye”! Excerpt 13321 - Length: 1 "Highty-tighty! Excerpt 13390 - Length: 1 Amen. Excerpt 13483 - Length: 1 "Hush! Excerpt 13492 - Length: 1 "Away!" Excerpt 13516 - Length: 1 Edward!" Excerpt 13518 - Length: 1 Fight! Excerpt 13599 - Length: 1 "Policeman!" Excerpt 13704 - Length: 1 “How? Excerpt 13793 - Length: 1 Faugh! Excerpt 13872 - Length: 1 10th. Excerpt 13889 - Length: 1 "Exactly. Excerpt 13902 - Length: 1 Nothing! Excerpt 13923 - Length: 1 "What?" Excerpt 13946 - Length: 1 Lost”! Excerpt 14085 - Length: 1 Kyrle?" Excerpt 14092 - Length: 1 "Yes". Excerpt 14097 - Length: 1 “No'm. Excerpt 14123 - Length: 1 Gilmore?" Excerpt 14140 - Length: 1 "Yabblins! Excerpt 14211 - Length: 1 quick!" Excerpt 14268 - Length: 1 What! Excerpt 14333 - Length: 1 Good-by!" Excerpt 14374 - Length: 1 My-soul-bless-my-soul! Excerpt 14398 - Length: 1 “Where”? Excerpt 14496 - Length: 1 "Prut! Excerpt 14557 - Length: 1 "Oh!" Excerpt 14666 - Length: 1 “Fancy. Excerpt 14796 - Length: 1 Thornfield! Excerpt 14926 - Length: 1 “Where”? Excerpt 14946 - Length: 1 my-soul-bless-my-soul! Excerpt 15027 - Length: 1 "Humph! Excerpt 15028 - Length: 1 "Unjust! Excerpt 15053 - Length: 1 "Footprints". Excerpt 15135 - Length: 1 Chemistry. Excerpt 15167 - Length: 1 Hurry”! Excerpt 15182 - Length: 1 Never!" Excerpt 15260 - Length: 1 “Wonderful”! Excerpt 15280 - Length: 1 "Like? Excerpt 15312 - Length: 1 Curious. Excerpt 15338 - Length: 1 Whitby. Excerpt 15365 - Length: 1 "Yes. Excerpt 15432 - Length: 1 There! Excerpt 15542 - Length: 1 “Why”? Excerpt 15564 - Length: 1 "'Hum!' Excerpt 15643 - Length: 1 "Yes. Excerpt 15789 - Length: 1 bang! Excerpt 15880 - Length: 1 “Get”? Excerpt 15943 - Length: 1 "Hum!" Excerpt 15969 - Length: 1 “Dead! Excerpt 15995 - Length: 1 "Cruel? Excerpt 16040 - Length: 1 ?MRS. Excerpt 16239 - Length: 1 "Journey! Excerpt 16375 - Length: 1 "Jane!" Excerpt 16448 - Length: 1 "Consider!" Excerpt 16522 - Length: 1 21st. Excerpt 16527 - Length: 1 “Yes. Excerpt 16605 - Length: 1 Well! Excerpt 16623 - Length: 1 "Stop!" Excerpt 16626 - Length: 1 Hopes! Excerpt 16653 - Length: 1 See!" Excerpt 16688 - Length: 1 Good-bye”. Excerpt 16706 - Length: 1 pass! Excerpt 16747 - Length: 1 land”? Excerpt 16794 - Length: 1 “Spunk-water! Excerpt 16833 - Length: 1 Hartright!' Excerpt 16891 - Length: 1 Mina! Excerpt 16893 - Length: 1 Good-bye". Excerpt 16965 - Length: 1 “Who? Excerpt 16966 - Length: 1 “Mrs. Excerpt 17005 - Length: 1 Hullo! Excerpt 17007 - Length: 1 Bhaer?" Excerpt 17031 - Length: 1 Sisters? Excerpt 17052 - Length: 1 “Ah”! Excerpt 17122 - Length: 1 Jane!'" Excerpt 17127 - Length: 1 "Exactly. Excerpt 17144 - Length: 1 "Here! Excerpt 17221 - Length: 1 “Why”? Excerpt 17295 - Length: 1 Truant! Excerpt 17325 - Length: 1 Yes?" Excerpt 17405 - Length: 1 "No". Excerpt 17408 - Length: 1 “Impropriety! Excerpt 17477 - Length: 1 "Holmes!" Excerpt 17552 - Length: 1 "Yes. Excerpt 17568 - Length: 1 "Good! Excerpt 17583 - Length: 1 Holmes?" Excerpt 17607 - Length: 1 “Yes”. Excerpt 17612 - Length: 1 “Oh”! Excerpt 17629 - Length: 1 "Why?" Excerpt 17726 - Length: 1 well! Excerpt 17731 - Length: 1 "'Ware!" Excerpt 17739 - Length: 1 "Sentimental? Excerpt 17747 - Length: 1 "No". Excerpt 17850 - Length: 1 "Pooh! Excerpt 17868 - Length: 1 "Margaret". Excerpt 17917 - Length: 1 WINDSOR-JULY. Excerpt 18034 - Length: 1 "Yes". Excerpt 18064 - Length: 1 “Yes. Excerpt 18083 - Length: 1 “Nonsense”! Excerpt 18255 - Length: 1 "Hush! Excerpt 18278 - Length: 1 Merriman?" Excerpt 18413 - Length: 1 Well! Excerpt 18420 - Length: 1 look!" Excerpt 18431 - Length: 1 "Indeed! Excerpt 18464 - Length: 1 beautiful! Excerpt 18465 - Length: 1 “Indeed! Excerpt 18556 - Length: 1 Ting-a-ling-ling! Excerpt 18706 - Length: 1 "Entirely". Excerpt 18717 - Length: 1 Well? Excerpt 18728 - Length: 1 "Yes. Excerpt 18996 - Length: 1 "Good! Excerpt 19048 - Length: 1 See”? Excerpt 19071 - Length: 1 "Hark!" Excerpt 19124 - Length: 1 Stamp! Excerpt 19203 - Length: 1 Anatomy. Excerpt 19215 - Length: 1 "Nonsense! Excerpt 19222 - Length: 1 “Difference! Excerpt 19427 - Length: 1 "Crisis?" Excerpt 19580 - Length: 1 "Impossible!" Excerpt 19672 - Length: 1 "Count! Excerpt 19700 - Length: 1 "Yes!" Excerpt 19769 - Length: 1 “News! Excerpt 19819 - Length: 1 Hush! Excerpt 19843 - Length: 1 "Yes". Excerpt 19853 - Length: 1 'Tisn't! Excerpt 19914 - Length: 1 “'Smallridge!' Excerpt 19921 - Length: 1 “Humph! Excerpt 20041 - Length: 1 "Remember!" Excerpt 20111 - Length: 1 "Yes'm". Excerpt 20117 - Length: 1 "Good-bye". Excerpt 20282 - Length: 1 Alas! Excerpt 20339 - Length: 1 "Enough!" Excerpt 20355 - Length: 1 "Oh!" Excerpt 20491 - Length: 1 "Exactly. Excerpt 20584 - Length: 1 “Where”? Excerpt 20592 - Length: 1 “Wrong! Excerpt 20653 - Length: 1 “Rubbage! Excerpt 20852 - Length: 1 March'. Excerpt 20902 - Length: 1 God!" Excerpt 21052 - Length: 1 "Brooke? Excerpt 21073 - Length: 1 “Amen! Excerpt 21114 - Length: 1 16th. Excerpt 21200 - Length: 1 “Shucks”! Excerpt 21312 - Length: 1 “Course”. Excerpt 21344 - Length: 1 "Grateful! Excerpt 21412 - Length: 1 “Yes”. Excerpt 21620 - Length: 1 "Yes". Excerpt 21625 - Length: 1 Catch! Excerpt 21643 - Length: 1 quick! Excerpt 21738 - Length: 1 "Never!" Excerpt 21752 - Length: 1 “Fudge! Excerpt 21771 - Length: 1 "Lingerer!" Excerpt 21947 - Length: 1 "Done! Excerpt 22025 - Length: 1 "Humph! Excerpt 22059 - Length: 1 Rochester?" Excerpt 22098 - Length: 1 Come! Excerpt 22123 - Length: 1 “Lordy”! Excerpt 22152 - Length: 1 “Aha! Excerpt 22196 - Length: 1 "What! Excerpt 22198 - Length: 1 "Dead!" Excerpt 22298 - Length: 1 Quick”! Excerpt 22399 - Length: 1 “Yes”. Excerpt 22648 - Length: 1 "Agreed!" Excerpt 22682 - Length: 1 “Oh”! Excerpt 22683 - Length: 1 "Yes". Excerpt 22687 - Length: 1 "Station! Excerpt 22802 - Length: 1 “Dream! Excerpt 22816 - Length: 1 "Un-Dead! Excerpt 23116 - Length: 1 “Yes. Excerpt 23147 - Length: 1 “Liquor! Excerpt 23151 - Length: 1 “Yes. Excerpt 23313 - Length: 1 Hush! Excerpt 23377 - Length: 1 "Where?" Excerpt 23634 - Length: 1 Fairfax?" Excerpt 23643 - Length: 1 "Thanks. Excerpt 23662 - Length: 1 Who”? Excerpt 23808 - Length: 1 “Yes”. Excerpt 24052 - Length: 1 "Hist!" Excerpt 24054 - Length: 1 "Why?" Excerpt 24103 - Length: 1 help! Excerpt 24214 - Length: 1 Rat!" Excerpt 24249 - Length: 1 "Yes. Excerpt 24263 - Length: 1 "Exactly. Excerpt 24300 - Length: 1 “Nonsense! Excerpt 24303 - Length: 1 "Evening. Excerpt 24359 - Length: 1 'Sophie! Excerpt 24393 - Length: 1 “Yes”. Excerpt 24455 - Length: 1 "Yes". Excerpt 24461 - Length: 1 "Exactly. Excerpt 24555 - Length: 1 Smith!" Excerpt 24648 - Length: 1 What! Excerpt 24655 - Length: 1 “Mrs. Excerpt 24684 - Length: 1 "Doubtless". Excerpt 24711 - Length: 1 "Brother? Excerpt 24828 - Length: 1 “Harriet”! Excerpt 24921 - Length: 1 Reed?" Excerpt 24963 - Length: 1 "What! Excerpt 24995 - Length: 1 Come”! Excerpt 25061 - Length: 1 Humph! Excerpt 25066 - Length: 1 "Hum!" Excerpt 25097 - Length: 1 “How”? Excerpt 25133 - Length: 1 Vesey?" Excerpt 25332 - Length: 1 “Quick! Excerpt 25340 - Length: 1 “Yes”. Excerpt 25353 - Length: 1 "Don't! Excerpt 25509 - Length: 1 “Good”! Excerpt 25523 - Length: 1 Unclean! Excerpt 25771 - Length: 1 "Boh! Excerpt 25811 - Length: 1 rich?" Excerpt 25858 - Length: 1 "Exactly". Excerpt 25873 - Length: 1 “Hooray”! Excerpt 25891 - Length: 1 Bessie!" Excerpt 25937 - Length: 1 unjust!" Excerpt 25990 - Length: 1 John!" Excerpt 25997 - Length: 1 "Why? Excerpt 26091 - Length: 1 'Oh!' Excerpt 26098 - Length: 1 "To-morrow". Excerpt 26102 - Length: 1 look!" Excerpt 26133 - Length: 1 "Read!" Excerpt 26143 - Length: 1 Jane! Excerpt 26188 - Length: 1 "Come!" Excerpt 26315 - Length: 1 What! Excerpt 26388 - Length: 1 Hampshire! Excerpt 26504 - Length: 1 “Yes”. Excerpt 26571 - Length: 1 “Yes'm”. Excerpt 26645 - Length: 1 23rd. Excerpt 26683 - Length: 1 "Yes?" Excerpt 26835 - Length: 1 "No". Excerpt 26841 - Length: 1 "'Nonsense!' Excerpt 26914 - Length: 1 Nonsense! Excerpt 26920 - Length: 1 “Yes”. Excerpt 26937 - Length: 1 Wait! Excerpt 26992 - Length: 1 What! Excerpt 27081 - Length: 1 "No". Excerpt 27086 - Length: 1 "Rather". Excerpt 27195 - Length: 1 "P.S. Excerpt 27211 - Length: 1 "Mrs. Excerpt 27274 - Length: 1 Where? Excerpt 27464 - Length: 1 Luck! Excerpt 27586 - Length: 1 "Well?" Excerpt 27628 - Length: 1 Inspector!" Excerpt 27689 - Length: 1 18th. Excerpt 27940 - Length: 1 “Shucks! Excerpt 28082 - Length: 1 “True. Excerpt 28138 - Length: 1 Dixon! Excerpt 28261 - Length: 1 Work! Excerpt 28270 - Length: 1 "Hem!" Excerpt 28369 - Length: 1 here!" Excerpt 28422 - Length: 1 "No". Excerpt 28450 - Length: 1 “Say! Excerpt 28461 - Length: 1 "Yes". Excerpt 28471 - Length: 1 Tudor?" Excerpt 28542 - Length: 1 "No". Excerpt 28627 - Length: 1 "Well?" Excerpt 28668 - Length: 1 "Well?" Excerpt 28695 - Length: 1 "Well?" Excerpt 28705 - Length: 1 Impossible! Excerpt 28836 - Length: 1 Fairfax?" Excerpt 28901 - Length: 1 “Yes. Excerpt 28919 - Length: 1 "Percival!" Excerpt 29012 - Length: 1 “Puffs? Excerpt 29059 - Length: 1 “No”. Excerpt 29133 - Length: 1 [Groan.] Excerpt 29169 - Length: 1 “Mrs. Excerpt 29315 - Length: 1 "Baxter?" Excerpt 29342 - Length: 1 "Father! Excerpt 29366 - Length: 1 “How”? Excerpt 29402 - Length: 1 "Consider!" Excerpt 29420 - Length: 1 "Ah!" Excerpt 29449 - Length: 1 "No". Excerpt 29720 - Length: 1 "Believe! Excerpt 29744 - Length: 1 "Come! Excerpt 29853 - Length: 1 "Anywhere. Excerpt 29992 - Length: 1 “Mrs. Excerpt 30000 - Length: 1 “Like? Excerpt 30125 - Length: 1 “Who”? Excerpt 30224 - Length: 1 What! Excerpt 30407 - Length: 1 "Well?" Excerpt 30408 - Length: 1 "Why?" Excerpt 30436 - Length: 1 "What! Excerpt 30438 - Length: 1 There! Excerpt 30444 - Length: 1 “Yes. Excerpt 30445 - Length: 1 "Ahem!" Excerpt 30509 - Length: 1 “Mrs. Excerpt 30537 - Length: 1 S'H'T! Excerpt 30538 - Length: 1 Michelson?" Excerpt 30856 - Length: 1 “No”. Excerpt 30978 - Length: 1 "There! Excerpt 31118 - Length: 1 to-morrow! Excerpt 31161 - Length: 1 "LUCY. Excerpt 31165 - Length: 1 "Sir?" Excerpt 31290 - Length: 1 "Who?" Excerpt 31294 - Length: 1 "Nay! Excerpt 31301 - Length: 1 “Mrs. Excerpt 31380 - Length: 1 “Goody!... Excerpt 31528 - Length: 1 Title. Excerpt 31622 - Length: 1 “Mrs. Excerpt 31657 - Length: 1 "Why? Excerpt 31760 - Length: 1 Toodles'. Excerpt 31848 - Length: 1 "Why?" Excerpt 31850 - Length: 1 "One!" Excerpt 31862 - Length: 1 “Fiddlesticks! Excerpt 31941 - Length: 1 "Perfectly". Excerpt 31953 - Length: 1 Alas! Excerpt 32013 - Length: 1 hurry! Excerpt 32024 - Length: 1 (A-A-Men!) Excerpt 32049 - Length: 1 "Jane! Excerpt 32079 - Length: 1 "Helen". Excerpt 32080 - Length: 1 "Indeed? Excerpt 32300 - Length: 1 "No". Excerpt 32450 - Length: 1 Percival!" Excerpt 32488 - Length: 1 Lyons!" Excerpt 32540 - Length: 1 “True. Excerpt 32615 - Length: 1 "P.S. Excerpt 32654 - Length: 1 "Mason! Excerpt 32672 - Length: 1 "None. Excerpt 32687 - Length: 1 "Enormous". Excerpt 32694 - Length: 1 "Come!" Excerpt 32769 - Length: 1 "Very. Excerpt 32801 - Length: 1 "Yes. Excerpt 32882 - Length: 1 "What?" Excerpt 32892 - Length: 1 “Dora! Excerpt 32959 - Length: 1 "Rather!" Excerpt 33004 - Length: 1 Good-night". Excerpt 33011 - Length: 1 “Hop? Excerpt 33074 - Length: 1 "Stoop!" Excerpt 33094 - Length: 1 “‘St. Excerpt 33181 - Length: 1 Sophie!' Excerpt 33183 - Length: 1 “Hello”! Excerpt 33231 - Length: 1 “Sh!... Excerpt 33234 - Length: 1 Old?" Excerpt 33301 - Length: 1 Jane!' Excerpt 33335 - Length: 1 “Certainly. Excerpt 33354 - Length: 1 "Why?" Excerpt 33649 - Length: 1 "Thick! Excerpt 33650 - Length: 1 "Conditionally". Excerpt 33676 - Length: 1 (Amen!) Excerpt 33758 - Length: 1 Philosophy. Excerpt 33794 - Length: 1 “No'm. Excerpt 33832 - Length: 1 "Explain! Excerpt 33845 - Length: 1 Stop! Excerpt 34012 - Length: 1 There!... Excerpt 34174 - Length: 1 “Splendid! Excerpt 34178 - Length: 1 "Yes". Excerpt 34183 - Length: 1 "Good! Excerpt 34213 - Length: 1 Goodbye!" Excerpt 34215 - Length: 1 “No”! Excerpt 34260 - Length: 1 Stop! Excerpt 34277 - Length: 1 "Hush!" Excerpt 34373 - Length: 1 "What! Excerpt 34486 - Length: 1 "ARTHUR". Excerpt 34504 - Length: 1 benefactress!" Excerpt 34512 - Length: 1 “Mrs. Excerpt 34643 - Length: 1 "Wake! Excerpt 34773 - Length: 1 Going? Excerpt 34833 - Length: 1 “Yes”. Excerpt 35036 - Length: 1 Cramer. Excerpt 35109 - Length: 1 Impossible! Excerpt 35249 - Length: 1 "Here! Excerpt 35332 - Length: 1 "What! Excerpt 35373 - Length: 1 "Man!" Excerpt 35420 - Length: 1 "Spirits". Excerpt 35451 - Length: 1 “Noth'n”. Excerpt 35541 - Length: 1 "No!" Excerpt 35659 - Length: 1 A-a-men”! Excerpt 35742 - Length: 1 "Indeed! Excerpt 35861 - Length: 1 "Yes". Excerpt 36096 - Length: 1 "Stubborn?" Excerpt 36110 - Length: 1 “Hours. Excerpt 36153 - Length: 1 Sheep-pens?" Excerpt 36204 - Length: 1 Barrymore?" Excerpt 36251 - Length: 1 SH'T”! Excerpt 36337 - Length: 1 Aye!" Excerpt 36413 - Length: 1 “Shucks”! Excerpt 36553 - Length: 1 “Look! Excerpt 36654 - Length: 1 Faugh! Excerpt 36728 - Length: 1 "Excellent!" Excerpt 36893 - Length: 1 "Excellent!" Excerpt 36945 - Length: 1 "Drink! Excerpt 36953 - Length: 1 Clements?" Excerpt 36998 - Length: 1 Chow! Excerpt 37084 - Length: 1 "Yes". Excerpt 37189 - Length: 1 "'Cabbages!'" Excerpt 37210 - Length: 1 “Positive”! Excerpt 37257 - Length: 1 Bessie! Excerpt 37264 - Length: 1 pass! Excerpt 37294 - Length: 1 “Neglect! Excerpt 37362 - Length: 1 "Jane!" Excerpt 37401 - Length: 1 "Humph!" Excerpt 37423 - Length: 1 "Stop! Excerpt 37434 - Length: 1 “Ah”! Excerpt 37664 - Length: 1 "How? Excerpt 37840 - Length: 1 Stead-y-y-y”! Excerpt 37896 - Length: 1 Ting-a-ling-ling! Excerpt 37982 - Length: 1 “Mary? Excerpt 37991 - Length: 1 Where”? Excerpt 38059 - Length: 1 "Yes". Excerpt 38136 - Length: 1 "Certainly. Excerpt 38337 - Length: 1 wake!" Excerpt 38359 - Length: 1 "Said?" Excerpt 38450 - Length: 1 Profound. Excerpt 38573 - Length: 1 drink!" Excerpt 38702 - Length: 1 “Mean? Excerpt 38711 - Length: 1 “Talk? Excerpt 38790 - Length: 1 "Perfectly". Excerpt 38834 - Length: 1 "Hey! Excerpt 38935 - Length: 1 “No'm”. Excerpt 38976 - Length: 1 “His'n? Excerpt 39020 - Length: 1 "Cumberland!" Excerpt 39211 - Length: 1 "Jane!" Excerpt 39265 - Length: 1 "Very. Excerpt 39335 - Length: 1 presto! Excerpt 39497 - Length: 1 [Groan.] Excerpt 39571 - Length: 1 John!" Excerpt 39579 - Length: 1 “Say? Excerpt 39632 - Length: 1 "No". Excerpt 39675 - Length: 1 Good-night". Excerpt 39719 - Length: 1 “What! Excerpt 39729 - Length: 1 “No”. Excerpt 39800 - Length: 1 "Dead!" Excerpt 39820 - Length: 1 "Hum! Excerpt 39897 - Length: 1 "There!" Excerpt 40006 - Length: 1 "Certainly". Excerpt 40045 - Length: 1 "Yes". Excerpt 40098 - Length: 1 Strange!" Excerpt 40459 - Length: 1 BASKERVILLE". Excerpt 40495 - Length: 1 "Cold? Excerpt 40567 - Length: 1 "Hush! Excerpt 40577 - Length: 1 "Why? Excerpt 40651 - Length: 1 Hartright. Excerpt 40673 - Length: 1 "Where?" Excerpt 40780 - Length: 1 “Cairo? Excerpt 40843 - Length: 1 Lucy!" Excerpt 40864 - Length: 1 “Yes. Excerpt 40916 - Length: 1 Well! Excerpt 41172 - Length: 1 19th. Excerpt 41208 - Length: 1 "Yes". Excerpt 41432 - Length: 1 Splendid! Excerpt 41478 - Length: 1 "Quick!" Excerpt 41609 - Length: 1 “Yas’m. Excerpt 41740 - Length: 1 "Stop!" Excerpt 41755 - Length: 1 Night. Excerpt 41785 - Length: 1 "Yes". Excerpt 41883 - Length: 1 Bhaer?" Excerpt 41885 - Length: 1 Knightley.' Excerpt 41895 - Length: 1 "Hush! Excerpt 41966 - Length: 1 "Fall! Excerpt 41987 - Length: 1 "Worse! Excerpt 41993 - Length: 1 "Yes". Excerpt 42046 - Length: 1 “Yes! Excerpt 42165 - Length: 1 "Footprints?" Excerpt 42170 - Length: 1 "Grace!" Excerpt 42208 - Length: 1 hasten! Excerpt 42249 - Length: 1 "Excellent! Excerpt 42407 - Length: 1 "Suspicion?" Excerpt 42495 - Length: 1 “Nothing! Excerpt 42752 - Length: 1 “Yas’m. Excerpt 42769 - Length: 1 "Speak! Excerpt 42801 - Length: 1 “What”! Excerpt 42844 - Length: 1 14th. Excerpt 42914 - Length: 1 See!" Excerpt 42987 - Length: 1 Come! Excerpt 43061 - Length: 1 "Hum! Excerpt 43107 - Length: 1 "Pocket". Excerpt 43185 - Length: 1 “Undoubtedly. Excerpt 43199 - Length: 1 Alas! Excerpt 43209 - Length: 1 "Daily". Excerpt 43269 - Length: 1 “Nothing. Excerpt 43542 - Length: 1 "-shire? Excerpt 43550 - Length: 1 "Yes". Excerpt 43573 - Length: 1 "Well!" Excerpt 43591 - Length: 1 Blind! Excerpt 43639 - Length: 1 to-night!" Excerpt 43670 - Length: 1 "Yes". Excerpt 43736 - Length: 1 "Ouf!" Excerpt 43761 - Length: 1 11th. Excerpt 43804 - Length: 1 "Certainly". Excerpt 43839 - Length: 1 Jack! Excerpt 43995 - Length: 1 Hartright?" Excerpt 44003 - Length: 1 “Pretty”! Excerpt 44044 - Length: 1 presto! Excerpt 44244 - Length: 1 Rivers!" Excerpt 44340 - Length: 1 Alas! Excerpt 44362 - Length: 1 25th. Excerpt 44396 - Length: 1 "Good!" Excerpt 44511 - Length: 1 "Pre-cise-ly!" Excerpt 44521 - Length: 1 "Yes". Excerpt 44623 - Length: 1 Father? Excerpt 44638 - Length: 1 “Harem”. Excerpt 44693 - Length: 1 “Oh”! Excerpt 44724 - Length: 1 Good! Excerpt 44750 - Length: 1 "No". Excerpt 44885 - Length: 1 "Justice!" Excerpt 44891 - Length: 1 "What! Excerpt 44987 - Length: 1 “Money! Excerpt 45030 - Length: 1 “What! Excerpt 45131 - Length: 1 “Everybody”? Excerpt 45183 - Length: 1 "Sir?" Excerpt 45463 - Length: 1 "Exactly". Excerpt 45523 - Length: 1 don't! Excerpt 45806 - Length: 1 "No". Excerpt 46004 - Length: 1 “Married”! Excerpt 46048 - Length: 1 “Kill? Excerpt 46072 - Length: 1 “Mrs. Excerpt 46165 - Length: 1 "Yes. Excerpt 46344 - Length: 1 “Simple”! Excerpt 46386 - Length: 1 Harker!" Excerpt 46394 - Length: 1 “Mrs. Excerpt 46492 - Length: 1 "Exactly. Excerpt 46616 - Length: 1 "Sing!" Excerpt 46691 - Length: 1 M.R.C.S. Excerpt 46696 - Length: 1 "Thornfield? Excerpt 46737 - Length: 1 "Good! Excerpt 46752 - Length: 1 "None". Excerpt 46842 - Length: 1 “Ransomed? Excerpt 46947 - Length: 1 "Jane! Excerpt 47045 - Length: 1 "Good!" Excerpt 47396 - Length: 1 ###Markdown Even though it is unusual to have text excerpts as long or as short as the outliers in our dataset, examination of these excerpts indicates that they do all appear to be proper sentences, so no adjustments need to be made.We now perform similar checks with the average length data. ###Code # Get average length outliers length_outliers = np.where(ave_length > 10) for i in length_outliers[0]: print("Excerpt {} - Average Length: {}".format(i, ave_length[i])) print(text[i], "\n") length_outliers = np.where(ave_length < 3.5) for i in length_outliers[0]: print("Excerpt {} - Average Length: {}".format(i, ave_length[i])) print(text[i], "\n") ###Output Excerpt 120 - Average Length: 3.4 I do not see it”. Excerpt 439 - Average Length: 3.3333333333333335 Am I ill?" Excerpt 1199 - Average Length: 3.4 Now I saw no bad. Excerpt 1413 - Average Length: 3.25 I see it all! Excerpt 1933 - Average Length: 2.5 But . Excerpt 2074 - Average Length: 3.25 I rose to go. Excerpt 2111 - Average Length: 2.5 Am I? Excerpt 2700 - Average Length: 3.3333333333333335 I said so. Excerpt 2794 - Average Length: 2.6666666666666665 So am I. Excerpt 2882 - Average Length: 3.3333333333333335 let me go! Excerpt 2888 - Average Length: 3.0 Not I! Excerpt 2984 - Average Length: 3.2857142857142856 I see I was up a stump. Excerpt 4159 - Average Length: 3.0 Go on. Excerpt 4246 - Average Length: 3.0 So it is. Excerpt 5105 - Average Length: 3.3333333333333335 Woe is me! Excerpt 6697 - Average Length: 3.25 So I done it. Excerpt 6972 - Average Length: 3.3333333333333335 So I quit. Excerpt 7325 - Average Length: 3.3333333333333335 How can I? Excerpt 7624 - Average Length: 3.3333333333333335 "So did I. Excerpt 8622 - Average Length: 3.25 Go on go on!" Excerpt 8684 - Average Length: 3.0 "I am. Excerpt 8923 - Average Length: 3.4 I am in no hurry. Excerpt 8953 - Average Length: 3.3333333333333335 I felt it! Excerpt 9891 - Average Length: 3.3333333333333335 “So do I”. Excerpt 10021 - Average Length: 3.4285714285714284 “I do not get on at all. Excerpt 10647 - Average Length: 3.4 “Not a bit of it. Excerpt 11469 - Average Length: 3.0 Oh no! Excerpt 11946 - Average Length: 3.3333333333333335 I saw you. Excerpt 12633 - Average Length: 3.3333333333333335 "So I see. Excerpt 12805 - Average Length: 3.3333333333333335 “So it is. Excerpt 13881 - Average Length: 3.1666666666666665 er is a cow a cat”? Excerpt 14019 - Average Length: 3.25 So I done it. Excerpt 14473 - Average Length: 3.0 I ask. Excerpt 15472 - Average Length: 3.0 Ah me! Excerpt 18451 - Average Length: 3.25 I took it up. Excerpt 18719 - Average Length: 2.5 O no. Excerpt 21507 - Average Length: 3.4 Do as I bid you”. Excerpt 21576 - Average Length: 3.3333333333333335 Let us go. Excerpt 23563 - Average Length: 3.25 Is it not so? Excerpt 24441 - Average Length: 3.0 "So I do! Excerpt 25159 - Average Length: 2.5 But . Excerpt 26017 - Average Length: 3.2 What am I to do? Excerpt 26326 - Average Length: 3.3333333333333335 Let me go! Excerpt 26818 - Average Length: 3.4444444444444446 ), to do as I would be done by. Excerpt 27447 - Average Length: 3.2 What am I to do? Excerpt 27505 - Average Length: 3.2 what am I to do? Excerpt 28530 - Average Length: 3.3333333333333335 he is off. Excerpt 28729 - Average Length: 3.3333333333333335 “So do I”. Excerpt 28979 - Average Length: 3.0 Go on! Excerpt 30475 - Average Length: 3.25 Is it not so? Excerpt 30643 - Average Length: 3.0 “So do I! Excerpt 31281 - Average Length: 3.4 "Not a bit of it. Excerpt 32051 - Average Length: 3.0 Is I me, or who is I? Excerpt 32562 - Average Length: 3.0 To me! Excerpt 33310 - Average Length: 2.5 I do. Excerpt 33402 - Average Length: 3.4 “To be sure I am. Excerpt 35299 - Average Length: 3.3333333333333335 "So it is. Excerpt 35974 - Average Length: 3.0 Oh no! Excerpt 37256 - Average Length: 3.3333333333333335 "So do I!" Excerpt 38565 - Average Length: 3.0 Oh no! Excerpt 38566 - Average Length: 3.4 What was I to do? Excerpt 39167 - Average Length: 3.3333333333333335 It may be! Excerpt 39288 - Average Length: 3.0 So I did. Excerpt 39380 - Average Length: 3.3333333333333335 oh my God! Excerpt 39551 - Average Length: 3.4285714285714284 Is I heah, or whah is I? Excerpt 42543 - Average Length: 3.3333333333333335 I done it. Excerpt 42771 - Average Length: 3.0 "I do. Excerpt 44398 - Average Length: 3.0 I see! Excerpt 44503 - Average Length: 3.4285714285714284 And if you can do so !" Excerpt 45100 - Average Length: 3.3333333333333335 Is she up? Excerpt 46251 - Average Length: 3.0 I did so. Excerpt 46416 - Average Length: 3.25 Can I do it?" Excerpt 47500 - Average Length: 3.3333333333333335 "If I can. Excerpt 47623 - Average Length: 3.0 Oh no! Excerpt 47770 - Average Length: 3.25 I I run off”. Excerpt 48113 - Average Length: 3.0 : Rev. Excerpt 48735 - Average Length: 3.125 I see I was in a fix now. Excerpt 52349 - Average Length: 3.4 “I bet I know it. Excerpt 52901 - Average Length: 3.0 I am old. Excerpt 53884 - Average Length: 3.0 Oh me! Excerpt 54655 - Average Length: 3.3333333333333335 And so on. Excerpt 55242 - Average Length: 3.0 oh no! Excerpt 56002 - Average Length: 3.3333333333333335 I knew it! Excerpt 56770 - Average Length: 3.3333333333333335 "But I do. Excerpt 57344 - Average Length: 3.0 I did. Excerpt 57834 - Average Length: 3.0 I did. Excerpt 57845 - Average Length: 3.3333333333333335 I will go! Excerpt 58316 - Average Length: 3.4 Do you own a dog? Excerpt 58471 - Average Length: 3.3333333333333335 "So I did! Excerpt 59172 - Average Length: 3.4 I went up to her. Excerpt 59575 - Average Length: 3.3333333333333335 He has to. Excerpt 60205 - Average Length: 3.4 Is it you or me?" Excerpt 60264 - Average Length: 3.3333333333333335 I was now in for it. Excerpt 60441 - Average Length: 3.4 I had to hold on. Excerpt 60824 - Average Length: 3.25 “I lay I did! Excerpt 61619 - Average Length: 3.3333333333333335 I set out. Excerpt 61680 - Average Length: 3.0 “Yes . Excerpt 62121 - Average Length: 3.25 Is it not so? Excerpt 64209 - Average Length: 3.25 I do my best. Excerpt 64317 - Average Length: 3.0 5 May. Excerpt 64399 - Average Length: 3.3333333333333335 A. or C.S. Excerpt 64969 - Average Length: 3.3333333333333335 I went on. Excerpt 65595 - Average Length: 3.0 A boy! Excerpt 65830 - Average Length: 3.0 “So 'd I. Excerpt 65857 - Average Length: 3.4 What was I to do? Excerpt 66487 - Average Length: 3.4285714285714284 But it is best as it is. Excerpt 66670 - Average Length: 3.0 I did. ###Markdown Large average word lengths tend to be associated with short sentences containing a small number of long words, and similarly, small average word lengths tend to be associated with short sentences containing a small number of short words. There is nothing wrong with this, so no adjustments need to be made.It should be noted that this analysis revealed several sentences with large blocks of white space within them. We shall remove these blocks of white space during preprocessing. **Explore the words and characters** Next we look at the characters that make up the text excerpts, to check for any strange characters. ###Code # Create string containing all excerpts in lower case text_string = '' for i in range(len(text)): text_string += text[i].lower() # Get character frequencies char_cnt = Counter(text_string) print(char_cnt) print(len(char_cnt)) ###Output Counter({' ': 1157092, 'e': 627136, 't': 451237, 'a': 409675, 'o': 389824, 'n': 348067, 'i': 344868, 'h': 317481, 's': 312893, 'r': 288591, 'd': 232160, 'l': 211060, 'u': 147257, 'm': 137853, 'w': 127545, 'c': 113126, 'y': 112329, 'f': 107854, 'g': 102562, ',': 89890, 'p': 78758, 'b': 76660, '.': 63034, 'v': 48234, 'k': 44214, '"': 22813, "'": 17378, ';': 9705, 'j': 8704, '“': 8045, '”': 7951, 'x': 6966, '?': 6549, '-': 6398, '’': 5311, '!': 4932, 'q': 4861, ':': 3839, 'z': 2388, '*': 677, ')': 491, '(': 490, '‘': 279, '1': 193, '2': 168, '3': 91, '0': 80, '8': 65, '5': 64, '7': 62, '4': 61, '6': 44, '&': 39, ']': 38, '[': 38, '9': 38, '\xa0': 35, '{': 17, '}': 16, 'è': 11, 'ö': 9, 'é': 8, 'æ': 7, 'ñ': 3, '£': 3, 'à': 3, 'ë': 3, 'ï': 2, 'â': 2, 'ê': 2, '$': 2, 'ô': 1, 'á': 1}) 73 ###Markdown There are a number of unusual characters in the text excerpts. '\xa0' is not a valid character, so should be removed. The accented characters, on the other hand, may or may not be valid, so should be explored further. ###Code # Get character count dictionary keys print(list(char_cnt.keys())) # Create list of accented characters accented_chars = ['ï', 'é', 'ñ', 'è', 'ö', 'æ', 'ô', 'â', 'á', 'à', 'ê', 'ë'] # Find all texts containing unusual characters accented_text = [] for i in range(len(text)): for j in text[i]: if j in accented_chars: accented_text.append(i) accented_text = list(set(accented_text)) print('There are', str(len(accented_text)), 'texts containing accented characters.') # Print accented texts for i in accented_text: print("Excerpt {}".format(i)) print(text[i] + '\n') ###Output Excerpt 5892 Carére has blurred my recollection of Baskerville Hall. Excerpt 56197 I leaned back in the embrasure in a more comfortable position, so that I could enjoy more fully the aërial gambolling. Excerpt 61060 To which he smiled a sad sort of smile as he replied: "He is her lover, her fiancé. Excerpt 60169 If there be anything behind this instinct it will be valuable to trace it afterwards accurately, so I had better commence to do so, therefore R. M. Renfield, ætat 59. Excerpt 9484 Omnia Romæ venalia sunt. Excerpt 19984 Our correspondent naïvely says that even Ellen Terry could not be so winningly attractive as some of these grubby-faced little children pretend and even imagine themselves to be. Excerpt 28692 But the conditions of her are in no way anæmic. Excerpt 4629 Lucy came with me, and we went early to our old seat, whilst the cortège of boats went up the river to the Viaduct and came down again. Excerpt 39449 He smiled on me in quite a superior sort of way such a smile as would have become the face of Malvolio as he answered me: "The fly, my dear sir, has one striking feature; its wings are typical of the aërial powers of the psychic faculties. Excerpt 45213 "Give me the Herr's luggage," said the driver; and with exceeding alacrity my bags were handed out and put in the calèche. Excerpt 52382 After many inquiries and almost as many refusals, and perpetually using the words "Pall Mall Gazette" as a sort of talisman, I managed to find the keeper of the section of the Zoölogical Gardens in which the wolf department is included. Excerpt 18338 This was all done en règle; and in our work we shall be en règle too. Excerpt 48930 Van Helsing ordered the former arrangement to be adhered to, explaining that, as Lord Godalming was coming very soon, it would be less harrowing to his feelings to see all that was left of his fiancée quite alone. Excerpt 61732 When I could see again the driver was climbing into the calèche, and the wolves had disappeared. Excerpt 44581 Two dark jagged peaks loomed above them through the darkness, and the defile which led between them was the Eagle Cañon in which the horses were awaiting them. Excerpt 66469 I took my courage à deux mains and waited. Excerpt 35886 "We shall wait," said Van Helsing, "just long enough to fix the best spot for trephining, so that we may most quickly and perfectly remove the blood clot; for it is evident that the hæmorrhage is increasing". Excerpt 13624 This murder would have been infinitely more difficult to unravel had the body of the victim been simply found lying in the roadway without any of those outré and sensational accompaniments which have rendered it remarkable. Excerpt 33210 Uncle rushed out and bought a pair of dogskin gloves, some ugly, thick shoes, and an umbrella, and got shaved à la mutton chop, the first thing. Excerpt 18493 Some sailor may have brought one home, and it managed to escape; or even from the Zoölogical Gardens a young one may have got loose, or one be bred there from a vampire. Excerpt 1470 Even while he was speaking an idea dawned upon him, and he said with unconscious simplicity, in a different voice, and with the naïveté of a child: "That's quite true, upon my honour. Excerpt 47935 There are swift-flowing rivers which dash through jagged cañons; and there are enormous plains, which in winter are white with snow, and in summer are grey with the saline alkali dust. Excerpt 3650 When the calèche stopped, the driver jumped down and held out his hand to assist me to alight. Excerpt 34114 Yet I am certain that he does not wish their intimacy to ripen into love, and I have several times observed that he has taken pains to prevent them from being tête-à-tête. Excerpt 24900 Nordau and Lombroso would so classify him, and quâ criminal he is of imperfectly formed mind. Excerpt 40516 I shouted and beat the side of the calèche, hoping by the noise to scare the wolves from that side, so as to give him a chance of reaching the trap. Excerpt 67013 Then, amongst a chorus of screams from the peasants and a universal crossing of themselves, a calèche, with four horses, drove up behind us, overtook us, and drew up beside the coach. Excerpt 4168 I had no idea how long he might be, but I sat stolidly puffing at my pipe and skipping over the pages of Henri Murger’s “Vie de Bohème”. Excerpt 62926 Then, far off in the distance, from the mountains on each side of us began a louder and a sharper howling that of wolves which affected both the horses and myself in the same way for I was minded to jump from the calèche and run, whilst they reared again and plunged madly, so that the driver had to use all his great strength to keep them from bolting. Excerpt 1872 They are waiting for me at the cañon. Excerpt 22096 I shall have to invent a new classification for him, and call him a zoöphagous (life-eating) maniac; what he desires is to absorb as many lives as he can, and he has laid himself out to achieve it in a cumulative way. Excerpt 20571 You must get a new patient, doctor, if you wish to study zoöphagy!" Excerpt 14685 It is only in accordance with general principles of human nature that the "bloofer lady" should be the popular rôle at these al fresco performances. Excerpt 14558 How he has been making use of the zoöphagous patient to effect his entry into friend John's home; for your Vampire, though in all afterwards he can come when and how he will, must at the first make entry only when asked thereto by an inmate. Excerpt 22496 If she were in any way anæmic I could understand it, but she is not. Excerpt 6627 Mortimer had stayed to dinner, and he and the baronet played ecarté afterwards. Excerpt 11620 I went over and read: "Edward Spencelagh, master mariner, murdered by pirates off the coast of Andres, April, 1854, æt. Excerpt 12899 Even the professional detectives, blasé as they were in every detail of crime, appeared to be keenly interested in the man’s story. Excerpt 14566 My own work, with its manifold arrears, took me all day to clear off; it was dark when I was able to inquire about my zoöphagous patient. Excerpt 26087 Again, when, after the battle of Mohács, we threw off the Hungarian yoke, we of the Dracula blood were amongst their leaders, for our spirit would not brook that we were not free. Excerpt 63977 It was almost as if the sound sprang up at the rising of his hand, just as the music of a great orchestra seems to leap under the bâton of the conductor. Excerpt 37994 Stay; he is himself zoöphagous, and in his wild ravings outside the chapel door of the deserted house he always spoke of "master". Excerpt 14704 The house is very large and of all periods back, I should say, to mediæval times, for one part is of stone immensely thick, with only a few windows high up and heavily barred with iron. Excerpt 27633 Carére, the young lady who, as it will be remembered, was found six months later alive and married in New York. Excerpt 29942 Interview with the Keeper in the Zoölogical Gardens. Excerpt 22263 Then I descended from the side of the coach, as the calèche was close alongside, the driver helping me with a hand which caught my arm in a grip of steel; his strength must have been prodigious. Excerpt 7032 Zoöphagous patient still keeps up our interest in him. Excerpt 49146 I got a cup of tea at the Aërated Bread Company and came down to Purfleet by the next train. ###Markdown The texts containing accented characters do appear to be legitimate foreign words and not corrupt strings. As a result, no corrections are required. **Summary** Based on the above analysis, our data appears to be in reasonably good shape. The only abnormalities that have been identified that require correction are the presence of several invalid characters and the presence of several large blocks of white space. These shall be removed during the pre-processing stage. Data Preprocessing **Remove invalid characters and large blocks of white space** As discussed in the previous section, the first step required to preprocess the data is to remove any invalid characters or large blocks of white space. ###Code # Remove invalid character from text text = [excerpt.replace('\xa0', '') for excerpt in text] # Verify character has been removed unusual_text = [] for i in range(len(text)): for j in text[i]: if j == '\xa0': unusual_text.append(i) unusual_text = list(set(unusual_text)) print('There are', str(len(unusual_text)), 'texts containing the invalid character.') # Count texts containing white space blocks ctr = 0 for excerpt in text: if " " in excerpt: ctr += 1 print('There are', ctr, 'excerpts containing blocks of white space.') # Remove blocks of white space new_text = [] for excerpt in text: while " " in excerpt: excerpt = excerpt.replace(" "," ") new_text.append(excerpt) text = new_text print(len(text)) ctr = 0 for excerpt in text: if " " in excerpt: ctr += 1 print('There are', ctr, 'excerpts containing blocks of white space.') ###Output There are 0 excerpts containing blocks of white space. ###Markdown **Remove punctuation and convert to lowercase** To normalize the excerpts, we remove all punctuation and convert them to lowercase. ###Code normed_text = [] for i in range(len(text)): new = text[i].lower() new = new.translate(str.maketrans('','', string.punctuation)) new = new.replace('“', '').replace('”', '') normed_text.append(new) print(normed_text[0:5]) print(len(normed_text)) ###Output ['im afraid i couldnt like him without a spice of human naughtiness', 'yonder was the banks and the islands across the water and maybe a spark which was a candle in a cabin window and sometimes on the water you could see a spark or two on a raft or a scow you know and maybe you could hear a fiddle or a song coming over from one of them crafts', 'well as i was saying about the parlor there was beautiful curtains on the windows white with pictures painted on them of castles with vines all down the walls and cattle coming down to drink', 'here again the count had not openly committed himself here again he was to all practical purpose out of my reach', 'no assented tom they dont kill the women theyre too noble'] 68000 ###Markdown **Create training and test subsets** ###Code text_train, text_test, author_train, author_test = train_test_split(normed_text, author, test_size = 0.2, random_state = 5) # Check shapes of created datasets print(np.shape(text_train)) print(np.shape(text_test)) print(np.shape(author_train)) print(np.shape(author_test)) ###Output (54400,) (13600,) (54400,) (13600,) ###Markdown **Create n-gram sequences** ###Code def create_n_grams(excerpt_list, n, vocab_size, seq_size): """Create a list of n-gram sequences Args: excerpt_list: list of strings. List of normalized text excerpts. n: int. Length of n-grams. vocab_size: int. Size of n-gram vocab (used in one-hot encoding) seq_size: int. Size of n-gram sequences Returns: n_gram_array: array. Numpy array of one-hot encoded n-grams. """ n_gram_list = [] for excerpt in excerpt_list: # Remove spaces excerpt = excerpt.replace(" ", "") # Extract n-grams n_grams = [excerpt[i:i + n] for i in range(len(excerpt) - n + 1)] # Convert to a single string with spaces between n-grams new_string = " ".join(n_grams) # One hot encode hot = one_hot(new_string, round(vocab_size*1.3)) # Pad hot if necessary hot_len = len(hot) if hot_len >= seq_size: hot = hot[0:seq_size] else: diff = seq_size - hot_len extra = [0]*diff hot = hot + extra n_gram_list.append(hot) n_gram_array = np.array(n_gram_list) return n_gram_array def get_vocab_size(excerpt_list, n, seq_size): """Calculate size of n-gram vocab Args: excerpt_list: list of strings. List of normalized text excerpts. n: int. Length of n-grams. seq_size: int. Size of n-gram sequences Returns: vocab_size: int. Size of n-gram vocab. """ n_gram_list = [] for excerpt in excerpt_list: # Remove spaces excerpt = excerpt.replace(" ", "") # Extract n-grams n_grams = [excerpt[i:i + n] for i in range(len(excerpt) - n + 1)] # Create list of n-grams gram_len = len(n_grams) if gram_len >= seq_size: n_grams = n_grams[0:seq_size] else: diff = seq_size - gram_len extra = [0]*diff n_grams = n_grams + extra n_gram_list.append(n_grams) # Flatten n-gram list n_gram_list = list(np.array(n_gram_list).flat) # Calculate vocab size n_gram_cnt = Counter(n_gram_list) vocab_size = len(n_gram_cnt) return vocab_size # Determine vocab sizes for i in range(1, 4): vocab_size = get_vocab_size(text_train, i, 350) print('Vocab size for n =', i, 'is:', vocab_size) # Create n-gram lists gram1_train = create_n_grams(text_train, 1, 51, 350) gram2_train = create_n_grams(text_train, 2, 966, 350) gram3_train = create_n_grams(text_train, 3, 9521, 350) gram1_test = create_n_grams(text_test, 1, 51, 350) gram2_test = create_n_grams(text_test, 2, 966, 350) gram3_test = create_n_grams(text_test, 3, 9521, 350) print(np.shape(gram1_train)) print(np.shape(gram2_train)) print(np.shape(gram3_train)) print(np.shape(gram1_test)) print(np.shape(gram2_test)) print(np.shape(gram3_test)) # Determine maximum value of n-gram encodings (this is used to set the CNN embedding dimension) max_1gram = np.max(gram1_train) max_2gram = np.max(gram2_train) max_3gram = np.max(gram3_train) print('Maximum encoding value for 1-grams is: ', max_1gram) print('Maximum encoding value for 2-grams is: ', max_2gram) print('Maximum encoding value for 3-grams is: ', max_3gram) ###Output Maximum encoding value for 1-grams is: 65 Maximum encoding value for 2-grams is: 1255 Maximum encoding value for 3-grams is: 12376 ###Markdown **Create bag-of-words features** ###Code def process_data(excerpt_list): """Stem data, remove stopwords and split into word lists Args: excerpt_list: list of strings. List of normalized text excerpts. Returns: processed: list of strings. List of lists of processed text excerpts (stemmed and stop words removed). """ stop_words = set(stopwords.words('english')) porter = PorterStemmer() processed = [] for excerpt in excerpt_list: new = excerpt.split() word_list = [porter.stem(w) for w in new if not w in stop_words] word_list = " ".join(word_list) processed.append(word_list) return processed # Process data subsets processed_train = process_data(text_train) processed_test = process_data(text_test) print(processed_train[0:5]) # Create bag of words features ## Fit Tfidf Vectorizer vectorizer = TfidfVectorizer(strip_accents = 'ascii', stop_words = 'english', min_df = 6) vectorizer.fit(processed_train) # Get size of vocabulary print('Vocabulary size: ', len(vectorizer.vocabulary_)) # Create feature vectors words_train = vectorizer.transform(processed_train) words_test = vectorizer.transform(processed_test) ###Output Vocabulary size: 5840 ###Markdown **One-hot encode labels** ###Code # One hot encode labels author_lb = LabelBinarizer() author_lb.fit(author_train) author_train_hot = author_lb.transform(author_train) author_test_hot = author_lb.transform(author_test) ###Output _____no_output_____ ###Markdown Implementation **Fit the CNN** ###Code # Define model architecture in keras # Code reference: https://machinelearningmastery.com/develop-n-gram-multichannel-convolutional-neural-network-sentiment-analysis/ def define_model(input_len, output_size, vocab_size, embedding_dim, verbose = True, drop_out_pct = 0.25, conv_filters = 500, activation_fn = 'relu', pool_size = 2, learning = 0.0001): """Define n-gram CNN Args: input_len: int. Length of input sequences. output_size: int. Number of output classes. vocab_size: int. Maximum value of n-gram encoding. embedding_dim: int. Size of embedding layer. verbose: bool. Whether or not to print model summary. drop_out_pct: float. Drop-out rate. conv_filters: int. Number of filters in the conv layer. activation_fn: string. Activation function to use in the convolutional layer. pool_size: int. Pool size for the max pooling layer. learning: float. Learning rate for the model optimizer. Returns: model: keras model object. """ # Channel 1 inputs1 = Input(shape = (input_len,)) embedding1 = Embedding(vocab_size, embedding_dim)(inputs1) drop1 = Dropout(drop_out_pct)(embedding1) conv1 = Conv1D(filters = conv_filters, kernel_size = 3, activation = activation_fn)(drop1) pool1 = MaxPooling1D(pool_size = pool_size)(conv1) flat1 = Flatten()(pool1) # Channel 2 inputs2 = Input(shape = (input_len,)) embedding2 = Embedding(vocab_size, embedding_dim)(inputs2) drop2 = Dropout(drop_out_pct)(embedding2) conv2 = Conv1D(filters = conv_filters, kernel_size = 4, activation = activation_fn)(drop2) pool2 = MaxPooling1D(pool_size = pool_size)(conv2) flat2 = Flatten()(pool2) # Channel 3 inputs3 = Input(shape = (input_len,)) embedding3= Embedding(vocab_size, embedding_dim)(inputs3) drop3 = Dropout(drop_out_pct)(embedding3) conv3 = Conv1D(filters = conv_filters, kernel_size = 5, activation = activation_fn)(drop3) pool3 = MaxPooling1D(pool_size = pool_size)(conv3) flat3 = Flatten()(pool3) # Merge channels merged = concatenate([flat1, flat2, flat3]) # Create output layer output = Dense(output_size, activation = 'softmax')(merged) # Create model model = Model(inputs = [inputs1, inputs2, inputs3], outputs = output) # Compile model model.compile(loss='categorical_crossentropy', optimizer = Adam(lr = learning), metrics=['accuracy']) if verbose: print(model.summary()) return model # Create the 1-gram model gram1_model = define_model(350, 8, max_1gram + 1, 26) # Train 1-gram CNN gram1_model.fit([gram1_train, gram1_train, gram1_train], author_train_hot, epochs=10, batch_size=32, verbose = 1, validation_split = 0.2) # Create the 2-gram model gram2_model = define_model(350, 8, max_2gram + 1, 300) # Train 2-gram CNN gram2_model.fit([gram2_train, gram2_train, gram2_train], author_train_hot, epochs=10, batch_size=32, verbose = 1, validation_split = 0.2) # Create the 3-gram model gram3_model = define_model(350, 8, max_3gram + 1, 600) # Train 3-gram CNN gram3_model.fit([gram3_train, gram3_train, gram3_train], author_train_hot, epochs=10, batch_size=32, verbose = 1, validation_split = 0.2) ###Output Train on 43520 samples, validate on 10880 samples Epoch 1/10 43520/43520 [==============================] - 310s 7ms/step - loss: 1.9104 - acc: 0.2558 - val_loss: 1.5276 - val_acc: 0.4344 Epoch 2/10 43520/43520 [==============================] - 302s 7ms/step - loss: 1.2773 - acc: 0.5477 - val_loss: 1.2492 - val_acc: 0.5505 Epoch 3/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.9639 - acc: 0.6689 - val_loss: 1.1923 - val_acc: 0.5745 Epoch 4/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.7682 - acc: 0.7434 - val_loss: 1.1953 - val_acc: 0.5821 Epoch 5/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.6162 - acc: 0.8031 - val_loss: 1.2445 - val_acc: 0.5801 Epoch 6/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.4869 - acc: 0.8519 - val_loss: 1.3272 - val_acc: 0.5730 Epoch 7/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.3747 - acc: 0.8952 - val_loss: 1.3939 - val_acc: 0.5729 Epoch 8/10 43520/43520 [==============================] - 299s 7ms/step - loss: 0.2832 - acc: 0.9262 - val_loss: 1.4857 - val_acc: 0.5699 Epoch 9/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.2129 - acc: 0.9460 - val_loss: 1.7642 - val_acc: 0.5525 Epoch 10/10 43520/43520 [==============================] - 300s 7ms/step - loss: 0.1589 - acc: 0.9623 - val_loss: 1.7429 - val_acc: 0.5651 ###Markdown The best results with regard to validation accuracy were achieved by the 3-gram CNN (followed by the 2-gram CNN, then the 1-gram CNN). In the case of the 3-gram and 2-gram CNNs, validation accuracy tends to plateau after around 5 epochs, so for the remainder of this analysis, we shall reduce the number of epochs for fitting the CNN down to 5. **Fit the SVM** ###Code # Define grid search object svm = SVC() params = {'kernel': ['linear'], 'C':[1, 10, 100]} scorer = make_scorer(accuracy_score) grid_obj = GridSearchCV(svm, params, scoring = scorer, verbose = 50) # Fit bag of words svm np.random.seed(6) word_svm = grid_obj.fit(words_train, author_train) print(word_svm.best_estimator_) print(word_svm.cv_results_) ###Output {'mean_fit_time': array([107.98448531, 136.42942905, 425.95507264]), 'std_fit_time': array([0.62575926, 0.62474636, 9.53641656]), 'mean_score_time': array([30.77192775, 27.47356653, 26.70237382]), 'std_score_time': array([0.07407209, 0.05506556, 0.03792019]), 'param_C': masked_array(data=[1, 10, 100], mask=[False, False, False], fill_value='?', dtype=object), 'param_kernel': masked_array(data=['linear', 'linear', 'linear'], mask=[False, False, False], fill_value='?', dtype=object), 'params': [{'C': 1, 'kernel': 'linear'}, {'C': 10, 'kernel': 'linear'}, {'C': 100, 'kernel': 'linear'}], 'split0_test_score': array([0.58756065, 0.56043229, 0.53049184]), 'split1_test_score': array([0.59912866, 0.57017592, 0.54111289]), 'split2_test_score': array([0.59053555, 0.56180023, 0.53218245]), 'mean_test_score': array([0.59240809, 0.56413603, 0.53459559]), 'std_test_score': array([0.00490484, 0.00430715, 0.00465976]), 'rank_test_score': array([1, 2, 3], dtype=int32), 'split0_train_score': array([0.7326274 , 0.82439885, 0.8677752 ]), 'split1_train_score': array([0.72826537, 0.82121488, 0.86544241]), 'split2_train_score': array([0.73442885, 0.82828311, 0.86969588]), 'mean_train_score': array([0.73177387, 0.82463228, 0.86763783]), 'std_train_score': array([0.0025876 , 0.00289031, 0.00173919])} ###Markdown The best results were achieved when C = 1. Refinement **Add extra channel to CNN** Refit the CNN to the 3-gram sequences with an extra channel added to the model (with kernel size = 6). Stop after five epochs this time. ###Code # Define model architecture in keras # Code reference: https://machinelearningmastery.com/develop-n-gram-multichannel-convolutional-neural-network-sentiment-analysis/ def define_model2(input_len, output_size, vocab_size, embedding_dim, verbose = True, drop_out_pct = 0.25, conv_filters = 500, activation_fn = 'relu', pool_size = 2, learning = 0.0001): """Define n-gram CNN Args: input_len: int. Length of input sequences. output_size: int. Number of output classes. vocab_size: int. Maximum value of n-gram encoding. embedding_dim: int. Size of embedding layer. verbose: bool. Whether or not to print model summary. drop_out_pct: float. Drop-out rate. conv_filters: int. Number of filters in the conv layer. activation_fn: string. Activation function to use in the convolutional layer. pool_size: int. Pool size for the max pooling layer. learning: float. Learning rate for the model optimizer. Returns: model: keras model object. """ # Channel 1 inputs1 = Input(shape = (input_len,)) embedding1 = Embedding(vocab_size, embedding_dim)(inputs1) drop1 = Dropout(drop_out_pct)(embedding1) conv1 = Conv1D(filters = conv_filters, kernel_size = 3, activation = activation_fn)(drop1) pool1 = MaxPooling1D(pool_size = pool_size)(conv1) flat1 = Flatten()(pool1) # Channel 2 inputs2 = Input(shape = (input_len,)) embedding2 = Embedding(vocab_size, embedding_dim)(inputs2) drop2 = Dropout(drop_out_pct)(embedding2) conv2 = Conv1D(filters = conv_filters, kernel_size = 4, activation = activation_fn)(drop2) pool2 = MaxPooling1D(pool_size = pool_size)(conv2) flat2 = Flatten()(pool2) # Channel 3 inputs3 = Input(shape = (input_len,)) embedding3= Embedding(vocab_size, embedding_dim)(inputs3) drop3 = Dropout(drop_out_pct)(embedding3) conv3 = Conv1D(filters = conv_filters, kernel_size = 5, activation = activation_fn)(drop3) pool3 = MaxPooling1D(pool_size = pool_size)(conv3) flat3 = Flatten()(pool3) # Channel 4 inputs4 = Input(shape = (input_len,)) embedding4 = Embedding(vocab_size, embedding_dim)(inputs4) drop4 = Dropout(drop_out_pct)(embedding4) conv4 = Conv1D(filters = conv_filters, kernel_size = 6, activation = activation_fn)(drop4) pool4 = MaxPooling1D(pool_size = pool_size)(conv4) flat4 = Flatten()(pool4) # Merge channels merged = concatenate([flat1, flat2, flat3, flat4]) # Create output layer output = Dense(output_size, activation = 'softmax')(merged) # Create model model = Model(inputs = [inputs1, inputs2, inputs3, inputs4], outputs = output) # Compile model model.compile(loss='categorical_crossentropy', optimizer = Adam(lr = learning), metrics=['accuracy']) if verbose: print(model.summary()) return model # Create the 3-gram model gram3_model2 = define_model2(350, 8, max_3gram + 1, 600) # Train 3-gram CNN gram3_model2.fit([gram3_train, gram3_train, gram3_train, gram3_train], author_train_hot, epochs=5, batch_size=32, verbose = 1, validation_split = 0.2) ###Output Train on 43520 samples, validate on 10880 samples Epoch 1/5 43520/43520 [==============================] - 435s 10ms/step - loss: 1.8808 - acc: 0.2714 - val_loss: 1.4971 - val_acc: 0.4487 Epoch 2/5 43520/43520 [==============================] - 430s 10ms/step - loss: 1.2242 - acc: 0.5688 - val_loss: 1.2269 - val_acc: 0.5608 Epoch 3/5 43520/43520 [==============================] - 430s 10ms/step - loss: 0.9018 - acc: 0.6913 - val_loss: 1.1853 - val_acc: 0.5801 Epoch 4/5 43520/43520 [==============================] - 434s 10ms/step - loss: 0.6964 - acc: 0.7736 - val_loss: 1.2006 - val_acc: 0.5860 Epoch 5/5 43520/43520 [==============================] - 434s 10ms/step - loss: 0.5283 - acc: 0.8375 - val_loss: 1.2743 - val_acc: 0.5741 ###Markdown After 5 epochs, the 4-channel model has a slightly lower validation accuracy than the 3-channel model (0.5741 vs 0.5801). Consequently, we will stick with the original 3-channel model. Model Evaluation and Validation **Fit final models and evaluate** ###Code # Define function for plotting normalized confusion matrix # Code reference 1: http://scikit-learn.org/stable/auto_examples/model_selection/plot_confusion_matrix.html#sphx-glr-auto-examples-model-selection-plot-confusion-matrix-py # Code reference 2: https://stackoverflow.com/questions/35572000/how-can-i-plot-a-confusion-matrix def plot_confusion_matrix(cm, classes, normalize=False, title='Confusion matrix', cmap=plt.cm.Blues): """ This function prints and plots the confusion matrix. Normalization can be applied by setting `normalize=True`. Args: cm: matrix. Confusion matrix for plotting. classes: list. List of class labels. normalize: bool. Whether or not to normalize the confusion matrix. title: string. Title for plot. cmap: color map. Color scheme for plot. Returns: None """ if normalize: cm = cm.astype('float') / cm.sum(axis=1)[:, np.newaxis] print("Normalized confusion matrix") else: print('Confusion matrix, without normalization') print(cm) df_cm = pd.DataFrame(cm, index = classes, columns = classes) sns.heatmap(df_cm, annot=True, cmap = cmap) plt.ylabel('True Label') plt.xlabel('Predicted Label') plt.title(title) # Fit and evaluate Model 1 (3-gram CNN) t0 = time.time() # Fit model model1 = define_model(350, 8, max_3gram + 1, 600) model1.fit([gram3_train, gram3_train, gram3_train], author_train_hot, epochs=5, batch_size=32, verbose = 1, validation_split = 0.2) t1 = time.time() # Predict values for test set author_pred1 = model1.predict([gram3_test, gram3_test, gram3_test]) t2 = time.time() # Reverse one-hot encoding of labels author_pred1 = author_lb.inverse_transform(author_pred1) # Evaluate accuracy = accuracy_score(author_test, author_pred1) precision, recall, f1, support = score(author_test, author_pred1) ave_precision = np.average(precision, weights = support/np.sum(support)) ave_recall = np.average(recall, weights = support/np.sum(support)) ave_f1 = np.average(f1, weights = support/np.sum(support)) confusion = confusion_matrix(author_test, author_pred1, labels = ['Alcott', 'Austen', 'Bronte', 'Collins', 'Doyle', 'Montgomery', 'Stoker', 'Twain']) print("Accuracy:", accuracy) print("Ave. Precision:", ave_precision) print("Ave. Recall:", ave_recall) print("Ave. F1 Score:", ave_f1) print("Training Time:", (t1 - t0), "seconds") print("Prediction Time:", (t2 - t1), "seconds") print("Confusion Matrix:\n", confusion) # Plot normalized confusion matrix plot_confusion_matrix(confusion, classes=['Alcott', 'Austen', 'Bronte', 'Collins', 'Doyle', 'Montgomery', 'Stoker', 'Twain'], \ normalize=True, title='Normalized Confusion Matrix - Model 1') plt.savefig("confusion1.eps") # Fit and evaluate Model 2 (Bag of words SVM) np.random.seed(28) t0 = time.time() # Fit model model2 = SVC(C = 1, kernel = 'linear') model2.fit(words_train, author_train) t1 = time.time() # Predict values for test set author_pred2 = model2.predict(words_test) t2 = time.time() # Evaluate accuracy = accuracy_score(author_test, author_pred2) precision, recall, f1, support = score(author_test, author_pred2) ave_precision = np.average(precision, weights = support/np.sum(support)) ave_recall = np.average(recall, weights = support/np.sum(support)) ave_f1 = np.average(f1, weights = support/np.sum(support)) confusion = confusion_matrix(author_test, author_pred2, labels = ['Alcott', 'Austen', 'Bronte', 'Collins', 'Doyle', 'Montgomery', 'Stoker', 'Twain']) print("Accuracy:", accuracy) print("Ave. Precision:", ave_precision) print("Ave. Recall:", ave_recall) print("Ave. F1 Score:", ave_f1) print("Training Time:", (t1 - t0), "seconds") print("Prediction Time:", (t2 - t1), "seconds") print("Confusion Matrix:\n", confusion) # Plot normalized confusion matrix plot_confusion_matrix(confusion, classes=['Alcott', 'Austen', 'Bronte', 'Collins', 'Doyle', 'Montgomery', 'Stoker', 'Twain'], \ normalize=True, title='Normalized Confusion Matrix - Model 2') plt.savefig("confusion2.eps") # Get benchmark statistics (random model) # Perform 10 times and take averages accuracy_list = [] prec_list = [] recall_list = [] f1_list = [] for i in range(10): # Create random predictions author_pred3 = np.random.choice(['Alcott', 'Austen', 'Bronte', 'Collins', 'Doyle', 'Montgomery', 'Stoker', 'Twain'], len(author_test)) # Evaluate accuracy = accuracy_score(author_test, author_pred3) precision, recall, f1, support = score(author_test, author_pred3) ave_precision = np.average(precision, weights = support/np.sum(support)) ave_recall = np.average(recall, weights = support/np.sum(support)) ave_f1 = np.average(f1, weights = support/np.sum(support)) accuracy_list.append(accuracy) prec_list.append(ave_precision) recall_list.append(ave_recall) f1_list.append(ave_f1) print("Accuracy:", accuracy_list, np.mean(accuracy_list), np.std(accuracy_list)) print("Ave. Precision:", prec_list, np.mean(prec_list), np.std(prec_list)) print("Ave. Recall:", recall_list, np.mean(recall_list), np.std(recall_list)) print("Ave. F1 Score:", f1_list, np.mean(f1_list), np.std(f1_list)) ###Output Accuracy: [0.1264705882352941, 0.12227941176470589, 0.12316176470588236, 0.13014705882352942, 0.12176470588235294, 0.12625, 0.12360294117647058, 0.13088235294117648, 0.12426470588235294, 0.12588235294117647] 0.12547058823529414 0.002951672448327311 Ave. Precision: [0.1266465444835753, 0.12233628218025662, 0.12342378106218606, 0.1304336723166218, 0.12189731573734387, 0.1262912622665182, 0.12386941963618259, 0.13109834759020694, 0.12437353571106353, 0.12583728670790226] 0.12562074476918572 0.00298023642284441 Ave. Recall: [0.1264705882352941, 0.12227941176470589, 0.12316176470588235, 0.1301470588235294, 0.12176470588235294, 0.12625, 0.1236029411764706, 0.13088235294117648, 0.12426470588235294, 0.12588235294117647] 0.12547058823529414 0.0029516724483273074 Ave. F1 Score: [0.12653319286141212, 0.12226843324399686, 0.12321947748660764, 0.1302077902363022, 0.12178652876626787, 0.12622344999942142, 0.1236886176229508, 0.13092308650117446, 0.12424972751678684, 0.12580242802232933] 0.12549027322572498 0.002958589237129839 ###Markdown **Perform sensitivity analysis** Sensitivity analysis is performed by creating 3 random (67%) subsets of the training data set and fitting the model to each subset then calculating the evaluation (test) metrics and examining the variability in these metrics. ###Code # Model 1 Sensitivity Testing kf = KFold(n_splits = 3) accuracy_list = [] prec_list = [] recall_list = [] f1_list = [] cnt = 0 for train_inds, _ in kf.split(gram3_train): cnt += 1 print('Run:', cnt) # Create data subsets train_x = np.array([gram3_train[i] for i in train_inds]) train_y = np.array([author_train_hot[i] for i in train_inds]) # Fit model model1 = define_model(350, 8, max_3gram + 1, 600, verbose = False) model1.fit([gram3_train, gram3_train, gram3_train], author_train_hot, epochs=5, batch_size=32, verbose = 0) # Predict values for test set author_pred1 = model1.predict([gram3_test, gram3_test, gram3_test]) author_pred1 = author_lb.inverse_transform(author_pred1) # Evaluate accuracy = accuracy_score(author_test, author_pred1) precision, recall, f1, support = score(author_test, author_pred1) ave_precision = np.average(precision, weights = support/np.sum(support)) ave_recall = np.average(recall, weights = support/np.sum(support)) ave_f1 = np.average(f1, weights = support/np.sum(support)) accuracy_list.append(accuracy) prec_list.append(ave_precision) recall_list.append(ave_recall) f1_list.append(ave_f1) print("Accuracy:", accuracy_list) print("Ave. Precision:", prec_list) print("Ave. Recall:", recall_list) print("Ave. F1 Score:", f1_list) # Model 2 sensitivity testing kf = KFold(n_splits = 3) accuracy_list = [] prec_list = [] recall_list = [] f1_list = [] cnt = 0 # Convert sparse matrix to array words_train_np = words_train.toarray() for train_inds, _ in kf.split(words_train): cnt += 1 print('Run:', cnt) # Create data subsets train_x = np.array([words_train_np[i] for i in train_inds]) train_y = [author_train[i] for i in train_inds] # Convert train_x back to sparse matrix train_x = sparse.csr_matrix(train_x) # Fit model model2 = SVC(C = 1, kernel = 'linear') model2.fit(train_x, train_y) # Predict values for test set author_pred2 = model2.predict(words_test) # Evaluate accuracy = accuracy_score(author_test, author_pred2) precision, recall, f1, support = score(author_test, author_pred2) ave_precision = np.average(precision, weights = support/np.sum(support)) ave_recall = np.average(recall, weights = support/np.sum(support)) ave_f1 = np.average(f1, weights = support/np.sum(support)) accuracy_list.append(accuracy) prec_list.append(ave_precision) recall_list.append(ave_recall) f1_list.append(ave_f1) print("Accuracy:", accuracy_list) print("Ave. Precision:", prec_list) print("Ave. Recall:", recall_list) print("Ave. F1 Score:", f1_list) ###Output Run: 1 Run: 2 Run: 3 Accuracy: [0.5855882352941176, 0.5822058823529411, 0.5827205882352942] Ave. Precision: [0.5934193273768217, 0.5900483541326081, 0.590777047380897] Ave. Recall: [0.5855882352941176, 0.5822058823529412, 0.5827205882352942] Ave. F1 Score: [0.5880048936638183, 0.5846906365078599, 0.5852778440958231] ###Markdown **Explore incorrectly classified excerpts** ###Code # Explore the first 100 test examples for i in range(100): print('Excerpt', i, '- Actual label =', author_test[i], 'Model 1 predicted label =', author_pred1[i], 'Model 2 predicted label =', author_pred2[i]) print(text_test[i], '\n') def calculate_averages(true, pred, text): """Calculate average length of correctly and incorrectly classified examples Args: true: list. List of correct labels. pred: list. List of predicted labels. text: list. List of text excerpts. Returns: correct_ave_chars: float. Average length of correctly classified examples in characters. incorrect_ave_chars: float. Average length of incorrectly classified examples in characters. correct_ave_words: float. Average length of correctly classified examples in characters. incorrect_ave_words: float. Average length of incorrectly classified examples in characters. """ correct_len_chars = [] incorrect_len_chars = [] correct_len_words = [] incorrect_len_words = [] for i in range(len(true)): if true[i] == pred[i]: correct_len_chars.append(len(text[i])) correct_len_words.append(len(text[i].split())) else: incorrect_len_chars.append(len(text[i])) incorrect_len_words.append(len(text[i].split())) correct_ave_chars = np.mean(correct_len_chars) correct_ave_words = np.mean(correct_len_words) incorrect_ave_chars = np.mean(incorrect_len_chars) incorrect_ave_words = np.mean(incorrect_len_words) # Conduct two sample t-test print('Character t-test') print(stats.ttest_ind(correct_len_chars, incorrect_len_chars, equal_var = False)) print('\nWord t-test') print(stats.ttest_ind(correct_len_words, incorrect_len_words, equal_var = False)) return correct_ave_chars, correct_ave_words, incorrect_ave_chars, incorrect_ave_words # Calculate averages for Model 1 correct_ave_chars1, correct_ave_words1, incorrect_ave_chars1, incorrect_ave_words1\ = calculate_averages(author_test, author_pred1, text_test) # Calculate averages for Model 2 correct_ave_chars2, correct_ave_words2, incorrect_ave_chars2, incorrect_ave_words2\ = calculate_averages(author_test, author_pred2, text_test) print('Model 1 - Average excerpt length (chars) of correct examples =', correct_ave_chars1, 'Incorrect exampes =', incorrect_ave_chars1) print('Model 2 - Average excerpt length (chars) of correct examples =', correct_ave_chars2, 'Incorrect exampes =', incorrect_ave_chars2) print('\nModel 1 - Average excerpt length (words) of correct examples =', correct_ave_words1, 'Incorrect exampes =', incorrect_ave_words1) print('Model 2 - Average excerpt length (words) of correct examples =', correct_ave_words2, 'Incorrect exampes =', incorrect_ave_words2) ###Output Model 1 - Average excerpt length (chars) of correct examples = 100.94069709127382 Incorrect exampes = 76.474573257468 Model 2 - Average excerpt length (chars) of correct examples = 103.71028391167192 Incorrect exampes = 72.82678414096917 Model 1 - Average excerpt length (words) of correct examples = 19.646564694082247 Incorrect exampes = 15.088371266002845 Model 2 - Average excerpt length (words) of correct examples = 20.112933753943217 Incorrect exampes = 14.47806167400881 ###Markdown Function for data import, processing and plotting ###Code KEYS = ('year', 'month', 'day', 'hour', 'minute', 'second', 'ms', 'iter', 'MB') TYPES = (int, int, int, int, int, int, int, int, float) LINE_RE = r'^(\d+)-(\d+)-(\d+)\s(\d+):(\d+):(\d+),(\d+).*\#\[(-?\d+)].*MB:([0-9]*[.][0-9]+)' re_complied = re.compile(LINE_RE) def parse_line(line): try: values = re_complied.match(line).groups() info = OrderedDict(zip(KEYS, values)) return info except Exception as err: print err return None def process_data_frame(df): dt_list = [] for idx, row in df.iterrows(): args = map(int, list(row[0:6])) dt = datetime.datetime(*args) dt_list.append(dt) df['datetime'] = dt_list df['unix_time'] = map(lambda x: int(time.mktime(x.timetuple())), dt_list) return df def truncate_time_range(df, minutes=90): start_date = df['datetime'].min() end_date = start_date + datetime.timedelta(minutes=minutes) mask = (df['datetime'] > start_date) & (df['datetime'] <= end_date) df = df.loc[mask] return df def data_frame_from_log(log_path): with open(log_path, 'rb') as f: txt_lines = f.readlines() data_list = [] for line in txt_lines: line_info = parse_line(line) if line_info is not None: data_list.append(line_info) df = pd.DataFrame(data_list) df = process_data_frame(df) df = truncate_time_range(df, minutes=30) return df def extract_leak_rate(df, title): x = np.array(df['unix_time'].values, dtype=np.int) x -=x.min() y = np.array(df['MB'].values, dtype=np.float) fit = np.polyfit(x, y, 1) m, c = fit # m [MB/s] fit_fn = np.poly1d(fit) # fit_fn is now a function which takes in x and returns an estimate for y plt.plot(x, y, 'o', x, fit_fn(x), '--k') plt.xlabel('Seconds') plt.ylabel('MB leaked') info_txt = 'Leak Rate: {0:.2f} MB/hr'.format(m*60*60) # MB/hour plt.title('{}. {}'.format(title, info_txt)) plt.show() return m*60*60 def extract_leak_rate_multiple(df_list, labels): for df, label in zip(df_list, labels): x = np.array(df['unix_time'].values, dtype=np.int) x -= x.min() y = np.array(df['MB'].values, dtype=np.float) y -= y.min() fit = np.polyfit(x, y, 1) m, c = fit # m [MB/s] fit_fn = np.poly1d(fit) # fit_fn is now a function which takes in x and returns an estimate for y info_txt = '{0:.2f} MB/hr'.format(m*60*60) # MB/hour plt.plot(x, y, 'o', alpha=0.5, label='{}: {}'.format(label, info_txt)) plt.plot(x, fit_fn(x), '--k') plt.xlabel('Seconds') plt.ylabel('Growth (MB)') plt.title('Leak Rate') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Run analysis ###Code # Version 1 as reported https://github.com/enthought/chaco/issues/406 df_60 = data_frame_from_log('chaco_60Hz.log') df_30 = data_frame_from_log('chaco_30Hz.log') extract_leak_rate_multiple([df_60, df_30], ['60Hz refresh', '30Hz refresh']) ###Output _____no_output_____ ###Markdown Run 2: refreshing with wx Timer* All plots have refresh rate is 30Hz* Blue plot is with manual axis range update* Orange plot is without manual axis range updateThe manual axis range adjustment is leaking more memory than the non-manual. ###Code # Version 2 as reported https://github.com/enthought/chaco/issues/406 df_a = data_frame_from_log('chaco_v2_with_manual_scaling_30Hz.log') df_b = data_frame_from_log('chaco_v2_without_manual_scaling_30Hz.log') extract_leak_rate_multiple([df_a, df_b], ['Using Timer, 30Hz (with manual scaling)', 'Using Timer, 30Hz (with manual scaling)']) ###Output _____no_output_____ ###Markdown Analysis Results ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.size'] = 16 plt.rcParams['figure.figsize'] = [12, 8] plt.rcParams['lines.linewidth'] = 2.5 pd.set_option("display.max_rows", 20) pd.set_option("display.max_columns", 20) from pathlib import Path import pandas as pd results_dir = Path("results") results_paths = results_dir.glob("*.json") results = [] for path in results_paths: results.append(pd.read_json(path, orient='index').T) results_df = pd.concat(results, axis=0).reset_index() data_names = results_df["data_name"].unique() def plot_metric_for_name(data_name, metric_name, ax=None, remove_drop=False): if ax is None: fig, ax = plt.subplots() results_data_name = results_df[results_df["data_name"] == data_name] info_first = results_data_name.iloc[0] data_name = info_first['data_name'] results_data_name_sorted = results_data_name.sort_values(f"test_{metric_name}_mean") null_encoders = ~results_data_name_sorted[f"test_{metric_name}_mean"].isna() if remove_drop: null_encoders &= (results_data_name_sorted["encoder"] != "drop") y_values = np.arange(np.sum(null_encoders)) ax.errorbar(results_data_name_sorted.loc[null_encoders, f"test_{metric_name}_mean"], y_values, xerr=results_data_name_sorted.loc[null_encoders, f"test_{metric_name}_std"], ls='', marker='o') ax.set_yticks(y_values) ax.set_yticklabels(results_data_name_sorted.loc[null_encoders, "encoder"]) ax.set_title(f"{data_name}: {metric_name}") def plot_all_metrics(data_name, remove_drop=False): results_data_name = results_df[results_df["data_name"] == data_name] info_first = results_data_name.iloc[0] non_null_names = info_first.notnull() test_names = info_first.index.str.startswith("test") score_names = info_first.index[non_null_names & test_names] score_means_names = score_names[score_names.str.endswith("_mean")] metric_names = [name[5:-5] for name in score_means_names] fig, axes = plt.subplots(1, len(metric_names), figsize=(20, 6), constrained_layout=True) for metric_name, ax in zip(metric_names, axes.flatten()): plot_metric_for_name(data_name, metric_name, ax=ax, remove_drop=remove_drop) data_names = ["telco", "amazon_access", "kicks", "taxi", "ames", "churn", "adult", "dresses_sales", "phishing_websites"] for dataset in data_names: plot_all_metrics(dataset) plt.savefig(f"figures/{dataset}.png") md_names = [f"![{dataset}](figures/{dataset}.png)" for dataset in data_names] print("\n".join(md_names)) ###Output ![telco](figures/telco.png) ![amazon_access](figures/amazon_access.png) ![kicks](figures/kicks.png) ![taxi](figures/taxi.png) ![ames](figures/ames.png) ![churn](figures/churn.png) ![adult](figures/adult.png) ![dresses_sales](figures/dresses_sales.png) ![phishing_websites](figures/phishing_websites.png) ###Markdown Get metadata for datasets ###Code from bench_utils import fetch_openml_and_clean from benchmark import DATA_INFOS data_info = DATA_INFOS['kicks'] def get_metadata(data_info): X, y = fetch_openml_and_clean(data_info) data_info.is_classification n_cats = X.select_dtypes(include=['object', 'category']).shape[1] n_samples, n_features = X.shape return {'dataset_name': data_info.data_name, 'categorical feaatures': n_cats, 'n_features': n_features, 'n_samples': n_samples, 'is_classification': data_info.is_classification, 'openml_url': f'https://www.openml.org/d/{data_info.data_id}'} all_metadata = [get_metadata(data_info) for data_info in DATA_INFOS.values()] import pandas as pd metadata_df = pd.DataFrame.from_records(all_metadata) print(metadata_df.to_markdown()) ###Output | | dataset_name | categorical feaatures | n_features | n_samples | is_classification | openml_url | |---:|:------------------|------------------------:|-------------:|------------:|:--------------------|:-------------------------------| | 0 | kicks | 18 | 32 | 72983 | True | https://www.openml.org/d/41162 | | 1 | amazon_access | 9 | 9 | 32769 | True | https://www.openml.org/d/4135 | | 2 | telco | 16 | 19 | 7043 | True | https://www.openml.org/d/42178 | | 3 | adult | 12 | 14 | 48842 | True | https://www.openml.org/d/179 | | 4 | ames | 43 | 79 | 1460 | False | https://www.openml.org/d/42165 | | 5 | taxi | 9 | 18 | 581835 | False | https://www.openml.org/d/42729 | | 6 | churn | 4 | 20 | 5000 | True | https://www.openml.org/d/40701 | | 7 | dresses_sales | 11 | 12 | 500 | True | https://www.openml.org/d/23381 | | 8 | phishing_websites | 30 | 30 | 11055 | True | https://www.openml.org/d/4534 | ###Markdown Key functions ###Code def gen_seed(x_k, x_l): str_repr = ''.join(x_k.astype(str)) + ''.join(x_l.astype(str)) return int(hashlib.sha256(str_repr.encode('utf-8')).hexdigest(), 16) % 10**9 def braid(x_k, x_l, q): np.random.seed(gen_seed(x_k, x_l)) mask = np.random.rand(len(x_k)) < 1/(q+1) u = x_k.copy() u[mask] = x_l[mask] return u def hamming(x_k, x_l): return np.mean(x_k != x_l) ###Output _____no_output_____ ###Markdown Setup ###Code np.random.seed(0) x_star = np.random.randint(0, Z, N) xs = [np.random.randint(0, Z, N) for i in range(M)] def encode(s): y = x_star.copy() for t, a in enumerate(s): idx = A.index(a) y = braid(y, xs[idx], t+1) return y def decode(y, l, return_d=False, force_decode=None): # get *set* of elements in sequence min_idxs = np.argsort([hamming(x, y) for x in xs])[:l] vs = [xs[idx] for idx in min_idxs] # reconstruct sequence y_star = x_star.copy() s_hat = '' d = [hamming(y_star, y)] for t in range(1, l+1): us = [braid(y_star, v, t) for v in vs] j = np.argmin([hamming(u, y) for u in us]) if force_decode is not None and len(force_decode) >= t: next_sym = force_decode[t-1] next_x = xs[A.index(next_sym)] else: next_sym = A[min_idxs[j]] next_x = vs[j] s_hat += next_sym y_star = braid(y_star, next_x, t) d.append(hamming(y_star, y)) if not all(y_star == y): print('Default reconstruction failed.') if not return_d: return s_hat else: return s_hat, np.array(d) ###Output _____no_output_____ ###Markdown Demo ###Code print('Hamming similarities between symbols:') symbol_dists = [] for k in range(M-1): for l in range(k+1, M): symbol_dists.append(1 - hamming(xs[k], xs[l])) print('Min = ', np.min(symbol_dists)) print('Max = ', np.max(symbol_dists)) print('Mean = ', np.mean(symbol_dists)) print('Std = ', np.std(symbol_dists)) s = 'random vectors for the win' y = encode(s) print(y) s_star = decode(y, len(s)) print(s_star) test_seqs = [ 'abcde', 'abced', 'aabcd', 'zyxwv', 'zyxvw', 'aaazz', 'abbbaaab', 'hi agostina' ] for s in test_seqs: s_hat = decode(encode(s), len(s)) print(s, '--> y --> ', s_hat, '(', s == s_hat, ')') s = 'hyperdimensional computing via crossover' y = encode(s) s_hat, d = decode(y, len(s), return_d=True) t = np.arange(len(s)+1) fig, ax = plt.subplots(1, 1, figsize=(10, 5), tight_layout=True) ax.plot(t, d, lw=2, c='k') ax.plot(t, 1 - t/(len(t)-1), c='gray', ls='--') ax.set_xlim(-1, len(t)) ax.set_ylim(-.05, 1.05) ax.set_xticks(t) ax.set_xticklabels('*' + s_hat) ax.grid() set_font_size(ax, 16) s = 'hyperdimensional computing via crossover' y = encode(s) s_hat, d = decode(y, len(s), return_d=True, force_decode='h') t = np.arange(len(s)+1) fig, ax = plt.subplots(1, 1, figsize=(10, 5), tight_layout=True) ax.plot(t, d, lw=2, c='k') ax.plot(t, 1 - t/(len(t)-1), c='gray', ls='--') ax.set_xlim(-1, len(t)) ax.set_ylim(-.05, 1.05) ax.set_xticks(t) ax.set_xticklabels('*' + s_hat) ax.grid() set_font_size(ax, 16) s = 'aaaaaaabbbbbbbccccccc' y = encode(s) s_hat, d = decode(y, len(s), return_d=True, force_decode='aaaaaaabbbbbbbccccccc') t = np.arange(len(s)+1) fig, ax = plt.subplots(1, 1, figsize=(10, 5), tight_layout=True) ax.plot(t, d, lw=2, c='k') ax.plot(t, 1 - t/(len(t)-1), c='gray', ls='--') ax.set_xlim(-1, len(t)) ax.set_ylim(-.05, 1.05) ax.set_xticks(t) ax.set_xticklabels('*' + s_hat) ax.grid() set_font_size(ax, 16) ###Output _____no_output_____ ###Markdown Gitcoin Grants Round 3 CLR Analysis[![Gitcoin Grants](http://img.youtube.com/vi/eVgEWSPFR2o/0.jpg)](https://youtu.be/eVgEWSPFR2o) video from: https://gitcoin.co/grants/ Before StartThis research report is built for understanding the patterns and issues in [Gitcoin Grants](https://gitcoin.co/grants/), especially for Gitcoin Grants Round 3 CLR. For more details about the background, check out this Gitcoin issue to learn more: https://gitcoin.co/issue/gitcoinco/data-ops/40/3530In this report, we're intersted in the effectiveness about the funding process and results. We'll first analyze the patterns of the grants and contributions, and then verify whether there're collusions in the contributions. (Gitcoin Grants Round 3 CLR makes use of Pairwise Bonding ( https://ethresear.ch/t/pairwise-coordination-subsidies-a-new-quadratic-funding-design/5553 ) to prevent collusion)There're several key questions we'd like to study in this research, as mentioned in https://github.com/gitcoinco/data-ops/issues/40:- Does the community have a bias towards certain types of projects?- Does the community have a bias towards project leads with a large email/twitter list? Vs. actual importance of project.- Is there on-chain collusion?- Is there off-chain collusion? Data SourcesBelow datasets are avialble for us to investigate:1. The anonymous dataset about Gitcoin Grants Round 3 CLR contributions: https://gist.github.com/owocki/1d6deebe478bfbda3656bb243aab2610 Data PreparationBefore the analysis, we need to import the datasets: ###Code import pandas as pd import matplotlib # set max row display pd.set_option('display.max_row', 1000) # set max column width pd.set_option('display.max_columns', 50) df = pd.read_json('./grants_round_3_data.json', typ='series') grants = pd.DataFrame(df['grants']) # add number of contributions grants["num_of_contributions"] = grants.contributions.str.len() # check the data is OK grants.head() ###Output _____no_output_____ ###Markdown Cool. We have already got the **Grants** dataset imported. Then let's start by looking at the basic facts of the dataset. We have **102** grants in total in the dataset (while 92 in the [Grants page](https://gitcoin.co/grants/)), and **61** grants got funds in Round 3, as shown below. The top 10 grants in Round 3 almost occupy **80%** of the sum of the contributed funds, and then the remaining **51** grants will receive **20%** of the total funds in this round. The fund distribution is quite skewed, which might be a reasonable distribution to support the really important projects for the blockchain ecosystem. ###Code grants.shape[0] # the total number of grants in the dataset len(grants[grants['estimated_round_3_clr_match_usd'] > 0]) # the number of grants that received funds in round 3 grants['estimated_round_3_clr_match_usd'].sum() # sum amount of round 3 sorted_grants = grants.sort_values("estimated_round_3_clr_match_usd", ascending=False) sorted_grants[:10] sorted_grants.estimated_round_3_clr_match_usd.plot(kind='bar', title='Figure 1: Funds (CLR R3)', figsize=(13, 6)) sorted_grants.estimated_round_3_clr_match_usd.plot(kind='pie', title='Figure 2: Funds (CLR R3)', figsize=(13, 6)) ###Output _____no_output_____ ###Markdown Now we have got the dataset ready, and let's move on to explore and answer the questions that we're curious about. Topic 1: Is there a bias towards certain types of projects?To answer the first question, we'll analyze the distribution of fund v.s. the types of projects. The project types are analyzed with the below fields:1. tags1. keywords1. history 1. TagsIn the below charts, we calculaed the distribution of funds by tags. There're **10** unique tags in all the grants. As show in figure 3 and figure 4, in Gitcoin Grants Round 3 CLR, **All**, **UI/UX** and **Wallet** almost occupied 70% of all the funds, followed by **ETH 2.0**, **Security**, **Community** and **DeFi**, which occupied almost the remaining 30%. As a comparison to previous rounds, **Wallet**, **ETH 2.0** and **DeFi** have drawn more attention from the fund contributors, and the portion of **Community** has decreased. The correlation of funds by tag are visible when comparing the round 3 and total funds as shown in figure 5 and figure 6. ###Code # get the tag list tags_list = grants.tags.tolist() tags = set([tag for grant_tags in tags_list for tag in grant_tags]) tags # calculate the fund distribution per tags funds_r3 = [grants[grants.tags.apply(lambda x: t in x)]['estimated_round_3_clr_match_usd'].sum() for t in tags] funds_total = [grants[grants.tags.apply(lambda x: t in x)]['total_amount_received_usd_life'].sum() for t in tags] plot_df = pd.DataFrame({'funds_r3': funds_r3, 'funds_total': funds_total}, index = list(tags)) plot_df = plot_df.sort_values("funds_r3", ascending=False) # ranked by r3 funds plot_df.plot(kind='bar', title='Figure 3: Tags and Funds (CLR R3)', figsize=(13, 6)) plot_df.plot(subplots=True, kind='pie', title='Figure 4: Tags and Funds (CLR R3)', figsize=(13, 6)) plot_df.plot(x="funds_total", y="funds_r3", s=100, kind='scatter', title='Figure 5: Tags and Funds (CLR R3)', figsize=(6, 6)) plot_df['r3_total_ratio'] = plot_df['funds_r3'] / plot_df['funds_total'] plot_df.plot(kind='bar', y="r3_total_ratio", title='Figure 6: Tags and Funds (CLR R3), Round 3 / Total Ratio', figsize=(13, 6)) ###Output _____no_output_____ ###Markdown 2. KeywordsBesides following the tags defined by the Gitcoin community, next we try to extract keywords from the Grants **titles**, and analyze the distribution of funds by keywords. We can find that the top 20 keywords are quite different generally if we rank the grants by Round 3 CLR or the total funds. The common top keywords are **ethereum**, **development**, **research**, **austin**, and **griffith**, mainly coming from the Grant "[Austin Griffith Ethereum Research and Development](https://gitcoin.co/grants/122/austin-griffith-ethereum-rampd)". Besides, **ehtereum** is among the top keywords that attracts a large number of funds. **rdai** grows the most as a keyword when looking at the round 3 / total ratio.The keywords shift can also be found by comparing the Grants in Round 3 and previous total funds. ###Code # get the keyword list grants['keywords'] = grants.title.str.lower().str.replace('\W', ' ').str.split(' ') keywords = set([k for grant_keywords in grants['keywords'] for k in grant_keywords if len(k) > 1]) exclude_keywords = ["and", "by", "to", "the", "an", "of", "on", "be", "for"] for k in exclude_keywords: if k in keywords: keywords.remove(k) keywords # calculate the fund distribution per keyword funds_r3 = [grants[grants.keywords.apply(lambda x: t in x)]['estimated_round_3_clr_match_usd'].sum() for t in keywords] funds_total = [grants[grants.keywords.apply(lambda x: t in x)]['total_amount_received_usd_life'].sum() for t in keywords] funds_df = pd.DataFrame({'funds_r3': funds_r3, 'funds_total': funds_total}, index = list(keywords)) # top 20 keywords for previous rounds previous_keywords = funds_df.sort_values("funds_total", ascending=False)[:20] # ranked by total funds previous_keywords # top 20 keywords for round 3 r3_keywords = funds_df.sort_values("funds_r3", ascending=False)[:20] # ranked by r3 funds r3_keywords # common keywords in top 30 keywords from r3 and total funds shared_keywords = list(set(previous_keywords.index).intersection(r3_keywords.index)) funds_df[funds_df.index.isin(shared_keywords)].sort_values("funds_r3", ascending=False) # draw the charts for keywords and funds plot_df = funds_df.sort_values("funds_r3", ascending=False)[:20] plot_df.plot(kind='bar', title='Figure 7: Keywords and Funds (CLR R3)', figsize=(13, 6)) plot_df.plot(y="funds_r3", kind='pie', title='Figure 8: Keywords and Funds (CLR R3)', figsize=(13, 6)) plot_df2 = funds_df.sort_values("funds_total", ascending=False)[:20] plot_df2.plot(y="funds_total", kind='pie', title='Figure 9: Keywords and Funds (Total)', figsize=(13, 6)) funds_df.plot(x="funds_total", y="funds_r3", s=50, kind='scatter', title='Figure 9: Keywords and Funds (CLR R3)', figsize=(6, 6)) plot_df['r3_total_ratio'] = plot_df['funds_r3'] / plot_df['funds_total'] plot_df.plot(kind='bar', y="r3_total_ratio", title='Figure 10: Keywords and Funds (CLR R3), Round 3 / Total Ratio', figsize=(13, 6)) ###Output _____no_output_____ ###Markdown 3. HistoryThe result of Grant contribution in past rounds may impact the result in Round 3. In this section, we show the correlation between Round 3 funds and the total funds of previous rounds. The correlation is strong in top, but not apparent if considering all the cases. - The 9 out of the top 10 grants in Round 3 CLR have received more than 5000 USD Grants before this round. - Quite a few grants that received many grants in total have received quite few grants in Round 3. - For the grants that received the least funds this round, much less correlation can be found. ###Code sorted_grants.plot(x="total_amount_received_usd_life", y="estimated_round_3_clr_match_usd", s=30, kind='scatter', title='Figure 11: Rounds Correlation -- All Grants', figsize=(6, 6)) sorted_grants[:10].plot(x="total_amount_received_usd_life", y="estimated_round_3_clr_match_usd", s=sorted_grants["num_of_contributions"], kind='scatter', title='Figure 12: Rounds Correlation -- Top 20 Grants', figsize=(6, 6)) sorted_grants[-60:].plot(x="total_amount_received_usd_life", y="estimated_round_3_clr_match_usd", s=30, kind='scatter', title='Figure 13: Rounds Correlation -- Top 20 Grants', figsize=(6, 6)) sorted_grants['r3_total_ratio'] = sorted_grants['estimated_round_3_clr_match_usd'] / sorted_grants['total_amount_received_usd_life'] sorted_grants.plot(kind='bar', y="r3_total_ratio", title='Figure 14: Rounds Correlation -- Round 3 / Total Ratio', figsize=(13, 6)) ###Output _____no_output_____ ###Markdown Topic 2: Is there on-chain collusion?Gitcoin Grants Round 3 CLR makes use of Pairwise Bonding ( https://ethresear.ch/t/pairwise-coordination-subsidies-a-new-quadratic-funding-design/5553 ) to prevent collusion. To verify the results, we're curious to detect whether there're collusion with the latest model applied. First, let's explore the contribution data.There're **2216** contributions, **514** unique contributors and **589** unique IP addresses in total.We could find that the **top 12** contributions by USD value has already coverd **60%** of the total fund contribution amount.To investigate the collusion, there're a few strategies we could try:1. investigate the shared IP addressed by profiles;1. investigate the pairwise coordination for all the projects ###Code # add grants url and title in contributions for index, row in grants.iterrows(): contrib = row['contributions'] for c in contrib: c['grant_title'] = row['title'] c['grant_url'] = row['url'] # get the contribution list contributions_list = grants.contributions.tolist() contributions = pd.DataFrame([c for grant_contributions in contributions_list for c in grant_contributions]) contributions.shape[0] len(contributions.profile.unique()) # number of profile len(contributions.ip_address.unique()) # number of IP addresses contributions.value_usd.sum() # total amount of round 3 sorted_contributions = contributions.sort_values("value_usd", ascending=False) # sort by usd value sorted_contributions[:10] sorted_contributions.describe() # profile sorted_contributions[:100].value_usd.plot(kind='bar', title='Figure 14: Contributions by USD Value', figsize=(13, 6)) sorted_contributions.value_usd.plot(kind='pie', title='Figure 15: Contributions by USD Value', figsize=(13, 6)) ###Output _____no_output_____ ###Markdown 1. Shared IP Addresses by ProfilesTo investigate the collusion, we start by find the suspicious that might be owned by the same real person or a group of people. The "IP address" field in the Grants dataset is the useful info for such detection. As shown by the analysis below, **14** suspecious IP addresses are used by **34** users to make **34** contributions. This brings us a question: is is possible there're 14 people/entities that used the 34 accounts to make exact one contribution by every account? If the answer is yes, why did he/she/they needs to do that? We need to look at details to understand more about the scenarios. By linking the IP addresses with grants, we could find **14** groups of grants that are contributed by the same IPs but from different profiles. Further analysis will be needed to understand whether these related grants have valid collusions or not. ###Code # show the string in table completely # pd.set_option('display.max_colwidth', -1) # find shared ip addresses used by multiple profiles shared_ip_addresses = contributions.groupby('ip_address').agg( profiles=pd.NamedAgg(column="profile", aggfunc=set), used_by_number_of_profiles=pd.NamedAgg(column="profile", aggfunc="nunique")).reset_index() shared_ip_addresses = shared_ip_addresses.sort_values("used_by_number_of_profiles", ascending=False) reused_ips = shared_ip_addresses[shared_ip_addresses['used_by_number_of_profiles'] > 1] reused_ips # list the contributions that belongs to the IP addresses reused_ips_list = reused_ips.ip_address.tolist() suspecious_contributions = contributions[contributions['ip_address'].isin(reused_ips_list)] len(suspecious_contributions) # suspecious_contributions.sort_values("ip_address") # list the profiles/users that made the suspecious contributions suspecious_user_list = suspecious_contributions.profile.tolist() suspecious_profiles_contributions = contributions[contributions.profile.isin(suspecious_user_list)] suspecious_profiles = suspecious_profiles_contributions.groupby('profile').agg( grants=pd.NamedAgg(column="grant_url", aggfunc=list), grants_count=pd.NamedAgg(column="grant_url", aggfunc="count"), value_sum_usd=pd.NamedAgg(column="value_usd", aggfunc=sum), ip_addr_count=pd.NamedAgg(column="ip_address", aggfunc="nunique")).reset_index() suspecious_profiles.shape[0] # number of profiles/users that made the suspecious contributions suspecious_profiles.sort_values("grants_count", ascending=False)[:20] # list the suspecious grants from the same IP address urls = suspecious_contributions.grant_url.tolist() suspecious_grants = grants[grants['url'].isin(urls)] len(suspecious_grants) # group the grants by ip addresses grants_from_same_IPs = suspecious_contributions.groupby('ip_address')['grant_title'].transform(lambda x: ' | '.join(set(x))) suspecious_contributions['related_grants'] = grants_from_same_IPs related_grants = suspecious_contributions[['ip_address', 'related_grants']].drop_duplicates() related_grants len(related_grants) # number of group of related grants ###Output _____no_output_____ ###Markdown 2. Pairwise CoordinationIn this section, we'll analyze the paired contributors that appear in the grants, and understand how they interact in the Gitcoin Grants system, and potentially offline relationship. We first analyze the contributions made by each profile/user, and then find the users have the most number of shared grants in their contributions. As analyzed, **102** pairs of contributors have more than 10 shared grants in Gitcoin Grants Round 3 CLR. To look into more detials, we find that the top 1 pair profiles (`5b35dfc38e8523fe86422a9a12524ae02bc8d40448a4a1db96af800b` and `775fec778ed2672f511d864e139552a3690de36a93de3a8733773678`), shared **34 grants** in their contribution (more than 1/3 of the total number of grants). The two users are ranked top 2 by the number of grants they contributed (73 and 53 respectively). The interesting part is that `5b35dfc38e8523fe86422a9a12524ae02bc8d40448a4a1db96af800b` has granted 25K+ USD in total, while `775fec778ed2672f511d864e139552a3690de36a93de3a8733773678` has granted 5 USD in total for 53 projects, with 0.0943 USD for each contribution evenly, within 4 or 5 hours. We need extra info about this user to understand why he/she/it behaves like this. ###Code # find shared ip addresses used by multiple profiles profiles = contributions.groupby('profile').agg( grants=pd.NamedAgg(column="grant_url", aggfunc=list), grants_count=pd.NamedAgg(column="grant_url", aggfunc="count"), value_sum_usd=pd.NamedAgg(column="value_usd", aggfunc=sum)).reset_index() profiles.shape[0] profiles.sort_values("grants_count", ascending=False)[:20] # users ranked by grants count paired_contributors_list = [] for index1, row1 in profiles.iterrows(): for index2, row2 in profiles.iterrows(): if index2 > index1: # avoid duplicate shared_grants = list(set(row1['grants']).intersection(row2['grants'])) if len(shared_grants) > 0: paired_contributors_list.append({ "profile1": row1['profile'], "profile2": row2['profile'], "shared_grants": shared_grants, "shared_grants_count": len(shared_grants) }) paired_contributors = pd.DataFrame(paired_contributors_list) paired_contributors = paired_contributors.sort_values("shared_grants_count", ascending=False) paired_contributors.shape[0] # number of paired contributors paired_contributors.head() # top contributor pairs, ranked by shared_grants_count paired_contributors_sample = pd.Series(paired_contributors.shared_grants_count.tolist()[::40]) paired_contributors_sample.plot(kind="bar", title="Figure 16: Pairwise Coordination Sampling, Ranked by Shared Grants Count", figsize=(13, 4)) # contributor pairs, ranked by shared_grants_count suspecious_paired_contributors = paired_contributors[paired_contributors["shared_grants_count"] > 10] len(suspecious_paired_contributors) # the contributor pairs that have more than 10 shared grants ###Output _____no_output_____ ###Markdown 3. Combine Shared IP Addresses and Pairwise CoordinationBy combing results of the above two kinds of analysis towards shared IP addresses and paired contributors, we can narrow down the investigation to find issues faster. By looking at the intersection of the users from the above two analysis, we found the below two profiles may worth investigation first: `ae03c652db8c8a17ea7a89c0593da5ed6c22598fa7a050210c5feb16` and `54356585c9c19db59c4fefd8d157db60bd084fd5218d10c754f46b55`.profile | grants_count | value_sum_usd | ip_addr_count:-- | -- | -- | --ae03c652db8c8a17ea7a89c0593da5ed6c22598fa7a050210c5feb16 | 19 | 5.000000 | 254356585c9c19db59c4fefd8d157db60bd084fd5218d10c754f46b55 | 15 | 212.791739 | 1 Similar to `775fec778ed2672f511d864e139552a3690de36a93de3a8733773678`, `ae03c652db8c8a17ea7a89c0593da5ed6c22598fa7a050210c5feb16` has made 5 USD contribution in total, split into 19 contributions evenly, 0.263 USD per contribution. We may request extra info from Gitcoin team to understand why this happens, if these accounts need more attention and analysis. We can also find the shared grants that are contributed by the accounts that are controlled by the same IPs from the There're **11** such IPs and **26** such accounts / profiles. For example, the IP address `2ceb75027f1a1132d6cf349ea2bcd918b0f79acdb65c4f68dbf06154` has contributed to grant `/grants/79/lodestar-eth20-client` with 4 different accounts, each with **10 USD** ###Code # show the string in table completely pd.set_option('display.max_colwidth', -1) # intersections of the user list from shared IP addresses and paired contributors shared_ip_addr_user_list = set(suspecious_profiles.profile.tolist()) paired_contributor_user_list = set(suspecious_paired_contributors.profile1.tolist() + suspecious_paired_contributors.profile2.tolist()) intersected_user_list = list(shared_ip_addr_user_list.intersection(paired_contributor_user_list)) common_contributions = contributions[contributions.profile.isin(intersected_user_list)] common_profiles = common_contributions.groupby('profile').agg( grants=pd.NamedAgg(column="grant_url", aggfunc=list), grants_count=pd.NamedAgg(column="grant_url", aggfunc="count"), value_sum_usd=pd.NamedAgg(column="value_usd", aggfunc=sum), ip_addr_count=pd.NamedAgg(column="ip_address", aggfunc="nunique")).reset_index() common_profiles.sort_values("grants_count", ascending=False) # the grants contributed by the two accounts paired_contributors[((paired_contributors['profile1'] == "54356585c9c19db59c4fefd8d157db60bd084fd5218d10c754f46b55") & (paired_contributors['profile2'] == "24f5374e3bd4898c21084490c34800d86d65fda1d139f7ef91f275bb")) | ((paired_contributors['profile2'] == "54356585c9c19db59c4fefd8d157db60bd084fd5218d10c754f46b55") & (paired_contributors['profile1'] == "24f5374e3bd4898c21084490c34800d86d65fda1d139f7ef91f275bb"))] # verify the collusion of the reused IPs reused_ips collusion_found_list = [] for index, row in reused_ips.iterrows(): relevant_profiles = list(row["profiles"]) for i in range(0, len(relevant_profiles)): for j in range(i+1, len(relevant_profiles)): p1 = relevant_profiles[i] p2 = relevant_profiles[j] if p1 != p2: grants1 = suspecious_profiles[suspecious_profiles['profile'] == p1]['grants'].iloc[0] grants2 = suspecious_profiles[suspecious_profiles['profile'] == p2]['grants'].iloc[0] shared_grants = list(set(grants1).intersection(grants2)) if len(shared_grants) > 0: collusion_found_list.append({ "ip_address": row["ip_address"], "shared_grants": shared_grants, "profile1": p1, "profile2": p2, "shared_grants_count": len(shared_grants) }) collusion_found = pd.DataFrame(collusion_found_list) # collusion_found = collusion_found.sort_values("shared_grants_count", ascending=False) collusion_found # number of collusions found collusion_found["ip_address"].nunique() # count the unique IPs len(set(collusion_found["profile1"].unique().tolist() + collusion_found["profile2"].unique().tolist())) # count the profiles ###Output _____no_output_____ ###Markdown ECM-MPT Data Analysis The following notebook will go through prediction analysis for the Extracellular-Matrix Multiple Particle Tracking (ECM-MPT) study of pup age in P14, P21, P28, and P35 datasets. Table of Contents [1. Load Data](1.-load-data) [2. Analysis](2.-analysis) [3. Modelling](modelling) [4. Evaluate Results](evaluate-results) --- 1. Load Data Loading feature dataset from AWS NanceLab Bucket: p14, p21, p28, data are present on mckenna.data/08_06_19_MPT_age_dependence while p35 data is present on mckenna.data/07_16_19_MPT_ECM_breakdown. This bucket is only available through access with Nance lab.There are 15 total videos from each age group. Names of each dataset downloaded are present on dwnld_list.txt. ###Code # libraries used import boto3 import diff_classifier.aws as aws import pandas as pd import seaborn as sn import numpy as np import matplotlib.pyplot as pl import os from matplotlib import colors as plt_colors from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn import metrics from sklearn.metrics import classification_report from sklearn.metrics import confusion_matrix from sklearn import preprocessing import xgboost as xgb from xgboost import cv import shap dwnld_list = [] source_bucket = 'nancelab.publicfiles' source_folder = 'ECM_MPT_Files' keyword = ['40nm', 'NT_brain_2'] s3 = boto3.resource('s3') bucket = s3.Bucket(source_bucket) for object in bucket.objects.all(): folder, filename = ('/'.join(object.key.split("/") [:-1]), object.key.split("/")[-1]) # only look in remote_folder and if any keyword(s) math filename if folder in source_folder and any(k in filename for k in ([keyword]*isinstance(keyword, str) or keyword)): dwnld_list.append(s3.Object(object.bucket_name, object.key)) dwnld_list = [filename.key for filename in dwnld_list if 'features' in filename.key] dwnld_list cnt = 0 for dwnld_file in dwnld_list: folder, filename = (dwnld_file.split("/")[0], dwnld_file.split("/")[-1]) try: aws.download_s3(dwnld_file, filename, bucket_name=source_bucket) fstats = pd.read_csv(filename, encoding = "ISO-8859-1", index_col='Unnamed: 0') print('{} size: {}'.format(filename, fstats.shape)) if 'P14' in filename: fstats['age'] = pd.Series(fstats.shape[0]*[14], index=fstats.index) elif 'P21' in filename: fstats['age'] = pd.Series(fstats.shape[0]*[21], index=fstats.index) elif 'P28' in filename: fstats['age'] = pd.Series(fstats.shape[0]*[28], index=fstats.index) elif 'NT_brain_2' in filename: fstats['age'] = pd.Series(fstats.shape[0]*[35], index=fstats.index) else: print('Error, no target') fstats['Video Number'] = pd.Series(fstats.shape[0]*[cnt], index=fstats.index) cnt += 1 if cnt == 1: fstats_tot = fstats else: fstats_tot = fstats_tot.append(fstats, ignore_index=True) except: print('Skipped!: {}'.format(filename)) os.remove(f'./{filename}') ###Output features_NT_brain_2_slice_1_vid_1.csv size: (416, 91) features_NT_brain_2_slice_1_vid_2.csv size: (833, 91) features_NT_brain_2_slice_1_vid_3.csv size: (1017, 91) features_NT_brain_2_slice_1_vid_4.csv size: (878, 91) features_NT_brain_2_slice_1_vid_5.csv size: (467, 91) features_NT_brain_2_slice_2_vid_1.csv size: (2488, 91) features_NT_brain_2_slice_2_vid_2.csv size: (2322, 91) features_NT_brain_2_slice_2_vid_3.csv size: (1735, 91) features_NT_brain_2_slice_2_vid_4.csv size: (1650, 91) features_NT_brain_2_slice_2_vid_5.csv size: (2100, 91) features_NT_brain_2_slice_3_vid_1.csv size: (562, 91) features_NT_brain_2_slice_3_vid_2.csv size: (853, 91) features_NT_brain_2_slice_3_vid_3.csv size: (817, 91) features_NT_brain_2_slice_3_vid_4.csv size: (598, 91) features_NT_brain_2_slice_3_vid_5.csv size: (1062, 91) features_P14_40nm_s1_v1.csv size: (793, 91) features_P14_40nm_s1_v2.csv size: (1356, 91) features_P14_40nm_s1_v3.csv size: (519, 91) features_P14_40nm_s1_v4.csv size: (140, 91) features_P14_40nm_s1_v5.csv size: (268, 91) features_P14_40nm_s2_v1.csv size: (568, 91) features_P14_40nm_s2_v2.csv size: (938, 91) features_P14_40nm_s2_v3.csv size: (220, 91) features_P14_40nm_s2_v4.csv size: (162, 91) features_P14_40nm_s2_v5.csv size: (258, 91) features_P14_40nm_s3_v1.csv size: (151, 91) features_P14_40nm_s3_v2.csv size: (243, 91) features_P14_40nm_s3_v3.csv size: (323, 91) features_P14_40nm_s3_v4.csv size: (113, 91) features_P14_40nm_s3_v5.csv size: (389, 91) features_P21_40nm_s1_v1.csv size: (807, 91) features_P21_40nm_s1_v2.csv size: (2481, 91) features_P21_40nm_s1_v3.csv size: (1330, 91) features_P21_40nm_s1_v4.csv size: (1294, 91) features_P21_40nm_s1_v5.csv size: (2540, 91) features_P21_40nm_s2_v1.csv size: (2584, 91) features_P21_40nm_s2_v2.csv size: (846, 91) features_P21_40nm_s2_v3.csv size: (435, 91) features_P21_40nm_s2_v4.csv size: (1506, 91) features_P21_40nm_s2_v5.csv size: (2884, 91) features_P21_40nm_s3_v1.csv size: (1086, 91) features_P21_40nm_s3_v2.csv size: (679, 91) features_P21_40nm_s3_v3.csv size: (456, 91) features_P21_40nm_s3_v4.csv size: (1417, 91) features_P21_40nm_s3_v5.csv size: (915, 91) features_P28_40nm_s1_v1.csv size: (679, 91) features_P28_40nm_s1_v2.csv size: (480, 91) features_P28_40nm_s1_v3.csv size: (195, 91) features_P28_40nm_s1_v4.csv size: (699, 91) features_P28_40nm_s1_v5.csv size: (457, 91) features_P28_40nm_s2_v1.csv size: (500, 91) features_P28_40nm_s2_v2.csv size: (610, 91) features_P28_40nm_s2_v3.csv size: (494, 91) features_P28_40nm_s2_v4.csv size: (703, 91) features_P28_40nm_s2_v5.csv size: (372, 91) features_P28_40nm_s3_v1.csv size: (203, 91) features_P28_40nm_s3_v2.csv size: (306, 91) features_P28_40nm_s3_v3.csv size: (326, 91) features_P28_40nm_s3_v4.csv size: (75, 91) features_P28_40nm_s3_v5.csv size: (195, 91) ###Markdown 2. Analysis The following columns are present within the downloaded datasets: ###Code fstats_tot.columns ###Output _____no_output_____ ###Markdown Many of these features are not useful for prediction or have data which may negatively impact classification. The following features and the target feature are defined in the following cell. We also remove any datapoints that are empty or infinite: ###Code fstats_tot features = [ 'alpha', # Fitted anomalous diffusion alpha exponenet 'D_fit', # Fitted anomalous diffusion coefficient 'kurtosis', # Kurtosis of track 'asymmetry1', # Asymmetry of trajecory (0 for circular symmetric, 1 for linear) 'asymmetry2', # Ratio of the smaller to larger principal radius of gyration 'asymmetry3', # An asymmetric feature that accnts for non-cylindrically symmetric pt distributions 'AR', # Aspect ratio of long and short side of trajectory's minimum bounding rectangle 'elongation', # Est. of amount of extension of trajectory from centroid 'boundedness', # How much a particle with Deff is restricted by a circular confinement of radius r 'fractal_dim', # Measure of how complicated a self similar figure is 'trappedness', # Probability that a particle with Deff is trapped in a region 'efficiency', # Ratio of squared net displacement to the sum of squared step lengths 'straightness', # Ratio of net displacement to the sum of squared step lengths 'MSD_ratio', # MSD ratio of the track 'frames', # Number of frames the track spans 'Deff1', # Effective diffusion coefficient at 0.33 s 'Deff2', # Effective diffusion coefficient at 3.3 s 'angle_mean', # Mean turning angle which is counterclockwise angle from one frame point to another 'angle_mag_mean', # Magnitude of the turning angle mean 'angle_var', # Variance of the turning angle 'dist_tot', # Total distance of the trajectory 'dist_net', # Net distance from first point to last point 'progression', # Ratio of the net distance traveled and the total distance 'Mean alpha', 'Mean D_fit', 'Mean kurtosis', 'Mean asymmetry1', 'Mean asymmetry2', 'Mean asymmetry3', 'Mean AR', 'Mean elongation', 'Mean boundedness', 'Mean fractal_dim', 'Mean trappedness', 'Mean efficiency', 'Mean straightness', 'Mean MSD_ratio', 'Mean Deff1', 'Mean Deff2', ] target = 'age' # prediction target (y) ecm = fstats_tot ecm = ecm[~ecm.isin([np.nan, np.inf, -np.inf]).any(1)] # Removing nan and inf data points # Showing a piece of our data: ecm.head() ###Output _____no_output_____ ###Markdown Before prediction, it is required to balance data. As shown, The current dataset is highly imbalance with most datapoints belonging to P21 and P35 categories. The dataset is reduced using random sampling of each target category. ###Code ecm_14 = ecm[ecm[target] == 14] ecm_21 = ecm[ecm[target] == 21] ecm_28 = ecm[ecm[target] == 28] ecm_35 = ecm[ecm[target] == 35] print(f"Ratio before data balance (P14:P21:P28:P35) = {len(ecm_14)}:{len(ecm_21)}:{len(ecm_28)}:{len(ecm_35)}") ecm_list = [ecm_14, ecm_21, ecm_28, ecm_35] for i in range(len(ecm_list)): ratio = 6000/len(ecm_list[i]) ecm_list[i] = ecm_list[i].sample(frac=ratio, random_state=1) print(f"Ratio before after balance (P14:P21:P28:P35) = {len(ecm_list[0])}:{len(ecm_list[1])}:{len(ecm_list[2])}:{len(ecm_list[3])}") bal_ecm = pd.concat(ecm_list) ###Output Ratio before data balance (P14:P21:P28:P35) = 6416:20665:6194:17169 Ratio before after balance (P14:P21:P28:P35) = 6000:6000:6000:6000 ###Markdown 3. Modelling The model used for this study is an extreme gradient boosting (XGBoost) decision tree which is a boosted decision tree. This model was used due to its past results within competitions and research. Due to the use of statistical surroundings in our feature analysis, binning is required in order to avoid data leakage between training/testing. The followingcode will implement binning and a checkerboard implementation to select certain bins for the training dataset. ###Code # Using checkerboard binning for data split: def checkerboard(size): rows = int(size/2) checks = list(range(0, size*size, size+1)) for i in range(1, rows): ssize = size - 2*i for j in range(0, ssize): checks.append(2*i + (size+1)*j) for i in range(1, rows): ssize = size - 2*i for j in range(0, ssize): checks.append(size*size - 1 - (2*i + (size+1)*j)) checks.sort() return checks bins = list(range(0, 2048+1, 256)) bal_ecm['binx'] = pd.cut(bal_ecm.X, bins, labels=[0, 1, 2, 3, 4, 5, 6, 7]) bal_ecm['biny'] = pd.cut(bal_ecm.Y, bins, labels=[0, 1, 2, 3, 4, 5, 6, 7]) bal_ecm['bins'] = 8*bal_ecm['binx'].astype(np.int8) + bal_ecm['biny'].astype(np.int8) bal_ecm = bal_ecm[np.isfinite(bal_ecm['bins'])] bal_ecm['bins'] = bal_ecm['bins'].astype(int) cols = bal_ecm.columns.tolist() cols = cols[-3:] + cols[:-3] bal_ecm = bal_ecm[cols] le = preprocessing.LabelEncoder() X_train = bal_ecm[~bal_ecm.bins.isin(checkerboard(8))].reset_index() X_test_val = bal_ecm[bal_ecm.bins.isin(checkerboard(8))].reset_index() y_train = le.fit_transform(X_train[target]) X_val, X_test = train_test_split(X_test_val, test_size=0.5, random_state=123) y_test = le.fit_transform(X_test[target]) y_val = le.fit_transform(X_val[target]) dtrain = xgb.DMatrix(X_train[new_feat], label=y_train) dtest = xgb.DMatrix(X_test[new_feat], label=y_test) dval = xgb.DMatrix(X_val[new_feat], label=y_val) ###Output _____no_output_____ ###Markdown Model parameters are based on the best possible XGBoost parameters to minimize logloss error. ###Code param = {'max_depth': 7, 'eta': 0.005, 'min_child_weight': 0, 'verbosity': 0, 'objective': 'multi:softprob', 'num_class': 4, 'silent': 'True', 'gamma': 5, 'subsample': 0.15, 'colsample_bytree': 0.8} watchlist = [(dval, 'eval'), (dtrain, 'train')] num_round = 10 bst = xgb.train(param, dtrain, num_round, watchlist) ###### label = dtest.get_label() ypred1 = bst.predict(dtest) # by default, we predict using all the trees pred = [np.where(x == np.max(x))[0][0] for x in ypred1] print("Accuracy:",metrics.accuracy_score(y_test, pred)) # bst.save_model('xgboost_model_allcategories') results = X_test[features] results['predicted'] = pred results['actual'] = y_test ###Output /root/anaconda3/envs/david/lib/python3.7/site-packages/ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy /root/anaconda3/envs/david/lib/python3.7/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy This is separate from the ipykernel package so we can avoid doing imports until ###Markdown 4. Evaluate Results ###Code # print('0 == {}'.format(le.inverse_transform([0]))) # print('1 == {}'.format(le.inverse_transform([1]))) # print('2 == {}'.format(le.inverse_transform([2]))) # print('3 == {}'.format(le.inverse_transform([3]))) class_names = ['P14', 'P21', 'P28', 'P35'] class_results = classification_report(y_test, pred, digits=4, target_names = ['P14', 'P21', 'P28', 'P35']) print(str(class_results)) confusion_matrix(y_test, pred) pl.figure(figsize=(12,10)) cm_array = confusion_matrix(y_test, pred) df_cm = pd.DataFrame(cm_array, index = class_names, columns = class_names) sn.set(font_scale=1.4) # for label size ax = sn.heatmap(df_cm, annot=True, annot_kws={"size": 16}, cmap="YlGnBu") ax.set(xlabel='Actual', ylabel='Predicted') pl.show() explainer = shap.TreeExplainer(bst) shap_values = explainer.shap_values(X_test[features]) %matplotlib inline colors = ['#999999', '#e5bf62', '#7995e9', '#a64ca6'] class_inds = np.argsort([-np.abs(shap_values[i]).mean() for i in range(len(shap_values))]) cmap = plt_colors.ListedColormap(np.array(colors)[class_inds]) # sn.reset_orig() # Reset matplot lib to no longer use seaborn shap.summary_plot(shap_values, X_test[features], class_names=np.array(class_names), title='Total SHAP Values', color=cmap) pl.ioff() %matplotlib inline figsize = (7.5, 5) bottom = -2.0 top = 2.0 for i in range(len(shap_values)): fig = pl.figure(figsize=figsize) ax = fig.gca() ax.set_ylim(bottom, top) shap.dependence_plot("Mean Deff1", shap_values[i], X_test[features], interaction_index = None, color=colors[i], alpha=0.5, ax=ax) figsize = (7.5, 5) bottom = -1.2 top = 1.2 for i in range(len(shap_values)): fig = pl.figure(figsize=figsize) ax = fig.gca() ax.set_ylim(bottom, top) shap.dependence_plot("Mean fractal_dim", shap_values[i], X_test[features], interaction_index = None, color=colors[i], alpha=0.5, ax=ax) figsize = (7.5, 5) bottom = -1.5 top = 1.5 for i in range(len(shap_values)): fig = pl.figure(figsize=figsize) ax = fig.gca() ax.set_ylim(bottom, top) shap.dependence_plot("Mean D_fit", shap_values[i], X_test[features], interaction_index = None, color=colors[i], alpha=0.5, ax=ax) figsize = (7.5, 5) bottom = -1.0 top = 1.0 for i in range(len(shap_values)): fig = pl.figure(figsize=figsize) ax = fig.gca() ax.set_ylim(bottom, top) shap.dependence_plot("Mean MSD_ratio", shap_values[i], X_test[features], interaction_index = None, color=colors[i], alpha=0.5, ax=ax) shap.summary_plot(shap_values[0], X_test[features], max_display=5, class_names = class_names, title = 'SHAP Value for P14') shap.summary_plot(shap_values[1], X_test[features], max_display=5, class_names = class_names, title = 'SHAP Value for P21') shap.summary_plot(shap_values[2], X_test[features], max_display=5, class_names = class_names, title='SHAP Value for P28') shap.summary_plot(shap_values[3], X_test[features], max_display=5, class_names=class_names, title='SHAP Value for P35') from modules import anim_plot_changed from importlib import reload reload(anim_plot_changed) _ = anim_plot_changed.rotate_3d(results, [top_feat[0], top_feat[1], top_feat[2]]) _ = anim_plot_changed.rotate_3d(results, [top_feat[0], top_feat[2], top_feat[3]]) _ = anim_plot_changed.rotate_3d(results, [top_feat[1], top_feat[2], top_feat[3]]) from modules import anim_plot_changed from importlib import reload reload(anim_plot_changed) _ = anim_plot_changed.rotate_3d(results, [top_feat[0], top_feat[1], top_feat[2]], anim_param={'frames':np.arange(0,720,1)}, save_param={'filename':'This_is_a_test.gif','fps':50}) from matplotlib import animation from matplotlib.animation import PillowWriter from xgboost import XGBClassifier model = XGBClassifier() model.fit(X_train[features], y_train, eval_set=[(X_val[features],y_val)], eval_metric='mlogloss') pred2 = model.predict(X_test[features]) print("Accuracy:", metrics.accuracy_score(y_test, pred2)) print(model.feature_importances_) np.array(model.feature_importances_ > .078) np.array(features)[np.array(model.feature_importances_ == 0)] # Feature search: thresh = np.arange(0,.1,.002) best_acc = -1 best_thresh = -1 model2 = XGBClassifier() for t in thresh: print(f"Using thresh = {t} ",end = '| ') new_feat = np.array(features)[np.array(model.feature_importances_ > t)] model2.fit(X_train[new_feat], y_train, verbose=False, eval_set=[(X_val[new_feat],y_val)], eval_metric='mlogloss') pred3 = model2.predict(X_test[new_feat]) acc = metrics.accuracy_score(y_test, pred3) print(f"Accuracy = {acc} ",end = '| ') if acc > best_acc: best_thresh = t best_acc = acc print(f"Best accuracy = {best_acc}, Best threshold = {best_thresh}") print(f"Features used:\n{np.array(features)[np.array(model.feature_importances_ > best_thresh)]}") results = model2.evals_result() param2 = {'max_depth': 2, 'eta': 0.005, 'min_child_weight': 0, 'verbosity': 0, 'objective': 'multi:softprob', 'num_class': 4, 'silent': 'True', 'gamma': 5, 'subsample': 0.25, 'colsample_bytree': 0.3, 'colsample_bynode':.5, 'reg_alpha': 0} from sklearn.metrics import accuracy_score model_final = XGBClassifier(**param2) new_feat = np.array(features)[np.array(model.feature_importances_ > t)] eval_set = [(X_train[new_feat], y_train), (X_test[new_feat], y_test)] model_final.fit(X_train[new_feat], y_train, verbose=False, eval_set=eval_set, eval_metric=["merror", 'mlogloss']) y_pred_f = model_final.predict(X_test[new_feat]) accuracy = accuracy_score(y_test, y_pred_f) print("Accuracy: %.2f%%" % (accuracy * 100.0)) results = model_final.evals_result() epochs = len(results['validation_0']['merror']) x_axis = range(0, epochs) fig, ax = pl.subplots(figsize=(12,12)) ax.plot(x_axis, results['validation_0']['mlogloss'], label='Train') ax.plot(x_axis, results['validation_1']['mlogloss'], label='Test') ax.legend() pl.ylabel('Log Loss') pl.title('XGBoost Log Loss') pl.show() sorted(dict_importance, key=dict_importance.get, reverse=True)[:5] new_feat = np.array(features)[np.array(model.feature_importances_ > best_thresh)] model2.fit(X_train[new_feat], y_train, verbose=False, eval_set=[(X_val[new_feat],y_val)], eval_metric='mlogloss') pred3 = model2.predict(X_test[new_feat]) acc = metrics.accuracy_score(y_test, pred3) print("Accuracy:",metrics.accuracy_score(y_test, pred3)) from IPython.display import HTML HTML('rotation_MeanDeff1_MeanD_fit_MeanMSD_ratio.html') ###Output _____no_output_____ ###Markdown SIMULATION CHECKING AND VISUALIZING ###Code from autoscalingsim import simulator import pandas as pd starting_time = pd.Timestamp("2020-09-17T10:00:00") simulation_step = pd.Timedelta(100, unit = 'ms') time_to_simulate = pd.Timedelta(10, unit = 'm') config_dir = "experiments/topologies/reactive/topo_a"#"experiments/short-experiment/reactive" #"experiments/short-experiment/reactive-mapping"#"experiments/testazuremanual2"#"experiments/test"# results_dir = None simulator = simulator.Simulator(simulation_step, starting_time, time_to_simulate, 666) simulator.add_simulation(config_dir, results_dir) simulator.start_simulation() from stethoscope.analytical_engine import AnalysisFramework af = AnalysisFramework(simulation_step, 'D:/AutoscalingSim/results/test/topologies/reactive/topo_a') af.build_figures_for_single_simulation(simulator.simulations['topo_a'], '')#af.build_figures_for_single_simulation(simulator.simulations['test'], '')# import pandas as pd from experimentgenerator.deployment_generator import DeploymentGenerator DeploymentGenerator.generate("experiments/topologies/reactive/topo_a/application_model.json", "experiments/topologies/reactive/topo_a/platform_model.json", reqs_fraction_expected_to_serve = 0.4, simulation_step = pd.Timedelta(100, unit = 'ms'), load_magnitude = 15, load_batch_size = 1) services_by_app = { 'topo_a': [ 'service-7edf312e-7e71-11eb-aac0-d8cb8af1e959', 'service-7edf312f-7e71-11eb-a3f8-d8cb8af1e959', 'service-7edf3133-7e71-11eb-9bac-d8cb8af1e959', 'service-7edf3135-7e71-11eb-baf5-d8cb8af1e959', 'service-7edf5818-7e71-11eb-b9e3-d8cb8af1e959', 'service-7edf3131-7e71-11eb-9cb2-d8cb8af1e959', 'service-7edf3134-7e71-11eb-9d1a-d8cb8af1e959', 'service-7edf3130-7e71-11eb-88ac-d8cb8af1e959', 'service-7edf5819-7e71-11eb-800c-d8cb8af1e959', 'service-7edf3132-7e71-11eb-a32d-d8cb8af1e959' ], 'topo_b': [ 'service-1d1bdea9-7f3b-11eb-abf0-d8cb8af1e959', 'service-1d1bdeaa-7f3b-11eb-8cbf-d8cb8af1e959', 'service-1d1bdead-7f3b-11eb-8c6e-d8cb8af1e959', 'service-1d1bdeae-7f3b-11eb-bf1c-d8cb8af1e959', 'service-1d1bdeaf-7f3b-11eb-bbf6-d8cb8af1e959', 'service-1d1bdeb0-7f3b-11eb-9a4a-d8cb8af1e959', 'service-1d1c0586-7f3b-11eb-bb38-d8cb8af1e959', 'service-1d1bdeab-7f3b-11eb-8bce-d8cb8af1e959', 'service-1d1bdeb1-7f3b-11eb-a6d0-d8cb8af1e959', 'service-1d1bdeac-7f3b-11eb-95d1-d8cb8af1e959' ], 'topo_c': [ 'service-a0856b68-7f3d-11eb-a7e8-d8cb8af1e959', 'service-a0856b69-7f3d-11eb-bcd9-d8cb8af1e959', 'service-a0856b6d-7f3d-11eb-af79-d8cb8af1e959', 'service-a0856b6c-7f3d-11eb-8578-d8cb8af1e959', 'service-a0856b6b-7f3d-11eb-b68a-d8cb8af1e959', 'service-a0856b6e-7f3d-11eb-9268-d8cb8af1e959', 'service-a0856b6a-7f3d-11eb-a26d-d8cb8af1e959', 'service-a0856b6f-7f3d-11eb-b24f-d8cb8af1e959', 'service-a0856b70-7f3d-11eb-a12c-d8cb8af1e959', 'service-a0859374-7f3d-11eb-a379-d8cb8af1e959' ], 'topo_d': [ 'service-dd56521f-7f5b-11eb-a1dc-d8cb8af1e959', 'service-dd565220-7f5b-11eb-b6c4-d8cb8af1e959', 'service-dd565222-7f5b-11eb-8845-d8cb8af1e959', 'service-dd565223-7f5b-11eb-be29-d8cb8af1e959', 'service-dd565224-7f5b-11eb-87c1-d8cb8af1e959', 'service-dd567913-7f5b-11eb-a90f-d8cb8af1e959', 'service-dd565221-7f5b-11eb-9319-d8cb8af1e959', 'service-dd567915-7f5b-11eb-b17a-d8cb8af1e959', 'service-dd567912-7f5b-11eb-96e9-d8cb8af1e959', 'service-dd567914-7f5b-11eb-a440-d8cb8af1e959' ] } import tensorflow as tf topo_name = 'topo_d' for service_name in services_by_app[topo_name]: model = tf.keras.models.load_model(f'D:/AutoscalingSim/autoscaling-simulator/results_thesis/mapping-models/topologies-SMALL/reps_1_230/{topo_name}/{service_name}/eu/group1/dav_model.mdl') print(service_name) # Container, load, mem, cpu for cont_cnt, cpu_util_deduct in zip(range(40, 61, 1), range(0, 21, 1)): cpu_util = (10 - cpu_util_deduct) / 10 print(f'{cont_cnt}: {model.predict([[cont_cnt, 15, (20 - cpu_util_deduct) / 20, 0.23]])}') ###Output service-dd56521f-7f5b-11eb-a1dc-d8cb8af1e959 40: [[44958.11]] 41: [[45966.688]] 42: [[46975.266]] 43: [[47983.84]] 44: [[48992.414]] 45: [[50000.99]] 46: [[51009.566]] 47: [[52018.15]] 48: [[53026.72]] 49: [[54035.3]] 50: [[55043.875]] 51: [[56052.453]] 52: [[57061.03]] 53: [[58069.6]] 54: [[59078.188]] 55: [[60086.76]] 56: [[61095.34]] 57: [[62103.914]] 58: [[63112.492]] 59: [[64121.074]] 60: [[65129.64]] service-dd565220-7f5b-11eb-b6c4-d8cb8af1e959 40: [[7952.744]] 41: [[7925.601]] 42: [[7898.458]] 43: [[7871.315]] 44: [[7844.17]] 45: [[7817.028]] 46: [[7789.884]] 47: [[7762.741]] 48: [[7735.598]] 49: [[7708.4536]] 50: [[7681.311]] 51: [[7654.167]] 52: [[7627.0244]] 53: [[7599.881]] 54: [[7572.737]] 55: [[7545.5938]] 56: [[7518.4507]] 57: [[7491.3066]] 58: [[7464.1646]] 59: [[7437.02]] 60: [[7409.877]] service-dd565222-7f5b-11eb-8845-d8cb8af1e959 40: [[36247.94]] 41: [[37040.258]] 42: [[37832.582]] 43: [[38624.902]] 44: [[39417.223]] 45: [[40209.54]] 46: [[41001.86]] 47: [[41794.18]] 48: [[42586.5]] 49: [[43378.816]] 50: [[44171.137]] 51: [[44963.457]] 52: [[45755.785]] 53: [[46548.098]] 54: [[47340.418]] 55: [[48132.74]] 56: [[48925.06]] 57: [[49717.38]] 58: [[50509.7]] 59: [[51302.023]] 60: [[52094.336]] service-dd565223-7f5b-11eb-be29-d8cb8af1e959 40: [[49091.63]] 41: [[50202.348]] 42: [[51313.06]] 43: [[52423.78]] 44: [[53534.496]] 45: [[54645.21]] 46: [[55755.934]] 47: [[56866.656]] 48: [[57977.355]] 49: [[59088.082]] 50: [[60198.8]] 51: [[61309.516]] 52: [[62420.234]] 53: [[63530.95]] 54: [[64641.668]] 55: [[65752.38]] 56: [[66863.11]] 57: [[67973.82]] 58: [[69084.55]] 59: [[70195.25]] 60: [[71305.98]] service-dd565224-7f5b-11eb-87c1-d8cb8af1e959 40: [[36779.914]] 41: [[37614.91]] 42: [[38449.902]] 43: [[39284.895]] 44: [[40119.887]] 45: [[40954.88]] 46: [[41789.875]] 47: [[42624.87]] 48: [[43459.855]] 49: [[44294.855]] 50: [[45129.84]] 51: [[45964.84]] 52: [[46799.836]] 53: [[47634.832]] 54: [[48469.83]] 55: [[49304.812]] 56: [[50139.81]] 57: [[50974.8]] 58: [[51809.8]] 59: [[52644.79]] 60: [[53479.78]] service-dd567913-7f5b-11eb-a90f-d8cb8af1e959 40: [[31781.643]] 41: [[32475.477]] 42: [[33169.31]] 43: [[33863.15]] 44: [[34556.98]] 45: [[35250.816]] 46: [[35944.652]] 47: [[36638.49]] 48: [[37332.32]] 49: [[38026.156]] 50: [[38719.992]] 51: [[39413.83]] 52: [[40107.66]] 53: [[40801.5]] 54: [[41495.332]] 55: [[42189.17]] 56: [[42883.008]] 57: [[43576.84]] 58: [[44270.68]] 59: [[44964.51]] 60: [[45658.344]] service-dd565221-7f5b-11eb-9319-d8cb8af1e959 40: [[51050.586]] 41: [[52191.22]] 42: [[53331.836]] 43: [[54472.465]] 44: [[55613.098]] 45: [[56753.73]] 46: [[57894.35]] 47: [[59034.977]] 48: [[60175.61]] 49: [[61316.24]] 50: [[62456.867]] 51: [[63597.492]] 52: [[64738.12]] 53: [[65878.75]] 54: [[67019.39]] 55: [[68160.01]] 56: [[69300.64]] 57: [[70441.266]] 58: [[71581.89]] 59: [[72722.516]] 60: [[73863.16]] service-dd567915-7f5b-11eb-b17a-d8cb8af1e959 40: [[42563.992]] 41: [[43525.348]] 42: [[44486.707]] 43: [[45448.07]] 44: [[46409.43]] 45: [[47370.785]] 46: [[48332.145]] 47: [[49293.504]] 48: [[50254.867]] 49: [[51216.223]] 50: [[52177.59]] 51: [[53138.94]] 52: [[54100.305]] 53: [[55061.664]] 54: [[56023.023]] 55: [[56984.387]] 56: [[57945.746]] 57: [[58907.105]] 58: [[59868.465]] 59: [[60829.824]] 60: [[61791.176]] service-dd567912-7f5b-11eb-96e9-d8cb8af1e959 40: [[39936.54]] 41: [[40785.754]] 42: [[41634.965]] 43: [[42484.18]] 44: [[43333.387]] 45: [[44182.605]] 46: [[45031.816]] 47: [[45881.02]] 48: [[46730.24]] 49: [[47579.45]] 50: [[48428.66]] 51: [[49277.87]] 52: [[50127.082]] 53: [[50976.297]] 54: [[51825.508]] 55: [[52674.723]] 56: [[53523.926]] 57: [[54373.15]] 58: [[55222.355]] 59: [[56071.566]] 60: [[56920.785]] service-dd567914-7f5b-11eb-a440-d8cb8af1e959 40: [[55086.867]] 41: [[56240.598]] 42: [[57394.324]] 43: [[58548.055]] 44: [[59701.777]] 45: [[60855.504]] 46: [[62009.23]] 47: [[63162.96]] 48: [[64316.684]] 49: [[65470.42]] 50: [[66624.14]] 51: [[67777.875]] 52: [[68931.6]] 53: [[70085.32]] 54: [[71239.055]] 55: [[72392.78]] 56: [[73546.51]] 57: [[74700.24]] 58: [[75853.96]] 59: [[77007.69]] 60: [[78161.42]] ###Markdown VISUALIZING TRAINING PROGRESS FOR DEEP MODELS ###Code import pandas as pd import os from matplotlib import pyplot as plt import matplotlib.ticker as ticker def produce_training_plot(dir_with_log : str): log = pd.read_csv(os.path.join(dir_with_log, 'training_log.csv'), sep = ';', header = None,names = ['simtime', 'service', 'metrics_group', 'region', 'divergence']) services = log.service.unique() fig = plt.figure(figsize = (16, 10)) ax = fig.add_subplot(1, 1, 1) for service in services: service_training_log = log[log.service == service].reset_index()[['divergence']] ax.plot(service_training_log.rolling(500).mean(), label = service) ax.axhline(0.25, 0, 1.0, color = 'k', linestyle = 'solid', lw = 2) ax.legend(loc = 'upper right') ax.yaxis.set_major_locator(ticker.MultipleLocator(0.25)) ax.xaxis.set_major_locator(ticker.MultipleLocator(500)) ax.xaxis.set_minor_locator(ticker.MultipleLocator(100)) plt.xticks(fontsize = 15) plt.yticks(fontsize = 15) plt.xlabel('Training iterations count', fontsize = 18) plt.ylabel('Scaled error', fontsize = 18) plt.savefig(os.path.join(dir_with_log, 'learning.png'), dpi = 600, bbox_inches = 'tight') dir_with_log = 'D:/AutoscalingSim/autoscaling-simulator/results_thesis/mapping-models/topologies-SMALL/reps_1_150/topo_c' produce_training_plot(dir_with_log) ###Output _____no_output_____ ###Markdown LOAD PATTERNS EXPERIMENTATION ###Code # Simple load pattern prep import pandas as pd import numpy as np idx = pd.date_range(start = '2020-09-17T08:00:00', end = '2020-09-17T08:59:59', freq = '1s') sub_idx_onwards = idx[idx >= pd.Timestamp('2020-09-17T08:01:00')] sub_idx_before = idx[idx < pd.Timestamp('2020-09-17T08:01:00')] load = [ 3 + np.random.choice(3) if ts.minute % 2 == 0 else 1 + np.random.choice(2) for ts in sub_idx_onwards ] load = [ 0 ] * len(sub_idx_before) + load load_ts = pd.DataFrame(data = {'value': load}, index = idx) load_ts.resample(pd.Timedelta(1, unit = 's')).sum().plot() # Check different ARIMA-based load patterns import statsmodels.api as sm import numpy as np import pandas as pd from matplotlib import pyplot as plt def generate_load_ts(scale_per_resolution : float): idx = pd.date_range(start = '2020-09-17T08:00:00', end = '2020-09-17T08:59:59', freq = '1s') empty_dataset = np.zeros(len(idx)) mod = sm.tsa.SARIMAX(empty_dataset, order=(2, 0, 1), seasonal_order = (0, 0, 1, 120), trend='c', initialization='diffuse') load = scale_per_resolution * (mod.simulate([0, 0.8, 0.01, 0.5, 0.01, 0.01], len(idx)) + 1.0) load_ts = pd.DataFrame(data = {'value': load}, index = idx) ax = load_ts.resample(pd.Timedelta(1, unit = 's')).sum().plot(figsize=(10,6)) ax.get_legend().set_visible(False) return load_ts # Offline forecasting models fitting import pickle import os import statsmodels.api as sm def fit_forecasting_model(load_ts : pd.DataFrame, base_path : str, filename_pattern : str, metric : str, model_name : str, app_name : str, regions : list, services : str, scale_per_resolution : float): load_ts_r = generate_load_ts(scale_per_resolution).resample(pd.Timedelta(1, unit = 'm')).sum() mdl = None if model_name == 'arima': mdl = sm.tsa.SARIMAX(load_ts_r.value, order = (2, 0, 1), seasonal_order = (0, 0, 1, 2), trend='c', initialization='diffuse').fit() elif model_name == 'holtwinters': init_conf = { 'trend' : None, 'damped_trend' : None, 'seasonal' : "add", "seasonal_periods": 2 } mdl = sm.tsa.ExponentialSmoothing(load_ts_r.value, **init_conf).fit(smoothing_level = 0.7, smoothing_trend = None, smoothing_seasonal = 1.0, damping_trend = None, optimized = False) print(f'{model_name} prediction:\n {mdl.predict(start = load_ts_r.index.max() + pd.Timedelta(1, unit = "m"), end = load_ts_r.index.max() + pd.Timedelta(20, unit = "m"))}') model_path = base_path.format(app_name, model_name) if not os.path.exists(model_path): os.makedirs(model_path) model_path = os.path.join(model_path, filename_pattern) for service_name in services: for region in regions: model_fpath = model_path.format(service_name, region, metric) pickle.dump(mdl, open( model_fpath, 'wb') ) base_path = 'D:\\AutoscalingSim\\autoscaling-simulator\\trained_models\\forecasting\\topologies-experiment\\load\\arima\\{}\\{}' filename_pattern = '{}-{}-{}.mdl' regions = ['eu'] metric = 'load' model_name = 'arima' fit_forecasting_model(load_ts, base_path, filename_pattern, metric, model_name, 'topo_a', regions, services_by_app['topo_a'], 30) fit_forecasting_model(load_ts, base_path, filename_pattern, metric, model_name, 'topo_b', regions, services_by_app['topo_b'], 50) fit_forecasting_model(load_ts, base_path, filename_pattern, metric, model_name, 'topo_c', regions, services_by_app['topo_c'], 30) fit_forecasting_model(load_ts, base_path, filename_pattern, metric, model_name, 'topo_d', regions, services_by_app['topo_d'], 30) # Other patterns generation with Camel from camel import camel print(camel.Camel.generate_load_pattern_based_on_recipe("camel_conf/oscillating-5min.json")) ###Output [{"requests_count_level": 0, "percentage_of_interval": 0.2}, {"requests_count_level": 2000, "percentage_of_interval": 0.2}, {"requests_count_level": 1000, "percentage_of_interval": 0.2}, {"requests_count_level": 2000, "percentage_of_interval": 0.2}, {"requests_count_level": 1000, "percentage_of_interval": 0.2}] ###Markdown EXPERIMENTS GENERATION BASED ON TRACES (AZURE) ###Code from experimentgenerator.experiment_generator import ExperimentGenerator a = ExperimentGenerator('experiments/topologies/topo_d') a.generate_experiment('experiment_recipes/topologies/topo_d.json') ###Output Processing vmtable.csv: iteration 1 Processing vmtable.csv: iteration 2 Processing vmtable.csv: iteration 3 Processing vmtable.csv: iteration 4 Processing vmtable.csv: iteration 5 Processing vmtable.csv: iteration 6 Processing vmtable.csv: iteration 7 Processing vmtable.csv: iteration 8 Processing vmtable.csv: iteration 9 Processing vmtable.csv: iteration 10 Processing vmtable.csv: iteration 11 Processing vmtable.csv: iteration 12 Processing vmtable.csv: iteration 13 Processing vmtable.csv: iteration 14 Processing vmtable.csv: iteration 15 Processing vmtable.csv: iteration 16 Processing vmtable.csv: iteration 17 Processing vmtable.csv: iteration 18 Processing vmtable.csv: iteration 19 Processing vmtable.csv: iteration 20 Processing vmtable.csv: iteration 21 Processing vmtable.csv: iteration 22 Processing vmtable.csv: iteration 23 Processing vmtable.csv: iteration 24 Processing vmtable.csv: iteration 25 Processing vmtable.csv: iteration 26 Processing vmtable.csv: iteration 27 Processing vm_cpu_readings-file-1-of-195.csv: iteration 1 Processing vm_cpu_readings-file-1-of-195.csv: iteration 2 Processing vm_cpu_readings-file-1-of-195.csv: iteration 3 Processing vm_cpu_readings-file-1-of-195.csv: iteration 4 Processing vm_cpu_readings-file-1-of-195.csv: iteration 5 Processing vm_cpu_readings-file-1-of-195.csv: iteration 6 Processing vm_cpu_readings-file-1-of-195.csv: iteration 7 Processing vm_cpu_readings-file-1-of-195.csv: iteration 8 Processing vm_cpu_readings-file-1-of-195.csv: iteration 9 Processing vm_cpu_readings-file-1-of-195.csv: iteration 10 Processing vm_cpu_readings-file-1-of-195.csv: iteration 11 Processing vm_cpu_readings-file-1-of-195.csv: iteration 12 Processing vm_cpu_readings-file-1-of-195.csv: iteration 13 Processing vm_cpu_readings-file-1-of-195.csv: iteration 14 Processing vm_cpu_readings-file-1-of-195.csv: iteration 15 Processing vm_cpu_readings-file-1-of-195.csv: iteration 16 Processing vm_cpu_readings-file-1-of-195.csv: iteration 17 Processing vm_cpu_readings-file-1-of-195.csv: iteration 18 Processing vm_cpu_readings-file-1-of-195.csv: iteration 19 Processing vm_cpu_readings-file-1-of-195.csv: iteration 20 Processing vm_cpu_readings-file-1-of-195.csv: iteration 21 Processing vm_cpu_readings-file-1-of-195.csv: iteration 22 Processing vm_cpu_readings-file-1-of-195.csv: iteration 23 Processing vm_cpu_readings-file-1-of-195.csv: iteration 24 Processing vm_cpu_readings-file-1-of-195.csv: iteration 25 Processing vm_cpu_readings-file-1-of-195.csv: iteration 26 Processing vm_cpu_readings-file-1-of-195.csv: iteration 27 Processing vm_cpu_readings-file-1-of-195.csv: iteration 28 Processing vm_cpu_readings-file-1-of-195.csv: iteration 29 Processing vm_cpu_readings-file-1-of-195.csv: iteration 30 Processing vm_cpu_readings-file-1-of-195.csv: iteration 31 Processing vm_cpu_readings-file-1-of-195.csv: iteration 32 Processing vm_cpu_readings-file-1-of-195.csv: iteration 33 Processing vm_cpu_readings-file-1-of-195.csv: iteration 34 Processing vm_cpu_readings-file-1-of-195.csv: iteration 35 Processing vm_cpu_readings-file-1-of-195.csv: iteration 36 Processing vm_cpu_readings-file-1-of-195.csv: iteration 37 Processing vm_cpu_readings-file-1-of-195.csv: iteration 38 Processing vm_cpu_readings-file-1-of-195.csv: iteration 39 Processing vm_cpu_readings-file-1-of-195.csv: iteration 40 Processing vm_cpu_readings-file-1-of-195.csv: iteration 41 Processing vm_cpu_readings-file-1-of-195.csv: iteration 42 Processing vm_cpu_readings-file-1-of-195.csv: iteration 43 Processing vm_cpu_readings-file-1-of-195.csv: iteration 44 Processing vm_cpu_readings-file-1-of-195.csv: iteration 45 Processing vm_cpu_readings-file-1-of-195.csv: iteration 46 Processing vm_cpu_readings-file-1-of-195.csv: iteration 47 Processing vm_cpu_readings-file-1-of-195.csv: iteration 48 Processing vm_cpu_readings-file-1-of-195.csv: iteration 49 Processing vm_cpu_readings-file-1-of-195.csv: iteration 50 Processing vm_cpu_readings-file-1-of-195.csv: iteration 51 Processing vm_cpu_readings-file-1-of-195.csv: iteration 52 Processing vm_cpu_readings-file-1-of-195.csv: iteration 53 Processing vm_cpu_readings-file-1-of-195.csv: iteration 54 Processing vm_cpu_readings-file-1-of-195.csv: iteration 55 Processing vm_cpu_readings-file-1-of-195.csv: iteration 56 Processing vm_cpu_readings-file-1-of-195.csv: iteration 57 Processing vm_cpu_readings-file-1-of-195.csv: iteration 58 Processing vm_cpu_readings-file-1-of-195.csv: iteration 59 Processing vm_cpu_readings-file-1-of-195.csv: iteration 60 Processing vm_cpu_readings-file-1-of-195.csv: iteration 61 Processing vm_cpu_readings-file-1-of-195.csv: iteration 62 Processing vm_cpu_readings-file-1-of-195.csv: iteration 63 Processing vm_cpu_readings-file-1-of-195.csv: iteration 64 Processing vm_cpu_readings-file-1-of-195.csv: iteration 65 Processing vm_cpu_readings-file-1-of-195.csv: iteration 66 Processing vm_cpu_readings-file-1-of-195.csv: iteration 67 Processing vm_cpu_readings-file-1-of-195.csv: iteration 68 Processing vm_cpu_readings-file-1-of-195.csv: iteration 69 Processing vm_cpu_readings-file-1-of-195.csv: iteration 70 Processing vm_cpu_readings-file-1-of-195.csv: iteration 71 Processing vm_cpu_readings-file-1-of-195.csv: iteration 72 Processing vm_cpu_readings-file-1-of-195.csv: iteration 73 Processing vm_cpu_readings-file-1-of-195.csv: iteration 74 Processing vm_cpu_readings-file-1-of-195.csv: iteration 75 Processing vm_cpu_readings-file-1-of-195.csv: iteration 76 Processing vm_cpu_readings-file-1-of-195.csv: iteration 77 Processing vm_cpu_readings-file-1-of-195.csv: iteration 78 Processing vm_cpu_readings-file-1-of-195.csv: iteration 79 Processing vm_cpu_readings-file-1-of-195.csv: iteration 80 Processing vm_cpu_readings-file-1-of-195.csv: iteration 81 Processing vm_cpu_readings-file-1-of-195.csv: iteration 82 Processing vm_cpu_readings-file-1-of-195.csv: iteration 83 Processing vm_cpu_readings-file-1-of-195.csv: iteration 84 Processing vm_cpu_readings-file-1-of-195.csv: iteration 85 Processing vm_cpu_readings-file-1-of-195.csv: iteration 86 Processing vm_cpu_readings-file-1-of-195.csv: iteration 87 Processing vm_cpu_readings-file-1-of-195.csv: iteration 88 Processing vm_cpu_readings-file-1-of-195.csv: iteration 89 Processing vm_cpu_readings-file-1-of-195.csv: iteration 90 Processing vm_cpu_readings-file-1-of-195.csv: iteration 91 Processing vm_cpu_readings-file-1-of-195.csv: iteration 92 Processing vm_cpu_readings-file-1-of-195.csv: iteration 93 Processing vm_cpu_readings-file-1-of-195.csv: iteration 94 Processing vm_cpu_readings-file-1-of-195.csv: iteration 95 Processing vm_cpu_readings-file-1-of-195.csv: iteration 96 Processing vm_cpu_readings-file-1-of-195.csv: iteration 97 Processing vm_cpu_readings-file-1-of-195.csv: iteration 98 Processing vm_cpu_readings-file-1-of-195.csv: iteration 99 Processing vm_cpu_readings-file-1-of-195.csv: iteration 100 ###Markdown EVALUATING ALTERNATIVE CONFIGS, E.G. REACTIVE VS PREDICTIVE ###Code from cruncher.cruncher import Cruncher c = Cruncher('cruncher_conf/experiment_1/') c.run_experiment() c.visualize('D:/@TUM/PhD/FINAL/experimentresults/data') # Visualizing costs of deployments in the experiments on resource limits (multilayered aspect) import matplotlib import matplotlib.pyplot as plt import numpy as np labels = ['50%', '100%', '150%', '200%', '250%'] limits_cost = { 'Topo-A': [ 0.18645, 0.19105, 0.18672, 0.18743, 0.18054 ], 'Topo-B': [ 0.22352, 0.22313, 0.22799, 0.22776, 0.21604 ], 'Topo-C': [ 0.23489, 0.22202, 0.23566, 0.27626, 0.23742 ], 'Topo-D': [ 0.27127, 0.2742, 0.27424, 0.26699, 0.27476] } x = np.arange(len(labels)) # the label locations width = 0.2 # the width of the bars fig, ax = plt.subplots(figsize = (10, 5)) rects = [] pos = [(-1, 1), (-1, 0), (1, 0), (1, 1)] i = 0 for topo_name, cost_vector in limits_cost.items(): rects.append(ax.bar(x + pos[i][0] * (pos[i][1] + 0.5) * width, cost_vector, width, label=topo_name)) i += 1 # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylabel('Cost, USD') ax.set_ylim((0, 0.33)) ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend() for p in ax.patches: ax.annotate(format(p.get_height()), (p.get_x() + p.get_width() / 2., p.get_height()), ha='center', va='center', xytext=(0, 25), textcoords='offset points', rotation=90) fig.tight_layout() plt.legend(loc = 'upper center', ncol = 4, bbox_to_anchor = (0.5, -0.1)) plt.show() ###Output _____no_output_____ ###Markdown PERFORMANCE EVALUATION OF THE SIMULATOR ###Code from autoscalingsim import simulator import pandas as pd import collections import time import pickle simulation_steps_ms = [10,20,30,40,50,60,70,80,90,100] starting_time = pd.Timestamp("2020-09-17T10:00:00") time_to_simulate = pd.Timedelta(10, unit = 'm') repeats = 10 results = collections.defaultdict(list) for sim_step_raw in simulation_steps_ms: print(f'current simulation step is {sim_step_raw} ms') for _ in range(repeats): start = time.time() simulation_step = pd.Timedelta(sim_step_raw, unit = 'ms') config_dir = "experiments/testazuremanual2" results_dir = None sim = simulator.Simulator(simulation_step, starting_time, time_to_simulate) sim.add_simulation(config_dir, results_dir) sim.start_simulation() results[sim_step_raw].append(time.time() - start) pickle.dump( results, open( "performance_test_results_raw.pickle", "wb" ) ) import numpy as np from matplotlib import pyplot as plt res = pickle.load( open( "performance_test_results_raw.pickle", "rb" ) ) results_means = [np.mean(times_per_simstep) / (10 * 60) for times_per_simstep in res.values()] results_stds = [np.std(times_per_simstep) / (10 * 60) for times_per_simstep in res.values()] steps = np.arange(10, 101, 10) p1 = plt.bar(steps, results_means, 7, yerr=results_stds) plt.ylabel('Wall clock time per 1 simulated second, s') plt.xlabel('Simulation step, ms') plt.xticks(steps) plt.yticks(np.arange(0.0, 2.0, 0.1)) plt.hlines(0.5, xmin = 5, xmax = 105, colors = 'r', linestyles = 'dashed') #plt.show() plt.savefig("./performance_results.png", dpi = 600, bbox_inches='tight') # Diminishing returns: (10 * 60_000) / steps # To profile: # python -m cProfile -o D:\AutoscalingSim\results\profiling_res.txt autoscalingsim-cl.py --step 10 --start "2020-09-17T10:00:00" --confdir "experiments/test" --simtime 1m import pstats from pstats import SortKey p = pstats.Stats('D://AutoscalingSim//results//profiling_res.txt') p.strip_dirs().sort_stats(SortKey.CALLS).print_stats() ###Output _____no_output_____ ###Markdown **See [https://github.com/boutproject/boutcore-examples](https://github.com/boutproject/boutcore-examples) for links to the interactive version.**This example examines output from the `blob2d` example included in the `BOUT-dev` repo. \[It was tested with BOUT++ v4.3.2 from Fedora 34\].`blob2d` is a simplified model of an isolated 'blob' or 'filament'. These are coherent, field-aligned structures that are common in the scrape-off layer of tokamaks. `blob2d` represents the evolution only in the plane perpendicular to the magnetic field, with approximate closures describing parallel currents to the sheath and loss of density due to parallel flows. The 'blob' is created by initialising the simulation with a Gaussian density perturbation on a constant background.This notebook is strongly based on [the blob2d notebook in the xBOUT-examples](https://github.com/boutproject/xBOUT-examples/blob/master/blob2d/blob2d_example.ipynb).Contents:* Setup* Running the simulation* Load* Plot* Animate* Analyse Setup ###Code # set up matplotlib %matplotlib notebook from matplotlib import pyplot as plt plt.rcParams["figure.figsize"] = (16, 8) plt.rcParams.update({"font.size": 14}) import numpy as np from xbout import open_boutdataset # The physics model we are going to run import blob2d # The simulation requires a folder from which options are read, and output is written. path = "blob" # Make sure we have the folder "blob" and options file "BOUT.inp" is present blob2d.ensure_blob(path) # We must call init only once # Restart the kernel if you want to use a different working directory blob2d.bc.init(["-d", path]) ###Output _____no_output_____ ###Markdown Running the simulation===== ###Code # Only run simulation for 10 steps model = blob2d.Blob2D(nout=10) print("We are now running the simulation ... that might take some time ...") model.solve() print("The simulation is finished!") ###Output We are now running the simulation ... that might take some time ... ----------Parameters: ------------ Omega_i = 1.681764e+07 /s, c_s = 1.550006e+04 m/s, rho_s = 9.216552e-04 m delta_* = rho_s * (dn/n) * 9.372772e+00 The simulation is finished! ###Markdown Load==== First we need to open the Dataset.The chunks argument to `open_boutdataset()` is needed so that dask can paralleliseoperations over the time dimension (by default the chunk size is the size of thearrays in the files being loaded). Seehttp://xarray.pydata.org/en/stable/dask.htmlchunking-and-performance.For this example it doesn't matter, but for larger ones it can be very useful.Note: a warning from `open_boutdataset()` is expected. For `blob2d` the z-directionis a periodic, binormal direction with lengths normalised to the background hybridgyro-radius `rho_s=sqrt(T_e/m_i)`, rather than the usual toroidal angle. `'dz'` isused and `'ZMIN'` and `'ZMAX'` are ignored. ###Code ds = open_boutdataset(f"{path}/BOUT.dmp.*.nc", f"{path}/BOUT.inp", chunks={"t": 4}) # Use squeeze() to get rid of the y-dimension, which has length 1 as blob2d does not # simulate the parallel dimension. ds = ds.squeeze(drop=True) ###Output Read in: <xbout.BoutDataset> Contains: <xarray.Dataset> Dimensions: (t: 11, x: 260, y: 1, z: 256) Coordinates: * t (t) float64 0.0 50.0 100.0 150.0 200.0 ... 350.0 400.0 450.0 500.0 * x (x) int64 0 1 2 3 4 5 6 7 8 ... 252 253 254 255 256 257 258 259 * y (y) float64 0.5 * z (z) float64 0.0 0.3 0.6 0.9 1.2 1.5 ... 75.3 75.6 75.9 76.2 76.5 Data variables: dx (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> dy (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g11 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g22 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g33 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g12 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g13 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g23 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_11 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_22 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_33 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_12 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_13 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> g_23 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> J (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> Bxy (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> G1 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> G2 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> G3 (x, y) float64 dask.array<chunksize=(260, 1), meta=np.ndarray> phi (t, x, y, z) float64 dask.array<chunksize=(4, 260, 1, 256), meta=np.ndarray> ncalls (t) int32 dask.array<chunksize=(4,), meta=np.ndarray> ncalls_e (t) int32 dask.array<chunksize=(4,), meta=np.ndarray> ncalls_i (t) int32 dask.array<chunksize=(4,), meta=np.ndarray> n (t, x, y, z) float64 dask.array<chunksize=(4, 260, 1, 256), meta=np.ndarray> omega (t, x, y, z) float64 dask.array<chunksize=(4, 260, 1, 256), meta=np.ndarray> Attributes: BOUT_REVISION: Unknown metadata: {'BOUT_VERSION': 4.32, 'iteration': 9, 'zperiod': 1, 'MXS... options: # settings file for BOUT++\n#\n# Blob simulation in a 2D ... Metadata: { 'BOUT_VERSION': 4.32, 'MXG': 2, 'MXSUB': 256, 'MYG': 0, 'MYSUB': 1, 'MZ': 256, 'MZG': 0, 'MZSUB': 256, 'NXPE': 1, 'NYPE': 1, 'NZPE': 1, 'ZMAX': 1.0, 'ZMIN': 0.0, 'dz': 0.3, 'fine_interpolation_factor': 8, 'iteration': 9, 'ixseps1': 260, 'ixseps2': 260, 'jyseps1_1': -1, 'jyseps1_2': 0, 'jyseps2_1': 0, 'jyseps2_2': 0, 'keep_xboundaries': 1, 'keep_yboundaries': 0, 'nx': 260, 'ny': 1, 'ny_inner': 0, 'nz': 256, 'zperiod': 1} Options: <boutdata.data.BoutOptionsFile object at 0x7f6ec7b22280> ###Markdown We choose to create a 'coordinate' for the x-dimension from `dx`.This is not done generically because `dx` can have two-dimensional dependence\- as well as varying radially it can be different e.g. in core and PF regions.However, for a slab geometry like `blob2d`, `dx` is a constant so it can easilybe used to create a one-dimensional x-coordinate.This ensures we get a sensible aspect ratio in plots.A z-coordinate was already created from `dz`, because `dz` is always a scalar,so it can always be used to create a 1d 'dimension coordinate'. ###Code dx = ds["dx"].isel(x=0).values # Get rid of existing "x" coordinate, which is just the index values. ds = ds.drop("x") # Create a new coordinate, which is length in units of rho_s ds = ds.assign_coords(x=np.arange(ds.sizes["x"])*dx) ###Output _____no_output_____ ###Markdown Plot===Here we use xarray methods to plot simple slices. First make some plots of the initial state ###Code ds_initial = ds.isel(t=0) plt.figure() ax = plt.subplot(131) ax.set_aspect("equal") ds_initial["n"].plot(x="x", y="z") ax = plt.subplot(132) ax.set_aspect("equal") ds_initial["omega"].plot(x="x", y="z") ax = plt.subplot(133) ax.set_aspect("equal") ds_initial["phi"].plot(x="x", y="z") ###Output _____no_output_____ ###Markdown Plots at a time point during the blob evolution ###Code tind = 10 # Uses xarray methods to plot simple slices plt.figure() ax = plt.subplot(131) ax.set_aspect("equal") ds.isel(t=tind)["n"].plot(x="x", y="z") ax = plt.subplot(132) ax.set_aspect("equal") ds.isel(t=tind)["omega"].plot(x="x", y="z") ax = plt.subplot(133) ax.set_aspect("equal") ds.isel(t=tind)["phi"].plot(x="x", y="z") ###Output _____no_output_____ ###Markdown Slicing to a 1d Dataset automatically produces a 1d plot, herea radial density profile through the blob centre ###Code plt.figure() ds.isel(t=10, z=128)["n"].plot() ###Output _____no_output_____ ###Markdown Animate=======Use `xbout` methods through the `.bout` accessor to create animations. For a DataArray ###Code ds["n"].bout.animate2D(aspect="equal") ###Output n data passed has 3 dimensions - will use animatplot.blocks.Pcolormesh() ###Markdown Animate several fields from a Dataset with `animate_list()` ###Code ds.bout.animate_list(["n", "omega", "phi"], ncols=3, aspect="equal") ###Output _____no_output_____ ###Markdown DataArray objects can be passed to `animate_list()` (as long asthey all have the same time-axis length), e.g. to combine 1dand 2d plots.Keyword arguments to `animate_list()` can be passed lists (withas many entries as variables being plotted), to set a per-variablevalue.Animations can be saved by passing a 'save_as' argument giving a namefor the output file, producing a .gif file. ###Code ds.bout.animate_list(["n", "omega", "phi", ds["n"].isel(z=128)], aspect=["equal", "equal", "equal", "auto"], save_as="blob") ###Output _____no_output_____ ###Markdown Analyse=======Perform some analysis of the blob to demonstrate more `xarray` methods. Find the centre-of mass of the blob using `.integrate()` ([documentation](http://xarray.pydata.org/en/stable/generated/xarray.DataArray.integrate.html)). ###Code background_density = 1.0 delta_n = ds["n"] - background_density integrated_density = delta_n.integrate(dim=["x", "z"]) ds["CoM_x"] = (ds["x"]*delta_n).integrate(dim=["x", "z"]) / integrated_density ds["CoM_z"] = (ds["z"]*delta_n).integrate(dim=["x", "z"]) / integrated_density plt.figure() plt.subplot(121) ds["CoM_x"].plot() plt.subplot(122) ds["CoM_z"].plot() ###Output _____no_output_____ ###Markdown Find the blob velocity using `.differentiate()` ([documentation](http://xarray.pydata.org/en/stable/generated/xarray.DataArray.differentiate.html)).This is a somewhat crude method, using finite difference on the output timestep.It would be more accurate to calculate and integrate the ExB velocity. ###Code v_x = ds["CoM_x"].differentiate("t") v_z = ds["CoM_z"].differentiate("t") plt.figure() plt.subplot(121) v_x.plot() plt.ylabel("Radial CoM velocity") plt.subplot(122) v_z.plot() plt.ylabel("Binormal CoM velocity") ###Output _____no_output_____ ###Markdown Analyzing Edit Activity of Swiss Cities ###Code %matplotlib inline from gastrodon import RemoteEndpoint, QName, ttl, URIRef, inline from wikidata.client import Client import requests import json from io import StringIO from collections import Counter, defaultdict import time import datetime import sys import pandas as pd import numpy as np import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown CitiesIn this section, we get the cities of Switzerland. This is performed by the SPARQL query: ###Code """ SELECT ?city ?cityLabel WHERE { ?city wdt:P31 wd:Q54935504 SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". } } ORDER BY ?cityLabel """ ###Output _____no_output_____ ###Markdown Here, **wdt:p31** corresponds to the predicate **instance of**, and **wd:Q54935504** corresponds to the entity **cities of Switzerland**.We obtain the label of the entity we get (city) by using the wikibase:label service. Finally, the results are ordered alphabetically. ###Code prefixes = inline(""" @prefix wd: <http://www.wikidata.org/entity/> . @prefix wdt: <http://www.wikidata.org/prop/direct/> . @prefix rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> . """).graph endpoint = RemoteEndpoint( "http://query.wikidata.org/sparql" ,prefixes=prefixes ) locs_in_switzerland = endpoint.select(""" SELECT ?city ?cityLabel WHERE { ?city wdt:P31 wd:Q54935504 SERVICE wikibase:label { bd:serviceParam wikibase:language "[AUTO_LANGUAGE],en". } } ORDER BY ?cityLabel""") locs_in_switzerland.tail(25) # TODO: combine SPARQL and visualizations ###Output _____no_output_____ ###Markdown Here, we manually write the entity IDs of some of the cities of Switzerland. ###Code bern = 'Q70' geneva = 'Q71' zurich = 'Q72' basel = 'Q78' canton_zurich = 'Q11943' client = Client() print(client.get(zurich, load=True)) print(client.get(canton_zurich, load=True)) ###Output <wikidata.entity.Entity Q72 'Zürich'> <wikidata.entity.Entity Q11943 'canton of Zürich'> ###Markdown Get the Complete Edit Activity ###Code def edit_hist(item): """ This function returns the complete edit history of the entity with the given entity ID. Parameters ---------- item: str Q ID of the entity. For Zurich, this corresponds to Q72. Returns ------- edit_hist : pandas.DataFrame Complete edit history of the given entity. The returned dataframe has the following columns: UserID, User, Timestamp, Size, Comment """ fields = ['timestamp', 'user', 'userid', 'comment', 'size'] field_str = '%7C'.join(fields) limit = '500' query_template = 'https://www.wikidata.org/w/api.php?action=query&format=json&prop=revisions&titles={item}&rvprop={fields}&rvslots=main&rvlimit={limit}' query = query_template.format( item=item, fields=field_str, limit=limit) curr_hist_dict = requests.get(query).json() res_str = 'UserID,User,Timestamp,Size,Comment\n' while True: for page in curr_hist_dict['query']['pages'].values(): for revision in page['revisions']: res_str += str(revision['userid']) + ',' res_str += revision['user'] + ',' res_str += revision['timestamp'] + ',' res_str += str(revision['size']) + ',' raw_comment = revision['comment'] escaped_comment = raw_comment.translate(str.maketrans({',' : '\\,'})) res_str += escaped_comment + '\n' try: continue_field = curr_hist_dict['continue']['rvcontinue'] new_query = query + '&rvcontinue=' + continue_field curr_hist_dict = requests.get(new_query).json() except KeyError: break return pd.read_csv(StringIO(res_str), quoting=3, escapechar='\\') ###Output _____no_output_____ ###Markdown Get Visit History For the Last 60 Days ###Code def visit_hist(item): """ Get the visit history of the entity with the given entity ID for the last 60 days. Parameters ---------- item: str Q ID of the entity. For Zurich, this corresponds to Q72. Returns ------- visit_hist : pandas.DataFrame Complete visit history of the given entity. The returned dataframe has the following columns: Date, VisitCount """ query_template = 'https://www.wikidata.org/w/api.php?action=query&format=json&prop=pageviews&titles={item}' query = query_template.format(item=item) visit_dict = requests.get(query).json() res_str = 'Date,VisitCount\n' for page in visit_dict['query']['pages'].values(): for date, count in page['pageviews'].items(): if count is None: count = 0 res_str += date + ',' + str(count) + '\n' return pd.read_csv(StringIO(res_str)) ###Output _____no_output_____ ###Markdown Analysis In this section, we analyze the edit and visit history data. ###Code item_to_analyze = zurich edit_df = edit_hist(item_to_analyze) visit_df = visit_hist(item_to_analyze) # Transform the timestamp string columns to python timestamp objects # for easier time manipulations and filtering edit_df['Timestamp'] = edit_df['Timestamp'].apply(lambda s: datetime.datetime.strptime(s, "%Y-%m-%dT%H:%M:%SZ").timetuple()) visit_df['Date'] = visit_df['Date'].apply(lambda s: datetime.datetime.strptime(s, "%Y-%m-%d").timetuple()) ###Output _____no_output_____ ###Markdown Number of Edits per YearWe count the number of edits per each year since the beginning of the dataset and plot the results. ###Code edit_df_yearly = edit_df['Timestamp'].copy() edit_df_yearly = edit_df_yearly.transform(lambda t: t.tm_year) yearly_counts = Counter(edit_df_yearly.values) fig = plt.figure() plt.plot(yearly_counts.keys(), yearly_counts.values(), marker='o') plt.xlabel('Year') plt.ylabel('Number of Edits') plt.grid() plt.title('Number of Edits per Year'); fig.savefig('num_edits.png') ###Output _____no_output_____ ###Markdown Number of Edits per Month of YearWe count the number of edits on each month for a given year and plot the results. ###Code year = 2018 monthly_counts = defaultdict(int) for row in edit_df['Timestamp']: if row.tm_year == year: monthly_counts[row.tm_mon] += 1 plt.plot(monthly_counts.keys(), monthly_counts.values(), marker='o') plt.xticks(np.arange(1, 13)) plt.xlabel('Month') plt.ylabel('Number of Edits') plt.grid() plt.title('Number of Edits per Month in {}'.format(year)); ###Output _____no_output_____ ###Markdown Size Change Frequency of EditsWe group edits based on how much content was added/removed and plot a histogram of the results. ###Code content_size = edit_df['Size'].values diff = -(content_size[1:] - content_size[:-1]) new_column = np.append(diff, edit_df['Size'].iloc[-1]) edit_size_diffs = edit_df.copy() edit_size_diffs['Size'] = pd.Series(new_column) intervals = np.arange(0, 1001, 50).astype(float) intervals = np.insert(intervals, 0, -np.inf) intervals = np.append(intervals, np.inf) counts = np.zeros(len(intervals) - 1, dtype=np.int64) for (idx,), lo in np.ndenumerate(intervals[:-1]): hi = intervals[idx + 1] cnt = len(edit_size_diffs[(edit_size_diffs['Size'] >= lo) & (edit_size_diffs['Size'] < hi)]) counts[idx] = cnt labels = [] for point in intervals[1:-1]: labels.append('< {}'.format(int(point))) labels.append('< inf') indices = np.arange(len(counts)) fig = plt.figure(figsize=(9, 5)) plt.bar(indices, counts, align='center') plt.xlabel('Amount of change (Bytes)') plt.ylabel('Number of edits') plt.title('Size Change Frequencies') plt.grid() plt.xticks(indices, labels, rotation=90); fig.savefig('size_freq.png') ###Output _____no_output_____ ###Markdown Content Size vs TimeWe plot the size of the content against the number of edits. ###Code size = edit_df['Size'].values size = size[::-1] plt.plot(size) plt.xlabel('Number of edits') plt.ylabel('Content size (Bytes)') plt.title('Content Size over Time'); ###Output _____no_output_____ ###Markdown Views per Last 60 DaysWe plot the number of views over the last 60 days.**Note**: Unfortunately, wikidata API does not allow getting the visit count data for more than the last 60 days. ###Code keys = [] vals = [] for _, row in visit_df.iterrows(): keys.append('{}-{}'.format(row['Date'].tm_mon, row['Date'].tm_mday)) vals.append(row['VisitCount']) plt.figure(figsize=(12, 10)) num_days = 60 plt.plot(vals[:num_days], marker='o') plt.xlabel('Day') plt.xticks(np.arange(num_days), keys[:num_days], rotation=90) plt.grid() plt.ylabel('Number of Visits') plt.title('Number of Visits per Day'); ###Output _____no_output_____ ###Markdown Welcome to my Youtube Tranding videos analysis!In this notebook I will try to understand whats patterns have US videos form trends or *how to be in trend?* Questions bellow I will answer while analysis: How important are missing data in videos? What the most fequent words use peoples? What distribution of likes, dislikes, reviews, comments? What the most popular categories of video? What the most liked, disliked, discussed and positive category?P.S. It's my first analysis, so don't be so strict. Libraries and main functions ###Code import pandas as pd import numpy as np import seaborn as sns import matplotlib.pyplot as plt %matplotlib inline sns.set() import json from collections import Counter from datetime import datetime import warnings warnings.filterwarnings("ignore") from nltk.tokenize import RegexpTokenizer from nltk.tokenize import sent_tokenize, word_tokenize from nltk.corpus import stopwords def ids_to_category(id, word_list): return word_list[id] def plot_distribution(data, distc, target): facet = sns.FacetGrid(data, hue=target, aspect=3, height=5, palette="ch:.25") facet.map(sns.distplot, distc) facet.add_legend() plt.show() def binary_pie_plot(data, labels, column, title=''): sizes = np.zeros((len(labels),)) sizes[0] = (data[column][data[column] == True].shape[0]*100)/data[column].shape[0] sizes[1] = (data[column][data[column] == False].shape[0]*100)/data[column].shape[0] fig1, ax1 = plt.subplots(figsize=(10, 10)) wedges, texts, autotexts = ax1.pie(sizes, labels=labels, autopct='%1.1f%%', textprops=dict(color="w"), colors=['#D3BBAC', '#76485F'], startangle=90) ax1.legend(wedges, labels, title=column, loc="center left", bbox_to_anchor=(1, 0, 0.5, 1)) plt.setp(autotexts, size=20, weight="bold") ax1.set_title(title, fontdict=dict(fontsize=30)) ax1.axis('equal') # Equal aspect ratio ensures that pie is drawn as a circle. plt.show() def datetime_time(x): return x.split('T')[0] def days_between(d1, d2): d1 = datetime.strptime(d1, "%y.%d.%m") d2 = datetime.strptime(d2, "%Y-%m-%d") return abs((d2 - d1).days) ###Output _____no_output_____ ###Markdown Data description ###Code videos = pd.read_csv('USvideos.csv') videos.drop_duplicates(inplace=True) videos.head(5) videos.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 40901 entries, 0 to 40948 Data columns (total 16 columns): video_id 40901 non-null object trending_date 40901 non-null object title 40901 non-null object channel_title 40901 non-null object category_id 40901 non-null int64 publish_time 40901 non-null object tags 40901 non-null object views 40901 non-null int64 likes 40901 non-null int64 dislikes 40901 non-null int64 comment_count 40901 non-null int64 thumbnail_link 40901 non-null object comments_disabled 40901 non-null bool ratings_disabled 40901 non-null bool video_error_or_removed 40901 non-null bool description 40332 non-null object dtypes: bool(3), int64(5), object(8) memory usage: 4.5+ MB ###Markdown Little data processing ###Code json_file = None with open('US_category_id.json') as f: json_file = json.loads(f.read()) word_list = {} for i in range(len(json_file['items'])): word_list[int(json_file['items'][i]['id'])] = json_file['items'][i]['snippet']['title'] videos['category_id'] = videos['category_id'].apply(lambda x: ids_to_category(x, word_list)) videos['publish_time'] = videos['publish_time'].apply(lambda x: datetime_time(x)) ###Output _____no_output_____ ###Markdown NaN valuesThe first going to look at missing values. Why is it important? So, lack of some content is can be one of resons not to find video in either trends or recommendations. ###Code videos.isnull().sum() ###Output _____no_output_____ ###Markdown As we can see only *description* have **NaN** values, but its not true. Lets look at *tags*. ###Code videos['tags'][videos['tags'] == '[none]'].shape[0] ###Output _____no_output_____ ###Markdown Well, instead of **NaN** values in column *tags* there analog — **[none]** values presented as a *string*. There about *1535* **NaN** values in *tags* column. Let's convert it to real **NaN** values for our comfort. ###Code videos['tags'][videos['tags'] == '[none]'] = None videos.isnull().sum() ###Output _____no_output_____ ###Markdown All **NaN-like** values was filled by real **NaN** values. Let's look at distribution of *views, likes, comment_count* and *dislikes* columns in depends on **NaN** and **not-NaN** values of *description* and *tags* columns to define is it important to have tags or description to be in trend. Before plotting let's normalize all data via *log* and change values of *tags* and *description* to **NaN** or **Not-NaN** strings. ###Code df_plot = videos[['likes', 'views', 'dislikes', 'comment_count', 'tags', 'description']].copy() # np.log(x + 1) df_plot['likes'] = (df_plot['likes'] + 1).transform(np.log) df_plot['views'] = (df_plot['views'] + 1).transform(np.log) df_plot['dislikes'] = (df_plot['dislikes'] + 1).transform(np.log) df_plot['comment_count'] = (df_plot['comment_count'] + 1).transform(np.log) df_plot = df_plot.fillna('NaN') df_plot['tags'][df_plot['tags'] != 'NaN'] = 'Not-NaN' df_plot['description'][df_plot['description'] != 'NaN'] = 'Not-NaN' for i in ['tags', 'description']: for j in ['likes', 'views', 'dislikes', 'comment_count']: plot_distribution(df_plot, j, i) ###Output _____no_output_____ ###Markdown So, all **NaN** values are a little bit offset left in distribution it means that all indicators (views, likes, dislikes, comment count) decrease in compare with **Not-NaN** values. The most different distributions are *views* distributions that depends on *description*. Let's look whats more important: *description* or *tags*. Likes average ###Code avg_nan = df_plot['likes'][df_plot['tags'] == 'NaN'].mean() avg_not_nan = df_plot['likes'][df_plot['tags'] == 'Not-NaN'].mean() print('Difference between two avg by tags:', avg_nan - avg_not_nan) avg_nan = df_plot['likes'][df_plot['description'] == 'NaN'].mean() avg_not_nan = df_plot['likes'][df_plot['description'] == 'Not-NaN'].mean() print('Difference between two avg by description:', avg_nan - avg_not_nan) ###Output Difference between two avg by tags: -1.1089584380589166 Difference between two avg by description: -2.054519825571262 ###Markdown Dislikes average ###Code avg_nan = df_plot['dislikes'][df_plot['tags'] == 'NaN'].mean() avg_not_nan = df_plot['dislikes'][df_plot['tags'] == 'Not-NaN'].mean() print('Difference between two avg by tags:', avg_nan - avg_not_nan) avg_nan = df_plot['dislikes'][df_plot['description'] == 'NaN'].mean() avg_not_nan = df_plot['dislikes'][df_plot['description'] == 'Not-NaN'].mean() print('Difference between two avg by description:', avg_nan - avg_not_nan) ###Output Difference between two avg by tags: -0.7793763794848916 Difference between two avg by description: -0.9579849364948823 ###Markdown Views average ###Code avg_nan = df_plot['views'][df_plot['tags'] == 'NaN'].mean() avg_not_nan = df_plot['views'][df_plot['tags'] == 'Not-NaN'].mean() print('Difference between two avg by tags:', avg_nan - avg_not_nan) avg_nan = df_plot['views'][df_plot['description'] == 'NaN'].mean() avg_not_nan = df_plot['views'][df_plot['description'] == 'Not-NaN'].mean() print('Difference between two avg by description:', avg_nan - avg_not_nan) ###Output Difference between two avg by tags: -0.6136751153672488 Difference between two avg by description: -1.1786658840617399 ###Markdown Comment count average ###Code avg_nan = df_plot['comment_count'][df_plot['tags'] == 'NaN'].mean() avg_not_nan = df_plot['comment_count'][df_plot['tags'] == 'Not-NaN'].mean() print('Difference between two avg by tags:', avg_nan - avg_not_nan) avg_nan = df_plot['comment_count'][df_plot['description'] == 'NaN'].mean() avg_not_nan = df_plot['comment_count'][df_plot['description'] == 'Not-NaN'].mean() print('Difference between two avg by description:', avg_nan - avg_not_nan) ###Output Difference between two avg by tags: -1.1275278266461193 Difference between two avg by description: -1.4552704786152475 ###Markdown Following values above I can confirm my hypopthesis that videos with **NaN** values gets less *likes, dislikes, views* and *comments*. So, depends on difference betwen averages I can say that lack of description is much more important than lack of tags. Comment and rating abilityThe second we have to get know: is it important to haven't disabled comments or ratings? ###Code binary_pie_plot(videos, ['Comments disabled', 'Comments available'], 'comments_disabled', 'Comments') binary_pie_plot(videos, ['Ratings disabled', 'Ratings available'], 'ratings_disabled', 'Ratings') ###Output _____no_output_____ ###Markdown After plotting rating importance and comments importance we can notice that only the least number of videos haven't ability to comment or rate them, therefore more trending videos have ability to give feedback to authors. The most popular categories ###Code sns.catplot(x="category_id", kind="count", palette="ch:.25", data=videos, height=5, aspect=4); plt.show() ###Output _____no_output_____ ###Markdown Following the plot above we can notice that the most trending category is an Entertainment. Let's look at top 5 categories. ###Code for j, i in enumerate(Counter(videos['category_id']).most_common(10)): print(str(j+1)+'.'+i[0]+':', i[1]) top_categories = [i[0] for i in Counter(videos['category_id']).most_common(10)] ###Output 1.Entertainment: 9944 2.Music: 6467 3.Howto & Style: 4142 4.Comedy: 3453 5.People & Blogs: 3208 6.News & Politics: 2485 7.Science & Technology: 2397 8.Film & Animation: 2343 9.Sports: 2172 10.Education: 1655 ###Markdown After we got know top 10 categories, so, we can find the most liked, disliked, positive, discussed and viewed categories from top 10 categories we define before. ###Code liked = [] disliked = [] viewed = [] liked_disliked = [] discussed = [] for i in top_categories: viewed.append((i, int(videos['views'][videos['category_id'] == i].mean()))) disliked.append((i, int(videos['dislikes'][videos['category_id'] == i].mean())/viewed[-1][1])) liked.append((i, int(videos['likes'][videos['category_id'] == i].mean())/viewed[-1][1])) discussed.append((i, int(videos['comment_count'][videos['category_id'] == i].mean())/viewed[-1][1])) liked_disliked.append((i, liked[-1][1]/disliked[-1][1])) liked.sort(key=lambda x: x[1], reverse=True) disliked.sort(key=lambda x: x[1], reverse=True) viewed.sort(key=lambda x: x[1], reverse=True) liked_disliked.sort(key=lambda x: x[1], reverse=True) discussed.sort(key=lambda x: x[1], reverse=True) ###Output _____no_output_____ ###Markdown Liked ###Code print('The most liked categories (likes per view):') print('-------------------------------------------') for j, i in enumerate(liked): print(str(j+1)+'. '+i[0] + ':', str(i[1])+' likes/views') ###Output The most liked categories (likes per view): ------------------------------------------- 1. Comedy: 0.04228573899214924 likes/views 2. Education: 0.04172924581087847 likes/views 3. Howto & Style: 0.03992019217366444 likes/views 4. People & Blogs: 0.037953023422952537 likes/views 5. Music: 0.035302805451800354 likes/views 6. Entertainment: 0.025739364091988688 likes/views 7. Science & Technology: 0.023680427745194042 likes/views 8. Film & Animation: 0.02278590948758461 likes/views 9. Sports: 0.02239572388768694 likes/views 10. News & Politics: 0.012311232270341031 likes/views ###Markdown Disliked ###Code print('The most disliked categories (dislikes per view):') print('-------------------------------------------------') for j, i in enumerate(disliked): print(str(j+1)+'. '+i[0] + ':', str(i[1])+' dislikes/views') ###Output The most disliked categories (dislikes per view): ------------------------------------------------- 1. News & Politics: 0.0028357332757527093 dislikes/views 2. Entertainment: 0.002086387266170106 dislikes/views 3. People & Blogs: 0.0020724576132762733 dislikes/views 4. Comedy: 0.0014119341538765024 dislikes/views 5. Howto & Style: 0.0013409831095139598 dislikes/views 6. Science & Technology: 0.0013042695159089827 dislikes/views 7. Music: 0.0012751467579168046 dislikes/views 8. Sports: 0.0011656115489759094 dislikes/views 9. Education: 0.001144304351301436 dislikes/views 10. Film & Animation: 0.0008352899191048632 dislikes/views ###Markdown Viewed ###Code print('The most average viewed categories:') print('-----------------------------------') for j, i in enumerate(viewed): print(str(j+1)+'. '+i[0] + ':', str(i[1])+' views') ###Output The most average viewed categories: ----------------------------------- 1. Music: 6204776 views 2. Film & Animation: 3101917 views 3. Entertainment: 2067689 views 4. Sports: 2027262 views 5. People & Blogs: 1530550 views 6. Comedy: 1480239 views 7. Science & Technology: 1449087 views 8. Howto & Style: 982861 views 9. Education: 713097 views 10. News & Politics: 592792 views ###Markdown Likes / dislikes ###Code print('The most positive categories (likes/dislikes):') print('----------------------------------------------') for j, i in enumerate(liked_disliked): print(str(j+1)+'. '+i[0] + ':', str(i[1])) ###Output The most positive categories (likes/dislikes): ---------------------------------------------- 1. Education: 36.466911764705884 2. Comedy: 29.948803827751195 3. Howto & Style: 29.769347496206375 4. Music: 27.685288169868556 5. Film & Animation: 27.279042840602084 6. Sports: 19.21371138383411 7. People & Blogs: 18.313051702395967 8. Science & Technology: 18.156084656084655 9. Entertainment: 12.336810384793695 10. News & Politics: 4.341463414634147 ###Markdown Discussed ###Code print('The most discussed categories (comments/views):') print('-----------------------------------------------') for j, i in enumerate(discussed): print(str(j+1)+'. '+i[0] + ':', str(i[1]) + ' comments/views') ###Output The most discussed categories (comments/views): ----------------------------------------------- 1. Howto & Style: 0.0056722161119425836 comments/views 2. People & Blogs: 0.005041978373787201 comments/views 3. Education: 0.004609471081774289 comments/views 4. Comedy: 0.004401316273926035 comments/views 5. News & Politics: 0.004097558671507038 comments/views 6. Entertainment: 0.003572103928588874 comments/views 7. Science & Technology: 0.0034414772888032258 comments/views 8. Music: 0.003121949930182814 comments/views 9. Sports: 0.0025408654628755437 comments/views 10. Film & Animation: 0.0024597692330259 comments/views ###Markdown So, following the data above *Education* has one of the bests indicators in *likes*, *likes/dislikes* and *dislikes*, but with not a big number of views. The top 3 the most discussed categories are *Howto & Style*, *People & Blogs* and *Education*. By the statistics peoples don't love *News & Politics* in compare with other categories. And the most viewed categories are *Music*, *Film & Animation* and *Entertainment* exactly. After looked at main indicators, let's try to understand what the fastest category in propagation. ###Code tmp = [] for i in range(videos.shape[0]): tmp.append(days_between(videos['trending_date'].iloc[i], videos['publish_time'].iloc[i])) videos['days_to_trend'] = tmp trended = [] for i in set(videos['category_id']): trended.append((i, int(videos['days_to_trend'][videos['category_id'] == i].mean()))) trended.sort(key=lambda x: x[1], reverse=False) print('Average count of days to trend for each category:') print('-------------------------------------------------') for j, i in enumerate(trended): print(str(j+1)+'. '+i[0] + ':', str(i[1]) + ' days') ###Output Average count of days to trend for each category: ------------------------------------------------- 1. Nonprofits & Activism: 5 days 2. Pets & Animals: 7 days 3. Travel & Events: 7 days 4. Howto & Style: 7 days 5. Comedy: 10 days 6. Shows: 10 days 7. Entertainment: 13 days 8. Music: 14 days 9. People & Blogs: 15 days 10. News & Politics: 18 days 11. Science & Technology: 18 days 12. Gaming: 21 days 13. Sports: 23 days 14. Education: 37 days 15. Film & Animation: 41 days 16. Autos & Vehicles: 43 days ###Markdown Well, average the fastests categories are *Nonprofits & Activism*, *Pets & Animals*, *Travel & Events* and *Howto & Style*. What give us this data? So, as we can notice the most popular categories don't the most fastest it means that we can't chain this two meaning. The TitleBefore this section we only was analysis video after click (factors that peoples usually don't see) let's analysis that people see firstly - the title. ###Code stopWords = set(stopwords.words('english')) tokenizer = RegexpTokenizer(r'\w+') words = [] for i in range(videos['title'].shape[0]): for i in tokenizer.tokenize(videos['title'].iloc[i]): if not i in stopWords or len(i) > 2: words.append(i.lower()) c = Counter() for word in words: c[word] += 1 c.most_common(20) ###Output _____no_output_____ ###Markdown Well, we see the most common words in titles. Now, let's look at how long titles in trends. ###Code avg_len = 0 max_len = 0 min_len = 10000000000000000000000 for i in range(videos.shape[0]): tmp = len(videos['title'].iloc[i]) avg_len += tmp if min_len > tmp: min_len = tmp elif max_len < tmp: max_len = tmp avg_len = int(avg_len / videos.shape[0]) max_len print('Maximum length of title:', max_len) print('Minimum length of title:', min_len) print('Average length of title:', avg_len) ###Output Maximum length of title: 100 Minimum length of title: 3 Average length of title: 48 ###Markdown Mini Project 2 - ISYE-6644Author: Oscar Cortez ###Code from generators import randu, dessert_island, glibc from rand_tests import (gof_test, ks_test, run_test_up_down, run_test_above_below_mean, correlation_test) import matplotlib.pyplot as plt import pandas as pd import numpy as np import time import seaborn as sns sns.set_style("darkgrid") sizes = [1, 10, 100, 1000, 10000] seed = 12345 dist = {"numpy": np.random.random, "dessert_island": lambda x: dessert_island(seed, x), "glibc": lambda x: glibc(seed, x), "randu": lambda x: randu(seed, x)} results = {"generator": [], "size": [], "time": []} for s in sizes: for generator, rand in dist.items(): results["generator"].append(generator) results["size"].append(s) start = time.perf_counter() values = rand(s) end = time.perf_counter() results["time"].append(end - start) df_results = pd.DataFrame(results) ###Output _____no_output_____ ###Markdown Plot timing results ###Code fig, ax = plt.subplots(1, figsize=(10, 7)) df_results.pivot("size", "generator", "time").plot(ax=ax) plt.legend(fontsize=18) plt.title("Elapsed execution time per generator", fontsize=22) plt.ylabel("Time (seconds)", fontsize=18) plt.xlabel("Array Size", fontsize=18) plt.xticks(fontsize=16) plt.yticks(fontsize=16) plt.savefig("time.svg") plt.show() ###Output _____no_output_____ ###Markdown Plot in 3D Randu ###Code %matplotlib notebook randu_rands = randu(seed, 1000) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(randu_rands[:-2], randu_rands[1:-1], randu_rands[2:]) ax.set_xlabel('Ri') ax.set_ylabel('Ri+1') ax.set_zlabel('Ri+2') plt.show() ###Output _____no_output_____ ###Markdown Dessert Island ###Code randu_rands = dessert_island(seed, 1000) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(randu_rands[:-2], randu_rands[1:-1], randu_rands[2:]) ax.set_xlabel('Ri') ax.set_ylabel('Ri+1') ax.set_zlabel('Ri+2') plt.show() ###Output _____no_output_____ ###Markdown glibc ###Code randu_rands = glibc(seed, 1000) fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.scatter(randu_rands[:-2], randu_rands[1:-1], randu_rands[2:]) ax.set_xlabel('Ri') ax.set_ylabel('Ri+1') ax.set_zlabel('Ri+2') plt.show() ###Output _____no_output_____ ###Markdown Run PRN tests ###Code seeds = [12345, 77807, 283092, 482344, 453604] fixed_size = 10000000 gen_2 = {"numpy": np.random.random, "dessert_island": dessert_island, "glibc": glibc, "randu": randu} tests = {"Chi-Squared g-o-f": gof_test, "Kolmogorov-Smirnov Test": ks_test, "Run Test - Up and Down": run_test_up_down, "Run Test - Above and Below Mean": run_test_above_below_mean, "Correlation Test": correlation_test} test_results = {"generator": [], "test": [], "passed": []} for gen_name, gen in gen_2.items(): for test_name, test in tests.items(): test_success = 0 for seed in seeds: if gen_name == "numpy": np.random.seed(seed) sample = gen(fixed_size) else: sample = gen(seed, fixed_size) success, _ = test(sample) test_success += success test_results["generator"].append(gen_name) test_results["test"].append(test_name) test_results["passed"].append(test_success) df_test_results = pd.DataFrame(test_results).pivot("generator", "test", "passed") df_test_results.to_csv("test_results.csv") ###Output _____no_output_____ ###Markdown Difference network for $s_{ij}$ proportional to distances in Euclidean space ###Code reload(dn) np.random.seed( 2001) K0 = 5 s0 = (2 - .2)*np.random.rand( K0) + 0.2 x0 = np.cumsum( s0) # K0 = 5 # x0 = np.arange( 1., K0+1, 1) sij0 = np.diag( x0) for i in xrange(K0): for j in xrange(i+1, K0): sij0[i,j] = sij0[j,i] = x0[j] - x0[i] sij0 = matrix( sij0) results = dn.optimize( sij0, optimalities=[ 'D', 'A', 'Etree'] ) results.update( dict( MST=gph.MST_optimize( sij0, 'n'))) def distnet_us( x0): K = len(x0) u = np.zeros( K) u[0] = x0[0]/np.sqrt(K) s = np.sqrt(K)*x0[0] for i in xrange( 1, K): u[i] = u[i-1] + (x0[i] - x0[i-1])/np.sqrt(K-i) s += (x0[i] - x0[i-1])*np.sqrt(K-i) return u*s def distnet_minTrC( xs): K = len(xs) trC = np.sqrt(K)*xs[0] for i in xrange( 1, K): trC += np.sqrt(K-i)*(xs[i] - xs[i-1]) return trC**2 distnet_us( x0) distnet_minTrC( x0) np.sum( distnet_us( x0)) def draw_distnet( xs, results): fig, axes = plt.subplots( 3, 1, sharex=True, figsize=(5, 8)) xmax = np.max( xs) dy = xmax/(len(xs) - 1.) colors = plt.rcParams['axes.prop_cycle'].by_key()['color'][:len(xs)] pos = np.array( [ ( x, (i*i-2)*dy ) for i, x in enumerate( xs) ] + [ (0, 0) ]) titles = dict( D=r'$D$', A=r'$A$', Etree=r'$E$') allocation = dict( D = r'$n_{i\, i+1} = \mathrm{const}$', A = r'$n_{i\, i+1} \propto \sqrt{m-i}\cdot(s_{i+1} - s_i)$', Etree = r'$n_i \propto s_i^2$') for i, o in enumerate( [ 'D', 'A', 'Etree']): ax = axes[i] nij = results[o] g = gph.diffnet_to_graph( nij, 'O') mypos = gph.draw_diffnet_graph( g, pos=pos, ax=ax, node_color=colors, nodescale=20, widthscale=30, origins='O') ax.spines['left'].set_visible( False) ax.spines['right'].set_visible( False) ax.spines['top'].set_visible( False) ax.set_title( titles[o]) ax.text( 0.5*xmax, -2., allocation[o], verticalalignment='center') if i!=2: ax.spines['bottom'].set_visible( False) ax.xaxis.set_visible( False) else: ax.xaxis.set_ticks( [ 0 ]) ax.set_xlabel( r'$s_i$') xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() # manual arrowhead width and length hw = 1./10.*(ymax-ymin) hl = 1./20.*(xmax-xmin) lw = 1. # axis line width ohg = 0.3 # arrow overhang # get width and height of axes object to compute # matching arrowhead length and width dps = fig.dpi_scale_trans.inverted() bbox = ax.get_window_extent().transformed(dps) width, height = bbox.width, bbox.height # compute matching arrowhead length and width yhw = hw/(ymax-ymin)*(xmax-xmin)* height/width yhl = hl/(xmax-xmin)*(ymax-ymin)* width/height ax.arrow(xmin, ymin, xmax-xmin, 0, fc='k', ec='k', lw = lw, head_width=hw, head_length=hl, overhang = ohg, length_includes_head= True, clip_on = False) ax.yaxis.set_visible( False) ax.set_aspect( 'auto') fig.subplots_adjust(hspace=0.5) return fig figdistnets = draw_distnet( x0, results) # figdistnets.savefig( 'const-rel-error.eps', bbox_inches='tight') np.array(results['Etree'])/np.square(np.array(sij0)) distnet_minTrC( x0) - np.sum( x0*x0) ###Output _____no_output_____ ###Markdown Check that $\sum_{i\neq j} n_{ij} = 1$ ###Code [ dn.sum_upper_triangle( results[o]) for o in results ] ###Output _____no_output_____ ###Markdown COX-2 alchemistry ###Code nheavy = dict(A1=7, A2=6, B1=9, B2=6, C1=10, C2=10) sCOX2 = np.diag( [nheavy['A1'] + nheavy['B1'] + nheavy['C1'], nheavy['A1'] + nheavy['B1'] + nheavy['C2'], nheavy['A1'] + nheavy['B2'] + nheavy['C1'], nheavy['A1'] + nheavy['B2'] + nheavy['C2'], nheavy['A2'] + nheavy['B1'] + nheavy['C1'], nheavy['A2'] + nheavy['B1'] + nheavy['C2'], nheavy['A2'] + nheavy['B2'] + nheavy['C1'], nheavy['A2'] + nheavy['B2'] + nheavy['C2']]) + \ np.array( [[ 0, 1, 16, 17, 1, 2, 16, 17], [ 1, 0, 17, 16, 2, 1, 17, 16], [16, 17, 0, 1, 16, 17, 1, 2], [17, 16, 1, 0, 17, 16, 2, 1], [ 1, 2, 16, 17, 0, 1, 16, 17], [ 2, 1, 17, 16, 1, 0, 17, 16], [16, 17, 1, 2, 16, 17, 0, 1], [17, 16, 2, 1, 17, 16, 1, 0]], dtype=float) sCOX2 = np.sqrt( sCOX2) sCOX2 = matrix( sCOX2) print sCOX2 def cubeLayout( origin=False): front = np.array( [[0, 0], [0, 1], [1, 0], [1, 1]]) back = front + np.array( [ 0.5, np.sqrt(3)/6]) if not origin: return np.concatenate( [front, back]) o = np.array( [np.sqrt(3)/6, -0.25]) return np.concatenate( [front, back, [o]]) figCOX2s, ax = plt.subplots( figsize=(7, 7)) gph.draw_diffnet_graph( gph.diffnet_to_graph( sCOX2), pos=cubeLayout( True), ax=ax, widthscale=1.5, nodescale=15, node_color=plt.rcParams['axes.prop_cycle'].by_key()['color'][:8]) ax.set_aspect( 1) ax.axis('off') # figCOX2s.savefig( 'COX2-sij.eps') results = dn.optimize( sCOX2, optimalities=[ 'D', 'A', 'Etree'] ) results.update( dict( MST=gph.MST_optimize( sCOX2, 'n'))) figCOX2n = draw_optimalities( matrix(sCOX2), results, pos=cubeLayout(True), nodescale=10) # figCOX2n.savefig( 'COX2-nij.eps') ###Output _____no_output_____ ###Markdown Relative to Celecoxib and Rofecoxib Celecoxib: A1-B1-C1Rofecoxib: A2-B2-C2 ###Code CEL, ROF = 0, 7 # celecoxib and rofecoxib def relative_sij_COX2( sCOX2): sCOX2rel = np.zeros( (6, 6)) allmols = range(1, 7) origins = [-1]*6 for i, a in enumerate( allmols): if sCOX2[a, CEL] < sCOX2[a, ROF]: # The closer of the two reference molecules sCOX2rel[i,i] = sCOX2[a, CEL] origins[i] = 'C' else: sCOX2rel[i,i] = sCOX2[a, ROF] origins[i] = 'R' for j in xrange(i+1, len(allmols)): b = allmols[j] sCOX2rel[i,j] = sCOX2rel[j,i] = sCOX2[a,b] return matrix(sCOX2rel), origins sCOX2rel, oCOX2rel = relative_sij_COX2( sCOX2) results = dn.optimize( sCOX2rel, optimalities=[ 'D', 'A', 'Etree'] ) results.update( dict( MST=gph.MST_optimize( sCOX2rel, 'n'))) posCOX2 = cubeLayout( False) posCOX2os = posCOX2[[CEL, ROF]] posCOX2 = np.concatenate( [posCOX2[:CEL], posCOX2[CEL+1:ROF], posCOX2[ROF+1:], posCOX2os]) colorCOX2 = plt.rcParams['axes.prop_cycle'].by_key()['color'][:8] colorCOX2 = colorCOX2[:CEL] + colorCOX2[CEL+1:ROF] + colorCOX2[ROF+1:] + [ colorCOX2[CEL], colorCOX2[ROF] ] figCOX2reln = draw_optimalities( matrix(sCOX2rel), results, pos=posCOX2, nodescale=10, origins=oCOX2rel, node_color=colorCOX2) # figCOX2reln.savefig( 'COX2-rel-nij.eps') ###Output _____no_output_____ ###Markdown Uniform network ###Code sijp = np.ones( (K, K), dtype=float) sijp += np.diag( 0.*np.ones( K)) sijp = matrix( sijp) resultsp = dn.optimize( sijp, optimalities=['D', 'A', 'Etree']) resultsp.update( dict( MST=gph.MST_optimize( sijp, 'n'))) figuninet = draw_optimalities( sijp, resultsp) # figuninet.savefig( 'uniform-nets.eps') ###Output _____no_output_____ ###Markdown Random network ###Code np.random.seed( 1) sijr = matrix( np.random.rand( K, K), (K, K)) sijr = 0.5*(sijr + sijr.trans()) sijr += matrix( 3.5*np.diag( np.ones( K)), (K,K)) resultsr = dn.optimize( sijr, optimalities=['D', 'A', 'Etree']) resultsr.update( dict( MST=gph.MST_optimize( sijr, 'n'))) figrandnet = draw_optimalities( sijr, resultsr) ###Output _____no_output_____ ###Markdown Analyze the statistical behavior of the difference network ###Code import cPickle as pickle def plot_diffnet_statistics( stats): opts = stats.keys() samples = stats[opts[0]].keys() opts = OPTS samples = SAMPLES olabels = OPT_LABELS slabels = SAMPLE_LABELS nrows, ncols = len(samples), len(opts) fig, axes = plt.subplots( nrows, ncols, sharex='col', sharey='col', figsize=(5*ncols, 1*nrows)) for i, sample in enumerate( samples): for j, opt in enumerate( opts): stat = stats[opt][sample] ax = axes[i][j] avg = np.mean( stat) std = np.std( stat) for p in [ 'bottom', 'top', 'right' ]: ax.spines[p].set_visible( False) ax.yaxis.set_ticklabels( []) if i != len(samples) - 1: ax.xaxis.set_visible( False) else: ax.spines['bottom'].set_visible( True) if sample == 'MSTn': _, y0 = axes[i-1][j].get_ylim() ax.plot( [ avg, avg ], [ 0, y0 ], 'k-', label=slabels.get(sample, sample)) continue h, _, __ = ax.hist( stat, bins=10, density=True, histtype='stepfilled') y0 = 1.25*np.max( h) ax.errorbar( [ avg ], [ y0 ], xerr=[ std ], fmt='k.', linewidth=2, ecolor='r', label=slabels.get(sample, sample)) if (opt=='A' and sample=='A') or (opt=='E' and sample=='Etree'): ax.plot( [ 1., 1. ], [ 0, y0 ], 'k--') if (opt=='D' and sample=='D'): ax.plot( [ 0., 0. ], [ 0, y0 ], 'k--') leg = ax.legend(loc='center left', bbox_to_anchor=(0.8, 0.5), handlelength=0, markerscale=0, frameon=False, fontsize='small') for h in leg.legendHandles: h.set_visible( False) for j, opt in enumerate( opts): axes[-1][j].set_xlabel( olabels[opt]) axes[nrows/2][0].set_ylabel( 'Frequency') # plt.tight_layout() return fig def plot_diffnet_efficiency( stats): opts = OPTS samples = SAMPLES olabels = OPT_LABELS slabels = SAMPLE_LABELS nrows, ncols = len(opts), len(samples) fig, axes = plt.subplots( nrows, 1, sharex=True, figsize=(8, nrows*3)) for i, opt in enumerate( opts): x = np.array([ stats[opt][sample] for sample in samples ]).transpose() if opt=='D': axes[i].plot( [1, ncols], [0, 0], 'k--') else: axes[i].plot( [1, ncols], [1, 1], 'k--') axes[i].boxplot( x, sym='.') axes[i].set_ylabel( olabels[opt]) axes[-1].set_xticklabels( [ slabels[s] for s in samples ], rotation=80, horizontalalignment='center') return fig def plot_allocation_stats( topo): nrows = 3 fig, axes = plt.subplots( nrows, 1, sharex=True, sharey=True) emin, emax = -5, 2 nbins = 2*(emax + 1 - emin) ns = np.concatenate( [ [0.5*np.power(10., emin)], np.logspace( emin, emax, nbins) ]) for i, o in enumerate( topo): hd, hu = topo[o] hd /= hd.sum() hu /= hu.sum() hd = np.concatenate( [ [ hd[0]], hd ]) hu = np.concatenate( [ [ hu[0]], hu ]) axes[i].step( ns[:], hd[:], where='pre', label=r'$(\varnothing,i)$') axes[i].step( ns[:], hu[:], where='pre', label=r'$(i,j>i)$') axes[i].set_xscale( 'log') # axes[i].set_yscale( 'log') axes[i].text( 2e-5, 0.5, SAMPLE_LABELS[o], fontsize='small') axes[0].legend( loc='best', frameon=False, fontsize='small') axes[-1].set_xlabel( r'$(n_e/s_e)/(N/\sum_e s_e)$') axes[nrows/2].set_ylabel( r'Fraction of edges') return fig def plot_allocation_topo( topo): nrows = 3 fig, axes = plt.subplots( nrows, 2, sharex='col', sharey=True, figsize=( 10, nrows*3)) emin, emax = -5, 2 nbins = 2*(emax + 1 - emin) ns = np.concatenate( [ [0.5*np.power(10., emin)], np.logspace( emin, emax, nbins) ]) k2max = np.max( [ topo[o][-1] for o in topo ]) for i, o in enumerate( topo): hd, hu, _, k2 = topo[o] hd /= hd.sum() hu /= hu.sum() hd = np.concatenate( [ [ hd[0]], hd ]) hu = np.concatenate( [ [ hu[0]], hu ]) axes[i][0].step( ns[:], hd[:], where='pre', label=r'$(\varnothing,i)$') axes[i][0].step( ns[:], hu[:], where='pre', label=r'$(i,j>i)$') axes[i][0].set_xscale( 'log') # axes[i].set_yscale( 'log') axes[i][0].text( 2e-5, 0.5, SAMPLE_LABELS[o], fontsize='small') axes[i][1].hist( k2, normed=True, bins=np.arange(k2max+1)-0.5) axes[0][0].legend( loc='best', frameon=False, fontsize='small') axes[-1][0].set_xlabel( r'$(n_e/s_e)/(N/\sum_e s_e)$') axes[-1][1].set_xlabel( r'|Edges to 2-connectivity|') axes[nrows/2][0].set_ylabel( r'Fraction of edges') axes[nrows/2][1].set_ylabel( r'Fraction of networks') return fig stats = pickle.load( file( 'examples/const_rel_error_net.pkl', 'rb')) figeffdist = plot_diffnet_efficiency( stats) # figeffdist.savefig( 'gain_const_rel_error_nets.eps', bbox_inches='tight') figstatdist = plot_diffnet_statistics( stats) ###Output _____no_output_____ ###Markdown Random networks of $\{ s_e \}$ ###Code resultsran = pickle.load( file( 'examples/random_net.pkl', 'rb')) figeffran = plot_diffnet_efficiency( resultsran['stats']) figtopran = plot_allocation_topo( resultsran['topo']) # figeffran.savefig( 'gain_random_nets.eps', bbox_inches='tight') # figtopran.savefig( 'topo_random_nets.eps', bbox_inches='tight') def compare_two( results, o1, o2, val, blocks=5): stats1 = results[val][o1] stats2 = results[val][o2] ratio = stats2/stats1 bl = len(ratio)/blocks bavg = [ np.mean( ratio[b*bl:(b+1)*bl]) for b in xrange(blocks)] return np.mean(ratio), np.std( bavg)/np.sqrt(blocks) ###Output _____no_output_____ ###Markdown Compare the statistics of $tr(C)$ between the $D$- and $A$-optimals. ###Code compare_two( resultsran['stats'], 'D', 'A', 'A') ###Output _____no_output_____ ###Markdown Compare the statistics of $tr(C)$ between the naive allocation of $n_e\propto s_e$ and the $A$-optimal. ###Code compare_two( resultsran['stats'], 'csts', 'A', 'A') ###Output _____no_output_____ ###Markdown Percentage of the $A$-optimal networks that are not 2-connected. ###Code float(np.sum(np.array(resultsran['topo']['A'][3])>0))/len(resultsran['topo']['A'][3]) _m = 30 (_m*(1-resultsran['topo']['A'][0][0]), _m*(_m - 1)/2*(1-resultsran['topo']['A'][1][0])) _m = 30 (_m*(1-resultsran['topo']['Etree'][0][0]), _m*(_m - 1)/2*(1-resultsran['topo']['Etree'][1][0])) ###Output _____no_output_____ ###Markdown Uniform networks ###Code resuni = pickle.load( file( 'examples/uniform_net.pkl', 'rb')) resuni def plot_uniform_networks( results): Ks, ds, stats = results['K'], results['d'], results['stats'] fig, ax = plt.subplots() for k, K in enumerate( Ks): nii = stats['diag'][k] nij = stats['offdiag'][k] ax.plot( ds+1, K*nii, label='K=%d' % K) ax.legend( loc='best', frameon=False) ax.set_xlabel( r'$s_0$') ax.set_ylabel( r'$K n_0$') return fig _ = plot_uniform_networks( resuni) def trCuni(n0, s0, K): s2 = s0*s0 n = 2./(K-1.)*(1./K - n0) trC = K*s2/n0*(n0/n/s2 + 1)/(n0/n/s2 + K) return trC from scipy.optimize import minimize def A_optimize_uniform( s0, K): sol = minimize( lambda x: trCuni( 1./K/(np.exp(-x) + 1), s0, K), 0) n0 = 1./K/(np.exp( -sol.x[0]) + 1) trC = trCuni( n0, s0, K) return n0, trC def plot_uniform_networks2(): fig, ax = plt.subplots() ps = np.arange(1, 6) ds = np.logspace( -0.25, 2, 50) for p in ps: K = 1<<p n0s = np.array( [ A_optimize_uniform( s0, K)[0] for s0 in ds ]) ax.plot( ds, K*n0s, label='K=%d' % K) ax.legend( loc='best', frameon=False) ax.set_xlabel( r'$s_0$') ax.set_ylabel( r'$K \times n_0$') ax.set_xscale( 'log') return fig _ = plot_uniform_networks2() def plot_uniform_networks3(): fig, ax = plt.subplots() Ks = np.arange(2, 32) n0s = np.array( [ A_optimize_uniform( 1., K)[0] for K in Ks ]) ax.plot( Ks, Ks*n0s) ax.plot( Ks, 2/(Ks + 1.), 'k--', label=r'$n_{ij} = const$') ax.set_xlabel( r'$K$') ax.set_ylabel( r'$K\times n_0$') ax.legend( loc='best', frameon=False) return fig _ = plot_uniform_networks3() ###Output _____no_output_____ ###Markdown Maximum-likelihood estimator ###Code disconnect = 4 x0, xij, invsij2 = dn.fabricate_measurements(20, noerror=False, disconnect=4) xML, vML = dn.MLestimate( xij, invsij2, np.concatenate( [x0[:3], [None]*(20 - 3)])) for j in xrange(4): plt.plot( x0[j::4], xML[j::4], 'o') plt.gca().set_aspect( 1) plt.gca().set_xlabel( r'$x_0$') plt.gca().set_ylabel( r'$x_{ML}$') ###Output _____no_output_____ ###Markdown FASTGenomics Seurat Analysis You might want to describe your analysis briefly here, if you are planning to share it. ###Code # Place all your R package imports here. library(fgread) library(Seurat) # Place all your parameter values and options here. options(repr.plot.width=10, repr.plot.height=5) ###Output _____no_output_____ ###Markdown Raw DataFirst, the raw dataset(s) will be read into Seurat object(s).You can describe your data here using markdown or delete this text. ###Code # Print metadata of all attached datasets ds_info <- fgread::ds_info() ds_info # Load the attached dataset fgread::load_data() # If multiple datasets are attached, you have to select one by its id or tile # Alternatively, if you started the analysis without datasets, load your data from elsewhere # (see our tutorial "How to Load Data in FASTGenomics (R)") ###Output _____no_output_____ ###Markdown Analysing the data for prediction purposes ###Code import numpy as np import pandas as pd import seaborn as sns from matplotlib import pyplot as plt from sklearn.preprocessing import LabelEncoder, StandardScaler from datetime import date, datetime from dateutil.parser import parse data = pd.read_csv('Cristano_Ronaldo_Final_v1/Data.csv') data.drop('Unnamed: 0', axis = 1, inplace = True) sample = pd.read_csv('Cristano_Ronaldo_Final_v1/sample_submission.csv') data['shot_id_number'] = range(1, len(data)+1) data.select_dtypes(include=['object']).head(10) ###Output _____no_output_____ ###Markdown Converting non-integer fields into integers ###Code data.game_season = data.game_season.fillna(method = 'ffill') le_gs = LabelEncoder() le_gs.fit(data.game_season.tolist()) print(le_gs.classes_) new_col = le_gs.transform(data.game_season.tolist()) data['game_season'] = new_col # Columns that needs its rows to be encoded into labels change_cols = ['area_of_shot','shot_basics','range_of_shot','team_name'] le_list = [] for i in range (0,len(change_cols)): le = LabelEncoder() le.fit(data[change_cols[i]].tolist()) new_col = le.transform(data[change_cols[i]].tolist()) data[change_cols[i]] = new_col le_list.append(le) # Function to separate home/away into two separate columns def separate_home_away_col(lines): away = [] home = [] for l in lines: l = str(l) if (l == 'nan'): away.append(None) home.append(None) else: tokens = l.split(' ') if (tokens[1] == '@'): away.append(tokens[2]) home.append(None) else: away.append(None) home.append(tokens[2]) return away, home away, home = separate_home_away_col(list(data['home/away'])) data['home'] = home data['away'] = away data.drop('home/away', axis = 1, inplace = True) data[['home', 'away']] = data[['home', 'away']].fillna(0) le_ha = LabelEncoder() le_ha.fit((data['home'].tolist() + data['away'].tolist())) new_col = le_ha.transform(data['home'].tolist()) data['home'] = new_col new_col = le_ha.transform(data['away'].tolist()) data['away'] = new_col def separate_lat_long(lines): lat = [] long = [] for l in lines: l = str(l) if (l == 'nan'): lat.append(None) long.append(None) else: tokens = l.split(',') lat.append(tokens[0]) long.append(tokens[1]) return lat,long lat, long = separate_lat_long(list(data['lat/lng'])) data['lat'] = lat data['long'] = long data.drop('lat/lng', axis = 1, inplace = True) # Observing that type_of_shot and type_of_combined_shot complement each other print((data['type_of_combined_shot'][data['type_of_shot'].isnull()]).isnull().sum()) # We can try by combining them together data['type_of_shot'] = data['type_of_shot'].fillna(data['type_of_combined_shot']) data.drop('type_of_combined_shot', axis = 1, inplace = True) data['type_of_shot'] = data['type_of_shot'].apply(lambda x: x.split('-')[1]) le_mi = LabelEncoder() le_mi.fit(data.match_id.tolist()) print(le_mi.classes_) new_col = le_mi.transform(data.match_id.tolist()) data['match_id'] = new_col # Function to calculate number of days before today def calc_days(g_date): if (type(g_date) == str): tokens = g_date.split('-') given_date = date(int(tokens[0]), int(tokens[1]), int(tokens[2])) today = date.today() diff = today - given_date return diff.days else: return None data.date_of_game = data.date_of_game.apply(lambda x: calc_days(x)) data.loc[:, data.columns != 'is_goal'] = data.loc[:, data.columns != 'is_goal'].fillna(method = 'ffill') # Scaling the data using Standard Scaler scaler = StandardScaler() scaled_df = scaler.fit_transform(data.loc[:, data.columns != 'is_goal']) scaled_df = pd.DataFrame(scaled_df, columns=data.loc[:, data.columns != 'is_goal'].columns) scaled_df['is_goal'] = data['is_goal'] scaled_df['shot_id_number'] = data['shot_id_number'] scaled_df = scaled_df.set_index('shot_id_number') #data.iloc[:10,8:] scaled_df.iloc[:10,6:] # Spliting the data into train and test data test = scaled_df[scaled_df['is_goal'].isnull()] train = scaled_df[scaled_df['is_goal'].notnull()] ###Output _____no_output_____ ###Markdown Plotting the correlation matrix to find useful features ###Code corrmat = train.corr() filteredCorrMat_features = corrmat.index[abs(corrmat['is_goal']).notnull()] plt.figure(figsize=(40,40)) sns.heatmap(train[filteredCorrMat_features].corr(),annot=True,cmap='summer') # Correlation matrix train.corr() # Selecting the important features new_data = data[['match_event_id','location_y','power_of_shot','distance_of_shot', 'area_of_shot', 'shot_basics','range_of_shot','distance_of_shot.1','is_goal']] corrmat = new_data.corr() filteredCorrMat_features = corrmat.index[abs(corrmat['is_goal']).notnull()] plt.figure(figsize=(12,12)) sns.heatmap(new_data[filteredCorrMat_features].corr(),annot=True,cmap='summer') # full_test = data[data['is_goal'].isnull()] # full_train = data[data['is_goal'].notnull()] # full_train.loc[:, full_train.columns != 'is_goal'] = full_train.loc[:, full_train.columns != 'is_goal'].fillna(method = 'ffill') # full_test.loc[:, full_test.columns != 'is_goal'] = full_test.loc[:, full_test.columns != 'is_goal'].fillna(method = 'ffill') #train.iloc[:,:-1] = train.iloc[:,:-1].fillna(method = 'ffill') #test.iloc[:,:-1] = test.iloc[:,:-1].fillna(method = 'ffill') # Print statistics print('Orig: '+ str(len(data))) print('test stats') print(test.is_goal.describe()) print('Length of the dataset : '+str(len(test))) print('train stats') print(train.is_goal.describe()) print(train.is_goal.value_counts()) print('Length of the dataset : '+str(len(train))) from sklearn.model_selection import train_test_split from sklearn.linear_model import LinearRegression, LogisticRegression, ElasticNet, Ridge, Lasso from sklearn.svm import SVR from sklearn.ensemble import RandomForestRegressor, AdaBoostRegressor, BaggingRegressor, ExtraTreesRegressor from sklearn.ensemble import GradientBoostingRegressor from sklearn.metrics import mean_squared_error, r2_score, f1_score, mean_squared_error, mean_absolute_error from sklearn.metrics import accuracy_score, recall_score, precision_score from xgboost import XGBRegressor from math import sqrt X_train, X_test, y_train, y_test = train_test_split(train.iloc[:,:-1], train['is_goal'], test_size=0.25) regr = LinearRegression() regr.fit(X_train, y_train) y_pred = regr.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('R2 score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) logi = LogisticRegression() logi.fit(X_train, y_train) lp = logi.predict_proba(X_test) y_pred = [x[0] for x in lp] print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('R2 score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) en = ElasticNet() en.fit(X_train, y_train) y_pred = en.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('R2 score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) svr = SVR() svr.fit(X_train, y_train) y_pred = svr.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) ls = Lasso(alpha = 0.1) ls.fit(X_train, y_train) y_pred = ls.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) rdg = Ridge(alpha = 1.0) rdg.fit(X_train, y_train) y_pred = rdg.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) rfr = RandomForestRegressor() rfr.fit(X_train, y_train) y_pred = rfr.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) ada = AdaBoostRegressor() ada.fit(X_train, y_train) y_pred = ada.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) br = BaggingRegressor() br.fit(X_train, y_train) y_pred = br.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) etr = ExtraTreesRegressor() etr.fit(X_train, y_train) y_pred = etr.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) gbr = GradientBoostingRegressor() gbr.fit(X_train, y_train) y_pred = gbr.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) xgb = XGBRegressor(n_estimators=1000, learning_rate=0.1, gamma=0, subsample=0.50, colsample_bytree=1, max_depth=10) xgb.fit(X_train, y_train) y_pred = xgb.predict(X_test) print("Mean absolute error: %.2f" % mean_absolute_error(y_test, y_pred)) print("Mean squared error: %.2f" % mean_squared_error(y_test, y_pred)) print('Variance score: %.2f' % r2_score(y_test, y_pred)) print("Root Mean squared error: %.2f" % sqrt(mean_squared_error(y_test, y_pred))) ###Output [19:10:04] WARNING: src/objective/regression_obj.cu:152: reg:linear is now deprecated in favor of reg:squarederror. Mean absolute error: 0.46 Mean squared error: 0.27 Variance score: -0.07 Root Mean squared error: 0.51 ###Markdown Prediction and storing in CSV file ###Code lgr = LogisticRegression() lgr.fit(train.iloc[:,:-1], train['is_goal']) lp = lgr.predict_proba(test.iloc[:,:-1]) y_pred = [x[0] for x in lp] temp = [[str(int(x)) for x in test.index], [x for x in list(y_pred)]] df = pd.DataFrame(temp).transpose() df.columns = ['shot_id_number', 'is_goal'] df.set_index('shot_id_number') df.to_csv('Hari_Veeramallu_032699_prediction.csv', index = False) ###Output _____no_output_____ ###Markdown HBN Wearable Analysis: Second TestFunctions to examine rolling correlations between device sensor outputs in follow-up analysis.Authors: – Jon Clucas, 2017 [email protected] – Arno Klein, 2017 © 2017, Child Mind Institute, Apache v2.0 Licensesetup: ###Code %matplotlib inline %load_ext autoreload %autoreload 2 import readline # for R magics %load_ext rpy2.ipython import warnings from rpy2.rinterface import RRuntimeWarning warnings.filterwarnings("ignore", category=RRuntimeWarning) from utilities.chart_data import df_devices_qt, linechart, xcorr from config import config from datetime import datetime, timedelta import IPython as IP from utilities.normalize_acc_data import normalize as norm import numpy as np import os import sys import pandas as pd from utilities import fetch_data from utilities.organize_wearable_data import geneactiv_acc pd.set_option('mode.use_inf_as_null', True) acc_hashes = dict() if not os.path.exists('./sample_data'): os.makedirs('./sample_data') ###Output _____no_output_____ ###Markdown load normalized data: ###Code df = df_devices_qt([('A', 'ActiGraph wGT3X-BT'), ('G1', 'GENEActiv Original (black)'), ('G2', 'GENEActiv Original (pink)')], 'accelerometer quicktest', datetime(2017, 4, 28, 15, 30), datetime(2017, 4, 28, 15, 48), acc_hashes) df.rename(columns={'normalized_vector_length': 'normalized_vector_length_GENEActiv Original (pink)'}, inplace=True) Avalues = df['normalized_vector_length_ActiGraph wGT3X-BT'].values G1values = df['normalized_vector_length_GENEActiv Original (black)'].values G2values = df['normalized_vector_length_GENEActiv Original (pink)'].values [xcorr(G1values, G2values), xcorr(Avalues, G1values), xcorr(Avalues, G2values)] df1 = df[['normalized_vector_length_ActiGraph wGT3X-BT', 'normalized_vector_length_GENEActiv Original (black)', 'normalized_vector_length_GENEActiv Original (pink)']] linechart(df1, 'Achttp://localhost:8888/notebooks/analysis.ipynb#tiGraph vs 2×GENEActiv', line=False, full=True) print(df1['normalized_vector_length_ActiGraph wGT3X-BT'].mode()) print(df1['normalized_vector_length_GENEActiv Original (black)'].mode()) print(df1['normalized_vector_length_GENEActiv Original (pink)'].mode()) shiftG1G2 = len(G1values) - np.argmax(np.correlate(G1values, G2values, mode='full')) shiftG1A = len(G1values) - np.argmax(np.correlate(G1values, Avalues, mode='full')) shiftG2A = len(G2values) - np.argmax(np.correlate(G2values, Avalues, mode='full')) shiftGA = np.int(np.mean([shiftG1A, shiftG2A])) [shiftG1G2, shiftG1A, shiftG2A, shiftGA] shift_GA = np.abs(shiftGA) Avalues_shifted = Avalues[:G1values.shape[0]-shift_GA] G1values_shifted = G1values[shift_GA:G1values.shape[0]] G2values_shifted = G2values[shift_GA:G2values.shape[0]] [np.shape(G1values_shifted), np.shape(G2values_shifted), np.shape(Avalues_shifted)] [xcorr(G1values_shifted, G2values_shifted), xcorr(Avalues_shifted, G1values_shifted), xcorr(Avalues_shifted, G2values_shifted)] shifted_t = [datetime(2017, 4, 28, 15, 30)] while len(shifted_t) < np.shape(Avalues_shifted)[0]: shifted_t.append(shifted_t[-1] + timedelta(seconds=0.0166)) shifted_df = pd.DataFrame({'normalized_vector_length_ActiGraph wGT3X-BT': Avalues_shifted, 'normalized_vector_length_GENEActiv Original (black)': G1values_shifted, 'normalized_vector_length_GENEActiv Original (pink)': G2values_shifted, 'Timestamp':shifted_t}) shifted_df.set_index('Timestamp', inplace=True) ###Output _____no_output_____ ###Markdown cut middle portion out when devices were being transferred: ###Code start1 = datetime(2017,4,28,15,30) stop1 = datetime(2017,4,28,15,37) start2 = datetime(2017,4,28,15,40) stop2 = datetime(2017,4,28,15,48) cropped_df = shifted_df.loc[(shifted_df.index >= start1) & (shifted_df.index <= stop1) | (shifted_df.index >= start2) & (shifted_df.index <= stop2)].copy() linechart(cropped_df, 'ActiGraph vs 2×GENEActiv, shifted', line=False, full=True) Avalues_cropped = cropped_df['normalized_vector_length_ActiGraph wGT3X-BT'].values G1values_cropped = cropped_df['normalized_vector_length_GENEActiv Original (black)'].values G2values_cropped = cropped_df['normalized_vector_length_GENEActiv Original (pink)'].values ###Output _____no_output_____ ###Markdown compute normalized cross-correlations: ###Code [xcorr(G1values_cropped, G2values_cropped), xcorr(Avalues_cropped, G1values_cropped), xcorr(Avalues_cropped, G2values_cropped)] ###Output _____no_output_____ ###Markdown plot x-second windows: ###Code start = datetime(2017,4,28,15,30) #shifted_t[0] stop = datetime(2017,4,28,15,48) #shifted_t[-1] plot_data = True while start < stop and plot_data: new_start = start + timedelta(seconds=10) plot_df = cropped_df.loc[(cropped_df.index >= start) & (cropped_df.index <= new_start)].copy() label = '–'.join([start.strftime('%H:%M:%S'), new_start.strftime('%H:%M:%S')]) plot_data = linechart(plot_df, label, line=True, full=False) #print(xcorr(plot_df['normalized_vector_length_GENEActiv'].values, # plot_df['normalized_vector_length_GENEActiv(2)'].values)) #print(xcorr(plot_df['normalized_vector_length_ActiGraph'].values, # plot_df['normalized_vector_length_GENEActiv'].values)) #print(xcorr(plot_df['normalized_vector_length_ActiGraph'].values, # plot_df['normalized_vector_length_GENEActiv(2)'].values)) start = new_start np.shape(G1values) start = datetime(2017,4,28,15,30) #shifted_t[0] stop = datetime(2017,4,28,15,48) #shifted_t[-1] plot_data = True while start < stop and plot_data: new_start = start + timedelta(seconds=10) plot_df = cropped_df.loc[(cropped_df.index >= start) & (cropped_df.index <= new_start)].copy() label = '–'.join([start.strftime('%H:%M:%S'), new_start.strftime('%H:%M:%S')]) plot_data = linechart(plot_df, label, line=True, full=True) #print(xcorr(plot_df['normalized_vector_length_GENEActiv'].values, # plot_df['normalized_vector_length_GENEActiv(2)'].values)) #print(xcorr(plot_df['normalized_vector_length_ActiGraph'].values, # plot_df['normalized_vector_length_GENEActiv'].values)) #print(xcorr(plot_df['normalized_vector_length_ActiGraph'].values, # plot_df['normalized_vector_length_GENEActiv(2)'].values)) start = new_start ###Output _____no_output_____ ###Markdown "The first thing which I should point out here is that the data which you are collecting from GENEActiv devices is completely unfiltered raw data. Most devices apply some proprietary filtering to the data on board the device – Activinsights do not do this. The result you are seeing is completely normal for the device. This result is due to a small offset in the calibration of the accelerometer which you are not seeing with the other devices which you are using as a comparison as they have filtered this out before you see the data.[. . .]I think you find better results if you calibrate the data on the GENEActiv first.[. . .]This function can be found within the R package `GGIR`, as `g.calibrate`. A vignette to this package can be found here https://cran.r-project.org/web/packages/GGIR/vignettes/GGIR.html.[. . .]I've attached a script which will take any GENEActiv `bin` files you have and calibrate them into their own folder. I'd then convert these into raw `.csv` files. You can use the function found in `GGIR` to do the same for other accelerometer data." —Activinsights download GENEActiv RAW files for R scripts: ###Code if not os.path.exists("raw"): os.makedirs("raw") acc_GA_black_path = fetch_data.fetch_data(config.rawurls['raw_accelerometer']['GENEActiv Original (black)'], "raw/GA_black.bin") acc_GA_pink_path = fetch_data.fetch_data(config.rawurls['raw_accelerometer']['GENEActiv Original (pink)'], "raw/GA_pink.bin") ###Output _____no_output_____ ###Markdown Calibrate GENEActiv data: ###Code %R source("utilities/JonClucasCalibrationScript.R") ###Output _____no_output_____ ###Markdown GGIR: ###Code %%R library(GENEAread) GA_black <- read.bin("GA_black_Recalibrate.bin") write.csv(GA_black$data.out, "GA_black.csv", row.names=FALSE) GA_pink <- read.bin("GA_pink_Recalibrate.bin") write.csv(GA_pink$data.out, "GA_pink.csv", row.names=FALSE) geneactiv_acc(os.getcwd()) od = os.path.abspath(os.path.join(sys.modules["utilities"].__file__, os.pardir, os.pardir, "organized/accelerometer")) dfR = df[[col for col in df.columns if "ActiGraph" in col]].merge(norm(pd.read_csv(os.path.join(od, "GENEActiv_black.csv"), parse_dates=['Timestamp'], infer_datetime_format=True)).set_index('Timestamp'), left_index= True, right_index=True, suffixes=('', ''.join(['_', "GENEActiv Original (black)"]))).merge(norm(pd.read_csv( os.path.join(od, "GENEActiv_pink.csv"), parse_dates=['Timestamp'], infer_datetime_format=True)).set_index( 'Timestamp'), left_index=True, right_index=True, suffixes=('', ''.join(['_', "GENEActiv Original (pink)"])) ).rename(columns={'normalized_vector_length': 'normalized_vector_length_GENEActiv Original (black)'}) print(dfR) AvaluesR = dfR['normalized_vector_length_ActiGraph wGT3X-BT'].values G1valuesR = dfR['normalized_vector_length_GENEActiv Original (black)'].values G2valuesR = dfR['normalized_vector_length_GENEActiv Original (pink)'].values shiftG1G2R = len(G1valuesR) - np.argmax(np.correlate(G1valuesR, G2valuesR, mode='full')) shiftG1AR = len(G1valuesR) - np.argmax(np.correlate(G1valuesR, AvaluesR, mode='full')) shiftG2AR = len(G2valuesR) - np.argmax(np.correlate(G2valuesR, AvaluesR, mode='full')) shiftGAR = np.int(np.mean([shiftG1AR, shiftG2AR])) [shiftG1G2R, shiftG1AR, shiftG2AR, shiftGAR] shift_GAR = np.abs(shiftGAR) Avalues_shiftedR = AvaluesR[:G1valuesR.shape[0]-shift_GAR] G1values_shiftedR = G1valuesR[shift_GAR:G1valuesR.shape[0]] G2values_shiftedR = G2valuesR[shift_GAR:G2valuesR.shape[0]] [np.shape(G1values_shiftedR), np.shape(G2values_shiftedR), np.shape(Avalues_shiftedR)] [xcorr(G1values_shiftedR, G2values_shiftedR), xcorr(Avalues_shiftedR, G1values_shiftedR), xcorr(Avalues_shiftedR, G2values_shiftedR)] shifted_tR = [datetime(2017, 4, 28, 15, 30)] while len(shifted_tR) < np.shape(Avalues_shiftedR)[0]: shifted_tR.append(shifted_tR[-1] + timedelta(seconds=0.0166)) shifted_dfR = pd.DataFrame({'normalized_vector_length_ActiGraph wGT3X-BT': Avalues_shiftedR, 'normalized_vector_length_GENEActiv Original (black)': G1values_shiftedR, 'normalized_vector_length_GENEActiv Original (pink)': G2values_shiftedR, 'Timestamp':shifted_tR}) shifted_dfR.set_index('Timestamp', inplace=True) cropped_dfR = shifted_dfR.loc[(shifted_dfR.index >= start1) & (shifted_dfR.index <= stop1) | (shifted_dfR.index >= start2) & (shifted_dfR.index <= stop2)].copy() linechart(cropped_dfR, 'ActiGraph vs 2×GENEActiv, shifted', line=False, full=True) ###Output _____no_output_____ ###Markdown L.A. homeless arrests analysisBy [Christine Zhang](mailto:[email protected]) The Los Angeles Times analyzed daily arrest logs between January 1, 2011 and December 31, 2016 from the LAPD to determine yearly trends in arrests of homeless people.The results were reported in a February 4, 2018, Los Angeles Times story titled ["L.A. leaders oppose 'criminalizing' homeless people. But thousands are jailed for minor offenses"](http://www.latimes.com/local/politics/la-me-homeless-arrests-20180204-story.html).Here are the key findings of the data analysis, which is documented below with code written in the programming language R: * The LAPD made 14,000 arrests of homeless people last year, a 30% increase over 2011 * LAPD arrests overall went down 15% from 2011 to 2016 * Two-thirds of those arrested were black or Latino * In 2011, one in 10 people arrests citywide were of homeless people; in 2016, it was 1 in 6 * The 14,000 arrests of homeless people in 2016 included more than 500 unique charges * By far the most common was failing to appear in court on an unpaid infraction or misdemeanor citation * The top five charges were for non-violent or minor offenses Read more about the methodology [here](../README.md). How we did it Import R data analysis libraries ###Code library('dplyr') library('feather') library('ggplot2') ###Output _____no_output_____ ###Markdown The file `arrests.feather.zip` must first be unzipped to run this notebook. This is a file that has been prepared outside of this notebook as part of an unpublished processing script. The raw LAPD data includes names and other identifying information about arrestees that The Times has chosen to withhold. ###Code unzip("arrests.zip") ###Output _____no_output_____ ###Markdown Finding: The LAPD made 14,000 arrests of homeless people last year, a 30% increase over 2011 Read in the data for analysis. Note that the data has been pre-processed to remove the name, address and date of birth fields for privacy purposes. Age was calculated based on the individual's date of birth at the time of arrest. ###Code data <- read_feather('arrests.feather') names(data) head(data) ###Output _____no_output_____ ###Markdown Group the data by arrest year and homeless and sum the total number of arrests ###Code arrest.totals <- data %>% group_by(arrest_year, homeless) %>% distinct(booking_num) %>% summarize(arrests_number = n()) ###Output _____no_output_____ ###Markdown Filter to homeless arrests ###Code homeless.totals <- arrest.totals %>% filter(homeless == 1) homeless.totals print(paste0("The *raw* increase in homeless arrests between 2011 and 2016 is ", round((homeless.totals[homeless.totals$arrest_year == 2016,]$arrests_number / homeless.totals[homeless.totals$arrest_year == 2011,]$arrests_number - 1) * 100), "%")) ###Output [1] "The *raw* increase in homeless arrests between 2011 and 2016 is 33%" ###Markdown However, there are some missing dates in the data ###Code # extract the booking dates as a vector booking.dates <- data %>% select(booking_ymd) booking.dates <- booking.dates %>% distinct(booking_ymd) %>% select(booking_ymd) %>% arrange(booking_ymd) booking.dates$has.data = 1 # get the time period (minimum date and maximum date) of the data set time.min <- booking.dates$booking_ymd[1] time.max <- booking.dates$booking_ymd[length(booking.dates$booking_ymd) - 1] # create a dataframe of all the days spanning that time period all.dates.frame <- data.frame(list(booking_ymd = seq(time.min, time.max, by="day"))) # merge this dataframe with the vector of booking dates to find the missing dates merged.data <- merge(all.dates.frame, booking.dates , all=T) missing.dates <- merged.data %>% filter(is.na(has.data) == T) ###Output _____no_output_____ ###Markdown There were six days in 2011 for which arrests data were not available ###Code missing.dates ###Output _____no_output_____ ###Markdown Pro-rate the 2011 figure to account for the missing six days ###Code prorated.homeless.2011 <- homeless.totals[homeless.totals$arrest_year == 2011,]$arrests_number/(365 - 6) * 365 prorated.homeless.2011 print(paste0("The *prorated* change in homeless arrests between 2011 and 2016 is ", round((homeless.totals[homeless.totals$arrest_year == 2016,]$arrests_number / prorated.homeless.2011 - 1) * 100), "% (rounded down to 30% in the story)")) ###Output [1] "The *prorated* change in homeless arrests between 2011 and 2016 is 31% (rounded down to 30% in the story)" ###Markdown Finding: LAPD arrests overall went down 15% from 2011 to 2016 Group `arrest.totals` by arrest year and sum the total number of arrests to get the overall arrest numbers for each year. ###Code all.totals <- arrest.totals %>% group_by(arrest_year) %>% summarize(arrests_number = sum(arrests_number)) all.totals print(paste0("The *raw* change in overall arrests between 2011 and 2016 is ", round((all.totals[all.totals$arrest_year == 2016,]$arrests_number / all.totals[all.totals$arrest_year == 2011,]$arrests_number - 1) * 100), "%")) ###Output [1] "The *raw* change in overall arrests between 2011 and 2016 is -14%" ###Markdown Again, we need to pro-rate to take into account the six missing days in 2011. ###Code prorated.arrests.2011 <- all.totals[all.totals$arrest_year == 2011,]$arrests_number/(365 - 6) * 365 prorated.arrests.2011 print(paste0("The *prorated* change between 2011 and 2016 is ", round((all.totals[all.totals$arrest_year == 2016,]$arrests_number / prorated.arrests.2011 - 1) * 100), "%")) ###Output [1] "The *prorated* change between 2011 and 2016 is -15%" ###Markdown Finding: Two-thirds of those arrested were black or Latino Group the data by arrest year, homeless, and race/ethnicity ###Code arrests.race <- data %>% group_by(arrest_year, homeless, race) %>% distinct(booking_num) ###Output _____no_output_____ ###Markdown Create a variable, `race.grp` to represent racial/ethnic grouping, where W = white, B = black, H = Latino (Hispanic), etc. ###Code table(arrests.race$race) arrests.race$race.grp <- ifelse(arrests.race$race == 'W', "White", ifelse(arrests.race$race == 'B', "Black", ifelse(arrests.race$race == 'H', "Latino", ifelse(arrests.race$race == 'A' | arrests.race$race == 'C' | arrests.race$race == 'J'| arrests.race$race == 'K'| arrests.race$race == 'F', "Asian", 'Other')))) ###Output _____no_output_____ ###Markdown Group by `race.grp` and calculate the total number and percentage of homeless arrests ###Code arrests.race.yr <- arrests.race %>% group_by(arrest_year, homeless, race.grp) %>% summarize(arrests_number = n()) %>% mutate(arrests_percent = arrests_number / sum(arrests_number) * 100) arrests.race.yr %>% filter(homeless == 1 & arrest_year == 2016) %>% arrange(desc(arrests_percent)) ggplot(arrests.race.yr %>% filter(homeless == 1 & arrest_year != 2017), aes(x = arrest_year, y = arrests_percent, color = race.grp)) + geom_line() + geom_text(data = arrests.race.yr %>% filter(homeless == 1 & arrest_year == 2016), aes(label = race.grp), hjust = 0.7, vjust = 1) + scale_y_continuous(limits = c(0, 50)) + labs(x = "", y = "% of arrests", title = "Racial Breakdown of homeless arrests") + theme(legend.position = 'none') ###Output _____no_output_____ ###Markdown Finding: In 2011, one in 10 people arrests citywide were of homeless people; in 2016, it was 1 in 6 Use the grouped dataframe `arrest.totals` to calculate percentage of homeless arrests by year ###Code arrest.totals %>% mutate(arrests_percent = arrests_number / sum(arrests_number) * 100) %>% filter(homeless == 1) ###Output _____no_output_____ ###Markdown Finding: The 14,000 arrests of homeless people in 2016 included more than 500 unique charges Filter the data to include homeless arrests in 2016 and calculate the number and percent of times each charge was cited. Note that this is done by analyzing each charge separately, so the `times_cited` column will not sum to the total number of arrests per year (arrestees can have multiple charges). ###Code arrest.reasons <- data %>% filter(homeless == 1 & arrest_year == 2016) %>% group_by(charge_code, charge_desc) %>% summarize(times_cited = n()) %>% ungroup() %>% mutate(percent_cited = times_cited/sum(times_cited) * 100) ###Output _____no_output_____ ###Markdown Get the number of unique charges ###Code length(unique(arrest.reasons$charge_code)) ###Output _____no_output_____ ###Markdown Finding: The most common offense was failure to appear in court for unpaid petty or minor citations Sort by percent of the time the charge was cited to get the top charges ###Code head(arrest.reasons %>% arrange(desc(percent_cited))) ###Output _____no_output_____ ###Markdown Many codes did not come with charge descriptions in the data. Those that appear in the above table are described as follows:* 459.5PC: shoplifting* 3000.08CPC: parole warrant* 3454(C)PC: flash incarceration Finding: The top five charges were for non-violent or minor offenses Some charge codes are grouped, largely according to [this](http://milliondollarhoods.org/wp-content/uploads/2017/10/Policing-the-House-2.0.FINAL_.pdf) UCLA report. For example. charge codes 40508(A)VC, 853.7PC, and 853.8PC all cover failure to appear. ###Code arrest.reasons$failure <- ifelse(arrest.reasons$charge_code == '40508(A)VC'| arrest.reasons$charge_code == '853.7PC'| arrest.reasons$charge_code == '853.8PC', 1, 0) arrest.reasons$trespass <- ifelse(arrest.reasons$charge_code == '419PC'| arrest.reasons$charge_code == '602(K)PC'| arrest.reasons$charge_code == '602(O)(2)PC'| arrest.reasons$charge_code == '602.5(A)PC'| arrest.reasons$charge_code == '555PC'| arrest.reasons$charge_code == '484F(A)PC'| arrest.reasons$charge_code == '602(L)(1)PC'| arrest.reasons$charge_code == '602(P)PC'| arrest.reasons$charge_code == '602.5(B)PC'| arrest.reasons$charge_code == '602PC'| arrest.reasons$charge_code == '602(M)PC'| arrest.reasons$charge_code == '602(Q)PC'| arrest.reasons$charge_code == '602.8PC'| arrest.reasons$charge_code == '602(A)PC'| arrest.reasons$charge_code == 'A602(N)1PC'| arrest.reasons$charge_code == '602(S)PC'| arrest.reasons$charge_code == '626.8(A)1PC'| arrest.reasons$charge_code == '602(D)PC'| arrest.reasons$charge_code == '602(N)PC'| arrest.reasons$charge_code == '602(U)(1)PC'| arrest.reasons$charge_code == '647(E)PC'| arrest.reasons$charge_code == '602(F)PC'| arrest.reasons$charge_code == '602(O)PC'| arrest.reasons$charge_code == '602.1(A)PC'| arrest.reasons$charge_code == '647(H)PCLPP'| arrest.reasons$charge_code == '602(J)PC'| arrest.reasons$charge_code == '602(O)(1)PC'| arrest.reasons$charge_code == '602.1(B)PC'| arrest.reasons$charge_code == '369I(A)PC', 1, 0) arrest.reasons$shoplift <- ifelse(arrest.reasons$charge_code == '18 1708'| arrest.reasons$charge_code == '484PCTFMV'| arrest.reasons$charge_code == '485PC'| arrest.reasons$charge_code == '488PC'| arrest.reasons$charge_code == '459.5PC'| arrest.reasons$charge_code == '484F(A)PC'| arrest.reasons$charge_code == 'A488PC'| arrest.reasons$charge_code == '490PC'| arrest.reasons$charge_code == 'A484PC'| arrest.reasons$charge_code == '484E(D)PC'| arrest.reasons$charge_code == '666PC'| arrest.reasons$charge_code == '484PC'| arrest.reasons$charge_code == '490.2PC'| arrest.reasons$charge_code == '666(A)PC'| arrest.reasons$charge_code == '484(A)PC'| arrest.reasons$charge_code == '490.5(A)PC'| arrest.reasons$charge_code == '537(A)(1)PC'| arrest.reasons$charge_code == '666.5PC'| arrest.reasons$charge_code == '484E(A)PC'| arrest.reasons$charge_code == '587CPC'| arrest.reasons$charge_code == '666.5(A)PC'| arrest.reasons$charge_code == '484E(B)PC', 1, 0) arrest.reasons$supervision_viol <- ifelse(arrest.reasons$charge_code == '1203.2PC'| arrest.reasons$charge_code == '3000.08CPC'| arrest.reasons$charge_code == '3454(C)PC'| arrest.reasons$charge_code == '3455(B)1PC'| arrest.reasons$charge_code == '1203.2(A)PC'| arrest.reasons$charge_code == '3056PC'| arrest.reasons$charge_code == '3455(A)4PC'| arrest.reasons$charge_code == '3455(C)PC'| arrest.reasons$charge_code == '3000.08FPC'| arrest.reasons$charge_code == '3454PC'| arrest.reasons$charge_code == '3455(A)PC'| arrest.reasons$charge_code == '18 3606US', 1, 0) arrest.reasons$drug_poss <- ifelse(arrest.reasons$charge_code == '11377(A)HS'| arrest.reasons$charge_code == '11377(A)1HS'| arrest.reasons$charge_code == '11377HS'| arrest.reasons$charge_code == '11350(A)HS'| arrest.reasons$charge_code == '11350HS'| arrest.reasons$charge_code == '11357HS'| arrest.reasons$charge_code == '11357(A)HS'| arrest.reasons$charge_code == '11357(B)HS'| arrest.reasons$charge_code == '11357(C)HS'| arrest.reasons$charge_code == '4573.6PC'| arrest.reasons$charge_code == '11550(A)HS'| arrest.reasons$charge_code == '11375(B)2HS'| arrest.reasons$charge_code == '11351HS'| arrest.reasons$charge_code == '4060BP', 1, 0) arrest.reasons$charge_desc_grouped <- ifelse(arrest.reasons$drug_poss == 1, 'drug_poss', ifelse(arrest.reasons$trespass == 1, 'trespass', ifelse(arrest.reasons$shoplift == 1, 'shoplift', ifelse(arrest.reasons$supervision_viol == 1, 'supervision violation', ifelse(arrest.reasons$failure == 1, 'failure to appear', arrest.reasons$charge_code))))) ###Output _____no_output_____ ###Markdown Get top five offenses using `charge_desc_grouped` as the charge identifier ###Code arrest.reasons %>% group_by(charge_desc_grouped) %>% summarise(times_cited = sum(times_cited)) %>% mutate(perc_cited = times_cited/sum(times_cited) * 100) %>% arrange(desc(times_cited)) %>% head(5) ###Output _____no_output_____ ###Markdown Preliminary Analysis ###Code # s = la.svd(W, compute_uv=False, full_matrices=True, check_finite=False) # x = da.from_array(W, chunks=(1000, 1000)) # xt = da.from_array(W.T, chunks=(1000, 1000)) # X = da.matmul(x, xt) # # x = da.from_array(X, chunks=(1000, 1000)) # u,s,v = da.linalg.svd(X, name=None) plt.hist(s, 50, normed=True) # plt.xlim((0, 0.3)) 0 def marcenkopasturpdf(x, c): # Marchenko Pastur Density Function for c > 1 # ub = (1 + np.sqrt(c))**2 # lb = (1 - np.sqrt(c))**2 ub = 1 + 1/c + 2 * np.sqrt(1/c) lb = 1 + 1/c - 2 * np.sqrt(1/c) mp = np.zeros(len(x)) # Figure out indices where mp is to be calculated lbidx = np.where(x > lb) ubidx = np.where(x < ub) a = lbidx[0][0] b = ubidx[-1][-1] xh = x[a:b+1] # MP distribution mp[a:b+1] = c* np.sqrt((xh - lb)*(ub - xh))/(2*math.pi*xh) # mp[a:b+1] = np.sqrt((xh - lb)*(ub - xh))/(2*math.pi*c*xh) return lb, ub, mp l = np.arange(0, 5, step=0.01) # print(l) c = 461408206 / 344332 print(c) lb, ub, mp = marcenkopasturpdf(l, c) print(lb,ub) print(np.mean(mp)) print(np.min(mp), np.max(mp)) # print(mp) # sns.distplot(l, kde=True, norm_hist=True) plt.plot(l, mp, linewidth=1, color='red') # plt.hist(mp, linewidth=1, color='red',normed=True) # sns.distplot(sgns001_s) # plt.hist(svd.s/1000, 100, normed=True) # plt.hist(s, 50, normed=True) # plt.xlim((0, 0.3)) # plt.hist(mp, 'auto', normed=True) # plt.hist(mp, 'auto', normed=True, range=(0,ub)) sns.distplot(svd.s/c, kde=False, norm_hist=True) plt.ylabel = 'MP' plt.xlabel = 'Eigenvalue' plt.show() # sns.distplot(mp) s = [0, 1, 2, 3, 4] # s = [0.01,0.1, 1, 10, 100] 10^i wss = [0,0,0,2,34]#[::-1] wsr = [0,0,0,1,37]#[::-1] men = [0,0,0,22,968]#[::-1] mt = [1,1,1,4,73]#[::-1] rw = [410,410,524,1117,1744]#[::-1] sl = [1,1,1,6,269]#[::-1] glr = [0,0,58,2792,11488]#[::-1] msr = [1386,1386,1620,2598,4598]#[::-1] sns.set_style("whitegrid") plt.plot(s, rw, color='red', label='rw') plt.plot(s, men, color='blue',label='men') plt.plot(s, sl, label='sl') plt.plot(s, mt, label='mt') plt.plot(s, wss, label='wss') plt.plot(s, wsr, label='wsr') plt.xticks(s) plt.xlabel('Negative Exponents of 10') plt.ylabel('UNK tokens') leg = plt.legend(loc='best', ncol=1, mode="expand", shadow=True, fancybox=True) plt.show() plt.plot(s, glr, label='glr') plt.plot(s, msr, label='msr') plt.xticks(s) plt.xlabel('Negative Exponents of 10') plt.ylabel('UNK tokens') leg = plt.legend(loc='best', ncol=1, mode="expand", shadow=True, fancybox=True) plt.show() ###Output _____no_output_____ ###Markdown Analysis of the Pagination Dataset Table of Contents* [Preliminaries](Preliminaries) * [Main parameters](Main-parameters) * [Tools](Tools) * [Reading the instances](Reading-the-instances)* [Difficulty and average multiplicity](Difficulty-and-average-multiplicity) * [[Sec. 4.2] Measuring the difficulty of a given instance]([Sec.-4.2]-Measuring-the-difficulty-of-a-given-instance) * [Number of instances by difficulty](Number-of-instances-by-difficulty) * [Correlation between the difficulty and the size of the best pagination](Correlation-between-the-difficulty-and-the-size-of-the-best-pagination) * [[Sec. 4.3] Predicting the difficulty of a given instance]([Sec.-4.3]-Predicting-the-difficulty-of-a-given-instance) * [[Fig. 4] Statistical difficulty by average multiplicity]([Fig.-4]-Statistical-difficulty-by-average-multiplicity) * [[Fig. 5] Number of instances by average multiplicity]([Fig.-5]-Number-of-instances-by-average-multiplicity)* [[Sec. 4.4] Discussion]([Sec.-4.4]-Discussion) * [[Sec. 4.4.1] Behavior of the integer program]([Sec.-4.4.1]-Behavior-of-the-integer-program) * [[Sec. 4.4.2] Comparison of the heuristic methods]([Sec.-4.4.2]-Comparison-of-the-heuristic-methods) * [[Fig. 6] Performance of the main heuristics]([Fig.-6]-Performance-of-the-main-heuristics) * [[Fig. 7] Relative quality of the five main heuristics]([Fig.-7]-Relative-quality-of-the-five-main-heuristics) * [Exact algorithms vs. heuristics](Exact-algorithms-vs.-heuristics) * [Grouping GA vs. the other heuristics](Grouping-GA-vs.-the-other-heuristics) Preliminaries This notebook generates every plot and numerical result mentioned or alluded in Section 4 of [_Algorithms for the Pagination Problem, a Bin Packing with Overlapping Items_](http://arxiv.org/abs/1605.00558). Main parameters ###Code from collections import OrderedDict INPUT_PATH = "gauss/" (MIN_PREFIX, MAX_PREFIX) = ("C015", "C055") # for instance filenames OUTPUT_PATH = "plots/" WINDOW = 150 # size of the subsets of instances used as a moving window SOLVER_NAMES = OrderedDict([ ("GeneticGroup", "Grouping GA"), ("GeneticStandard", "Standard GA"), ("OverloadAndRemove", "Overload-and-Remove"), ("OverloadAndRemovePresort", "Overload-and-Remove (with presort)"), ("BestFusion", "Best Fusion"), ("FirstFit", "First Fit"), ]) EXCLUDED_SOLVER_NAMES = {"OverloadAndRemovePresort"} # excluded from certain plots solvers = ["solvers" + name for name in SOLVER_NAMES.keys()] times = ["times" + name for name in SOLVER_NAMES.keys()] ###Output _____no_output_____ ###Markdown Tools ###Code %matplotlib inline import numpy as np import pandas as pd import matplotlib.pyplot as plt from matplotlib.ticker import Locator np.warnings.filterwarnings("ignore", category=RuntimeWarning) np.warnings.filterwarnings("ignore", category=UserWarning) !pip install seaborn import seaborn as sns sns.set_style("white") sns.set_context("paper", font_scale=2) sns.set_palette(sns.color_palette("Set1", 5)) def plot_linear_regression(x, y): fit = np.polyfit(x, y, deg=1) plt.plot(x, fit[0] * x + fit[1]) correlation = round(x.corr(y), 3) print("Pearson:", correlation) return correlation !pip install pandas --upgrade ###Output _____no_output_____ ###Markdown Reading the instances Create a DataFrame from all the JSON files whose name is comprised between `MIN_PREFIX` and `MAX_PREFIX`. ###Code import os, json df = [] indexes = [] for filename in os.listdir(INPUT_PATH): if not filename.endswith("json") or not MIN_PREFIX <= filename <= MAX_PREFIX: continue with open(os.path.join(INPUT_PATH, filename)) as f: instances = json.loads(f.read()) indexes.extend([(filename, discriminant) for discriminant in range(len(instances))]) for instance in instances: for (k, v) in list(instance.items()): if isinstance(v, dict): # flatten any sub-dict with dot notation for (sub_key, sub_value) in v.items(): instance[k + sub_key] = sub_value del instance[k] df.extend(instances) df = pd.DataFrame(df, index=pd.MultiIndex.from_tuples(indexes, names=("filename", "i"))) df["best"] = df[["pageCount", "cplexOpt", "cplexUB"]].min(axis = 1) # add a column for the best known pagination size df["cardinality"] = df["tiles"].apply(lambda tiles: sum(len(tile) for tile in tiles)) df_sorted_by_multiplicity = df.sort_values(by="avgMultiplicity") # for use with a moving window print(df.info()) df.describe() print("There are a %s instances." % len(df)) ###Output There are a 10986 instances. ###Markdown Statistical difficulty and average multiplicity [Sec. 4.2] Measuring the statistical difficulty of a given instance **Conjecture 1.** The **statistical difficulty** of a given instance can be approximated by the difference between the average and the minimal number of pages in the paginations calculated by the various solvers. Correlation between the statistical difficulty and the size of the best pagination Note that this measure of statistical difficulty is intrinsically correlated to the size of the best pagination: ###Code x = df[solvers].mean(axis=1) - df["best"] y = df["best"] plt.xlabel("Statistical difficulty") plt.ylabel("Best pagination size") plt.scatter(x, y, marker="o", s=1) _ = plot_linear_regression(x, y) ###Output Pearson: 0.792 ###Markdown The dispersion of the pagination sizes could have been measured in several other ways, for instance with the standard deviation (below). ###Code x = df["avgMultiplicity"] y = df[solvers].std(axis=1) axes = plt.gca() axes.set_xlim([0, 70]) plot_linear_regression(x, y) plt.scatter(x, y, marker="o", s=1) plt.xlabel("Average multiplicity") plt.ylabel("Average standard deviation") plt.grid() plt.show() ###Output Pearson: 0.695 ###Markdown Number of instances by statistical difficulty ###Code result = df.groupby(round(2 * (df[solvers].mean(axis=1) - df["best"]))/2).size() result.plot(kind="bar") plt.yscale("symlog") plt.xlabel("Statistical difficulty") plt.ylabel("Number of instances (sym-log scale)") plt.show() print("Number of instances per statistical difficulty:\n", result) print("Average statistical difficulty: %.02f" % (df[solvers].mean(axis=1) - df["best"]).mean()) print("Median statistical difficulty: %.02f" % (df[solvers].mean(axis=1) - df["best"]).median()) ###Output _____no_output_____ ###Markdown [Sec. 4.3] Predicting the statistical difficulty of a given instance **Conjecture 2.** The statistical difficulty of a given random instance is strongly correlated to the density of its shared symbols, or **average multiplicity**. [Fig. 4] Statistical difficulty by average multiplicity ###Code plt.figure(figsize=(10,5)) x = df["avgMultiplicity"] y = df[solvers].mean(axis=1) - df["best"] axes = plt.gca() axes.set_xlim([0, 70]) axes.set_ylim([-1, 9.5]) plot_linear_regression(x, y) plt.scatter(x, y, marker="o", s=1) plt.xlabel("Average multiplicity") plt.ylabel("Average range (statistical difficulty)") plt.grid() plt.savefig(os.path.join(OUTPUT_PATH, "difficulty_by_multiplicity.pdf"), bbox_inches='tight') plt.figure(figsize=(20, 10)) df["bitSize"] = df["symbolCount"] * df["tileCount"] for (i, column) in enumerate(["symbolCount", "bitSize", "tileCount", "cardinality"], 1): plt.subplot(2, 2, i) x = df[column] y = df[solvers].mean(axis=1) - df["best"] if i in [1, 3]: plt.ylabel("Average range (statistical difficulty)") plt.scatter(x, y, marker="o", s=1) correlation = plot_linear_regression(x, y) plt.xlabel("%s (r = %s)" % (column, correlation)) plt.show() ###Output Pearson: -0.082 Pearson: 0.366 Pearson: 0.563 Pearson: 0.77 ###Markdown [Fig. 5] Number of instances by average multiplicity ###Code plt.figure(figsize=(10,6)) range_width = 2 ranges = np.arange(1, df["avgMultiplicity"].max() + range_width, range_width) slices = pd.cut(df["avgMultiplicity"], ranges) instances_per_slice = df.groupby(slices).size() instances_per_slice.plot(kind="bar", width=0.9, color="#ffffbf") cplex_instances = df[df["cplexOpt"].notnull() | df["cplexLB"].notnull() | df["cplexUB"].notnull()] cplex_slices = pd.cut(cplex_instances["avgMultiplicity"], ranges) cplex_instances.groupby(cplex_slices).size().plot(kind="bar", width=0.7, color='#abdda4') cplex_solved_instances = df[df["cplexOpt"].notnull()] cplex_solved_slices = pd.cut(cplex_solved_instances["avgMultiplicity"], ranges) cplex_solved_instances.groupby(cplex_solved_slices).size().plot(kind="bar", width=0.5, color="#2b83ba") plt.xlabel("Ranges of average multiplicity") plt.ylabel("Number of instances (sym-log scale)") plt.yscale('symlog') axes = plt.gca() axes.set_ylim(0, 3000) plt.tick_params(axis='x', which='both', bottom='off', top='off') axes.yaxis.grid(True) plt.legend(["All instances", "Submitted to CPLEX", "Solved to optimality by CPLEX"]) plt.savefig(os.path.join(OUTPUT_PATH, "count_by_multiplicity.pdf"), bbox_inches='tight') range_width = 1 ranges = np.arange(1, df["avgMultiplicity"].max() + range_width, range_width) slices = pd.cut(df["avgMultiplicity"], ranges) instances_per_slice = df.groupby(slices).size() for start in (4, 23, 53): n = instances_per_slice[range_width * (start - 1)] print("There are %d instances whose average multiplicity lies between %s and %s." % (n, start, start + range_width)) (a, b) = (1, 9) rate = 100.0 * sum(instances_per_slice[a-1:b-1]) / len(df) print("%0.2f %% of the instances concentrate between average multiplicities %s and %s." % (rate, a, b)) ###Output 51.29 % of the instances concentrate between average multiplicities 1 and 9. ###Markdown [Sec. 4.4] Discussion [Sec. 4.4.1] Behavior of the integer linear program ###Code cplex_instances = df[df["cplexOpt"].notnull() | df["cplexLB"].notnull() | df["cplexUB"].notnull()] print("%s instances (%.2f %%) submitted to CPLEX." % (len(cplex_instances), 100.0 * len(cplex_instances)/len(df))) print("CPLEX's success in less than one hour: %s instances (%.1f %%)." % (df["cplexOpt"].count(), 100.0 * df["cplexOpt"].count() / len(cplex_instances))) for above in (13, 20): cplex_instances_above = cplex_instances[df["avgMultiplicity"] > above] print("CPLEX's success in less than one hour above an average multiplicity of %s: %.1f %%." % (above, 100.0 * cplex_instances_above["cplexOpt"].count() / len(cplex_instances_above))) cplex_results = df[df["cplexOpt"].notnull() | df["cplexUB"].notnull()][["cplexOpt","cplexUB","pageCount"]] print("All the %s instances for which CPLEX has found either a solution, either an upper bound:" % len(cplex_results)) cplex_results ###Output All the 51 instances for which CPLEX has found either a solution, either an upper bound: ###Markdown [Sec. 4.4.2] Comparison of the heuristic methods [Fig. 6] Performance of the main heuristics ###Code x = pd.Series.rolling(df_sorted_by_multiplicity["avgMultiplicity"], WINDOW, center=True).mean() plt.figure(figsize=(10,5)) axes = plt.gca() axes.set_xlim([2, 52]) for time in times: solver_name = time[len("times"):] if solver_name in EXCLUDED_SOLVER_NAMES: continue y = pd.Series.rolling(df_sorted_by_multiplicity[time], WINDOW, center=True).mean() plt.plot(x, y, label=SOLVER_NAMES[solver_name]) plt.yscale('log') plt.xlabel("Average multiplicity (rolling mean on %s instances)" % WINDOW) plt.ylabel("Execution time (seconds, log scale)") plt.grid() plt.savefig(os.path.join(OUTPUT_PATH, "speed_by_multiplicity.pdf"), bbox_inches='tight') plt.legend(loc=7) # legend not plotted for the paper version plt.show() contents = [ df[times].min().map('{:,.2f}'.format), df[times].max().map('{:,.2f}'.format), df[times].mean().map('{:,.2f}'.format), df[times].std().map('{:,.2f}'.format) ] digest = pd.DataFrame(contents, index = ["min", "max", "mean", "std"]) digest.columns = SOLVER_NAMES.values() print("Basic aggregations on execution times (in seconds):") digest ###Output Basic aggregations on execution times (in seconds): ###Markdown [Fig. 7] Relative quality of the five main heuristics The outcomes are plotted at $y = \frac{\mathrm{best~size}}{\mathrm{size}}$, with $y=1$ corresponding to the best known solution (which is either the optimal or the best feasible solution found by CPLEX, or the smallest approximation calculated for the given instance). ###Code x = pd.Series.rolling(df_sorted_by_multiplicity["avgMultiplicity"], WINDOW, center=True).mean() plt.figure(figsize=(10,7)) axes = plt.gca() axes.set_xlim([2, 52]) axes.set_ylim([0.74, 1.01]) axes.spines['right'].set_visible(False) axes.spines['top'].set_visible(False) for solver in solvers: solver_name = solver[len("solvers"):] if solver_name in EXCLUDED_SOLVER_NAMES: continue ratio = df_sorted_by_multiplicity["best"] / df_sorted_by_multiplicity[solver] y = pd.Series.rolling(ratio, WINDOW, center=True).mean() plt.plot(x, y, label=SOLVER_NAMES[solver_name]) plt.xlabel("Average multiplicity (rolling mean on %s instances)" % WINDOW) plt.ylabel("Average pagination size vs. best known result") plt.grid() # move the legend to an empty place legend = plt.legend(loc=7) plt.draw() bb = legend.legendPatch.get_bbox().inverse_transformed(axes.transAxes) bb.set_points([[bb.x0 - 0.02, bb.y0 + 0.2], [bb.x1 - 0.02, bb.y1 + 0.2]]) legend.set_bbox_to_anchor(bb) plt.savefig(os.path.join(OUTPUT_PATH, "relative_size_by_multiplicity.pdf"), bbox_inches='tight') ###Output _____no_output_____ ###Markdown Exact algorithms vs. heuristics The column `pageCount` gives the smallest pagination size found by the various **heuristics**: ###Code assert len(df[df["pageCount"] != df[solvers].min(axis=1)]) == 0 ###Output _____no_output_____ ###Markdown Hence, the optimal value found by CPLEX may be lesser than this one: ###Code suboptimal_instances_1 = df[df["cplexOpt"] < df["pageCount"]][["cplexOpt", "pageCount"] + solvers] suboptimal_instances_1.columns = ["cplexOpt", "pageCount"] + list(SOLVER_NAMES.values()) print("The optimal solution is better than the best approximation for these %s instances:" % len(suboptimal_instances_1)) suboptimal_instances_1 ###Output The optimal solution is better than the best approximation for these 4 instances: ###Markdown It may happen that the upper bound found by CPLEX is less than the best page count found by the heuristics. In this case, we know that there exists a better pagination (although CPLEX cannot prove its optimality): ###Code suboptimal_instances_2 = df[df["cplexUB"] < df["pageCount"]][["cplexUB", "pageCount"] + solvers] suboptimal_instances_2.columns = ["cplexOpt", "pageCount"] + list(SOLVER_NAMES.values()) print("For %s more instances, we know that the best approximation is not optimal:" % len(suboptimal_instances_2)) suboptimal_instances_2 ###Output For 2 more instances, we know that the best approximation is not optimal: ###Markdown The column `best` gives the minimum pagination sizes found by the heuristics and CPLEX (including the upper bound): ###Code df[df["best"] < df["pageCount"]][["best", "pageCount"]] count = len(suboptimal_instances_1) + len(suboptimal_instances_2) print("All in all, ILP improved on the heuristics in %s cases" % count, end=" ") print("(%.02f %% of the %s selected instances)." % (100.0 * count / len(cplex_instances), len(cplex_instances))) ###Output All in all, ILP improved on the heuristics in 6 cases (1.75 % of the 342 selected instances). ###Markdown Grouping GA vs. the other heuristics ###Code prefix = ["avgMultiplicity", "pageCount"] columns = [ "solversGeneticGroup", "solversGeneticStandard", "solversOverloadAndRemove", "solversOverloadAndRemovePresort" ] bad_gga = df[df["pageCount"] < df["solversGeneticGroup"]][prefix + columns] for column in columns[1:]: bad_gga[column] = bad_gga[column][bad_gga[column] < bad_gga["solversGeneticGroup"]] bad_gga.columns = prefix + [SOLVER_NAMES[column[len("solvers"):]] for column in columns] print("In %.02f %% of the cases," % (100.0 - 100.0 * len(bad_gga) / len(df)),) print("Grouping GA was the best heuristics, except on these %s instances" % len(bad_gga), end=" ") print("(greater values erased for clarity, sorted by increasing average multiplicity).") bad_gga.sort_values(by="avgMultiplicity").fillna("") for column in bad_gga.columns[len(prefix) + 1:]: count = bad_gga[column].count() print("%s produced a better pagination than Grouping GA on %s instances (%.03f %%)." % (column, count, (100.0 * count / len(df)))) ###Output Standard GA produced a better pagination than Grouping GA on 4 instances (0.036 %). Overload-and-Remove produced a better pagination than Grouping GA on 22 instances (0.200 %). Overload-and-Remove (with presort) produced a better pagination than Grouping GA on 24 instances (0.218 %). ###Markdown Entropy Analysis Prolog Imports ###Code from importlib import reload from math import log import numpy as np # Numeric Python import scipy.stats as stats # Distribution functions and stuff from scipy.optimize import minimize import sqlite3 as sql # To fetch data import analysis # Own analysis tools reload(analysis); # force reload of analysis, for it will be changed often import seaborn as sb # Plots import matplotlib.pyplot as plt %matplotlib inline plt.rcParams["figure.figsize"] = analysis.a4_dims import random import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown Table Schemes ###Code analysis.print_table_schemes( 'data/k3-v500-r4.1.db', 'experiment', 'algorithm_run', 'search_run', 'dist_1', 'dist_2' ) ###Output TABLE experiment NAME DATA_TYPE PRIMARY_KEY id INTEGER 1 experiment_name TEXT 0 TABLE algorithm_run NAME DATA_TYPE PRIMARY_KEY id INTEGER 1 experiment_id INTEGER 0 solver TEXT 0 formula_fname TEXT 0 max_clause_len INTEGER 0 variables INTEGER 0 clauses INTEGER 0 cb REAL 0 time INTEGER 0 sat BOOL 0 TABLE search_run NAME DATA_TYPE PRIMARY_KEY id INTEGER 1 algorithm_run_id INTEGER 0 flips INTEGER 0 minimal_unsat INTEGER 0 last_unsat INTEGER 0 h_1 REAL 0 h_2 REAL 0 TABLE dist_1 NAME DATA_TYPE PRIMARY_KEY id INTEGER 1 run_id INTEGER 0 label TEXT 0 variable INTEGER 0 measure REAL 0 TABLE dist_2 NAME DATA_TYPE PRIMARY_KEY id INTEGER 1 run_id INTEGER 0 label TEXT 0 variable_1 INTEGER 0 variable_2 INTEGER 0 measure REAL 0 ###Markdown Analysis Entropy Distribution ###Code query = """ SELECT search_run.flips, search_run.{} FROM algorithm_run INNER JOIN search_run ON search_run.algorithm_run_id = algorithm_run.id WHERE algorithm_run.experiment_id = ? AND search_run.last_unsat {} """ samples = 2 bins_1 = np.arange(4.0,6.25,0.05) bins_2 = np.arange(6.0,10.25,0.05) pdf = stats.norm.pdf bounds = [(0.0001,None),(0.0001,None)] theta_0 = lambda X: [np.average(X), np.var(X)] with sql.connect('data/k3-v500-r4.2.db') as conn: c = conn.cursor() ids, = zip(*c.execute('SELECT id FROM experiment')) # Get experiment indices ids = random.sample(ids, samples) # Choose three experiments randomly print(list(c.execute(query.format('h_1', '= 0'),(1,)))) div = (lambda stuff: stuff[1]/stuff[0]) #div = (lambda stuff: stuff[1]) XS_sat = [list(map(div,c.execute(query.format('h_1', '= 0'),(exp_id,)))) for exp_id in ids] YS_sat = [list(map(div,c.execute(query.format('h_2', '= 0'),(exp_id,)))) for exp_id in ids] XS_unsat = [list(map(div,c.execute(query.format('h_1', '> 0'),(exp_id,)))) for exp_id in ids] YS_unsat = [list(map(div,c.execute(query.format('h_2', '> 0'),(exp_id,)))) for exp_id in ids] print(YS_unsat) #figX, axesX = plt.subplots(1,samples) #for i,X in enumerate(XS_sat): # sb.distplot(X, label = 'Success', ax = axesX[i], hist=True, bins=bins_1) #res = minimize( # fun = lambda args: -analysis.log_likelihood(lambda x: pdf(x, *args), X), # x0 = theta_0(X), # bounds = bounds, #) #if res.success: # loc, scale = res.x # axesX[i].plot(bins_1, np.vectorize(lambda x: pdf(x, loc, scale))(bins_1)) #else: # print(loc, scale) #for i,X in enumerate(XS_unsat): # sb.distplot(X, label = 'Failure', ax = axesX[i], hist=True, bins=bins_1) #res = minimize( # fun = lambda args: -analysis.log_likelihood(lambda x: pdf(x, *args), X), # x0 = theta_0(X), # bounds = bounds, #) #if res.success: # loc, scale = res.x # axesX[i].plot(bins_1, np.vectorize(lambda x: pdf(x, loc, scale))(bins_1)) #else: # print(loc, scale) #plt.legend() figY, axesY = plt.subplots(1,samples) for i,Y in enumerate(YS_sat): sb.distplot(Y, label = 'Success',ax = axesY[i], hist=True) #res = minimize( # fun = lambda args: -analysis.log_likelihood(lambda x: pdf(x, *args), Y), # x0 = theta_0(Y), # bounds = bounds, #) #if res.success: # loc, scale = res.x # axesY[i].plot(bins_2, np.vectorize(lambda x: pdf(x, loc, scale))(bins_2)) #else: # print(loc, scale) for i,Y in enumerate(YS_unsat): sb.distplot(Y, label = 'Failure',ax = axesY[i], hist=True) #res = minimize( # fun = lambda args: -analysis.log_likelihood(lambda x: pdf(x, *args), Y), # x0 = theta_0(Y), # bounds = bounds, #) #if res.success: # loc, scale = res.x # axesY[i].plot(bins_2, np.vectorize(lambda x: pdf(x, loc, scale))(bins_2)) #else: # print(loc, scale) plt.legend() for i,x in enumerate([11,33,44]): print(i,x) ###Output 0 11 1 33 2 44 ###Markdown Trying out if i can shuffel two arrays with dimentions like a.shape (3, 2, 3)b.shape (3, 2)I am trying to shuffel A and b such that the if row 2 of a goes to row 1 of a. Same movement will be done for b ###Code a = np.array([[[ 0., 1., 2.], [ 3., 4., 5.]], [[ 6., 7., 8.], [ 9., 10., 11.]], [[ 12., 13., 14.], [ 15., 16., 17.]]]) b = np.array([[ 0., 1.], [ 2., 3.], [ 4., 5.]]) print a.shape print b.shape ###Output (3, 2, 3) (3, 2) ###Markdown Merge to 2 arrays into 1 array ###Code c = np.c_[a.reshape(len(a), -1), b.reshape(len(b), -1)] print c ###Output [[ 0. 1. 2. 3. 4. 5. 0. 1.] [ 6. 7. 8. 9. 10. 11. 2. 3.] [ 12. 13. 14. 15. 16. 17. 4. 5.]] ###Markdown Extract the 2 arrays out ###Code a2 = c[:, :a.size//len(a)].reshape(a.shape) b2 = c[:, a.size//len(a):].reshape(b.shape) print a2 print b2 ###Output [[[ 0. 1. 2.] [ 3. 4. 5.]] [[ 6. 7. 8.] [ 9. 10. 11.]] [[ 12. 13. 14.] [ 15. 16. 17.]]] [[ 0. 1.] [ 2. 3.] [ 4. 5.]] ###Markdown Shuffle and see the output. ###Code np.random.shuffle(c) print a2 print b2 ###Output [[[ 6. 7. 8.] [ 9. 10. 11.]] [[ 12. 13. 14.] [ 15. 16. 17.]] [[ 0. 1. 2.] [ 3. 4. 5.]]] [[ 2. 3.] [ 4. 5.] [ 0. 1.]] ###Markdown Анализ данных и построенных контуров Загружаем нужные библиотеки и имеющиеся данные ###Code import os import pandas as pd from tqdm.notebook import tqdm from sequence import * datas = [] for subdir, dirs, files in os.walk('datasets'): for file in files: filepath = subdir + os.sep + file if filepath.endswith(".dat"): datas.append(np.loadtxt(filepath)) n = len(datas) ###Output _____no_output_____ ###Markdown Поиск зависимости количества пропусков и петель от размера входных данных ###Code plot_data = [] for data in tqdm(datas): seq = Sequence(data) _, nuniq = seq.is_data_unique(return_not_unique=True) _, md = seq.sorted(key='nn_md').have_missed_data(return_num=True) _, loops = seq.sorted(key='nn_loops').have_loops(return_num=True) plot_data.append([seq.get_data_len(), len(md), loops, len(nuniq)]) plot_data = np.array(sorted(plot_data)) fig, ax = plt.subplots(1,2, figsize=(15, 4)) ax[0].plot(plot_data[:,0], plot_data[:,1]) ax[0].set_title("Зависимость количества пропусков от размера входных данных") ax[0].set_xlabel("Размер входных данных") ax[0].set_ylabel("Количество пропусков") ax[1].plot(plot_data[:,0], plot_data[:,2]) ax[1].set_title("Зависимость количества петель от размера входных данных") ax[1].set_xlabel("Размер входных данных") ax[1].set_ylabel("Количество петель") plt.savefig("statistic/data_analysis.png") plt.show() ###Output _____no_output_____ ###Markdown Каким требованиям удовлетворяют контуры, построенные алгоритмами Функция для сохранения таблиц в формате, удобном для вставки в диплом ###Code def save_table_tex(table, table_name='output', fmt='%.5f'): np.savetxt("statistic/"+table_name+".txt", table, fmt=fmt, delimiter=' & ', newline=" \\\\ \n\hline\n") ###Output _____no_output_____ ###Markdown Сбор информации для таблицы ###Code results_req = {} for alg in tqdm(sort_dict): res = np.array([*Sequence(datas[0]).sorted(key=alg).is_contour(return_all=True).values()]).astype(int) for i, data in enumerate(datas[1:]): res1 = np.array([*Sequence(data).sorted(key=alg).is_contour(return_all=True).values()]).astype(int) res += res1 res[0] = n - res[0] res[1] = n - res[1] results_req[alg] = res ###Output _____no_output_____ ###Markdown Таблица с количеством датасетов, где соответствующие алгоритмы справились с требованиями ###Code def highlight_max(data, color='lightgreen'): ''' highlight the maximum in a Series or DataFrame ''' attr = 'background-color: {}'.format(color) if data.ndim == 1: # Series from .apply(axis=0) or axis=1 is_max = data > 0.89 return [attr if v else '' for v in is_max] else: # from .apply(axis=None) is_max = data['Is contour'] > 0.89 return pd.DataFrame(np.where(is_max, attr, ''), index=data.index, columns=data.columns) req_name = ['No missed data', 'No loops', 'Is single contour', 'Solve the problem'] df_req = pd.DataFrame(data=results_req).T df_req.columns = req_name df_req = df_req.div(n) save_table_tex(df_req.to_numpy(),'req.txt') # ds = df_req.style.apply(highlight_max, subset=['Is contour']) df_req.style.apply(highlight_max, subset=['Solve the problem']).format("{:.0%}") ###Output _____no_output_____ ###Markdown Длины полученных контуров Вывод длины контуров, полученных при использовании алгоритмов, которые справились с задачей хотя бы на 90% ###Code good_algs = ['nn_no_loops', 'nn_21_no_loops', 'polar', 'ch_no_loops', 'best'] results_len = {} for ind,data in enumerate(tqdm(datas)): res = [] seq = Sequence(data) for alg in good_algs: res.append(seq.sorted(key=alg).get_contour_len()) results_len[ind+1] = res alg_name = ['Улучшенный алгоритм ближайшего соседа', 'Вставка второго контура в первый','Сортировка по полярным координатам','Вставка точек в выпуклую оболочку','Объединение алгоритмов'] df = pd.DataFrame(data=results_len).T df.columns = alg_name save_table_tex(df.to_numpy(),'length.txt') df.style.highlight_min(color='lightgreen',axis = 1) ###Output _____no_output_____ ###Markdown MotivationIn this analysis we will have a look at both the performance of the Rust stereo delay compared to its C counterpart and the resulting audio file. Prerequisites ###Code install.packages(c("seewave", "signal", "tuneR", "ggplot2", "microbenchmark")) library(seewave) library(tuneR) library(ggplot2) library(microbenchmark) ###Output _____no_output_____ ###Markdown Performance comparisonDespite of all the syntactic sugar, the memory safety, and the feeling to be part of the 21st century, the most important feature of a LADSPA plugin written in `Rust` should be its performance. Since it is using the `C` ABI and the compiled objects can be called from `C` without any overhead, I had the expectation that it would run almost as fast as its `C` counterpart.Let's first try it with a wrapper around a wrapper. The `microbenchmark` is a `R` function calling `apply_delay.sh` 200 times and reporting some summary statistics about the time taken during execution. This script is a wrapper around the `applyplugin` binary shipped with the [ladspa_sdk](https://www.ladspa.org/download/index.html). It sets up a LADSPA host, plays back the input audio file and pipes the result - modulated by the supplied LADSPA plugin - into the output audio file. ###Code benchmark.c <- microbenchmark( system2("bash", c("apply_delay.sh", "delay_snare_c.wav", "./c/delay_stereo.so", "c_delay_5s_stereo"), stdout = FALSE), times = 200) benchmark.rust <- microbenchmark( system2("bash", c("apply_delay.sh", "delay_snare_rust.wav", "./rust/target/release/librust_delay_5s_stereo.so", "rust_delay_5s_stereo"), stdout = FALSE), times = 200) print(benchmark.c) print(benchmark.rust) ###Output Unit: milliseconds expr system2("bash", c("apply_delay.sh", "delay_snare_rust.wav", "./rust/target/release/librust_delay_5s_stereo.so", "rust_delay_5s_stereo"), stdout = FALSE) min lq mean median uq max neval 20.89194 21.31846 22.11495 21.6921 22.11272 30.38315 200 ###Markdown Well, this doesn't look good at all.The `Rust` version takes a lot longer than the `C` counterpart. Also mind the fact that we used a wrapper around a wrapper! So, the relative increase in the time taken by processing the plugin is probably a lot larger than 22.11/17.79. This is not good at all and more or less a red line being crossed making `Rust` a language not suitable for writing LADSPA plugins. Comparing the resultsBut let's have a look at the original and the delayed samples. ###Code sample.original <- readWave("./snare.wav") sample.delayed.rust <- readWave("./delay_snare_rust.wav") sample.delayed.c <- readWave("./delay_snare_c.wav") ###Output _____no_output_____ ###Markdown Plot the files into one figure. Since we expect the `Rust` and `C` to produce exactly the same result, both figures should be identically and one should hide the other. ###Code plot.data <- data.frame( time = rep(seq(1, length(sample.original@left))/ [email protected], 6 ), audio.data = c(sample.original@left, sample.delayed.rust@left, sample.delayed.c@left, sample.original@right, sample.delayed.rust@right, sample.delayed.c@right), sample = rep(c(rep("original", length(sample.original@left)), rep("rust", length(sample.original@left)), rep("c", length(sample.original@left))), 2), channel = c(rep("left", length(sample.original@left) * 3), rep("right", length(sample.original@left) * 3))) ggplot(data = plot.data, aes(x = time, y = audio.data, color = sample)) + geom_line() + facet_grid(channel ~ ., scales = "free") + theme_bw() ###Output _____no_output_____ ###Markdown Well, this looks alright. The results of both channels are exactly what was expected.Let's be sure the output of both plugins are the same by comparing the underlying data. ###Code difference.data <- data.frame( left.channel = sample.delayed.rust@left - sample.delayed.c@left, right.channel = sample.delayed.rust@right - sample.delayed.c@right) if (any(max(difference.data) != c(0,0))) { warning("The Rust and C plugin do not yield the same result!") } ###Output _____no_output_____ ###Markdown Measurement Project- Target: **grunt-contrib-compress** ###Code %load_ext babel %%babel import * as d3 from "d3"; import * as fs from "fs"; %%babel bytes = fs.readFileSync("result_formatted.json"); data = JSON.parse(bytes) console.log(data != null ? "Data Loaded" : "Problem with JSON"); %%babel data 1 data[0] ###Output _____no_output_____ ###Markdown Configuration du cluster local Dask ###Code import dask_kubernetes cluster = dask_kubernetes.KubeCluster() cluster.adapt(minimum=1, maximum=10) cluster client = dask.distributed.Client(cluster) client def get_dask_dataframe( dirname: str, start: Optional[datetime.date] = None, end: Optional[datetime.date] = None, index: Optional[bool] = False, ) -> dask.dataframe.DataFrame: """Select the data frame to process between two dates""" if start is None: start = datetime.date(1995, 1, 1) if end is None: end = datetime.date.today() ddf = dask.dataframe.read_parquet(dirname, engine="pyarrow", filters=[('year', '>=', start.year), ('month', '>=', start.month), ('year', '<=', end.year), ('month', '<=', end.month)]) ddf = ddf[(ddf.datetime > start.isoformat()) & (ddf.datetime <= end.isoformat())] if index: ddf = ddf.set_index("datetime") return ddf ###Output _____no_output_____ ###Markdown Sélection géographique ###Code def _select_area(ddf: dask.dataframe.DataFrame, box: pyinterp.geodetic.Box2D): """Applies geographic selection to a DataFrame of a partition""" return list( box.covered_by(ddf.longitude.values, ddf.latitude.values).astype(bool)) def select_area(ddf: dask.dataframe.DataFrame, box: pyinterp.geodetic.Box2D): """Applies geographic selection to a DataFrame""" return ddf.map_partitions(_select_area, box) # Path the Parquet dataset path = "gs://pangeo-cnes/argo" # Reading a small dataset (You can increase the size of data to read, but it # will take longer on our virtual machine) ddf = get_dask_dataframe( path, datetime.date(1990, 1, 1), datetime.date(2019, 2, 1)) # Creation of the data selection box. area = pyinterp.geodetic.Box2D( pyinterp.geodetic.Point2D(-80, 7), pyinterp.geodetic.Point2D(0,60)) area # Calculation of the query df = ddf[select_area(ddf, area)].compute() # Visualization of the result import matplotlib.pyplot as plt import cartopy.crs as ccrs import cartopy.feature as cfeature %matplotlib inline fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111, projection=ccrs.PlateCarree(central_longitude=180)) sc = ax.scatter( df.longitude, df.latitude, 1, c=[item[0] for item in df.temp], transform=ccrs.PlateCarree(), cmap='jet') ax.coastlines() ax.add_feature(cfeature.LAND) ax.add_feature(cfeature.COASTLINE) fig.colorbar(sc) ###Output _____no_output_____ ###Markdown Sélection par numéro de plateforme ###Code df = ddf[ddf.platform_number.isin(['2901216', '6900381', '5901026', '2902557'])] df = df[['datetime', 'longitude', 'latitude', 'temp']] df = df.compute() fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111, projection=ccrs.PlateCarree(central_longitude=180)) sc = ax.scatter( df.longitude, df.latitude, 1, c=[item[0] for item in df.temp], transform=ccrs.PlateCarree(), cmap='jet') ax.coastlines() ax.add_feature(cfeature.LAND) ax.add_feature(cfeature.COASTLINE) fig.colorbar(sc) ###Output _____no_output_____ ###Markdown Calcul d'une anomalie de pression ###Code ddf = get_dask_dataframe( path, datetime.date(1990, 1, 1), datetime.date(2019, 2, 1)) def pressure_anomalies(df): """Calculates pressure anomalies""" return df.pres - df.pres_adjusted # Here only columns containing the longitude and latitude of the floats are # selected. df = ddf[['longitude', 'latitude']].compute() df['anomalies'] = ddf.map_partitions( pressure_anomalies, meta=(None, 'f8')).compute() # The average anomaly is calculated df['mean_anomalies'] = df['anomalies'].map( lambda series: np.nan if np.all(np.isnan(series)) else np.nanmean(series)) df fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111, projection=ccrs.PlateCarree(central_longitude=180)) sc = ax.scatter( df.longitude, df.latitude, 1, c=df.mean_anomalies, transform=ccrs.PlateCarree(), cmap='jet', vmin=-1, vmax=1) ax.coastlines() ax.add_feature(cfeature.LAND) ax.add_feature(cfeature.COASTLINE) fig.colorbar(sc) ###Output _____no_output_____ ###Markdown SLA interpolation on Argo float positions ###Code class GridSeries: """Handles a series of grids stored in zarr format. This series is a time series.""" def __init__(self, ds): self.ds = ds self.series, self.dt = self._load_ts() @staticmethod def _is_sorted(array): indices = np.argsort(array) return np.all(indices == np.arange(len(indices))) def _load_ts(self): """Loading the time series into memory.""" time = self.ds.time assert self._is_sorted(time) series = pd.Series(time) frequency = set(np.diff(series.values.astype("datetime64[s]")).astype("int64")) if len(frequency) != 1: raise RuntimeError( "Time series does not have a constant step between two " f"grids: {frequency} seconds") return series, datetime.timedelta(seconds=float(frequency.pop())) def load_dataset(self, varname, start, end): """Loading the time series into memory for the defined period. Args: varname (str): Name of the variable to be loaded into memory. start (datetime.datetime): Date of the first map to be loaded. end (datetime.datetime): Date of the last map to be loaded. Return: pyinterp.backends.xarray.Grid3D: The interpolator handling the interpolation of the grid series. """ if start < self.series.min() or end > self.series.max(): raise IndexError( f"period [{start}, {end}] out of range [{self.series.min()}, " f"{self.series.max()}]") first = start - self.dt last = end + self.dt selected = self.series[(self.series >= first) & (self.series < last)] print(f"fetch data from {selected.min()} to {selected.max()}") data_array = ds[varname].isel(time=selected.index) return pyinterp.backends.xarray.Grid3D(data_array) def interpolate(df, grid_series, varname): """Interpolate a variable 'varname' described by the time series 'grid_series' for the locations provided in the DataFrame 'df'""" if not len(df): return np.array([]) # The DataFrame must be ordered by the time axis df = df.set_index("datetime") # The time axis is divided into monthly periods period_start = df.groupby(df.index.to_period('M'))["sla"].count().index periods = [] end = None # Calculates the period required to interpolate the data from the provided # time series for start, end in zip(period_start, period_start[1:]): start = start.to_timestamp() if start < grid_series.df.index[0]: start = grid_series.df.index[0] end = end.to_timestamp() periods.append((start, end)) if end is None: end = period_start[0].to_timestamp() periods.append((end, df.index[-1] + datetime.timedelta(seconds=3600))) # Finally, the data on the different periods identified are interpolated. result = [] for start, end in periods: interpolator = grid_series.load_dataset(varname, start, end) mask = (df.index >= start) & (df.index < end) selected = df.loc[mask, ["longitude", "latitude"]] result.append( interpolator.trivariate(dict( longitude=selected["longitude"].values, latitude=selected["latitude"].values, time=selected.index.values), interpolator="inverse_distance_weighting", num_threads=1)) return pd.Series(np.hstack(result), df.index) # Loading the time series import intake cat = intake.Catalog("https://raw.githubusercontent.com/pangeo-data/pangeo-datastore" "/master/intake-catalogs/ocean.yaml") ds = cat["sea_surface_height"].to_dask() ds # DELETE ds = ds.drop("crs") grid_series = GridSeries(ds) # Select the data from dataset ddf = get_dask_dataframe( path, datetime.date(1990, 1, 1), datetime.date(2019, 1, 2)) # Calculation of SLA sla = ddf.map_partitions(interpolate, grid_series, 'sla', meta=('result', np.float64)).compute() # Generation of a DataFrame containing the float positions and the # interpolated SLA. df = ddf[["datetime", "longitude", "latitude"]].compute() df = df.join(sla, on="datetime") ###Output _____no_output_____ ###Markdown Visualization of the result ###Code first = df.datetime.min() last = df.datetime.max() size = (df.datetime - first) / (last-first) fig = plt.figure(figsize=(10, 5)) ax = fig.add_subplot(111, projection=ccrs.PlateCarree(central_longitude=180)) sc = ax.scatter( df.longitude, df.latitude, s=size*100, c=df.result, transform=ccrs.PlateCarree(), cmap='jet') ax.coastlines() ax.set_title("Time series of SLA " "(larger points are closer to the last date)") ax.add_feature(cfeature.LAND) ax.add_feature(cfeature.COASTLINE) ax.set_extent([80, 100, 13.5, 25], crs=ccrs.PlateCarree()) fig.colorbar(sc) ###Output _____no_output_____ ###Markdown Analysis notebook for: How much research shared on Facebook is hidden from public view?This notebook produces all results and figures in the article.Figures are plotted to the *figures/* directory.In order to re-produce the plots without interacting with the notebook use `jupyter nbconvert --execute analysis.ipynb`**Outline** ###Code from pathlib import Path import gspread import matplotlib.pyplot as plt import numpy as np import pandas as pd import seaborn as sns from gspread_dataframe import get_as_dataframe, set_with_dataframe from matplotlib import ticker from matplotlib.colors import ListedColormap from matplotlib_venn import venn2, venn3, venn3_circles from oauth2client.service_account import ServiceAccountCredentials from scipy import stats from scipy.optimize import curve_fit from tqdm.auto import tqdm tqdm.pandas() # Implementation of partial log binning following Milojević (2010) def thresh(bin_size): x = 1 while True: diff = np.log10(x+1) - np.log10(x) if diff < bin_size: return x +1 x = x + 1 def partial_log_binning(data_counts, bin_size=0.1): n_bins = 1/bin_size binning_threshold = thresh(bin_size) log_data = np.log10(data_counts) log_index = np.log10(log_data.index) logbins = np.linspace(np.log10(binning_threshold)+0.1, np.log10(max(data)), ((np.log10(max(data))-np.log10(binning_threshold)+0.1)//0.1)+1) binned_xs = [] binned_vals = [] for i in range(1, binning_threshold+1): if i in log_data.index: binned_vals.append(log_data.loc[i]) binned_xs.append(np.log10(i)) for b in logbins: vals = (b-.05 <= log_index) & (log_index < b+.05) vs = data_counts[vals] if len(vs)>0: n = np.ceil(10**(b+.05) - 10**(b-.05)) if n == 0: continue binned_vals.append(np.log10(vs.sum()/n)) binned_xs.append(b) return binned_xs, binned_vals ###Output _____no_output_____ ###Markdown Configuration ###Code plt.rcParams.update({ 'font.family':'sans-serif', 'font.size': 16.0, 'text.usetex': False, 'figure.figsize': (11.69,8.27) }) # Seaborn styles sns.set_style("whitegrid") # Color palette cm = "Paired" cp3 = sns.color_palette(cm, 3) cp10 = sns.color_palette(cm, 10) ### Optional ### # Set up GSpread connection to push dataframes to Google Spreadsheets # Instructions can be found at https://gspread.readthedocs.io/en/latest/ # scope = ['https://spreadsheets.google.com/feeds', # 'https://www.googleapis.com/auth/drive'] # credentials = ServiceAccountCredentials.from_json_keyfile_name('My Project-d9fa71152fe8.json', scope) # gc = gspread.authorize(credentials) # sh = gc.open("PLOS Paper - Tables") push_to_gspread = False ###Output _____no_output_____ ###Markdown Load data, preprocessing, dropping years + bad results ###Code articles_csv = "data/articles.csv" responses_csv = "data/responses.csv" figs = Path("figures") articles = pd.read_csv(articles_csv, index_col="doi", parse_dates=['publication_date']) all_responses = pd.read_csv(responses_csv, index_col="id", parse_dates=['received_at', 'og_updated_time', 'publication_date', 'added_on']) # add year and metrics all_responses = all_responses.merge(articles[['year', 'AES', 'AER', 'AEC', 'discipline']], left_on="doi", right_index=True, how="left") # Limit responses to those articles that received some forms of engagement responses = all_responses responses = responses.replace(0, np.nan) responses = responses.dropna(subset=['shares', 'reactions', 'comments'], how="all") all_shares = set(articles['AES'].dropna().index.tolist()) all_reactions = set(articles['AER'].dropna().index.tolist()) all_comments = set(articles['AEC'].dropna().index.tolist()) any_engagement = all_shares.union(all_reactions).union(all_comments) metrics = ['AES', 'AER', 'AEC'] ###Output _____no_output_____ ###Markdown Methods ###Code df = pd.DataFrame(columns=["Count"]) df.loc['Number of articles', "Count"] = len(articles) df.loc['Number of URLs', "Count"] = len(articles) * 10 df.loc['--------', "Count"] = None df.loc['Number of successful responses', "Count"] = len(all_responses) df.loc['Number of non-zero responses', "Count"] = len(responses) df.loc['Number of zero-responses', "Count"] = len(all_responses) - len(responses) df.loc['---------', "Count"] = None df.loc['Number of unique URLs', "Count"] = responses.url.nunique() df.loc['Number of unique queries', "Count"] = responses.query_id.nunique() df.loc['Number of unique OG IDs', "Count"] = responses.og_id.nunique() df.loc['Number of unique DOIs', "Count"] = responses.doi.nunique() df articles[metrics].describe().round(2) ###Output _____no_output_____ ###Markdown Results What is the overall coverage of articles? ###Code temp = articles[metrics].dropna(how="all") df = articles[metrics].count().to_frame("n") df["% (n={})".format(len(articles))] = df['n'].div(len(articles)/100).round(2) df['% (n={})'.format(len(temp))] = df['n'].div(len(temp)/100).round(2) df ###Output _____no_output_____ ###Markdown Distribution of articles with shares, reactions, and comments ###Code v = venn3(subsets= [all_shares, all_reactions, all_comments], set_labels=('', '', ''), subset_label_formatter=lambda x: "{} ({:.1f}%)".format(x, 100*x/len(any_engagement))); c=venn3_circles(subsets= [all_shares, all_reactions, all_comments], linewidth=0) c[0].set_lw(.9) c[0].set_ls('-.') v.get_patch_by_id('100').set_color(cp3[0]) v.get_patch_by_id('010').set_color(cp3[1]) v.get_patch_by_id('001').set_color(cp3[2]) v.get_patch_by_id('110').set_color(np.add(cp3[0],cp3[1])/2) v.get_patch_by_id('011').set_color(np.add(cp3[1],cp3[2])/2) v.get_patch_by_id('101').set_color(np.add(cp3[0],cp3[2])/2) v.get_patch_by_id('111').set_color(np.add(np.add(cp3[1],cp3[0]), cp3[2]) / 3) for text in v.set_labels: text.set_fontsize(12) for text in v.subset_labels: text.set_fontsize(14) for text in v.set_labels: text.set_fontsize(10) for text in v.subset_labels: text.set_fontsize(12) plt.gca().legend(handles=[v.get_patch_by_id('100'), v.get_patch_by_id('010'), v.get_patch_by_id('001')], labels=["Shares", "Reactions", "Comments"], prop={'size': 12}); ###Output _____no_output_____ ###Markdown What does the breakdown of URLs per article look like? ###Code cov_urls_counts = responses[['doi', 'og_id']].groupby("doi").count().og_id.value_counts().reset_index() cov_urls_counts['%'] = 100 * cov_urls_counts.og_id.div(cov_urls_counts.og_id.sum()) cov_urls_counts.columns = ["Number of URLs", "Articles", "Articles [%]"] cov_urls_counts = cov_urls_counts.set_index("Number of URLs") if push_to_gspread: wks = sh.worksheet("Coverage - Number of URLs") set_with_dataframe(wks, cov_urls_counts.round(1).reset_index()) cov_urls_counts.round(1) x = responses[['doi', 'og_id']].groupby("doi").nunique().og_id.value_counts().reset_index() x['%'] = 100*x.og_id.div(x.og_id.sum()) x.columns = ["Objects per Article", "Articles", "Articles [%]"] x = x.set_index("Objects per Article") x.round(1) ###Output _____no_output_____ ###Markdown Which URLs were used to share articles? ###Code cov_urls_types = responses.type.value_counts().reset_index() cov_urls_types['%'] = 100*cov_urls_types.type.div(cov_urls_types.type.sum()) cov_urls_types.columns = ["URL Type", "FB Objects", "FB Objects [%]"] cov_urls_types = cov_urls_types.set_index("URL Type") if push_to_gspread: wks = sh.worksheet("Coverage - URL Types") set_with_dataframe(wks, cov_urls_types.round(1).reset_index()) cov_urls_types.round(1) # Number of FB objects per DOI n_responses_per_doi = responses[['doi', 'og_id']].groupby("doi")["og_id"].nunique() # DOIs with multiple FB objects dois_with_mult_ogids = n_responses_per_doi[n_responses_per_doi>1].keys() # Responses of DOIs with more FB objects y = responses[responses.doi.isin(dois_with_mult_ogids)] # URL types of those articles with more than one response z = y[['doi', 'og_id', 'type']].groupby(["doi", "og_id"])['type'].apply(lambda x: ", ".join(sorted(x))).reset_index() # Concat URL type names zz = z.groupby("doi")['type'].apply(lambda x: " -- ".join(sorted(x))) zz.value_counts().head(10).to_frame("Articles") # Number of articles where a PDF caused an extra FB object zz.map(lambda x: "pdf" in x).sum() ###Output _____no_output_____ ###Markdown Did the type of shared URLs change across years? ###Code df = responses.groupby(['type', 'year']).size().to_frame('size').reset_index() df = df.pivot(columns="year", index="type", values="size") df = df.apply(lambda x: 100*x/x.sum()).sort_values(by=2017, ascending=False) df.round(1) df = responses.groupby(['type', 'year']).size().to_frame('size').reset_index() sort_order = df.groupby("type")['size'].sum().sort_values(ascending=False).index.tolist() year_counts = df.groupby("year")['size'].sum() df['%'] = df.apply(lambda x: 100*x['size']/(year_counts[x['year']]), axis=1) sns.barplot(x="type", y="%", hue="year", data=df, order=sort_order) sns.despine(left=True, right=True, top=True) ###Output _____no_output_____ ###Markdown Do the types of shared URLs vary across disciplines? ###Code url_types_by_disc = responses.groupby(["discipline", "type"])['og_id'].count() url_types_by_disc = url_types_by_disc.reset_index().pivot(columns="type", index="discipline", values="og_id") url_types_by_disc = url_types_by_disc.apply(lambda x: x.div(x.sum()), axis=1) url_types_by_disc.round(2) url_types_by_disc = url_types_by_disc.rank(method="min", ascending=False, axis=1).sort_values(axis=1, by="Clinical Medicine") url_types_by_disc sns.heatmap(url_types_by_disc, cmap="PuBu", annot=True, cbar=False) ###Output _____no_output_____ ###Markdown What kind of engagement did the articles receive? ###Code articles[metrics].describe() pdf = articles[metrics].dropna(how="any") sns.boxenplot(x="variable", y="value", data=pdf.melt()) plt.yscale("log") yticks = [1, 10, 100, 1000, 10000] plt.yticks(yticks, yticks); plt.xlabel("") plt.ylabel("Engagement counts") sns.despine(top=True, left=True, right=True, bottom=True) sort_order = base.dropna(how="any", subset=metrics).groupby("discipline").AES.mean().sort_values().keys() pdf = base.dropna(how="any", subset=metrics) pdf = pdf.melt(id_vars="discipline", value_vars=metrics) sns.boxenplot(x="discipline", hue="variable", y="value", data=pdf, order=sort_order) plt.yscale("log") yticks = [1, 10, 100, 1000, 10000] plt.yticks(yticks, yticks); plt.xticks(rotation=90) plt.xlabel("") plt.ylabel("Engagement counts") sns.despine(top=True, left=True, right=True, bottom=True) artics = articles[(articles.AES.isna()) & ((~articles.AER.isna()) | (~articles.AEC.isna()))] artics.describe() ###Output _____no_output_____ ###Markdown Do the shared URL types receive different kinds of engagement? Analysis by groups: Do all articles receive the same types of engagement? ###Code from itertools import product def select_nonzero_src(df: pd.DataFrame, s: bool, r: bool, c: bool) -> pd.DataFrame: bdf = df.isna() return df[(bdf.AES != s) & (bdf.AER != r) & (bdf.AEC != c)] df_src = base[(~base.AES.isna()) & (~base.AER.isna()) & (~base.AEC.isna())] df_sr = base[(~base.AES.isna()) & (base.AER.isna()) & (~base.AEC.isna())] df_sc = base[(~base.AES.isna()) & (~base.AER.isna()) & (base.AEC.isna())] df_s = base[(~base.AES.isna()) & (base.AER.isna()) & (base.AEC.isna())] df_rc = base[(base.AES.isna()) & ((~base.AER.isna()) | (~base.AEC.isna()))] df_ = base[(base.AES.isna()) & (base.AER.isna()) & (base.AEC.isna())] perms = [df_src, df_sr, df_sc, df_s, df_rc, df_] labels = ['All counts', 'Shares & Reactions', 'Shares & Comments', 'Only Shares', 'Reactions or Comments', 'None'] [print(len(_)) for _ in perms]; ###Output _____no_output_____ ###Markdown Correlations by groups ###Code df = pd.DataFrame() for tdf, l in zip(perms, labels): df[l] = tdf.discipline.value_counts().sort_values(ascending=False) df.index = df.index.map(lambda x: "{} ({})".format(x, int(df.loc[x].sum()))) df (df.fillna(0).apply(lambda x: 100*x/x.sum(), axis=1) .sort_values(by="Biology (6761)", axis=1, ascending=False) .sort_values(by="None") .style .background_gradient(axis=None, cmap="Greens") .format("{:,.2f}") ) df = pd.DataFrame() for tdf, l in zip(perms, labels): df[l] = tdf.discipline.value_counts().sort_values(ascending=False) df = df.T df.index = df.index.map(lambda x: "{} ({})".format(x, int(df.loc[x].sum()))) df (df.fillna(0).apply(lambda x: 100*x/x.sum(), axis=1) .sort_values(by="All counts (9005)", axis=1, ascending=False) .sort_values(by="Clinical Medicine") .style .background_gradient(axis=None, cmap="Greens") .format("{:,.2f}") ) pdf = df.apply(lambda x: 100*x/x.sum()) sort_order = pdf.index.tolist() pdf = pdf.reset_index().melt(id_vars="index") ax = sns.pointplot(x="index", y="value", hue="variable", data=pdf, order=sort_order, dodge=True) # # Line for all articles with 1 share # pdf = base[base.AES==1].discipline.value_counts().to_frame() # pdf = pdf.apply(lambda x: 100*x/x.sum()) # sns.pointplot(x="index", y="discipline", data=pdf.reset_index(), markers="X", color="red", linestyle="--", ax=ax) plt.xticks(rotation=90) sns.despine(top=True, left=True, right=True, bottom=True) ###Output _____no_output_____ ###Markdown Comparison of retrieval methods ###Code # Remove articles in Arts and Humanities base = articles[~articles.discipline.isin(["Arts", "Humanities"])] "Removed {} articles in Arts or Humanities".format(articles[articles.discipline.isin(["Arts", "Humanities"])].shape[0]) # Unit of analysis disc = 'discipline' ###Output _____no_output_____ ###Markdown Coverage of Shares, Reactions, and Comments ###Code print(articles[['AES', 'AER', 'AEC']].dropna(how="all").shape[0]) articles.describe() disc_counts = base.dropna(how="any", subset=['AES', 'AER', 'AEC'])[disc].value_counts() x = base.dropna(how="any", subset=['AES', 'AER', 'AEC'])[[disc, 'AES', 'AER', 'AEC']] x['Reactions per share'] = x['AER'] / x['AES'] x['Comments per share'] = x['AEC'] / x['AES'] x = x.melt(id_vars=disc, value_vars=['Comments per share', 'Reactions per share']).dropna() meds = x.groupby(["discipline", "variable"])['value'].median().reset_index().groupby(disc)['variable', 'value'].apply(lambda x: x.iloc[0,1]) x['sort'] = x[disc].map(lambda x: meds[x]) x[disc] = x[disc].map(lambda x: "{} ({})".format(x, disc_counts[x])) x = x.sort_values(["sort"]) ax = sns.boxenplot(x=disc, y="value", hue="variable", data=x, palette=cm) # Scale and axes limits plt.yscale("log") xmin, xmax = ax.get_xlim() # Plot additional line plt.hlines(1, xmin, xmax, zorder=-1, color="red") # X and Y ticks & labels yticks = [0.1, 0.5, 1, 2, 5, 10, 100, 1000] plt.yticks(yticks, yticks); plt.xticks(rotation=45, ha="right"); # Axes labels plt.xlabel("") plt.ylabel("Ratio") # Remove legend title l = ax.legend() l.set_title(None) sns.despine(left=True, right=True, top=True, bottom=True) disc_counts = base[disc].value_counts() x = base.groupby(disc)[['AES', 'AER', 'AEC']].count() x = x.apply(lambda x: x.map(lambda y: 100*y/disc_counts[x.name]), axis=1) x.index = x.index.map(lambda x: "{} ({})".format(x, disc_counts[x])) x.sort_values("AES", ascending=False).plot(kind="barh") plt.grid(False) plt.grid(True, axis="x", linestyle=":") sns.despine(left=True, top=True, right=True, bottom=True) disc_counts = base.disc.value_counts() x = base.groupby("disc")[['AES', 'AER', 'AEC']].count() # x = x.apply(lambda x: x.map(lambda y: 100*y/disc_counts[x.name]), axis=1) x.index = x.index.map(lambda x: "{} ({})".format(x, disc_counts[x])) x['AER/AES'] = 100 * x['AER'] / x['AES'] x['AEC/AES'] = 100 * x['AEC'] / x['AES'] x[['AER/AES', 'AEC/AES']].sort_values('AEC/AES', ascending=False).plot(kind="barh") plt.ylabel("") ticks = list(range(0, 81, 10)) plt.xticks(ticks, ["{:,}%".format(int(_)) for _ in ticks]) plt.grid(False) plt.grid(True, axis="x", linestyle=":") sns.despine(left=True, top=True, right=True, bottom=True) col = "disc" cov_disciplines = base.groupby(col)[metrics].apply(lambda x: x.count()) cov_disciplines['All articles'] = base.groupby(col)[metrics].size() cov_disciplines = cov_disciplines.sort_values("All articles", ascending=False) # Column names + order cov_disciplines.index.name = "Discipline" ###Output _____no_output_____ ###Markdown Distribution of disciplines Detailed look at Facebook ###Code any_fb_counts = base.reindex(all_shares.union(am_shares))[col].value_counts() any_fb_counts.loc['Total'] = any_fb_counts.sum() mask = nz_resp['type'].isin(["pmc", "pmid"]) pdf = nz_resp[~mask] pdf['log_shares'] = pdf['shares'].map(lambda x: np.log10(x)) order = pdf.type.value_counts().keys().tolist() ax = sns.boxenplot(x="type", y="log_shares", data=pdf, saturation=1, order=order, palette=cm) medians = pdf.groupby(['type'])['log_shares'].median() nobs = pdf['type'].value_counts() nobs = nobs.map(lambda x: "n: {}".format(x)) pos = range(len(nobs)) for pos, label in enumerate(order): plt.text(pos, medians[label]+.05, nobs[label], horizontalalignment='center', color='w', weight='semibold') ticks = [1, 2, 5, 10, 50, 100, 500, 1000, 5000] plt.yticks(np.log10(ticks), ticks); sns.despine(left=True, right=True, top=True, bottom=True); ###Output /home/asura/.virtualenvs/altmetrics/lib/python3.5/site-packages/ipykernel_launcher.py:3: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy This is separate from the ipykernel package so we can avoid doing imports until ###Markdown Dask is a recently developed parallel computation framework for Python providing capabilities for highly scalable computation. Dask makes it very easy to develop numerically intensive codes for high performance computing environments especially when compared with traditional approaches based on lower level languages. Given the potential advantages of reduced development time provided by Dask it is pertinent to consider whether using a low level language retains any significant benefits in terms of performance.This document reports a benchmarking exercise comparing the performance of Dask with PBLAS, a low level linear algebra library.The problem used for benchmarking: $trace(\bf{X}\bf{Y})$Where:$\bf{X}$ and $\bf{Y}$ are N-by-N matrices of single precision, randomly generated numbers in the range [0,1]To achieve comparible timings for pblas and dask:* Timings include memory allocation, random number generation, matrix multiplication, trace calculation and memory deallocation. As the only $O(N^3)$ operation, the matrix multiplication dominates the computation time.* For PBLAS, multiple calculations were performed using different [block sizes](http://netlib.org/scalapack/slug/node186.html).* For dask, calculations were performed using the automatically determined [chunk size](https://docs.dask.org/en/latest/array-chunks.html).* Benchmarks were run for two values of N.* 5 repeats were performed for each calculation with the quickest time reported in the below analysis.* Speedups were calculated between 1 and 256 processesThe values for all considered parameters are given below, with all combinations having been run. ###Code frameworks = ["pblas", "dask"] Ns = [32768, 65536] nprocs = [1, 4, 16, 64, 256] dask_block_sizes = ["auto"] pblas_block_sizes = [32, 64, 128, 256, 512, 1024] all_block_sizes = list(map(str, pblas_block_sizes + dask_block_sizes)) repeats = list(range(5)) ###Output _____no_output_____ ###Markdown Before considering any results its worth noting that the development time of the Dask code was considerably less than that of PBLAS. This is despite the Dask code retaining much greater flexibility around the number of processes used and the matrix size and shape. The PBLAS code is restricted to dealing with square matrices, with edge lengths divisible by the block size, and square process grids. Considerable effort would be required allow deviation from these constraints but are all possible for free when using Dask.Another other way in which the Dask offers considerably advantages is in its [memory management](https://distributed.dask.org/en/latest/worker.htmlmemory-management). We have not considered this here as this exercise focusses on a cpu intensive task. The spill-to-disk functionality of the Dask workers was disabled by configuring a large memory limit.We start with some setup and load the timing data in order to look at the results: ###Code %matplotlib notebook from pathlib import Path import matplotlib.pyplot as plt from analysis_lib import block_size_plot, efficiency_plot, load_data, make_plot, speed_up, speed_up_plot plt.style.use("seaborn") plt.rcParams.update({"figure.titlesize": "xx-large"}) data = load_data( Path("results/"), framework=frameworks, N=Ns, nproc=nprocs, block_size=all_block_sizes, repeat=repeats ) print(data.coords) ###Output Coordinates: * framework (framework) <U5 'pblas' 'dask' * N (N) int64 32768 65536 * nproc (nproc) int64 1 4 16 64 256 * block_size (block_size) <U4 '32' '64' '128' '256' '512' '1024' 'auto' * repeat (repeat) int64 0 1 2 3 4 ###Markdown As can be seen above the data is stored as an xarray DataArray. For a first look at the data we'll consider the speed up of each framework with increasing numbers of processes (so-called strong scaling). ###Code fastest_runs = data.min(dim=["repeat", "block_size"]) speed_ups = speed_up(fastest_runs, fastest_runs.sel(nproc=1)) ###Output /home/ccaveayl/.conda/envs/dask-comp/lib/python3.8/site-packages/xarray/core/nputils.py:215: RuntimeWarning: All-NaN slice encountered result = getattr(npmodule, name)(values, axis=axis, **kwargs) ###Markdown First `N=32768`: ###Code make_plot(speed_ups.sel(N=Ns[0]), title=f"N = {Ns[0]}", plot_types=(speed_up_plot, efficiency_plot)) ###Output _____no_output_____ ###Markdown Overall the observed performance is fairly comparable with PBLAS maintaining a small edge. Based on these data Dask appears to offer a compelling alternative to its lower level counterpart given its advantages in development speed and flexibility. The superlinear speed-up observed with PBLAS for `nproc=4` is consistent and does not seem to be a measurement artifact. The ###Code make_plot(speed_ups.sel(N=Ns[1]), title=f"N = {Ns[1]}", plot_types=(speed_up_plot, efficiency_plot)) ###Output _____no_output_____ ###Markdown Qualitatively the results for `N=65536` are comparible with the smaller problem size. A key observation however is that it was not possible to obtain a value for Dask with `nproc=16`. For this configuration Dask was consistently killed due to memory usage. No value of the chunk size parameter was found to produce viable memory consumption on available hardware.Storing the three matrices for this problem should consume ~48GB of memory and available hardware supports jobs using up to 100GB. This suggests Dask is using more than twice the theoretical mimimum amount of memory needed for this problem (depending on the number of worker processes). This therefore raises a note of caution about the use of Dask for memory intensive applications. Whilst this analysis has not included the ability of Dask to spill data to disk, using such functionality will no-doubt come with a significant performance hit. See also the discussion below about the use of processes vs threads for Dask workers.Another accusation that could be levelled is that we've weighted things in favour of PBLAS by considering a range of block sizes. How plausible is it that, when using a code in production, one can pick the optimal block size for any given problem? The below analysis considers the impact of block size on the recorded timings: ###Code # In order to plot with block_size, coordinate values for this dimension must be numbers numerical_block_size_data = data.drop_sel(block_size="auto").assign_coords(block_size=pblas_block_sizes) make_plot( numerical_block_size_data.sel(framework="pblas").stack(nproc_N=("nproc", "N")), plot_types=(block_size_plot,) ) ###Output _____no_output_____ ###Markdown Voters ###Code voters_raw = pd.read_excel('data/Active_Voters_by_Race_Gender_as_of_November_1_2020.xlsx') voters_columns = voters_raw.iloc[7].apply(lambda el: '_'.join(el.strip().split())) voters = voters_raw.iloc[8:167] voters.columns = voters_columns voters.columns.name = None voters = voters.set_index(voters['COUNTY_NAME']) voters = voters.drop(columns=['COUNTY_ID', 'COUNTY_NAME']) voters.index.name = None voters = voters.apply(pd.to_numeric) voters ###Output _____no_output_____ ###Markdown Votes ###Code votes_file = pd.ExcelFile('data/detail.xlsx') ###Output _____no_output_____ ###Markdown Presidential Votes ###Code presidential_votes_raw = pd.read_excel(votes_file, '1') presidential_columns = [ 'COUNTY_NAME', 'TRUMP_ELECTION_DAY_VOTES', 'TRUMP_ABSENTEE_BY_MAIL_VOTES', 'TRUMP_ADVANCED_VOTING_VOTES', 'TRUMP_PROVISIONAL_VOTES', 'TRUMP_TOTAL_VOTES', 'BIDEN_ELECTION_DAY_VOTES', 'BIDEN_ABSENTEE_BY_MAIL_VOTES', 'BIDEN_ADVANCED_VOTING_VOTES', 'BIDEN_PROVISIONAL_VOTES', 'BIDEN_TOTAL_VOTES', 'JORGENSEN_ELECTION_DAY_VOTES', 'JORGENSEN_ABSENTEE_BY_MAIL_VOTES', 'JORGENSEN_ADVANCED_VOTING_VOTES', 'JORGENSEN_PROVISIONAL_VOTES', 'JORGENSEN_TOTAL_VOTES', 'TOTAL_VOTES_PRESIDENTIAL' ] presidential_votes = presidential_votes_raw.iloc[2:161, :] presidential_votes.columns = presidential_columns presidential_votes.columns.name = None presidential_votes = presidential_votes.set_index(presidential_votes['COUNTY_NAME'].apply(lambda el: el.upper())) presidential_votes = presidential_votes.drop(columns=['COUNTY_NAME']) presidential_votes.index.name = None presidential_votes = presidential_votes.apply(pd.to_numeric) presidential_votes ###Output _____no_output_____ ###Markdown Perdue Votes ###Code perdue_votes_raw = pd.read_excel(votes_file, '2') perdue_columns = [ 'COUNTY_NAME', 'PERDUE_ELECTION_DAY_VOTES', 'PERDUE_ABSENTEE_BY_MAIL_VOTES', 'PERDUE_ADVANCED_VOTING_VOTES', 'PERDUE_PROVISIONAL_VOTES', 'PERDUE_TOTAL_VOTES', 'OSSOF_ELECTION_DAY_VOTES', 'OSSOF_ABSENTEE_BY_MAIL_VOTES', 'OSSOF_ADVANCED_VOTING_VOTES', 'OSSOF_PROVISIONAL_VOTES', 'OSSOF_TOTAL_VOTES', 'HAZEL_ELECTION_DAY_VOTES', 'HAZEL_ABSENTEE_BY_MAIL_VOTES', 'HAZEL_ADVANCED_VOTING_VOTES', 'HAZEL_PROVISIONAL_VOTES', 'HAZEL_TOTAL_VOTES', 'TOTAL_VOTES_PERDUE' ] perdue_votes = perdue_votes_raw.iloc[2:161, :] perdue_votes.columns = perdue_columns perdue_votes.columns.name = None perdue_votes = perdue_votes.set_index(perdue_votes['COUNTY_NAME'].apply(lambda el: el.upper())) perdue_votes = perdue_votes.drop(columns=['COUNTY_NAME']) perdue_votes.index.name = None perdue_votes = perdue_votes.apply(pd.to_numeric) perdue_votes ###Output _____no_output_____ ###Markdown Non-White vs Biden ###Code join = pd.merge(voters, presidential_votes, left_index=True, right_index=True) join['WHITE_VOTERS'] = join['WH_MALE_VOTERS'] + join['WH_FEMALE_VOTERS'] + join['WH_UNKNOWN_VOTERS'] join['NON_WHITE_VOTERS'] = join['TOTAL_VOTERS'] - join['WHITE_VOTERS'] join['NON_WHITE_RATIO'] = join['NON_WHITE_VOTERS'] / join['TOTAL_VOTERS'] join['BIDEN_RATIO'] = join['BIDEN_TOTAL_VOTES'] / join['TOTAL_VOTES_PRESIDENTIAL'] sns.lmplot(x='NON_WHITE_RATIO', y='BIDEN_RATIO', data=join, fit_reg=True, height=9, aspect=16/9) join['NON_WHITE_RATIO'].corr(join['BIDEN_RATIO']) ###Output _____no_output_____ ###Markdown Counties where Biden outperformed Ossof ###Code votes_join = pd.merge(presidential_votes, perdue_votes, left_index=True, right_index=True) join = pd.merge(votes_join, voters, left_index=True, right_index=True) join['BIDEN_RATIO'] = join['BIDEN_TOTAL_VOTES'] / join['TOTAL_VOTES_PRESIDENTIAL'] join['OSSOF_RATIO'] = join['OSSOF_TOTAL_VOTES'] / join['TOTAL_VOTES_PERDUE'] join['BIDEN_OUTPERFORMANCE'] = join['BIDEN_RATIO'] - join['OSSOF_RATIO'] join['OSSOF_POSSIBLE_VOTES'] = join['BIDEN_OUTPERFORMANCE'] * join['TOTAL_VOTERS'] join.sort_values(by='OSSOF_POSSIBLE_VOTES', ascending=False)['OSSOF_POSSIBLE_VOTES'].head(10) ###Output _____no_output_____ ###Markdown Keeping interesting columns ###Code #The following variables may have an impact on the price a rental can charge, so these will be looked at listings_keep_df = listings_df[['price','security_deposit','cleaning_fee','extra_people' ,'minimum_nights','availability_30','guests_included' ,'cancellation_policy','amenities','host_is_superhost' ,'property_type','room_type','accommodates','bathrooms' ,'bedrooms','beds','bed_type','number_of_reviews' ,'review_scores_rating','review_scores_accuracy' ,'review_scores_cleanliness','review_scores_checkin' ,'review_scores_communication','review_scores_location' ,'review_scores_value','neighbourhood_group_cleansed']].copy() #Assess data types listings_keep_df.dtypes #Assessing the frequencies of the captured neighbourhoods listings_keep_df["neighbourhood_group_cleansed"].value_counts() #Assessing valid values for property type listings_keep_df['property_type'].value_counts() #Assessing missing values listings_keep_df.isnull().sum()/listings_keep_df.shape[0] ###Output _____no_output_____ ###Markdown Assessing other key columns with nulls to see if they are for niche types of accomodation (e.g. missing rooms for tents) ###Code listings_keep_df[listings_keep_df['bathrooms'].isnull()].head() #null bathrooms seem to be standard rooms, so are genuinely missing - will set to the mean below listings_keep_df[listings_keep_df['bedrooms'].isnull()].head() #null bedrooms seem to be standard rooms, so are genuinely missing - will set to the mean below listings_keep_df[listings_keep_df['beds'].isnull()].head() #There is only one with no value for beds - it has one room, a real bed, and accomodates 4 #will set to the mean below #Assessing correlations between scores to see if we can drop some cor = listings_keep_df[['review_scores_rating','review_scores_accuracy','review_scores_cleanliness' ,'review_scores_checkin','review_scores_communication','review_scores_location' ,'review_scores_value'] ].corr() cor ###Output _____no_output_____ ###Markdown As expected the scores are all positively correlated with each other. Will just use the review_scores_rating metric because it is the most correlated with the other values so will preserve the most information ###Code #Assessing what amenities are recorded #The amenities have multiple values in a single cell seperated by commas. #It is stored as a string, but has dictionary characters as well as quotations that need to be removed all_amenities = [] for idx in range(listings_keep_df['amenities'].shape[0]): #removing unnessary characters and splitting the amenity string lst = (re.sub('("|{|})', "", listings_keep_df['amenities'][idx])).split(",") all_amenities.extend(lst) amenity_counts = pd.Series(all_amenities).value_counts() print("{0} unique amenities captured".format(len(amenity_counts))) amenity_counts ###Output 42 unique amenities captured ###Markdown Cleaning data ###Code def clean_data(df,amenity_counts): """ Perform feature re-encoding and engineering for listings data. Extra columns are created called amenities_0 to amenities_n where n is the number of unique amenities in the dataframe A decode of what these are is returned by the function It can take a minute to assign the amenity dummy variables, so the function prints out the progress every 500 rows INPUT1: Listings DataFrame INPUT2: Series object with the unique amenities OUTPUT1: New dataframe containing cleaned and re-engineered columns OUTPUT2: Dataframe of the amenity counts, which corresponds to the columns amenity0 to amenityn """ #Keeping initial columns df2 = df[['price','security_deposit','cleaning_fee','extra_people' ,'minimum_nights','availability_30','guests_included' ,'cancellation_policy','amenities','host_is_superhost' ,'property_type','room_type','accommodates','bathrooms' ,'bedrooms','beds','bed_type','number_of_reviews' ,'review_scores_rating','review_scores_accuracy' ,'review_scores_cleanliness','review_scores_checkin' ,'review_scores_communication','review_scores_location' ,'review_scores_value','neighbourhood_group_cleansed']].copy() #converting the columns with strings in currency format to floats string_to_float_cols = ['price','security_deposit','cleaning_fee','extra_people'] for col in string_to_float_cols: df2[col] = df2[col].replace(regex=True ,inplace=False ,to_replace=r'(\$|,)' ,value=r'').astype(float) #creating a new boolean field to say whether the host is a superhost df2['superhost'] = np.where(df2['host_is_superhost']=='t', 1, 0) #grouping the property types into 'House','Apartment','B&B',' and 'other' df2['house'] = df2['property_type'].isin(['House','Townhouse','Bungalow']) df2['apartment'] = df2['property_type'].isin(['Apartment','Condominium']) df2['bnb'] = df2['property_type'] == 'Bed & Breakfast' df2['other_building'] = df2['property_type'].isin( ['House','Townhouse','Bungalow','Apartment','Condominium','Bed & Breakfast']) == False #Setting the individual amenity names to a dataframe and removing the missing value amenity_list = pd.DataFrame(amenity_counts.index) amenity_list.columns = ['amenities'] #removing where there are no amenities listed amenity_list = amenity_list[amenity_list.amenities != ''].reset_index(drop=True) amenity_list['index'] = "amenities_" + amenity_list.index.astype(str) #Recording the column index that is the start of the amenity groups amenities_start_col_index = df2.shape[1] #creating a new column for each amenitiy new_amenity_cols = ["amenities_" + str(x) for x in range(amenity_list.shape[0])] for new_col in new_amenity_cols: df2[new_col] = 0 #Assigning values of 1 where there is a match on amenity start_time = time.time() num_rows = df2.shape[0] for row_indexer, row in df2.iterrows(): if row_indexer % 500 == 0: print("Amenity progress: {:.1%}".format(row_indexer/num_rows) ,", Seconds since start",time.time() - start_time) for match_id, match_val in amenity_list.iterrows(): if df2['amenities'][row_indexer].find(match_val[0]) > 0: df2.iloc[row_indexer,match_id + amenities_start_col_index] = 1 #Dropping the columns that are no longer needed variable df2.drop([#Re-engineered columns 'property_type','host_is_superhost','amenities' #Extra review scores ,'review_scores_accuracy','review_scores_cleanliness' ,'review_scores_checkin','review_scores_communication' ,'review_scores_location','review_scores_value' ] ,axis=1,inplace=True) #Adding dummy variables for categorical variables df2 = pd.get_dummies(df2) #Dropping additional fields to reduce multicollinearity df2.drop(['other_building',"cancellation_policy_moderate" ,"room_type_Entire home/apt","bed_type_Real Bed" ,"neighbourhood_group_cleansed_Other neighborhoods" ,'amenities_7','amenities_9' ] ,axis=1,inplace=True) #Dealing with missing values df2['cleaning_fee'] = df2['cleaning_fee'].fillna(0) df2['security_deposit'] = df2['security_deposit'].fillna(0) #Setting other columns to the mean where missing cols_mean_impute = ['bathrooms','bedrooms','beds','review_scores_rating' ] fill_mean = lambda col: col.fillna(col.mean()) df2[cols_mean_impute] = df2[cols_mean_impute].apply(fill_mean, axis=0) return df2, amenity_list listings_cleaned_df, amenity_list = clean_data(listings_keep_df,amenity_counts) print('') print('Amenity List') print(amenity_list) print('') print('Checking missing values have been dealt with') print('All below should be zero') print('') print(listings_cleaned_df.isnull().sum()) print('') print('Returned DF') print('') listings_cleaned_df.head() #Checking dogs have been assigned correctly, as a proxy to test all the other columns are correctly assigned #Check the output for the 3 rows of amenities to make sure they contain the word dog in each test = listings_keep_df[listings_cleaned_df['amenities_27'] == 1].reset_index(drop=True).copy() print("(1)",test.amenities[0]) print("(2)",test.amenities[1]) print("(3)",test.amenities[2]) ###Output (1) {TV,"Cable TV",Internet,"Wireless Internet","Air Conditioning",Kitchen,"Free Parking on Premises","Pets Allowed","Pets live on this property",Dog(s),Cat(s),"Hot Tub","Indoor Fireplace",Heating,"Family/Kid Friendly",Washer,Dryer,"Smoke Detector","Carbon Monoxide Detector",Essentials,Shampoo} (2) {"Wireless Internet","Pets live on this property",Dog(s),Heating,"Family/Kid Friendly",Essentials,Shampoo} (3) {TV,"Cable TV",Internet,"Wireless Internet",Kitchen,"Free Parking on Premises","Pets live on this property",Dog(s),"Indoor Fireplace","Buzzer/Wireless Intercom",Heating,"Family/Kid Friendly",Washer,Dryer,"Smoke Detector","Carbon Monoxide Detector","First Aid Kit","Fire Extinguisher",Essentials,Shampoo} ###Markdown Creating new dataframe with values scaled for modelling ###Code listings_scaled = listings_cleaned_df.copy() cols_to_scale = ['security_deposit','cleaning_fee','extra_people','minimum_nights','availability_30' ,'guests_included','accommodates','bathrooms','bedrooms','beds','number_of_reviews' ,'review_scores_rating'] scaler = StandardScaler() listings_scaled[cols_to_scale] = scaler.fit_transform(listings_scaled[cols_to_scale]) listings_scaled.head() #Creating table decodes that can be used to undo the scaling after modelling col_decodes = pd.DataFrame(cols_to_scale) col_decodes.columns = ['col'] means = pd.DataFrame(scaler.mean_) means.columns = ['mean'] sd = pd.DataFrame(scaler.scale_) sd.columns = ['sd'] decodes = col_decodes.merge(means,how='left',left_index = True, right_index = True) decodes = decodes.merge(sd,how='left',left_index = True, right_index = True) #decodes = pd.DataFrame(colsToScale).merge(pd.DataFrame(scaler.mean_),how='left',left_index = True, right_index = True) decodes ###Output _____no_output_____ ###Markdown Looking to find the size of the uplift in income impact of accomodating more people ###Code accom = pd.DataFrame(listings_cleaned_df["accommodates"].value_counts()) accom.columns = ['Number'] accom['Accommodates'] = accom.index accom.sort_values(by = ['Accommodates'], ascending=True, inplace=True) plt.figure(figsize=(10,10)) plt1 = plt.subplot(2,1,1) ax = sns.barplot(x="Accommodates" , y="Number" , data=accom).set_title('Number of rentals per occupancy') plt.subplot(2,1,2) ax = sns.boxplot(x="accommodates" , y="price" , data=listings_cleaned_df) plt1.set_xlabel('') plt.show(); fig = ax.get_figure() fig.savefig('picture_outputs\occupancy_graph.png') plt.clf() #Finding the actual means and jumps in price accomodation_means = listings_cleaned_df[["accommodates","price"]].groupby(["accommodates"]).mean() accomodation_means['change'] = accomodation_means["price"].diff() accomodation_means ###Output _____no_output_____ ###Markdown Properties that accomodate over 8 people are fairly rare, so robust conclusions cannot be taken for these.There is however a big jump from 4 to 5.For properties with two double rooms, it may therefore be worth while getting a sofa or camp bed, so that it can be used to accomodate 5 people. Create regression model to look at contribution to price of the different metrics ###Code #Split into explanatory and response variables X = listings_scaled.iloc[:,1:80] y = listings_scaled['price'] #Split into train and test X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = .10, random_state=42) lm_model = LinearRegression() # Instantiate lm_model.fit(X_train, y_train) #Fit #Predict and score the model y_test_preds = lm_model.predict(X_test) "The r-squared score for the model was {} on {} values.".format(r2_score(y_test, y_test_preds), len(y_test)) ###Output _____no_output_____ ###Markdown Visually looking at how well the predictions were ###Code #Set background back1 = plt.fill_between([0,800], [0,800], alpha=0.5) back1.set_color('#ffde72') back2 = plt.fill_between([0,800], [0,800], 800, alpha=0.5) back2.set_color('#b3fff4') ax = sns.scatterplot(x=y_test, y=y_test_preds) ax.set(xlabel='Actual Price' , ylabel='Predicted Price' ,ylim=(0, 800) ,xlim=(0, 800) ) plt.show() ###Output _____no_output_____ ###Markdown The model seems to under-predict the price for higher values. For our purposes however, this matches close enough Getting a table with the dollar value of each contribution ###Code #Getting column names print("Intercept:",lm_model.intercept_) coefNames = pd.DataFrame(X.columns) coefNames.columns = ['Metric'] #Getting corresponding coefficients coefVals = pd.DataFrame(lm_model.coef_) coefVals.columns = ['Regression_coef_val'] #Merging with column names and sorting coefNames = coefNames.merge(coefVals,left_index = True, right_index = True) coefNames.sort_values(by = ['Regression_coef_val'], ascending=False, inplace=True) #Merging on the amenity names coefDecodes = coefNames.merge(amenity_list,how = 'left',left_on='Metric',right_on='index') coefDecodes['Description'] = np.where(coefDecodes['amenities'].isnull(), coefDecodes['Metric'], coefDecodes['amenities']) coefDecodes = coefDecodes[['Description','Regression_coef_val']] coefDecodes ###Output Intercept: 162.1774960305662 ###Markdown For the scaled variables, the actual impact of the variable on the price is:$coef\_val*\frac{(unit-mean)}{std}$This can be re-written to be $\frac{coef\_val}{std}(unit) - \frac{coef\_val*mean}{std}$$\frac{coef\_val*mean}{std}$ is a constant, thefore each increase in the unit increases the price by $\frac{coef\_val}{std}$ ###Code #Where scaling occured divide the coefficient by the standard deviation new = coefDecodes.merge(decodes,how='left',left_on = 'Description',right_on='col') new['mean'].fillna(0, inplace=True) new['sd'].fillna(1, inplace=True) new['reg_coeff_unscaled'] = new['Regression_coef_val']/new['sd'] new = new[['Description','Regression_coef_val','reg_coeff_unscaled']] new.sort_values(by = ['reg_coeff_unscaled'], ascending=False, inplace=True) new new.to_excel('price_coefs.xlsx',index=False) ###Output _____no_output_____ ###Markdown Factors that boost income ###Code new[new['reg_coeff_unscaled'] >= 5] ###Output _____no_output_____ ###Markdown Main factors that reduce income ###Code new[new['reg_coeff_unscaled'] <= -5] ###Output _____no_output_____ ###Markdown Analysis of End-of-Year Book ListsFind the data [here](https://bit.io/bitdotio/best%20books%202021). The DataThe data can be found in [this bit.io repository](https://bit.io/bitdotio/best%20books%202021). Other good sources for aggregate end-of-year lists include:- [yearendlists.com](https://www.yearendlists.com/) which also includes lists for TV, music, movies, and more.- [The Ultimate Best Books of 2021 List (Lithub)](https://lithub.com/the-ultimate-best-books-of-2021-list/) which aggregates many year-end lists to obtain a "definitive" year-end list. How We Got the DataWe looked at all of the book lists for 2021 on [yearendlists.com](https://www.yearendlists.com/) to identify the lists. We followed a few key principles in selecting sources:- Look for Discriminating Sources: the lists included ten books or fewer (the publications have to narrow the books to a list of favorites. a [list of 100](https://time.com/collection/100-must-read-books-2021/) doesn't help us in finding a consensus "best book.")- Use High-profile sources: we didn't have specific criteria for this one, but in general, we looked for lists from well-known individuals or media sources, not from any blog with a book list we could find on the Internet.- Prefer generality: We looked for "best books" list, not "best fiction" or "best science fiction" or other sub-classifications of books. In one case (TIME), we took both the "top fiction" and "top nonfiction" lists rather than omitting the publication entirely.- Avoid redundancy: Use only a single list (or, in the case of TIME, two non-overlapping lists) per source. We don't want to count a single book more than once for a given source. Obtain the data from bit.io ###Code # Helper Fucntion for Downloading Datasets def download_dataset(target, pg_string): engine = create_engine(pg_string) # SQL for querying an entire table sql = f""" SELECT * FROM {target}; """ # Return SQL query as a pandas dataframe with engine.connect() as conn: # Set 1 minute statement timeout (units are milliseconds) conn.execute("SET statement_timeout = 60000;") df = pd.read_sql(sql, conn) return df df_media = download_dataset(MEDIA_TABLE, PG_STRING) df_individual = download_dataset(CELEB_TABLE, PG_STRING) df_rank = download_dataset(RANK_TABLE, PG_STRING) df_media = df_media.merge(df_rank, how="left", left_on="title", right_on="title").rename(columns={'count':'rank'}) df_individual = df_individual.merge(df_rank, how="left", left_on="title", right_on="title").rename(columns={'count':'rank'}) df_media df_media.loc[df_media['source'].isin(['New York Times', 'Washington Post', 'Slate'])].sort_values('title') # List Appearing Once df_media['title_author'] = df_media.title.values + ' (' + df_media.author.values + ')' twice = (df_media .loc[df_media['rank']==2, :] .loc[:,'title_author'] .unique() ) ", ".join(twice) names = [] props = [] counts = [] groups = df_media.groupby('source') for name, group in groups: others = df_media.loc[df_media['source'] != name] length = group.shape[0] titles = group['title'] num = titles.isin(others['title']) n_times = (others['title'].isin(titles)).sum() counts.append(n_times) props.append(num.mean()) names.append(name) df_lists = pd.DataFrame({'source':names, 'prop':props, 'times':counts}).sort_values('prop', ascending=False) df_lists.loc[df_lists['source']=='TIME', 'source'] = "TIME*" df_lists fig, ax = plt.subplots(1, 2, figsize=(10,6), dpi=150) ax[0].barh(df_lists['source'], df_lists['prop'], color=BLUE, alpha=0.8) ax[0].set_title('Proportion of Books from each List\nAppearing in Other Lists') ax[0].set_xlabel('Proportion') ax[0].set_ylabel('List Publisher') ax[0].invert_yaxis() # grid x ax[0].grid(True, axis='x', alpha=0.3) ax[1].barh(df_lists['source'], df_lists['times'], color=GOLD, alpha=0.8) ax[1].set_title('Number of Times Books from each List\nAppear on Other Lists') ax[1].invert_yaxis() ax[1].set_yticks([]) ax[1].set_xlabel('Number of Times') ax[1].grid(True, axis='x', alpha=0.3) # Formatting img = Image.open('/Users/danielliden/git/innerjoin/resources/logo.png') img2 = Image.open('/Users/danielliden/git/innerjoin/resources/twitter.png') for a in ax: for spine in ['top', 'right', 'left', 'bottom']: a.spines[spine].set_visible(False) a.tick_params(which='both', bottom=True, left=True, color=GREY) fig.tight_layout(rect=[0.02,0.1,0.97,0.9]) fig.text(0.1, 0.05, 'Source: 16 "Best Books of 2021" lists. Access Data at https://bit.io/bitdotio/best%20books%202021\n*List Contained 20 Books', ha='left', fontdict={"family":"Inter", "size":8, "color":GREY}) fig.suptitle("End-of-Year Lists Contain Many of the Same Books", x=0.2, y=0.96, fontweight="bold", ha="left", fontdict={"family":"Inter", "size":8, "color":"black", "alpha":0.8}) # Fonts mpl.rcParams['font.family'] = 'Inter' # logos logo = plt.axes([0.8,0.88, 0.13, 0.13], frameon=True) logo.imshow(img) logo.axis('off') logo.patch.set_facecolor("white") twt = plt.axes([0.8,0.0, 0.13, 0.13], frameon=True) twt.imshow(img2) twt.axis('off') fig.patch.set_facecolor("white") if not Path("./figures/").exists(): Path("./figures/").mkdir() plt.savefig("./figures/lists_figure_2.png") plt.show() names_i = [] props_i = [] counts_i = [] groups = df_individual.groupby('source') for name, group in groups: # print(name) others = df_media.loc[df_media['source'] != name] length = group.shape[0] titles = group['title'] num = titles.isin(others['title']) n_times = (others['title'].isin(titles)).sum() counts_i.append(n_times) props_i.append(num.mean()) names_i.append(name) df_lists = pd.DataFrame({'source':names_i, 'prop':props_i, 'times':counts_i}).sort_values('prop', ascending=False) df_individual fig, ax = plt.subplots(1, 2, figsize=(6,4), dpi=150) ax[0].bar(df_lists['source'], df_lists['prop'], color=GREEN, alpha=0.8) ax[0].set_title('Proportion of Books Appearing\nin Published Year-End Lists') ax[0].set_ylabel('Proportion') # grid x ax[0].grid(True, axis='y', alpha=0.3) ax[1].bar(df_lists['source'], df_lists['times'], color=RED, alpha=0.8) ax[1].set_title('Number of Times Books from each\nList Appear on Other Lists') ax[1].set_ylabel('Number of Times') ax[1].grid(True, axis='y', alpha=0.3) # Formatting img = Image.open('/Users/danielliden/git/innerjoin/resources/logo.png') img2 = Image.open('/Users/danielliden/git/innerjoin/resources/twitter.png') for a in ax: for spine in ['top', 'right', 'left', 'bottom']: a.spines[spine].set_visible(False) a.tick_params(which='both', bottom=True, left=True, color=GREY) fig.tight_layout(rect=[0.02,0.1,0.97,0.9]) fig.text(0.1, 0.05, 'Source: 16 "Best Books of 2021" lists.\nAccess Data at https://bit.io/bitdotio/best%20books%202021', ha='left', fontdict={"family":"Inter", "size":8, "color":GREY}) fig.suptitle("Celebrity End-of-Year Lists", x=0.1, y=0.96, fontweight="bold", ha="left", fontdict={"family":"Inter", "size":8, "color":"black", "alpha":0.8}) # Fonts mpl.rcParams['font.family'] = 'Inter' # logos logo = plt.axes([0.8,0.88, 0.13, 0.13], frameon=True) logo.imshow(img) logo.axis('off') logo.patch.set_facecolor("white") twt = plt.axes([0.8,0.0, 0.13, 0.13], frameon=True) twt.imshow(img2) twt.axis('off') fig.patch.set_facecolor("white") if not Path("./figures/").exists(): Path("./figures/").mkdir() plt.savefig("./figures/lists_figure_3.png") plt.show() df_rank3 = df_rank.loc[df_rank['count']>=3, :] df_rank3.iloc[12,0] = "How the Word Is Passed: A Reckoning with the History of Slavery..." # make horizontal bar plot from df_rank3 count column #reverse order of df_rank3 my_colors = [GOLD, GOLD, GOLD, GOLD, GREEN, GREEN, GREEN, RED, RED, RED, RED, BLUE, BLUE, BLUE, BLUE, BLUE] #df_rank3 = df_rank3.sort_values('count', ascending=True) fig, ax = plt.subplots(figsize=(10,6), dpi=150) barlist = ax.barh(df_rank3['title'].values, df_rank3['count'].values, color=my_colors) ax.invert_yaxis() ax.set_yticks([]) ax.set_xlabel('Number of Times Book Appears in End-of-Year Lists') # vertical grid ax.xaxis.grid(True, linestyle='-', which='major', alpha=0.3) # Formatting img = Image.open('/Users/danielliden/git/innerjoin/resources/logo.png') img2 = Image.open('/Users/danielliden/git/innerjoin/resources/twitter.png') for spine in ['top', 'right', 'left', 'bottom']: ax.spines[spine].set_visible(False) ax.tick_params(which='both', bottom=True, left=True, color=GREY) fig.tight_layout(rect=[0.02,0.1,0.97,0.9]) # add labels overlapping bars for i, bar in enumerate(barlist): width = bar.get_width() ax.text(0.1, i, df_rank3.loc[i,'title'], color="white", ha='left', va='center', fontweight="bold", fontsize=9 #path_effects=[path_effects.withStroke(linewidth=0.5, foreground='white')]) ) fig.text(0.1, 0.05, r'Source: 16 "Best Books of 2021" lists. Access Data at https://bit.io/bitdotio/best%20books%202021', ha='left', fontdict={"family":"Inter", "size":8, "color":GREY}) fig.suptitle("Books with 3 or More Appearances in 2021 End-of-Year Lists", x=0.1, y=0.96, fontweight="bold", ha="left", fontdict={"family":"Inter", "size":8, "color":"black", "alpha":0.8}) # Fonts mpl.rcParams['font.family'] = 'Inter' # logos logo = plt.axes([0.8,0.88, 0.13, 0.13], frameon=True) logo.imshow(img) logo.axis('off') logo.patch.set_facecolor("white") twt = plt.axes([0.8,0.0, 0.13, 0.13], frameon=True) twt.imshow(img2) twt.axis('off') fig.patch.set_facecolor("white") if not Path("./figures/").exists(): Path("./figures/").mkdir() plt.savefig("./figures/books_figure_1.png") plt.show() ###Output /Users/danielliden/git/innerjoin/2021_book_lists/env/lib/python3.9/site-packages/pandas/core/indexing.py:1817: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy self._setitem_single_column(loc, value, pi) /var/folders/kx/yhv2f4ds2xl41vhv6h8py3q80000gn/T/ipykernel_46971/3970611543.py:11: MatplotlibDeprecationWarning: Support for passing numbers through unit converters is deprecated since 3.5 and support will be removed two minor releases later; use Axis.convert_units instead. ax.set_yticks([]) ###Markdown Analysis > This file runs both the calibration and the decompositioning of the model. In the settings section you may choose which country for which to run the analysis as well as whether to print results or output them in LaTeX format. If running the file for the first time consider setting install_packages = True. If running in Binder this is already taken care of. Settings ###Code ## Calibration is run for all countries. ## Choose country to output results for ## "BEL", "DNK", "FIN", "FRA", "GBR", "ITA", "JPN", "NLD", or "USA" ISO = "GBR" ## Choose whether to print Latex tables (True or False) show_results = True print_latex = False ## Define where data is located data_path = "data/data.csv" ## Required packages are numpy, pandas, scipy, statistics, itertools, and tabulate (if printing latex) install_packages = False ###Output _____no_output_____ ###Markdown Calibration settings and assumptions ###Code moments = ["AvgRet","CapShare","rf","PD","XK","TFPgrowth","PriceInvt","PopGrowth","EmpPop"] parameters = ["beta","mu","p","delta","alpha","g_L","g_Z","g_Q","N_bar"] countries = ["BEL","DNK","FIN","FRA","ITA","JPN","NLD","GBR","USA"] startP1 = 1984 endP1 = 1999 startP2 = 2000 endP2 = 2015 b = 0.15 theta = 12 sigma = 0.5 ###Output _____no_output_____ ###Markdown Install packages ###Code if install_packages == True: !pip install numpy !pip install pandas !pip install scipy !pip install statistics !pip install more-itertools !pip install tabulate ###Output _____no_output_____ ###Markdown Import packages ###Code import numpy as np import pandas as pd #import scipy as sp from scipy import optimize from scipy.special import factorial import statistics as stat import itertools #!pip install tabulate from tabulate import tabulate class par: None class moms: None ###Output _____no_output_____ ###Markdown Set dictionary for data-series names ###Code # Make Dictionary for data-series data_series = { "AvgRet": "Average Return to Capital", "CapShare": "Gross Capital Share", "rf": "Risk Free Interest Rate", "PopGrowth": "Population Growth", "PriceInvt": "Investment Price Growth", "PD": "Price-Dividend Ratio", "TFPgrowth": "TFP Growth", "XK":"Investment-Capital Ratio", "EmpPop": "Employment-Population Ratio", "Spread": "Spread"} ###Output _____no_output_____ ###Markdown Define calculation of moments ###Code def calc_moments(country,s1,e1,s2,e2): df = pd.read_csv(data_path, sep=";", index_col="year") df = df[df["ISO"]==country] start1 = int(s1) end1 = int(e1) start2 = int(s2) end2 = int(e2) #select relevant series, set year as index, create copy df = df[['AvgRet','CapShare','rf', 'PopGrowth','PriceInvt','PD','TFPgrowth','XK','EmpPop']] df = df.loc[start1:end2] df_2 = pd.DataFrame(index=['AvgRet','CapShare','rf', 'PopGrowth','PriceInvt','PD','TFPgrowth','XK','EmpPop']) # Calculate averages and insert to DataFrame for var in df.columns.tolist(): df_2.loc[var,'p1'] = stat.mean(df.loc[s1:e1,var]) df_2.loc[var,'p2'] = stat.mean(df.loc[s2:e2,var]) #df_2.loc[var,'stdev1'] = stat.stdev(df.loc[1984:2000,var]) #df_2.loc[var,'stdev2'] = stat.stdev(df.loc[2001:2016,var]) df_2.loc[var,'change'] = df_2.loc[var,'p2']-df_2.loc[var,'p1'] return df_2 ###Output _____no_output_____ ###Markdown Define calibration ###Code ### EQUATIONS IN IDENTIFICATION ###### FOR PART 2 def eq_footnote_15(par,moms): return moms.TFPgrowth - (par.g_T-(1-moms.CapShare)*par.g_L-moms.CapShare*(par.g_T+par.g_Q)) def eq_11(par,moms): return (1+par.g_T) - (1+par.g_L)*(1+par.g_Z)**(1/(1-par.alpha))*(1+par.g_Q)**(par.alpha/(1-par.alpha)) def eq_15(par,moms): par.beta_star = 1/(1+par.r_star) return moms.AvgRet - ((par.mu+par.alpha-1)/par.alpha)*(par.r_star + par.delta + par.g_Q/par.beta_star) def eq_18(par,moms): return moms.XK - ((1+par.g_Q)*(1+par.g_T)-(1-par.delta)) def eq_20(par,moms): return moms.CapShare - (par.mu+par.alpha-1)/(par.mu) def eq_23(par,moms): par.beta_star = 1/(1+par.r_star) return moms.PD - par.beta_star*(1+par.g_T)/(1-par.beta_star*(1+par.g_T)) ### END OF EQ'S FOR PART 2 ###### FOR PART 3 def find_p(p,par,moms): # Change name from find_p to EQ-number at some point update_misc(par) MOM2 = ((1-2*p)+p*np.exp(par.Bh*(1-par.theta)) + p*np.exp(par.B*(1-par.theta))) MOM3 = ((1-2*p)+p*np.exp(par.Bh*(-par.theta)) + p*np.exp(par.B*(-par.theta))) return moms.rf - (MOM2/(par.beta_star*MOM3)-1) def update_misc(par): # Help function for part 3 par.beta_star = 1/(1+par.r_star) par.B = np.log(1-par.b) par.Bh = np.log(1+par.b) par.g_PC = (1+par.g_T)/(1+par.g_L)-1 ###### DEFINE CALIBRATION def calibrate(ISO,s,e,u,b,theta,sigma): #Set country, start years and end years – when calling function, eventually country = ISO start = s end = e unique_id = u # a. shock size par.b = b # b. risk aversion coefficient par.theta = theta # c. IES, sigma = 1/IES par.sigma = sigma #Set data df = pd.read_csv(data_path, sep=";", index_col="year") df = df[df["ISO"]==country] # Calc moments moms.AvgRet = stat.mean(df.loc[start:end,"AvgRet"])/100 moms.CapShare = stat.mean(df.loc[start:end,"CapShare"])/100 moms.XK = stat.mean(df.loc[start:end,"XK"])/100 moms.PD = stat.mean(df.loc[start:end,"PD"]) moms.TFPgrowth = stat.mean(df.loc[start:end,"TFPgrowth"])/100 moms.rf = stat.mean(df.loc[start:end,"rf"])/100 #used in step 3 moms.PopGrowth = stat.mean(df.loc[start:end,"PopGrowth"])/100 moms.PriceInvt = -stat.mean(df.loc[start:end,"PriceInvt"])/100 # note: negativ value used moms.EmpPop = stat.mean(df.loc[start:end,"EmpPop"])/100 # STEP 1: set parameters g_L, g_Q and N_bar directly par.g_L = moms.PopGrowth par.g_Q = moms.PriceInvt par.N_bar = moms.EmpPop # STEP 2 # Set initial guesses for parameters to be estimated in second part and solve equlation system # a. parameters to estimate par.names = ['g_Z','g_T','delta','alpha','r_star','mu'] # b. guess par.mu = 1.01 par.delta = 0.025 par.alpha = 0.25 par.g_Z = 0.08 #0.02 par.r_star = 0.05 par.g_T = 0.04 x = set_x(par) # c. solve solution = optimize.fsolve(eq_system, x, args=(par,moms), full_output=0) set_parameters(par,solution) # STEP 3 – estimate beta and p par.p = optimize.fsolve(find_p, 0.1, args=(par,moms), full_output=0)[0] update_misc(par) MOM = ((1-2*par.p)+par.p*np.exp(par.Bh*(1-par.theta)) + par.p*np.exp(par.B*(1-par.theta)))**((1-par.sigma)/(1-par.theta)) par.beta = par.beta_star/((1+par.g_PC)**(-par.sigma)*MOM); df_estimates = [] for name in parameters: df_estimates.append({'Parameter': name, unique_id:getattr(par,name)}) df_estimates = pd.DataFrame(df_estimates).set_index('Parameter') return df_estimates ##### OTHER HELP FUNCTIONS def set_parameters(par,x): for name,value in zip(par.names,x): setattr(par,name,value) def set_x(par): x = np.zeros(len(par.names)) for i,name in enumerate(par.names): x[i] = getattr(par,name) return x def eq_system(x,par,moms): # a. set parameters set_parameters(par,x) # c. evaluate equations out = [] out.append(eq_footnote_15(par,moms)) out.append(eq_11(par,moms)) out.append(eq_15(par,moms)) out.append(eq_18(par,moms)) out.append(eq_20(par,moms)) out.append(eq_23(par,moms)) return out ###Output _____no_output_____ ###Markdown Define decomposition ###Code def decomp(ISO): # Get data estimates = pd.DataFrame(index=parameters) estimates.index.name = "Name" estimates["P1"] = all_estimates[ISO+"_P1"] estimates["P2"] = all_estimates[ISO+"_P2"] # Make DataFrame with permutations l_permutation = list(itertools.product([0, 1],[0, 1],[0, 1],[0, 1],[0, 1],[0, 1],[0, 1],[0, 1],[0, 1])) df_permutation = pd.DataFrame(l_permutation,columns = parameters) df_permutation["permsum"] = df_permutation.sum(axis=1) # Calculate weights for parameter in parameters: switch = df_permutation[parameter] arr = np.array(df_permutation["permsum"]-switch) df_permutation["w_" + parameter] = (factorial(arr)*factorial(8-arr))/factorial(9) #Vary all parameters one by one and store values. Save in DataFrame df. result = [(AvgRet(par,moms),CapShare(par,moms),rf(par,moms),PD(par,moms),ik(par,moms),TFPgrowth(par,moms),priceinvt(par,moms),growthpop(par,moms),EmpPop(par,moms)) for par.beta in [estimates.loc["beta","P1"],estimates.loc["beta","P2"]] for par.mu in [estimates.loc["mu","P1"],estimates.loc["mu","P2"]] for par.p in [estimates.loc["p","P1"],estimates.loc["p","P2"]] for par.delta in [estimates.loc["delta","P1"],estimates.loc["delta","P2"]] for par.alpha in [estimates.loc["alpha","P1"],estimates.loc["alpha","P2"]] for par.g_L in [estimates.loc["g_L","P1"],estimates.loc["g_L","P2"]] for par.g_Z in [estimates.loc["g_Z","P1"],estimates.loc["g_Z","P2"]] for par.g_Q in [estimates.loc["g_Q","P1"],estimates.loc["g_Q","P2"]] for par.N_bar in [estimates.loc["N_bar","P1"],estimates.loc["N_bar","P2"]] ] df = pd.DataFrame(result, columns=moments) # Join permutations to results df = df_permutation.join(df) # Take means, etc, to create results df_results = pd.DataFrame(columns=parameters) df_results["moment"] = moments df_results = df_results.set_index("moment",drop=True) #Take means of all possible orders, conditional on one parameter. for mom in moments: for parm in parameters: result = (df.loc[(df[parm] == 1),mom].mul(df["w_"+parm]).sum()-df.loc[(df[parm] == 0),mom].mul(df["w_"+parm]).sum()) df_results.loc[mom,parm] = result # Format results df_results_formatted = df_results.copy() df_results_formatted = df_results_formatted.astype(float) # Convert all to floats (they appear to be strings?) df_results_formatted.insert(0,'sum',df_results_formatted.sum(axis=1, skipna=True)) # Sum rows # Multiply all, except for PD, by 100 scalar = [1 if i=="PD" else 100 for i in df_results_formatted.index.tolist()] #Create list, 1 for PD, 100 for all other df_results_formatted = df_results_formatted.multiply(scalar,axis=0) # Construct Spread as AvgRet - rf df_results_formatted.loc["Spread",:] = df_results_formatted.loc["AvgRet",:] - df_results_formatted.loc["rf",:] # Round and set padding zeros return df_results_formatted # Define functions def misc(par,moms): par.b = -np.log(1-0.15) par.bh = -np.log(1+0.15) par.sigma = 0.5 par.theta = 12 par.g_T = (1+par.g_L)*(1+par.g_Z)**(1/(1-par.alpha))*(1+par.g_Q)**(par.alpha/(1-par.alpha)) - 1 par.g_PC = (1+par.g_T)/(1+par.g_L) - 1 par.MOM2 = ((1-2*par.p)+par.p*np.exp(-par.bh*(1-par.theta)) + par.p*np.exp(-par.b*(1-par.theta))) par.MOM3 = ((1-2*par.p)+par.p*np.exp(-par.bh*(-par.theta)) + par.p*np.exp(-par.b*(-par.theta))) par.MOM = (par.MOM2)**((1-par.sigma)/(1-par.theta)) par.beta_star = par.beta * (1+par.g_PC)**(-par.sigma) * par.MOM #Define equations as functions of parameters only def growthpop(par,moms): return par.g_L def priceinvt(par,moms): return -par.g_Q def ik(par,moms): return (1+par.g_Q)*(1+par.g_T)-(1-par.delta) def EmpPop(par,moms): return par.N_bar def CapShare(par,moms): return (par.mu+par.alpha-1)/(par.mu) def TFPgrowth(par,moms): misc(par,moms) moms.CapShare = (par.mu+par.alpha-1)/(par.mu) return par.g_T-(1-moms.CapShare)*par.g_L-moms.CapShare*(par.g_T+par.g_Q) def AvgRet(par,moms): misc(par,moms) r_star = 1/par.beta_star - 1 return ((par.mu + par.alpha -1)/(par.alpha))*(r_star + par.delta + par.g_Q*(1+r_star)) def rf(par,moms): misc(par,moms) return par.MOM2/(par.MOM3*par.beta_star)-1 def PD(par,moms): misc(par,moms) return (par.beta_star*(1+par.g_T)/(1-par.beta_star*(1+par.g_T))) ###Output _____no_output_____ ###Markdown Calculate moments for all countries ###Code all_moments = pd.DataFrame(index=moments) for iso in countries: dfx = calc_moments(iso,startP1,endP1,startP2,endP2) all_moments[iso+"_P1"] = dfx["p1"] all_moments[iso+"_P2"] = dfx["p2"] all_moments[iso+"_change"] = dfx["change"] ###Output _____no_output_____ ###Markdown Run calibration for all countries ###Code all_estimates = pd.DataFrame(index=parameters) for iso in countries: for p in ["P1","P2"]: if p == "P1": estimates = calibrate(iso,startP1,endP1,iso+"_"+p,b,theta,sigma) if p == "P2": estimates = calibrate(iso,startP2,endP2,iso+"_"+p,b,theta,sigma) all_estimates[iso+"_"+p] = estimates class par: None class moms: None del estimates ###Output _____no_output_____ ###Markdown Print Latex table of moments for chosen country ###Code if print_latex == 1: table = all_moments.loc[:,ISO+"_P1":ISO+"_change"] for var in table.columns.tolist()[:]: table[var] = table[var].map('${:,.3f}$'.format) table.index = table.index.to_series().map(data_series) latex = tabulate(table, tablefmt="latex_raw") print("\\begin{tabular}{lrrr}") print("\\toprule") print(" & \\multicolumn{2}{c}{\\textit{Averages}} & \\\\ \\cmidrule(lr){2-3} ") print(" & 1984 - 1999 & 2000 - 2015 & Change \\\\ ") print("\\midrule") print(latex[29:-21]) print("\\bottomrule") print("\end{tabular}") ###Output _____no_output_____ ###Markdown Print Latex table of estimates for chosen country ###Code if print_latex == 1: #ISO = "GBR" # Uncomment to set country here table = all_estimates.loc[:,ISO+"_P1":ISO+"_P2"].copy() table['Parameter name'] = ["Discount factor","Markup","Disaster probability","Depreciation, pct.","Cobb-Douglas parameter","Population growth, pct.","TFP growth, pct.","Technological change, pct.","Labour Supply"] table['Symbol'] = ["$\\beta$","$\\mu$","$p$","$\\delta$","$\\alpha$","$g_L$","$g_Z$","$g_Q$","$\\bar{N}$"] table['Difference'] = table[ISO+"_P2"] - table[ISO+"_P1"] table = table[["Parameter name","Symbol",ISO+"_P1",ISO+"_P2","Difference"]] table[ISO+"_P1"] = table[ISO+"_P1"].multiply([1,1,1,100,1,100,100,100,1]) table[ISO+"_P2"] = table[ISO+"_P2"].multiply([1,1,1,100,1,100,100,100,1]) table["Difference"] = table["Difference"].multiply([1,1,1,100,1,100,100,100,1]) for var in table.columns.tolist()[2:]: table[var] = table[var].map('${:,.3f}$'.format) latex = tabulate(table, tablefmt="latex_raw", showindex=False) print("\\begin{tabular}{lcccr}") print("\\toprule") print("& & & \\textit{Estimates} & \\\\ \\cmidrule(lr){3-5}") print("Parameter name & Symbol & " + str(startP1) + " - " + str(endP1) + " & " + str(startP2) + " - " + str(endP2) + " & Change \\\\") print("\midrule") print(latex[30:-21]) print("\\bottomrule") print("\\end{tabular}") ###Output _____no_output_____ ###Markdown Print Latex table of decomposition for chosen country ###Code if print_latex == 1: #ISO = "GBR" # Uncomment to set country here # Set data values from calc_moments mom_P1 = all_moments.loc[:,ISO+"_P1"] mom_P2 = all_moments.loc[:,ISO+"_P2"] # Calculate spread mom_P1.loc["Spread"] = all_moments.loc["AvgRet",ISO+"_P1"]-all_moments.loc["rf",ISO+"_P1"] mom_P2.loc["Spread"] = all_moments.loc["AvgRet",ISO+"_P2"]-all_moments.loc["rf",ISO+"_P2"] formatted_decomp = decomp(ISO).copy() formatted_decomp.insert(0,"P2",mom_P2) formatted_decomp.insert(0,"P1",mom_P1) table = formatted_decomp for var in table.columns.tolist()[:]: table[var] = table[var].map('${:,.2f}$'.format) table.index = table.index.to_series().map(data_series) latex = tabulate(table, tablefmt="latex_raw") latex = tabulate(formatted_decomp, showindex=True, tablefmt="latex_raw") print("\\begin{tabular}{lrrrrrrrrrrrr}") print("\\toprule") print(" & \multicolumn{3}{c}{\\textit{Data}} & \multicolumn{9}{c}{\\textit{Decomposition of $\\Delta$}} \\\\ \\cmidrule(lr){2-4} \\cmidrule(lr){5-13}") print(" & P1 & P2 & $\\Delta$ & $\\beta$ & $\\mu$ & $p$ & $\\delta$ & $\\alpha$ & $g_L$ & $g_Z$ & $g_Q$ & $\\bar{N}$ \\\\") print("\\midrule") print(latex[38:-21]) print("\\bottomrule") print("\\end{tabular}") ###Output _____no_output_____ ###Markdown Show estimated parameters for chosen country ###Code if show_results == 1: table = all_estimates.loc[:,ISO+"_P1":ISO+"_P2"] for var in table.columns.tolist()[:]: table[var] = table[var].map('${:,.3f}$'.format) display(table) ###Output _____no_output_____ ###Markdown Show decomposition for chosen country ###Code if show_results == 1: table = decomp(ISO) for var in table.columns.tolist()[:]: table[var] = table[var].map('${:,.2f}$'.format) display(table) ###Output _____no_output_____ ###Markdown Analysis of training data Imports ###Code from __future__ import print_function import os import pandas as pd import numpy as np import matplotlib.mlab as mlab import matplotlib.pyplot as plt from collections import Counter %matplotlib inline ###Output _____no_output_____ ###Markdown Load Data Files ###Code def load_files(out_dir, tier): questions = pd.read_csv(os.path.join(out_dir, tier + '.question'), delimiter="\n", header=None, names=["data"]) contexts = pd.read_csv(os.path.join(out_dir, tier + '.context'), delimiter="\n", header=None, names=["data"]) answers = pd.read_csv(os.path.join(out_dir, tier + '.answer'), delimiter="\n", header=None, names=["data"]) spans = pd.read_csv(os.path.join(out_dir, tier + '.span'), delimiter=" ", header=None, names=["start", "end"]) return questions, contexts, answers, spans train_questions, train_contexts, train_answers, train_spans = load_files("data", "train") dev_questions, dev_contexts, dev_answers, dev_spans = load_files("data", "dev") # Currently not used ###Output _____no_output_____ ###Markdown Analyze Data Utils ###Code def plot_data_counts(data, title, num_bins=20, q=99): top_n = data.value_counts().nlargest(15).to_frame() occurances = np.array(top_n.values)[:, 0] percentages = np.round(occurances / np.sum(occurances), 3) table = np.stack((np.array(top_n.index), occurances, percentages), axis =1) percentile = np.percentile(data, q) fig = plt.figure(figsize=(18,5)) ax1 = fig.add_subplot(121) ax1.hist(data, num_bins, normed=1, facecolor='blue', alpha=0.5) ax1.axvline(percentile, color='b', linestyle='dashed', linewidth=2, label=str(q) + " Percentile is " + str(percentile)) ax1.legend() ax1.set_xlabel('Count') ax1.set_ylabel('Occurrence Percentage') ax1.set_title(title.title()) ax2 = fig.add_subplot(122) font_size=14 bbox=[0, 0, 1, 1] ax2.axis('off') mpl_table = ax2.table(cellText=table, bbox=bbox, colLabels=["Count", "Occurances", "Rate"]) mpl_table.auto_set_font_size(False) mpl_table.set_fontsize(font_size) ax2.set_title(title.title()) plt.show() ###Output _____no_output_____ ###Markdown Analyze Word Counts ###Code def analyze_word_count(dataset, title, num_bins=50): dataset["word_count"] = dataset["data"].apply(lambda x: len(str(x).split(" "))) plot_data_counts(dataset["word_count"], title.title() + " Word Counts", num_bins=num_bins) analyze_word_count(train_questions, "train questions") analyze_word_count(train_contexts, "train contexts") analyze_word_count(train_answers, "train answers") ###Output _____no_output_____ ###Markdown Analyze Head Words ###Code def analyze_start_word(dataset, title, start=0, end=1): heads = dataset["data"].apply(lambda x: " ".join(str(x).split(" ")[start: end])) top_n = heads.value_counts().nlargest(15).to_frame() occurances = np.array(top_n.values)[:, 0] percentages = np.round(occurances / np.sum(occurances), 3) table = np.stack((np.array(top_n.index), occurances, percentages), axis =1) fig = plt.figure(figsize=(18,5)) ax1 = fig.add_subplot(121) pd.value_counts(heads).nlargest(20).plot.bar(ax=ax1) ax1.set_xlabel('Word Count') ax1.set_ylabel('Occurrences') ax1.set_title(title.title() + " Head") ax2 = fig.add_subplot(122) font_size=14 bbox=[0, 0, 1, 1] ax2.axis('off') mpl_table = ax2.table(cellText=table, bbox=bbox, colLabels=["Head", "Occurances", "Rate"]) mpl_table.auto_set_font_size(False) mpl_table.set_fontsize(font_size) ax2.set_title(title.title() + " Top Head Words") plt.show() analyze_start_word(train_questions, "train questions", start=0, end=1) analyze_start_word(train_questions, "train questions", start=0, end=2) analyze_start_word(train_contexts, "train contexts", start=0, end=1) analyze_start_word(train_contexts, "train contexts", start=0, end=2) analyze_start_word(train_answers, "train answers", start=0, end=1) analyze_start_word(train_answers, "train answers", start=0, end=2) ###Output _____no_output_____ ###Markdown Analyze Answer Position ###Code def analyze_answer_pos(context, span, title, num_bins=100, percentile=99): plot_data_counts(span["start"], title + " Start Position", num_bins=num_bins, q=percentile) plot_data_counts(span["end"], title + " End Position", num_bins=num_bins, q=percentile) plot_data_counts(span["end"]-span["start"] + 1, title + " Length", num_bins=num_bins, q=percentile) analyze_answer_pos(train_contexts, train_spans, "Train Span") ###Output _____no_output_____ ###Markdown Zanimajo nas le knjige z oceno 4 ali več, ki so izšle po letu 1500 ###Code books = books[(books.rating > 4) & (books.publication_year >= 1500)] books['decade'] = books['publication_year'] // 10 * 10 decade_count = books.groupby('decade').count() decade_count = decade_count['title'] decade_count = decade_count.sort_values(ascending=False) ###Output _____no_output_____ ###Markdown Desetletja z največ uspešnicami ###Code decade_count.head(10) ###Output _____no_output_____ ###Markdown Komentar: potrdila se je hipoteza, da so najbolj brane knjige sodobne ###Code best_authors = books.groupby('author').count() best_authors = best_authors[['title']].rename({'title':'count'}, axis=1) ###Output _____no_output_____ ###Markdown Dvajset najuspešnejših avtorjev ###Code best_authors.sort_values('count', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Komentar: potrdila se je hipoteza, da so najuspešnejši avtorji večinoma moški Korelacija letnica-ocena ###Code books.plot(kind = 'scatter', x = 'decade', y = 'rating') ###Output _____no_output_____ ###Markdown Komentar: v nasprotju s predvidevanji vidimo, da z leti ne narašča le število popularnih knjih, temveč tudi njihova ocena ###Code romances = books[books.title.isin(genres[genres.genre == 'Romance'].title)] romances romances['century'] = romances['decade'] // 100 * 100 romances.head() romances = romances.groupby('century').count()[['title']].rename({'title':'count'}, axis=1) romances romances.plot(kind = 'bar') ###Output _____no_output_____ ###Markdown Komentar: največ romantičnih romanov je sodobnih, a to je lahko zgolj posledica dejstva, da je večina knjig na seznamu sodobnih. Oglejmo si, iz katerega časa so ljubezenski romani v relativnem smislu največje uspešnice. ###Code books['century'] = books['decade'] // 100 * 100 books.head() century_count = books.groupby('century').count() century_count = century_count['title'] century_count = century_count.sort_values(ascending=False) century_count.head() century_count = century_count.reset_index() century_count.columns = ['century', 'count'] century_count.head() romances.reset_index(inplace=True) romances.head() romances_percentage = romances.merge(century_count, on='century') romances_percentage.columns = ['century', 'romances', 'total'] romances_percentage['percentage_of_romances'] = romances_percentage['romances'] / romances_percentage['total'] romances_percentage.sort_values('percentage_of_romances') romances_percentage ###Output _____no_output_____ ###Markdown Relativni delež romantičnih knjig ###Code romances_percentage.plot(kind='bar', x='century', y='percentage_of_romances') ###Output _____no_output_____ ###Markdown Outcome (Non diabetic vs Diabetic) ###Code df.groupby('Outcome').count() ###Output _____no_output_____ ###Markdown Plots of Diabetic Cases ###Code sns.set_theme(style="darkgrid") cols = df.columns[:8] plt.subplots(figsize=(16, 6)) for i, col in enumerate(cols): plt.subplot(2, 4, i + 1) plt.subplots_adjust(wspace=0.5, hspace=0.5) df[col].hist(bins=20) plt.title(col) plt.show() sns.pairplot(data=df, hue='Outcome', kind="reg", diag_kind='kde') plt.show() ###Output _____no_output_____ ###Markdown No pairs of attributes clearly separate the two outcome classes. PCA ###Code scaled = StandardScaler().fit_transform(df) scaled_df = pd.DataFrame(scaled, columns=df.columns) pca = PCA() pca.fit(scaled_df) pca_df = pca.transform(scaled_df) sns.barplot(x=df.columns, y=pca.explained_variance_ratio_) plt.xticks(rotation=90) plt.xlabel('Principal Components') plt.ylabel('Explained Variance Ratio') plt.title('Scree Plot') plt.show() ###Output _____no_output_____ ###Markdown basic vis ###Code # function producing histogram-like plots for categorical variables # in this dataset. Results split by case_status # df = df # var = var to display # num = number of categories to display (in descending order) def plot_cat(df, var, num): sns.countplot(y = var, hue = 'case_status', data = df, order = df[var].value_counts().iloc[:num].index) plot_cat(df, 'employer_state', 10) plot_cat(df, 'applicant_major', 15) plot_cat(df, 'citizenship', 10) plot_cat(df, 'agent_firm_name', 5) plot_cat(df, 'job_title', 10) plot_cat(df, 'applicant_education', 10) plot_cat(df, 'employer_name', 10) max_wage = df['wage'] < 200000 df_red = df[max_wage] plt.hist(df_red['wage']) plt.show() ###Output _____no_output_____ ###Markdown Modelling ###Code # get labels as y y = df['case_status'] # encode y as integer label_encoder = LabelEncoder() label_encoder = label_encoder.fit(y) y = label_encoder.transform(y) print(y) # select feature subset df_red = df.loc[:,["employer_state", "employer_city", "employer_num_employees", "employer_yr_estab", "applicant_major", "applicant_uni", "applicant_education", "agent_firm_name", "citizenship", "job_title", "wage"]] print("Reduced shape:", df_red.shape) ###Output Reduced shape: (27321, 11) ###Markdown Constructing feature matrix: ###Code # normalize numeric predictors X = df_red.select_dtypes('float').values for i in range(X.shape[1]): m = np.mean(X[:,i]) sd = np.std(X[:,i]) X[:,i] = ((X[:,i] - m) / sd) # encode categorical predictors for full variable xgboost df_X_to_encode = df_red.select_dtypes(exclude = ['float']) X_to_encode = np.asarray(df_X_to_encode) for i in range(0, X_to_encode.shape[1]): print("Encoding feature", df_X_to_encode.columns[i]) label_encoder = LabelEncoder() feature = label_encoder.fit_transform(X_to_encode[:,i]) onehot_encoder = OneHotEncoder(sparse=False, categories='auto') feature = feature.reshape(-1, 1) feature = onehot_encoder.fit_transform(feature) X = np.concatenate((X, feature), axis=1) print("Dummy count: ", feature.shape[1]) print("X shape:", X.shape[0], "x", X.shape[1]) ###Output Encoding feature employer_state Dummy count: 55 Encoding feature employer_city Dummy count: 2307 Encoding feature employer_yr_estab Dummy count: 214 Encoding feature applicant_major Dummy count: 4032 Encoding feature applicant_uni Dummy count: 6523 Encoding feature applicant_education Dummy count: 6 Encoding feature agent_firm_name Dummy count: 2969 Encoding feature citizenship Dummy count: 148 Encoding feature job_title Dummy count: 1974 X shape: 27321 x 18230 ###Markdown **TO DO:** Apply fuzzywords shrink number of categories.Problematic variables: * job_title * applicant_uni * applicant_major ###Code # train-test split X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101) ###Output _____no_output_____ ###Markdown Logit ###Code from sklearn.linear_model import LogisticRegression logmodel = LogisticRegression(solver = 'liblinear') logmodel.fit(X_train, y_train) ylog = logmodel.predict(X_test) recall = recall_score(y_true = y_test, y_pred = ylog) precision = precision_score(y_true = y_test, y_pred = ylog) accuracy = accuracy_score(y_true = y_test, y_pred = ylog) print("Recall:", recall) print("Precision:", precision) print("Accuracy:", accuracy) #pickle model filename = 'models/xgb1.pkl' with open(filename, 'wb') as file: pickle.dump(logmodel, file) ###Output _____no_output_____ ###Markdown xgboost ###Code # construct dmatrix visa_dmatrix = xgb.DMatrix(data = X, label = y) # set params params = { 'eta': 0.3, 'max_depth': 4, 'objective': 'binary:logistic', } # run xgb built-in cross-validation cv_results = xgb.cv(dtrain = visa_dmatrix, params = params, nfold = 10, num_boost_round = 5, metrics = 'aucpr', as_pandas = 'True', seed = 123) print(cv_results) ###Output _____no_output_____ ###Markdown Import data to database ###Code card_holder_csv = Path(".\Data\card_holder.csv") credit_card_csv = Path(".\Data\credit_card.csv") merchant_category_csv = Path(".\Data\merchant_category.csv") merchant_csv = Path(".\Data\merchant.csv") transaction_csv = Path(".\Data\transaction.csv") seed_data = Path(".\Data\seed.sql") schema = Path(".\schema.sql") eng = create_engine("postgres://postgres:W@terH0u53@localhost/postgres") with eng.connect() as con: schema_sql = text(schema.read_text()) seed_sql = text(seed_data.read_text()) con.execute(schema_sql) con.execute(seed_sql) ###Output _____no_output_____ ###Markdown Analysis How can you isolate (or group) the transactions of each cardholder? ###Code trans = pd.DataFrame with eng.connect() as con: trans = pd.read_sql("transaction", con) trans.head(10) # grouping the transactions by card number card_groups = trans.groupby("card", axis=0) card_groups.count() ###Output _____no_output_____ ###Markdown Niki.ai ###Code import pandas as pd import numpy as np import nltk import matplotlib.pyplot as plt %matplotlib inline df = pd.read_csv("label.txt",sep=",,,",header=None ,names=['question','type']) df.head() df.shape df['type']=df['type'].str.strip() df['type'].unique() df['question'].values df['question'] = df['question'].apply(lambda x: x.lower()) df['question'] = df['question'].apply((lambda x: re.sub('[^a-zA-z0-9\s]','',x))) VALIDATION_SPLIT=0.20 ###Output _____no_output_____ ###Markdown Naive Bayes with tfidf vectorizer ###Code from collections import Counter, defaultdict from sklearn.feature_extraction.text import CountVectorizer from sklearn.feature_extraction.text import TfidfVectorizer import pickle as pkl from sklearn.naive_bayes import MultinomialNB # organize imports from sklearn.metrics import classification_report from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix from nltk.stem import SnowballStemmer from nltk import word_tokenize from nltk.corpus import wordnet as wn class StemTokenizer(object): def __init__(self): self.ignore_set = {'footnote', 'nietzsche', 'plato', 'mr.'} def __call__(self, doc): words = [] for word in word_tokenize(doc): word = word.lower() w = wn.morphy(word) if w and len(w) > 1 and w not in self.ignore_set: words.append(w) return words stemmer = SnowballStemmer('english').stem def stem_tokenize(text): return [stemmer(i) for i in word_tokenize(text)] ###Output _____no_output_____ ###Markdown Using Count Vectorizer ###Code vectorizer = CountVectorizer(analyzer='word',lowercase=True,tokenizer=stem_tokenize) X_train = vectorizer.fit_transform(df.question.values) with open('vectorizer.pk', 'wb') as fin: pkl.dump(vectorizer, fin) labels = data['type'] # split the data into a training set and a validation set indices = np.arange(X_train.shape[0]) np.random.shuffle(indices) X_train = X_train[indices] labels = labels[indices] nb_validation_samples = int(VALIDATION_SPLIT * X_train.shape[0]) x_train = X_train[:-nb_validation_samples] y_train = labels[:-nb_validation_samples] x_val = X_train[-nb_validation_samples:] y_val = labels[-nb_validation_samples:] clf = MultinomialNB() clf.fit(x_train,y_train) # evaluate the model of test data preds = clf.predict(x_val) print(classification_report(preds,y_val)) print("Accuracy :",clf.score(x_val,y_val)) example=vectorizer.transform(["What time does the train leave"]) clf.predict(example) ###Output _____no_output_____ ###Markdown Using TF-IDF (though bad choice for short sequences or corpus) ###Code tf_vectorizer = TfidfVectorizer(analyzer='word',lowercase=True,tokenizer=stem_tokenize) X_train = tf_vectorizer.fit_transform(df.question.values) with open('tf_vectorizer.pk', 'wb') as fin: pkl.dump(tf_vectorizer, fin) labels = data['type'] # split the data into a training set and a validation set indices = np.arange(X_train.shape[0]) np.random.shuffle(indices) X_train = X_train[indices] labels = labels[indices] nb_validation_samples = int(VALIDATION_SPLIT * X_train.shape[0]) x_train = X_train[:-nb_validation_samples] y_train = labels[:-nb_validation_samples] x_val = X_train[-nb_validation_samples:] y_val = labels[-nb_validation_samples:] clf = MultinomialNB() clf.fit(x_train,y_train) # evaluate the model of test data preds = clf.predict(x_val) print(classification_report(preds,y_val)) print("Accuracy :",clf.score(x_val,y_val)) example=tf_vectorizer.transform(["What time does the train leave"]) clf.predict(example) ###Output _____no_output_____ ###Markdown LSTM ###Code from keras.models import Sequential from keras.layers import Dense, Embedding, LSTM from sklearn.model_selection import train_test_split from keras.utils.np_utils import to_categorical MAX_NB_WORDS = 20000 MAX_SEQUENCE_LENGTH=30 from keras.preprocessing.text import Tokenizer from keras.preprocessing.sequence import pad_sequences import re data=df.copy() print(data['type'].value_counts()) tokenizer = Tokenizer(num_words=MAX_NB_WORDS, split=' ') tokenizer.fit_on_texts(data['question'].values) X = tokenizer.texts_to_sequences(data['question'].values) X = pad_sequences(X, maxlen=MAX_SEQUENCE_LENGTH) word_index = tokenizer.word_index print('Found %s unique tokens.' % len(word_index)) Y = data['type'] from sklearn import preprocessing le = preprocessing.LabelEncoder() le.fit(Y) Y=le.transform(Y) labels = to_categorical(np.asarray(Y)) print('Shape of data tensor:', X.shape) print('Shape of label tensor:', labels.shape) # split the data into a training set and a validation set indices = np.arange(X.shape[0]) np.random.shuffle(indices) X = X[indices] labels = labels[indices] nb_validation_samples = int(VALIDATION_SPLIT * X.shape[0]) x_train = X[:-nb_validation_samples] y_train = labels[:-nb_validation_samples] x_val = X[-nb_validation_samples:] y_val = labels[-nb_validation_samples:] embeddings_index = {} f = open('E:/Projects/Word2Vec/glove.42B.300d.txt', encoding="utf8") for line in f: values = line.split() word = values[0] coefs = np.asarray(values[1:], dtype='float32') embeddings_index[word] = coefs f.close() print('Found %s word vectors.' % len(embeddings_index)) EMBEDDING_DIM=300 embedding_matrix = np.zeros((len(word_index) + 1, EMBEDDING_DIM)) for word, i in word_index.items(): embedding_vector = embeddings_index.get(word) if embedding_vector is not None: # words not found in embedding index will be all-zeros. embedding_matrix[i] = embedding_vector from keras.layers import Embedding embedding_layer = Embedding(len(word_index) + 1, EMBEDDING_DIM, weights=[embedding_matrix], input_length=MAX_SEQUENCE_LENGTH, trainable=False) embed_dim = 300 lstm_out = 196 model = Sequential() model.add(embedding_layer) model.add(LSTM(lstm_out, dropout_U=0.25, dropout_W=0.25)) model.add(Dense(5,activation='softmax')) model.compile(loss = 'categorical_crossentropy', optimizer='adam',metrics = ['accuracy']) print(model.summary()) model.fit(x_train, y_train, batch_size=128, epochs=20, validation_data=(x_val, y_val)) example = tokenizer.texts_to_sequences(["What time does the train leave"]) example = pad_sequences(example, maxlen=MAX_SEQUENCE_LENGTH) le.inverse_transform(np.argmax(model.predict(example))) ###Output _____no_output_____ ###Markdown What is the global glacier ice volume outside the ice sheets? Code & data attached to the manuscript. If using the data for something else, please refer to the original sources. ###Code import pandas as pd import numpy as np ###Output _____no_output_____ ###Markdown Read in the various estimates ###Code # Match regional agg choices Millan 2022 def reformat_df(df): df.loc['01, 02'] = df.loc[['01', '02']].sum() df.loc['13, 14, 15'] = df.loc[['13', '14', '15']].sum() return df.drop(['01', '02'] + ['13', '14', '15']).sort_index() # Output gdf = pd.DataFrame() s = 'mb96' gdf.loc['Global', f'{s}_V'] = 180000 gdf.loc['Global', f'{s}_V_err'] = 40000 gdf.loc['Global', f'{s}_SLE'] = 0.5 gdf.loc['Global', f'{s}_SLE_err'] = 0.1 s = 'o04' gdf.loc['excl. A. & G.', f'{s}_V'] = 56000 gdf.loc['excl. A. & G.', f'{s}_V_err'] = np.NaN gdf.loc['excl. A. & G.', f'{s}_SLE'] = 0.15 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = np.NaN s = 'dm05' gdf.loc['Global', f'{s}_V'] = 260000 gdf.loc['Global', f'{s}_V_err'] = 65000 gdf.loc['Global', f'{s}_SLE'] = 0.65 gdf.loc['Global', f'{s}_SLE_err'] = 0.16 gdf.loc['excl. A. & G.', f'{s}_V'] = 133000 gdf.loc['excl. A. & G.', f'{s}_V_err'] = 20000 gdf.loc['excl. A. & G.', f'{s}_SLE'] = 133000 * 0.9 / 326 * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = 20000 * 0.9 / 326 * 1e-3 s = 'rb05' gdf.loc['excl. A. & G.', f'{s}_V'] = 87000 gdf.loc['excl. A. & G.', f'{s}_V_err'] = 10000 gdf.loc['excl. A. & G.', f'{s}_SLE'] = 0.241 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = 0.026 ###Output _____no_output_____ ###Markdown The following estimates have regional tables. Radic & Hock 2010 This is pre-RGI and slightly different: ###Code rh10 = pd.read_csv('data/rh10.csv', index_col=0, header=1) rh10 rh10_total = rh10.iloc[-1:].copy() rh10_total rh10 = rh10.iloc[:-1].copy().drop('WGI_XF', axis=1) rh10.index = [f'{int(c):02d}' for c in rh10.index] rh10.sum().to_frame().T ((rh10**2).sum()**0.5).loc[['A_err.1', 'V_err.1', 'SLE_err']].to_frame().T ###Output _____no_output_____ ###Markdown Table is consistent. **Volume without 05 and 19**: ###Code rh10_no = rh10.drop(['17', '18', '19']) rh10_no_s = rh10_no.sum().to_frame().T rh10_no_s err = ((rh10_no**2).sum()**0.5).loc[['A_err.1', 'V_err.1', 'SLE_err']].to_frame().T err rh10_no['V.1'].values s = 'rh10' gdf.loc['Global', f'{s}_V'] = rh10_total['V.1'].values gdf.loc['Global', f'{s}_V_err'] = rh10_total['V_err.1'].values gdf.loc['Global', f'{s}_SLE'] = rh10_total['SLE'].values * 1e-3 gdf.loc['Global', f'{s}_SLE_err'] = rh10_total['SLE_err'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_V'] = rh10_no_s['V.1'].values gdf.loc['excl. A. & G.', f'{s}_V_err'] = err['V_err.1'].values gdf.loc['excl. A. & G.', f'{s}_SLE'] = rh10_no_s['SLE'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = err['SLE_err'].values * 1e-3 ###Output _____no_output_____ ###Markdown Marzeion et al, 2012 ###Code m12 = pd.read_csv('data/m12.csv', index_col=0) m12[['A', 'A_err']] = m12[['A', 'A_err']] * 1e3 ###Output _____no_output_____ ###Markdown Let's compute the volumes from SLE: ###Code m12['V'] = m12['SLE'] * 362 / 0.9 m12['V_err'] = m12['SLE_err'] * 362 / 0.9 m12_total = m12.iloc[-1:].copy() m12_total m12 = m12.iloc[:-1].copy() m12.index = [f'{int(c):02d}' for c in m12.index] m12.sum().to_frame().T ((m12**2).sum()**0.5).loc[['A_err', 'V_err', 'SLE_err']].to_frame().T ###Output _____no_output_____ ###Markdown OK Table is more or less consistent, **uncertainty estimates computed as uncorrelated.** **Volume without 05 and 19**: ###Code m12_no5 = m12.drop('05') m12_no5_s = m12_no5.sum().to_frame().T m12_no5_s err = ((m12_no5**2).sum()**0.5).loc[['A_err', 'V_err', 'SLE_err']].to_frame().T err s = 'm12' gdf.loc['excl. A. & G.', f'{s}_V'] = m12_no5_s['V'].values gdf.loc['excl. A. & G.', f'{s}_V_err'] = err['V_err'].values gdf.loc['excl. A. & G.', f'{s}_SLE'] = m12_no5_s['SLE'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = err['SLE_err'].values * 1e-3 ###Output _____no_output_____ ###Markdown Huss & Farinotti 2012 ###Code hf12 = pd.read_csv('data/hf12.csv', index_col=0).drop('Name', axis=1) hf12 hf12_total = hf12.iloc[[-1]].copy() hf12_total hf12 = hf12.iloc[:-1].copy() hf12.index = [f'{int(c):02d}' for c in hf12.index] hf12.sum().to_frame().T ###Output _____no_output_____ ###Markdown OK Table is more or less consistent. The volume is off by 11 and the error estimates aren't exact (using uncorrelated is much worse) **Volume without 05 and 19**: ###Code hf12_no = hf12.drop(['05', '19']) hf12_no_s = hf12_no.sum().to_frame().T hf12_no_s s = 'hf12' gdf.loc['Global', f'{s}_V'] = hf12_total['V'].values gdf.loc['Global', f'{s}_V_err'] = hf12_total['V_err'].values gdf.loc['Global', f'{s}_SLE'] = hf12_total['SLE'].values * 1e-3 gdf.loc['Global', f'{s}_SLE_err'] = hf12_total['SLE_err'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_V'] = hf12_no_s['V'].values gdf.loc['excl. A. & G.', f'{s}_V_err'] = hf12_no_s['V_err'].values gdf.loc['excl. A. & G.', f'{s}_SLE'] = hf12_no_s['SLE'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = hf12_no_s['SLE_err'].values * 1e-3 ###Output _____no_output_____ ###Markdown Grinsted, 2013 ###Code g13 = pd.read_csv('data/g13.csv', index_col=0) ###Output _____no_output_____ ###Markdown Let's compute the volumes from SLE: ###Code g13['V'] = g13['SLE'] * 362 / 0.9 g13['V_err'] = g13['SLE_err'] * 362 / 0.9 g13_total = g13.iloc[-2:].copy() g13_total g13 = g13.iloc[:-2].copy() g13.index = [f'{int(c):02d}' for c in g13.index] g13.sum().to_frame().T ###Output _____no_output_____ ###Markdown OK Table is more or less consistent. **Volume without 05 and 19**: ###Code g13_no = g13.drop(['05', '19']) g13_no_s = g13_no.sum().to_frame().T g13_no_s s = 'g13' gdf.loc['Global', f'{s}_V'] = g13_total.loc['Total', 'V'] gdf.loc['Global', f'{s}_V_err'] = g13_total.loc['Total', 'V_err'] gdf.loc['Global', f'{s}_SLE'] = g13_total.loc['Total', 'SLE'] * 1e-3 gdf.loc['Global', f'{s}_SLE_err'] = g13_total.loc['Total', 'SLE_err'] * 1e-3 gdf.loc['excl. A. & G.', f'{s}_V'] = g13_total.loc['Withouth 5+19', 'V'] gdf.loc['excl. A. & G.', f'{s}_V_err'] = g13_total.loc['Withouth 5+19', 'V_err'] gdf.loc['excl. A. & G.', f'{s}_SLE'] = g13_total.loc['Withouth 5+19', 'SLE'] * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = g13_total.loc['Withouth 5+19', 'SLE_err'] * 1e-3 ###Output _____no_output_____ ###Markdown Radic et al., 2014 ###Code r14 = pd.read_csv('data/r14.csv', index_col=0) r14_total = r14.iloc[[-1]].copy() r14_total r14 = r14.iloc[:-1].copy() r14.index = [f'{int(c):02d}' for c in r14.index] r14_s = r14.sum().to_frame().T r14_s ###Output _____no_output_____ ###Markdown OK Table is consistent. **Volume without 05 and 19**: ###Code r14_no = r14.drop(['05', '19']) r14_no_s = r14_no.sum().to_frame().T r14_no_s s = 'r14' gdf.loc['Global', f'{s}_V'] = r14_total['V'].values gdf.loc['Global', f'{s}_V_err'] = r14_total['V_err'].values gdf.loc['Global', f'{s}_SLE'] = r14_total['SLE'].values * 1e-3 gdf.loc['Global', f'{s}_SLE_err'] = r14_total['SLE_err'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_V'] = r14_no_s['V'].values gdf.loc['excl. A. & G.', f'{s}_V_err'] = np.NaN gdf.loc['excl. A. & G.', f'{s}_SLE'] = r14_no_s['SLE'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = np.NaN ###Output _____no_output_____ ###Markdown Farinotti et al., 2019 ###Code f19 = pd.read_csv('data/f19.csv', index_col=0) f19[['V', 'V_err']] = f19[['V', 'V_err']] * 1e3 f19_total = f19.iloc[[-1]].copy() f19_total f19 = f19.iloc[:-1].copy() f19.sum().to_frame().T ###Output _____no_output_____ ###Markdown OK Table is consistent. **Volume without 05 and 19**: ###Code f19_no = f19.drop(['05', '19']) f19_no_s = f19_no.sum().to_frame().T f19_no_s s = 'f19' gdf.loc['Global', f'{s}_V'] = f19_total['V'].values gdf.loc['Global', f'{s}_V_err'] = f19_total['V_err'].values gdf.loc['Global', f'{s}_SLE'] = f19_total['SLE'].values * 1e-3 gdf.loc['Global', f'{s}_SLE_err'] = f19_total['SLE_err'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_V'] = f19_no_s['V'].values gdf.loc['excl. A. & G.', f'{s}_V_err'] = f19_no_s['V_err'].values gdf.loc['excl. A. & G.', f'{s}_SLE'] = f19_no_s['SLE'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = f19_no_s['SLE_err'].values * 1e-3 ###Output _____no_output_____ ###Markdown Millan et al., 2022 ###Code m22 = pd.read_csv('data/m22.csv', index_col=0) m22[['A', 'V', 'V_err']] *= 1e3; m22_total = m22.iloc[[-1]].copy() m22_total # Also add a dataset with AA "cropped" only m22_a = m22.iloc[[-2]].copy() m22_a m22 = m22.iloc[:-2].copy() m22_s = m22.sum().to_frame().T m22_s # Total with other region m22_ss = (m22.iloc[:-1].sum().to_frame()).T + m22_a.values m22_ss # Verification # diff = 35.1 - 3.2 # print(diff * 1e3, 140900 - 109000) ###Output _____no_output_____ ###Markdown OK Table is more or less consistent, with the **problem of global SLE of course**. **Volume without 05 and 19**: ###Code m22_no = m22.drop(['05', '19']) m22_no_s = m22_no.sum().to_frame().T m22_no_s s = 'm22' gdf.loc['Global', f'{s}_V'] = m22_total['V'].values gdf.loc['Global', f'{s}_V_err'] = m22_s['V_err'].values gdf.loc['Global', f'{s}_SLE'] = m22_s['SLE'].values * 1e-3 gdf.loc['Global', f'{s}_SLE_err'] = m22_s['SLE_err'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_V'] = m22_no_s['V'].values gdf.loc['excl. A. & G.', f'{s}_V_err'] = m22_no_s['V_err'].values gdf.loc['excl. A. & G.', f'{s}_SLE'] = m22_no_s['SLE'].values * 1e-3 gdf.loc['excl. A. & G.', f'{s}_SLE_err'] = m22_no_s['SLE_err'].values * 1e-3 ###Output _____no_output_____ ###Markdown Final check and area vs volume plot ###Code # We copy the values from the table to have the authors values d = { 'mb96': [180000, 40000, 680000, 0.5], # 'o04': [, ,], 'dm05': [260000, 65000, 785000, 0.65], # 'rb05': [, ,], 'rh10': [241430, 29229, 741448, 0.6], # 'm12': [, ,], 'hf12': [170214, 20688, 734856, 0.43], 'g13': [140778, 28155, 734933, 0.35], 'r14': [209973, 0, 736989, 0.522], 'f19': [158170, 41030, 705253, 0.324], 'm22': [140800, 40400, 705253, 0.311], 'm22*': [109000, 32130, 705253-106701, 0.257], } df_v = pd.DataFrame(d, index=['V', 'V_err', 'A', 'SLE']).T df_v for k in df_v.index: if k == 'm22*': continue p = df_v.loc[k, 'V'] m = gdf.loc['Global', k +'_V'] if not np.allclose(p, m): print(k, 'V', p, m) p = df_v.loc[k, 'V_err'] m = gdf.loc['Global', k +'_V_err'] if not np.allclose(p, m): print(k, 'V_err', p, m) ###Output g13 V_err 28155.0 28155.555555555555 r14 V_err 0.0 nan ###Markdown Plot ###Code import seaborn as sns import random import matplotlib.pyplot as plt from matplotlib.offsetbox import TextArea, VPacker, AnnotationBbox # for the text box from matplotlib.gridspec import GridSpec # for plot layout # Separate vol and SLE x = np.array([1, 2]) gdf.index = x gdf_vol = gdf[[c for c in gdf if 'V' in c]].copy() gdf_sle = gdf[[c for c in gdf if 'SLE' in c]].copy() dataframes = { 'm12': reformat_df(m12), 'hf12': reformat_df(hf12), 'g13': reformat_df(g13), 'r14': reformat_df(r14), 'f19': reformat_df(f19), 'm22': m22, } legend = { 'mb96': 'Meier and Bahr, 1996', 'o04': 'Ohmura, 2004', 'dm05': 'Dyurgerov and Meier, 2005', 'rb05': 'Raper and Braithwaite 2005', 'rh10': 'Radić and Hock, 2010', 'm12': 'Marzeion and others, 2012', 'hf12': 'Huss and Farinotti, 2012', 'g13': 'Grinsted, 2013', 'r14': 'Radić and others, 2014', 'f19': 'Farinotti and others, 2019', 'm22': 'Millan and others, 2022', } # Axis labels for region plot, in order by RGI area rgi_ids = reformat_df(f19).sort_values('A').index[::-1] names = [ 'Antarctic\nPeriphery', 'Arctic Canada\nNorth', 'Alaska, Western\nCanada & USA', 'High Mountain\nAsia', 'Greenland\nperiphery', 'Russian\nArctic', 'Arctic Canada\nSouth', 'Svalbard &\nJan Mayen', 'Southern\nAndes', 'Iceland', 'Scandinavia', 'Asia North', 'Low Latitudes', 'Central Europe', 'Caucasus &\nMiddle East', 'New Zealand' ] strs = [] for i, n in zip(rgi_ids, names): # strs.append(n + f' ({i})') strs.append(n) # Whixh data are available for the global plot estimates = [c.split('_')[0] for c in gdf_vol if 'err' not in c] sle_valid_keys_global = gdf_sle[[f'{e}_SLE' for e in estimates]].iloc[[0]].dropna(axis=1).columns sle_valid_keys_no = gdf_sle[[f'{e}_SLE' for e in estimates]].iloc[[1]].dropna(axis=1).columns v_valid_keys_global = gdf_vol[[f'{e}_V' for e in estimates]].iloc[[0]].dropna(axis=1).columns v_valid_keys_no = gdf_vol[[f'{e}_V' for e in estimates]].iloc[[1]].dropna(axis=1).columns # Make plot pretty sns.set_context('talk') sns.set_style('whitegrid') # Figure size scale_factor = 0.85 # to control font size in PNG f = plt.figure(figsize=(22 * scale_factor, 18 * scale_factor)) # Axis layout gs = GridSpec(3, 2, wspace=0.03) ax1 = f.add_subplot(gs[0, 1]) ax2 = f.add_subplot(gs[1, 1]) ax3 = f.add_subplot(gs[2, 1]) ax4 = f.add_subplot(gs[:, 0]) ax1.sharex(ax2) # Prepare the rhs plot for y distance between estimates - we want the same for b and c nm = len(sle_valid_keys_global) / 40 # +1 for additional millan offset_global = np.linspace(-nm, nm, len(sle_valid_keys_global) + 1) nm = (len(sle_valid_keys_no) - 1) / 40 offset_no = np.linspace(-nm, nm, len(sle_valid_keys_no)) xtext = 0.85 # where to put the rhs text # Colors - we shuffle for prettier colors in the "important" estimates p = sns.color_palette("dark", len(estimates)) random.Random(2).shuffle(p) cmillan = '#7f8dbe' mimarker = 'D' # Parameters y_range_rhs = 0.27 # Make sure both plots have same size despite different # of estimates fs_rhs = 18 fs_lhs = 16 # Shift axis up right yshift = 0.03 # ------------- Plot top right (b) ------------- ax = ax1 toplot = gdf_sle.iloc[[0]] for i, e in enumerate(sle_valid_keys_global): estimate = e.split('_')[0] color = p[estimates.index(estimate)] err = toplot[f'{e}_err'] if not np.isfinite(err.values[0]): err = None ax.errorbar(toplot[f'{e}'], offset_global[i], xerr=err, fmt='o', c=color); ax.text(xtext, offset_global[i], legend[estimate], c=color, va='center', fontsize=fs_rhs) # Millan weird ax.errorbar(257.2 * 1e-3, offset_global[i + 1], xerr=85 * 1e-3, fmt=mimarker, c=color, alpha=0.5); ax.text(xtext, offset_global[i + 1], 'Millan and others, 2022*', c=cmillan, va='center', fontsize=fs_rhs) # Axis cosmetics stuffs ax.grid(axis='y') ax.set_yticks([]) ax.set_ylim((-y_range_rhs, y_range_rhs)) sns.despine(ax=ax, bottom=False) ax.set_title(r'$\bf{b}$ SLE global', loc='left') plt.setp(ax1.get_xticklabels(), visible=False) # Pos shenanigans pos = ax.get_position() pos.y0 += yshift; ax.set_position(pos) # ------------- Plot middle right (c) ------------- ax = ax2 toplot = gdf_sle.iloc[[1]] for i, e in enumerate(sle_valid_keys_no): estimate = e.split('_')[0] color = p[estimates.index(estimate)] err = toplot[f'{e}_err'] if not np.isfinite(err.values[0]): err = None ax.errorbar(toplot[f'{e}'], offset_no[i], xerr=err, fmt='o', c=color); ax.text(xtext, offset_no[i], legend[estimate], c=color, va='center', fontsize=fs_rhs) # Axis cosmetics stuffs ax.grid(axis='y') ax.set_yticks([]) ax.set_xlim([0, 0.85]); ax.set_ylim((-y_range_rhs, y_range_rhs)) # Pos shenanigans pos = ax.get_position() pos.y0 += yshift * 2; pos.y1 += yshift; ax.set_position(pos) ax.set_xlabel('Sea-level equivalent (m)') ax.set_title(r'$\bf{c}$ SLE excluding Antarctic periphery & Greenland periphery', loc='left'); sns.despine(ax=ax) # ------------- Plot bottom right (d) ------------- ax = ax3 for estimate in df_v.index: if estimate == 'm22*': c = cmillan fmt = mimarker else: c = p[estimates.index(estimate)] fmt = 'o' toplot = df_v.loc[[estimate]] ax.errorbar(toplot.A * 1e-3, toplot.V * 1e-3, yerr=toplot.V_err * 1e-3, fmt=fmt, color=c, capsize=6) # Text e = estimate.upper() if len(e) == 4 and '*' not in e: text = f'{e[0]}{e[2:]}' else: text = f'{e[0]}{e[1:]}' px, py = toplot.A * 1e-3 + 1.5, toplot.V * 1e-3 + 1.5 ha = 'left' va = 'bottom' if e in ['R14', 'DM05']: px -= 3 ha = 'right' if e in ['M22', 'G13']: py -= 3 va = 'top' ax.text(px, py, text, color=c, ha=ha, va=va, fontsize=14); ax.set_title(r'$\bf{d}$ Global volume $\it{vs}$ area', loc='left') ax.set_xlabel('Area (10$^3$ km$^2$)'); ax.set_ylabel('Volume (10$^3$ km$^3$)'); ax.yaxis.tick_right() ax.yaxis.set_label_position("right") ax.tick_params(axis='both', which='both', length=0) # Pos shenanigans pos = ax.get_position() pos.y1 -= yshift / 2; ax.set_position(pos) # ------------- Plot left (a) ------------- ax = ax4 # Index on the y-axis rx = np.arange(len(m22)) # Space between estimates offset = np.linspace(-0.25, 0.25, 6) # Parameters s = 6 # markersize a = 0.4 # alpha for "less important" estimates texts_for_legend = [] # Go over all esimates for i, estimate in enumerate(['m22', 'f19', 'r14', 'g13', 'hf12', 'm12']): df = dataframes[estimate] if estimate == 'm12': # One reg less df = df.loc[rgi_ids[1:]] x = rx[1:] + offset[i] else: df = df.loc[rgi_ids] x = rx + offset[i] alpha = 1 if i < 2 else a c = p[estimates.index(estimate)] ax.errorbar(df['V'], x, xerr=df['V_err'], fmt='o', c=c, markersize=s, alpha=alpha); texts_for_legend.append(TextArea(legend[estimate], textprops=dict(color=c, fontsize=fs_lhs, alpha=alpha))) # Add Millan other ax.errorbar(m22_a['V'], rx[0] - 0.35, xerr=m22_a['V_err'], fmt=mimarker, c=cmillan, markersize=s); texts_for_legend.insert(0, TextArea('Millan and others, 2022*', textprops=dict(color=cmillan, fontsize=fs_lhs))) # Legend box texts_vbox = VPacker(children=texts_for_legend, pad=0, sep=0) ann = AnnotationBbox(texts_vbox, (.223, .92), xycoords=ax.transAxes, bboxprops=dict(color='none', facecolor='white')) ann.set_figure(f) f.artists.append(ann) # Titles ax.set_title(r'$\bf{a}$ Volume per region', loc='left'); ax.set_xlabel('Ice volume (km$^3$) - log scale'); # Axis cosmetics ax.invert_yaxis() ax.set_yticks(rx); ax.set_yticklabels(strs); sns.despine(ax=ax, right=True) ax.grid(axis='y', which='both') # All gridlines for log ax.set_xscale('log') xlocs = np.concatenate([np.arange(1, 11)[2:] * 1e1, np.arange(1, 11) * 1e2, np.arange(1, 11) * 1e3, np.arange(1, 11)[:6] * 1e4]) ax.set_xticks(xlocs) ax.set_xlim([30, 65000]) locs, labels = plt.yticks() # Shading for i, loc in enumerate(locs): alpha = 0.05 if i % 2 == 1 else 0.1 ax.axhspan(loc - 0.5, loc + 0.5, facecolor='grey', alpha=alpha) ax.set_ylim(15.5, -0.5) # plt.tight_layout() plt.savefig('plot_global_and_reg_log_alpha.png', dpi=150, bbox_inches='tight'); ###Output _____no_output_____ ###Markdown Additional analyses Other models in Farinotti 2019 ###Code df_rgi = pd.read_hdf('data/rgi6_stats.h5') df_all = pd.read_hdf('data/f19_icevol_pergla.hdf') df_all['area'] = df_rgi['Area'] df_all['REG'] = [s[6:8] for s in df_all.index] df_ref = df_rgi.groupby('O1Region').sum()[['Area']] models = ['composite_vol_m3', 'model_1_vol_m3', 'model_2_vol_m3', 'model_3_vol_m3', 'model_4_vol_m3'] df_all_s = df_ref.copy() for mo in models: dd_ = df_all[['REG', 'area', mo]].dropna() dd = dd_.groupby('REG').sum().replace(0, np.NaN) * 1e-9 dd['area'] = dd_.groupby('REG').sum().replace(0, np.NaN)['area'] ratio = dd['area'].divide(df_ref['Area']) dd.loc[ratio < 0.98] = np.NaN df_all_s[mo] = dd[mo] df_all_s.loc['01, 02'] = df_all_s.loc[['01', '02']].sum() df_all_s.loc['13, 14, 15'] = df_all_s.loc[['13', '14', '15']].sum() df_all_s = df_all_s.drop(['01', '02'] + ['13', '14', '15']).sort_index() df_all_s.loc['13, 14, 15', 'model_4_vol_m3'] = np.NaN df_all_s.loc['01, 02', 'model_2_vol_m3'] = np.NaN df_all_s.loc['01, 02', 'model_4_vol_m3'] = np.NaN f, ax = plt.subplots(figsize=(14, 7)) reformat_df(f19).plot(ax=ax, y='V', yerr='V_err', marker='o', linestyle='none', alpha=0.8, c='C0'); m22.plot(ax=ax, y='V', yerr='V_err', marker='o', linestyle='none', alpha=0.8, c='C3'); plt.plot(df_all_s.model_1_vol_m3, '.', c='black', zorder=99) ax.set_yscale('log') plt.xticks(np.arange(len(m22.index))); ax.set_xticklabels(m22.index, rotation=45); plt.legend(['Individual models in F 19', 'Farinotti 19', 'Millan 22'], loc='lower left'); plt.xlabel('Region'); plt.ylabel('Volume [km$^3$]'); plt.plot(df_all_s.model_1_vol_m3, '.', c='black', zorder=99) plt.plot(df_all_s.model_2_vol_m3, '.', c='black', zorder=99) plt.plot(df_all_s.model_3_vol_m3, '.', c='black', zorder=99) plt.plot(df_all_s.model_4_vol_m3, '.', c='black', zorder=99) plt.title('Volume, log scale'); ###Output _____no_output_____ ###Markdown ![title](img/1.png) DECISION TREEDecision tree merupakan salah satu dari algoritma machine learning yang dapat digunakan untuk melakukan klasifikasi dan juga regresi, pada module kali ini kita akan menggunakan decision tree sebagai algoritma klasifikasi Langkah-langkah:1. Import module2. Persiapan Data 3. EDA (Exploratory Data Analysis)4. Data Preparation5. Pembuatan model machine learning6. Validasi Model 7. Klasifikasi INSTALL MODULE TAMBAHAN: * conda install python-graphviz* conda install graphviz 1. Import ModuleLangkah pertama yang akan kita lakukan adalah melakukan import module yang akan dipakai selama klasifikasi ini berlangsung ###Code import pandas as pd import matplotlib.pyplot as plt import seaborn as sns import numpy as np import graphviz from sklearn.tree import DecisionTreeClassifier, export_graphviz from sklearn.model_selection import train_test_split from sklearn.metrics import accuracy_score from sklearn.metrics import classification_report ###Output _____no_output_____ ###Markdown 2. Persiapan DataPada langkah kali ini, kita akan mencari data yang akan kita gunakan, pada klasifikasi kali ini, data yang kita gunakan merupakan data obat untuk pemilihan obat berdasarkan kondisi pasienTerdapat beberapa feature / atribut didalam dataset ini antara lain:* Age >> Umur dari pasien* Sex >> Jenis kelamin pasien* BP >> Blood Pressure / Tekanan darah dari pasien* Cholesterol >> Tingkat kolestrol pasien* Na_to_K >> Natrium / Kalium dalam darah* Drug >> Jenis obat yang digunakanhttps://www.kaggle.com/gangliu/drugsets![title](img/dataset.png) ###Code #Load data & tampilkan 5 baris teratas df = pd.read_csv('dataset/drug200.csv') df.head() ###Output _____no_output_____ ###Markdown 3. EDA (Exploratory Data Analysis)EDA merupakan proses analisis data, pada proses ini kita mencari suatu pattern dan insight dari suatu data, dimana hasil dari eksplorasi ini akan digunakan untuk memudahkan kita dalam membuat model machine learning nanti ###Code #Output informasi penting pada data df.info() #Cek nilai pada setiap feature / column for col in df.columns: print(f'{df[col].value_counts()}\n\n') #Cek apakah terdapat data kosong atau tidak, outputkan dalam persentase df.isna().sum() / len(df) #Cek apakah terdapat instance yang duplikat atau tidak df[df.duplicated() == True] ###Output _____no_output_____ ###Markdown Dari eksplorasi data yang kita lakukan, tidak ditemukan nilai kosong / NaN dan juga nilai yang duplikat, kita dapat lanjut ke langkah berikutnya ###Code #Cek relasi obat dan umur pasien sns.set() sns.set_palette('coolwarm') sns.barplot('Drug','Age',hue='Sex',ci=None,data=df) plt.title('RELASI OBAT DAN UMUR PASIEN',fontweight='bold') plt.show() #Cek perbandingan penggunaan obat sns.countplot('Drug',data=df) plt.title('PERBANDINGAN PENGGUNAAN OBAT',fontweight='bold') ###Output _____no_output_____ ###Markdown Orang yang berumur lebih dari 50 tahun cenderung menggunakan drug B, sedangkan untuk jumlah penggunaan obat drug Y merupakan obat yang paling sering digunakan 4. Data PreparationSaat ini kita akan melakukan cleaning data agar data ini dapat dimasukan kedalam model machine learning, kita akan mengganti column 'Sex' 'BP' 'Cholesterol' yang bermupakan columns category menjadi angka agar dapat dimasukan kedalam model machine learningkarena column Sex merupakan binominal (ya / tidak) dan column BP, Cholesterol merupakan skala ordinal dalam statistika (https://id.wikipedia.org/wiki/Skala_(statistik)) dan bukan skala nominal, kita bisa menyimpulkan bahwa data yang metode penggantian kategori menjadi angka yang kita gunakan adalah LabelEncoder (skala nominal menggunakan OneHot Encoder)![title](img/ordinal.png)![title](img/nominal.png)dikarenakan jumlah nilai yang sedikit, kita akan melakukan LabelEncoder secara manual, namun apabila nilai yang terdapat dalam column ada banyak, kalian bisa menggunakan module LabelEncoder dari sklearn ###Code #Outputkan nilai dari setiap column category for col in df.select_dtypes(include=['object']): print(f'{df[col].value_counts()}\n\n') #Mapping nilai yang akan di ganti menggunakan Dictionary pada python Sex = {'M':1, 'F':0} BP = {'HIGH':2, 'NORMAL':1, 'LOW': 0} Cholesterol = {'HIGH':1, 'NORMAL':0} #Menukar nilai column df['Sex'] = df['Sex'].replace(Sex) df['BP'] = df['BP'].replace(BP) df['Cholesterol'] = df['Cholesterol'].replace(Cholesterol) #Output 5 baris teratas untuk cek apakah nilai sudah berganti atau belum df.head() ###Output _____no_output_____ ###Markdown Langkah selanjutnya kita akan memecah data menjadi 2 kategori yaitu feature X dan target variable ydilanjutkan dengan memecah data tadi menjadi 25% untuk test, dan 75% data untuk training, kita akan menggunakan module dari sklearn untuk memudahkan pekerjaan kita ###Code #Pecah data menjadi feature X dan target variable y y = df['Drug'] X = df.drop('Drug',axis=1) #Pecah menjadi 75% train set dan 25% test set X_train, X_test, y_train, y_test = train_test_split(X,y, test_size=0.25, stratify=y) ###Output _____no_output_____ ###Markdown 5. Pembuatan model Machine learninglangkah ini merupakan langkah dimana kita akan membuat model machine learning, algoritma yang kita gunakan merupakan decision tree dimana feature akan diurutkan berdasarkan nilai information gain yang paling besar ke kecil DECISION TREE![title](img/pengertian.png)merupakan algoritma supervised learning yang dapat digunakan untuk klasifikasi dan juga regresibagian root (node paling atas) merupakan feature yang memiliki nilai information gain paling besar, lalu disusul dengan feature dengan information gain yang dibawahnya hingga pada akhirnya pada bagian daun (node) diputuskan hasil klasifikasi / regresi yang dilakukan Kelebihan:* Tidak memerlukan preprosessing data numeric (melakukan standarisasi berdasarkan variance) * Menangani kolinearitas secara efisien* Decision tree memberikan penjelasan yang mudah dimengerti atas prediksi yang didapatkan Kekurangan:* Memiliki peluang overfit model apabila membangun model pohon dengan kemurnian tinggi (jumlah turunan pohon / ranting sangatlah banyak)* Rawan terhadap pencilan* Pohon bisa menjadi kompleks pada saat melatih dataset yang rumit* Apabila data latih terdapat nilai kontinu, maka informasi didalamnya dapat hilang untuk penjelasan lebih detail, silahkan menonton video berikut ini:https://www.youtube.com/watch?v=qDcl-FRnwSU ###Code #Panggil algoritma decision tree dan lakukan training menggunakan training data dt = DecisionTreeClassifier() dt.fit(X_train,y_train) ###Output _____no_output_____ ###Markdown 6. Validasi modelkita akan melakukan pengecekan akurasi pada model yang telah kita buat ###Code #Cek akurasi model accuracy_score(y_test,dt.predict(X_test)) #Cek score F1 model print(classification_report(y_test,dt.predict(X_test))) ###Output precision recall f1-score support drugA 1.00 1.00 1.00 6 drugB 1.00 1.00 1.00 4 drugC 1.00 1.00 1.00 4 drugX 1.00 0.92 0.96 13 drugY 0.96 1.00 0.98 23 accuracy 0.98 50 macro avg 0.99 0.98 0.99 50 weighted avg 0.98 0.98 0.98 50 ###Markdown Hebat! model kita memiliki akurasi diatas 80%, namun pada saat melakukan pengecekan F1 score akan terdapat label dengan F1 Score yang agak rendah, hal tersebut maklum dikarenakan jumlah data yang tidak seimbang, dan tidak dilakukannya hyperparameter tuning pada model yang telah kita buat ###Code #Cek sebaran data Drug y.value_counts() ###Output _____no_output_____ ###Markdown Disini kita bisa lihat bahwa benar adanya jumlah data yang kita miliki tidaklah merata, karena ini hanya latihan maka praktik seperti ini tidak apa, namun pada real world case, hal ini tidak boleh dilakukan sehingga pada real world case kita harus memastikan bahwa jumlah data yang kita miliki itu seimbangOke karena model yang sudah kita buat siap untuk dideploy, mari kita melakukan suatu prediksi berdsasarkan ketentuan:* Umur: 40* Sex: Perempuan* BP: Low* Cholestrol: Low* Na_to_K: 12apakah obat yang direkomendasikan merupakan DrugX? ###Code #Melakukan Prediksi dt.predict([[40,0,0,0,12]]) ###Output _____no_output_____ ###Markdown ![title](img/2.png)Kelebihan dari decision tree ialah karena algoritma ini menggunakan nilai information gain untuk klasifikasi, kita dapat melihat komponen apa yang paling berpengaruh dalam klasifikasi, kita akan melihat feature dengan 2 cara yaitu menggunakan feature_importances_ dan juga menggunakan visualisasi pohon ###Code #Melihat feature yang paling berpengaruh melalui nilai gini print(dict(zip(df.columns, dt.feature_importances_))) ###Output {'Age': 0.13512260389206093, 'Sex': 0.0, 'BP': 0.32950836900745195, 'Cholesterol': 0.058452148826825354, 'Na_to_K': 0.47691687827366164} ###Markdown Disini kita mengetahui bahwa urutan feature yang paling berpengaruh ke kurang berpengaruh adalah:* Na_to_K* BP* Age* Cholesterol* Sex (Tidak berpengaruh sama sekali) ###Code #Membuat visualisasi pohon ke dalam file pdf dengan nama Decision Tree dot_data = export_graphviz(dt,out_file=None, feature_names=X.columns, class_names=y.unique(), filled=True,rounded=True, special_characters=True) graph = graphviz.Source(dot_data) graph.render('Decision Tree') ###Output _____no_output_____ ###Markdown Fetching Reviews from Play Store ###Code def fetch_reviews(app_name, app_id): try: os.mkdir(app_name) except FileExistsError: pass # Empty list for storing reviews app_reviews = [] # Number of reviews to scrape per batch count = 10 # To keep track of how many batches have been completed batch_num = 0 # Retrieve reviews (and continuation_token) with reviews function rvws, token = reviews( app_id, # found in app's url lang='en', # defaults to 'en' country='us', # defaults to 'us' sort=Sort.NEWEST, # start with most recent count=count # batch size ) # Add the list of review dicts to overall list app_reviews.extend(rvws) # Increase batch count by one batch_num +=1 # Wait 1 to 5 seconds to start next batch time.sleep(random.randint(1,5)) # Append review IDs to list prior to starting next batch pre_review_ids = [] for rvw in app_reviews: pre_review_ids.append(rvw['reviewId']) # Loop through at most max number of batches for batch in range(5): rvws, token = reviews( # store continuation_token app_id, lang='en', country='us', sort=Sort.NEWEST, count=count, # using token obtained from previous batch continuation_token=token ) # Append unique review IDs from current batch to new list new_review_ids = [] for r in rvws: new_review_ids.append(r['reviewId']) # Add the list of review dicts to main app_reviews list app_reviews.extend(rvws) # Increase batch count by one batch_num +=1 # Break loop and stop scraping for current app if most recent batch # did not add any unique reviews all_review_ids = pre_review_ids + new_review_ids if len(set(pre_review_ids)) == len(set(all_review_ids)): print(f'No reviews left to scrape. Completed {batch_num} batches.\n') break # all_review_ids becomes pre_review_ids to check against # for next batch pre_review_ids = all_review_ids # At every 100th batch # if batch_num%100==0: if True: # print update on number of batches print(f'Batch {batch_num} completed.') df = pd.DataFrame(app_reviews) df = df[['content', 'thumbsUpCount', 'score']] ran = app_name + ''.join(random.choices(string.ascii_uppercase + string.digits, k = 10)) df.to_csv(f"./{app_name}/{ran}.csv") # empty our list for next round of 100 batches app_reviews = [] # Wait 1 to 5 seconds to start next batch time.sleep(random.randint(1,5)) # Reviews for tinder fetch_reviews('tinder', 'com.tinder') ###Output Batch 2 completed. Batch 3 completed. Batch 4 completed. Batch 5 completed. Batch 6 completed. ###Markdown Analysis of Tinder Getting all the csv files with the reviews for tinder ###Code csv_files = list(filter(lambda x: x.endswith('.csv'),os.listdir('tinder'))) csv_files = list(map(lambda x: os.path.join('tinder', x), csv_files)) csv_files ###Output _____no_output_____ ###Markdown Combining all the review dataset ###Code df = pd.DataFrame() for file in csv_files: df = df.append(pd.read_csv(file)) df.head() ###Output _____no_output_____ ###Markdown Droping extra columns* **content**: contains the actual review* **score**: number of stars provided by user* **thumbsupCount**: thumbsup for the review* **at**: time of posting Reset the Index also ###Code df = df[['content', 'score', 'thumbsUpCount', 'at']] df.reset_index(inplace=True) df df.hist('score') df[df['thumbsUpCount']>1000] ###Output _____no_output_____ ###Markdown NLP Tagging the english reviewsWe will be focusing on just english reviews ###Code # !pip install langdetect from langdetect import detect_langs ((detect_langs(df.iloc[4543].content))[0]).lang def tagging(data): try: return detect_langs(data)[0].lang except: return 'undefined' df['lang'] = df['content'].apply(tagging) df df.iloc[370472].content for file in csv_files: a = (pd.read_csv(file)) # print(a) s = s.append(a) s.size s.append(pd.read_csv(csv_files[0])) dff0 = pd.read_csv(csv_files[0])[['userName', 'thumbsUpCount', 'content', 'score']] dff1 = pd.read_csv(csv_files[1])[['userName', 'thumbsUpCount', 'content', 'score']] dff1 + dff0 ###Output _____no_output_____ ###Markdown COVID-19 in Germany's Political Discourse **RQ:** What prevalence does *COVID-19* have in the social media messaging across Germany's political spectrum? We measure the number of posts on Twitter created by the parties in the German Bundestag containing the string "corona". We restrict us to the account of the left-wing party *Die Linke* ([@Linksfraktion](https://twitter.com/Linksfraktion)) and the right-wing party *Alternative für Deutschland* ([@AfDimBundestag](https://twitter.com/AfDimBundestag)).For the analysis we begin by importing the required libraries ###Code source("myLib.R") ###Output _____no_output_____ ###Markdown To execute cells press Shift+Enter. Next, we read the [data](./data.csv) (see [data-collection.ipynb](data-collection.ipynb) ) and plot the frequency of tweets. For plotting we use the [R](https://www.r-project.org/) package [ggplot](https://ggplot2.tidyverse.org/). ###Code data <- read_csv("data.csv", col_types = cols()) %>% mutate(date=as.Date(date)) data %>% ggplot(aes(x = date, fill = username)) + geom_histogram(position = "dodge", binwidth = 1) + labs(y = "Number of tweets / day", x = "Date",fill="Twitter accounts") + scale_fill_manual(values = c_values) ###Output _____no_output_____ ###Markdown analysis- it is quite clear that teams that qualified are performing better in most of the departments than non-qualifing teams- and then in qualifying also team that is doing even better(overall in all depts) than other teams have won the tournament- here teamID 1 is performing better than most teams in all depts and it has won championship ###Code import pandas as pd ###Output _____no_output_____ ###Markdown batting ###Code batting=pd.read_csv('datasets/battingdata.csv') print(batting.shape) batting.head() print('orange cap') orangeCap=batting.sort_values('r',axis=0,ascending=False) orangeCap[['r','teamID','playerID']].head(5) ###Output orange cap ###Markdown overall season ###Code print(''.center(50,'=')) print('total fifties in season >>> ',sum(batting['50s'])) print('total centuries in season >>> ',sum(batting['100s'])) print('total runs in season >>> ',sum(batting['r'])) print('total balls in season >>> ',sum(batting['b'])) print('total 4s in season >>> ',sum(batting['4s'])) print('total 6s in season >>> ',sum(batting['6s'])) print(''.center(50,'=')) ###Output ================================================== total fifties in season >>> 89 total centuries in season >>> 4 total runs in season >>> 17716 total balls in season >>> 13952 total 4s in season >>> 1548 total 6s in season >>> 687 ================================================== ###Markdown teamWise ###Code print('team-wise stats for batting'.center(40,'=')) print(batting[['50s','100s','r','6s','4s','teamID']].groupby('teamID').sum()) print(''.center(40,'=')) # since some teams have played more games than other it is only fair to avgerage statistics print('team-wise avg stats for batting'.center(60,'=')) print(batting[['b','r','6s','4s','teamID']].groupby('teamID').mean()) print(''.center(60,'=')) ###Output ==============team-wise avg stats for batting=============== b r 6s 4s teamID 1 117.625000 162.937500 7.187500 14.437500 3 92.650000 119.100000 3.300000 11.650000 4 65.160000 82.440000 3.720000 6.200000 5 100.947368 127.526316 5.157895 11.578947 6 79.650000 100.800000 3.800000 9.050000 8 68.375000 86.958333 3.750000 7.791667 9 88.300000 109.050000 3.950000 9.500000 62 69.583333 81.625000 2.916667 6.291667 ============================================================ ###Markdown bowling ###Code bowling=pd.read_csv('datasets/bowlingdata.csv') bowling=bowling.loc[bowling.o!='-'] print(bowling.shape) bowling.head() print('purple cap') purplecap=bowling.sort_values('w',axis=0,ascending=False) purplecap[['w','teamID','playerID']].head() # overall season print(''.center(50,'=')) print('total wickets in season >>> ',sum(bowling['w'])) print('total maiden overs in season >>> ',sum(bowling['maid'])) print('total maiden wicket overs in season >>> ',sum(bowling['wmaid'])) print('total extra runs in season >>> ',sum(bowling['r'])-sum(batting['r'])) print('total no balls in season >>> ',sum(bowling['nb'])) print('total wide balls in season >>> ',sum(bowling['wb'])) print('total dot balls in season >>> ',sum(bowling['d'])) print('total 4 wickets hauls in season >>> ',sum(bowling['4w'])) print('total 5 wickets hauls in season >>> ',sum(bowling['5w'])) print('total hatricks in season >>> ',sum(bowling['ht'])) print(''.center(50,'=')) print('hatric player ID >>>',int(bowling.loc[bowling.ht==1,'playerID'])) print('he also has the purple cap') # team wise # since some teams have played more games than other it is only fair to avgerage statistics print('team-wise stats for bowling'.center(40,'=')) print(bowling[['w','nb','wb','d','maid','teamID']].groupby('teamID').sum()) print('wickets-no-wide-dot'.center(40,'=')) ###Output ======team-wise stats for bowling======= w nb wb d maid teamID 1 96 8 85 700 3 3 96 8 47 721 4 4 75 4 48 620 3 5 100 20 59 767 0 6 77 12 48 640 1 8 62 7 70 518 1 9 92 13 55 641 2 62 72 4 49 622 2 ==========wickets-no-wide-dot=========== ###Markdown fielding ###Code fielding=pd.read_csv('datasets/fieldingdata.csv') print(fielding.shape) fielding.head() # overall season print(''.center(50,'=')) print('total catches in season >>> ',sum(fielding['c'])) print('total run outs in season >>> ',sum(fielding['ro'])) print('total stumpings in season >>> ',sum(fielding['s'])) print(''.center(50,'=')) print('team-wise stats for fielding'.center(40,'=')) print(fielding[['c','ro','s','teamID']].groupby('teamID').sum()) print('catches-runOuts-stumpings'.center(40,'=')) print('top catchers') catches=fielding.sort_values('c',axis=0,ascending=False) catches[['c','teamID','playerID']].head() print('team-wise avg stats for fielding'.center(40,'=')) print(fielding[['c','ro','teamID']].groupby('teamID').mean()) print('catches-runOuts'.center(40,'=')) ###Output ====team-wise avg stats for fielding==== c ro teamID 1 4.500000 0.625000 3 3.200000 0.500000 4 2.120000 0.240000 5 3.315789 0.736842 6 2.550000 0.300000 8 1.916667 0.416667 9 3.550000 0.350000 62 2.291667 0.250000 ============catches-runOuts============= ###Markdown Analysis of MMNN group chat using Python let's first import the libraries to use ###Code import matplotlib.pyplot as plt # for visualization import numpy as np # for numerical import pandas as pd # for data analysis from pandas.io.json import json_normalize # dealing with nested json files data = pd.read_json("data.json") data.head(5) ###Output _____no_output_____ ###Markdown from the above data frame we can see that the data we need to deal with is nested inside another dictionary hence why we need the json_normalize import to create a dataframe of it's own ###Code new = json_normalize(data["messages"]) new.head(4) new.tail(4) ###Output _____no_output_____ ###Markdown import torchimport torch.nn as nnimport torch.nn.parallelimport torch.backends.cudnn as cudnn ###Code model = torch.load('runs/conv4_usc_unsigned/example/prune_rate=0.5/9/checkpoints/model_best.pth') print(model['arch']) print(model['state_dict'].keys()) import matplotlib.pyplot as plt import numpy as np score = model['state_dict']['module.convs.0.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) score = model['state_dict']['module.convs.2.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) score = model['state_dict']['module.convs.5.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) score = model['state_dict']['module.convs.7.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) score = model['state_dict']['module.linear.0.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) score = model['state_dict']['module.linear.2.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) score = model['state_dict']['module.linear.4.scores'].cpu() score, _ = score.flatten().abs().sort(descending=True) plt.bar(np.arange(len(score)), score.numpy()) ###Output _____no_output_____ ###Markdown setup ###Code %matplotlib inline from eelbrain import * import scipy, mne, os, shutil, pdb, importlib import numpy as np import matplotlib.pyplot as plt root_folder = 'data_path' # path to DRUM dataset subjects_dir = f'{root_folder}/mri' # copy freesurfer fsaverage files here meg_folder = f'{root_folder}/meg' output_folder = 'output_path' # path to output folder if not os.path.exists(output_folder): os.makedirs(output_folder) subjects = [f for f in os.listdir(meg_folder) if f[0]=='R'] # get subject list subjects.sort() ###Output _____no_output_____ ###Markdown make sourcespace ###Code # make subjects_dir mri folders and scaled source spaces # freesurfer fsaverage files need to be in the subjects_dir for subject in subjects: if not os.path.exists(f'{subjects_dir}/{subject}/bem/{subject}-ico-4-src.fif'): print(f'making {subject}') os.makedirs(f'{subjects_dir}/{subject}/bem') shutil.copyfile(f'{meg_folder}/{subject}/MRI scaling parameters.cfg', f'{subjects_dir}/{subject}/MRI scaling parameters.cfg') mne.scale_source_space(subject, f'{{subject}}-ico-4-src.fif', subjects_dir=subjects_dir) ###Output _____no_output_____ ###Markdown make resting beta power ###Code for subject in subjects: if subject == 'R26672': # fix for R2667 is not needed for resting data continue for visit in ['visit1', 'visit2']: fwdfile = f'{meg_folder}/{subject}/{subject}_{visit}_resting-ico-4-fwd.fif' snds = [] for i in range(1,3): # loop over resting 1 and 2 rawfile = f'{meg_folder}/{subject}/{subject}_{visit}_resting{i}-raw.fif' if not os.path.exists(rawfile): print(f'file not found: {subject}_{visit}_resting{i}') continue print(f'loading {subject}_{visit}_resting{i}') raw = mne.io.read_raw_fif(rawfile) # source localization covfile = f'{rawfile[:-7]}cov.fif' fwd = mne.read_forward_solution(fwdfile) cov = mne.read_cov(covfile) invsol = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, fixed=True, depth=0.8) stc1 = mne.minimum_norm.apply_inverse_raw(raw, invsol, lambda2 = 1, method='MNE') snd1 = load.fiff.stc_ndvar(stc1, 'fsaverage', 'ico-4', subjects_dir=subjects_dir) snds.append(snd1.sub(time=(5, snd1.time.tmax-5))) del stc1, snd1 if len(snds) == 0: continue # concatenate resting 1 and 2 snd1 = concatenate(snds, 'time') del snds # make psd on 15s blocks of the data nblocks = snd1.time.tmax/15 psds = [] for i in range(int(np.floor(nblocks))): print('making psd block', i*15, 's - ', (i+1)*15, 's', ' '*20, end='\r') psds.append(psd_welch(snd1.sub(time=(i*15,(i+1)*15)), n_per_seg=256, n_overlap=128).sub(frequency=(1,40))) psd = combine(psds).mean('case') save.pickle(psd, f'{output_folder}/{subject}_{visit}_resting_psd.pkl') # plot average psds across the whole brain and across rolandic roi rolandicROI = list(set([l for l in psd.source.parc.as_labels() if 'central' in l])) psd1 = psd.mean('source') # whole brain average psd1.name = 'whole brain' psd2 = psd.sub(source=rolandicROI).mean('source') # rolandic roi average psd2.name = 'rolandic ROI' p = plot.UTS([[psd1, psd2]]) p.save(f'{output_folder}/plots_psd_{subject}_{visit}_resting.png') p.close() ###Output _____no_output_____ ###Markdown make visual beta power ###Code tasks = ['fam', 'mm', 'pn', 'pd'] for subject in subjects: for visit in ['visit1', 'visit2']: fwdfile = f'{meg_folder}/{subject}/{subject}_{visit}_visual-fwd.fif' for task in tasks: rawfile = f'{meg_folder}/{subject}/{subject}_{visit}_visual_{task}-raw.fif' if not os.path.exists(rawfile): print(f'file not found: {subject}_{visit}_visual_{task}') continue print(f'loading {subject}_{visit}_visual_{task}') raw = mne.io.read_raw_fif(rawfile) # source localization covfile = f'{rawfile[:-7]}cov.fif' fwd = mne.read_forward_solution(fwdfile) cov = mne.read_cov(covfile) invsol = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, fixed=True, depth=0.8) stc1 = mne.minimum_norm.apply_inverse_raw(raw, invsol, lambda2 = 1, method='MNE') snd1 = load.fiff.stc_ndvar(stc1, 'fsaverage', 'ico-4', subjects_dir=subjects_dir) # make psd in 15s blocks nblocks = snd1.time.tmax/15 psds = [] for i in range(int(np.floor(nblocks))): print('making psd block', i*15, 's - ', (i+1)*15, 's', ' '*20, end='\r') psds.append(psd_welch(snd1.sub(time=(i*15,(i+1)*15)), n_per_seg=256, n_overlap=128).sub(frequency=(1,40))) psd = combine(psds).mean('case') save.pickle(psd, f'{output_folder}/{subject}_{visit}_visual_{task}_psd.pkl') # plot average psds across the whole brain and across rolandic roi rolandicROI = list(set([l for l in psd.source.parc.as_labels() if 'central' in l])) psd1 = psd.mean('source') # whole brain average psd1.name = 'whole brain' psd2 = psd.sub(source=rolandicROI).mean('source') # rolandic roi average psd2.name = 'rolandic ROI' p = plot.UTS([[psd1, psd2]]) p.save(f'{output_folder}/plots_psd_{subject}_{visit}_visual_{task}.png') p.close() ###Output _____no_output_____ ###Markdown write CSV file beta power ###Code CONTROLS = ['R2517', 'R2519', 'R2520', 'R2521', 'R2525', 'R2528', 'R2496', 'R2673',] PATIENTS = ['R2527', 'R2540', 'R2546', 'R2598', 'R2615', 'R2617', 'R2664', 'R2667', 'R2668',] # lesion hemisphere LEFT = ['R2527', 'R2540', 'R2667', 'R2668'] RIGHT = ['R2546', 'R2598', 'R2615', 'R2617', 'R2664'] psdsubj = dict(C={},P={}) beta_band = (13, 25) psdrange = (2, 40) outfile = 'betapower.csv' with open(outfile, 'w+') as f: f.write(f'subject,group,rel_beta,visit,task\n') # column headings # lesion hemisphere outfile2 = 'betapower_lesionhemi.csv' with open(outfile2, 'w+') as f: f.write(f'subject,group,rel_beta,hemi,lesion,visit,task\n') # column headings for subject in subjects: for visit in ['visit1', 'visit2']: for task in ['resting', 'visual_fam', 'visual_mm', 'visual_pn', 'visual_pd']: infile = f'{subject}_{visit}_{task}_psd.pkl' if not os.path.exists(f'{output_folder}/{infile}'): print(f'file not found: {infile}') continue print(f'loading: {infile}') psd = load.unpickle(f'{output_folder}/{infile}') subject = subject[:5] # this is to combine R26672 and R2667 if subject in CONTROLS: group = 'C' else: group = 'P' # rolandic ROI rolandicROI = list(set([l for l in psd.source.parc.as_labels() if 'central' in l])) psd2 = psd.sub(source=rolandicROI).mean('source').sub(frequency=psdrange) # relative power psd_rel = psd2.copy() psd_rel.x /= np.sum(psd_rel.x) rel_beta = psd_rel.sub(frequency=beta_band).sum('frequency') with open(outfile, 'a+') as f: f.write(f'{subject},{group},{rel_beta},{visit},{task}\n') psdL = psd.sub(source=rolandicROI).sub(source='lh').mean('source').sub(frequency=psdrange) psd_relL = psdL.copy() psd_relL.x /= np.sum(psd_relL.x) rel_betaL = psd_relL.sub(frequency=beta_band).sum('frequency') psdR = psd.sub(source=rolandicROI).sub(source='rh').mean('source').sub(frequency=psdrange) psd_relR = psdR.copy() psd_relR.x /= np.sum(psd_relR.x) rel_betaR = psd_relR.sub(frequency=beta_band).sum('frequency') with open(outfile2, 'a+') as f: if subject in LEFT: f.write(f'{subject},{group},{rel_betaL},left,ipsi,{visit},{task}\n') f.write(f'{subject},{group},{rel_betaR},right,contra,{visit},{task}\n') elif subject in RIGHT: f.write(f'{subject},{group},{rel_betaL},left,contra,{visit},{task}\n') f.write(f'{subject},{group},{rel_betaR},right,ipsi,{visit},{task}\n') else: f.write(f'{subject},{group},{rel_betaL},left,,{visit},{task}\n') f.write(f'{subject},{group},{rel_betaR},right,,{visit},{task}\n') ###Output _____no_output_____ ###Markdown make ERD ERS ###Code import pandas as pd for subject in subjects: for visit in ['visit1', 'visit2']: trigger_file = f'{subject[:5]}_{visit}_visual_triggers.csv' # subject[:5] to combine R26672 and R2667 if not os.path.exists(f'{meg_folder}/{subject[:5]}/{trigger_file}'): print(f'file not found: {trigger_file}') continue print(trigger_file) triggers = pd.read_csv(f'{meg_folder}/{subject[:5]}/{trigger_file}') for task in ['mm', 'pn', 'pd']: rawfile = f'{subject}_{visit}_visual_{task}-raw.fif' if not os.path.exists(f'{meg_folder}/{subject}/{rawfile}'): print(f'file not found: {rawfile}') continue print(f'loading: {rawfile}') raw = mne.io.read_raw_fif(f'{meg_folder}/{subject}/{rawfile}') # source localization covfile = f'{meg_folder}/{subject}/{rawfile[:-7]}cov.fif' fwdfile = f'{meg_folder}/{subject}/{subject}_{visit}_visual-fwd.fif' fwd = mne.read_forward_solution(fwdfile) cov = mne.read_cov(covfile) invsol = mne.minimum_norm.make_inverse_operator(raw.info, fwd, cov, fixed=True, depth=0.8) stc1 = mne.minimum_norm.apply_inverse_raw(raw, invsol, lambda2 = 1, method='MNE') snd1 = load.fiff.stc_ndvar(stc1, 'fsaverage', 'ico-4', subjects_dir=subjects_dir) rolandicROI = list(set([l for l in snd1.source.parc.as_labels() if 'central' in l])) snd1 = snd1.sub(source=rolandicROI) tstart = load.unpickle(f'{meg_folder}/{subject}/{rawfile[:-8]}_tstart.pkl') snd1 = NDVar(snd1.x, (snd1.source, UTS(tstart, snd1.time.tstep, snd1.x.shape[1]))) epochsR = [] epochsL = [] specgramsL = [] specgramsR = [] specgramsL_lh = [] specgramsL_rh = [] specgramsR_lh = [] specgramsR_rh = [] task_trigs = triggers[triggers['task']==task] i = 1 for tt, side in zip(task_trigs['t_start'], task_trigs['button_side']): t = tt if subject == 'R26672': t -= 1214 # get correct trigger times print(i, len(task_trigs['t_start']), t, ' '*20, end='\r') i += 1 if t+3 > snd1.time.tmax: print(f'{t+3} > {snd1.time.tmax}') continue epoch = snd1.sub(time=(t-3,t+3)) # make spectrogram using morlet wavelets freqs = np.logspace(*np.log10([6, 35]), num=20) n_cycles = freqs / 2. fs = 1/epoch.time.tstep specgram = mne.time_frequency.tfr_array_morlet(epoch.x[np.newaxis,:,:], fs, freqs=freqs, n_cycles=n_cycles, use_fft=True, n_jobs=1, decim=1) specgram = NDVar(np.abs(specgram[0])**2, (epoch.source, Scalar('frequency', freqs), UTS(-3, 1/fs, specgram[0].shape[2]))) specgram_lh = specgram.sub(source='lh').mean('source') specgram_rh = specgram.sub(source='rh').mean('source') specgram = specgram.mean('source') if side == 'left': epochsL.append(epoch) specgramsL.append(specgram) specgramsL_lh.append(specgram_lh) specgramsL_rh.append(specgram_rh) elif side == 'right': epochsR.append(epoch) specgramsR.append(specgram) specgramsR_lh.append(specgram_lh) specgramsR_rh.append(specgram_rh) save.pickle(epochsL, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_buttonL_epochs.pkl') save.pickle(epochsR, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_buttonR_epochs.pkl') save.pickle(specgramsL, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_button_specgramsL.pkl') save.pickle(specgramsR, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_button_specgramsR.pkl') save.pickle(specgramsL_lh, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_button_specgramsL_lh.pkl') save.pickle(specgramsR_lh, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_button_specgramsR_lh.pkl') save.pickle(specgramsL_rh, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_button_specgramsL_rh.pkl') save.pickle(specgramsR_rh, f'{output_folder}/{subject[:5]}_{visit}_visual_{task}_button_specgramsR_rh.pkl') ###Output _____no_output_____ ###Markdown write CSV file ERD ERS ###Code # functions for computing ERD, ERS def get_ERD_ERS(ev, f1=13, f2=25): tbaseline = (-2.9,-2) RELBASE = ev.sub(frequency=(f1,f2)).mean('frequency').sub(time=tbaseline).mean('time') / ev.sub(time=tbaseline).mean('frequency').mean('time') ev = ev.sub(frequency=(f1,f2)).mean('frequency') BASE = ev.sub(time=tbaseline).mean('time') normf = ev.sub(time=tbaseline).mean('time') ts1 = -1 te1 = 0.5 ERD = -(ev.sub(time=(ts1,te1)).mean('time') - normf)/normf ts2 = 0.5 te2 = 2.5 ERS = (ev.sub(time=(ts2,te2)).mean('time') - normf)/normf if ERD <= 0: ERD = '' if ERS <= 0: ERS = '' return ERD, ERS, BASE, RELBASE def get_ERD_ERS_trials(ev): ERDs = [] ERSs = [] BASEs = [] RELBASEs = [] ntrials = 0 for ii in range(len(ev)): ERD, ERS, BASE, RELBASE = get_ERD_ERS(ev[ii]) if ERD!='': ERDs.append(ERD) if ERS!='': ERSs.append(ERS) BASEs.append(BASE) RELBASEs.append(RELBASE) ntrials += 1 if len(ERDs) == 0: ERD = '' else: ERD = np.sum(ERDs)/ntrials if len(ERSs) == 0: ERS = '' else: ERS = np.sum(ERSs)/ntrials BASE = np.sum(BASEs)/ntrials RELBASE = np.sum(RELBASEs)/ntrials return ERD, ERS, BASE, RELBASE CONTROLS = ['R2517', 'R2519', 'R2520', 'R2521', 'R2525', 'R2528', 'R2496', 'R2673',] PATIENTS = ['R2527', 'R2540', 'R2546', 'R2598', 'R2615', 'R2617', 'R2664', 'R2667', 'R2668',] subjects = CONTROLS + PATIENTS # lesion hemisphere LEFT = ['R2527', 'R2540', 'R2667', 'R2668'] RIGHT = ['R2546', 'R2598', 'R2615', 'R2617', 'R2664'] beta_band = (13, 25) psdrange = (2, 40) outfile = 'ERD_ERS.csv' with open(outfile, 'w+') as f: f.write(f'subject,group,value,metric,visit,task\n') # column headings # lesion hemisphere button outfile2 = 'ERD_ERS_lesionhemi.csv' with open(outfile2, 'w+') as f: f.write(f'subject,group,value,metric,hemi,lesion,visit,task\n') # column headings for subject in subjects: if subject == 'R26672': continue for visit in ['visit1', 'visit2']: for task in ['mm', 'pn', 'pd']: infile = f'{subject}_{visit}_visual_{task}_button_specgramsL.pkl' if not os.path.exists(f'{output_folder}/{infile}'): print(f'file not found: {infile}') continue print(f'loading: {infile}') specL = load.unpickle(f'{output_folder}/{infile}') specR = load.unpickle(f'{output_folder}/{subject}_{visit}_visual_{task}_button_specgramsR.pkl') spec = combine([combine(specL),combine(specR)]) ERD, ERS, BASE, RELBASE = get_ERD_ERS_trials(spec) if subject in CONTROLS: group = 'C' else: group = 'P' spec_lh = combine([combine(specR_lh), combine(specL_lh)]) spec_rh = combine([combine(specR_rh), combine(specL_rh)]) ERD_lh, ERS_lh, _, _ = get_ERD_ERS_trials(spec_lh) ERD_rh, ERS_rh, _, _ = get_ERD_ERS_trials(spec_rh) with open(outfile, 'a+') as f: f.write(f'{subject},{group},{ERD},ERD,{visit},{task}\n') f.write(f'{subject},{group},{ERS},ERS,{visit},{task}\n') f.write(f'{subject},{group},{BASE},BASE,{visit},{task}\n') f.write(f'{subject},{group},{RELBASE},RELBASE,{visit},{task}\n') with open(outfile2, 'a+') as f: if subject in LEFT: f.write(f'{subject},{group},{ERD_lh},ERD,left,ipsi,{visit},{task}\n') f.write(f'{subject},{group},{ERS_lh},ERS,left,ipsi,{visit},{task}\n') f.write(f'{subject},{group},{ERD_rh},ERD,right,contra,{visit},{task}\n') f.write(f'{subject},{group},{ERS_rh},ERS,right,contra,{visit},{task}\n') elif subject in RIGHT: f.write(f'{subject},{group},{ERD_lh},ERD,left,contra,{visit},{task}\n') f.write(f'{subject},{group},{ERS_lh},ERS,left,contra,{visit},{task}\n') f.write(f'{subject},{group},{ERD_rh},ERD,right,ipsi,{visit},{task}\n') f.write(f'{subject},{group},{ERS_rh},ERS,right,ipsi,{visit},{task}\n') else: f.write(f'{subject},{group},{ERD_lh},ERD,left,,{visit},{task}\n') f.write(f'{subject},{group},{ERS_lh},ERS,left,,{visit},{task}\n') f.write(f'{subject},{group},{ERD_rh},ERD,right,,{visit},{task}\n') f.write(f'{subject},{group},{ERS_rh},ERS,right,,{visit},{task}\n') ###Output _____no_output_____ ###Markdown ====================================================================================================================================== ###Code from fastseg import MobileV3Large model = MobileV3Large(num_classes=19, use_aspp=True, num_filters=256) model = model.from_pretrained(num_filters=256) img = Image.open("../data/utube/cities/Kochi 4K _ Driving from Kakkanad to Kaloor by sunset 24-41 screenshot.png") labels = model.predict_one(img) labels.shape labels classes, counts = np.unique(labels, return_counts=True) classes, counts, counts.sum() class_names = ["road", "sidewalk", "building", "wall", "fence", "pole", "traffic_light", "traffic_sign", "vegetation", "terrain", "sky", "person", "rider", "car", "truck", "bus", "train", "motorcycle", "bicycle"] len(class_names) img_class_counts = {} img_dir = "../data/utube" # for img_path in os.listdir(img_dir): # print(f"Processing image {img_path}") # img = Image.open(os.path.join(img_dir, img_path)) # labels = model.predict_one(img) # _, counts = np.unique(labels, return_counts=True) # n_pixels = labels.size # counts = counts/ n_pixels # img_class_counts[img_path] = counts ###Output _____no_output_____ ###Markdown ======================================================================================================================================== ###Code with open("img_class_counts.pkl", 'rb') as f: img_class_counts = pickle.load(f) class_names = ["road", "sidewalk", "building", "wall", "fence", "pole", "traffic_light", "traffic_sign", "vegetation", "terrain", "sky", "person", "rider", "car", "truck", "bus", "train", "motorcycle", "bicycle"] len(class_names) relevant_classes = ["road", "sidewalk", "building", "vegetation", "terrain", "sky"] relevant_class_ids = [] for class_name in relevant_classes: relevant_class_ids.append(class_names.index(class_name)) relevant_class_ids img_class_counts["Kochi 4K _ Driving from Kakkanad to Kaloor by sunset 24-41 screenshot.png"][relevant_class_ids] relevant_img_class_counts = {img:img_count[relevant_class_ids] for img, img_count in img_class_counts.items()} relevant_img_class_counts feature_names = ["frac_"+name for name in relevant_classes] feature_names dataset = pd.DataFrame(list(relevant_img_class_counts.values()), columns=feature_names) dataset.head() dataset["img_name"] = list(relevant_img_class_counts.keys()) dataset.head() dataset = dataset[["img_name"] + feature_names] dataset.head() city_walkability_scores = { "Bangalore": 0.63, "Chennai": 0.77, "Kochi": 0.57, "Kolkata": 0.81, "Mumbai": 0.85, "Varanasi": 0.33, "Shimla": 0.22, "Bhubaneswar": 0.28, "Delhi": 0.87, "Guwahati": 0.39, "Madurai": 0.40, "Panaji": 0.32, "Ahmedabad": 0.85, "Amritsar": 0.31, "Bikaner": 0.43, "Chandigarh": 0.91, "Gangtok": 0.30, "Jaipur": 0.64, "Kanpur": 0.59, "Kolkata": 0.81, "Madurai": 0.40, "Pune": 0.81, "Shimla": 0.22, "Surat": 0.62, "Trivandrum": 0.34, "Varanasi": 0.33, } len(city_walkability_scores) img_walkability_bins = {} cities = city_walkability_scores.keys() for img in relevant_img_class_counts.keys(): if "panjim" in img.lower() or "panajim" in img.lower(): img = "panaji" + img city = [c for c in cities if c.lower() in img.lower()][0] img_walkability_bins[img] = int(city_walkability_scores[city] // 0.2) img_walkability_bins dataset["label"] = list(img_walkability_bins.values()) dataset.head() X = dataset.drop(columns=["img_name", "label"]) y = dataset["label"] type(X), type(y) X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42) model = DecisionTreeClassifier(random_state=42, max_depth=5) # tune max_depth model.fit(X_train, y_train) model.score(X_test, y_test) model.tree_.compute_feature_importances(normalize=False) feature_cols = X.columns feature_cols feat_imp_dict = dict(zip(feature_cols, model.feature_importances_)) feat_imp = pd.DataFrame.from_dict(feat_imp_dict, orient='index') feat_imp.rename(columns = {0:'Feature Importance'}, inplace = True) feat_imp.sort_values(by=['Feature Importance'], ascending=False).head() dot_data = StringIO() export_graphviz(model, out_file=dot_data, filled=True, rounded=True, special_characters=True, feature_names = feature_cols, class_names=['0', '1', '2', '3', '4']) # change class_names to ['0', '1', '2', '3', '4'] (graph, ) = graph_from_dot_data(dot_data.getvalue()) Img(graph.create_png()) ###Output _____no_output_____ ###Markdown ======================================================================================================================================================================= ###Code random_forest_model = RandomForestClassifier(random_state=42, max_depth=5) random_forest_model.fit(X_train, y_train) random_forest_model.score(X_test, y_test) feat_imp_dict = dict(zip(feature_cols, random_forest_model.feature_importances_)) feat_imp = pd.DataFrame.from_dict(feat_imp_dict, orient='index') feat_imp.rename(columns = {0:'Feature Importance'}, inplace = True) feat_imp.sort_values(by=['Feature Importance'], ascending=False).head() ###Output _____no_output_____ ###Markdown Initial Run ###Code # AU Mic == TIC 441420236 file = 'tess2018206045859-s0001-0000000441420236-0120-s_lc.fits' tbl = Table.read(file, format='fits') AOK = (tbl['QUALITY'] == 0) & np.isfinite(tbl['PDCSAP_FLUX']) df_tbl = tbl.to_pandas() smo = df_tbl['PDCSAP_FLUX'][AOK].rolling(128, center=True).median() med = np.nanmedian(df_tbl['PDCSAP_FLUX'][AOK]) mcmc = pd.read_table('aumic_mcmc.txt', delim_whitespace=True, names=('walk','accept','step','chi','rad1','lat1','lon1', 'rad2','lat2','lon2','bright')) plt.plot(mcmc['rad1'], marker='.', linestyle=None, alpha=0.1) plt.plot(mcmc['rad2'], marker='.', linestyle=None, alpha=0.1) plt.ylabel('rad') _ = plt.hist(mcmc['rad1'],bins=100,alpha=0.5) _ = plt.hist(mcmc['rad2'],bins=100,alpha=0.5) plt.xlabel('rad') plt.plot(mcmc['lat1']-np.pi/2, marker='.', linestyle=None, alpha=0.1) plt.plot(mcmc['lat2']-np.pi/2, marker='.', linestyle=None, alpha=0.1) plt.ylabel('lat') _ = plt.hist(mcmc['lat1']-np.pi/2,bins=100,alpha=0.5) _ = plt.hist(mcmc['lat2']-np.pi/2,bins=100,alpha=0.5) plt.xlabel('lat') plt.plot(mcmc['lon1'], marker='.', linestyle=None, alpha=0.1) plt.plot(mcmc['lon2'], marker='.', linestyle=None, alpha=0.1) plt.ylabel('lon') _ = plt.hist(mcmc['lon1'],bins=100,alpha=0.5) _ = plt.hist(mcmc['lon2'],bins=100,alpha=0.5) plt.xlabel('lon') lcbest = pd.read_table('aumic_lcbest.txt', delim_whitespace=True, names=('time', 'flux','err','model','f1','f2','snum')) plt.plot(lcbest['f1']) plt.plot(lcbest['f2']) plt.plot(mcmc['chi'] / np.size(lcbest['f1']), marker='.', alpha=0.1) plt.yscale("log") plt.plot(mcmc['chi']/ np.size(lcbest['f1']), mcmc['lat1']-np.pi/2, marker='.', linestyle='none', alpha=0.1) plt.plot(mcmc['chi']/ np.size(lcbest['f1']), mcmc['lat2']-np.pi/2, marker='.', linestyle='none', alpha=0.1) plt.xscale("log") plt.xlabel('chisq') plt.ylabel('lat') plt.gca().invert_xaxis() plt.xlim(1e3,10) plt.figure(figsize=(15,4)) plt.plot(tbl['TIME'][AOK], tbl['PDCSAP_FLUX'][AOK]/med, lw=0.75, label='TESS 2-min', rasterized=True) plt.ylabel('Flux'); plt.xlabel('BJD - 2457000 (days)'); plt.plot(lcbest['time'], lcbest['model'], c='r', label='Starspot Model', rasterized=True) plt.legend(fontsize=12) # plt.savefig('lc_model.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) ok = np.where((mcmc['step'] > 1500))[0] plt.figure(figsize=(12,6)) # ax=plt.subplot(111, projection="aitoff",) plt.scatter(mcmc['lon1'][ok]* 180/np.pi, 90-(mcmc['lat1'][ok])* 180/np.pi, marker='o', alpha=0.1, s=1, rasterized=True) plt.scatter(mcmc['lon2'][ok]* 180/np.pi, 90-(mcmc['lat2'][ok])* 180/np.pi, marker='o', alpha=0.1, s=1, rasterized=True) plt.scatter(209.565806, 90-31.484912, c='r') plt.scatter(343.430354, 90-46.778680, c='k') plt.grid(True) ds = 0.25 plt.figure(figsize=(6,6)) plt.scatter(mcmc['lon1'][ok]* 180/np.pi, 90-(mcmc['lat1'][ok])* 180/np.pi, marker=',', alpha=0.1, s=1, rasterized=True) plt.scatter(209.565806, 90-31.484912, c='C1', rasterized=True) plt.xlim(209.565806-ds, 209.565806+ds) plt.ylim(90-31.484912-ds, 90-31.484912+ds) plt.xlabel('Lon (deg)') plt.ylabel('Lat (deg)') plt.grid(True) # plt.savefig('spot1.pdf', dpi=450, bbox_inches='tight', pad_inches=0.25, rasterized=True) plt.figure(figsize=(6,6)) plt.scatter(mcmc['lon2'][ok]* 180/np.pi, 90-(mcmc['lat2'][ok])* 180/np.pi, marker=',', alpha=0.1, s=1, c='C1', rasterized=True) plt.scatter(343.430354, 90-46.778680, c='C0', rasterized=True) plt.xlim(343.430354-ds, 343.430354+ds) plt.ylim(90-46.778680-ds, 90-46.778680+ds) plt.xlabel('Lon (deg)') plt.ylabel('Lat (deg)') plt.grid(True) # plt.savefig('spot2.pdf', dpi=450, bbox_inches='tight', pad_inches=0.25, rasterized=True) ###Output _____no_output_____ ###Markdown Explore InclinationDid a few, and longer, MCMC runs with STSP ###Code inclin = np.array([0., 15, 30, 45, 60], dtype='float') chi = np.zeros_like(inclin) for k in range(5): chi[k] = pd.read_csv('aumic'+str(k)+'_parambest.txt', delim_whitespace=True, names=('c','x'))['c'][7] plt.plot(inclin, chi / np.float(len(lcbest)), '-o', c='k') plt.xlabel('Stellar Inclination (deg)') plt.ylabel('$\chi^2$') print(chi / np.float(len(lcbest))) plt.savefig('chisq_incl.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) sim = 0 pbest = pd.read_csv('aumic'+str(sim)+'_parambest.txt', delim_whitespace=True, header=None, usecols=(0,), names=('c')) pbest # aumic0.in aumic1.in aumic2.in aumic3.in aumic4.in # i = 0, 15, 30, 45, 60 deg mcmc = pd.read_table('aumic'+str(sim)+'_mcmc.txt', delim_whitespace=True, names=('walk','accept','step','chi','rad1','lat1','lon1', 'rad2','lat2','lon2','bright')) lcbest = pd.read_table('aumic'+str(sim)+'_lcbest.txt', delim_whitespace=True, names=('time', 'flux','err','model','f1','f2','snum')) plt.plot(mcmc['step'], mcmc['chi'] / np.size(lcbest['f1']), marker='.', alpha=0.1) plt.yscale("log") plt.plot(mcmc['step'], mcmc['lon1']* 180/np.pi, marker='.', linestyle=None, alpha=0.1) plt.plot(mcmc['step'], mcmc['lon2']* 180/np.pi, marker='.', linestyle=None, alpha=0.1) plt.ylabel('lon') plt.xscale('log') ok = np.where((mcmc['step'] > 2000))[0] plt.figure(figsize=(15,4)) plt.plot(tbl['TIME'][AOK], tbl['PDCSAP_FLUX'][AOK]/med, lw=0.75, label='TESS 2-min', rasterized=True) plt.ylabel('Flux'); plt.xlabel('BJD - 2457000 (days)'); plt.plot(lcbest['time'], lcbest['model'], c='r', label='Starspot Model', rasterized=True) plt.legend(fontsize=12) plt.savefig('lc_model.pdf', dpi=150, bbox_inches='tight', pad_inches=0.25) ds = 0.25 plt.figure(figsize=(6,6)) plt.scatter(mcmc['lon1'][ok]* 180/np.pi, 90-(mcmc['lat1'][ok])* 180/np.pi, marker=',', alpha=0.1, s=1, rasterized=True) plt.scatter(pbest['c'][10], 90-pbest['c'][9], c='C1', rasterized=True) plt.xlim(pbest['c'][10]-ds, pbest['c'][10]+ds) plt.ylim(90-pbest['c'][9]-ds, 90-pbest['c'][9]+ds) plt.xlabel('Lon (deg)') plt.ylabel('Lat (deg)') plt.grid(True) plt.savefig('spot1.pdf', dpi=450, bbox_inches='tight', pad_inches=0.25, rasterized=True) plt.figure(figsize=(6,6)) plt.scatter(mcmc['lon2'][ok]* 180/np.pi, 90-(mcmc['lat2'][ok])* 180/np.pi, marker=',', alpha=0.1, s=1, c='C1', rasterized=True) plt.scatter(pbest['c'][13], 90-pbest['c'][12], c='C0', rasterized=True) plt.xlim(pbest['c'][13]-ds, pbest['c'][13]+ds) plt.ylim(90-pbest['c'][12]-ds, 90-pbest['c'][12]+ds) plt.xlabel('Lon (deg)') plt.ylabel('Lat (deg)') plt.grid(True) plt.savefig('spot2.pdf', dpi=450, bbox_inches='tight', pad_inches=0.25, rasterized=True) plt.scatter(mcmc['lon1'][ok]* 180/np.pi, np.abs(90-(mcmc['lat1'][ok])* 180/np.pi), marker=',', alpha=0.1, s=1, rasterized=True) plt.scatter(mcmc['lon2'][ok]* 180/np.pi, np.abs(90-(mcmc['lat2'][ok])* 180/np.pi), marker=',', alpha=0.1, s=1, c='C1', rasterized=True) plt.scatter(pbest['c'][10], 90-pbest['c'][9], c='C4', rasterized=True) plt.scatter(pbest['c'][13], 90-pbest['c'][12], c='C3', rasterized=True) plt.xlim(0,365) plt.ylim(0,90) plt.grid(True) ###Output _____no_output_____ ###Markdown Exploring Hacker News PostsIn this project, we'll work with a data set of submissions to popular technology site [Hacker News](https://news.ycombinator.com/).Hacker News is a site started by the startup incubator Y Combinator, where user-submitted stories (known as "posts") are voted and commented upon, similar to reddit. Hacker News is extremely popular in technology and startup circles, and posts that make it to the top of Hacker News' listings can get hundreds of thousands of visitors as a result. Analysis goalOur main goal will be to deteminate **Top 5 hours for posting to get most comments** Step 1First we need to take a look on our data set and separate headers from rest of the data ###Code import csv with open("data_sets/HN_posts_year_to_Sep_26_2016.csv", encoding='utf8') as data_file: hn = list(csv.reader(data_file)) print(len(hn)) headers = hn[0] hn.remove(headers) print(len(hn)) ###Output 293120 293119 ###Markdown Now let's take a look on the first few rows of our data set ###Code print("Headers:\n%s\n\nData:" % headers) for row in hn[:5]: print(row) ###Output Headers: ['id', 'title', 'url', 'num_points', 'num_comments', 'author', 'created_at'] Data: ['12579008', 'You have two days to comment if you want stem cells to be classified as your own', 'http://www.regulations.gov/document?D=FDA-2015-D-3719-0018', '1', '0', 'altstar', '9/26/2016 3:26'] ['12579005', 'SQLAR the SQLite Archiver', 'https://www.sqlite.org/sqlar/doc/trunk/README.md', '1', '0', 'blacksqr', '9/26/2016 3:24'] ['12578997', 'What if we just printed a flatscreen television on the side of our boxes?', 'https://medium.com/vanmoof/our-secrets-out-f21c1f03fdc8#.ietxmez43', '1', '0', 'pavel_lishin', '9/26/2016 3:19'] ['12578989', 'algorithmic music', 'http://cacm.acm.org/magazines/2011/7/109891-algorithmic-composition/fulltext', '1', '0', 'poindontcare', '9/26/2016 3:16'] ['12578979', 'How the Data Vault Enables the Next-Gen Data Warehouse and Data Lake', 'https://www.talend.com/blog/2016/05/12/talend-and-Â\x93the-data-vaultÂ\x94', '1', '0', 'markgainor1', '9/26/2016 3:14'] ###Markdown Step 2As we can see, we have posts without comments. So we have to clean our data from such posts. ###Code clean_hn = [] print("hn before cleaning: %s" % len(hn)) for row in hn: n_comments = int(row[4]) if n_comments > 0: clean_hn.append(row) print("clean_hn after cleaning: %s" % len(clean_hn)) headers = clean_hn[0] clean_hn.remove(headers) print("clean_hn without header: %s" % len(clean_hn)) ###Output hn before cleaning: 293119 clean_hn after cleaning: 80401 clean_hn without header: 80400 ###Markdown Step 3We're specifically interested in posts whose titles begin with either _Ask HN_ or _Show HN_. Users submit _Ask HN_ posts to ask the Hacker News community a specific question. Below are a couple examples:* Ask HN: How to improve my personal website?* Ask HN: Am I the only one outraged by Twitter shutting down share counts?* Ask HN: Aby recent changes to CSS that broke mobile?Likewise, users submit Show HN posts to show the Hacker News community a project, product, or just generally something interesting. Below are a couple of examples:* Show HN: Wio Link ESP8266 Based Web of Things Hardware Development Platform'* Show HN: Something pointless I made* Show HN: Shanhu.io, a programming playground powered by e8vmWe'll compare these two types of posts to determine the following:1. Do Ask HN or Show HN receive more comments on average?2. Do posts created at a certain time receive more comments on average?Let's separate posts beginning with _Ask HN_ and _Show HN_ (and case variations) into two different lists next. ###Code ask_posts = [] show_posts = [] other_posts = [] for row in clean_hn: title = row[1] if title.lower().startswith("ask hn"): ask_posts.append(row) elif title.lower().startswith("show hn"): show_posts.append(row) else: other_posts.append(row) print(len(ask_posts)) print(len(show_posts)) print(len(other_posts)) ###Output 6911 5059 68430 ###Markdown Step 4Next, let's determine if ask posts or show posts receive more comments on average. ###Code total_ask_comments = 0 for row in ask_posts: total_ask_comments += int(row[4]) avg_ask_comments = total_ask_comments / len(ask_posts) print("Average comments in 'Ask HN' posts: %s" % avg_ask_comments) total_show_comments = 0 for row in show_posts: total_show_comments += int(row[4]) avg_show_comments = total_show_comments / len(show_posts) print("Average comments in 'Show HN' posts: %s" % avg_show_comments) ###Output Average comments in 'Show HN' posts: 9.810832180272781 ###Markdown We've determined that, on average, _"Ask"_ posts receive more comments than _"Show"_ posts. Since ask posts are more likely to receive comments, we'll focus our remaining analysis just on these posts. Step 5Next, we'll determine if ask posts created at a certain time are more likely to attract comments. We'll use the following steps to perform this analysis:* Calculate the amount of ask posts created in each hour of the day, along with the number of comments received. ###Code import datetime as dt result_list = [] for row in ask_posts: result_list.append([row[6], int(row[4])]) counts_by_hour = {} comments_by_hour = {} for row in result_list: date_time = row[0] n_commnts = row[1] date_time = dt.datetime.strptime(date_time, "%m/%d/%Y %H:%M") hour = date_time.strftime("%H") if hour not in counts_by_hour.keys(): counts_by_hour[hour] = 1 comments_by_hour[hour] = n_commnts else: counts_by_hour[hour] += 1 comments_by_hour[hour] += n_commnts print("Posts count by hour:\n%s\n" % counts_by_hour) print("Comments count by hour:\n%s" % comments_by_hour) ###Output Posts count by hour: {'02': 227, '01': 223, '22': 287, '21': 407, '19': 420, '17': 404, '15': 467, '14': 378, '13': 326, '11': 251, '10': 219, '09': 176, '07': 157, '03': 212, '16': 415, '08': 190, '00': 231, '23': 276, '20': 392, '18': 452, '12': 274, '04': 186, '06': 176, '05': 165} Comments count by hour: {'02': 2996, '01': 2089, '22': 3372, '21': 4500, '19': 3954, '17': 5547, '15': 18525, '14': 4972, '13': 7245, '11': 2797, '10': 3013, '09': 1477, '07': 1585, '03': 2154, '16': 4466, '08': 2362, '00': 2277, '23': 2297, '20': 4462, '18': 4877, '12': 4234, '04': 2360, '06': 1587, '05': 1838} ###Markdown * Calculate the average number of comments ask posts receive by hour ###Code avg_by_hour = [] for counts_hour, posts in counts_by_hour.items(): for comments_hour, comments in comments_by_hour.items(): if counts_hour == comments_hour: avg_comments = comments/posts avg_by_hour.append([counts_hour, avg_comments]) print("Average number of comments ask posts receive by hour created:\n%s" % avg_by_hour) ###Output Average number of comments ask posts receive by hour created: [['02', 13.198237885462555], ['01', 9.367713004484305], ['22', 11.749128919860627], ['21', 11.056511056511056], ['19', 9.414285714285715], ['17', 13.73019801980198], ['15', 39.66809421841542], ['14', 13.153439153439153], ['13', 22.2239263803681], ['11', 11.143426294820717], ['10', 13.757990867579908], ['09', 8.392045454545455], ['07', 10.095541401273886], ['03', 10.160377358490566], ['16', 10.76144578313253], ['08', 12.43157894736842], ['00', 9.857142857142858], ['23', 8.322463768115941], ['20', 11.38265306122449], ['18', 10.789823008849558], ['12', 15.452554744525548], ['04', 12.688172043010752], ['06', 9.017045454545455], ['05', 11.139393939393939]] ###Markdown Step 6Although we now have the results we need, this format makes it hard to identify the hours with the highest values. Let's finish by sorting the list of lists and printing the five highest values in a format that's easier to read. ###Code swap_avg_by_hour = [] for row in avg_by_hour: swap_avg_by_hour.append([row[1], row[0]]) sorted_swap = sorted(swap_avg_by_hour, reverse=True) top_5_hours_for_ask_posts_comments = sorted_swap[:5] for row in top_5_hours_for_ask_posts_comments: time_formated = dt.datetime.strptime(row[1], "%H") time_formated = time_formated.strftime("%H:%M") comment = "{}: {:.2f} comments per post in average".format(time_formated, row[0]) print(comment) ###Output 15:00: 39.67 comments per post in average 13:00: 22.22 comments per post in average 12:00: 15.45 comments per post in average 10:00: 13.76 comments per post in average 17:00: 13.73 comments per post in average ###Markdown Analysis Load the required libraries. ###Code library(oligo) library(biomaRt) library(data.table) library(stringr) library(dplyr) library(ggplot2) library(ggrepel) library(qusage) library(limma) ###Output Loading required package: BiocGenerics Loading required package: parallel Attaching package: ‘BiocGenerics’ The following objects are masked from ‘package:parallel’: clusterApply, clusterApplyLB, clusterCall, clusterEvalQ, clusterExport, clusterMap, parApply, parCapply, parLapply, parLapplyLB, parRapply, parSapply, parSapplyLB The following objects are masked from ‘package:stats’: IQR, mad, sd, var, xtabs The following objects are masked from ‘package:base’: anyDuplicated, append, as.data.frame, basename, cbind, colnames, dirname, do.call, duplicated, eval, evalq, Filter, Find, get, grep, grepl, intersect, is.unsorted, lapply, Map, mapply, match, mget, order, paste, pmax, pmax.int, pmin, pmin.int, Position, rank, rbind, Reduce, rownames, sapply, setdiff, sort, table, tapply, union, unique, unsplit, which.max, which.min Loading required package: oligoClasses Welcome to oligoClasses version 1.52.0 Loading required package: Biobase Welcome to Bioconductor Vignettes contain introductory material; view with 'browseVignettes()'. To cite Bioconductor, see 'citation("Biobase")', and for packages 'citation("pkgname")'. Loading required package: Biostrings Loading required package: S4Vectors Loading required package: stats4 Attaching package: ‘S4Vectors’ The following object is masked from ‘package:base’: expand.grid Loading required package: IRanges Loading required package: XVector Attaching package: ‘Biostrings’ The following object is masked from ‘package:base’: strsplit ================================================================================ Welcome to oligo version 1.54.1 ================================================================================ Attaching package: ‘data.table’ The following object is masked from ‘package:IRanges’: shift The following objects are masked from ‘package:S4Vectors’: first, second Attaching package: ‘dplyr’ The following objects are masked from ‘package:data.table’: between, first, last The following object is masked from ‘package:biomaRt’: select The following object is masked from ‘package:oligo’: summarize The following objects are masked from ‘package:Biostrings’: collapse, intersect, setdiff, setequal, union The following object is masked from ‘package:XVector’: slice The following objects are masked from ‘package:IRanges’: collapse, desc, intersect, setdiff, slice, union The following objects are masked from ‘package:S4Vectors’: first, intersect, rename, setdiff, setequal, union The following object is masked from ‘package:Biobase’: combine The following objects are masked from ‘package:BiocGenerics’: combine, intersect, setdiff, union The following objects are masked from ‘package:stats’: filter, lag The following objects are masked from ‘package:base’: intersect, setdiff, setequal, union Loading required package: limma Attaching package: ‘limma’ The following object is masked from ‘package:oligo’: backgroundCorrect The following object is masked from ‘package:BiocGenerics’: plotMA ###Markdown Set the working directory and list the data files. ###Code # Data directory setwd('/home/mario/Projects/holmes_analysis/data') # Read data cel_files <- list.files(path = getwd(), pattern = '*.CEL.gz', full.names = TRUE) # Set working directory setwd('/home/mario/Projects/holmes_analysis') ###Output _____no_output_____ ###Markdown Load the data and perform data normalisation RMA. ###Code # Load data parsed_cels <- oligo::read.celfiles(cel_files, verbose = TRUE) # Background correction of the microarrays parsed_cels_rma <- oligo::rma(parsed_cels, normalize = TRUE, background = TRUE) # Obtain the expression matrix expression_data <- parsed_cels_rma@assayData$exprs expression_data <- as.data.frame(expression_data) expression_data$affy_mouse430_2 <- rownames(expression_data) expression_data <- expression_data[, c(21, 1:20)] rownames(expression_data) <- NULL # Print expression matrix head(expression_data) ###Output Loading required package: pd.mouse430.2 Loading required package: RSQLite Loading required package: DBI Platform design info loaded. ###Markdown Obtain the translation table from Ensembl ###Code # Connect with Ensembl mart <- useEnsembl(biomart='ensembl', dataset='mmusculus_gene_ensembl') mouse_probes <- row.names(parsed_cels_rma@assayData$exprs) # Obtain the translation table id_translation_table <- getBM(attributes = c('affy_mouse430_2', 'ensembl_gene_id', 'mgi_symbol'), filters = 'affy_mouse430_2', values = mouse_probes, mart=mart) id_translation_table$mgi_symbol <- toupper(id_translation_table$mgi_symbol) # Print translation table head(id_translation_table) ###Output _____no_output_____ ###Markdown Translate the data ###Code # Translate data expression_data <- merge(x = id_translation_table, y = expression_data, by = 'affy_mouse430_2') expression_data <- expression_data %>% dplyr::rename(Ensembl = ensembl_gene_id) # Print translated data head(expression_data) ###Output _____no_output_____ ###Markdown Format the data ###Code # Remove probes that do not match to Ensembl IDs expression_data <- data.table(expression_data) expression_data <- expression_data[!is.na(expression_data$Ensembl),] # Compute the mean of all the probes that match to the same gene sample_columns <- row.names(parsed_cels_rma@phenoData@data) expression_data <- expression_data[,lapply(.SD, mean), by=Ensembl, .SDcols=sample_columns] # Format the data columns colnames(expression_data) <- gsub('_Mouse430v2.CEL.gz', '', colnames(expression_data)) colnames(expression_data) <- substr(colnames(expression_data), 12, 35) colnames(expression_data)[1] <- 'Ensembl' expression_data <- as.data.frame(expression_data) # Translate again expression_data <- merge(x = expression_data, y = id_translation_table, by.x = 'Ensembl', by.y = 'ensembl_gene_id') expression_data <- expression_data[, c(23, 2:21)] expression_data <- expression_data[!duplicated(expression_data), ] colnames(expression_data)[1] <- 'Gene_symbol' # Remove IDs that do not match to HGNC symbols expression_data <- expression_data[!is.na(expression_data$Gene_symbol),] expression_data <- expression_data[!(expression_data$Gene_symbol==''),] # Print expression data head(expression_data) ###Output _____no_output_____ ###Markdown Single-gene analysis Study the effect of Dusp5 knockout Perform a t-test per gene between population and correct for multiple testing. ###Code # Compute tests wt <- expression_data[, grepl('WT', colnames(expression_data))] ko <- expression_data[, grepl('KO', colnames(expression_data))] first <- TRUE for (i in 1:dim(expression_data)[1]) { test <- t.test(wt[i, ], ko[i, ]) row <- data.frame(Gene_symbol = expression_data[i, 'Gene_symbol'], p.value = test$p.value, mean_diff = test$estimate[[2]] - test$estimate[[1]]) if (first) { first <- FALSE ko_vs_wt <- row next } ko_vs_wt <- rbind(ko_vs_wt, row) } # Multiple testing correction ko_vs_wt$adjusted.p.value <- p.adjust(ko_vs_wt$p.value, method = 'BH') # Print results head(ko_vs_wt) ###Output _____no_output_____ ###Markdown Plot the results. ###Code # Select relevant genes to highlight ko_vs_wt$mlog10PValue <- -log10(ko_vs_wt$p.value) relevants <- ko_vs_wt[ko_vs_wt$adjusted.p.value <= 0.05, ] relevants <- relevants[order(-abs(relevants$mean_diff)), ] relevants <- relevants[1:25, ] relevants <- relevants[!is.na(relevants$Gene_symbol), ] # Volcano plot options(repr.plot.width=25, repr.plot.height=10) ko_vs_wt %>% ggplot + geom_point(aes(x = mean_diff, y = mlog10PValue, colour = adjusted.p.value <= 0.05), size = 4) + geom_vline(xintercept = c(-1, 1), linetype="dashed", color = "red", size=1.5) + scale_color_brewer(palette="Set2") + theme_bw() + theme(text = element_text(size=32), axis.text.x = element_text(size=32), axis.text.y = element_text(size=32)) + geom_text_repel(data = relevants, aes(x = mean_diff, y = mlog10PValue, label = Gene_symbol), size = 8) + labs(x = '-log2 fold-change', y = '-log10 p-value', colour = 'Adjusted p-value <= 0.05') + labs(title = 'Knockout vs Wild type') ###Output _____no_output_____ ###Markdown Study the effect of IL-33 (4 hrs) Perform a t-test per gene between population and correct for multiple testing. ###Code # Compute the tests ut <- expression_data[, grepl('Untreated', colnames(expression_data))] t <- expression_data[, grepl('IL-33', colnames(expression_data))] first <- TRUE for (i in 1:dim(expression_data)[1]) { test <- t.test(ut[i, ], t[i, ]) row <- data.frame(Gene_symbol = expression_data[i, 'Gene_symbol'], p.value = test$p.value, mean_diff = test$estimate[[2]] - test$estimate[[1]]) if (first) { first <- FALSE t_vs_ut <- row next } t_vs_ut <- rbind(t_vs_ut, row) } # Multiple testing correction t_vs_ut$adjusted.p.value <- p.adjust(t_vs_ut$p.value, method = 'BH') # Print the results head(t_vs_ut) ###Output _____no_output_____ ###Markdown Plot the results. ###Code # Select relevant genes to highlight t_vs_ut$mlog10PValue <- -log10(t_vs_ut$p.value) relevants <- t_vs_ut[t_vs_ut$adjusted.p.value <= 0.05, ] relevants <- relevants[order(-abs(relevants$mean_diff)), ] relevants <- relevants[1:25, ] relevants <- relevants[!is.na(relevants$Gene_symbol), ] # Volcano plot options(repr.plot.width=25, repr.plot.height=10) t_vs_ut %>% ggplot + geom_point(aes(x = mean_diff, y = mlog10PValue, colour = adjusted.p.value <= 0.05), size = 4) + geom_vline(xintercept = c(-1, 1), linetype="dashed", color = "red", size=1.5) + scale_color_brewer(palette="Set2") + theme_bw() + theme(text = element_text(size=32), axis.text.x = element_text(size=32), axis.text.y = element_text(size=32)) + geom_text_repel(data = relevants, aes(x = mean_diff, y = mlog10PValue, label = Gene_symbol), size = 8) + labs(x = '-log2 fold-change', y = '-log10 p-value', colour = 'Adjusted p-value <= 0.05') + labs(title = 'Treated vs Untreated') ###Output Warning message: “ggrepel: 7 unlabeled data points (too many overlaps). Consider increasing max.overlaps” ###Markdown Gense set analysis Over-representation analysis (hypergeometric test) ###Code # Read gene sets. Options: biocarta, go, kegg, reactome gene_sets <- read.gmt('gene_sets/biocarta_gene_sets.gmt') # Print gene sets head(gene_sets) ###Output _____no_output_____ ###Markdown Perform the hypergeometric test upon every gene set ###Code # Obtain differentially expressed genes differentially_expressed_genes <- t_vs_ut[t_vs_ut$adjusted.p.value <= 0.05, ]$Gene_symbol # Perform the hypergeometric test # Genes in the arrays N <- length(expression_data$Gene_symbol) # Number of differentiated genes n <- length(differentially_expressed_genes) # Test p-values hyper.p.values <- c() # Number of genes in the set n_genes_set <- c() # Number of differentially expressed genes in the set n_genes_in_the_set <- c() for (gene_set in gene_sets) { # Number of differentially expressed genes in the set x <- sum(differentially_expressed_genes %in% gene_set) # Number of genes in the set k <- length(unlist(gene_set)) # Compute the test p.value <- phyper(x, k, N - k, n, lower.tail = FALSE) hyper.p.values <- c(hyper.p.values, p.value) # Store results n_genes_set <- c(n_genes_set, k) n_genes_in_the_set <- c(n_genes_in_the_set, x) } # Multiple testing correction hyper.p.values <- p.adjust(hyper.p.values, 'BH') hyper_results <- data.frame(gene.set = names(gene_sets), adjusted.p.value = hyper.p.values, n.set = n_genes_set, n.in.set = n_genes_in_the_set) relevant_hyper_results <- hyper_results[hyper_results$adjusted.p.value <= 0.05, ] # Print results relevant_hyper_results ###Output _____no_output_____ ###Markdown In the North, we trust!**The European Social Survey (ESS)** is a biennial cross-national survey of attitudes and behaviour. Since its beginning in 2001, the study has been conducted 7 times. The results are published online.In this brief study, we are interested in which what factors have seen the greatest changes in the ESS across the years. We observe that trust to political authorities is one of these. We examine trust to politicians and the European Parliament, and show that there has been a decrease in trust particularly towards the EU and in Central and Southern Europe. However, Northern European respondents report notably higher levels of trust. We speculate if the decrease in trust towards authoroties is related to Generalized Social Trust towards other people but judging by visual inspection of the data, this does not seem to be the case.This notebook will guide you through the analysis. Please run each cell so that the code will run and figures will be shown.Note: please unzip the file data.zip to the same folder with this notebook. We have had to zip the data because of file size constraints of Github. Ingest ###Code import pandas as pd import numpy as np import zipfile filename = 'ESS1-7e01.csv' #Read file contents in pandas Data Frame zf = zipfile.ZipFile('data.zip') df = pd.read_csv(zf.open('ESS1-7e01.csv'), sep=',', low_memory=False) #df = pd.read_csv(filename, sep=',', low_memory=False) ###Output _____no_output_____ ###Markdown Drop uninteresting variables ###Code #The data set contains some variables which are not particularly interesting for us. Let us drop some of them. df = df.drop(columns=['edition', 'idno', 'name', 'cproddat', 'cedition', 'cname', 'cseqno']) #Let's also drop weights for now df = df.drop(columns=['dweight', 'pspwght', 'pweight']) ###Output _____no_output_____ ###Markdown Data encoding and missing valuesMost of the questions in the survey are categorical or binary tickboxes but they are encoded as numbers.We would like to treat nominal variables differently to ordinal variables.However, it is difficult to recognize which variables are nominal and which ordinal based on the encoded values.Many questions are Likert-like. Because the ESS survey is time series data, we can analyze trends based on Likert-like and binary values. ###Code #Some question include additional missing value options also encoded as numbers. #These are encoded with numbers 6, 7, 8, 9, 55, 66, 77, 88, 99, 555, 666, etc. #We well replace ESS missing data encodings with NaN. The below values don't appear naturally. #However, we are still left with missing value encodings [6, 7, 6, 9]. df.replace(to_replace=[99, 88, 77, 66, 55, 999, 888, 777, 666, 555, 9999, 8888, 7777, 6666, 5555], value=np.nan, inplace=True) #Replace missing data encodings with NaN in variables with less unique values for col in list(df): if 6 not in df[col].unique() and 7 in df[col].unique() and 8 in df[col].unique() and 9 in df[col].unique(): df[col].replace(to_replace=[7, 8, 9], value=np.nan, inplace=True) for col in list(df): if 5 not in df[col].unique() and 6 in df[col].unique() and 7 in df[col].unique() and 8 in df[col].unique() and 9 in df[col].unique(): df[col].replace(to_replace=[6, 7, 8, 9], value=np.nan, inplace=True) ###Output _____no_output_____ ###Markdown Drop values with insufficient response rateWe still have a lot of data. We probably don't need all of it. Let's drop variables which have more than 50% missing values. ###Code df = df[df.columns[df.isnull().mean() < 0.5]] #Let's save this thinned data a file so we don't need to continue to process such big files (and more importantly, so that we can share this). df.to_csv('ESS1-7e01_mod.csv') ###Output _____no_output_____ ###Markdown Load the preprocessed dataset (start here if you don't have the original ESS data)Github, through which we are sharing this notebook, has file size constraints. Because of this, we are loading in a dataset which had multiple variables dropped, through the aforementioned steps. ###Code zf = zipfile.ZipFile('data_mod.zip') df = pd.read_csv(zf.open('ESS1-7e01_mod.csv'), sep=',', low_memory=False) df = df.drop(columns=['Unnamed: 0']) ###Output _____no_output_____ ###Markdown Aggregate variables to a more insightful levelWe have a lot of data but nothing specific to look for.Perhaps we will find something interesting if we look at which variables have seen the greatest absolute change since the beginning of ESS. ###Code #First, let's see aggregate a mean for each variable per each ESS round and country. df.groupby(['essround','cntry']).agg('mean').unstack().T #Since the question are with different scales, we'll hopefully get a more accurate idea by taking the percentage of change from one year to another. df.groupby(['essround','cntry']).agg('mean').unstack().pct_change() #Let's only look at the change between the first and the last ESS round. cum_changes = df.groupby(['essround','cntry']).agg('mean').unstack().pct_change(6)[6:].T ###Output _____no_output_____ ###Markdown European aggregationTo look at Europe as a whole, let's again aggregate these averages to European level. ###Code #We take the mean for each variable on level 0, which is the country variable in this DataFrame. sorted_changes = cum_changes.mean(level=0).sort_values(by=[7]) #Fill infinite values with NaN. sorted_changes = sorted_changes.replace([np.inf, -np.inf], np.nan).dropna() #Let's change the name to something more appropriate. sorted_changes.columns = ['pct_change'] #Calculate absolute change and make it a new column, and sort based on that. sorted_changes['abs_pct_change'] = sorted_changes['pct_change'].abs() sorted_changes.sort_values(by='abs_pct_change', ascending=False) #Retrieve the 20 variables where we see the greatest change across Europe top20 = sorted_changes.nlargest(20, 'abs_pct_change') top20 = top20[['abs_pct_change', 'pct_change']] #Make the table prettier. top20.style.bar(subset=['pct_change', 'abs_pct_change'], align='mid', color=['#d65f5f', '#5fba7d']) ###Output _____no_output_____ ###Markdown Codebook exempts for the most changed variablesLet's examine what do the most changed values mean by looking at the ESS codebook.**dscrna**: "On what grounds is your group discriminated against?", multiple choice tickbox question where this variable is binary indicator of whether the respondent did not tick any other boxes. Because there is a negative change, the respondents are thus more able to tick one other box stating a factor which has lead them to experience discrimination. Therefore, experiences of discrimation based on a group characteristic has increased over the years.**dscrntn**: "On what grounds is your group discriminated against? - Nationality". Binary tickbox. Experiences of discrimination based on nationality have increased.**dscrgnd**: "On what grounds is your group discriminated against? - Gender". Binary tickbox. Experiences of discrimination based on gender have increased.**uempla**: "Using this card, which of these descriptions applies to what you have been doing for the last 7 days? - Unemployed and actively looking for a job." Binary tickbox. Unemployment and job-seeking activities have increased.**dscrrlg**: "On what grounds is your group discriminated against? - Religion". Binary tickbox. Experiences of discrimination based on religion have increased.**dscrrce**: "On what grounds is your group discriminated against? - Race". Binary tickbox. Experiences of discrimination based on race have increased.**hswrk**: "Using this card, which of these descriptions applies to what you have been doing for the last 7 days? - Doing housework, looking after children or other persons." Binary tickbox. Housework activities have decreased.**hswrkp**: "Which of the descriptions on this card applies to what he/she has been doing for the last 7 days? - Doing housework, looking after children or other persons" Binary tickbox. Partner's ousework activities have decreased.**rtrdp**: "Which of the descriptions on this card applies to what he/she has been doing for the last 7 days? - Retired" Binary tickbox. More partners have been retired.**uemplap**: "Using this card, which of these descriptions applies to what he/she has been doing for the last 7 days? - Unemployed and actively looking for a job." Binary tickbox. Partner's unemployment and job-seeking activities have increased.**rtrdp**: "Which of the descriptions on this card applies to what you have been doing for the last 7 days? - Retired" Binary tickbox. More respondents have been retired.**dscrage**: "On what grounds is your group discriminated against? - Age". Binary tickbox. Experiences of discrimination based on age have increased.**edulvla**: "What is the highest level of education you have achieved?" Ordinal scale. Respondents' level of education has increased.**freehms**: "Using this card, please say to what extent you agree or disagree with each of the following statements - Gay men and lesbians should be free to live their own life as they wish" Likert-like scale. Respondents agree with the statement more.**uemplip**: "Which of the descriptions on this card applies to what he/she has been doing for the last 7 days? - Unemployed, wanting a job but not actively looking for a job" Binary tickbox. Number of Partners who are unemployed, wanting a job but not seeking one has increased.**trstplt**: "Using this card, please tell me on a score of 0-10 how much you personally trust each of the institutions I read out. 0 means you do not trust an institution at all, and 10 means you have complete trust. Firstly...... politicians?" Likert-like scale. Trust to politicians decreased.**dsbld**: "Using this card, which of these descriptions applies to what you have been doing for the last 7 days?Permanently sick or disabled" Binary tickbox. Number of disabled increased.**trstep**: "Using this card, please tell me on a score of 0-10 how much you personally trust each of the institutions I read out. 0 means you do not trust an institution at all, and 10 means you have complete trust. Firstly...... the European Parliament?" Likert-like scale. Trust to European Parliament decreased.**stfhlth**: "Still using this card, please say what you think overall about the state of health services in [country] nowadays?"Likert-like scale. Perception of health services quality has increased.**iphlppl**: "Now I will briefly describe some people. Please listen to each description and tell me how much each person is or is not like you. Use this card for your answer.It's very important to her/him to help the people around her/him. She/he wants to care for their well-being." Likert-like scale. Self-identification towards helpful people decreased. ###Code #A lot of stuff, a lot of explaining! #We would like to visualize some of these changes. #Since we're going to draw these graphs a lot, let's make a function out of it. import matplotlib.pyplot as plt def draw_change(var, group, stat): fig, ax = plt.subplots(figsize=(15,7)) df.groupby(['essround',group])[var].agg(stat).unstack().plot(ax=ax) df.groupby(['essround',group])[var].agg(stat).unstack().T.agg('mean').plot(ax=ax, style='--', colormap='gray', title=var) plt.show() ###Output _____no_output_____ ###Markdown A little caveat with the list of most changed variables is the emphasis that the above method puts on binary variables. Because we are looking at the changes as percentages, change from the binary scale 1 to 0 is rather drastic. Ideally, we'd eliminate binary variables from this examination. Hence we are focusing on Likert-like variables which where the above examination made more sense. Finding the insightNow that we have bunch of digestible data and a function that let's us explore them, we need to start exploring.Even if the task is to find "one insight", we cannot find an interesting insight without stumbling around multiple other possibilities for insights.First, we want to test something that is common knowledge. Education levels have risen across the world so we should see that in the ESS data. Further, we should see that Northern and Western European have higher levels of education compared to Central and South Europe. ###Code #There were a lot of interesting observations! Let's look at some on country-level. #First, education: draw_change('edulvla', 'cntry', 'mean') ###Output _____no_output_____ ###Markdown So many countries makes the graph a bit of a mess. Let's group some of them together.We are assuming, a priori, that some countries are similar.Alternatively, we could do e.g. a cluster analysis and see if our perception of similar countries is in accordance with the data.But let's not question the status quo right now and let's go with traditional geography-inspired distinctions: ###Code def labelRegion(cntry): if cntry in ['DK', 'FI', 'SE', 'NO']: return 'north' if cntry in ['HU', 'PL', 'SI']: return 'central' if cntry in ['PT', 'ES']: return 'south' if cntry in ['DE', 'CH', 'FR', 'BE', 'NL']: return 'west' if cntry in ['GB', 'IE']: return 'uki' df['region'] = df.apply (lambda row: labelRegion(row['cntry']),axis=1) #Let's look at education again - but regionally draw_change('edulvla', 'region', 'mean') ###Output _____no_output_____ ###Markdown We see what we know; Northern Europe is highly educated whereas South is not as much. However, we see that education levels have been increasing across the board. ###Code #Let's look at values; acceptance of homosexuality draw_change('freehms', 'region', 'mean') ###Output _____no_output_____ ###Markdown We notice that people disagree less with the statement that "Gays and lesbians should be free to live their life as they wish. However, central European nations are still more opposed to this compared to other European geographies. End the truisms: Insights into TrustTrust is another interesting variable. From listening to a plenty of behavioural economics podcasts, I have been lead to believe countries with higher levels of Social Trust have higher GDPs. Unfortunately, we don't have GDP information in this data - but the geographical grouping also reflects the wealth of those nations.After some exploration, we choose Trust as to focal point for our insight. Focusing on this gives as plenty of room where we would go with further analyses.First, let's look how much people can trust politicians and the European Parliament. ###Code #Trust is interesting, let's look how much people can trust politicians and the European Parliament draw_change('trstplt', 'region', 'mean') draw_change('trstep', 'region', 'mean') draw_change('trstplt', 'cntry', 'mean') draw_change('trstep', 'cntry', 'mean') ###Output _____no_output_____ ###Markdown Some observation: The British have approximately mean levels of trust to politicians but the lowest trust to the EP. The trust of the Portuguese towards EP has decline drastically since mid-ESS history (around 2010, after the Great Recession hit). Scandinavians continue to trust everyone.We also see that confidence intervals or drawing sigmas around the mean would help us understand whether there actually has been a difference throughout time. We must remember that *n* of samples is quite high so we might assume even from this that even smallish changes in the mean level indicate a true change. On the Theory of TrustWe saw a decline in trust towards political authorities. If we speculate a bit further, could increasing lack of trust be the reason for the turmoil in Europe?Some researches (Beilmann, 2017; Breen, 2016) have argued for Generalized Social Trust Index which is measured by three questions in ESS:* Trust: ‘Would you say that most people can be trusted, or that you can’t be too careful in dealing with people?’ (0 = ‘You can't be too careful’ – 10 = ‘Most people can be trusted’);* Fairness: ‘Do you think that most people would try to take advantage of you if they got the chance, or would they try to be fair?’ (0 = ‘Most people would try to take advantage of me’ – 10 = ‘Most people would try to be fair’);* Helpfulness: ‘Would you say that most of the time people try to be helpful or that they are mostly looking out for themselves?’ (0 = ‘People mostly look out for themselves’ – 10 = ‘People mostly try to be helpful’).Do we observe a decline in Generalized Social Trust Index, or are the European trust issues specifically related to political authority? Can the rising tide of extremist idealogies, increaing inequality, marginalizing rethoric and the echo chambers of social media be manifestations of diminished Social Trust? Let us see.References:*Beilmann, M. (2017). Social Capital and Individualism–Collectivism at the Individual Level (Doctoral dissertation).Breen, M. J., & Healy, A. E. (2016). Changing Values, Attitudes and Behaviours in Ireland: An Analysis of European Social Survey Data in Ireland, 2002-2012. Cambridge Scholars Publishing.* ###Code #Let's calculate social trust, as defined in the literature df['socialTrust'] = ((df.ppltrst + df.pplfair + df.pplhlp) / 3) draw_change('socialTrust', 'cntry', 'mean') draw_change('socialTrust', 'region', 'mean') ###Output _____no_output_____ ###Markdown Alright, we don't really see a real change in social trust over the years. Maybe slight upward trend.Maybe the decline in social cohesion is actually exhibited through increased deviation in how much people can trust others? ###Code draw_change('socialTrust', 'cntry', 'std') draw_change('socialTrust', 'region', 'std') ###Output _____no_output_____ ###Markdown PAS Install Python dependencies ###Code %pip install pandas matplotlib ###Output _____no_output_____ ###Markdown BD model vs BIDE model ###Code import os import pandas as pd import matplotlib.pyplot as plt bd_vs_bide_folder = "bd_vs_bide" bd_results_folder = "bd_results" bide_results_folder = "bide_results" n_cities = 3 columns = ['Time', 'Mean', 'SD', 'CI'] bd = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), 'bd_P_tot{}.csv'), sep=',', names=columns, header=None) bide = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), 'bide_P_tot{}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population') ax.plot(bd['Time'], bd['Mean'], label='BD model') ax.fill_between(bd['Time'], bd['Mean']-bd['SD'], bd['Mean']+bd['SD'], alpha=0.3) ax.plot(bide['Time'], bide['Mean'], label='BIDE model') ax.fill_between(bide['Time'], bide['Mean']-bide['SD'], bide['Mean']+bide['SD'], alpha=0.3) ax.legend() plt.show() bd = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), 'bd_P_tot{}.csv'), sep=',', names=columns, header=None) bide = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), 'bide_P_tot{}.csv'), sep=',', names=columns, header=None) bd_equation = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), 'bd_BD{}.csv'), sep=',', names=columns, header=None) bide_equation = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), 'bide_BIDE{}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population and BD equation') ax.plot(bd['Time'], bd['Mean'], label='BD model') ax.plot(bd_equation['Time'], bd_equation['Mean'], label='BD equation') n0 = bd['Mean'][0] plt.hlines(y=n0, xmin=0, xmax=len(bd['Mean']), linestyles='dashed', label=f'N0 = {n0}') ax.legend(loc='upper left') plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population and BIDE equation') ax.plot(bide['Time'], bide['Mean'], label='BIDE model') ax.plot(bide_equation['Time'], bide_equation['Mean'], label='BIDE equation') n0 = bide['Mean'][0] plt.hlines(y=n0, xmin=0, xmax=len(bide['Mean']), linestyles='dashed', label=f'N0 = {n0}') ax.legend(loc='upper left') plt.show() bd_pop = [None for i in range(n_cities)] bide_pop = [None for i in range(n_cities)] bd_equation = [None for i in range(n_cities)] bide_equation = [None for i in range(n_cities)] for i in range(n_cities): bd_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), f'bd_#P[{i}].csv'), sep=',', names=columns, header=None) bide_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), f'bide_#P[{i}].csv'), sep=',', names=columns, header=None) bd_equation[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), f'bd_SINGLE_BD{{i={i}.0}}.csv'), sep=',', names=columns, header=None) bide_equation[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), f'bide_SINGLE_BIDE{{i={i}.0}}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population and BD equation') for i in range(n_cities): # ax.plot(bd_pop[i]['Time'], bd_pop[i]['Mean'], label=f'BD model city {i+1}') ax.plot(bd_equation[i]['Time'], bd_equation[i]['Mean'], label=f'BD equation city {i+1}') ax.legend() plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population and BIDE equation') for i in range(n_cities): # ax.plot(bide_pop[i]['Time'], bide_pop[i]['Mean'], label=f'BIDE model city {i+1}') ax.plot(bide_equation[i]['Time'], bide_equation[i]['Mean'], label=f'BIDE equation city {i+1}') ax.legend() plt.show() bd_pop = [None for i in range(n_cities)] bide_pop = [None for i in range(n_cities)] for i in range(n_cities): bd_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), f'bd_#P[{i}].csv'), sep=',', names=columns, header=None) bide_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), f'bide_#P[{i}].csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population') for i in range(n_cities): ax.plot(bd_pop[i]['Time'], bd_pop[i]['Mean'], label=f'BD model city {i+1}') for i in range(n_cities): ax.plot(bide_pop[i]['Time'], bide_pop[i]['Mean'], label=f'BIDE model city {i+1}') ax.legend() plt.show() bd_pop = [None for i in range(n_cities)] for i in range(n_cities): bd_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), f'bd_#P[{i}].csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population') for i in range(n_cities): ax.plot(bd_pop[i]['Time'], bd_pop[i]['Mean'], label=f'BD model city {i+1}') ax.fill_between(bd_pop[i]['Time'], bd_pop[i]['Mean'] - bd_pop[i]['SD'], bd_pop[i]['Mean'] + bd_pop[i]['SD'], label=f'SD City {i+1}', alpha=0.3) ax.legend(loc='upper left') plt.show() bide_pop = [None for i in range(n_cities)] for i in range(n_cities): bide_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), f'bide_#P[{i}].csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population') for i in range(n_cities): ax.plot(bide_pop[i]['Time'], bide_pop[i]['Mean'], label=f'BIDE model city {i+1}') ax.fill_between(bide_pop[i]['Time'], bide_pop[i]['Mean'] - bide_pop[i]['SD'], bide_pop[i]['Mean'] + bide_pop[i]['SD'], label=f'SD City {i+1}', alpha=0.3) ax.legend(loc='upper left') plt.show() species = 'PBD' n_species = len(species) bd_data = {} for s in species: bd_data[s] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bd_results_folder), f'bd_{s}_tot{{}}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population, B-D') for s in species: ax.plot(bd_data[s]['Time'], bd_data[s]['Mean'], label=f'#{s}') ax.legend() plt.show() species = 'PBIDE' n_species = len(species) bide_data = {} for s in species: bide_data[s] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(bd_vs_bide_folder, bide_results_folder), f'bide_{s}_tot{{}}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population, B-I-D-E') for s in species: ax.plot(bide_data[s]['Time'], bide_data[s]['Mean'], label=f'#{s}') ax.legend() plt.show() ###Output _____no_output_____ ###Markdown Balanced vs Unbalanced ###Code import os import pandas as pd import matplotlib.pyplot as plt balanced_vs_unbalanced_folder = "balanced_vs_unbalanced" balanced_results_folder = "balanced_results" unbalanced_results_folder = "unbalanced_results" n_cities = 3 columns = ['Time', 'Mean', 'SD', 'CI'] balanced = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(balanced_vs_unbalanced_folder, balanced_results_folder), 'balanced_P_tot{}.csv'), sep=',', names=columns, header=None) unbalanced = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(balanced_vs_unbalanced_folder, unbalanced_results_folder), 'unbalanced_P_tot{}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population') ax.plot(balanced['Time'], balanced['Mean'], label='Balanced system') ax.fill_between(balanced['Time'], balanced['Mean']-balanced['SD'], balanced['Mean']+balanced['SD'], alpha=0.3) ax.plot(unbalanced['Time'], unbalanced['Mean'], label='Unbalanced system') ax.fill_between(unbalanced['Time'], unbalanced['Mean']-unbalanced['SD'], unbalanced['Mean']+unbalanced['SD'], alpha=0.3) ax.legend() plt.show() balanced_pop = [None for i in range(n_cities)] unbalanced_pop = [None for i in range(n_cities)] for i in range(n_cities): balanced_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(balanced_vs_unbalanced_folder, balanced_results_folder), f'balanced_#P[{i}].csv'), sep=',', names=columns, header=None) unbalanced_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(balanced_vs_unbalanced_folder, unbalanced_results_folder), f'unbalanced_#P[{i}].csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population') for i in range(n_cities): ax.plot(balanced_pop[i]['Time'], balanced_pop[i]['Mean'], label=f'Balanced system city {i+1}') for i in range(n_cities): ax.plot(unbalanced_pop[i]['Time'], unbalanced_pop[i]['Mean'], label=f'Unbalanced system city {i+1}') ax.legend() # plt.axis([0, 2000, 0, 200]) plt.show() ###Output _____no_output_____ ###Markdown Emigrate to Next vs Biggest vs Smallest city ###Code import os import pandas as pd import matplotlib.pyplot as plt next_vs_biggest_vs_smallest_folder = "next_vs_biggest_vs_smallest" next_results_folder = "next_results" biggest_results_folder = "biggest_results" smallest_results_folder = "smallest_results" n_cities = 3 columns = ['Time', 'Mean', 'SD', 'CI'] next = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(next_vs_biggest_vs_smallest_folder, next_results_folder), 'next_P_tot{}.csv'), sep=',', names=columns, header=None) biggest = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(next_vs_biggest_vs_smallest_folder, biggest_results_folder), 'biggest_P_tot{}.csv'), sep=',', names=columns, header=None) smallest = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(next_vs_biggest_vs_smallest_folder, smallest_results_folder), 'smallest_P_tot{}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population') ax.plot(next['Time'], next['Mean'], label='Emigrate to Next') ax.fill_between(next['Time'], next['Mean']-next['SD'], next['Mean']+next['SD'], alpha=0.3) ax.plot(biggest['Time'], biggest['Mean'], label='Emigrate to Biggest') ax.fill_between(biggest['Time'], biggest['Mean']-biggest['SD'], biggest['Mean']+biggest['SD'], alpha=0.3) ax.plot(smallest['Time'], smallest['Mean'], label='Emigrate to Smallest') ax.fill_between(smallest['Time'], smallest['Mean']-smallest['SD'], smallest['Mean']+smallest['SD'], alpha=0.3) ax.legend() plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population') ax.plot(next['Time'], next['Mean'], label='Emigrate to Next') ax.plot(smallest['Time'], smallest['Mean'], color='green', label='Emigrate to Smallest') ax.legend() plt.show() next_pop = [None for i in range(n_cities)] biggest_pop = [None for i in range(n_cities)] smallest_pop = [None for i in range(n_cities)] for i in range(n_cities): next_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(next_vs_biggest_vs_smallest_folder, next_results_folder), f'next_#P[{i}].csv'), sep=',', names=columns, header=None) biggest_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(next_vs_biggest_vs_smallest_folder, biggest_results_folder), f'biggest_#P[{i}].csv'), sep=',', names=columns, header=None) smallest_pop[i] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(next_vs_biggest_vs_smallest_folder, smallest_results_folder), f'smallest_#P[{i}].csv'), sep=',', names=columns, header=None) next = ['Emigrate to Next', next_pop] biggest = ['Emigrate to Biggest', biggest_pop] smallest = ['Emigrate to Smallest', smallest_pop] for strategy in [next, biggest, smallest]: fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle(strategy[0]) for i in range(n_cities): ax.plot(strategy[1][i]['Time'], strategy[1][i]['Mean'], label=f'City {i+1}') ax.fill_between(strategy[1][i]['Time'], strategy[1][i]['Mean'] - strategy[1][i]['SD'], strategy[1][i]['Mean'] + strategy[1][i]['SD'], label=f'City {i+1}', alpha=0.3) ax.legend(loc='upper left') plt.show() ###Output _____no_output_____ ###Markdown Child vs Children ###Code import os import pandas as pd import matplotlib.pyplot as plt child_vs_children_folder = "child_vs_children" child_results_folder = "child_results" children_results_folder = "children_results" n_cities = 3 columns = ['Time', 'Mean', 'SD', 'CI'] child = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(child_vs_children_folder, child_results_folder), 'child_P_tot{}.csv'), sep=',', names=columns, header=None) children = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(child_vs_children_folder, children_results_folder), 'children_P_tot{}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Total population') ax.plot(child['Time'], child['Mean'], label='Child') ax.fill_between(child['Time'], child['Mean']-child['SD'], child['Mean']+child['SD'], alpha=0.3) ax.plot(children['Time'], children['Mean'], label='Children') ax.fill_between(children['Time'], children['Mean']-children['SD'], children['Mean']+children['SD'], alpha=0.3) ax.legend() plt.show() species = 'PBD' n_species = len(species) child_data = {} children_data = {} for s in species: child_data[s] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(child_vs_children_folder, child_results_folder), f'child_{s}_tot{{}}.csv'), sep=',', names=columns, header=None) children_data[s] = pd.read_csv(filepath_or_buffer=os.path.join(os.path.join(child_vs_children_folder, children_results_folder), f'children_{s}_tot{{}}.csv'), sep=',', names=columns, header=None) fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population, B-D') for s in species: ax.plot(child_data[s]['Time'], child_data[s]['Mean'], label=f'Child #{s}') ax.legend() plt.show() fig = plt.figure() ax = fig.add_subplot(1, 1, 1) fig.suptitle('Population, B-D') for s in species: ax.plot(children_data[s]['Time'], children_data[s]['Mean'], label=f'Children #{s}') ax.legend() plt.show() ###Output _____no_output_____ ###Markdown Ebay Mac Price Regression Analysis 0.1 IntentIn this notebook I will perform multivariate linear regression analysis on data collected from eBay's API regarding the sale of Mac Minis in a 60-day time period. The script used to obtain this data is contained within this folder but is no longer functional due to API depreciation. 0.2 Data DescriptionFollowing data collection the data was manually cleaned by removing listings that did not pertain to Mac Minis, had irregular or None input for any of the features listed below (i.e. "16GB" for "Processor Speed"), or included additional items.**listingType Values:**- Auction- FixedPrice (Indicates a Buy It Now offer)- Store Inventory**sellingState Values:**- EndedWithSales- EndedWithoutSales**hoursToSale:** Duration (in hours) until sale or closing of the listing without sale.**releaseYear:** Year the mac mini model was released. Only the years 2012, 2014, and 2018 were examined due to low counts of all other model years.**processorSpeed:** Speed, in Gigahertz of the processor.**Cores:** Number of core processors.**Memory:** Size of RAM in GB.**storageType:**- 0 : HDD (Hard drive)- 1 : SSD (Solid state drive)- 3 : HDD/SSD (Both included)- 4 : Fusion (A fusion drive)**totalSale:** Sale price including shipping and tax. 1. Import Dataset ###Code import pandas as pd dataset = pd.read_csv('/Users/kersh/Documents/Github/Portfolio/eBay Mac Price Regression/macmini.csv') ###Output _____no_output_____ ###Markdown 2. Preprocess Dataset Here I will only be looking at auction listings. In addition, for the purposes of this analysis I will only consider listings that ended in a successful sale.Outliers with a sale price of >$2,000 are removed from the dataset (only 2 sold at a price this high). ###Code sold = dataset.loc[dataset['sellingState'] == 'EndedWithSales'] auction = sold.loc[sold['listingType'] == 'Auction'] # Remove outliers auction = auction[~(auction['totalSale'] > 2000)] # Reset index auction = auction.reset_index(drop=True) # Remove listingType and sellingState columns auction = auction.drop(['listingType','sellingState'],axis=1) auction ###Output _____no_output_____ ###Markdown 3. Check for MulticollinearityHigh or near-perfect correlation between two variables, known as multicollinearity, violates the assumptions of multiple regression and indicates reduced model accuracy. Variables were therefore checked for very high levels of correlation using a correlation matrix and heatmap. ###Code # Calculate correlation matrix corr = auction.corr() display(corr) # Plot heatmap using Seaborn import seaborn as sns sns.heatmap(corr, xticklabels=corr.columns, yticklabels=corr.columns, cmap='RdBu') ###Output _____no_output_____ ###Markdown Aside from hoursToSale, which showed no noteworthy correlation with any other variables, all variables were correlated with each other to some extent, but not to a degree indicating multicollinearity (>80%). Therefore no further steps to remove multicollinearity were required. 4. View Descriptive Statistics ###Code desc = auction.describe() desc ###Output _____no_output_____ ###Markdown Of noteworthy interest here is the high sales price standard deviation of 260.39, compared to the mean sale price of 385.32. This high level of variability will present a challenge for the model to overcome in order to create meaningful and accurate sales price estimates. 5. Visualize the Data ###Code sns.set_theme(color_codes=True) plot = sns.scatterplot(x="hoursToSale", y="totalSale", data=auction) plot = sns.catplot(x="releaseYear", y="totalSale", data=auction) plot = sns.catplot(x="Memory", y="totalSale", data=auction) plot = sns.catplot(x="processorSpeed", y="totalSale", data=auction) plot = sns.catplot(x="Cores", y="totalSale", data=auction) plot = sns.catplot(x="storageType", y="totalSale", data=auction) ###Output _____no_output_____ ###Markdown 6. Build Regression Model 6.1 Get Dummy Variables Several variables in our model are categorical or best treated as such due to lack of continuity between values (release year, number of cores, and storage type). Because these variables cannot be directly entered into the regression model, they must first be converted to a series of one-hot encoded dummy variables. To prevent multicollinearity, the first column of each series of dummy variables is dropped. ###Code year_dummies = pd.get_dummies(auction['releaseYear'],drop_first=True) core_dummies = pd.get_dummies(auction['Cores'],drop_first=True) storage_dummies = pd.get_dummies(auction['storageType'],drop_first=True) ###Output _____no_output_____ ###Markdown 6.2 Build the Complete Dataset We now have everything we need to build the complete set of independent variables (X) and the target vector (Y). ###Code X = [pd.DataFrame(auction[['hoursToSale','Memory','processorSpeed']]),year_dummies,core_dummies,storage_dummies] X = pd.concat(X,axis=1) Y = auction['totalSale'] ###Output _____no_output_____ ###Markdown 6.3 Get Train and Test SetsIn order to ensure the results of our model generalize to data that the model was not trained on, it is best practice to split the data into train and test sets. This is done using scikitlearn's convenient test_train_split package. ###Code from sklearn.model_selection import train_test_split XTrain, XTest, YTrain, YTest = train_test_split(X, Y, test_size=0.25, random_state=1) ###Output _____no_output_____ ###Markdown 6.4 Instantiate and Fit the Model ###Code from sklearn.linear_model import LinearRegression model = LinearRegression() model.fit(XTrain,YTrain) ###Output _____no_output_____ ###Markdown 6.5 View Intercept and Coefficients ###Code print('Intercept: {}'.format(model.intercept_)) for c in model.coef_: print(c) ###Output Intercept: 214.93719738723004 0.2929556342826053 12.964365735875063 -56.723796519234426 82.47345648019886 489.1375847282913 90.05985607384491 1.4522280589840788 98.32870286287502 104.58444162661739 ###Markdown 7. Evaluate the Model 7.1 Rebuild the Model using statsmodels ###Code import statsmodels.api as sm # Adds a constant column to input X2 = sm.add_constant(X, prepend=False) regr = sm.OLS(Y, X2) pred = regr.fit() ###Output _____no_output_____ ###Markdown 7.2 Test for Heteroscedasticity When performing regression analysis it is important to check for heteroscedasticity. If it is present, this may indicate that coefficient estimates have reduced precision. Two tests are commonly used to detect heteroscedasticity in regression models: the Breusch-Pagan and White tests. Both tests attempt to reject the null hypothesis that there is no heteroscedasticity and product a p-value. For our purposes α = .05. Both tests are run using the statsmodels package. ###Code from statsmodels.stats import diagnostic as diag # Breusch-Pagan test _, pval, __, f_pval = diag.het_breuschpagan(pred.resid, pred.model.exog) print(pval, f_pval) print('-'*100) if pval > 0.05: print("Breusch-Pagan's Test:") print("P-value {:.4}".format(pval)) print('No heteroscedasticity detected.') else: print("Breusch-Pagan's Test:") print("p: {:.4}".format(pval)) print('Heteroscedasticity detected.') # White's test _, pval, __, f_pval = diag.het_white(pred.resid, pred.model.exog) print(pval, f_pval) print('-'*100) if pval > 0.05: print("White's Test:") print("p: {:.4}".format(pval)) print('No heteroscedasticity detected.') else: print("White's Test:") print("p: {:.4}".format(pval)) print('Heteroscedasticity detected.') ###Output 1.6804160116947507e-10 4.146953495132328e-11 ---------------------------------------------------------------------------------------------------- Breusch-Pagan's Test: p: 1.68e-10 Heteroscedasticity detected. 7.912803525802802e-08 1.1741164970513362e-08 ---------------------------------------------------------------------------------------------------- White's Test: p: 7.913e-08 Heteroscedasticity detected. ###Markdown Here both tests detected heteroscedasticity in our model. This makes intuitive sense with respect to the graphs produced in section 5 which show unequal variances in price among different groups. While this reduces the model's statistical validity to some extent, it does not make our model's prediction less useful in practice. 7.3 Test for Autocorrelation Autocorrelation is present when errors are not independent of eachother, violating the assumptions of the model. Autocorrelation is tested using the Ljung-Box test. ###Code # Calculate the lag lag = min(10, (len(X)//5)) print('Number of lags: {}'.format(lag)) print('-'*100) test_results = diag.acorr_ljungbox(pred.resid, lags = lag, return_df = False) ibvalue, p_val = test_results if min(p_val) > 0.05: print("The lowest p-value found was {:.4}".format(min(p_val))) print("No autocorrelation.") print('-'*100) else: print("The lowest p-value found was {:.4}".format(min(p_val))) print("Autocorrelation detected.") print('-'*100) ###Output Number of lags: 10 ---------------------------------------------------------------------------------------------------- The lowest p-value found was 0.1905 No autocorrelation. ---------------------------------------------------------------------------------------------------- ###Markdown 7.4 Examine Residual Distribution and Mean Residuals are plotted using a qq plot and checked for normality. Adherence to the line indicates normally-distributed residuals. The mean residual is calculated to ensure it equals or is very close to 0. ###Code import pylab # Plot residuals sm.qqplot(pred.resid, line='s') pylab.show() # Check mean of residuals mean_residuals = sum(pred.resid)/ len(pred.resid) print("Mean residual: {:.4}".format(mean_residuals)) ###Output _____no_output_____ ###Markdown 7.5 Model Metrics ###Code print(pred.summary()) ###Output OLS Regression Results ============================================================================== Dep. Variable: totalSale R-squared: 0.763 Model: OLS Adj. R-squared: 0.759 Method: Least Squares F-statistic: 204.3 Date: Fri, 05 Mar 2021 Prob (F-statistic): 4.04e-172 Time: 14:01:13 Log-Likelihood: -3637.3 No. Observations: 581 AIC: 7295. Df Residuals: 571 BIC: 7338. Df Model: 9 Covariance Type: nonrobust ================================================================================== coef std err t P>|t| [0.025 0.975] ---------------------------------------------------------------------------------- hoursToSale 0.3074 0.099 3.114 0.002 0.114 0.501 Memory 13.5332 0.780 17.345 0.000 12.001 15.066 processorSpeed -63.2028 10.851 -5.825 0.000 -84.516 -41.890 2014 77.0213 19.146 4.023 0.000 39.416 114.626 2018 477.8464 27.795 17.192 0.000 423.254 532.438 4 87.3136 24.272 3.597 0.000 39.640 134.988 2 8.1138 19.863 0.408 0.683 -30.900 47.128 3 84.8494 31.921 2.658 0.008 22.153 147.546 4 108.6229 74.747 1.453 0.147 -38.190 255.436 const 224.0184 33.757 6.636 0.000 157.716 290.321 ============================================================================== Omnibus: 200.923 Durbin-Watson: 1.885 Prob(Omnibus): 0.000 Jarque-Bera (JB): 1913.898 Skew: 1.242 Prob(JB): 0.00 Kurtosis: 11.538 Cond. No. 1.99e+03 ============================================================================== Notes: [1] Standard Errors assume that the covariance matrix of the errors is correctly specified. [2] The condition number is large, 1.99e+03. This might indicate that there are strong multicollinearity or other numerical problems. ###Markdown 7.6 Error Measurements ###Code import numpy as np from sklearn.metrics import mean_squared_error, mean_absolute_error YPred = model.predict(XTest) # mean squared error mse = mean_squared_error(YTest, YPred) # mean absolute error mae = mean_absolute_error(YTest, YPred) # root mean squared error rmse = np.sqrt(mse) # display the output print("MSE {:.6}".format(mse)) print("MAE {:.6}".format(mae)) print("RMSE {:.6}".format(rmse)) ###Output MSE 13397.6 MAE 89.3917 RMSE 115.748 ###Markdown 8. Repeated K-Fold Cross ValidationIn order to validate the model against numerous training/test sets K-Fold cross validation is performed. ###Code from sklearn.model_selection import RepeatedKFold from sklearn.model_selection import cross_val_score cv = RepeatedKFold(n_splits=10, n_repeats=3,random_state=1) r2 = cross_val_score(model,X,Y,cv=cv,n_jobs=1,scoring='r2') rmse = cross_val_score(model,X,Y,cv=cv,n_jobs=1,scoring='neg_root_mean_squared_error') print('R2: {}'.format(np.mean(r2))) print('RMSE: {}'.format(np.mean(rmse))) ###Output R2: 0.7283601563606384 RMSE: -128.0057681237432 ###Markdown Analysis of word frequency (only considering nouns) ###Code #text block raw= ' '.join([x[2] for x in result]) # tokenzie and position tagging using nltk library # http://www.nltk.org/book/ch05.html # to understand the meaning of tags: nltk.help.upenn_tagset() text = nltk.word_tokenize(raw) postags= nltk.pos_tag(text) # turn the result into dataframe for the convenience of processing df = pd.DataFrame(postags,columns =['word','type']) #filter words by type, only keeping nouns typepattern_prefix=['NN'] mask = df.type.str.slice(0,2).isin(typepattern_prefix) filtered=df[mask] # plot word frequency ax=filtered['word'].value_counts().sort_values(ascending=True).plot.barh(figsize=(5,10)) ax.set_ylabel('counts') ax.set_title('Word frequency', fontsize=16) ###Output _____no_output_____ ###Markdown Analysis of speech speed on the video timeline ###Code df2=pd.DataFrame(result, columns = ['sTimestamp','eTimestamp','words']) df2['sTimestamp']=pd.to_datetime(df2['sTimestamp']) df2['eTimestamp']=pd.to_datetime(df2['eTimestamp']) from datetime import datetime, timedelta df2['durSeconds']= (df2['eTimestamp']-df2['sTimestamp'])/ timedelta(seconds=1) df2['wordcounts']=df2.apply(lambda row: len(row['words'].split(' ')),axis='columns') df2.sample() #fastest and slowest line by speech speed df2['speechSpeed']=df2['wordcounts']/df2['durSeconds'] vStart=min(df2['sTimestamp']) df2['offsetVideoStart'] = (df2['sTimestamp']-vStart)/timedelta(seconds=1) print('--------slowest spoken line:----------------') print(df2.sort_values(by=['speechSpeed']).iloc[0]) print('--------fastest spoken line:----------------') print(df2.sort_values(by=['speechSpeed']).iloc[-1]) #fastest and slowest line by speech speed fig=plt.figure(figsize=(12,5)) ax=fig.add_subplot(111) df2['speechSpeed']=df2['wordcounts']/df2['durSeconds'] ax.plot(df2['offsetVideoStart'],df2['speechSpeed'],'--') ax.set_ylabel('words / second') ax.set_xlabel('time from the start of the video (seconds)') ax.annotate('\"and I think that I could bring us a stem\"', xy=(43.45, 3.14465), xycoords='data', xytext=(-30, -20), textcoords='offset points', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='top', size=14) ax.annotate('\"information management\"', xy=(41.74, 0.551116), xycoords='data', xytext=(-30, 20), textcoords='offset points', arrowprops=dict(facecolor='black', shrink=0.05), horizontalalignment='right', verticalalignment='bottom', size=14) ###Output _____no_output_____ ###Markdown search for sentences ###Code len(df2) ' '.join(df2["words"]) #examples of search for a sentence from re import finditer #test1 #searchWords = 'hardware devices' #test2 searchWords = 'i created a python script on a raspberry pi and mounted a webcam' for match in finditer(searchWords, ' '.join(df2["words"].str.strip())): #print matches print(match.span(), match.group()) startPos = match.span()[0] endPos = match.span()[1] #find the line indexes of the start and end position of each match startLineIdx=-1 endLineIdx=-1 pos= 0 for index, row in df2.iterrows(): pos += len(row["words"].strip())+1 # 1 is the space added between lines if startLineIdx ==-1 and startPos<pos: startLineIdx=index if endLineIdx==-1 and endPos<pos: endLineIdx = index if startLineIdx>0 and endLineIdx>0: break #verify print(df2.loc[startLineIdx:endLineIdx,["sTimestamp","words"]]) ###Output (519, 583) i created a python script on a raspberry pi and mounted a webcam sTimestamp words 13 2017-08-28 00:00:23.760 still adjusting to my home i created a 14 2017-08-28 00:00:26.340 python script on a raspberry pi and 15 2017-08-28 00:00:27.930 mounted a webcam on several allowing you ###Markdown Estimating text loss in Middle Dutch chivalric epics This English-language, Python notebook accompanies the following publication:> Mike Kestemont and Folgert Karsdorp, "Het Atlantis van de Middelnederlandse ridderepiek. Een schatting van het tekstverlies met methodes uit de ecodiversiteit". *Spiegel der letteren* (2020).All figures and numbers were prepared using the code below. Future updates of the code and data will be managed in an open [Github repository](https://github.com/mikekestemont/chivalric_diversity). The code block below loads all (third-party) packages and modules necessary to run the module. These can be installed from the file `requirements.txt`: pip install -r requirements.txt ###Code from functools import partial from itertools import product import numpy as np np.random.seed(12345) from scipy.special import erfinv import pandas as pd import matplotlib.pyplot as plt plt.style.use("tufte.mplstyle") plt.rcParams["text.usetex"] = False %matplotlib inline import scipy.stats as stats from scipy.special import gammaln ###Output _____no_output_____ ###Markdown Data We load the data from the spreadsheet file `mnl.xlsx`: ###Code mnl = pd.read_excel('mnl.xlsx', header=None, names=('text', 'witness')) mnl.head(10) ###Output _____no_output_____ ###Markdown We are only interested in the count data, i.e. the number of witnesses per text (the technical term is "abundance data"). ###Code mnl.groupby('text').size().sort_values(ascending=False).head() ###Output _____no_output_____ ###Markdown The counts per text can be plotted as follows: ###Code fig, ax = plt.subplots(figsize=(10,18)) mnl.groupby('text').size().sort_values(ascending=True).plot.barh(ax=ax); ax.set(xlabel='aantal handschriften', ylabel='', title='Distributie van de (ons bekende) ridderepische teksten over tekstgetuigen') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.savefig('output/Fig1.jpeg', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown Yet a different perspective is to list the size of the frequency bins that we can distinguish within the manuscript counts: ###Code types = mnl.groupby('text').size().sort_values(ascending=False).value_counts().sort_index() types = types.to_frame(name='aantal teksten') types['aantal handschriften'] = types.index types.to_excel('output/Tab1.xlsx') types ###Output _____no_output_____ ###Markdown Finally, we define the auxiliary function `species_richness` to count the number of unique texts in the data (i.e. the number of non-zero counts): ###Code def species_richness(counts): return np.sum(counts > 0) print('# unique texts:', species_richness(mnl.groupby('text').size())) print('# witnesses:', len(mnl)) ###Output # unique texts: 74 # witnesses: 164 ###Markdown Jackknife The following function computes the first-order Jackknife estimate, on the basis of the abundance data in our data frame, as well as a confidence interval (.95 be default). This approach is detailed in the following paper:> K. Burnham & W. Overton, "Robust Estimation of Population Size When Capture Probabilities Vary Among Animals". *Ecology* (1979), 927-936. ###Code def jackknife(data, conf_lvl=0.95): jack_stat = species_richness(data) x = np.array(sum([[i] * c for i, c in enumerate(data, 1)], [])) index = np.arange(x.shape[0]) vals = [] for i in range(x.shape[0]): t = x[index != i] vals.append(species_richness(np.bincount(t))) mean_jack_stat = np.mean(vals) bias = (x.shape[0] - 1) * (mean_jack_stat - jack_stat) estimate = jack_stat - bias std_err = np.sqrt( (x.shape[0] - 1) * np.mean((mean_jack_stat - vals) * (mean_jack_stat - vals), axis=0) ) z_score = np.sqrt(2.0) * erfinv(conf_lvl) conf_interval = estimate + z_score * np.array((-std_err, std_err)) return estimate, std_err, conf_interval results = jackknife(mnl.groupby('text').size()) print('jackknife-estimate (order=1):', results[0], results[-1]) ###Output jackknife-estimate (order=1): 117.73170731707278 [106.64468284 128.8187318 ] ###Markdown This implementation is verbose and uses an explicit `for`-loop, which iteratively leaves out observations and tracks the drops in diversity that follow from this operation. In the code blocks below we show that the same estimate can also be obtained in a fully analytical fashion. First we calculate the frequency counts for each unique text: ###Code num_per_text = mnl.groupby('text').size() num_per_text ###Output _____no_output_____ ###Markdown Next, we store the species richness (the number of unique texts) in $t$: ###Code t = species_richness(num_per_text) t ###Output _____no_output_____ ###Markdown Then we set $s$ to the number of texts that are only attested in a single witness: ###Code s = sum(num_per_text == 1) s ###Output _____no_output_____ ###Markdown Only the $s$ texts that occur once will affect the species richness during the iterative Jackknife procedure. We can therefore predict that we will obtain the following deviations when applying the bootstrap: ###Code mu = (((t - s) * t) + (s * (t - 1))) / t mu ###Output _____no_output_____ ###Markdown That means that we can calculate the bias as follows: ###Code bias = (t - 1) * (mu - t) bias ###Output _____no_output_____ ###Markdown To account for this bias, we can subtract it from the original species richness in the observed data: ###Code t - bias ###Output _____no_output_____ ###Markdown Simple example ###Code counts = [5, 4, 3, 3, 1, 1, 1, 1, 1] names = 'ABCDEFGHI' data = zip(counts, names) df = pd.DataFrame(zip(names, counts), columns=('naam', 'mss')) df.to_excel('output/Tab2.xlsx') df print('total # of witnesses:', df['mss'].sum()) species_richness(df['mss']) jackknife(df['mss']) data = np.array(df['mss']) x = np.array(sum([[i]*c for i, c in enumerate(data, 1)], [])) tradition = [names[i - 1] for i in x] print(tradition) bootstrap = [] for i in range(len(tradition)): tradition_ = [tradition[j] for j in range(len(tradition)) if i != j] bootstrap.append(( (i + 1), tradition[i], ''.join(tradition_), len(set(tradition_)), len(set(tradition_)) - len(set(tradition)))) df = pd.DataFrame(bootstrap, columns=('iteration', 'leftout', 'imputed tradition', 'richness', 'error')) df.to_excel('output/Tab3.xlsx') df mean_estimate = np.mean(df['richness']) print('Average estimate:', mean_estimate) print('Bias:', mean_estimate - 9) bias = 19 * (mean_estimate - 9) bias corrected = 9 - bias corrected conf_lvl = .95 std_err = np.sqrt( 19 * np.mean((mean_estimate - df['richness']) * (mean_estimate - df['richness']), axis=0)) z_score = np.sqrt(2.0) * erfinv(conf_lvl) conf_interval = corrected + z_score * np.array((-std_err, std_err)) conf_interval ###Output _____no_output_____ ###Markdown Chao1 In the paper we eventually opt for the more recent, non-parametric formula "Chao1", which is described in this paper:> A. Chao & L. Jost, ‘Estimating diversity and entropy profiles via discovery rates of new species". *Methods in Ecology and Evolution* (2015), 873-882.Because we have "doubletons" in our data, we use can the following formula, where:- $\hat{f_0}$ is the (theoretical) number of non-observed species/texts;- $f_1$ is the number of species/texts attested exactly once ("singletons");- $f_2$ is the number of species/texts attested exactly twice ("doubletons");- $n$ is the total number of individuals/manuscripts in the observed data.\begin{equation}\hat{f_0} = \frac{(n - 1)}{n} \frac{f_1^2}{2f_2}\end{equation}The code block below returns the full, theoretical species richness as etimated by Chao1, i.e. it adds the estimated $\hat{f_0}$ to the species richness that was observed in the sample: ###Code def chao_richness(x): x, n = x[x > 0], x.sum() t = x.shape[0] f1, f2 = (x == 1).sum(), (x == 2).sum() return t + (n - 1) / n * ((f1 ** 2 / 2 / f2) if f2 > 0 else (f1 * (f1 - 1) / 2)) ###Output _____no_output_____ ###Markdown If we apply this function to our data, we obtain an even higher (but arguably more realistic) estimate of the loss in textual diversity for this literature. Note, however, that this estimate is still a theoretical *minimum estimate*, since the original loss could still be higher. ###Code chao_richness(num_per_text) ###Output _____no_output_____ ###Markdown Instead of reporting just this number, we apply a bootstrapped procedure in which we sample from the material using a multinomial distribution (see the Appendix Chao and Jost, 2015) and apply Chao1 to the resulting samples. This procedure allows us to calculate a .95 confidence interval for this value. ###Code def bt_prob(x): x, n = x[x > 0], x.sum() f1, f2 = (x == 1).sum(), (x == 2).sum() C = 1 - f1 / n * (((n - 1) * f1 / ((n - 1) * f1 + 2 * f2)) if f2 > 0 else ((n - 1) * (f1 - 1) / ((n - 1) * (f1 - 1) + 2)) if f1 > 0 else 0) W = (1 - C) / np.sum(x / n * (1 - x / n) ** n) p = x / n * (1 - W * (1 - x / n) ** n) f0 = np.ceil(((n - 1) / n * f1 ** 2 / (2 * f2)) if f2 > 0 else ((n - 1) / n * f1 * (f1 - 1) / 2)) p0 = (1 - C) / f0 p = np.hstack((p, np.array([p0 for i in np.arange(f0)]))) return p def bootstrap(x, n_iter=1000, conf=.95): # define a multinomial probability distribution # for the bootstrap procedure to sample from: p, n = bt_prob(x), x.sum() data_bt = np.random.multinomial(n, p, n_iter) pro = np.array([chao_richness(row) for row in data_bt]) pro_mean = pro.mean(0) lci_pro = -np.quantile(pro, (1 - conf) / 2, axis=0) + pro_mean uci_pro = np.quantile(pro, 1 - (1 - conf) / 2, axis=0) - pro_mean sd_pro = np.std(pro, axis=0) pro = pro_mean - pro return (lci_pro, uci_pro, sd_pro, pro) def chao_estimate(x, n_iter=1000, conf=0.95): pro = chao_richness(x) (lci_pro, uci_pro, sd_pro, bt_pro) = bootstrap(x, n_iter=n_iter, conf=conf) lci_pro, uci_pro = pro - lci_pro, pro + uci_pro bt_pro = pro - bt_pro return (lci_pro, uci_pro, bt_pro, pro) ###Output _____no_output_____ ###Markdown The following block applies this bootstrapped procedure to obtain the final estimates: ###Code lci_pro, uci_pro, bt_pro, pro = chao_estimate(num_per_text, n_iter=10000) print('pro:', pro) print('lci_pro:', lci_pro) print('uci_pro:', uci_pro) ###Output pro: 148.00750469043152 lci_pro: 106.21863495939421 uci_pro: 219.01578019221017 ###Markdown The array `bt_pro` contains the estimates that were collected during the bootstrap (1,000 iterations by default). Below, we plot the distribution of these numbers using a rainplot: [removing rain_alpha =.3 argument on pt.RainCloud() because it is showing as invalid] ###Code import ptitprince as pt fig, ax = plt.subplots(figsize=(8, 6)) d = list([(x, 'bootstrap') for x in bt_pro]) bt = pd.DataFrame(d, columns=('bootstrap', 'type')) pt.RainCloud( data=bt, x="type", y="bootstrap", ax=ax, orient="h", alpha=.8, bw=.2, rain_alpha=.3, palette="Greys" ) ax.axvline(pro, c='black', ls='--') ax.axvline(uci_pro, c='darkgrey', ls='--') ax.axvline(lci_pro, c='darkgrey', ls='--') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) ax.spines['left'].set_visible(False) ax.set_yticks([]) ax.set_ylabel('') plt.savefig('output/Fig2.png', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown The idea that there were at least 100 texts is not completely unlikely, but it is a veryconservative estimate, at the very bottom of the probability continuum. The estimate of ~148 manuscripts (or more) is much more plausible, which would mean that *at least half ofthe chivalric texts have been lost*. Just as 100 is an extremely optimisticestimate, ~219 is the most pessimistic estimate: in thatcase, only a third of the ever available chivalric epics would have been persisted throughtime, which is quite a dramatic, but not entirely unrealistic figure. Species accumulation curve In what preceded, we have investigated how many unique texts may have been lost, or, more positively, how many unique texts we may have not yet seen. In this concluding section, we investigate how many texts should be retrieved before we arrive at this diversity estimate. This new estimate provides us with information about the total population size, i.e. the total number of text witnesses. We follow Hsieh, Ma and Chao (2016) to compute this estimate using "Rarefaction Extrapolation". For details about this method, see:> Hsieh, Ma and Chao (2016): iNEXT: an R package for rarefaction and extrapolation ofspecies diversity. *Methods in Ecology and Evolution*, 7, 1451–1456. ###Code def bootstrap_re(x, fn=chao_richness, n_iter=1000, conf=.95): # define a multinomial probability distribution # for the bootstrap procedure to sample from: p, n = bt_prob(x), x.sum() data_bt = np.random.multinomial(n, p, n_iter) Dq = fn(x) pro = np.array([fn(row) for row in data_bt]) error = stats.norm.ppf(1 - (1 - conf) / 2) * np.std(pro, 0) lci_pro = Dq - error uci_pro = Dq + error sd_pro = np.std(pro, axis=0) return (lci_pro, uci_pro, sd_pro, Dq, ) def rarefaction_extrapolation(x, max_steps): x, n = x[x > 0], x.sum() def _sub(m): if m <= n: return np.sum(1 - np.array( [np.exp(gammaln(n - i + 1) + gammaln(n - m + 1) - gammaln(n - i - m + 1) - gammaln(n + 1)) if i <= (n - m) else 0 for i in x])) else: S = (x > 0).sum() f1, f2 = (x == 1).sum(), (x == 2).sum() f0 = ((n - 1) / n * f1 * (f1 - 1) / 2) if f2 == 0 else ((n - 1) / n * f1**2 / 2 / f2) A = n * f0 / (n * f0 + f1) return S if f1 == 0 else (S + f0 * (1 - A**(m - n))) return np.array([_sub(mi) for mi in range(1, max_steps)]) counts = np.bincount(mnl.groupby('text').size())[1:] # ignore zero x = np.array(sum([[i] * c for i, c in enumerate(counts, 1)], [])) ###Output _____no_output_____ ###Markdown Here too we use a bootstrap method with 100 samples: ###Code max_steps = 1000 lci_pro, uci_pro, sd_pro, Dq = bootstrap_re( x, fn=partial(rarefaction_extrapolation, max_steps=max_steps), n_iter=100 ) steps = np.arange(1, max_steps) interpolated = np.arange(1, max_steps) < x.sum() fig, ax = plt.subplots(figsize=(8, 6)) ax.plot(steps[interpolated], Dq[interpolated], color='C0') ax.plot(x.sum(), Dq[x.sum() - 1], 'o') ax.plot(steps[~interpolated], Dq[~interpolated], '--', color='C0') ax.fill_between(steps, lci_pro, uci_pro, alpha=0.3) ax.grid() ax.set(xlabel='# handschriften', ylabel='# teksten', title='Species Accumulation Curve') ax.spines['right'].set_visible(False) ax.spines['top'].set_visible(False) plt.savefig('output/Fig3.png', dpi=300, transparent=True) ###Output _____no_output_____ ###Markdown Welcome to my Game of Thrones Analysis Below is my first Kaggle project. This project will consist of the use of the following datasets: battles.csv represent data related to the War of the Five Kings from George R.R. Martin's A Song Of Ice And Fire series. character-deaths.csv is data related to a Bayesian Survival Analysis of Game of Thrones. character-predictions.csv is data scraped from a wiki that covers some predictions, and here is the methodolgy that may or may not be covered here. 1: Load Data ###Code import os import pandas as pd import numpy as np from plotly.offline import download_plotlyjs, init_notebook_mode, plot, iplot from plotly.graph_objs import * import matplotlib.pyplot as mplt #go offline with plotly init_notebook_mode(connected=True) #set working directory WRKSPC = 'C:\\Users\\Chris\\Analytics\\gameofthrones_analysis\\' #loading data as dataframes battles = pd.read_csv(WRKSPC+'battles.csv') deaths = pd.read_csv(WRKSPC+'character-deaths.csv') predictions = pd.read_csv(WRKSPC+'character-predictions.csv') ###Output _____no_output_____ ###Markdown Battles: A Preliminary Summarybattles.csv contains the name of each battle, the year it happened, who was attacking (along with a somewhat more granular level of who was involved), who consisted of the defense, house related to each side, count of deaths and major deaths, captures, sizes, region, some notes, and seasonality.Just looking at the data the first areas I'd like to address are the significance of vital factors regarding each side's parameters.It is also worth noting that this data set paints a higher level picture of some deaths. It is a smaller set of data but in some ways this might be worth comming back to for some relations with other data. ###Code #print battles battles.head() print battles.shape #print battles.describe() battles.describe() ###Output _____no_output_____ ###Markdown Deaths: A Preliminary Summarycharacter-deaths.csv contains the name of the character, allegiance to what house, death year, book they died in, chapter in which they died, gender, nobility, GoT appearance, and a each book they appeared in. Off the bat the scale of this file will allow me to get a feel for prevelence of death. There might be relations with the frequency of death and a certain house.There isn't too much depth, at least at first glance. The file just states when and if someone died (maybe how many times they died too -- we'll cover this later). ###Code #print deaths deaths.head() print deaths.shape #print deaths.describe() deaths.describe() ###Output _____no_output_____ ###Markdown Predictions: A Preliminary Summarycharacter-predictions.csv contains more interesting data. This will need more than a high level glance. ###Code #print predictions predictions.head() print predictions.shape #print predictions.describe() predictions.describe() ###Output _____no_output_____ ###Markdown 2: Exploring the dataBattlesLet's count the number of commanders listed as the attackers and see if there is a relation between this field and the factor that is scale of a side. First I'll print the attacking commanders for each battle where attacker size is null or attacking commander is null. ###Code battles_w_nulls = battles[pd.isnull(battles['attacker_size']) | pd.isnull(battles['attacker_commander'])] battles_w_nulls[['name', 'attacker_commander']] ###Output _____no_output_____ ###Markdown These records are going to have to be left out of the analysis, so let's create a new dataframe without them ###Code #assign a new df for clean battles data battles_df = battles[battles.attacker_size.notnull() & battles.attacker_commander.notnull()] battles_df[['name','attacker_size','attacker_commander']] ###Output _____no_output_____ ###Markdown To loosely verify we are working with the right data, let's see if our subsets add up ###Code #length of the original should equal that of with and without nulls combined print 'Actual:', len(battles) print len(battles)==len(battles_df)+len(battles_w_nulls), len(battles_df), '+', len(battles_w_nulls), '=', len(battles_df)+len(battles_w_nulls) ###Output Actual: 38 True 24 + 14 = 38 ###Markdown Moving on we can now plot the two variables. To do this we add a column to our data that is the count of attacking commanders ###Code #REMINDER: as a learning assignment, figure out how to do this with the appropriate method battles_df['attacking_com_count'] = battles_df.apply(lambda row: len(row['attacker_commander'].split(',')), axis=1) #sort battles_df = battles_df.sort_values('attacker_size') x=battles_df['attacker_size'].tolist() y=battles_df['attacking_com_count'].tolist() mplt.scatter(x, y) mplt.show() ###Output C:\Users\Chris\Anaconda2\lib\site-packages\ipykernel_launcher.py:2: SettingWithCopyWarning: A value is trying to be set on a copy of a slice from a DataFrame. Try using .loc[row_indexer,col_indexer] = value instead See the caveats in the documentation: http://pandas.pydata.org/pandas-docs/stable/indexing.html#indexing-view-versus-copy ###Markdown DeathsMoving along I'd like to take a look at the character-deaths dataset. This and the battles datasets can be used for basic analyses. ###Code deaths.head(3) deaths.shape deaths.describe() deaths.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 917 entries, 0 to 916 Data columns (total 13 columns): Name 917 non-null object Allegiances 917 non-null object Death Year 305 non-null float64 Book of Death 307 non-null float64 Death Chapter 299 non-null float64 Book Intro Chapter 905 non-null float64 Gender 917 non-null int64 Nobility 917 non-null int64 GoT 917 non-null int64 CoK 917 non-null int64 SoS 917 non-null int64 FfC 917 non-null int64 DwD 917 non-null int64 dtypes: float64(4), int64(7), object(2) memory usage: 93.2+ KB ###Markdown PredictionsThis data looks like it would be utilized for more of machine learning-related work. Since I plan on exploring pandas & jupyter as a toolkit I'll do some ad hoc work to get a picture of what this data means. ###Code predictions.head(3) print list(predictions.columns) predictions[['isAlive','pred','alive','actual','male','culture', 'book1','book2','book3','book4','book5','age', 'numDeadRelations','boolDeadRelations','isPopular','popularity']].corr() predictions.describe() predictions.shape ###Output _____no_output_____ ###Markdown Preliminariesloading stuff, defining helpful functions etc.n.b: code repetition etc not representative, because in a more-or-less throwaway ipynb. ###Code import json def load_jsonl(f, max_l=-1): with open(f) as fh: lines = fh.readlines() return [json.loads(s) for s in (lines if max_l < 0 else lines[:max_l])] def get_used_vocab_size(data): return list(dict.fromkeys(word for d in data for word in d['message']).keys()) import numpy as np data_small = load_jsonl('exp1.5-best-diag.jsonl') seen_small = np.loadtxt('egg/zoo/basic_games/data_generation_scripts/exp1.5-train-l300-r0.25-s42.txt', dtype=int) unseen_small = np.loadtxt('egg/zoo/basic_games/data_generation_scripts/exp1.5-eval-l100-r0.25-s42.txt', dtype=int) for d in data_small: d['input'] = (d['input'][1], d['input'][0]) if any((x, y) == d['input'] for x, y in seen_small): d['seen'] = True else: d['seen'] = False used_vocab_small = get_used_vocab_size(data_small) normalised_vocab_small = dict((u, str(i)) for i, u in enumerate(u for u in used_vocab_small if u != 0)) normalised_vocab_small[0] = '.' data_large = load_jsonl('exp3-best-diag.jsonl') seen_large = np.loadtxt('egg/zoo/basic_games/data_generation_scripts/exp3-train-l900-r0.25-s42.txt', dtype=int) unseen_large = np.loadtxt('egg/zoo/basic_games/data_generation_scripts/exp3-eval-l300-r0.25-s42.txt', dtype=int) for d in data_large: d['input'] = (d['input'][1], d['input'][0]) if any((x, y) == d['input'] for x, y in seen_large): d['seen'] = True else: d['seen'] = False used_vocab_large = get_used_vocab_size(data_large) normalised_vocab_large = dict((u, str(i)) for i, u in enumerate(u for u in used_vocab_large if u != 0)) normalised_vocab_large[0] = '.' def normalise(message, vocab): return ' '.join(vocab[m] for m in message) ###Output _____no_output_____ ###Markdown Some helpful grouper functions ###Code import tabulate from operator import itemgetter from itertools import groupby def group_by_sum(data): key = itemgetter('label') grouped = groupby(sorted(data, key=key), key=key) grouped_by = {} for label, group in grouped: grouped_by[label] = list(group) return grouped_by def group_by_summand(data): max_summand = max(d['input'][0] for d in data) grouped_by = {} for i in range(max_summand): label = i group = [d for d in data if label in d['input']] grouped_by[label] = list(group) return grouped_by ###Output _____no_output_____ ###Markdown Analysis Correlation between performance on training and evaluation data.We see moderate correlation between performance on the training/evaluation set broken down bylabel (sum)and no statistically significant correlation when grouped by numbers appearing in input (summand). ###Code from scipy.stats import pearsonr def correlation_seen_unseen(groups): accs_train = [] accs_test = [] for label, group in groups.items(): num_seen = sum(d['seen'] for d in group) num_unseen = sum(not d['seen'] for d in group) if num_seen and num_unseen: accs_train.append(sum(d['correct'] for d in group if d['seen']) / num_seen) accs_test.append(sum(d['correct'] for d in group if not d['seen']) / num_unseen) return pearsonr(accs_train, accs_test) print("Grouped by label:") corr, p_val = correlation_seen_unseen(group_by_sum(data_small)) print(f"Correlation, small ds: {corr:.2f}, P-Value, {p_val:.2f}") corr, p_val = correlation_seen_unseen(group_by_sum(data_large)) print(f"Correlation, large ds: {corr:.2f}, P-Value, {p_val:.2f}") print("Grouped by input:") corr, p_val = correlation_seen_unseen(group_by_summand(data_small)) print(f"Correlation small ds: {corr:.2f}, P-Value, {p_val:.2f}") corr, p_val = correlation_seen_unseen(group_by_summand(data_large)) print(f"Correlation, large ds: {corr:.2f}, P-Value, {p_val:.2f}") ###Output Grouped by label: Correlation, small ds: 0.46, P-Value, 0.01 Correlation, large ds: 0.58, P-Value, 0.00 Grouped by input: Correlation small ds: 0.26, P-Value, 0.27 Correlation, large ds: 0.18, P-Value, 0.27 ###Markdown Used vocabulary. The larger dataset uses more tokens in the vocabulary. This appears reasonable,given the increased dataset size with the same fixed message length (5 + in both cases). ###Code print(len(normalised_vocab_small)) print(len(normalised_vocab_large)) ###Output 7 11 ###Markdown Symmetry: Investigation of behaviour on input pairs of the form $((x,y),(y,x))$ ###Code def group_by_symmetry(data): groups = {} for d in data: x, y = d['input'] if x != y: if (x, y) in groups: print((x, y)) print(groups) raise ValueError("wat") if (y, x) in groups: groups[(y, x)].append(d) else: groups[(x, y)] = [d] return groups ###Output _____no_output_____ ###Markdown For the small dataset: how many pairs were consistently predicted correctly/incorrectly andhow many were not predicted consistently? ###Code groups_small = group_by_symmetry(data_small) assert len(groups_small) == 190 print("Both pairs predicted correctly:", sum(d1['correct'] == d2['correct'] == True for _, (d1, d2) in groups_small.items())) print("Both pairs predicted incorrectly:", sum(d1['correct'] == d2['correct'] == False for _, (d1, d2) in groups_small.items())) print("pairs predicted inconsinstently:", sum(d1['correct'] != d2['correct'] for _, (d1, d2) in groups_small.items())) ###Output Both pairs predicted correctly: 138 Both pairs predicted incorrectly: 15 pairs predicted inconsinstently: 37 ###Markdown For the large dataset: how many pairs were consistently predicted correctly/incorrectly andhow many were not predicted consistently?The large dataset is different from the small dataset in the sense that it does notcontain all possible input pairs up to $n_{max}$. This means that there are input pairs whichsymmetric counter-pairs are not contained in the dataset. Hence the split in `symmetrics` and`asymmetrics`, i.e. pairs with/without counter-parts. ###Code groups_large = group_by_symmetry(data_large) large_symmetrics = {k: v for k, v in groups_large.items() if len(v) == 2} large_asymmetrics = {k: v for k, v in groups_large.items() if len(v) == 1} print("Both pairs predicted correctly:", sum(d1['correct'] == d2['correct'] == True for _, (d1, d2) in large_symmetrics.items())) print("Both pairs predicted incorrectly:", sum(d1['correct'] == d2['correct'] == False for _, (d1, d2) in large_symmetrics.items())) print("pairs predicted inconsinstently:", sum(d1['correct'] != d2['correct'] for _, (d1, d2) in large_symmetrics.items())) ###Output Both pairs predicted correctly: 263 Both pairs predicted incorrectly: 46 pairs predicted inconsinstently: 124 ###Markdown Here, we build a three-by-three table for the symmetric pairs, containing the followinginformation:Seen, unseen and 50/50 denote whether the pairs were exclusively in training/eval sets or splitbetween both. Similarly, Correct, wrong and 50/50 means whether both pairs were predictedcorrectly, wrongly or exactly one was predicted correctly. ###Code from IPython.display import HTML, display def three_by_three_table(groups): table = np.zeros((3, 3)) for label, (d1, d2) in groups.items(): x = 0 if d1['seen'] == d2['seen'] == True else 1 if d1['seen'] == d2['seen'] == False else 2 y = 0 if d1['correct'] == d2['correct'] == True else 1 if d1['correct'] == d2['correct'] == False else 2 table[x, y] += 1 return table rows = iter(['Both seen', 'Both unseen', '50/50']) print('For the small dataset:') tabulate.tabulate(map(lambda x: [next(rows)] + x, three_by_three_table(groups_small).tolist()), headers=["Both Correct", "Both Wrong", "50/50"], tablefmt='html') rows = iter(['Both seen', 'Both unseen', '50/50']) print('For the large dataset:') tabulate.tabulate(map(lambda x: [next(rows)] + x, three_by_three_table(large_symmetrics).tolist()), headers=["Both Correct", "Both Wrong", "50/50"], tablefmt='html') ###Output For the large dataset: ###Markdown Same as above, but for asymmetric inputs that do not have a symmetric counter-part.Naturally, only calculated for the large dataset. ###Code def two_by_two_table(groups): table = np.zeros((2, 2)) for label, [d1] in groups.items(): x = 0 if d1['seen'] else 1 y = 0 if d1['correct'] else 1 table[x, y] += 1 return table rows = iter(['Seen', 'Unseen']) tabulate.tabulate(map(lambda x: [next(rows)] + x, two_by_two_table(large_asymmetrics).tolist()), headers=["Correct", "Wrong"], tablefmt='html') ###Output _____no_output_____ ###Markdown The large dataset gives us the opportunity to compare the performance on inputs wherethe symmetric counterpart was observed during training and where it is not possible, becausethe symmetric input was not part of the dataset.The output of this cell describes the following contingency table:where 50/50 means that two symmetric inputs are split between train/evaluation splits and unseen meansthat an input is in the evaluation set. Correct and Wrong denotes whether the predictions for theunseen example is correct. ###Code def two_by_two_table_sym_asym(sym_groups, asym_groups, ignore_seen_wrong=False): fifty_fifties = [(d1, d2) for (_, (d1, d2)) in sym_groups.items() if d1['seen'] != d2['seen']] sym_correct = 0 sym_wrong = 0 asym_correct = 0 asym_wrong = 0 for d1, d2 in fifty_fifties: seen, unseen = d1 if d1['seen'] else d2, d2 if d1['seen'] else d1 #print(seen['correct']) #print(unseen['correct']) assert seen['seen'] assert not unseen['seen'] if not ignore_seen_wrong: #print('unseen correct', int(unseen['correct'])) sym_correct += unseen['correct'] elif seen['correct'] and unseen['correct']: #print('unseen correct') sym_correct += 1 if seen['correct'] and not unseen['correct']: #print('unseen wrong') sym_wrong += 1 for label, [d1] in asym_groups.items(): if not d1['seen']: asym_correct += d1['correct'] asym_wrong += not d1['correct'] return [[sym_correct, sym_wrong], [asym_correct, asym_wrong]] rows = iter(['50/50 (symmetric)', 'Unseen (asymmetric)']) tabulate.tabulate(map(lambda x: [next(rows)] + x, two_by_two_table_sym_asym(large_symmetrics, large_asymmetrics)), headers=["Unseen Correct", "Unseen Wrong"], tablefmt='html') ###Output _____no_output_____ ###Markdown This allows us to perform Fisher's exact test to investigate whether the results arestatistically significant. We see ($p<=0.05$), that the networks have higher predictionperformance on inputs where the symmetric counter-parts were observed in training before. ###Code from scipy.stats import fisher_exact _, p_value = fisher_exact(two_by_two_table_sym_asym(large_symmetrics, large_asymmetrics, ignore_seen_wrong=False), alternative='greater') print(f"P-Value: {p_value:.3f}") ###Output P-Value: 0.004 ###Markdown Synonyms ###Code def get_num_synonyms(groups, seen_only=False, size_only=True): synonym_groups = {} for label, group in groups.items(): examples = [d for d in group if d['correct']] if seen_only: examples = [d for d in examples if d['seen']] if examples: synonym_groups[label] = set(tuple(d['message']) for d in examples) if size_only: synonym_groups[label] = len(synonym_groups[label]) return synonym_groups import math from scipy.stats import t def get_mean_var_ci(sample, alpha=0.025): sample = np.array(list(sample)) t_ci = t.ppf(1 - alpha, df=len(sample) - 1) return sample.mean(), sample.var(), t_ci * sample.std() / math.sqrt(len(sample)) ###Output _____no_output_____ ###Markdown Average number of synonymous messages (that led to correct predictions) in the whole dataset. ###Code syns_small = get_num_synonyms(group_by_sum(data_small)) syns_large = get_num_synonyms(group_by_sum(data_large)) mean, var, ci = get_mean_var_ci(syns_small.values()) print(f"avg # synonyms in small ds: {mean:.2f} +/- {ci:.2f}") mean, var, ci = get_mean_var_ci(syns_large.values()) print(f"avg # synonyms in large ds: {mean:.2f} +/- {ci:.2f}") ###Output avg # synonyms in small ds: 1.59 +/- 0.37 avg # synonyms in large ds: 1.63 +/- 0.24 ###Markdown Average number of synonymous messages (that led to correct predictions) in the training set only.Interestingly the number is somewhat lower (but not statistically significant at $p=0.05$).It's interesting, because what it means is that some messages were produced by the senderthat were not observed by the receiver duringtraining, but the receiver was still able to produce the correct prediction. ###Code syns_small_seen = get_num_synonyms(group_by_sum(data_small), seen_only=True) syns_large_seen = get_num_synonyms(group_by_sum(data_large), seen_only=True) mean, var, ci = get_mean_var_ci(syns_small_seen.values()) print(f"avg # synonyms in small train data: {mean:.2f} +/- {ci:.2f}") mean, var, ci = get_mean_var_ci(syns_large_seen.values()) print(f"avg # synonyms in large train data: {mean:.2f} +/- {ci:.2f}") from scipy.stats import ttest_rel _, p_value = ttest_rel(list(syns_small.values()), list(syns_small_seen.values())) print("P-Value for small dataset: ", p_value) _, p_value = ttest_rel(list(syns_large.values()), list(syns_large_seen.values())) print("P-Value for large dataset: ", p_value) ###Output avg # synonyms in small train data: 1.50 +/- 0.29 avg # synonyms in large train data: 1.59 +/- 0.24 P-Value for small dataset: 0.08309875128247367 P-Value for large dataset: 0.15906635012795697 ###Markdown There is no correlation between predictive performance and the number of synonyms when groupedby the label (sum of inputs), for either dataset. ###Code def correlation_num_synonyms_correct(groups, test_only=False): num_syns = [] accs_test = [] for label, group in groups.items(): num_seen = sum(d['seen'] for d in group) num_unseen = sum(not d['seen'] for d in group) if num_seen and num_unseen: num_synonyms = get_num_synonyms({label: group}).get(label, None) if num_synonyms is not None: num_syns.append(num_synonyms) if test_only: accs_test.append(sum(d['correct'] for d in group if not d['seen']) / num_unseen) else: accs_test.append(sum(d['correct'] for d in group) / len(group)) return pearsonr(num_syns, accs_test) print(correlation_num_synonyms_correct(group_by_sum(data_small))) print(correlation_num_synonyms_correct(group_by_sum(data_large))) ###Output (0.10766526492862784, 0.5782712044403318) (0.1076507466077131, 0.42969492445549634) ###Markdown Misc There is a moderate correlation between the number of training pairs for a sum and the capabilityto learn that sum, for the large dataset this correlation persists also for inputs unseen duringtraining. ###Code def correlation_by_train_size(groups, test_only=False): train_set_sizes = [] accs_test = [] for label, group in groups.items(): num_seen = sum(d['seen'] for d in group) num_unseen = sum(not d['seen'] for d in group) if num_seen and (num_unseen or not test_only): train_set_sizes.append(num_seen) if test_only: accs_test.append(sum(d['correct'] for d in group if not d['seen']) / num_unseen) else: accs_test.append(sum(d['correct'] for d in group) / len(group)) return pearsonr(train_set_sizes, accs_test) corr, p_val = correlation_by_train_size(group_by_sum(data_small)) print(f"Correlation, small ds: {corr:.2f}, P-Value, {p_val:.3f}") corr, p_val = correlation_by_train_size(group_by_sum(data_large)) print(f"Correlation, big ds: {corr:.2f}, P-Value, {p_val:.3f}") corr, p_val = correlation_by_train_size(group_by_sum(data_small), test_only=True) print(f"Correlation, small ds: {corr:.2f}, P-Value, {p_val:.3f}") corr, p_val = correlation_by_train_size(group_by_sum(data_large), test_only=True) print(f"Correlation, big ds: {corr:.2f}, P-Value, {p_val:.3f}") ###Output Correlation, small ds: 0.24, P-Value, 0.177 Correlation, big ds: 0.46, P-Value, 0.000 ###Markdown The average edit distance between synonymous messages (that led to correct predictions) is around 2,which corresponds to e.g. flipping `[a, b]` to `[b, a]`. This largely corresponds to anecdotalobservations (see end of notebook). ###Code import textdistance import itertools def get_avg_edit_distance_synonyms(groups): distances = [] for label, synonyms in groups.items(): for x, y in ((m1, m2) for m1, m2 in itertools.product(synonyms, repeat=2) if m1 != m2): distances.append(textdistance.levenshtein.distance(x, y)) return distances synonyms_small = get_num_synonyms(group_by_sum(data_small), size_only=False) mean, var, ci = get_mean_var_ci(get_avg_edit_distance_synonyms(synonyms_small)) print(f"avg edit distance for synonyms, small ds: {mean:.2f} +/- {ci:.2f}") mean, var, ci = get_mean_var_ci( get_avg_edit_distance_synonyms(get_num_synonyms(group_by_sum(data_large), size_only=False))) print(f"avg edit distance for synonyms, large ds: {mean:.2f} +/- {ci:.2f}") ###Output avg edit distance for synonyms, small ds: 2.47 +/- 0.36 avg edit distance for synonyms, large ds: 2.02 +/- 0.18 ###Markdown Average distance between messages of next higher sum. ###Code def get_distances(syn_groups): #print(syn_groups) keys = sorted(list(syn_groups.keys())) #print(keys) results = [] for g1, g2 in ((syn_groups.get(k,[]), syn_groups.get(k+1,[])) for k in keys): try: min_distance = min(textdistance.levenshtein.distance(m1, m2) for m1 in g1 for m2 in g2) results.append(min_distance) except ValueError: pass return results distances_small = get_distances(get_num_synonyms(group_by_sum(data_small), False, size_only=False)) mean, var, ci = get_mean_var_ci(distances_small) print(f"avg minimum edit distance between messages of two sums differing in at most 1, small ds: {mean:.2f} +/- {ci:.2f}") distances_large = get_distances(get_num_synonyms(group_by_sum(data_large), False, size_only=False)) mean, var, ci = get_mean_var_ci(distances_large) print(f"avg minimum edit distance between messages of two sums differing in at most 1, small ds: {mean:.2f} +/- {ci:.2f}") ###Output avg minimum edit distance between messages of two sums differing in at most 1, small ds: 1.50 +/- 0.26 avg minimum edit distance between messages of two sums differing in at most 1, small ds: 1.42 +/- 0.20 ###Markdown The average distance between the expected label and the predicted label is 1 for those examplesthat were not predicted correctly. ###Code def get_errors(groups, test_only=False): errors = [] for label, group in groups.items(): if test_only: group = [d for d in group if not d['seen']] errors.extend(abs(label - d['output']) for d in group if not d['correct']) return errors mean, var, ci = get_mean_var_ci(get_errors(group_by_sum(data_small))) print(f"avg error: {mean:.2f} +/- {ci:.2f}") mean, var, ci = get_mean_var_ci(get_errors(group_by_sum(data_large))) print(f"avg error: {mean:.2f} +/- {ci:.2f}") ###Output avg error: 1.07 +/- 0.06 avg error: 1.21 +/- 0.06 ###Markdown Visualisation ###Code def inspect_by_sum(data, vocab): for label, group in group_by_sum(data).items(): seen = [d for d in group if d['seen']] unseen = [d for d in group if not d['seen']] print(f"{label}: {len(group)} examples") print(f"seen: {sum(d['correct'] for d in seen)}/{len(seen)}") print( tabulate.tabulate([(s['input'], normalise(s['message'], vocab), s['correct'], s['output']) for s in seen])) print(f"unseen: {sum(d['correct'] for d in unseen)}/{len(unseen)}") #print(f"unseen: {sum(d['correct'] for d in unseen)}/{len(unseen)}") print(tabulate.tabulate( [(s['input'], normalise(s['message'], vocab), s['correct'], s['output']) for s in unseen])) print("----" * 20) def inspect_by_summand(data, vocab): for label, group in group_by_summand(data).items(): seen = [d for d in group if d['seen']] unseen = [d for d in group if not d['seen']] print(f"{label}: {len(group)} examples") print(f"seen: {sum(d['correct'] for d in seen)}/{len(seen)}") print( tabulate.tabulate([(s['input'], normalise(s['message'], vocab), s['correct'], s['output']) for s in seen])) print(f"unseen: {sum(d['correct'] for d in unseen)}/{len(unseen)}") #print(f"unseen: {sum(d['correct'] for d in unseen)}/{len(unseen)}") print(tabulate.tabulate( [(s['input'], normalise(s['message'], vocab), s['correct'], s['output']) for s in unseen])) print("----" * 20) ###Output _____no_output_____ ###Markdown Grouping and visualising the datasets by label (sum).From left to right:- input, - message produced by the sender - whether the receiver's prediction is correct and- the actual prediction produced by the receiversplit by occurrence in training data (seen) and in evaluation data (unseen) and grouped by the sum of inputs. ###Code print("Small ds") inspect_by_sum(data_small, normalised_vocab_small) print("Large ds") inspect_by_sum(data_large, normalised_vocab_large) ###Output Large ds 0: 1 examples seen: 0/1 ------ ----------- ----- - (0, 0) 0 . 0 0 . . False 2 ------ ----------- ----- - unseen: 0/0 -------------------------------------------------------------------------------- 1: 2 examples seen: 0/1 ------ ----------- ----- - (0, 1) 0 . 0 0 . . False 2 ------ ----------- ----- - unseen: 0/1 ------ ----------- ----- - (1, 0) 0 . 0 0 . . False 2 ------ ----------- ----- - -------------------------------------------------------------------------------- 2: 3 examples seen: 2/2 ------ ----------- ---- - (0, 2) 0 . 0 0 . . True 2 (1, 1) 0 . 0 0 . . True 2 ------ ----------- ---- - unseen: 0/1 ------ ----------- ----- - (2, 0) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 3: 3 examples seen: 0/1 ------ ----------- ----- - (1, 2) 0 . 0 0 . . False 2 ------ ----------- ----- - unseen: 0/2 ------ ----------- ----- - (0, 3) 0 . 0 0 0 . False 2 (2, 1) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 4: 3 examples seen: 0/1 ------ ----------- ----- - (4, 0) 0 0 . 0 0 . False 7 ------ ----------- ----- - unseen: 0/2 ------ ----------- ----- - (1, 3) 0 . 0 0 0 . False 2 (3, 1) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 5: 5 examples seen: 0/3 ------ ----------- ----- - (0, 5) 0 0 . 0 0 . False 7 (2, 3) 0 0 . 0 0 . False 7 (3, 2) 0 0 . 0 0 . False 7 ------ ----------- ----- - unseen: 0/2 ------ ----------- ----- - (1, 4) 0 0 . 0 0 . False 7 (5, 0) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 6: 5 examples seen: 0/2 ------ ----------- ----- - (5, 1) 0 0 . 0 0 . False 7 (6, 0) 0 0 . 0 0 . False 7 ------ ----------- ----- - unseen: 0/3 ------ ----------- ----- - (0, 6) 0 0 . 0 0 . False 7 (1, 5) 0 0 . 0 0 . False 7 (4, 2) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 7: 6 examples seen: 5/5 ------ ----------- ---- - (0, 7) 0 0 . 0 0 . True 7 (1, 6) 0 0 . 0 0 . True 7 (2, 5) 0 0 . 0 0 . True 7 (5, 2) 0 0 . 0 0 . True 7 (6, 1) 0 0 . 0 0 . True 7 ------ ----------- ---- - unseen: 1/1 ------ ----------- ---- - (3, 4) 0 0 . 0 0 . True 7 ------ ----------- ---- - -------------------------------------------------------------------------------- 8: 7 examples seen: 0/5 ------ ----------- ----- - (2, 6) 0 0 . 0 0 . False 7 (3, 5) 0 0 . 0 0 . False 7 (4, 4) 0 0 . 0 0 . False 7 (5, 3) 0 0 . 0 0 . False 7 (6, 2) 0 0 . 0 0 . False 7 ------ ----------- ----- - unseen: 0/2 ------ ----------- ----- - (0, 8) 0 0 . 0 0 . False 7 (1, 7) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 9: 6 examples seen: 0/4 ------ ----------- ----- - (0, 9) 0 0 . 0 0 . False 7 (3, 6) 0 0 . 0 0 . False 7 (6, 3) 0 0 . 0 0 . False 7 (7, 2) 0 0 . 0 0 . False 7 ------ ----------- ----- - unseen: 0/2 ------ ----------- ----- - (2, 7) 0 0 . 0 0 . False 7 (5, 4) 0 0 . 0 0 . False 7 ------ ----------- ----- - -------------------------------------------------------------------------------- 10: 7 examples seen: 0/3 ------- ----------- ----- -- (0, 10) 1 0 0 0 0 . False 12 (4, 6) 1 0 0 0 0 . False 12 (9, 1) 1 0 0 0 0 . False 12 ------- ----------- ----- -- unseen: 0/4 ------ ----------- ----- -- (1, 9) 0 0 . 0 0 . False 7 (2, 8) 1 0 0 0 0 . False 12 (3, 7) 1 0 0 0 0 . False 12 (5, 5) 0 0 . 0 0 . False 7 ------ ----------- ----- -- -------------------------------------------------------------------------------- 11: 7 examples seen: 0/4 ------- ----------- ----- -- (1, 10) 1 0 0 0 0 . False 12 (3, 8) 1 0 0 0 0 . False 12 (8, 3) 1 0 0 0 0 . False 12 (9, 2) 1 0 0 0 0 . False 12 ------- ----------- ----- -- unseen: 0/3 ------- ----------- ----- -- (5, 6) 1 0 0 0 0 . False 12 (10, 1) 1 1 0 0 0 . False 13 (11, 0) 1 0 0 0 0 . False 12 ------- ----------- ----- -- -------------------------------------------------------------------------------- 12: 10 examples seen: 7/8 ------- ----------- ----- -- (0, 12) 1 0 0 0 0 . True 12 (3, 9) 1 0 0 0 0 . True 12 (5, 7) 1 0 0 0 0 . True 12 (6, 6) 1 1 0 0 0 . False 13 (7, 5) 1 0 0 0 0 . True 12 (8, 4) 1 0 0 0 0 . True 12 (9, 3) 1 0 0 0 0 . True 12 (11, 1) 1 0 0 0 0 . True 12 ------- ----------- ----- -- unseen: 0/2 ------- ----------- ----- -- (2, 10) 1 1 0 0 0 . False 13 (4, 8) 1 1 1 0 0 . False 13 ------- ----------- ----- -- -------------------------------------------------------------------------------- 13: 11 examples seen: 8/8 ------- ----------- ---- -- (0, 13) 1 1 0 0 0 . True 13 (1, 12) 1 1 0 0 0 . True 13 (3, 10) 1 1 0 0 0 . True 13 (6, 7) 1 1 1 0 0 . True 13 (7, 6) 1 1 1 0 0 . True 13 (9, 4) 1 1 0 0 0 . True 13 (10, 3) 1 1 1 0 0 . True 13 (12, 1) 1 1 1 0 0 . True 13 ------- ----------- ---- -- unseen: 1/3 ------- ----------- ----- -- (4, 9) 1 1 1 0 0 . True 13 (5, 8) 1 1 1 1 0 . False 14 (11, 2) 1 0 0 0 0 . False 12 ------- ----------- ----- -- -------------------------------------------------------------------------------- 14: 13 examples seen: 6/11 ------- ----------- ----- -- (0, 14) 1 1 1 1 1 . True 14 (1, 13) 1 1 1 0 0 . False 13 (3, 11) 1 1 1 0 0 . False 13 (4, 10) 1 1 1 1 1 . True 14 (5, 9) 1 1 1 1 1 . True 14 (7, 7) 1 1 1 1 1 . True 14 (8, 6) 1 1 1 1 1 . True 14 (9, 5) 1 1 1 0 0 . False 13 (11, 3) 1 1 1 0 0 . False 13 (12, 2) 1 1 1 0 0 . False 13 (14, 0) 1 1 1 1 1 . True 14 ------- ----------- ----- -- unseen: 2/2 ------- ----------- ---- -- (2, 12) 1 1 1 1 1 . True 14 (6, 8) 1 1 1 1 0 . True 14 ------- ----------- ---- -- -------------------------------------------------------------------------------- 15: 9 examples seen: 0/8 ------- ----------- ----- -- (0, 15) 1 1 1 1 1 . False 14 (1, 14) 1 1 1 1 1 . False 14 (3, 12) 1 1 1 1 1 . False 14 (4, 11) 1 1 1 1 1 . False 14 (5, 10) 1 1 1 1 3 . False 16 (7, 8) 1 1 1 1 1 . False 14 (14, 1) 1 1 1 1 3 . False 16 (15, 0) 1 1 1 1 1 . False 14 ------- ----------- ----- -- unseen: 0/1 ------ ----------- ----- -- (9, 6) 1 1 1 1 3 . False 16 ------ ----------- ----- -- -------------------------------------------------------------------------------- 16: 12 examples seen: 9/9 ------- ----------- ---- -- (2, 14) 1 1 1 3 1 . True 16 (4, 12) 1 1 1 1 3 . True 16 (5, 11) 1 1 1 3 1 . True 16 (7, 9) 1 1 1 3 1 . True 16 (8, 8) 1 1 1 1 3 . True 16 (9, 7) 1 1 1 1 3 . True 16 (10, 6) 1 1 1 3 1 . True 16 (15, 1) 1 1 1 3 1 . True 16 (16, 0) 1 1 1 3 1 . True 16 ------- ----------- ---- -- unseen: 0/3 ------- ----------- ----- -- (1, 15) 1 1 1 1 1 . False 14 (6, 10) 2 1 0 0 0 . False 17 (11, 5) 1 1 1 1 1 . False 14 ------- ----------- ----- -- -------------------------------------------------------------------------------- 17: 15 examples seen: 12/12 ------- ----------- ---- -- (0, 17) 2 1 0 0 0 . True 17 (1, 16) 2 1 0 0 0 . True 17 (2, 15) 2 1 0 0 0 . True 17 (3, 14) 2 1 0 0 0 . True 17 (4, 13) 2 1 0 0 0 . True 17 (6, 11) 2 1 0 0 0 . True 17 (7, 10) 2 1 0 0 0 . True 17 (8, 9) 2 1 0 0 0 . True 17 (10, 7) 2 1 0 0 0 . True 17 (12, 5) 2 1 0 0 0 . True 17 (13, 4) 2 1 0 0 0 . True 17 (14, 3) 2 1 0 0 0 . True 17 ------- ----------- ---- -- unseen: 0/3 ------- ----------- ----- -- (9, 8) 1 1 1 3 1 . False 16 (11, 6) 1 1 1 3 1 . False 16 (16, 1) 1 1 1 3 1 . False 16 ------- ----------- ----- -- -------------------------------------------------------------------------------- 18: 14 examples seen: 11/11 ------- ----------- ---- -- (0, 18) 2 1 1 0 0 . True 18 (1, 17) 2 1 1 0 0 . True 18 (4, 14) 2 1 1 0 0 . True 18 (5, 13) 2 1 1 0 0 . True 18 (6, 12) 2 1 1 0 0 . True 18 (11, 7) 2 1 1 0 0 . True 18 (12, 6) 2 1 1 0 0 . True 18 (13, 5) 2 1 1 0 0 . True 18 (14, 4) 2 1 1 0 0 . True 18 (15, 3) 2 1 1 0 0 . True 18 (18, 0) 2 1 1 0 0 . True 18 ------- ----------- ---- -- unseen: 1/3 ------- ----------- ----- -- (8, 10) 2 1 1 0 0 . True 18 (9, 9) 1 1 1 3 1 . False 16 (17, 1) 2 1 1 1 0 . False 19 ------- ----------- ----- -- -------------------------------------------------------------------------------- 19: 16 examples seen: 8/8 ------- ----------- ---- -- (0, 19) 2 1 1 1 0 . True 19 (5, 14) 2 1 1 1 0 . True 19 (7, 12) 2 1 1 1 0 . True 19 (9, 10) 2 1 1 1 0 . True 19 (12, 7) 2 1 1 1 0 . True 19 (17, 2) 2 1 1 1 0 . True 19 (18, 1) 2 1 1 1 0 . True 19 (19, 0) 2 1 1 1 0 . True 19 ------- ----------- ---- -- unseen: 1/8 ------- ----------- ----- -- (1, 18) 2 1 1 0 0 . False 18 (2, 17) 2 1 1 0 0 . False 18 (3, 16) 2 1 1 0 0 . False 18 (6, 13) 2 1 1 0 0 . False 18 (8, 11) 2 1 1 1 1 . False 20 (10, 9) 2 1 1 1 1 . False 20 (13, 6) 2 1 1 1 1 . False 20 (14, 5) 2 1 1 1 0 . True 19 ------- ----------- ----- -- -------------------------------------------------------------------------------- 20: 16 examples seen: 11/12 -------- ----------- ----- -- (6, 14) 2 1 1 1 1 . True 20 (8, 12) 2 1 1 1 1 . True 20 (9, 11) 2 1 1 1 1 . True 20 (10, 10) 2 1 1 1 1 . True 20 (11, 9) 2 1 1 1 1 . True 20 (12, 8) 2 1 1 1 1 . True 20 (14, 6) 2 1 1 1 1 . True 20 (15, 5) 2 1 1 1 1 . True 20 (16, 4) 2 1 1 1 1 . True 20 (17, 3) 2 1 1 1 1 . True 20 (18, 2) 2 1 1 1 0 . False 19 (19, 1) 2 1 1 1 1 . True 20 -------- ----------- ----- -- unseen: 0/4 ------- ----------- ----- -- (1, 19) 2 1 1 1 0 . False 19 (4, 16) 2 1 1 1 0 . False 19 (5, 15) 2 1 1 1 3 . False 21 (7, 13) 2 1 1 1 0 . False 19 ------- ----------- ----- -- -------------------------------------------------------------------------------- 21: 16 examples seen: 12/13 -------- ----------- ----- -- (1, 20) 2 1 1 1 3 . True 21 (2, 19) 2 1 1 3 1 . False 22 (4, 17) 2 1 1 1 3 . True 21 (5, 16) 2 1 1 1 3 . True 21 (9, 12) 2 1 1 1 3 . True 21 (10, 11) 2 1 1 1 3 . True 21 (11, 10) 2 1 1 1 3 . True 21 (12, 9) 2 1 1 1 3 . True 21 (13, 8) 2 1 1 1 3 . True 21 (15, 6) 2 1 1 1 3 . True 21 (16, 5) 2 1 1 1 3 . True 21 (19, 2) 2 1 1 1 3 . True 21 (21, 0) 2 1 1 1 3 . True 21 -------- ----------- ----- -- unseen: 2/3 ------- ----------- ----- -- (6, 15) 2 1 1 1 3 . True 21 (7, 14) 2 1 1 3 1 . False 22 (17, 4) 2 1 1 1 3 . True 21 ------- ----------- ----- -- -------------------------------------------------------------------------------- 22: 17 examples seen: 16/16 -------- ----------- ---- -- (0, 22) 2 1 1 3 1 . True 22 (1, 21) 2 1 1 3 1 . True 22 (2, 20) 2 1 1 3 1 . True 22 (4, 18) 2 1 1 3 1 . True 22 (5, 17) 2 1 1 3 1 . True 22 (6, 16) 2 1 1 3 4 . True 22 (9, 13) 2 1 1 3 1 . True 22 (10, 12) 2 1 1 3 1 . True 22 (11, 11) 2 1 1 3 1 . True 22 (12, 10) 2 1 1 3 1 . True 22 (13, 9) 2 1 1 3 1 . True 22 (14, 8) 2 1 1 3 1 . True 22 (15, 7) 2 1 1 3 1 . True 22 (18, 4) 2 1 1 3 1 . True 22 (19, 3) 2 1 1 3 1 . True 22 (22, 0) 2 1 1 3 1 . True 22 -------- ----------- ---- -- unseen: 1/1 ------- ----------- ---- -- (7, 15) 2 1 1 3 1 . True 22 ------- ----------- ---- -- -------------------------------------------------------------------------------- 23: 17 examples seen: 11/13 -------- ----------- ----- -- (3, 20) 2 1 3 4 0 . False 24 (4, 19) 2 1 3 1 0 . True 23 (8, 15) 2 1 3 1 0 . True 23 (9, 14) 2 1 3 1 0 . True 23 (10, 13) 2 1 3 1 0 . True 23 (13, 10) 2 1 3 1 0 . True 23 (14, 9) 2 1 3 1 0 . True 23 (15, 8) 2 1 3 1 0 . True 23 (18, 5) 2 1 1 3 1 . False 22 (19, 4) 2 1 3 1 0 . True 23 (20, 3) 2 1 3 1 0 . True 23 (21, 2) 2 1 3 1 0 . True 23 (22, 1) 2 1 3 1 0 . True 23 -------- ----------- ----- -- unseen: 2/4 -------- ----------- ----- -- (7, 16) 2 1 3 4 0 . False 24 (11, 12) 2 1 3 1 0 . True 23 (17, 6) 2 1 3 4 0 . False 24 (23, 0) 2 1 3 1 0 . True 23 -------- ----------- ----- -- -------------------------------------------------------------------------------- 24: 19 examples seen: 16/16 -------- ----------- ---- -- (0, 24) 2 1 3 4 0 . True 24 (2, 22) 2 1 3 4 0 . True 24 (4, 20) 2 1 3 4 0 . True 24 (5, 19) 2 1 3 4 0 . True 24 (6, 18) 2 1 3 4 0 . True 24 (9, 15) 2 1 3 4 0 . True 24 (10, 14) 2 1 3 4 0 . True 24 (11, 13) 2 1 3 4 0 . True 24 (16, 8) 2 1 3 4 0 . True 24 (17, 7) 2 1 3 4 0 . True 24 (18, 6) 2 1 3 4 0 . True 24 (19, 5) 2 1 3 4 0 . True 24 (21, 3) 2 1 3 4 0 . True 24 (22, 2) 2 1 3 4 0 . True 24 (23, 1) 2 1 3 4 0 . True 24 (24, 0) 2 1 3 4 0 . True 24 -------- ----------- ---- -- unseen: 2/3 ------- ----------- ----- -- (3, 21) 2 1 3 4 0 . True 24 (7, 17) 2 3 1 0 0 . False 25 (8, 16) 2 1 3 4 0 . True 24 ------- ----------- ----- -- -------------------------------------------------------------------------------- 25: 22 examples seen: 14/14 -------- ----------- ---- -- (1, 24) 2 3 1 0 0 . True 25 (2, 23) 2 3 1 0 0 . True 25 (5, 20) 2 3 1 0 0 . True 25 (7, 18) 2 3 1 0 0 . True 25 (8, 17) 2 3 1 0 0 . True 25 (10, 15) 2 3 1 0 0 . True 25 (12, 13) 2 3 1 0 0 . True 25 (13, 12) 2 3 1 0 0 . True 25 (14, 11) 2 3 1 0 0 . True 25 (15, 10) 2 3 1 0 0 . True 25 (16, 9) 2 3 1 0 0 . True 25 (20, 5) 2 3 1 0 0 . True 25 (24, 1) 2 3 1 0 0 . True 25 (25, 0) 2 3 1 0 0 . True 25 -------- ----------- ---- -- unseen: 4/8 -------- ----------- ----- -- (0, 25) 2 1 3 4 0 . False 24 (3, 22) 2 1 3 4 0 . False 24 (6, 19) 2 3 1 0 0 . True 25 (11, 14) 2 3 1 0 0 . True 25 (18, 7) 2 1 3 4 0 . False 24 (21, 4) 2 3 1 0 0 . True 25 (22, 3) 2 1 3 4 0 . False 24 (23, 2) 2 3 1 0 0 . True 25 -------- ----------- ----- -- -------------------------------------------------------------------------------- 26: 19 examples seen: 13/13 -------- ----------- ---- -- (0, 26) 2 3 4 0 0 . True 26 (1, 25) 2 3 4 0 0 . True 26 (2, 24) 2 3 4 0 0 . True 26 (5, 21) 2 3 4 0 0 . True 26 (7, 19) 2 3 4 0 0 . True 26 (12, 14) 2 3 4 0 0 . True 26 (15, 11) 2 3 4 0 0 . True 26 (16, 10) 2 3 4 0 0 . True 26 (17, 9) 2 3 4 0 0 . True 26 (19, 7) 2 3 4 0 0 . True 26 (20, 6) 2 3 4 0 0 . True 26 (22, 4) 2 3 4 0 0 . True 26 (26, 0) 2 3 4 0 0 . True 26 -------- ----------- ---- -- unseen: 2/6 -------- ----------- ----- -- (9, 17) 2 3 1 0 0 . False 25 (10, 16) 2 3 4 0 0 . True 26 (14, 12) 2 3 4 1 0 . False 27 (18, 8) 2 3 1 0 0 . False 25 (21, 5) 2 3 1 0 0 . False 25 (23, 3) 2 3 4 0 0 . True 26 -------- ----------- ----- -- -------------------------------------------------------------------------------- 27: 17 examples seen: 11/11 -------- ----------- ---- -- (1, 26) 2 3 4 1 0 . True 27 (2, 25) 2 3 4 1 0 . True 27 (3, 24) 2 3 4 1 0 . True 27 (4, 23) 2 3 4 1 0 . True 27 (7, 20) 2 3 4 1 0 . True 27 (10, 17) 2 3 4 1 0 . True 27 (20, 7) 2 3 4 1 0 . True 27 (21, 6) 2 3 4 1 0 . True 27 (23, 4) 2 3 4 1 0 . True 27 (24, 3) 2 3 4 1 0 . True 27 (25, 2) 2 3 4 1 0 . True 27 -------- ----------- ---- -- unseen: 2/6 -------- ----------- ----- -- (0, 27) 2 3 4 0 0 . False 26 (9, 18) 2 3 4 1 0 . True 27 (11, 16) 2 3 4 0 0 . False 26 (13, 14) 2 3 4 1 0 . True 27 (15, 12) 2 3 4 1 1 . False 28 (18, 9) 2 3 4 0 0 . False 26 -------- ----------- ----- -- -------------------------------------------------------------------------------- 28: 22 examples seen: 16/17 -------- ----------- ----- -- (0, 28) 2 3 4 1 1 . True 28 (2, 26) 2 3 4 1 0 . False 27 (8, 20) 2 3 4 1 1 . True 28 (9, 19) 2 3 4 1 1 . True 28 (10, 18) 2 3 4 1 1 . True 28 (11, 17) 2 3 4 1 1 . True 28 (12, 16) 2 3 4 1 1 . True 28 (13, 15) 2 3 4 1 1 . True 28 (14, 14) 2 3 4 1 1 . True 28 (15, 13) 2 3 4 1 1 . True 28 (16, 12) 2 3 4 1 1 . True 28 (17, 11) 2 3 4 1 1 . True 28 (18, 10) 2 3 4 1 1 . True 28 (21, 7) 2 3 4 1 1 . True 28 (22, 6) 2 3 4 1 1 . True 28 (23, 5) 2 3 4 1 1 . True 28 (26, 2) 2 3 4 1 1 . True 28 -------- ----------- ----- -- unseen: 2/5 ------- ----------- ----- -- (4, 24) 2 3 4 2 1 . False 29 (20, 8) 2 3 4 2 1 . False 29 (24, 4) 2 3 4 1 1 . True 28 (25, 3) 2 3 4 1 1 . True 28 (28, 0) 2 3 4 0 0 . False 26 ------- ----------- ----- -- -------------------------------------------------------------------------------- 29: 25 examples seen: 22/22 -------- ----------- ---- -- (0, 29) 2 3 4 2 1 . True 29 (2, 27) 2 3 4 2 1 . True 29 (4, 25) 2 3 4 2 1 . True 29 (5, 24) 2 3 4 2 1 . True 29 (6, 23) 2 3 4 2 1 . True 29 (7, 22) 2 3 4 2 1 . True 29 (8, 21) 2 3 4 2 1 . True 29 (9, 20) 2 3 4 2 1 . True 29 (13, 16) 2 3 4 2 1 . True 29 (15, 14) 2 3 4 2 1 . True 29 (16, 13) 2 3 4 2 1 . True 29 (17, 12) 2 3 4 2 1 . True 29 (19, 10) 2 3 4 2 1 . True 29 (20, 9) 2 3 4 2 1 . True 29 (21, 8) 2 3 4 2 1 . True 29 (22, 7) 2 3 4 2 1 . True 29 (23, 6) 2 3 4 2 1 . True 29 (25, 4) 2 3 4 2 1 . True 29 (26, 3) 2 3 4 2 1 . True 29 (27, 2) 2 3 4 2 1 . True 29 (28, 1) 2 3 4 2 1 . True 29 (29, 0) 2 3 4 2 1 . True 29 -------- ----------- ---- -- unseen: 1/3 -------- ----------- ----- -- (1, 28) 2 3 4 2 4 . False 30 (11, 18) 2 3 4 2 1 . True 29 (12, 17) 2 3 4 1 1 . False 28 -------- ----------- ----- -- -------------------------------------------------------------------------------- 30: 20 examples seen: 10/15 -------- ----------- ----- -- (0, 30) 2 3 4 2 4 . True 30 (3, 27) 2 3 4 2 4 . True 30 (4, 26) 2 3 4 2 1 . False 29 (5, 25) 2 3 4 2 4 . True 30 (9, 21) 2 3 4 2 4 . True 30 (11, 19) 2 3 4 2 4 . True 30 (15, 15) 2 3 4 2 1 . False 29 (16, 14) 2 3 4 2 4 . True 30 (18, 12) 2 3 4 2 1 . False 29 (19, 11) 2 3 4 2 1 . False 29 (23, 7) 2 3 4 2 4 . True 30 (24, 6) 2 3 4 2 4 . True 30 (27, 3) 2 3 4 2 4 . True 30 (28, 2) 2 3 4 2 4 . True 30 (29, 1) 2 3 4 2 1 . False 29 -------- ----------- ----- -- unseen: 3/5 -------- ----------- ----- -- (2, 28) 2 3 4 2 4 . True 30 (6, 24) 2 3 4 2 4 . True 30 (17, 13) 2 3 4 2 1 . False 29 (25, 5) 2 3 4 2 4 . True 30 (30, 0) 2 3 4 2 1 . False 29 -------- ----------- ----- -- -------------------------------------------------------------------------------- 31: 22 examples seen: 15/17 -------- ----------- ----- -- (1, 30) 2 3 4 2 3 . True 31 (4, 27) 2 3 4 2 3 . True 31 (5, 26) 2 3 4 2 3 . True 31 (7, 24) 2 3 4 2 3 . True 31 (12, 19) 2 3 4 2 3 . True 31 (13, 18) 2 3 4 2 3 . True 31 (14, 17) 2 3 4 2 3 . True 31 (15, 16) 2 3 4 2 3 . True 31 (16, 15) 2 3 4 2 3 . True 31 (17, 14) 2 3 4 2 3 . True 31 (18, 13) 2 3 4 2 4 . False 30 (19, 12) 2 3 4 2 3 . True 31 (20, 11) 2 3 4 2 3 . True 31 (21, 10) 2 3 4 2 3 . True 31 (24, 7) 2 3 4 2 3 . True 31 (25, 6) 2 3 4 2 3 . True 31 (30, 1) 2 3 4 2 1 . False 29 -------- ----------- ----- -- unseen: 1/5 -------- ----------- ----- -- (6, 25) 2 3 4 2 4 . False 30 (9, 22) 2 3 4 2 3 . True 31 (11, 20) 2 3 4 3 4 . False 32 (23, 8) 2 3 5 3 4 . False 33 (29, 2) 2 3 4 3 4 . False 32 -------- ----------- ----- -- -------------------------------------------------------------------------------- 32: 26 examples seen: 17/18 -------- ----------- ----- -- (0, 32) 2 3 4 3 4 . True 32 (1, 31) 2 3 4 3 4 . True 32 (2, 30) 2 3 4 3 3 . True 32 (4, 28) 2 3 5 4 2 . True 32 (7, 25) 2 3 4 3 4 . True 32 (8, 24) 2 3 4 3 5 . True 32 (9, 23) 2 3 4 3 4 . True 32 (11, 21) 2 3 5 4 2 . True 32 (14, 18) 2 3 4 3 4 . True 32 (15, 17) 2 3 4 3 4 . True 32 (17, 15) 2 3 4 3 4 . True 32 (18, 14) 2 3 4 2 3 . False 31 (20, 12) 2 3 4 3 3 . True 32 (22, 10) 2 3 4 3 4 . True 32 (23, 9) 2 3 5 4 2 . True 32 (26, 6) 2 3 4 3 3 . True 32 (27, 5) 2 3 4 3 4 . True 32 (32, 0) 2 3 5 4 2 . True 32 -------- ----------- ----- -- unseen: 7/8 -------- ----------- ----- -- (10, 22) 2 3 4 3 4 . True 32 (13, 19) 2 3 4 3 4 . True 32 (19, 13) 2 3 5 4 2 . True 32 (21, 11) 2 3 4 2 3 . False 31 (24, 8) 2 3 4 3 4 . True 32 (28, 4) 2 3 4 3 4 . True 32 (30, 2) 2 3 5 4 2 . True 32 (31, 1) 2 3 4 3 4 . True 32 -------- ----------- ----- -- -------------------------------------------------------------------------------- 33: 20 examples seen: 12/17 -------- ----------- ----- -- (2, 31) 2 3 5 3 4 . True 33 (4, 29) 2 3 5 3 5 . False 34 (6, 27) 2 3 5 3 4 . True 33 (7, 26) 2 3 5 3 4 . True 33 (8, 25) 2 3 5 3 4 . True 33 (9, 24) 2 3 5 3 4 . True 33 (13, 20) 2 3 5 3 4 . True 33 (15, 18) 2 3 5 3 4 . True 33 (17, 16) 2 3 5 3 4 . True 33 (18, 15) 2 3 4 2 3 . False 31 (20, 13) 2 3 5 3 4 . True 33 (22, 11) 2 3 5 3 4 . True 33 (23, 10) 2 3 5 3 5 . False 34 (27, 6) 2 3 5 3 4 . True 33 (28, 5) 2 3 5 4 2 . False 32 (30, 3) 2 3 5 3 4 . True 33 (32, 1) 2 3 5 4 2 . False 32 -------- ----------- ----- -- unseen: 0/3 ------- ----------- ----- -- (5, 28) 2 3 5 3 5 . False 34 (24, 9) 2 3 5 4 2 . False 32 (25, 8) 2 3 4 3 3 . False 32 ------- ----------- ----- -- -------------------------------------------------------------------------------- 34: 31 examples seen: 25/26 -------- ----------- ----- -- (0, 34) 2 3 5 6 3 . True 34 (1, 33) 2 3 5 6 3 . True 34 (2, 32) 2 3 5 6 3 . True 34 (4, 30) 2 3 5 3 5 . True 34 (5, 29) 2 3 5 6 3 . True 34 (6, 28) 2 3 5 6 3 . True 34 (8, 26) 2 3 5 6 3 . True 34 (10, 24) 2 3 5 6 3 . True 34 (11, 23) 2 3 5 3 5 . True 34 (12, 22) 2 3 5 3 5 . True 34 (13, 21) 2 3 5 6 3 . True 34 (14, 20) 2 3 5 3 5 . True 34 (15, 19) 2 3 5 6 3 . True 34 (16, 18) 2 3 5 6 3 . True 34 (17, 17) 2 3 5 6 3 . True 34 (19, 15) 2 3 5 6 3 . True 34 (20, 14) 2 3 5 6 3 . True 34 (21, 13) 2 3 5 6 3 . True 34 (22, 12) 2 3 5 3 5 . True 34 (23, 11) 2 3 5 6 7 . False 36 (25, 9) 2 3 5 3 5 . True 34 (26, 8) 2 3 5 6 3 . True 34 (27, 7) 2 3 5 6 3 . True 34 (29, 5) 2 3 5 6 3 . True 34 (30, 4) 2 3 5 6 3 . True 34 (31, 3) 2 3 5 6 3 . True 34 -------- ----------- ----- -- unseen: 4/5 -------- ----------- ----- -- (3, 31) 2 3 5 6 3 . True 34 (7, 27) 2 3 5 6 3 . True 34 (18, 16) 2 3 5 3 4 . False 33 (24, 10) 2 3 5 3 5 . True 34 (32, 2) 2 3 5 6 3 . True 34 -------- ----------- ----- -- -------------------------------------------------------------------------------- 35: 23 examples seen: 14/15 -------- ----------- ----- -- (0, 35) 2 3 5 6 5 . True 35 (1, 34) 2 3 5 6 5 . True 35 (4, 31) 2 3 5 6 5 . True 35 (7, 28) 2 3 5 6 5 . True 35 (9, 26) 2 3 5 6 5 . True 35 (12, 23) 2 3 5 6 5 . True 35 (14, 21) 2 3 5 6 5 . True 35 (15, 20) 2 3 5 6 5 . True 35 (19, 16) 2 3 5 6 5 . True 35 (20, 15) 2 3 5 6 5 . True 35 (21, 14) 2 3 5 6 5 . True 35 (28, 7) 2 3 5 6 5 . True 35 (29, 6) 2 3 5 6 5 . True 35 (32, 3) 2 3 5 6 5 . True 35 (34, 1) 2 3 5 6 3 . False 34 -------- ----------- ----- -- unseen: 2/8 -------- ----------- ----- -- (2, 33) 2 3 5 6 7 . False 36 (13, 22) 2 3 5 6 7 . False 36 (18, 17) 2 3 5 6 3 . False 34 (24, 11) 2 3 5 6 3 . False 34 (26, 9) 2 3 5 6 5 . True 35 (27, 8) 2 3 5 6 5 . True 35 (33, 2) 2 3 5 6 7 . False 36 (35, 0) 2 3 5 6 7 . False 36 -------- ----------- ----- -- -------------------------------------------------------------------------------- 36: 32 examples seen: 21/21 -------- ----------- ---- -- (1, 35) 2 3 5 6 7 . True 36 (2, 34) 2 3 5 6 7 . True 36 (5, 31) 2 3 5 6 7 . True 36 (8, 28) 2 3 5 6 7 . True 36 (9, 27) 2 3 5 6 7 . True 36 (10, 26) 2 3 5 6 7 . True 36 (11, 25) 2 3 5 6 7 . True 36 (13, 23) 2 3 5 6 7 . True 36 (15, 21) 2 3 5 6 7 . True 36 (18, 18) 2 3 5 6 7 . True 36 (19, 17) 2 3 5 6 7 . True 36 (20, 16) 2 3 5 6 7 . True 36 (22, 14) 2 3 5 6 7 . True 36 (24, 12) 2 3 5 6 7 . True 36 (27, 9) 2 3 5 6 7 . True 36 (28, 8) 2 3 5 6 7 . True 36 (30, 6) 2 3 5 6 7 . True 36 (31, 5) 2 3 5 6 7 . True 36 (32, 4) 2 3 5 6 7 . True 36 (33, 3) 2 3 5 6 7 . True 36 (36, 0) 2 3 5 6 7 . True 36 -------- ----------- ---- -- unseen: 7/11 -------- ----------- ----- -- (0, 36) 2 3 5 6 7 . True 36 (4, 32) 2 3 5 6 5 . False 35 (6, 30) 2 3 5 6 7 . True 36 (7, 29) 2 3 5 6 7 . True 36 (12, 24) 2 3 5 6 5 . False 35 (21, 15) 2 3 5 6 7 . True 36 (23, 13) 2 3 5 6 5 . False 35 (25, 11) 2 3 5 6 7 . True 36 (26, 10) 2 3 5 6 7 . True 36 (34, 2) 2 3 5 7 5 . False 37 (35, 1) 2 3 5 6 7 . True 36 -------- ----------- ----- -- -------------------------------------------------------------------------------- 37: 28 examples seen: 21/21 -------- ----------- ---- -- (0, 37) 2 3 5 7 5 . True 37 (2, 35) 2 3 5 7 5 . True 37 (3, 34) 2 3 5 7 5 . True 37 (4, 33) 2 3 5 7 5 . True 37 (7, 30) 2 3 5 7 5 . True 37 (8, 29) 2 3 5 7 5 . True 37 (10, 27) 2 3 5 7 5 . True 37 (13, 24) 2 3 5 7 5 . True 37 (17, 20) 2 3 5 7 5 . True 37 (19, 18) 2 3 5 7 5 . True 37 (20, 17) 2 3 5 7 5 . True 37 (21, 16) 2 3 5 7 5 . True 37 (24, 13) 2 3 5 7 5 . True 37 (25, 12) 2 3 5 7 5 . True 37 (26, 11) 2 3 5 7 5 . True 37 (28, 9) 2 3 5 7 5 . True 37 (29, 8) 2 3 5 7 5 . True 37 (31, 6) 2 3 5 7 5 . True 37 (32, 5) 2 3 5 7 5 . True 37 (34, 3) 2 3 5 7 5 . True 37 (37, 0) 2 3 5 7 5 . True 37 -------- ----------- ---- -- unseen: 4/7 -------- ----------- ----- -- (1, 36) 2 3 5 7 7 . False 38 (5, 32) 2 3 5 6 7 . False 36 (6, 31) 2 3 5 7 5 . True 37 (12, 25) 2 3 5 7 5 . True 37 (22, 15) 2 3 5 7 5 . True 37 (30, 7) 2 3 5 7 7 . False 38 (33, 4) 2 3 5 7 5 . True 37 -------- ----------- ----- -- -------------------------------------------------------------------------------- 38: 31 examples seen: 23/23 -------- ----------- ---- -- (0, 38) 2 3 5 7 7 . True 38 (3, 35) 2 3 5 7 7 . True 38 (4, 34) 2 3 5 7 7 . True 38 (7, 31) 2 3 5 7 7 . True 38 (8, 30) 2 3 5 7 7 . True 38 (9, 29) 2 3 5 7 7 . True 38 (13, 25) 2 3 5 7 7 . True 38 (14, 24) 2 3 5 7 7 . True 38 (16, 22) 2 3 5 7 7 . True 38 (18, 20) 2 3 5 7 7 . True 38 (20, 18) 2 3 5 7 7 . True 38 (23, 15) 2 3 5 7 7 . True 38 (25, 13) 2 3 5 7 7 . True 38 (26, 12) 2 3 5 7 7 . True 38 (27, 11) 2 3 5 7 7 . True 38 (28, 10) 2 3 5 7 7 . True 38 (30, 8) 2 3 5 7 7 . True 38 (31, 7) 2 3 5 7 7 . True 38 (32, 6) 2 3 5 7 7 . True 38 (33, 5) 2 3 5 7 7 . True 38 (34, 4) 2 3 5 7 7 . True 38 (35, 3) 2 3 5 7 7 . True 38 (38, 0) 2 3 5 7 7 . True 38 -------- ----------- ---- -- unseen: 5/8 -------- ----------- ----- -- (6, 32) 2 3 7 5 6 . False 39 (10, 28) 2 3 5 7 7 . True 38 (15, 23) 2 3 5 7 7 . True 38 (19, 19) 2 3 5 7 7 . True 38 (21, 17) 2 3 5 7 7 . True 38 (22, 16) 2 3 5 7 5 . False 37 (36, 2) 2 3 5 7 7 . True 38 (37, 1) 2 3 5 7 5 . False 37 -------- ----------- ----- -- -------------------------------------------------------------------------------- 39: 28 examples seen: 18/18 -------- ----------- ---- -- (1, 38) 2 3 7 5 6 . True 39 (6, 33) 2 3 7 5 6 . True 39 (8, 31) 2 3 7 5 6 . True 39 (9, 30) 2 3 7 5 6 . True 39 (12, 27) 2 3 7 5 6 . True 39 (16, 23) 2 3 7 5 6 . True 39 (17, 22) 2 3 7 5 6 . True 39 (19, 20) 2 3 7 5 6 . True 39 (21, 18) 2 3 7 5 6 . True 39 (23, 16) 2 3 7 5 6 . True 39 (24, 15) 2 3 7 5 6 . True 39 (28, 11) 2 3 7 5 6 . True 39 (32, 7) 2 3 7 5 6 . True 39 (33, 6) 2 3 7 5 6 . True 39 (34, 5) 2 3 7 5 6 . True 39 (35, 4) 2 3 7 5 6 . True 39 (37, 2) 2 3 7 5 6 . True 39 (39, 0) 2 3 7 5 6 . True 39 -------- ----------- ---- -- unseen: 4/10 -------- ----------- ----- -- (0, 39) 2 3 7 5 6 . True 39 (3, 36) 2 3 7 7 5 . False 40 (7, 32) 2 3 7 5 6 . True 39 (14, 25) 2 3 5 7 7 . False 38 (20, 19) 2 3 7 7 5 . False 40 (25, 14) 2 3 7 5 6 . True 39 (27, 12) 2 3 7 5 6 . True 39 (29, 10) 2 3 5 7 7 . False 38 (31, 8) 2 3 7 5 7 . False 40 (38, 1) 2 3 5 7 7 . False 38 -------- ----------- ----- -- -------------------------------------------------------------------------------- 40: 33 examples seen: 25/26 -------- ----------- ----- -- (1, 39) 2 3 7 7 5 . True 40 (2, 38) 2 3 7 5 7 . True 40 (3, 37) 2 3 7 7 5 . True 40 (4, 36) 2 3 7 7 5 . True 40 (5, 35) 2 3 7 7 5 . True 40 (6, 34) 2 3 7 7 5 . True 40 (9, 31) 2 3 7 5 7 . True 40 (11, 29) 2 3 7 7 5 . True 40 (13, 27) 2 3 7 7 5 . True 40 (15, 25) 2 3 7 7 5 . True 40 (18, 22) 2 3 7 5 6 . False 39 (19, 21) 2 3 7 7 5 . True 40 (20, 20) 2 3 7 7 5 . True 40 (22, 18) 2 3 7 7 5 . True 40 (23, 17) 2 3 7 7 5 . True 40 (24, 16) 2 3 7 7 5 . True 40 (25, 15) 2 3 7 7 5 . True 40 (27, 13) 2 3 7 7 5 . True 40 (28, 12) 2 3 7 7 5 . True 40 (31, 9) 2 3 7 7 5 . True 40 (33, 7) 2 3 7 7 5 . True 40 (35, 5) 2 3 7 7 5 . True 40 (36, 4) 2 3 7 7 5 . True 40 (37, 3) 2 3 7 7 5 . True 40 (38, 2) 2 3 7 9 7 . True 40 (39, 1) 2 3 7 5 7 . True 40 -------- ----------- ----- -- unseen: 6/7 -------- ----------- ----- -- (8, 32) 2 3 7 5 7 . True 40 (10, 30) 2 3 7 7 5 . True 40 (12, 28) 2 3 7 5 7 . True 40 (14, 26) 2 3 7 5 6 . False 39 (16, 24) 2 3 7 7 5 . True 40 (29, 11) 2 3 7 7 5 . True 40 (30, 10) 2 3 7 7 5 . True 40 -------- ----------- ----- -- -------------------------------------------------------------------------------- 41: 29 examples seen: 17/20 -------- ----------- ----- -- (2, 39) 2 3 7 7 5 . False 40 (3, 38) 2 3 7 7 7 . True 41 (4, 37) 2 3 7 7 5 . False 40 (5, 36) 2 3 7 7 7 . True 41 (6, 35) 2 3 7 7 7 . True 41 (8, 33) 2 3 7 7 7 . True 41 (12, 29) 2 3 7 7 7 . True 41 (14, 27) 2 3 7 7 7 . True 41 (15, 26) 2 3 7 7 7 . True 41 (16, 25) 2 3 7 7 7 . True 41 (17, 24) 2 3 7 7 7 . True 41 (18, 23) 2 3 7 7 5 . False 40 (21, 20) 2 3 7 7 7 . True 41 (22, 19) 2 3 7 7 7 . True 41 (27, 14) 2 3 7 7 7 . True 41 (28, 13) 2 3 7 7 7 . True 41 (29, 12) 2 3 7 7 7 . True 41 (30, 11) 2 3 7 7 7 . True 41 (31, 10) 2 3 7 7 7 . True 41 (38, 3) 2 3 7 7 9 . True 41 -------- ----------- ----- -- unseen: 3/9 -------- ----------- ----- -- (10, 31) 2 3 7 7 5 . False 40 (11, 30) 2 7 5 6 5 . False 42 (13, 28) 2 7 5 5 6 . False 42 (20, 21) 2 3 7 7 5 . False 40 (24, 17) 2 3 7 7 7 . True 41 (25, 16) 2 3 7 7 7 . True 41 (34, 7) 2 7 5 5 6 . False 42 (36, 5) 2 3 7 7 5 . False 40 (37, 4) 2 3 7 7 7 . True 41 -------- ----------- ----- -- -------------------------------------------------------------------------------- 42: 29 examples seen: 14/21 -------- ----------- ----- -- (3, 39) 2 7 5 5 6 . True 42 (4, 38) 2 7 5 5 6 . True 42 (5, 37) 2 7 5 5 6 . True 42 (7, 35) 2 7 5 6 7 . True 42 (8, 34) 2 7 5 5 6 . True 42 (9, 33) 2 7 5 7 5 . False 43 (10, 32) 2 7 7 5 6 . False 43 (11, 31) 2 7 5 6 5 . True 42 (12, 30) 2 7 5 6 5 . True 42 (13, 29) 2 7 5 6 7 . True 42 (16, 26) 2 3 7 7 7 . False 41 (19, 23) 2 7 5 7 5 . False 43 (20, 22) 2 7 5 7 7 . False 43 (22, 20) 2 7 5 6 5 . True 42 (28, 14) 2 7 5 6 7 . True 42 (29, 13) 2 7 5 6 7 . True 42 (31, 11) 2 7 5 6 5 . True 42 (32, 10) 2 7 5 5 6 . True 42 (33, 9) 2 3 7 7 7 . False 41 (34, 8) 2 7 5 7 5 . False 43 (39, 3) 2 7 5 5 6 . True 42 -------- ----------- ----- -- unseen: 5/8 -------- ----------- ----- -- (15, 27) 2 7 5 7 7 . False 43 (18, 24) 2 3 7 7 7 . False 41 (24, 18) 2 7 5 6 5 . True 42 (25, 17) 2 7 5 6 7 . True 42 (26, 16) 2 7 5 7 5 . False 43 (35, 7) 2 7 5 6 7 . True 42 (36, 6) 2 7 5 6 7 . True 42 (37, 5) 2 7 5 5 6 . True 42 -------- ----------- ----- -- -------------------------------------------------------------------------------- 43: 26 examples seen: 17/21 -------- ----------- ----- -- (4, 39) 2 7 5 6 5 . False 42 (5, 38) 2 7 5 7 7 . True 43 (6, 37) 2 7 5 7 5 . True 43 (10, 33) 2 7 7 5 6 . True 43 (11, 32) 2 7 7 7 5 . False 44 (12, 31) 2 7 5 7 5 . True 43 (13, 30) 2 7 7 5 6 . True 43 (14, 29) 2 7 7 5 6 . True 43 (16, 27) 2 7 7 5 6 . True 43 (18, 25) 2 3 7 7 7 . False 41 (20, 23) 2 7 7 5 7 . True 43 (21, 22) 2 7 7 5 6 . True 43 (24, 19) 2 7 7 5 7 . True 43 (25, 18) 2 7 7 5 6 . True 43 (26, 17) 2 7 7 5 6 . True 43 (27, 16) 2 7 7 5 6 . True 43 (28, 15) 2 7 5 6 7 . False 42 (30, 13) 2 7 7 5 6 . True 43 (34, 9) 2 7 7 5 6 . True 43 (35, 8) 2 7 7 5 6 . True 43 (37, 6) 2 7 7 5 6 . True 43 -------- ----------- ----- -- unseen: 4/5 -------- ----------- ----- -- (8, 35) 2 7 7 5 6 . True 43 (17, 26) 2 7 7 5 6 . True 43 (19, 24) 2 7 7 5 6 . True 43 (31, 12) 2 7 7 5 7 . True 43 (38, 5) 2 7 5 6 5 . False 42 -------- ----------- ----- -- -------------------------------------------------------------------------------- 44: 29 examples seen: 22/22 -------- ----------- ---- -- (8, 36) 2 7 7 7 5 . True 44 (9, 35) 2 7 7 7 5 . True 44 (14, 30) 2 7 7 7 5 . True 44 (15, 29) 2 7 7 7 5 . True 44 (16, 28) 2 7 7 7 5 . True 44 (17, 27) 2 7 7 7 5 . True 44 (20, 24) 2 7 7 7 5 . True 44 (21, 23) 2 7 7 7 5 . True 44 (22, 22) 2 7 7 7 5 . True 44 (23, 21) 2 7 7 7 5 . True 44 (25, 19) 2 7 7 7 5 . True 44 (26, 18) 2 7 7 7 5 . True 44 (27, 17) 2 7 7 7 5 . True 44 (30, 14) 2 7 7 7 5 . True 44 (31, 13) 2 7 7 7 5 . True 44 (32, 12) 2 7 7 7 5 . True 44 (33, 11) 2 7 7 7 5 . True 44 (34, 10) 2 7 7 7 5 . True 44 (35, 9) 2 7 7 7 5 . True 44 (36, 8) 2 7 7 7 5 . True 44 (37, 7) 2 7 7 7 5 . True 44 (38, 6) 2 7 7 7 5 . True 44 -------- ----------- ---- -- unseen: 1/7 -------- ----------- ----- -- (12, 32) 8 7 5 6 7 . False 46 (13, 31) 2 7 7 5 7 . False 43 (18, 26) 2 7 5 7 5 . False 43 (19, 25) 2 7 7 5 6 . False 43 (24, 20) 2 7 7 7 5 . True 44 (28, 16) 7 5 6 5 7 . False 45 (29, 15) 2 7 7 5 6 . False 43 -------- ----------- ----- -- -------------------------------------------------------------------------------- 45: 27 examples seen: 17/19 -------- ----------- ----- -- (7, 38) 8 5 7 5 6 . True 45 (9, 36) 2 7 7 7 7 . True 45 (11, 34) 2 7 7 7 7 . True 45 (15, 30) 2 7 7 7 7 . True 45 (17, 28) 7 5 6 7 5 . True 45 (18, 27) 2 7 7 7 5 . False 44 (19, 26) 7 5 6 7 5 . True 45 (22, 23) 2 7 7 7 7 . True 45 (23, 22) 2 7 7 7 7 . True 45 (27, 18) 7 5 6 7 5 . True 45 (28, 17) 7 5 6 7 5 . True 45 (29, 16) 7 5 6 7 5 . True 45 (30, 15) 7 5 6 7 5 . True 45 (31, 14) 2 7 7 7 7 . True 45 (32, 13) 7 5 7 5 6 . False 46 (34, 11) 2 7 7 7 7 . True 45 (35, 10) 2 7 7 7 7 . True 45 (38, 7) 2 7 7 7 7 . True 45 (39, 6) 8 5 7 5 6 . True 45 -------- ----------- ----- -- unseen: 1/8 -------- ----------- ----- -- (6, 39) 2 7 7 5 7 . False 43 (12, 33) 2 7 7 7 5 . False 44 (13, 32) 8 7 5 6 7 . False 46 (14, 31) 2 7 7 7 5 . False 44 (21, 24) 2 7 7 7 7 . True 45 (25, 20) 2 7 7 7 5 . False 44 (36, 9) 2 7 7 7 5 . False 44 (37, 8) 8 7 5 6 7 . False 46 -------- ----------- ----- -- -------------------------------------------------------------------------------- 46: 26 examples seen: 19/20 -------- ----------- ----- -- (7, 39) 8 7 5 6 7 . True 46 (11, 35) 8 7 5 6 7 . True 46 (12, 34) 8 7 5 6 7 . True 46 (13, 33) 7 5 7 5 6 . True 46 (14, 32) 8 7 5 6 7 . True 46 (15, 31) 7 5 7 5 6 . True 46 (17, 29) 7 5 7 5 6 . True 46 (18, 28) 7 5 6 7 5 . False 45 (20, 26) 7 5 7 5 6 . True 46 (21, 25) 7 5 7 5 6 . True 46 (25, 21) 7 5 7 5 6 . True 46 (27, 19) 7 5 7 5 6 . True 46 (29, 17) 7 5 7 5 6 . True 46 (30, 16) 7 5 7 5 6 . True 46 (31, 15) 7 5 7 5 6 . True 46 (33, 13) 7 5 7 5 6 . True 46 (34, 12) 8 7 5 6 7 . True 46 (37, 9) 8 7 5 6 7 . True 46 (38, 8) 8 7 5 6 7 . True 46 (39, 7) 8 7 5 6 7 . True 46 -------- ----------- ----- -- unseen: 1/6 -------- ----------- ----- -- (8, 38) 8 7 5 6 7 . True 46 (9, 37) 2 7 7 7 5 . False 44 (10, 36) 2 7 7 7 7 . False 45 (24, 22) 7 5 7 7 5 . False 47 (26, 20) 7 7 5 6 7 . False 47 (35, 11) 2 7 7 7 7 . False 45 -------- ----------- ----- -- -------------------------------------------------------------------------------- 47: 24 examples seen: 15/16 -------- ----------- ----- -- (8, 39) 7 7 5 6 7 . True 47 (9, 38) 7 7 5 6 7 . True 47 (14, 33) 7 7 5 6 7 . True 47 (16, 31) 7 5 7 7 5 . True 47 (17, 30) 7 7 5 6 7 . True 47 (19, 28) 7 7 5 6 7 . True 47 (22, 25) 7 7 5 6 7 . True 47 (24, 23) 7 7 5 6 7 . True 47 (26, 21) 7 7 5 6 7 . True 47 (28, 19) 7 7 5 6 7 . True 47 (29, 18) 7 7 5 6 7 . True 47 (30, 17) 7 7 5 6 7 . True 47 (31, 16) 7 7 5 6 7 . True 47 (32, 15) 7 5 7 5 7 . False 46 (34, 13) 7 7 5 6 7 . True 47 (36, 11) 7 7 5 6 7 . True 47 -------- ----------- ----- -- unseen: 4/8 -------- ----------- ----- -- (10, 37) 8 7 5 6 7 . False 46 (15, 32) 7 7 5 7 7 . True 47 (20, 27) 7 7 7 5 6 . False 48 (21, 26) 7 7 5 6 7 . True 47 (23, 24) 7 7 5 7 7 . True 47 (25, 22) 7 7 5 6 7 . True 47 (35, 12) 8 7 7 5 6 . False 48 (38, 9) 8 7 5 6 7 . False 46 -------- ----------- ----- -- -------------------------------------------------------------------------------- 48: 23 examples seen: 20/23 -------- ----------- ----- -- (9, 39) 7 7 7 5 6 . True 48 (11, 37) 8 7 7 5 6 . True 48 (12, 36) 8 7 7 5 6 . True 48 (13, 35) 8 7 7 5 6 . True 48 (14, 34) 8 7 7 5 6 . True 48 (16, 32) 7 7 7 5 6 . True 48 (17, 31) 7 7 7 5 6 . True 48 (20, 28) 7 7 7 5 6 . True 48 (21, 27) 7 7 7 5 6 . True 48 (22, 26) 7 7 7 5 6 . True 48 (23, 25) 7 7 7 5 6 . True 48 (24, 24) 7 7 7 5 6 . True 48 (25, 23) 7 7 7 5 6 . True 48 (26, 22) 7 7 7 5 6 . True 48 (29, 19) 7 7 7 5 6 . True 48 (31, 17) 7 7 7 5 7 . False 49 (33, 15) 7 7 5 7 5 . False 47 (34, 14) 8 7 7 5 6 . True 48 (35, 13) 7 7 7 5 6 . True 48 (36, 12) 8 7 7 5 6 . True 48 (37, 11) 8 7 7 5 6 . True 48 (38, 10) 8 7 5 7 7 . False 49 (39, 9) 8 7 7 5 6 . True 48 -------- ----------- ----- -- unseen: 0/0 -------------------------------------------------------------------------------- 49: 23 examples seen: 12/15 -------- ----------- ----- -- (10, 39) 8 7 7 7 7 . False 50 (11, 38) 8 7 7 5 7 . True 49 (12, 37) 8 7 7 5 7 . True 49 (14, 35) 8 7 7 7 5 . True 49 (17, 32) 7 7 7 7 5 . True 49 (18, 31) 7 5 7 7 5 . False 47 (20, 29) 7 7 7 7 7 . False 50 (27, 22) 7 7 7 7 5 . True 49 (28, 21) 7 7 7 7 5 . True 49 (31, 18) 7 7 7 7 5 . True 49 (32, 17) 7 7 7 7 5 . True 49 (33, 16) 7 7 7 5 7 . True 49 (35, 14) 8 7 7 7 5 . True 49 (36, 13) 8 7 7 7 5 . True 49 (37, 12) 8 7 7 7 5 . True 49 -------- ----------- ----- -- unseen: 5/8 -------- ----------- ----- -- (21, 28) 7 7 7 5 7 . True 49 (22, 27) 7 7 7 7 5 . True 49 (23, 26) 7 7 7 7 5 . True 49 (25, 24) 7 7 7 7 5 . True 49 (29, 20) 7 7 7 5 7 . True 49 (30, 19) 7 7 7 5 6 . False 48 (34, 15) 7 7 7 5 6 . False 48 (39, 10) 8 7 7 5 6 . False 48 -------- ----------- ----- -- -------------------------------------------------------------------------------- 50: 21 examples seen: 14/14 -------- ----------- ---- -- (11, 39) 8 7 7 7 7 . True 50 (12, 38) 8 7 7 9 7 . True 50 (15, 35) 7 7 7 7 7 . True 50 (16, 34) 7 7 7 7 7 . True 50 (21, 29) 7 7 7 7 7 . True 50 (22, 28) 7 7 7 7 7 . True 50 (23, 27) 7 7 7 7 7 . True 50 (24, 26) 7 7 7 7 7 . True 50 (25, 25) 7 7 7 7 7 . True 50 (27, 23) 7 7 7 7 7 . True 50 (34, 16) 7 7 7 7 7 . True 50 (35, 15) 7 7 7 7 7 . True 50 (36, 14) 8 7 7 7 9 . True 50 (38, 12) 8 7 7 7 9 . True 50 -------- ----------- ---- -- unseen: 4/7 -------- ----------- ----- -- (17, 33) 7 7 7 7 5 . False 49 (18, 32) 7 7 7 5 7 . False 49 (19, 31) 7 7 7 7 7 . True 50 (28, 22) 7 7 7 7 7 . True 50 (31, 19) 7 7 7 7 7 . True 50 (32, 18) 7 7 7 5 6 . False 48 (39, 11) 8 7 7 7 7 . True 50 -------- ----------- ----- -- -------------------------------------------------------------------------------- 51: 17 examples seen: 10/13 -------- ----------- ----- -- (12, 39) 8 7 9 7 7 . True 51 (13, 38) 8 7 9 7 7 . True 51 (15, 36) 7 7 7 7 9 . True 51 (21, 30) 7 7 7 7 9 . True 51 (24, 27) 7 7 7 7 9 . True 51 (26, 25) 7 7 7 7 9 . True 51 (28, 23) 7 7 7 7 9 . True 51 (29, 22) 7 7 7 7 7 . False 50 (30, 21) 7 7 7 7 7 . False 50 (31, 20) 7 7 7 9 7 . False 52 (35, 16) 7 7 7 7 9 . True 51 (36, 15) 7 7 7 7 9 . True 51 (39, 12) 8 7 9 7 7 . True 51 -------- ----------- ----- -- unseen: 4/4 -------- ----------- ---- -- (19, 32) 7 7 7 7 9 . True 51 (20, 31) 7 7 7 7 9 . True 51 (25, 26) 7 7 7 7 9 . True 51 (37, 14) 8 7 9 7 7 . True 51 -------- ----------- ---- -- -------------------------------------------------------------------------------- 52: 22 examples seen: 11/16 -------- ----------- ----- -- (14, 38) 8 7 9 7 9 . True 52 (16, 36) 7 7 7 9 7 . True 52 (17, 35) 7 7 7 9 7 . True 52 (18, 34) 7 7 7 7 7 . False 50 (19, 33) 7 7 7 9 7 . True 52 (24, 28) 7 7 7 9 7 . True 52 (25, 27) 7 7 7 7 9 . False 51 (26, 26) 7 7 7 9 7 . True 52 (28, 24) 7 7 7 9 9 . False 53 (31, 21) 7 7 9 7 7 . False 53 (32, 20) 7 7 7 9 7 . True 52 (35, 17) 7 7 7 9 7 . True 52 (36, 16) 7 7 7 9 7 . True 52 (37, 15) 7 7 7 7 9 . False 51 (38, 14) 8 7 9 7 9 . True 52 (39, 13) 8 7 9 7 9 . True 52 -------- ----------- ----- -- unseen: 3/6 -------- ----------- ----- -- (20, 32) 7 7 9 7 7 . False 53 (21, 31) 7 7 7 9 7 . True 52 (23, 29) 7 7 7 9 7 . True 52 (29, 23) 7 7 7 7 9 . False 51 (30, 22) 7 7 7 9 7 . True 52 (34, 18) 7 7 7 7 9 . False 51 -------- ----------- ----- -- -------------------------------------------------------------------------------- 53: 20 examples seen: 13/15 -------- ----------- ----- -- (14, 39) 8 9 7 7 7 . True 53 (16, 37) 7 7 9 7 7 . True 53 (18, 35) 7 7 7 9 7 . False 52 (21, 32) 7 7 7 9 9 . True 53 (22, 31) 7 7 7 9 9 . True 53 (23, 30) 7 7 9 7 7 . True 53 (24, 29) 7 7 9 7 7 . True 53 (25, 28) 7 7 7 9 9 . True 53 (28, 25) 7 7 9 7 7 . True 53 (29, 24) 7 7 7 9 9 . True 53 (33, 20) 7 7 9 7 7 . True 53 (34, 19) 7 7 9 7 7 . True 53 (37, 16) 7 7 9 7 7 . True 53 (38, 15) 7 7 7 9 7 . False 52 (39, 14) 8 9 7 7 9 . True 53 -------- ----------- ----- -- unseen: 3/5 -------- ----------- ----- -- (15, 38) 7 7 9 7 7 . True 53 (20, 33) 7 7 9 7 9 . False 54 (30, 23) 7 7 9 7 7 . True 53 (31, 22) 7 7 9 7 9 . False 54 (35, 18) 7 7 9 7 7 . True 53 -------- ----------- ----- -- -------------------------------------------------------------------------------- 54: 17 examples seen: 16/16 -------- ----------- ---- -- (15, 39) 7 7 9 7 9 . True 54 (16, 38) 7 7 9 7 9 . True 54 (17, 37) 7 7 9 7 9 . True 54 (20, 34) 7 7 9 7 9 . True 54 (22, 32) 7 7 9 7 9 . True 54 (23, 31) 7 7 9 7 9 . True 54 (25, 29) 7 7 9 7 9 . True 54 (27, 27) 7 7 9 7 9 . True 54 (28, 26) 7 7 9 7 9 . True 54 (30, 24) 7 7 9 7 9 . True 54 (32, 22) 7 7 9 7 9 . True 54 (34, 20) 7 7 9 7 9 . True 54 (35, 19) 7 7 9 7 9 . True 54 (36, 18) 7 7 9 7 9 . True 54 (37, 17) 7 7 9 7 9 . True 54 (38, 16) 7 7 9 7 9 . True 54 -------- ----------- ---- -- unseen: 1/1 -------- ----------- ---- -- (24, 30) 7 7 9 7 9 . True 54 -------- ----------- ---- -- -------------------------------------------------------------------------------- 55: 21 examples seen: 12/14 -------- ----------- ----- -- (17, 38) 7 7 9 9 7 . True 55 (18, 37) 7 7 9 7 7 . False 53 (20, 35) 7 9 7 7 9 . False 56 (21, 34) 7 7 9 9 7 . True 55 (24, 31) 7 7 9 9 7 . True 55 (25, 30) 7 7 9 9 7 . True 55 (26, 29) 7 9 7 7 7 . True 55 (27, 28) 7 7 9 9 7 . True 55 (29, 26) 7 7 9 9 7 . True 55 (30, 25) 7 7 9 9 7 . True 55 (33, 22) 7 9 7 7 7 . True 55 (35, 20) 7 7 9 9 7 . True 55 (36, 19) 7 7 9 9 7 . True 55 (39, 16) 7 7 9 9 7 . True 55 -------- ----------- ----- -- unseen: 5/7 -------- ----------- ----- -- (16, 39) 7 7 9 7 9 . False 54 (23, 32) 7 7 9 9 7 . True 55 (28, 27) 7 9 7 7 7 . True 55 (31, 24) 7 7 9 9 7 . True 55 (32, 23) 7 7 9 9 7 . True 55 (37, 18) 7 9 7 7 7 . True 55 (38, 17) 7 7 9 7 9 . False 54 -------- ----------- ----- -- -------------------------------------------------------------------------------- 56: 15 examples seen: 6/14 -------- ----------- ----- -- (18, 38) 7 7 9 9 7 . False 55 (19, 37) 7 9 7 7 9 . True 56 (20, 36) 7 9 7 7 9 . True 56 (21, 35) 7 9 7 9 7 . False 57 (22, 34) 7 9 7 9 7 . False 57 (23, 33) 7 9 7 7 7 . False 55 (27, 29) 7 9 7 7 9 . True 56 (29, 27) 7 9 7 9 7 . False 57 (31, 25) 7 9 7 9 7 . False 57 (33, 23) 7 9 7 7 7 . False 55 (35, 21) 7 9 7 7 9 . True 56 (36, 20) 7 9 7 7 9 . True 56 (37, 19) 7 9 7 9 7 . False 57 (39, 17) 7 9 7 7 9 . True 56 -------- ----------- ----- -- unseen: 0/1 -------- ----------- ----- -- (26, 30) 7 9 7 9 7 . False 57 -------- ----------- ----- -- -------------------------------------------------------------------------------- 57: 16 examples seen: 13/13 -------- ----------- ---- -- (19, 38) 7 9 7 9 7 . True 57 (20, 37) 7 9 7 9 7 . True 57 (22, 35) 7 9 7 9 9 . True 57 (25, 32) 7 9 7 9 7 . True 57 (27, 30) 7 9 7 9 9 . True 57 (28, 29) 7 9 7 9 9 . True 57 (29, 28) 7 9 7 9 7 . True 57 (30, 27) 7 9 7 9 7 . True 57 (31, 26) 7 9 7 9 9 . True 57 (32, 25) 7 9 7 9 7 . True 57 (33, 24) 7 9 7 9 7 . True 57 (34, 23) 7 9 7 9 9 . True 57 (38, 19) 7 9 7 9 7 . True 57 -------- ----------- ---- -- unseen: 2/3 -------- ----------- ----- -- (18, 39) 7 9 7 7 7 . False 55 (26, 31) 7 9 7 9 7 . True 57 (35, 22) 7 9 7 9 7 . True 57 -------- ----------- ----- -- -------------------------------------------------------------------------------- 58: 19 examples seen: 14/17 -------- ----------- ----- -- (19, 39) 9 7 7 9 7 . False 59 (20, 38) 7 9 9 7 7 . True 58 (21, 37) 7 9 9 7 7 . True 58 (22, 36) 9 7 7 7 9 . True 58 (23, 35) 9 7 7 9 7 . False 59 (24, 34) 9 7 7 7 9 . True 58 (25, 33) 7 9 9 7 7 . True 58 (27, 31) 7 9 9 7 7 . True 58 (28, 30) 7 9 9 7 7 . True 58 (29, 29) 7 9 9 7 7 . True 58 (31, 27) 7 9 9 7 7 . True 58 (33, 25) 7 9 9 7 7 . True 58 (34, 24) 7 9 9 7 7 . True 58 (35, 23) 9 7 7 9 7 . False 59 (36, 22) 9 7 7 7 9 . True 58 (37, 21) 7 9 9 7 7 . True 58 (39, 19) 7 9 9 7 7 . True 58 -------- ----------- ----- -- unseen: 1/2 -------- ----------- ----- -- (26, 32) 9 7 7 9 7 . False 59 (38, 20) 9 7 7 7 9 . True 58 -------- ----------- ----- -- -------------------------------------------------------------------------------- 59: 17 examples seen: 10/14 -------- ----------- ----- -- (20, 39) 9 7 9 7 7 . False 60 (21, 38) 9 7 7 9 7 . True 59 (22, 37) 9 7 7 9 7 . True 59 (23, 36) 9 7 7 9 7 . True 59 (24, 35) 9 7 7 9 7 . True 59 (25, 34) 9 7 7 9 7 . True 59 (26, 33) 9 7 7 9 7 . True 59 (27, 32) 9 7 9 7 7 . False 60 (29, 30) 9 7 7 7 9 . False 58 (30, 29) 9 7 7 9 7 . True 59 (33, 26) 9 7 7 9 7 . True 59 (37, 22) 9 7 7 9 7 . True 59 (38, 21) 9 7 7 9 7 . True 59 (39, 20) 9 7 9 7 7 . False 60 -------- ----------- ----- -- unseen: 2/3 -------- ----------- ----- -- (28, 31) 9 7 7 9 7 . True 59 (31, 28) 9 7 7 9 7 . True 59 (34, 25) 9 7 7 9 9 . False 58 -------- ----------- ----- -- -------------------------------------------------------------------------------- 60: 11 examples seen: 8/11 -------- ----------- ----- -- (22, 38) 9 7 9 7 7 . True 60 (23, 37) 9 7 9 7 7 . True 60 (24, 36) 9 7 9 7 7 . True 60 (25, 35) 9 7 9 7 7 . True 60 (26, 34) 9 7 9 7 7 . True 60 (27, 33) 9 7 9 9 7 . False 61 (28, 32) 9 7 9 7 7 . True 60 (31, 29) 9 7 9 9 7 . False 61 (32, 28) 9 7 7 9 7 . False 59 (35, 25) 9 7 9 7 9 . True 60 (38, 22) 9 7 9 7 7 . True 60 -------- ----------- ----- -- unseen: 0/0 -------------------------------------------------------------------------------- 61: 13 examples seen: 7/10 -------- ----------- ----- -- (22, 39) 9 7 9 9 7 . True 61 (24, 37) 9 7 9 7 9 . False 60 (27, 34) 9 7 9 9 7 . True 61 (28, 33) 9 7 9 9 7 . True 61 (29, 32) 9 7 9 7 9 . False 60 (31, 30) 9 7 9 9 7 . True 61 (32, 29) 9 7 9 9 7 . True 61 (33, 28) 9 7 9 7 9 . False 60 (34, 27) 9 7 9 9 7 . True 61 (35, 26) 9 7 9 9 7 . True 61 -------- ----------- ----- -- unseen: 2/3 -------- ----------- ----- -- (23, 38) 9 7 9 9 7 . True 61 (30, 31) 9 7 9 9 7 . True 61 (37, 24) 9 7 9 7 9 . False 60 -------- ----------- ----- -- -------------------------------------------------------------------------------- 62: 13 examples seen: 2/12 -------- ----------- ----- -- (25, 37) 9 7 9 9 7 . False 61 (27, 35) 9 9 7 7 9 . False 63 (28, 34) 9 9 7 7 9 . False 63 (29, 33) 9 7 9 9 9 . True 62 (30, 32) 9 9 7 7 9 . False 63 (32, 30) 9 9 7 7 9 . False 63 (34, 28) 9 7 9 9 9 . True 62 (35, 27) 9 9 7 7 9 . False 63 (36, 26) 9 9 7 7 9 . False 63 (37, 25) 9 9 7 7 9 . False 63 (38, 24) 9 7 9 9 7 . False 61 (39, 23) 9 9 7 7 9 . False 63 -------- ----------- ----- -- unseen: 0/1 -------- ----------- ----- -- (31, 31) 9 9 7 7 9 . False 63 -------- ----------- ----- -- -------------------------------------------------------------------------------- 63: 12 examples seen: 9/10 -------- ----------- ----- -- (24, 39) 9 9 7 7 9 . True 63 (25, 38) 9 9 7 7 9 . True 63 (26, 37) 9 9 7 7 9 . True 63 (29, 34) 9 9 7 7 9 . True 63 (32, 31) 9 9 7 7 9 . True 63 (33, 30) 9 9 7 7 9 . True 63 (34, 29) 9 9 7 7 9 . True 63 (35, 28) 9 9 7 7 9 . True 63 (36, 27) 9 9 7 7 9 . True 63 (37, 26) 9 9 7 9 7 . False 64 -------- ----------- ----- -- unseen: 1/2 -------- ----------- ----- -- (28, 35) 9 9 7 9 7 . False 64 (30, 33) 9 9 7 7 9 . True 63 -------- ----------- ----- -- -------------------------------------------------------------------------------- 64: 12 examples seen: 9/9 -------- ----------- ---- -- (26, 38) 9 9 7 9 7 . True 64 (27, 37) 9 9 7 9 7 . True 64 (28, 36) 9 9 7 9 7 . True 64 (30, 34) 9 9 7 9 7 . True 64 (31, 33) 9 9 7 9 7 . True 64 (33, 31) 9 9 7 9 7 . True 64 (36, 28) 9 9 7 9 7 . True 64 (38, 26) 9 9 7 9 7 . True 64 (39, 25) 9 9 7 9 7 . True 64 -------- ----------- ---- -- unseen: 3/3 -------- ----------- ---- -- (34, 30) 9 9 7 9 7 . True 64 (35, 29) 9 9 7 9 7 . True 64 (37, 27) 9 9 7 9 7 . True 64 -------- ----------- ---- -- -------------------------------------------------------------------------------- 65: 10 examples seen: 5/6 -------- ----------- ----- -- (28, 37) 9 9 7 9 9 . True 65 (31, 34) 9 9 7 9 9 . True 65 (33, 32) 9 9 7 9 9 . True 65 (34, 31) 9 9 7 9 7 . False 64 (36, 29) 9 9 7 9 9 . True 65 (38, 27) 9 9 7 9 9 . True 65 -------- ----------- ----- -- unseen: 1/4 -------- ----------- ----- -- (26, 39) 9 9 7 9 9 . True 65 (32, 33) 9 9 7 9 7 . False 64 (35, 30) 9 9 9 7 7 . False 66 (39, 26) 9 9 7 9 7 . False 64 -------- ----------- ----- -- -------------------------------------------------------------------------------- 66: 11 examples seen: 5/7 -------- ----------- ----- -- (27, 39) 9 9 9 7 7 . True 66 (28, 38) 9 9 9 7 7 . True 66 (29, 37) 9 9 7 9 9 . False 65 (33, 33) 9 9 9 7 7 . True 66 (35, 31) 9 9 9 7 7 . True 66 (37, 29) 9 9 9 7 7 . True 66 (38, 28) 9 9 7 9 9 . False 65 -------- ----------- ----- -- unseen: 1/4 -------- ----------- ----- -- (30, 36) 9 9 7 9 9 . False 65 (32, 34) 9 9 7 9 9 . False 65 (34, 32) 9 9 9 7 7 . True 66 (36, 30) 9 9 9 7 9 . False 67 -------- ----------- ----- -- -------------------------------------------------------------------------------- 67: 10 examples seen: 4/5 -------- ----------- ----- -- (29, 38) 9 9 9 7 7 . False 66 (30, 37) 9 9 9 7 9 . True 67 (35, 32) 9 9 9 7 9 . True 67 (38, 29) 9 9 9 7 9 . True 67 (39, 28) 9 9 9 7 9 . True 67 -------- ----------- ----- -- unseen: 5/5 -------- ----------- ---- -- (28, 39) 9 9 9 7 9 . True 67 (31, 36) 9 9 9 7 9 . True 67 (33, 34) 9 9 9 7 9 . True 67 (34, 33) 9 9 9 7 9 . True 67 (36, 31) 9 9 9 7 9 . True 67 -------- ----------- ---- -- -------------------------------------------------------------------------------- 68: 6 examples seen: 0/5 -------- ----------- ----- -- (29, 39) 9 9 9 7 9 . False 67 (30, 38) 9 9 9 7 9 . False 67 (35, 33) 9 9 9 7 9 . False 67 (38, 30) 9 9 9 7 9 . False 67 (39, 29) 9 9 9 7 9 . False 67 -------- ----------- ----- -- unseen: 0/1 -------- ----------- ----- -- (32, 36) 9 9 9 7 9 . False 67 -------- ----------- ----- -- -------------------------------------------------------------------------------- 69: 9 examples seen: 8/9 -------- ----------- ----- -- (30, 39) 9 9 9 9 7 . True 69 (31, 38) 9 9 9 9 7 . True 69 (33, 36) 9 9 9 9 7 . True 69 (34, 35) 9 9 9 9 7 . True 69 (35, 34) 9 9 9 9 7 . True 69 (36, 33) 9 9 9 9 7 . True 69 (37, 32) 9 9 9 9 7 . True 69 (38, 31) 9 9 9 7 9 . False 67 (39, 30) 9 9 9 9 7 . True 69 -------- ----------- ----- -- unseen: 0/0 -------------------------------------------------------------------------------- 70: 8 examples seen: 0/6 -------- ----------- ----- -- (31, 39) 9 9 9 9 7 . False 69 (32, 38) 9 9 9 9 7 . False 69 (33, 37) 9 9 9 9 7 . False 69 (35, 35) 9 9 9 9 7 . False 69 (36, 34) 9 9 9 9 7 . False 69 (39, 31) 9 9 9 9 7 . False 69 -------- ----------- ----- -- unseen: 0/2 -------- ----------- ----- -- (34, 36) 9 9 9 9 9 . False 73 (37, 33) 9 9 9 9 7 . False 69 -------- ----------- ----- -- -------------------------------------------------------------------------------- 71: 5 examples seen: 0/3 -------- ----------- ----- -- (33, 38) 9 9 9 9 7 . False 69 (36, 35) 9 9 9 9 7 . False 69 (37, 34) 9 9 9 9 7 . False 69 -------- ----------- ----- -- unseen: 0/2 -------- ----------- ----- -- (34, 37) 9 9 9 9 9 . False 73 (39, 32) 9 9 9 9 7 . False 69 -------- ----------- ----- -- -------------------------------------------------------------------------------- 72: 3 examples seen: 0/3 -------- ----------- ----- -- (34, 38) 9 9 9 9 9 . False 73 (35, 37) 9 9 9 9 9 . False 73 (39, 33) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 0/0 -------------------------------------------------------------------------------- 73: 5 examples seen: 4/4 -------- ----------- ---- -- (34, 39) 9 9 9 9 9 . True 73 (35, 38) 9 9 9 9 9 . True 73 (38, 35) 9 9 9 9 9 . True 73 (39, 34) 9 9 9 9 9 . True 73 -------- ----------- ---- -- unseen: 1/1 -------- ----------- ---- -- (37, 36) 9 9 9 9 9 . True 73 -------- ----------- ---- -- -------------------------------------------------------------------------------- 74: 5 examples seen: 0/2 -------- ----------- ----- -- (35, 39) 9 9 9 9 9 . False 73 (39, 35) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 0/3 -------- ----------- ----- -- (36, 38) 9 9 9 9 9 . False 73 (37, 37) 9 9 9 9 9 . False 73 (38, 36) 9 9 9 9 9 . False 73 -------- ----------- ----- -- -------------------------------------------------------------------------------- 75: 4 examples seen: 0/2 -------- ----------- ----- -- (36, 39) 9 9 9 9 9 . False 73 (38, 37) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 0/2 -------- ----------- ----- -- (37, 38) 9 9 9 9 9 . False 73 (39, 36) 9 9 9 9 9 . False 73 -------- ----------- ----- -- -------------------------------------------------------------------------------- 76: 2 examples seen: 0/1 -------- ----------- ----- -- (39, 37) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 0/1 -------- ----------- ----- -- (37, 39) 9 9 9 9 9 . False 73 -------- ----------- ----- -- -------------------------------------------------------------------------------- 77: 1 examples seen: 0/1 -------- ----------- ----- -- (39, 38) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 0/0 -------------------------------------------------------------------------------- ###Markdown Grouping and visualising the datasets by summand appearing in input.From left to right:- input, - message produced by the sender - whether the receiver's prediction is correct and- the actual prediction produced by the receiversplit by occurrence in training data (seen) and in evaluation data (unseen) and grouped by summands (i.e. all examples with 0, 1, 2 etc. as one of the inputs). ###Code print("Small ds") inspect_by_summand(data_small, normalised_vocab_small) print("Large ds") inspect_by_summand(data_large, normalised_vocab_large) ###Output Large ds 0: 58 examples seen: 34/43 ------- ----------- ----- -- (0, 0) 0 . 0 0 . . False 2 (0, 1) 0 . 0 0 . . False 2 (0, 10) 1 0 0 0 0 . False 12 (0, 12) 1 0 0 0 0 . True 12 (0, 13) 1 1 0 0 0 . True 13 (0, 14) 1 1 1 1 1 . True 14 (0, 15) 1 1 1 1 1 . False 14 (0, 17) 2 1 0 0 0 . True 17 (0, 18) 2 1 1 0 0 . True 18 (0, 19) 2 1 1 1 0 . True 19 (0, 2) 0 . 0 0 . . True 2 (0, 22) 2 1 1 3 1 . True 22 (0, 24) 2 1 3 4 0 . True 24 (0, 26) 2 3 4 0 0 . True 26 (0, 28) 2 3 4 1 1 . True 28 (0, 29) 2 3 4 2 1 . True 29 (0, 30) 2 3 4 2 4 . True 30 (0, 32) 2 3 4 3 4 . True 32 (0, 34) 2 3 5 6 3 . True 34 (0, 35) 2 3 5 6 5 . True 35 (0, 37) 2 3 5 7 5 . True 37 (0, 38) 2 3 5 7 7 . True 38 (0, 5) 0 0 . 0 0 . False 7 (0, 7) 0 0 . 0 0 . True 7 (0, 9) 0 0 . 0 0 . False 7 (4, 0) 0 0 . 0 0 . False 7 (6, 0) 0 0 . 0 0 . False 7 (14, 0) 1 1 1 1 1 . True 14 (15, 0) 1 1 1 1 1 . False 14 (16, 0) 1 1 1 3 1 . True 16 (18, 0) 2 1 1 0 0 . True 18 (19, 0) 2 1 1 1 0 . True 19 (21, 0) 2 1 1 1 3 . True 21 (22, 0) 2 1 1 3 1 . True 22 (24, 0) 2 1 3 4 0 . True 24 (25, 0) 2 3 1 0 0 . True 25 (26, 0) 2 3 4 0 0 . True 26 (29, 0) 2 3 4 2 1 . True 29 (32, 0) 2 3 5 4 2 . True 32 (36, 0) 2 3 5 6 7 . True 36 (37, 0) 2 3 5 7 5 . True 37 (38, 0) 2 3 5 7 7 . True 38 (39, 0) 2 3 7 5 6 . True 39 ------- ----------- ----- -- unseen: 3/15 ------- ----------- ----- -- (0, 25) 2 1 3 4 0 . False 24 (0, 27) 2 3 4 0 0 . False 26 (0, 3) 0 . 0 0 0 . False 2 (0, 36) 2 3 5 6 7 . True 36 (0, 39) 2 3 7 5 6 . True 39 (0, 6) 0 0 . 0 0 . False 7 (0, 8) 0 0 . 0 0 . False 7 (1, 0) 0 . 0 0 . . False 2 (2, 0) 0 0 . 0 0 . False 7 (5, 0) 0 0 . 0 0 . False 7 (11, 0) 1 0 0 0 0 . False 12 (23, 0) 2 1 3 1 0 . True 23 (28, 0) 2 3 4 0 0 . False 26 (30, 0) 2 3 4 2 1 . False 29 (35, 0) 2 3 5 6 7 . False 36 ------- ----------- ----- -- -------------------------------------------------------------------------------- 1: 60 examples seen: 28/40 ------- ----------- ----- -- (0, 1) 0 . 0 0 . . False 2 (1, 1) 0 . 0 0 . . True 2 (1, 10) 1 0 0 0 0 . False 12 (1, 12) 1 1 0 0 0 . True 13 (1, 13) 1 1 1 0 0 . False 13 (1, 14) 1 1 1 1 1 . False 14 (1, 16) 2 1 0 0 0 . True 17 (1, 17) 2 1 1 0 0 . True 18 (1, 2) 0 . 0 0 . . False 2 (1, 20) 2 1 1 1 3 . True 21 (1, 21) 2 1 1 3 1 . True 22 (1, 24) 2 3 1 0 0 . True 25 (1, 25) 2 3 4 0 0 . True 26 (1, 26) 2 3 4 1 0 . True 27 (1, 30) 2 3 4 2 3 . True 31 (1, 31) 2 3 4 3 4 . True 32 (1, 33) 2 3 5 6 3 . True 34 (1, 34) 2 3 5 6 5 . True 35 (1, 35) 2 3 5 6 7 . True 36 (1, 38) 2 3 7 5 6 . True 39 (1, 39) 2 3 7 7 5 . True 40 (1, 6) 0 0 . 0 0 . True 7 (5, 1) 0 0 . 0 0 . False 7 (6, 1) 0 0 . 0 0 . True 7 (9, 1) 1 0 0 0 0 . False 12 (11, 1) 1 0 0 0 0 . True 12 (12, 1) 1 1 1 0 0 . True 13 (14, 1) 1 1 1 1 3 . False 16 (15, 1) 1 1 1 3 1 . True 16 (18, 1) 2 1 1 1 0 . True 19 (19, 1) 2 1 1 1 1 . True 20 (22, 1) 2 1 3 1 0 . True 23 (23, 1) 2 1 3 4 0 . True 24 (24, 1) 2 3 1 0 0 . True 25 (28, 1) 2 3 4 2 1 . True 29 (29, 1) 2 3 4 2 1 . False 29 (30, 1) 2 3 4 2 1 . False 29 (32, 1) 2 3 5 4 2 . False 32 (34, 1) 2 3 5 6 3 . False 34 (39, 1) 2 3 7 5 7 . True 40 ------- ----------- ----- -- unseen: 2/20 ------- ----------- ----- -- (1, 0) 0 . 0 0 . . False 2 (1, 15) 1 1 1 1 1 . False 14 (1, 18) 2 1 1 0 0 . False 18 (1, 19) 2 1 1 1 0 . False 19 (1, 28) 2 3 4 2 4 . False 30 (1, 3) 0 . 0 0 0 . False 2 (1, 36) 2 3 5 7 7 . False 38 (1, 4) 0 0 . 0 0 . False 7 (1, 5) 0 0 . 0 0 . False 7 (1, 7) 0 0 . 0 0 . False 7 (1, 9) 0 0 . 0 0 . False 7 (2, 1) 0 0 . 0 0 . False 7 (3, 1) 0 0 . 0 0 . False 7 (10, 1) 1 1 0 0 0 . False 13 (16, 1) 1 1 1 3 1 . False 16 (17, 1) 2 1 1 1 0 . False 19 (31, 1) 2 3 4 3 4 . True 32 (35, 1) 2 3 5 6 7 . True 36 (37, 1) 2 3 5 7 5 . False 37 (38, 1) 2 3 5 7 7 . False 38 ------- ----------- ----- -- -------------------------------------------------------------------------------- 2: 57 examples seen: 27/39 ------- ----------- ----- -- (0, 2) 0 . 0 0 . . True 2 (1, 2) 0 . 0 0 . . False 2 (2, 14) 1 1 1 3 1 . True 16 (2, 15) 2 1 0 0 0 . True 17 (2, 19) 2 1 1 3 1 . False 22 (2, 20) 2 1 1 3 1 . True 22 (2, 22) 2 1 3 4 0 . True 24 (2, 23) 2 3 1 0 0 . True 25 (2, 24) 2 3 4 0 0 . True 26 (2, 25) 2 3 4 1 0 . True 27 (2, 26) 2 3 4 1 0 . False 27 (2, 27) 2 3 4 2 1 . True 29 (2, 3) 0 0 . 0 0 . False 7 (2, 30) 2 3 4 3 3 . True 32 (2, 31) 2 3 5 3 4 . True 33 (2, 32) 2 3 5 6 3 . True 34 (2, 34) 2 3 5 6 7 . True 36 (2, 35) 2 3 5 7 5 . True 37 (2, 38) 2 3 7 5 7 . True 40 (2, 39) 2 3 7 7 5 . False 40 (2, 5) 0 0 . 0 0 . True 7 (2, 6) 0 0 . 0 0 . False 7 (3, 2) 0 0 . 0 0 . False 7 (5, 2) 0 0 . 0 0 . True 7 (6, 2) 0 0 . 0 0 . False 7 (7, 2) 0 0 . 0 0 . False 7 (9, 2) 1 0 0 0 0 . False 12 (12, 2) 1 1 1 0 0 . False 13 (17, 2) 2 1 1 1 0 . True 19 (18, 2) 2 1 1 1 0 . False 19 (19, 2) 2 1 1 1 3 . True 21 (21, 2) 2 1 3 1 0 . True 23 (22, 2) 2 1 3 4 0 . True 24 (25, 2) 2 3 4 1 0 . True 27 (26, 2) 2 3 4 1 1 . True 28 (27, 2) 2 3 4 2 1 . True 29 (28, 2) 2 3 4 2 4 . True 30 (37, 2) 2 3 7 5 6 . True 39 (38, 2) 2 3 7 9 7 . True 40 ------- ----------- ----- -- unseen: 6/18 ------- ----------- ----- -- (2, 0) 0 0 . 0 0 . False 7 (2, 1) 0 0 . 0 0 . False 7 (2, 10) 1 1 0 0 0 . False 13 (2, 12) 1 1 1 1 1 . True 14 (2, 17) 2 1 1 0 0 . False 18 (2, 28) 2 3 4 2 4 . True 30 (2, 33) 2 3 5 6 7 . False 36 (2, 7) 0 0 . 0 0 . False 7 (2, 8) 1 0 0 0 0 . False 12 (4, 2) 0 0 . 0 0 . False 7 (11, 2) 1 0 0 0 0 . False 12 (23, 2) 2 3 1 0 0 . True 25 (29, 2) 2 3 4 3 4 . False 32 (30, 2) 2 3 5 4 2 . True 32 (32, 2) 2 3 5 6 3 . True 34 (33, 2) 2 3 5 6 7 . False 36 (34, 2) 2 3 5 7 5 . False 37 (36, 2) 2 3 5 7 7 . True 38 ------- ----------- ----- -- -------------------------------------------------------------------------------- 3: 55 examples seen: 30/42 ------- ----------- ----- -- (2, 3) 0 0 . 0 0 . False 7 (3, 10) 1 1 0 0 0 . True 13 (3, 11) 1 1 1 0 0 . False 13 (3, 12) 1 1 1 1 1 . False 14 (3, 14) 2 1 0 0 0 . True 17 (3, 2) 0 0 . 0 0 . False 7 (3, 20) 2 1 3 4 0 . False 24 (3, 24) 2 3 4 1 0 . True 27 (3, 27) 2 3 4 2 4 . True 30 (3, 34) 2 3 5 7 5 . True 37 (3, 35) 2 3 5 7 7 . True 38 (3, 37) 2 3 7 7 5 . True 40 (3, 38) 2 3 7 7 7 . True 41 (3, 39) 2 7 5 5 6 . True 42 (3, 5) 0 0 . 0 0 . False 7 (3, 6) 0 0 . 0 0 . False 7 (3, 8) 1 0 0 0 0 . False 12 (3, 9) 1 0 0 0 0 . True 12 (5, 3) 0 0 . 0 0 . False 7 (6, 3) 0 0 . 0 0 . False 7 (8, 3) 1 0 0 0 0 . False 12 (9, 3) 1 0 0 0 0 . True 12 (10, 3) 1 1 1 0 0 . True 13 (11, 3) 1 1 1 0 0 . False 13 (14, 3) 2 1 0 0 0 . True 17 (15, 3) 2 1 1 0 0 . True 18 (17, 3) 2 1 1 1 1 . True 20 (19, 3) 2 1 1 3 1 . True 22 (20, 3) 2 1 3 1 0 . True 23 (21, 3) 2 1 3 4 0 . True 24 (24, 3) 2 3 4 1 0 . True 27 (26, 3) 2 3 4 2 1 . True 29 (27, 3) 2 3 4 2 4 . True 30 (30, 3) 2 3 5 3 4 . True 33 (31, 3) 2 3 5 6 3 . True 34 (32, 3) 2 3 5 6 5 . True 35 (33, 3) 2 3 5 6 7 . True 36 (34, 3) 2 3 5 7 5 . True 37 (35, 3) 2 3 5 7 7 . True 38 (37, 3) 2 3 7 7 5 . True 40 (38, 3) 2 3 7 7 9 . True 41 (39, 3) 2 7 5 5 6 . True 42 ------- ----------- ----- -- unseen: 5/13 ------- ----------- ----- -- (0, 3) 0 . 0 0 0 . False 2 (1, 3) 0 . 0 0 0 . False 2 (3, 1) 0 0 . 0 0 . False 7 (3, 16) 2 1 1 0 0 . False 18 (3, 21) 2 1 3 4 0 . True 24 (3, 22) 2 1 3 4 0 . False 24 (3, 31) 2 3 5 6 3 . True 34 (3, 36) 2 3 7 7 5 . False 40 (3, 4) 0 0 . 0 0 . True 7 (3, 7) 1 0 0 0 0 . False 12 (22, 3) 2 1 3 4 0 . False 24 (23, 3) 2 3 4 0 0 . True 26 (25, 3) 2 3 4 1 1 . True 28 ------- ----------- ----- -- -------------------------------------------------------------------------------- 4: 56 examples seen: 33/41 ------- ----------- ----- -- (4, 0) 0 0 . 0 0 . False 7 (4, 10) 1 1 1 1 1 . True 14 (4, 11) 1 1 1 1 1 . False 14 (4, 12) 1 1 1 1 3 . True 16 (4, 13) 2 1 0 0 0 . True 17 (4, 14) 2 1 1 0 0 . True 18 (4, 17) 2 1 1 1 3 . True 21 (4, 18) 2 1 1 3 1 . True 22 (4, 19) 2 1 3 1 0 . True 23 (4, 20) 2 1 3 4 0 . True 24 (4, 23) 2 3 4 1 0 . True 27 (4, 25) 2 3 4 2 1 . True 29 (4, 26) 2 3 4 2 1 . False 29 (4, 27) 2 3 4 2 3 . True 31 (4, 28) 2 3 5 4 2 . True 32 (4, 29) 2 3 5 3 5 . False 34 (4, 30) 2 3 5 3 5 . True 34 (4, 31) 2 3 5 6 5 . True 35 (4, 33) 2 3 5 7 5 . True 37 (4, 34) 2 3 5 7 7 . True 38 (4, 36) 2 3 7 7 5 . True 40 (4, 37) 2 3 7 7 5 . False 40 (4, 38) 2 7 5 5 6 . True 42 (4, 39) 2 7 5 6 5 . False 42 (4, 4) 0 0 . 0 0 . False 7 (4, 6) 1 0 0 0 0 . False 12 (8, 4) 1 0 0 0 0 . True 12 (9, 4) 1 1 0 0 0 . True 13 (13, 4) 2 1 0 0 0 . True 17 (14, 4) 2 1 1 0 0 . True 18 (16, 4) 2 1 1 1 1 . True 20 (18, 4) 2 1 1 3 1 . True 22 (19, 4) 2 1 3 1 0 . True 23 (22, 4) 2 3 4 0 0 . True 26 (23, 4) 2 3 4 1 0 . True 27 (25, 4) 2 3 4 2 1 . True 29 (30, 4) 2 3 5 6 3 . True 34 (32, 4) 2 3 5 6 7 . True 36 (34, 4) 2 3 5 7 7 . True 38 (35, 4) 2 3 7 5 6 . True 39 (36, 4) 2 3 7 7 5 . True 40 ------- ----------- ----- -- unseen: 8/15 ------- ----------- ----- -- (1, 4) 0 0 . 0 0 . False 7 (3, 4) 0 0 . 0 0 . True 7 (4, 16) 2 1 1 1 0 . False 19 (4, 2) 0 0 . 0 0 . False 7 (4, 24) 2 3 4 2 1 . False 29 (4, 32) 2 3 5 6 5 . False 35 (4, 8) 1 1 1 0 0 . False 13 (4, 9) 1 1 1 0 0 . True 13 (5, 4) 0 0 . 0 0 . False 7 (17, 4) 2 1 1 1 3 . True 21 (21, 4) 2 3 1 0 0 . True 25 (24, 4) 2 3 4 1 1 . True 28 (28, 4) 2 3 4 3 4 . True 32 (33, 4) 2 3 5 7 5 . True 37 (37, 4) 2 3 7 7 7 . True 41 ------- ----------- ----- -- -------------------------------------------------------------------------------- 5: 60 examples seen: 36/44 ------- ----------- ----- -- (0, 5) 0 0 . 0 0 . False 7 (2, 5) 0 0 . 0 0 . True 7 (3, 5) 0 0 . 0 0 . False 7 (5, 1) 0 0 . 0 0 . False 7 (5, 10) 1 1 1 1 3 . False 16 (5, 11) 1 1 1 3 1 . True 16 (5, 13) 2 1 1 0 0 . True 18 (5, 14) 2 1 1 1 0 . True 19 (5, 16) 2 1 1 1 3 . True 21 (5, 17) 2 1 1 3 1 . True 22 (5, 19) 2 1 3 4 0 . True 24 (5, 2) 0 0 . 0 0 . True 7 (5, 20) 2 3 1 0 0 . True 25 (5, 21) 2 3 4 0 0 . True 26 (5, 24) 2 3 4 2 1 . True 29 (5, 25) 2 3 4 2 4 . True 30 (5, 26) 2 3 4 2 3 . True 31 (5, 29) 2 3 5 6 3 . True 34 (5, 3) 0 0 . 0 0 . False 7 (5, 31) 2 3 5 6 7 . True 36 (5, 35) 2 3 7 7 5 . True 40 (5, 36) 2 3 7 7 7 . True 41 (5, 37) 2 7 5 5 6 . True 42 (5, 38) 2 7 5 7 7 . True 43 (5, 7) 1 0 0 0 0 . True 12 (5, 9) 1 1 1 1 1 . True 14 (7, 5) 1 0 0 0 0 . True 12 (9, 5) 1 1 1 0 0 . False 13 (12, 5) 2 1 0 0 0 . True 17 (13, 5) 2 1 1 0 0 . True 18 (15, 5) 2 1 1 1 1 . True 20 (16, 5) 2 1 1 1 3 . True 21 (18, 5) 2 1 1 3 1 . False 22 (19, 5) 2 1 3 4 0 . True 24 (20, 5) 2 3 1 0 0 . True 25 (23, 5) 2 3 4 1 1 . True 28 (27, 5) 2 3 4 3 4 . True 32 (28, 5) 2 3 5 4 2 . False 32 (29, 5) 2 3 5 6 3 . True 34 (31, 5) 2 3 5 6 7 . True 36 (32, 5) 2 3 5 7 5 . True 37 (33, 5) 2 3 5 7 7 . True 38 (34, 5) 2 3 7 5 6 . True 39 (35, 5) 2 3 7 7 5 . True 40 ------- ----------- ----- -- unseen: 3/16 ------- ----------- ----- -- (1, 5) 0 0 . 0 0 . False 7 (5, 0) 0 0 . 0 0 . False 7 (5, 15) 2 1 1 1 3 . False 21 (5, 28) 2 3 5 3 5 . False 34 (5, 32) 2 3 5 6 7 . False 36 (5, 4) 0 0 . 0 0 . False 7 (5, 5) 0 0 . 0 0 . False 7 (5, 6) 1 0 0 0 0 . False 12 (5, 8) 1 1 1 1 0 . False 14 (11, 5) 1 1 1 1 1 . False 14 (14, 5) 2 1 1 1 0 . True 19 (21, 5) 2 3 1 0 0 . False 25 (25, 5) 2 3 4 2 4 . True 30 (36, 5) 2 3 7 7 5 . False 40 (37, 5) 2 7 5 5 6 . True 42 (38, 5) 2 7 5 6 5 . False 42 ------- ----------- ----- -- -------------------------------------------------------------------------------- 6: 63 examples seen: 38/45 ------- ----------- ----- -- (1, 6) 0 0 . 0 0 . True 7 (2, 6) 0 0 . 0 0 . False 7 (3, 6) 0 0 . 0 0 . False 7 (4, 6) 1 0 0 0 0 . False 12 (6, 0) 0 0 . 0 0 . False 7 (6, 1) 0 0 . 0 0 . True 7 (6, 11) 2 1 0 0 0 . True 17 (6, 12) 2 1 1 0 0 . True 18 (6, 14) 2 1 1 1 1 . True 20 (6, 16) 2 1 1 3 4 . True 22 (6, 18) 2 1 3 4 0 . True 24 (6, 2) 0 0 . 0 0 . False 7 (6, 23) 2 3 4 2 1 . True 29 (6, 27) 2 3 5 3 4 . True 33 (6, 28) 2 3 5 6 3 . True 34 (6, 3) 0 0 . 0 0 . False 7 (6, 33) 2 3 7 5 6 . True 39 (6, 34) 2 3 7 7 5 . True 40 (6, 35) 2 3 7 7 7 . True 41 (6, 37) 2 7 5 7 5 . True 43 (6, 6) 1 1 0 0 0 . False 13 (6, 7) 1 1 1 0 0 . True 13 (7, 6) 1 1 1 0 0 . True 13 (8, 6) 1 1 1 1 1 . True 14 (10, 6) 1 1 1 3 1 . True 16 (12, 6) 2 1 1 0 0 . True 18 (14, 6) 2 1 1 1 1 . True 20 (15, 6) 2 1 1 1 3 . True 21 (18, 6) 2 1 3 4 0 . True 24 (20, 6) 2 3 4 0 0 . True 26 (21, 6) 2 3 4 1 0 . True 27 (22, 6) 2 3 4 1 1 . True 28 (23, 6) 2 3 4 2 1 . True 29 (24, 6) 2 3 4 2 4 . True 30 (25, 6) 2 3 4 2 3 . True 31 (26, 6) 2 3 4 3 3 . True 32 (27, 6) 2 3 5 3 4 . True 33 (29, 6) 2 3 5 6 5 . True 35 (30, 6) 2 3 5 6 7 . True 36 (31, 6) 2 3 5 7 5 . True 37 (32, 6) 2 3 5 7 7 . True 38 (33, 6) 2 3 7 5 6 . True 39 (37, 6) 2 7 7 5 6 . True 43 (38, 6) 2 7 7 7 5 . True 44 (39, 6) 8 5 7 5 6 . True 45 ------- ----------- ----- -- unseen: 7/18 ------- ----------- ----- -- (0, 6) 0 0 . 0 0 . False 7 (5, 6) 1 0 0 0 0 . False 12 (6, 10) 2 1 0 0 0 . False 17 (6, 13) 2 1 1 0 0 . False 18 (6, 15) 2 1 1 1 3 . True 21 (6, 19) 2 3 1 0 0 . True 25 (6, 24) 2 3 4 2 4 . True 30 (6, 25) 2 3 4 2 4 . False 30 (6, 30) 2 3 5 6 7 . True 36 (6, 31) 2 3 5 7 5 . True 37 (6, 32) 2 3 7 5 6 . False 39 (6, 39) 2 7 7 5 7 . False 43 (6, 8) 1 1 1 1 0 . True 14 (9, 6) 1 1 1 1 3 . False 16 (11, 6) 1 1 1 3 1 . False 16 (13, 6) 2 1 1 1 1 . False 20 (17, 6) 2 1 3 4 0 . False 24 (36, 6) 2 7 5 6 7 . True 42 ------- ----------- ----- -- -------------------------------------------------------------------------------- 7: 59 examples seen: 42/44 ------- ----------- ----- -- (0, 7) 0 0 . 0 0 . True 7 (5, 7) 1 0 0 0 0 . True 12 (6, 7) 1 1 1 0 0 . True 13 (7, 10) 2 1 0 0 0 . True 17 (7, 12) 2 1 1 1 0 . True 19 (7, 18) 2 3 1 0 0 . True 25 (7, 19) 2 3 4 0 0 . True 26 (7, 2) 0 0 . 0 0 . False 7 (7, 20) 2 3 4 1 0 . True 27 (7, 22) 2 3 4 2 1 . True 29 (7, 24) 2 3 4 2 3 . True 31 (7, 25) 2 3 4 3 4 . True 32 (7, 26) 2 3 5 3 4 . True 33 (7, 28) 2 3 5 6 5 . True 35 (7, 30) 2 3 5 7 5 . True 37 (7, 31) 2 3 5 7 7 . True 38 (7, 35) 2 7 5 6 7 . True 42 (7, 38) 8 5 7 5 6 . True 45 (7, 39) 8 7 5 6 7 . True 46 (7, 5) 1 0 0 0 0 . True 12 (7, 6) 1 1 1 0 0 . True 13 (7, 7) 1 1 1 1 1 . True 14 (7, 8) 1 1 1 1 1 . False 14 (7, 9) 1 1 1 3 1 . True 16 (9, 7) 1 1 1 1 3 . True 16 (10, 7) 2 1 0 0 0 . True 17 (11, 7) 2 1 1 0 0 . True 18 (12, 7) 2 1 1 1 0 . True 19 (15, 7) 2 1 1 3 1 . True 22 (17, 7) 2 1 3 4 0 . True 24 (19, 7) 2 3 4 0 0 . True 26 (20, 7) 2 3 4 1 0 . True 27 (21, 7) 2 3 4 1 1 . True 28 (22, 7) 2 3 4 2 1 . True 29 (23, 7) 2 3 4 2 4 . True 30 (24, 7) 2 3 4 2 3 . True 31 (27, 7) 2 3 5 6 3 . True 34 (28, 7) 2 3 5 6 5 . True 35 (31, 7) 2 3 5 7 7 . True 38 (32, 7) 2 3 7 5 6 . True 39 (33, 7) 2 3 7 7 5 . True 40 (37, 7) 2 7 7 7 5 . True 44 (38, 7) 2 7 7 7 7 . True 45 (39, 7) 8 7 5 6 7 . True 46 ------- ----------- ----- -- unseen: 5/15 ------- ----------- ----- -- (1, 7) 0 0 . 0 0 . False 7 (2, 7) 0 0 . 0 0 . False 7 (3, 7) 1 0 0 0 0 . False 12 (7, 13) 2 1 1 1 0 . False 19 (7, 14) 2 1 1 3 1 . False 22 (7, 15) 2 1 1 3 1 . True 22 (7, 16) 2 1 3 4 0 . False 24 (7, 17) 2 3 1 0 0 . False 25 (7, 27) 2 3 5 6 3 . True 34 (7, 29) 2 3 5 6 7 . True 36 (7, 32) 2 3 7 5 6 . True 39 (18, 7) 2 1 3 4 0 . False 24 (30, 7) 2 3 5 7 7 . False 38 (34, 7) 2 7 5 5 6 . False 42 (35, 7) 2 7 5 6 7 . True 42 ------- ----------- ----- -- -------------------------------------------------------------------------------- 8: 57 examples seen: 33/37 ------- ----------- ----- -- (3, 8) 1 0 0 0 0 . False 12 (7, 8) 1 1 1 1 1 . False 14 (8, 12) 2 1 1 1 1 . True 20 (8, 15) 2 1 3 1 0 . True 23 (8, 17) 2 3 1 0 0 . True 25 (8, 20) 2 3 4 1 1 . True 28 (8, 21) 2 3 4 2 1 . True 29 (8, 24) 2 3 4 3 5 . True 32 (8, 25) 2 3 5 3 4 . True 33 (8, 26) 2 3 5 6 3 . True 34 (8, 28) 2 3 5 6 7 . True 36 (8, 29) 2 3 5 7 5 . True 37 (8, 3) 1 0 0 0 0 . False 12 (8, 30) 2 3 5 7 7 . True 38 (8, 31) 2 3 7 5 6 . True 39 (8, 33) 2 3 7 7 7 . True 41 (8, 34) 2 7 5 5 6 . True 42 (8, 36) 2 7 7 7 5 . True 44 (8, 39) 7 7 5 6 7 . True 47 (8, 4) 1 0 0 0 0 . True 12 (8, 6) 1 1 1 1 1 . True 14 (8, 8) 1 1 1 1 3 . True 16 (8, 9) 2 1 0 0 0 . True 17 (12, 8) 2 1 1 1 1 . True 20 (13, 8) 2 1 1 1 3 . True 21 (14, 8) 2 1 1 3 1 . True 22 (15, 8) 2 1 3 1 0 . True 23 (16, 8) 2 1 3 4 0 . True 24 (21, 8) 2 3 4 2 1 . True 29 (26, 8) 2 3 5 6 3 . True 34 (28, 8) 2 3 5 6 7 . True 36 (29, 8) 2 3 5 7 5 . True 37 (30, 8) 2 3 5 7 7 . True 38 (34, 8) 2 7 5 7 5 . False 43 (35, 8) 2 7 7 5 6 . True 43 (36, 8) 2 7 7 7 5 . True 44 (38, 8) 8 7 5 6 7 . True 46 ------- ----------- ----- -- unseen: 8/20 ------- ----------- ----- -- (0, 8) 0 0 . 0 0 . False 7 (2, 8) 1 0 0 0 0 . False 12 (4, 8) 1 1 1 0 0 . False 13 (5, 8) 1 1 1 1 0 . False 14 (6, 8) 1 1 1 1 0 . True 14 (8, 10) 2 1 1 0 0 . True 18 (8, 11) 2 1 1 1 1 . False 20 (8, 16) 2 1 3 4 0 . True 24 (8, 32) 2 3 7 5 7 . True 40 (8, 35) 2 7 7 5 6 . True 43 (8, 38) 8 7 5 6 7 . True 46 (9, 8) 1 1 1 3 1 . False 16 (18, 8) 2 3 1 0 0 . False 25 (20, 8) 2 3 4 2 1 . False 29 (23, 8) 2 3 5 3 4 . False 33 (24, 8) 2 3 4 3 4 . True 32 (25, 8) 2 3 4 3 3 . False 32 (27, 8) 2 3 5 6 5 . True 35 (31, 8) 2 3 7 5 7 . False 40 (37, 8) 8 7 5 6 7 . False 46 ------- ----------- ----- -- -------------------------------------------------------------------------------- 9: 64 examples seen: 43/49 ------- ----------- ----- -- (0, 9) 0 0 . 0 0 . False 7 (3, 9) 1 0 0 0 0 . True 12 (5, 9) 1 1 1 1 1 . True 14 (7, 9) 1 1 1 3 1 . True 16 (8, 9) 2 1 0 0 0 . True 17 (9, 1) 1 0 0 0 0 . False 12 (9, 10) 2 1 1 1 0 . True 19 (9, 11) 2 1 1 1 1 . True 20 (9, 12) 2 1 1 1 3 . True 21 (9, 13) 2 1 1 3 1 . True 22 (9, 14) 2 1 3 1 0 . True 23 (9, 15) 2 1 3 4 0 . True 24 (9, 19) 2 3 4 1 1 . True 28 (9, 2) 1 0 0 0 0 . False 12 (9, 20) 2 3 4 2 1 . True 29 (9, 21) 2 3 4 2 4 . True 30 (9, 23) 2 3 4 3 4 . True 32 (9, 24) 2 3 5 3 4 . True 33 (9, 26) 2 3 5 6 5 . True 35 (9, 27) 2 3 5 6 7 . True 36 (9, 29) 2 3 5 7 7 . True 38 (9, 3) 1 0 0 0 0 . True 12 (9, 30) 2 3 7 5 6 . True 39 (9, 31) 2 3 7 5 7 . True 40 (9, 33) 2 7 5 7 5 . False 43 (9, 35) 2 7 7 7 5 . True 44 (9, 36) 2 7 7 7 7 . True 45 (9, 38) 7 7 5 6 7 . True 47 (9, 39) 7 7 7 5 6 . True 48 (9, 4) 1 1 0 0 0 . True 13 (9, 5) 1 1 1 0 0 . False 13 (9, 7) 1 1 1 1 3 . True 16 (11, 9) 2 1 1 1 1 . True 20 (12, 9) 2 1 1 1 3 . True 21 (13, 9) 2 1 1 3 1 . True 22 (14, 9) 2 1 3 1 0 . True 23 (16, 9) 2 3 1 0 0 . True 25 (17, 9) 2 3 4 0 0 . True 26 (20, 9) 2 3 4 2 1 . True 29 (23, 9) 2 3 5 4 2 . True 32 (25, 9) 2 3 5 3 5 . True 34 (27, 9) 2 3 5 6 7 . True 36 (28, 9) 2 3 5 7 5 . True 37 (31, 9) 2 3 7 7 5 . True 40 (33, 9) 2 3 7 7 7 . False 41 (34, 9) 2 7 7 5 6 . True 43 (35, 9) 2 7 7 7 5 . True 44 (37, 9) 8 7 5 6 7 . True 46 (39, 9) 8 7 7 5 6 . True 48 ------- ----------- ----- -- unseen: 4/15 ------- ----------- ----- -- (1, 9) 0 0 . 0 0 . False 7 (4, 9) 1 1 1 0 0 . True 13 (9, 17) 2 3 1 0 0 . False 25 (9, 18) 2 3 4 1 0 . True 27 (9, 22) 2 3 4 2 3 . True 31 (9, 37) 2 7 7 7 5 . False 44 (9, 6) 1 1 1 1 3 . False 16 (9, 8) 1 1 1 3 1 . False 16 (9, 9) 1 1 1 3 1 . False 16 (10, 9) 2 1 1 1 1 . False 20 (18, 9) 2 3 4 0 0 . False 26 (24, 9) 2 3 5 4 2 . False 32 (26, 9) 2 3 5 6 5 . True 35 (36, 9) 2 7 7 7 5 . False 44 (38, 9) 8 7 5 6 7 . False 46 ------- ----------- ----- -- -------------------------------------------------------------------------------- 10: 57 examples seen: 33/40 -------- ----------- ----- -- (0, 10) 1 0 0 0 0 . False 12 (1, 10) 1 0 0 0 0 . False 12 (3, 10) 1 1 0 0 0 . True 13 (4, 10) 1 1 1 1 1 . True 14 (5, 10) 1 1 1 1 3 . False 16 (7, 10) 2 1 0 0 0 . True 17 (9, 10) 2 1 1 1 0 . True 19 (10, 10) 2 1 1 1 1 . True 20 (10, 11) 2 1 1 1 3 . True 21 (10, 12) 2 1 1 3 1 . True 22 (10, 13) 2 1 3 1 0 . True 23 (10, 14) 2 1 3 4 0 . True 24 (10, 15) 2 3 1 0 0 . True 25 (10, 17) 2 3 4 1 0 . True 27 (10, 18) 2 3 4 1 1 . True 28 (10, 24) 2 3 5 6 3 . True 34 (10, 26) 2 3 5 6 7 . True 36 (10, 27) 2 3 5 7 5 . True 37 (10, 3) 1 1 1 0 0 . True 13 (10, 32) 2 7 7 5 6 . False 43 (10, 33) 2 7 7 5 6 . True 43 (10, 39) 8 7 7 7 7 . False 50 (10, 6) 1 1 1 3 1 . True 16 (10, 7) 2 1 0 0 0 . True 17 (11, 10) 2 1 1 1 3 . True 21 (12, 10) 2 1 1 3 1 . True 22 (13, 10) 2 1 3 1 0 . True 23 (15, 10) 2 3 1 0 0 . True 25 (16, 10) 2 3 4 0 0 . True 26 (18, 10) 2 3 4 1 1 . True 28 (19, 10) 2 3 4 2 1 . True 29 (21, 10) 2 3 4 2 3 . True 31 (22, 10) 2 3 4 3 4 . True 32 (23, 10) 2 3 5 3 5 . False 34 (28, 10) 2 3 5 7 7 . True 38 (31, 10) 2 3 7 7 7 . True 41 (32, 10) 2 7 5 5 6 . True 42 (34, 10) 2 7 7 7 5 . True 44 (35, 10) 2 7 7 7 7 . True 45 (38, 10) 8 7 5 7 7 . False 49 -------- ----------- ----- -- unseen: 8/17 -------- ----------- ----- -- (2, 10) 1 1 0 0 0 . False 13 (6, 10) 2 1 0 0 0 . False 17 (8, 10) 2 1 1 0 0 . True 18 (10, 1) 1 1 0 0 0 . False 13 (10, 16) 2 3 4 0 0 . True 26 (10, 22) 2 3 4 3 4 . True 32 (10, 28) 2 3 5 7 7 . True 38 (10, 30) 2 3 7 7 5 . True 40 (10, 31) 2 3 7 7 5 . False 40 (10, 36) 2 7 7 7 7 . False 45 (10, 37) 8 7 5 6 7 . False 46 (10, 9) 2 1 1 1 1 . False 20 (24, 10) 2 3 5 3 5 . True 34 (26, 10) 2 3 5 6 7 . True 36 (29, 10) 2 3 5 7 7 . False 38 (30, 10) 2 3 7 7 5 . True 40 (39, 10) 8 7 7 5 6 . False 48 -------- ----------- ----- -- -------------------------------------------------------------------------------- 11: 59 examples seen: 36/42 -------- ----------- ----- -- (3, 11) 1 1 1 0 0 . False 13 (4, 11) 1 1 1 1 1 . False 14 (5, 11) 1 1 1 3 1 . True 16 (6, 11) 2 1 0 0 0 . True 17 (9, 11) 2 1 1 1 1 . True 20 (10, 11) 2 1 1 1 3 . True 21 (11, 1) 1 0 0 0 0 . True 12 (11, 10) 2 1 1 1 3 . True 21 (11, 11) 2 1 1 3 1 . True 22 (11, 13) 2 1 3 4 0 . True 24 (11, 17) 2 3 4 1 1 . True 28 (11, 19) 2 3 4 2 4 . True 30 (11, 21) 2 3 5 4 2 . True 32 (11, 23) 2 3 5 3 5 . True 34 (11, 25) 2 3 5 6 7 . True 36 (11, 29) 2 3 7 7 5 . True 40 (11, 3) 1 1 1 0 0 . False 13 (11, 31) 2 7 5 6 5 . True 42 (11, 32) 2 7 7 7 5 . False 44 (11, 34) 2 7 7 7 7 . True 45 (11, 35) 8 7 5 6 7 . True 46 (11, 37) 8 7 7 5 6 . True 48 (11, 38) 8 7 7 5 7 . True 49 (11, 39) 8 7 7 7 7 . True 50 (11, 7) 2 1 1 0 0 . True 18 (11, 9) 2 1 1 1 1 . True 20 (14, 11) 2 3 1 0 0 . True 25 (15, 11) 2 3 4 0 0 . True 26 (17, 11) 2 3 4 1 1 . True 28 (19, 11) 2 3 4 2 1 . False 29 (20, 11) 2 3 4 2 3 . True 31 (22, 11) 2 3 5 3 4 . True 33 (23, 11) 2 3 5 6 7 . False 36 (26, 11) 2 3 5 7 5 . True 37 (27, 11) 2 3 5 7 7 . True 38 (28, 11) 2 3 7 5 6 . True 39 (30, 11) 2 3 7 7 7 . True 41 (31, 11) 2 7 5 6 5 . True 42 (33, 11) 2 7 7 7 5 . True 44 (34, 11) 2 7 7 7 7 . True 45 (36, 11) 7 7 5 6 7 . True 47 (37, 11) 8 7 7 5 6 . True 48 -------- ----------- ----- -- unseen: 6/17 -------- ----------- ----- -- (8, 11) 2 1 1 1 1 . False 20 (11, 0) 1 0 0 0 0 . False 12 (11, 12) 2 1 3 1 0 . True 23 (11, 14) 2 3 1 0 0 . True 25 (11, 16) 2 3 4 0 0 . False 26 (11, 18) 2 3 4 2 1 . True 29 (11, 2) 1 0 0 0 0 . False 12 (11, 20) 2 3 4 3 4 . False 32 (11, 30) 2 7 5 6 5 . False 42 (11, 5) 1 1 1 1 1 . False 14 (11, 6) 1 1 1 3 1 . False 16 (21, 11) 2 3 4 2 3 . False 31 (24, 11) 2 3 5 6 3 . False 34 (25, 11) 2 3 5 6 7 . True 36 (29, 11) 2 3 7 7 5 . True 40 (35, 11) 2 7 7 7 7 . False 45 (39, 11) 8 7 7 7 7 . True 50 -------- ----------- ----- -- -------------------------------------------------------------------------------- 12: 63 examples seen: 47/50 -------- ----------- ----- -- (0, 12) 1 0 0 0 0 . True 12 (1, 12) 1 1 0 0 0 . True 13 (3, 12) 1 1 1 1 1 . False 14 (4, 12) 1 1 1 1 3 . True 16 (6, 12) 2 1 1 0 0 . True 18 (7, 12) 2 1 1 1 0 . True 19 (8, 12) 2 1 1 1 1 . True 20 (9, 12) 2 1 1 1 3 . True 21 (10, 12) 2 1 1 3 1 . True 22 (12, 1) 1 1 1 0 0 . True 13 (12, 10) 2 1 1 3 1 . True 22 (12, 13) 2 3 1 0 0 . True 25 (12, 14) 2 3 4 0 0 . True 26 (12, 16) 2 3 4 1 1 . True 28 (12, 19) 2 3 4 2 3 . True 31 (12, 2) 1 1 1 0 0 . False 13 (12, 22) 2 3 5 3 5 . True 34 (12, 23) 2 3 5 6 5 . True 35 (12, 27) 2 3 7 5 6 . True 39 (12, 29) 2 3 7 7 7 . True 41 (12, 30) 2 7 5 6 5 . True 42 (12, 31) 2 7 5 7 5 . True 43 (12, 34) 8 7 5 6 7 . True 46 (12, 36) 8 7 7 5 6 . True 48 (12, 37) 8 7 7 5 7 . True 49 (12, 38) 8 7 7 9 7 . True 50 (12, 39) 8 7 9 7 7 . True 51 (12, 5) 2 1 0 0 0 . True 17 (12, 6) 2 1 1 0 0 . True 18 (12, 7) 2 1 1 1 0 . True 19 (12, 8) 2 1 1 1 1 . True 20 (12, 9) 2 1 1 1 3 . True 21 (13, 12) 2 3 1 0 0 . True 25 (16, 12) 2 3 4 1 1 . True 28 (17, 12) 2 3 4 2 1 . True 29 (18, 12) 2 3 4 2 1 . False 29 (19, 12) 2 3 4 2 3 . True 31 (20, 12) 2 3 4 3 3 . True 32 (22, 12) 2 3 5 3 5 . True 34 (24, 12) 2 3 5 6 7 . True 36 (25, 12) 2 3 5 7 5 . True 37 (26, 12) 2 3 5 7 7 . True 38 (28, 12) 2 3 7 7 5 . True 40 (29, 12) 2 3 7 7 7 . True 41 (32, 12) 2 7 7 7 5 . True 44 (34, 12) 8 7 5 6 7 . True 46 (36, 12) 8 7 7 5 6 . True 48 (37, 12) 8 7 7 7 5 . True 49 (38, 12) 8 7 7 7 9 . True 50 (39, 12) 8 7 9 7 7 . True 51 -------- ----------- ----- -- unseen: 6/13 -------- ----------- ----- -- (2, 12) 1 1 1 1 1 . True 14 (11, 12) 2 1 3 1 0 . True 23 (12, 17) 2 3 4 1 1 . False 28 (12, 24) 2 3 5 6 5 . False 35 (12, 25) 2 3 5 7 5 . True 37 (12, 28) 2 3 7 5 7 . True 40 (12, 32) 8 7 5 6 7 . False 46 (12, 33) 2 7 7 7 5 . False 44 (14, 12) 2 3 4 1 0 . False 27 (15, 12) 2 3 4 1 1 . False 28 (27, 12) 2 3 7 5 6 . True 39 (31, 12) 2 7 7 5 7 . True 43 (35, 12) 8 7 7 5 6 . False 48 -------- ----------- ----- -- -------------------------------------------------------------------------------- 13: 58 examples seen: 43/46 -------- ----------- ----- -- (0, 13) 1 1 0 0 0 . True 13 (1, 13) 1 1 1 0 0 . False 13 (4, 13) 2 1 0 0 0 . True 17 (5, 13) 2 1 1 0 0 . True 18 (9, 13) 2 1 1 3 1 . True 22 (10, 13) 2 1 3 1 0 . True 23 (11, 13) 2 1 3 4 0 . True 24 (12, 13) 2 3 1 0 0 . True 25 (13, 10) 2 1 3 1 0 . True 23 (13, 12) 2 3 1 0 0 . True 25 (13, 15) 2 3 4 1 1 . True 28 (13, 16) 2 3 4 2 1 . True 29 (13, 18) 2 3 4 2 3 . True 31 (13, 20) 2 3 5 3 4 . True 33 (13, 21) 2 3 5 6 3 . True 34 (13, 23) 2 3 5 6 7 . True 36 (13, 24) 2 3 5 7 5 . True 37 (13, 25) 2 3 5 7 7 . True 38 (13, 27) 2 3 7 7 5 . True 40 (13, 29) 2 7 5 6 7 . True 42 (13, 30) 2 7 7 5 6 . True 43 (13, 33) 7 5 7 5 6 . True 46 (13, 35) 8 7 7 5 6 . True 48 (13, 38) 8 7 9 7 7 . True 51 (13, 4) 2 1 0 0 0 . True 17 (13, 5) 2 1 1 0 0 . True 18 (13, 8) 2 1 1 1 3 . True 21 (13, 9) 2 1 1 3 1 . True 22 (15, 13) 2 3 4 1 1 . True 28 (16, 13) 2 3 4 2 1 . True 29 (18, 13) 2 3 4 2 4 . False 30 (20, 13) 2 3 5 3 4 . True 33 (21, 13) 2 3 5 6 3 . True 34 (24, 13) 2 3 5 7 5 . True 37 (25, 13) 2 3 5 7 7 . True 38 (27, 13) 2 3 7 7 5 . True 40 (28, 13) 2 3 7 7 7 . True 41 (29, 13) 2 7 5 6 7 . True 42 (30, 13) 2 7 7 5 6 . True 43 (31, 13) 2 7 7 7 5 . True 44 (32, 13) 7 5 7 5 6 . False 46 (33, 13) 7 5 7 5 6 . True 46 (34, 13) 7 7 5 6 7 . True 47 (35, 13) 7 7 7 5 6 . True 48 (36, 13) 8 7 7 7 5 . True 49 (39, 13) 8 7 9 7 9 . True 52 -------- ----------- ----- -- unseen: 3/12 -------- ----------- ----- -- (6, 13) 2 1 1 0 0 . False 18 (7, 13) 2 1 1 1 0 . False 19 (13, 14) 2 3 4 1 0 . True 27 (13, 19) 2 3 4 3 4 . True 32 (13, 22) 2 3 5 6 7 . False 36 (13, 28) 2 7 5 5 6 . False 42 (13, 31) 2 7 7 5 7 . False 43 (13, 32) 8 7 5 6 7 . False 46 (13, 6) 2 1 1 1 1 . False 20 (17, 13) 2 3 4 2 1 . False 29 (19, 13) 2 3 5 4 2 . True 32 (23, 13) 2 3 5 6 5 . False 35 -------- ----------- ----- -- -------------------------------------------------------------------------------- 14: 59 examples seen: 46/49 -------- ----------- ----- -- (0, 14) 1 1 1 1 1 . True 14 (1, 14) 1 1 1 1 1 . False 14 (2, 14) 1 1 1 3 1 . True 16 (3, 14) 2 1 0 0 0 . True 17 (4, 14) 2 1 1 0 0 . True 18 (5, 14) 2 1 1 1 0 . True 19 (6, 14) 2 1 1 1 1 . True 20 (9, 14) 2 1 3 1 0 . True 23 (10, 14) 2 1 3 4 0 . True 24 (12, 14) 2 3 4 0 0 . True 26 (14, 0) 1 1 1 1 1 . True 14 (14, 1) 1 1 1 1 3 . False 16 (14, 11) 2 3 1 0 0 . True 25 (14, 14) 2 3 4 1 1 . True 28 (14, 17) 2 3 4 2 3 . True 31 (14, 18) 2 3 4 3 4 . True 32 (14, 20) 2 3 5 3 5 . True 34 (14, 21) 2 3 5 6 5 . True 35 (14, 24) 2 3 5 7 7 . True 38 (14, 27) 2 3 7 7 7 . True 41 (14, 29) 2 7 7 5 6 . True 43 (14, 3) 2 1 0 0 0 . True 17 (14, 30) 2 7 7 7 5 . True 44 (14, 32) 8 7 5 6 7 . True 46 (14, 33) 7 7 5 6 7 . True 47 (14, 34) 8 7 7 5 6 . True 48 (14, 35) 8 7 7 7 5 . True 49 (14, 38) 8 7 9 7 9 . True 52 (14, 39) 8 9 7 7 7 . True 53 (14, 4) 2 1 1 0 0 . True 18 (14, 6) 2 1 1 1 1 . True 20 (14, 8) 2 1 1 3 1 . True 22 (14, 9) 2 1 3 1 0 . True 23 (15, 14) 2 3 4 2 1 . True 29 (16, 14) 2 3 4 2 4 . True 30 (17, 14) 2 3 4 2 3 . True 31 (18, 14) 2 3 4 2 3 . False 31 (20, 14) 2 3 5 6 3 . True 34 (21, 14) 2 3 5 6 5 . True 35 (22, 14) 2 3 5 6 7 . True 36 (27, 14) 2 3 7 7 7 . True 41 (28, 14) 2 7 5 6 7 . True 42 (30, 14) 2 7 7 7 5 . True 44 (31, 14) 2 7 7 7 7 . True 45 (34, 14) 8 7 7 5 6 . True 48 (35, 14) 8 7 7 7 5 . True 49 (36, 14) 8 7 7 7 9 . True 50 (38, 14) 8 7 9 7 9 . True 52 (39, 14) 8 9 7 7 9 . True 53 -------- ----------- ----- -- unseen: 5/10 -------- ----------- ----- -- (7, 14) 2 1 1 3 1 . False 22 (11, 14) 2 3 1 0 0 . True 25 (13, 14) 2 3 4 1 0 . True 27 (14, 12) 2 3 4 1 0 . False 27 (14, 25) 2 3 5 7 7 . False 38 (14, 26) 2 3 7 5 6 . False 39 (14, 31) 2 7 7 7 5 . False 44 (14, 5) 2 1 1 1 0 . True 19 (25, 14) 2 3 7 5 6 . True 39 (37, 14) 8 7 9 7 7 . True 51 -------- ----------- ----- -- -------------------------------------------------------------------------------- 15: 62 examples seen: 40/49 -------- ----------- ----- -- (0, 15) 1 1 1 1 1 . False 14 (2, 15) 2 1 0 0 0 . True 17 (8, 15) 2 1 3 1 0 . True 23 (9, 15) 2 1 3 4 0 . True 24 (10, 15) 2 3 1 0 0 . True 25 (13, 15) 2 3 4 1 1 . True 28 (15, 0) 1 1 1 1 1 . False 14 (15, 1) 1 1 1 3 1 . True 16 (15, 10) 2 3 1 0 0 . True 25 (15, 11) 2 3 4 0 0 . True 26 (15, 13) 2 3 4 1 1 . True 28 (15, 14) 2 3 4 2 1 . True 29 (15, 15) 2 3 4 2 1 . False 29 (15, 16) 2 3 4 2 3 . True 31 (15, 17) 2 3 4 3 4 . True 32 (15, 18) 2 3 5 3 4 . True 33 (15, 19) 2 3 5 6 3 . True 34 (15, 20) 2 3 5 6 5 . True 35 (15, 21) 2 3 5 6 7 . True 36 (15, 25) 2 3 7 7 5 . True 40 (15, 26) 2 3 7 7 7 . True 41 (15, 29) 2 7 7 7 5 . True 44 (15, 3) 2 1 1 0 0 . True 18 (15, 30) 2 7 7 7 7 . True 45 (15, 31) 7 5 7 5 6 . True 46 (15, 35) 7 7 7 7 7 . True 50 (15, 36) 7 7 7 7 9 . True 51 (15, 39) 7 7 9 7 9 . True 54 (15, 5) 2 1 1 1 1 . True 20 (15, 6) 2 1 1 1 3 . True 21 (15, 7) 2 1 1 3 1 . True 22 (15, 8) 2 1 3 1 0 . True 23 (16, 15) 2 3 4 2 3 . True 31 (17, 15) 2 3 4 3 4 . True 32 (18, 15) 2 3 4 2 3 . False 31 (19, 15) 2 3 5 6 3 . True 34 (20, 15) 2 3 5 6 5 . True 35 (23, 15) 2 3 5 7 7 . True 38 (24, 15) 2 3 7 5 6 . True 39 (25, 15) 2 3 7 7 5 . True 40 (28, 15) 2 7 5 6 7 . False 42 (30, 15) 7 5 6 7 5 . True 45 (31, 15) 7 5 7 5 6 . True 46 (32, 15) 7 5 7 5 7 . False 46 (33, 15) 7 7 5 7 5 . False 47 (35, 15) 7 7 7 7 7 . True 50 (36, 15) 7 7 7 7 9 . True 51 (37, 15) 7 7 7 7 9 . False 51 (38, 15) 7 7 7 9 7 . False 52 -------- ----------- ----- -- unseen: 7/13 -------- ----------- ----- -- (1, 15) 1 1 1 1 1 . False 14 (5, 15) 2 1 1 1 3 . False 21 (6, 15) 2 1 1 1 3 . True 21 (7, 15) 2 1 1 3 1 . True 22 (15, 12) 2 3 4 1 1 . False 28 (15, 23) 2 3 5 7 7 . True 38 (15, 27) 2 7 5 7 7 . False 43 (15, 32) 7 7 5 7 7 . True 47 (15, 38) 7 7 9 7 7 . True 53 (21, 15) 2 3 5 6 7 . True 36 (22, 15) 2 3 5 7 5 . True 37 (29, 15) 2 7 7 5 6 . False 43 (34, 15) 7 7 7 5 6 . False 48 -------- ----------- ----- -- -------------------------------------------------------------------------------- 16: 60 examples seen: 45/46 -------- ----------- ----- -- (1, 16) 2 1 0 0 0 . True 17 (5, 16) 2 1 1 1 3 . True 21 (6, 16) 2 1 1 3 4 . True 22 (12, 16) 2 3 4 1 1 . True 28 (13, 16) 2 3 4 2 1 . True 29 (15, 16) 2 3 4 2 3 . True 31 (16, 0) 1 1 1 3 1 . True 16 (16, 10) 2 3 4 0 0 . True 26 (16, 12) 2 3 4 1 1 . True 28 (16, 13) 2 3 4 2 1 . True 29 (16, 14) 2 3 4 2 4 . True 30 (16, 15) 2 3 4 2 3 . True 31 (16, 18) 2 3 5 6 3 . True 34 (16, 22) 2 3 5 7 7 . True 38 (16, 23) 2 3 7 5 6 . True 39 (16, 25) 2 3 7 7 7 . True 41 (16, 26) 2 3 7 7 7 . False 41 (16, 27) 2 7 7 5 6 . True 43 (16, 28) 2 7 7 7 5 . True 44 (16, 31) 7 5 7 7 5 . True 47 (16, 32) 7 7 7 5 6 . True 48 (16, 34) 7 7 7 7 7 . True 50 (16, 36) 7 7 7 9 7 . True 52 (16, 37) 7 7 9 7 7 . True 53 (16, 38) 7 7 9 7 9 . True 54 (16, 4) 2 1 1 1 1 . True 20 (16, 5) 2 1 1 1 3 . True 21 (16, 8) 2 1 3 4 0 . True 24 (16, 9) 2 3 1 0 0 . True 25 (17, 16) 2 3 5 3 4 . True 33 (19, 16) 2 3 5 6 5 . True 35 (20, 16) 2 3 5 6 7 . True 36 (21, 16) 2 3 5 7 5 . True 37 (23, 16) 2 3 7 5 6 . True 39 (24, 16) 2 3 7 7 5 . True 40 (27, 16) 2 7 7 5 6 . True 43 (29, 16) 7 5 6 7 5 . True 45 (30, 16) 7 5 7 5 6 . True 46 (31, 16) 7 7 5 6 7 . True 47 (33, 16) 7 7 7 5 7 . True 49 (34, 16) 7 7 7 7 7 . True 50 (35, 16) 7 7 7 7 9 . True 51 (36, 16) 7 7 7 9 7 . True 52 (37, 16) 7 7 9 7 7 . True 53 (38, 16) 7 7 9 7 9 . True 54 (39, 16) 7 7 9 9 7 . True 55 -------- ----------- ----- -- unseen: 4/14 -------- ----------- ----- -- (3, 16) 2 1 1 0 0 . False 18 (4, 16) 2 1 1 1 0 . False 19 (7, 16) 2 1 3 4 0 . False 24 (8, 16) 2 1 3 4 0 . True 24 (10, 16) 2 3 4 0 0 . True 26 (11, 16) 2 3 4 0 0 . False 26 (16, 1) 1 1 1 3 1 . False 16 (16, 24) 2 3 7 7 5 . True 40 (16, 39) 7 7 9 7 9 . False 54 (18, 16) 2 3 5 3 4 . False 33 (22, 16) 2 3 5 7 5 . False 37 (25, 16) 2 3 7 7 7 . True 41 (26, 16) 2 7 5 7 5 . False 43 (28, 16) 7 5 6 5 7 . False 45 -------- ----------- ----- -- -------------------------------------------------------------------------------- 17: 59 examples seen: 43/44 -------- ----------- ----- -- (0, 17) 2 1 0 0 0 . True 17 (1, 17) 2 1 1 0 0 . True 18 (4, 17) 2 1 1 1 3 . True 21 (5, 17) 2 1 1 3 1 . True 22 (8, 17) 2 3 1 0 0 . True 25 (10, 17) 2 3 4 1 0 . True 27 (11, 17) 2 3 4 1 1 . True 28 (14, 17) 2 3 4 2 3 . True 31 (15, 17) 2 3 4 3 4 . True 32 (17, 11) 2 3 4 1 1 . True 28 (17, 12) 2 3 4 2 1 . True 29 (17, 14) 2 3 4 2 3 . True 31 (17, 15) 2 3 4 3 4 . True 32 (17, 16) 2 3 5 3 4 . True 33 (17, 17) 2 3 5 6 3 . True 34 (17, 2) 2 1 1 1 0 . True 19 (17, 20) 2 3 5 7 5 . True 37 (17, 22) 2 3 7 5 6 . True 39 (17, 24) 2 3 7 7 7 . True 41 (17, 27) 2 7 7 7 5 . True 44 (17, 28) 7 5 6 7 5 . True 45 (17, 29) 7 5 7 5 6 . True 46 (17, 3) 2 1 1 1 1 . True 20 (17, 30) 7 7 5 6 7 . True 47 (17, 31) 7 7 7 5 6 . True 48 (17, 32) 7 7 7 7 5 . True 49 (17, 35) 7 7 7 9 7 . True 52 (17, 37) 7 7 9 7 9 . True 54 (17, 38) 7 7 9 9 7 . True 55 (17, 7) 2 1 3 4 0 . True 24 (17, 9) 2 3 4 0 0 . True 26 (19, 17) 2 3 5 6 7 . True 36 (20, 17) 2 3 5 7 5 . True 37 (23, 17) 2 3 7 7 5 . True 40 (26, 17) 2 7 7 5 6 . True 43 (27, 17) 2 7 7 7 5 . True 44 (28, 17) 7 5 6 7 5 . True 45 (29, 17) 7 5 7 5 6 . True 46 (30, 17) 7 7 5 6 7 . True 47 (31, 17) 7 7 7 5 7 . False 49 (32, 17) 7 7 7 7 5 . True 49 (35, 17) 7 7 7 9 7 . True 52 (37, 17) 7 7 9 7 9 . True 54 (39, 17) 7 9 7 7 9 . True 56 -------- ----------- ----- -- unseen: 5/15 -------- ----------- ----- -- (2, 17) 2 1 1 0 0 . False 18 (7, 17) 2 3 1 0 0 . False 25 (9, 17) 2 3 1 0 0 . False 25 (12, 17) 2 3 4 1 1 . False 28 (17, 1) 2 1 1 1 0 . False 19 (17, 13) 2 3 4 2 1 . False 29 (17, 26) 2 7 7 5 6 . True 43 (17, 33) 7 7 7 7 5 . False 49 (17, 4) 2 1 1 1 3 . True 21 (17, 6) 2 1 3 4 0 . False 24 (18, 17) 2 3 5 6 3 . False 34 (21, 17) 2 3 5 7 7 . True 38 (24, 17) 2 3 7 7 7 . True 41 (25, 17) 2 7 5 6 7 . True 42 (38, 17) 7 7 9 7 9 . False 54 -------- ----------- ----- -- -------------------------------------------------------------------------------- 18: 59 examples seen: 26/42 -------- ----------- ----- -- (0, 18) 2 1 1 0 0 . True 18 (4, 18) 2 1 1 3 1 . True 22 (6, 18) 2 1 3 4 0 . True 24 (7, 18) 2 3 1 0 0 . True 25 (10, 18) 2 3 4 1 1 . True 28 (13, 18) 2 3 4 2 3 . True 31 (14, 18) 2 3 4 3 4 . True 32 (15, 18) 2 3 5 3 4 . True 33 (16, 18) 2 3 5 6 3 . True 34 (18, 0) 2 1 1 0 0 . True 18 (18, 1) 2 1 1 1 0 . True 19 (18, 10) 2 3 4 1 1 . True 28 (18, 12) 2 3 4 2 1 . False 29 (18, 13) 2 3 4 2 4 . False 30 (18, 14) 2 3 4 2 3 . False 31 (18, 15) 2 3 4 2 3 . False 31 (18, 18) 2 3 5 6 7 . True 36 (18, 2) 2 1 1 1 0 . False 19 (18, 20) 2 3 5 7 7 . True 38 (18, 22) 2 3 7 5 6 . False 39 (18, 23) 2 3 7 7 5 . False 40 (18, 25) 2 3 7 7 7 . False 41 (18, 27) 2 7 7 7 5 . False 44 (18, 28) 7 5 6 7 5 . False 45 (18, 31) 7 5 7 7 5 . False 47 (18, 34) 7 7 7 7 7 . False 50 (18, 35) 7 7 7 9 7 . False 52 (18, 37) 7 7 9 7 7 . False 53 (18, 38) 7 7 9 9 7 . False 55 (18, 4) 2 1 1 3 1 . True 22 (18, 5) 2 1 1 3 1 . False 22 (18, 6) 2 1 3 4 0 . True 24 (19, 18) 2 3 5 7 5 . True 37 (20, 18) 2 3 5 7 7 . True 38 (21, 18) 2 3 7 5 6 . True 39 (22, 18) 2 3 7 7 5 . True 40 (25, 18) 2 7 7 5 6 . True 43 (26, 18) 2 7 7 7 5 . True 44 (27, 18) 7 5 6 7 5 . True 45 (29, 18) 7 7 5 6 7 . True 47 (31, 18) 7 7 7 7 5 . True 49 (36, 18) 7 7 9 7 9 . True 54 -------- ----------- ----- -- unseen: 5/17 -------- ----------- ----- -- (1, 18) 2 1 1 0 0 . False 18 (9, 18) 2 3 4 1 0 . True 27 (11, 18) 2 3 4 2 1 . True 29 (18, 16) 2 3 5 3 4 . False 33 (18, 17) 2 3 5 6 3 . False 34 (18, 24) 2 3 7 7 7 . False 41 (18, 26) 2 7 5 7 5 . False 43 (18, 32) 7 7 7 5 7 . False 49 (18, 39) 7 9 7 7 7 . False 55 (18, 7) 2 1 3 4 0 . False 24 (18, 8) 2 3 1 0 0 . False 25 (18, 9) 2 3 4 0 0 . False 26 (24, 18) 2 7 5 6 5 . True 42 (32, 18) 7 7 7 5 6 . False 48 (34, 18) 7 7 7 7 9 . False 51 (35, 18) 7 7 9 7 7 . True 53 (37, 18) 7 9 7 7 7 . True 55 -------- ----------- ----- -- -------------------------------------------------------------------------------- 19: 56 examples seen: 39/44 -------- ----------- ----- -- (0, 19) 2 1 1 1 0 . True 19 (2, 19) 2 1 1 3 1 . False 22 (4, 19) 2 1 3 1 0 . True 23 (5, 19) 2 1 3 4 0 . True 24 (7, 19) 2 3 4 0 0 . True 26 (9, 19) 2 3 4 1 1 . True 28 (11, 19) 2 3 4 2 4 . True 30 (12, 19) 2 3 4 2 3 . True 31 (15, 19) 2 3 5 6 3 . True 34 (19, 0) 2 1 1 1 0 . True 19 (19, 1) 2 1 1 1 1 . True 20 (19, 10) 2 3 4 2 1 . True 29 (19, 11) 2 3 4 2 1 . False 29 (19, 12) 2 3 4 2 3 . True 31 (19, 15) 2 3 5 6 3 . True 34 (19, 16) 2 3 5 6 5 . True 35 (19, 17) 2 3 5 6 7 . True 36 (19, 18) 2 3 5 7 5 . True 37 (19, 2) 2 1 1 1 3 . True 21 (19, 20) 2 3 7 5 6 . True 39 (19, 21) 2 3 7 7 5 . True 40 (19, 23) 2 7 5 7 5 . False 43 (19, 26) 7 5 6 7 5 . True 45 (19, 28) 7 7 5 6 7 . True 47 (19, 3) 2 1 1 3 1 . True 22 (19, 33) 7 7 7 9 7 . True 52 (19, 37) 7 9 7 7 9 . True 56 (19, 38) 7 9 7 9 7 . True 57 (19, 39) 9 7 7 9 7 . False 59 (19, 4) 2 1 3 1 0 . True 23 (19, 5) 2 1 3 4 0 . True 24 (19, 7) 2 3 4 0 0 . True 26 (22, 19) 2 3 7 7 7 . True 41 (24, 19) 2 7 7 5 7 . True 43 (25, 19) 2 7 7 7 5 . True 44 (27, 19) 7 5 7 5 6 . True 46 (28, 19) 7 7 5 6 7 . True 47 (29, 19) 7 7 7 5 6 . True 48 (34, 19) 7 7 9 7 7 . True 53 (35, 19) 7 7 9 7 9 . True 54 (36, 19) 7 7 9 9 7 . True 55 (37, 19) 7 9 7 9 7 . False 57 (38, 19) 7 9 7 9 7 . True 57 (39, 19) 7 9 9 7 7 . True 58 -------- ----------- ----- -- unseen: 8/12 -------- ----------- ----- -- (1, 19) 2 1 1 1 0 . False 19 (6, 19) 2 3 1 0 0 . True 25 (13, 19) 2 3 4 3 4 . True 32 (19, 13) 2 3 5 4 2 . True 32 (19, 19) 2 3 5 7 7 . True 38 (19, 24) 2 7 7 5 6 . True 43 (19, 25) 2 7 7 5 6 . False 43 (19, 31) 7 7 7 7 7 . True 50 (19, 32) 7 7 7 7 9 . True 51 (20, 19) 2 3 7 7 5 . False 40 (30, 19) 7 7 7 5 6 . False 48 (31, 19) 7 7 7 7 7 . True 50 -------- ----------- ----- -- -------------------------------------------------------------------------------- 20: 62 examples seen: 42/49 -------- ----------- ----- -- (1, 20) 2 1 1 1 3 . True 21 (2, 20) 2 1 1 3 1 . True 22 (3, 20) 2 1 3 4 0 . False 24 (4, 20) 2 1 3 4 0 . True 24 (5, 20) 2 3 1 0 0 . True 25 (7, 20) 2 3 4 1 0 . True 27 (8, 20) 2 3 4 1 1 . True 28 (9, 20) 2 3 4 2 1 . True 29 (13, 20) 2 3 5 3 4 . True 33 (14, 20) 2 3 5 3 5 . True 34 (15, 20) 2 3 5 6 5 . True 35 (17, 20) 2 3 5 7 5 . True 37 (18, 20) 2 3 5 7 7 . True 38 (19, 20) 2 3 7 5 6 . True 39 (20, 11) 2 3 4 2 3 . True 31 (20, 12) 2 3 4 3 3 . True 32 (20, 13) 2 3 5 3 4 . True 33 (20, 14) 2 3 5 6 3 . True 34 (20, 15) 2 3 5 6 5 . True 35 (20, 16) 2 3 5 6 7 . True 36 (20, 17) 2 3 5 7 5 . True 37 (20, 18) 2 3 5 7 7 . True 38 (20, 20) 2 3 7 7 5 . True 40 (20, 22) 2 7 5 7 7 . False 43 (20, 23) 2 7 7 5 7 . True 43 (20, 24) 2 7 7 7 5 . True 44 (20, 26) 7 5 7 5 6 . True 46 (20, 28) 7 7 7 5 6 . True 48 (20, 29) 7 7 7 7 7 . False 50 (20, 3) 2 1 3 1 0 . True 23 (20, 34) 7 7 9 7 9 . True 54 (20, 35) 7 9 7 7 9 . False 56 (20, 36) 7 9 7 7 9 . True 56 (20, 37) 7 9 7 9 7 . True 57 (20, 38) 7 9 9 7 7 . True 58 (20, 39) 9 7 9 7 7 . False 60 (20, 5) 2 3 1 0 0 . True 25 (20, 6) 2 3 4 0 0 . True 26 (20, 7) 2 3 4 1 0 . True 27 (20, 9) 2 3 4 2 1 . True 29 (21, 20) 2 3 7 7 7 . True 41 (22, 20) 2 7 5 6 5 . True 42 (31, 20) 7 7 7 9 7 . False 52 (32, 20) 7 7 7 9 7 . True 52 (33, 20) 7 7 9 7 7 . True 53 (34, 20) 7 7 9 7 9 . True 54 (35, 20) 7 7 9 9 7 . True 55 (36, 20) 7 9 7 7 9 . True 56 (39, 20) 9 7 9 7 7 . False 60 -------- ----------- ----- -- unseen: 4/13 -------- ----------- ----- -- (11, 20) 2 3 4 3 4 . False 32 (20, 19) 2 3 7 7 5 . False 40 (20, 21) 2 3 7 7 5 . False 40 (20, 27) 7 7 7 5 6 . False 48 (20, 31) 7 7 7 7 9 . True 51 (20, 32) 7 7 9 7 7 . False 53 (20, 33) 7 7 9 7 9 . False 54 (20, 8) 2 3 4 2 1 . False 29 (24, 20) 2 7 7 7 5 . True 44 (25, 20) 2 7 7 7 5 . False 44 (26, 20) 7 7 5 6 7 . False 47 (29, 20) 7 7 7 5 7 . True 49 (38, 20) 9 7 7 7 9 . True 58 -------- ----------- ----- -- -------------------------------------------------------------------------------- 21: 52 examples seen: 38/41 -------- ----------- ----- -- (1, 21) 2 1 1 3 1 . True 22 (5, 21) 2 3 4 0 0 . True 26 (8, 21) 2 3 4 2 1 . True 29 (9, 21) 2 3 4 2 4 . True 30 (11, 21) 2 3 5 4 2 . True 32 (13, 21) 2 3 5 6 3 . True 34 (14, 21) 2 3 5 6 5 . True 35 (15, 21) 2 3 5 6 7 . True 36 (19, 21) 2 3 7 7 5 . True 40 (21, 0) 2 1 1 1 3 . True 21 (21, 10) 2 3 4 2 3 . True 31 (21, 13) 2 3 5 6 3 . True 34 (21, 14) 2 3 5 6 5 . True 35 (21, 16) 2 3 5 7 5 . True 37 (21, 18) 2 3 7 5 6 . True 39 (21, 2) 2 1 3 1 0 . True 23 (21, 20) 2 3 7 7 7 . True 41 (21, 22) 2 7 7 5 6 . True 43 (21, 23) 2 7 7 7 5 . True 44 (21, 25) 7 5 7 5 6 . True 46 (21, 27) 7 7 7 5 6 . True 48 (21, 29) 7 7 7 7 7 . True 50 (21, 3) 2 1 3 4 0 . True 24 (21, 30) 7 7 7 7 9 . True 51 (21, 32) 7 7 7 9 9 . True 53 (21, 34) 7 7 9 9 7 . True 55 (21, 35) 7 9 7 9 7 . False 57 (21, 37) 7 9 9 7 7 . True 58 (21, 38) 9 7 7 9 7 . True 59 (21, 6) 2 3 4 1 0 . True 27 (21, 7) 2 3 4 1 1 . True 28 (21, 8) 2 3 4 2 1 . True 29 (23, 21) 2 7 7 7 5 . True 44 (25, 21) 7 5 7 5 6 . True 46 (26, 21) 7 7 5 6 7 . True 47 (28, 21) 7 7 7 7 5 . True 49 (30, 21) 7 7 7 7 7 . False 50 (31, 21) 7 7 9 7 7 . False 53 (35, 21) 7 9 7 7 9 . True 56 (37, 21) 7 9 9 7 7 . True 58 (38, 21) 9 7 7 9 7 . True 59 -------- ----------- ----- -- unseen: 8/11 -------- ----------- ----- -- (3, 21) 2 1 3 4 0 . True 24 (20, 21) 2 3 7 7 5 . False 40 (21, 11) 2 3 4 2 3 . False 31 (21, 15) 2 3 5 6 7 . True 36 (21, 17) 2 3 5 7 7 . True 38 (21, 24) 2 7 7 7 7 . True 45 (21, 26) 7 7 5 6 7 . True 47 (21, 28) 7 7 7 5 7 . True 49 (21, 31) 7 7 7 9 7 . True 52 (21, 4) 2 3 1 0 0 . True 25 (21, 5) 2 3 1 0 0 . False 25 -------- ----------- ----- -- -------------------------------------------------------------------------------- 22: 58 examples seen: 40/44 -------- ----------- ----- -- (0, 22) 2 1 1 3 1 . True 22 (2, 22) 2 1 3 4 0 . True 24 (7, 22) 2 3 4 2 1 . True 29 (12, 22) 2 3 5 3 5 . True 34 (16, 22) 2 3 5 7 7 . True 38 (17, 22) 2 3 7 5 6 . True 39 (18, 22) 2 3 7 5 6 . False 39 (20, 22) 2 7 5 7 7 . False 43 (21, 22) 2 7 7 5 6 . True 43 (22, 0) 2 1 1 3 1 . True 22 (22, 1) 2 1 3 1 0 . True 23 (22, 10) 2 3 4 3 4 . True 32 (22, 11) 2 3 5 3 4 . True 33 (22, 12) 2 3 5 3 5 . True 34 (22, 14) 2 3 5 6 7 . True 36 (22, 18) 2 3 7 7 5 . True 40 (22, 19) 2 3 7 7 7 . True 41 (22, 2) 2 1 3 4 0 . True 24 (22, 20) 2 7 5 6 5 . True 42 (22, 22) 2 7 7 7 5 . True 44 (22, 23) 2 7 7 7 7 . True 45 (22, 25) 7 7 5 6 7 . True 47 (22, 26) 7 7 7 5 6 . True 48 (22, 28) 7 7 7 7 7 . True 50 (22, 31) 7 7 7 9 9 . True 53 (22, 32) 7 7 9 7 9 . True 54 (22, 34) 7 9 7 9 7 . False 57 (22, 35) 7 9 7 9 9 . True 57 (22, 36) 9 7 7 7 9 . True 58 (22, 37) 9 7 7 9 7 . True 59 (22, 38) 9 7 9 7 7 . True 60 (22, 39) 9 7 9 9 7 . True 61 (22, 4) 2 3 4 0 0 . True 26 (22, 6) 2 3 4 1 1 . True 28 (22, 7) 2 3 4 2 1 . True 29 (23, 22) 2 7 7 7 7 . True 45 (26, 22) 7 7 7 5 6 . True 48 (27, 22) 7 7 7 7 5 . True 49 (29, 22) 7 7 7 7 7 . False 50 (32, 22) 7 7 9 7 9 . True 54 (33, 22) 7 9 7 7 7 . True 55 (36, 22) 9 7 7 7 9 . True 58 (37, 22) 9 7 7 9 7 . True 59 (38, 22) 9 7 9 7 7 . True 60 -------- ----------- ----- -- unseen: 8/14 -------- ----------- ----- -- (3, 22) 2 1 3 4 0 . False 24 (9, 22) 2 3 4 2 3 . True 31 (10, 22) 2 3 4 3 4 . True 32 (13, 22) 2 3 5 6 7 . False 36 (22, 15) 2 3 5 7 5 . True 37 (22, 16) 2 3 5 7 5 . False 37 (22, 27) 7 7 7 7 5 . True 49 (22, 3) 2 1 3 4 0 . False 24 (24, 22) 7 5 7 7 5 . False 47 (25, 22) 7 7 5 6 7 . True 47 (28, 22) 7 7 7 7 7 . True 50 (30, 22) 7 7 7 9 7 . True 52 (31, 22) 7 7 9 7 9 . False 54 (35, 22) 7 9 7 9 7 . True 57 -------- ----------- ----- -- -------------------------------------------------------------------------------- 23: 56 examples seen: 33/42 -------- ----------- ----- -- (2, 23) 2 3 1 0 0 . True 25 (4, 23) 2 3 4 1 0 . True 27 (6, 23) 2 3 4 2 1 . True 29 (9, 23) 2 3 4 3 4 . True 32 (11, 23) 2 3 5 3 5 . True 34 (12, 23) 2 3 5 6 5 . True 35 (13, 23) 2 3 5 6 7 . True 36 (16, 23) 2 3 7 5 6 . True 39 (18, 23) 2 3 7 7 5 . False 40 (19, 23) 2 7 5 7 5 . False 43 (20, 23) 2 7 7 5 7 . True 43 (21, 23) 2 7 7 7 5 . True 44 (22, 23) 2 7 7 7 7 . True 45 (23, 1) 2 1 3 4 0 . True 24 (23, 10) 2 3 5 3 5 . False 34 (23, 11) 2 3 5 6 7 . False 36 (23, 15) 2 3 5 7 7 . True 38 (23, 16) 2 3 7 5 6 . True 39 (23, 17) 2 3 7 7 5 . True 40 (23, 21) 2 7 7 7 5 . True 44 (23, 22) 2 7 7 7 7 . True 45 (23, 25) 7 7 7 5 6 . True 48 (23, 27) 7 7 7 7 7 . True 50 (23, 30) 7 7 9 7 7 . True 53 (23, 31) 7 7 9 7 9 . True 54 (23, 33) 7 9 7 7 7 . False 55 (23, 35) 9 7 7 9 7 . False 59 (23, 36) 9 7 7 9 7 . True 59 (23, 37) 9 7 9 7 7 . True 60 (23, 4) 2 3 4 1 0 . True 27 (23, 5) 2 3 4 1 1 . True 28 (23, 6) 2 3 4 2 1 . True 29 (23, 7) 2 3 4 2 4 . True 30 (23, 9) 2 3 5 4 2 . True 32 (24, 23) 7 7 5 6 7 . True 47 (25, 23) 7 7 7 5 6 . True 48 (27, 23) 7 7 7 7 7 . True 50 (28, 23) 7 7 7 7 9 . True 51 (33, 23) 7 9 7 7 7 . False 55 (34, 23) 7 9 7 9 9 . True 57 (35, 23) 9 7 7 9 7 . False 59 (39, 23) 9 9 7 7 9 . False 63 -------- ----------- ----- -- unseen: 11/14 -------- ----------- ----- -- (15, 23) 2 3 5 7 7 . True 38 (23, 0) 2 1 3 1 0 . True 23 (23, 13) 2 3 5 6 5 . False 35 (23, 2) 2 3 1 0 0 . True 25 (23, 24) 7 7 5 7 7 . True 47 (23, 26) 7 7 7 7 5 . True 49 (23, 29) 7 7 7 9 7 . True 52 (23, 3) 2 3 4 0 0 . True 26 (23, 32) 7 7 9 9 7 . True 55 (23, 38) 9 7 9 9 7 . True 61 (23, 8) 2 3 5 3 4 . False 33 (29, 23) 7 7 7 7 9 . False 51 (30, 23) 7 7 9 7 7 . True 53 (32, 23) 7 7 9 9 7 . True 55 -------- ----------- ----- -- -------------------------------------------------------------------------------- 24: 62 examples seen: 38/41 -------- ----------- ----- -- (0, 24) 2 1 3 4 0 . True 24 (1, 24) 2 3 1 0 0 . True 25 (2, 24) 2 3 4 0 0 . True 26 (3, 24) 2 3 4 1 0 . True 27 (5, 24) 2 3 4 2 1 . True 29 (7, 24) 2 3 4 2 3 . True 31 (8, 24) 2 3 4 3 5 . True 32 (9, 24) 2 3 5 3 4 . True 33 (10, 24) 2 3 5 6 3 . True 34 (13, 24) 2 3 5 7 5 . True 37 (14, 24) 2 3 5 7 7 . True 38 (17, 24) 2 3 7 7 7 . True 41 (20, 24) 2 7 7 7 5 . True 44 (24, 0) 2 1 3 4 0 . True 24 (24, 1) 2 3 1 0 0 . True 25 (24, 12) 2 3 5 6 7 . True 36 (24, 13) 2 3 5 7 5 . True 37 (24, 15) 2 3 7 5 6 . True 39 (24, 16) 2 3 7 7 5 . True 40 (24, 19) 2 7 7 5 7 . True 43 (24, 23) 7 7 5 6 7 . True 47 (24, 24) 7 7 7 5 6 . True 48 (24, 26) 7 7 7 7 7 . True 50 (24, 27) 7 7 7 7 9 . True 51 (24, 28) 7 7 7 9 7 . True 52 (24, 29) 7 7 9 7 7 . True 53 (24, 3) 2 3 4 1 0 . True 27 (24, 31) 7 7 9 9 7 . True 55 (24, 34) 9 7 7 7 9 . True 58 (24, 35) 9 7 7 9 7 . True 59 (24, 36) 9 7 9 7 7 . True 60 (24, 37) 9 7 9 7 9 . False 60 (24, 39) 9 9 7 7 9 . True 63 (24, 6) 2 3 4 2 4 . True 30 (24, 7) 2 3 4 2 3 . True 31 (28, 24) 7 7 7 9 9 . False 53 (29, 24) 7 7 7 9 9 . True 53 (30, 24) 7 7 9 7 9 . True 54 (33, 24) 7 9 7 9 7 . True 57 (34, 24) 7 9 9 7 7 . True 58 (38, 24) 9 7 9 9 7 . False 61 -------- ----------- ----- -- unseen: 14/21 -------- ----------- ----- -- (4, 24) 2 3 4 2 1 . False 29 (6, 24) 2 3 4 2 4 . True 30 (12, 24) 2 3 5 6 5 . False 35 (16, 24) 2 3 7 7 5 . True 40 (18, 24) 2 3 7 7 7 . False 41 (19, 24) 2 7 7 5 6 . True 43 (21, 24) 2 7 7 7 7 . True 45 (23, 24) 7 7 5 7 7 . True 47 (24, 10) 2 3 5 3 5 . True 34 (24, 11) 2 3 5 6 3 . False 34 (24, 17) 2 3 7 7 7 . True 41 (24, 18) 2 7 5 6 5 . True 42 (24, 20) 2 7 7 7 5 . True 44 (24, 22) 7 5 7 7 5 . False 47 (24, 30) 7 7 9 7 9 . True 54 (24, 4) 2 3 4 1 1 . True 28 (24, 8) 2 3 4 3 4 . True 32 (24, 9) 2 3 5 4 2 . False 32 (25, 24) 7 7 7 7 5 . True 49 (31, 24) 7 7 9 9 7 . True 55 (37, 24) 9 7 9 7 9 . False 60 -------- ----------- ----- -- -------------------------------------------------------------------------------- 25: 63 examples seen: 41/46 -------- ----------- ----- -- (1, 25) 2 3 4 0 0 . True 26 (2, 25) 2 3 4 1 0 . True 27 (4, 25) 2 3 4 2 1 . True 29 (5, 25) 2 3 4 2 4 . True 30 (7, 25) 2 3 4 3 4 . True 32 (8, 25) 2 3 5 3 4 . True 33 (11, 25) 2 3 5 6 7 . True 36 (13, 25) 2 3 5 7 7 . True 38 (15, 25) 2 3 7 7 5 . True 40 (16, 25) 2 3 7 7 7 . True 41 (18, 25) 2 3 7 7 7 . False 41 (21, 25) 7 5 7 5 6 . True 46 (22, 25) 7 7 5 6 7 . True 47 (23, 25) 7 7 7 5 6 . True 48 (25, 0) 2 3 1 0 0 . True 25 (25, 12) 2 3 5 7 5 . True 37 (25, 13) 2 3 5 7 7 . True 38 (25, 15) 2 3 7 7 5 . True 40 (25, 18) 2 7 7 5 6 . True 43 (25, 19) 2 7 7 7 5 . True 44 (25, 2) 2 3 4 1 0 . True 27 (25, 21) 7 5 7 5 6 . True 46 (25, 23) 7 7 7 5 6 . True 48 (25, 25) 7 7 7 7 7 . True 50 (25, 27) 7 7 7 7 9 . False 51 (25, 28) 7 7 7 9 9 . True 53 (25, 29) 7 7 9 7 9 . True 54 (25, 30) 7 7 9 9 7 . True 55 (25, 32) 7 9 7 9 7 . True 57 (25, 33) 7 9 9 7 7 . True 58 (25, 34) 9 7 7 9 7 . True 59 (25, 35) 9 7 9 7 7 . True 60 (25, 37) 9 7 9 9 7 . False 61 (25, 38) 9 9 7 7 9 . True 63 (25, 4) 2 3 4 2 1 . True 29 (25, 6) 2 3 4 2 3 . True 31 (25, 9) 2 3 5 3 5 . True 34 (26, 25) 7 7 7 7 9 . True 51 (28, 25) 7 7 9 7 7 . True 53 (30, 25) 7 7 9 9 7 . True 55 (31, 25) 7 9 7 9 7 . False 57 (32, 25) 7 9 7 9 7 . True 57 (33, 25) 7 9 9 7 7 . True 58 (35, 25) 9 7 9 7 9 . True 60 (37, 25) 9 9 7 7 9 . False 63 (39, 25) 9 9 7 9 7 . True 64 -------- ----------- ----- -- unseen: 10/17 -------- ----------- ----- -- (0, 25) 2 1 3 4 0 . False 24 (6, 25) 2 3 4 2 4 . False 30 (12, 25) 2 3 5 7 5 . True 37 (14, 25) 2 3 5 7 7 . False 38 (19, 25) 2 7 7 5 6 . False 43 (25, 11) 2 3 5 6 7 . True 36 (25, 14) 2 3 7 5 6 . True 39 (25, 16) 2 3 7 7 7 . True 41 (25, 17) 2 7 5 6 7 . True 42 (25, 20) 2 7 7 7 5 . False 44 (25, 22) 7 7 5 6 7 . True 47 (25, 24) 7 7 7 7 5 . True 49 (25, 26) 7 7 7 7 9 . True 51 (25, 3) 2 3 4 1 1 . True 28 (25, 5) 2 3 4 2 4 . True 30 (25, 8) 2 3 4 3 3 . False 32 (34, 25) 9 7 7 9 9 . False 58 -------- ----------- ----- -- -------------------------------------------------------------------------------- 26: 56 examples seen: 36/41 -------- ----------- ----- -- (0, 26) 2 3 4 0 0 . True 26 (1, 26) 2 3 4 1 0 . True 27 (2, 26) 2 3 4 1 0 . False 27 (4, 26) 2 3 4 2 1 . False 29 (5, 26) 2 3 4 2 3 . True 31 (7, 26) 2 3 5 3 4 . True 33 (8, 26) 2 3 5 6 3 . True 34 (9, 26) 2 3 5 6 5 . True 35 (10, 26) 2 3 5 6 7 . True 36 (15, 26) 2 3 7 7 7 . True 41 (16, 26) 2 3 7 7 7 . False 41 (19, 26) 7 5 6 7 5 . True 45 (20, 26) 7 5 7 5 6 . True 46 (22, 26) 7 7 7 5 6 . True 48 (24, 26) 7 7 7 7 7 . True 50 (26, 0) 2 3 4 0 0 . True 26 (26, 11) 2 3 5 7 5 . True 37 (26, 12) 2 3 5 7 7 . True 38 (26, 17) 2 7 7 5 6 . True 43 (26, 18) 2 7 7 7 5 . True 44 (26, 2) 2 3 4 1 1 . True 28 (26, 21) 7 7 5 6 7 . True 47 (26, 22) 7 7 7 5 6 . True 48 (26, 25) 7 7 7 7 9 . True 51 (26, 26) 7 7 7 9 7 . True 52 (26, 29) 7 9 7 7 7 . True 55 (26, 3) 2 3 4 2 1 . True 29 (26, 33) 9 7 7 9 7 . True 59 (26, 34) 9 7 9 7 7 . True 60 (26, 37) 9 9 7 7 9 . True 63 (26, 38) 9 9 7 9 7 . True 64 (26, 6) 2 3 4 3 3 . True 32 (26, 8) 2 3 5 6 3 . True 34 (28, 26) 7 7 9 7 9 . True 54 (29, 26) 7 7 9 9 7 . True 55 (31, 26) 7 9 7 9 9 . True 57 (33, 26) 9 7 7 9 7 . True 59 (35, 26) 9 7 9 9 7 . True 61 (36, 26) 9 9 7 7 9 . False 63 (37, 26) 9 9 7 9 7 . False 64 (38, 26) 9 9 7 9 7 . True 64 -------- ----------- ----- -- unseen: 8/15 -------- ----------- ----- -- (14, 26) 2 3 7 5 6 . False 39 (17, 26) 2 7 7 5 6 . True 43 (18, 26) 2 7 5 7 5 . False 43 (21, 26) 7 7 5 6 7 . True 47 (23, 26) 7 7 7 7 5 . True 49 (25, 26) 7 7 7 7 9 . True 51 (26, 10) 2 3 5 6 7 . True 36 (26, 16) 2 7 5 7 5 . False 43 (26, 20) 7 7 5 6 7 . False 47 (26, 30) 7 9 7 9 7 . False 57 (26, 31) 7 9 7 9 7 . True 57 (26, 32) 9 7 7 9 7 . False 59 (26, 39) 9 9 7 9 9 . True 65 (26, 9) 2 3 5 6 5 . True 35 (39, 26) 9 9 7 9 7 . False 64 -------- ----------- ----- -- -------------------------------------------------------------------------------- 27: 58 examples seen: 42/49 -------- ----------- ----- -- (2, 27) 2 3 4 2 1 . True 29 (3, 27) 2 3 4 2 4 . True 30 (4, 27) 2 3 4 2 3 . True 31 (6, 27) 2 3 5 3 4 . True 33 (9, 27) 2 3 5 6 7 . True 36 (10, 27) 2 3 5 7 5 . True 37 (12, 27) 2 3 7 5 6 . True 39 (13, 27) 2 3 7 7 5 . True 40 (14, 27) 2 3 7 7 7 . True 41 (16, 27) 2 7 7 5 6 . True 43 (17, 27) 2 7 7 7 5 . True 44 (18, 27) 2 7 7 7 5 . False 44 (21, 27) 7 7 7 5 6 . True 48 (23, 27) 7 7 7 7 7 . True 50 (24, 27) 7 7 7 7 9 . True 51 (25, 27) 7 7 7 7 9 . False 51 (27, 11) 2 3 5 7 7 . True 38 (27, 13) 2 3 7 7 5 . True 40 (27, 14) 2 3 7 7 7 . True 41 (27, 16) 2 7 7 5 6 . True 43 (27, 17) 2 7 7 7 5 . True 44 (27, 18) 7 5 6 7 5 . True 45 (27, 19) 7 5 7 5 6 . True 46 (27, 2) 2 3 4 2 1 . True 29 (27, 22) 7 7 7 7 5 . True 49 (27, 23) 7 7 7 7 7 . True 50 (27, 27) 7 7 9 7 9 . True 54 (27, 28) 7 7 9 9 7 . True 55 (27, 29) 7 9 7 7 9 . True 56 (27, 3) 2 3 4 2 4 . True 30 (27, 30) 7 9 7 9 9 . True 57 (27, 31) 7 9 9 7 7 . True 58 (27, 32) 9 7 9 7 7 . False 60 (27, 33) 9 7 9 9 7 . False 61 (27, 34) 9 7 9 9 7 . True 61 (27, 35) 9 9 7 7 9 . False 63 (27, 37) 9 9 7 9 7 . True 64 (27, 39) 9 9 9 7 7 . True 66 (27, 5) 2 3 4 3 4 . True 32 (27, 6) 2 3 5 3 4 . True 33 (27, 7) 2 3 5 6 3 . True 34 (27, 9) 2 3 5 6 7 . True 36 (29, 27) 7 9 7 9 7 . False 57 (30, 27) 7 9 7 9 7 . True 57 (31, 27) 7 9 9 7 7 . True 58 (34, 27) 9 7 9 9 7 . True 61 (35, 27) 9 9 7 7 9 . False 63 (36, 27) 9 9 7 7 9 . True 63 (38, 27) 9 9 7 9 9 . True 65 -------- ----------- ----- -- unseen: 6/9 -------- ----------- ----- -- (0, 27) 2 3 4 0 0 . False 26 (7, 27) 2 3 5 6 3 . True 34 (15, 27) 2 7 5 7 7 . False 43 (20, 27) 7 7 7 5 6 . False 48 (22, 27) 7 7 7 7 5 . True 49 (27, 12) 2 3 7 5 6 . True 39 (27, 8) 2 3 5 6 5 . True 35 (28, 27) 7 9 7 7 7 . True 55 (37, 27) 9 9 7 9 7 . True 64 -------- ----------- ----- -- -------------------------------------------------------------------------------- 28: 65 examples seen: 41/49 -------- ----------- ----- -- (0, 28) 2 3 4 1 1 . True 28 (4, 28) 2 3 5 4 2 . True 32 (6, 28) 2 3 5 6 3 . True 34 (7, 28) 2 3 5 6 5 . True 35 (8, 28) 2 3 5 6 7 . True 36 (16, 28) 2 7 7 7 5 . True 44 (17, 28) 7 5 6 7 5 . True 45 (18, 28) 7 5 6 7 5 . False 45 (19, 28) 7 7 5 6 7 . True 47 (20, 28) 7 7 7 5 6 . True 48 (22, 28) 7 7 7 7 7 . True 50 (24, 28) 7 7 7 9 7 . True 52 (25, 28) 7 7 7 9 9 . True 53 (27, 28) 7 7 9 9 7 . True 55 (28, 1) 2 3 4 2 1 . True 29 (28, 10) 2 3 5 7 7 . True 38 (28, 11) 2 3 7 5 6 . True 39 (28, 12) 2 3 7 7 5 . True 40 (28, 13) 2 3 7 7 7 . True 41 (28, 14) 2 7 5 6 7 . True 42 (28, 15) 2 7 5 6 7 . False 42 (28, 17) 7 5 6 7 5 . True 45 (28, 19) 7 7 5 6 7 . True 47 (28, 2) 2 3 4 2 4 . True 30 (28, 21) 7 7 7 7 5 . True 49 (28, 23) 7 7 7 7 9 . True 51 (28, 24) 7 7 7 9 9 . False 53 (28, 25) 7 7 9 7 7 . True 53 (28, 26) 7 7 9 7 9 . True 54 (28, 29) 7 9 7 9 9 . True 57 (28, 30) 7 9 9 7 7 . True 58 (28, 32) 9 7 9 7 7 . True 60 (28, 33) 9 7 9 9 7 . True 61 (28, 34) 9 9 7 7 9 . False 63 (28, 36) 9 9 7 9 7 . True 64 (28, 37) 9 9 7 9 9 . True 65 (28, 38) 9 9 9 7 7 . True 66 (28, 5) 2 3 5 4 2 . False 32 (28, 7) 2 3 5 6 5 . True 35 (28, 8) 2 3 5 6 7 . True 36 (28, 9) 2 3 5 7 5 . True 37 (29, 28) 7 9 7 9 7 . True 57 (32, 28) 9 7 7 9 7 . False 59 (33, 28) 9 7 9 7 9 . False 60 (34, 28) 9 7 9 9 9 . True 62 (35, 28) 9 9 7 7 9 . True 63 (36, 28) 9 9 7 9 7 . True 64 (38, 28) 9 9 7 9 9 . False 65 (39, 28) 9 9 9 7 9 . True 67 -------- ----------- ----- -- unseen: 10/16 -------- ----------- ----- -- (1, 28) 2 3 4 2 4 . False 30 (2, 28) 2 3 4 2 4 . True 30 (5, 28) 2 3 5 3 5 . False 34 (10, 28) 2 3 5 7 7 . True 38 (12, 28) 2 3 7 5 7 . True 40 (13, 28) 2 7 5 5 6 . False 42 (21, 28) 7 7 7 5 7 . True 49 (28, 0) 2 3 4 0 0 . False 26 (28, 16) 7 5 6 5 7 . False 45 (28, 22) 7 7 7 7 7 . True 50 (28, 27) 7 9 7 7 7 . True 55 (28, 31) 9 7 7 9 7 . True 59 (28, 35) 9 9 7 9 7 . False 64 (28, 39) 9 9 9 7 9 . True 67 (28, 4) 2 3 4 3 4 . True 32 (31, 28) 9 7 7 9 7 . True 59 -------- ----------- ----- -- -------------------------------------------------------------------------------- 29: 59 examples seen: 38/50 -------- ----------- ----- -- (0, 29) 2 3 4 2 1 . True 29 (4, 29) 2 3 5 3 5 . False 34 (5, 29) 2 3 5 6 3 . True 34 (8, 29) 2 3 5 7 5 . True 37 (9, 29) 2 3 5 7 7 . True 38 (11, 29) 2 3 7 7 5 . True 40 (12, 29) 2 3 7 7 7 . True 41 (13, 29) 2 7 5 6 7 . True 42 (14, 29) 2 7 7 5 6 . True 43 (15, 29) 2 7 7 7 5 . True 44 (17, 29) 7 5 7 5 6 . True 46 (20, 29) 7 7 7 7 7 . False 50 (21, 29) 7 7 7 7 7 . True 50 (24, 29) 7 7 9 7 7 . True 53 (25, 29) 7 7 9 7 9 . True 54 (26, 29) 7 9 7 7 7 . True 55 (27, 29) 7 9 7 7 9 . True 56 (28, 29) 7 9 7 9 9 . True 57 (29, 0) 2 3 4 2 1 . True 29 (29, 1) 2 3 4 2 1 . False 29 (29, 12) 2 3 7 7 7 . True 41 (29, 13) 2 7 5 6 7 . True 42 (29, 16) 7 5 6 7 5 . True 45 (29, 17) 7 5 7 5 6 . True 46 (29, 18) 7 7 5 6 7 . True 47 (29, 19) 7 7 7 5 6 . True 48 (29, 22) 7 7 7 7 7 . False 50 (29, 24) 7 7 7 9 9 . True 53 (29, 26) 7 7 9 9 7 . True 55 (29, 27) 7 9 7 9 7 . False 57 (29, 28) 7 9 7 9 7 . True 57 (29, 29) 7 9 9 7 7 . True 58 (29, 30) 9 7 7 7 9 . False 58 (29, 32) 9 7 9 7 9 . False 60 (29, 33) 9 7 9 9 9 . True 62 (29, 34) 9 9 7 7 9 . True 63 (29, 37) 9 9 7 9 9 . False 65 (29, 38) 9 9 9 7 7 . False 66 (29, 39) 9 9 9 7 9 . False 67 (29, 5) 2 3 5 6 3 . True 34 (29, 6) 2 3 5 6 5 . True 35 (29, 8) 2 3 5 7 5 . True 37 (30, 29) 9 7 7 9 7 . True 59 (31, 29) 9 7 9 9 7 . False 61 (32, 29) 9 7 9 9 7 . True 61 (34, 29) 9 9 7 7 9 . True 63 (36, 29) 9 9 7 9 9 . True 65 (37, 29) 9 9 9 7 7 . True 66 (38, 29) 9 9 9 7 9 . True 67 (39, 29) 9 9 9 7 9 . False 67 -------- ----------- ----- -- unseen: 5/9 -------- ----------- ----- -- (7, 29) 2 3 5 6 7 . True 36 (23, 29) 7 7 7 9 7 . True 52 (29, 10) 2 3 5 7 7 . False 38 (29, 11) 2 3 7 7 5 . True 40 (29, 15) 2 7 7 5 6 . False 43 (29, 2) 2 3 4 3 4 . False 32 (29, 20) 7 7 7 5 7 . True 49 (29, 23) 7 7 7 7 9 . False 51 (35, 29) 9 9 7 9 7 . True 64 -------- ----------- ----- -- -------------------------------------------------------------------------------- 30: 62 examples seen: 37/44 -------- ----------- ----- -- (0, 30) 2 3 4 2 4 . True 30 (1, 30) 2 3 4 2 3 . True 31 (2, 30) 2 3 4 3 3 . True 32 (4, 30) 2 3 5 3 5 . True 34 (7, 30) 2 3 5 7 5 . True 37 (8, 30) 2 3 5 7 7 . True 38 (9, 30) 2 3 7 5 6 . True 39 (12, 30) 2 7 5 6 5 . True 42 (13, 30) 2 7 7 5 6 . True 43 (14, 30) 2 7 7 7 5 . True 44 (15, 30) 2 7 7 7 7 . True 45 (17, 30) 7 7 5 6 7 . True 47 (21, 30) 7 7 7 7 9 . True 51 (23, 30) 7 7 9 7 7 . True 53 (25, 30) 7 7 9 9 7 . True 55 (27, 30) 7 9 7 9 9 . True 57 (28, 30) 7 9 9 7 7 . True 58 (29, 30) 9 7 7 7 9 . False 58 (30, 1) 2 3 4 2 1 . False 29 (30, 11) 2 3 7 7 7 . True 41 (30, 13) 2 7 7 5 6 . True 43 (30, 14) 2 7 7 7 5 . True 44 (30, 15) 7 5 6 7 5 . True 45 (30, 16) 7 5 7 5 6 . True 46 (30, 17) 7 7 5 6 7 . True 47 (30, 21) 7 7 7 7 7 . False 50 (30, 24) 7 7 9 7 9 . True 54 (30, 25) 7 7 9 9 7 . True 55 (30, 27) 7 9 7 9 7 . True 57 (30, 29) 9 7 7 9 7 . True 59 (30, 3) 2 3 5 3 4 . True 33 (30, 32) 9 9 7 7 9 . False 63 (30, 34) 9 9 7 9 7 . True 64 (30, 37) 9 9 9 7 9 . True 67 (30, 38) 9 9 9 7 9 . False 67 (30, 39) 9 9 9 9 7 . True 69 (30, 4) 2 3 5 6 3 . True 34 (30, 6) 2 3 5 6 7 . True 36 (30, 8) 2 3 5 7 7 . True 38 (31, 30) 9 7 9 9 7 . True 61 (32, 30) 9 9 7 7 9 . False 63 (33, 30) 9 9 7 7 9 . True 63 (38, 30) 9 9 9 7 9 . False 67 (39, 30) 9 9 9 9 7 . True 69 -------- ----------- ----- -- unseen: 10/18 -------- ----------- ----- -- (6, 30) 2 3 5 6 7 . True 36 (10, 30) 2 3 7 7 5 . True 40 (11, 30) 2 7 5 6 5 . False 42 (24, 30) 7 7 9 7 9 . True 54 (26, 30) 7 9 7 9 7 . False 57 (30, 0) 2 3 4 2 1 . False 29 (30, 10) 2 3 7 7 5 . True 40 (30, 19) 7 7 7 5 6 . False 48 (30, 2) 2 3 5 4 2 . True 32 (30, 22) 7 7 7 9 7 . True 52 (30, 23) 7 7 9 7 7 . True 53 (30, 31) 9 7 9 9 7 . True 61 (30, 33) 9 9 7 7 9 . True 63 (30, 36) 9 9 7 9 9 . False 65 (30, 7) 2 3 5 7 7 . False 38 (34, 30) 9 9 7 9 7 . True 64 (35, 30) 9 9 9 7 7 . False 66 (36, 30) 9 9 9 7 9 . False 67 -------- ----------- ----- -- -------------------------------------------------------------------------------- 31: 68 examples seen: 37/47 -------- ----------- ----- -- (1, 31) 2 3 4 3 4 . True 32 (2, 31) 2 3 5 3 4 . True 33 (4, 31) 2 3 5 6 5 . True 35 (5, 31) 2 3 5 6 7 . True 36 (7, 31) 2 3 5 7 7 . True 38 (8, 31) 2 3 7 5 6 . True 39 (9, 31) 2 3 7 5 7 . True 40 (11, 31) 2 7 5 6 5 . True 42 (12, 31) 2 7 5 7 5 . True 43 (15, 31) 7 5 7 5 6 . True 46 (16, 31) 7 5 7 7 5 . True 47 (17, 31) 7 7 7 5 6 . True 48 (18, 31) 7 5 7 7 5 . False 47 (22, 31) 7 7 7 9 9 . True 53 (23, 31) 7 7 9 7 9 . True 54 (24, 31) 7 7 9 9 7 . True 55 (27, 31) 7 9 9 7 7 . True 58 (31, 10) 2 3 7 7 7 . True 41 (31, 11) 2 7 5 6 5 . True 42 (31, 13) 2 7 7 7 5 . True 44 (31, 14) 2 7 7 7 7 . True 45 (31, 15) 7 5 7 5 6 . True 46 (31, 16) 7 7 5 6 7 . True 47 (31, 17) 7 7 7 5 7 . False 49 (31, 18) 7 7 7 7 5 . True 49 (31, 20) 7 7 7 9 7 . False 52 (31, 21) 7 7 9 7 7 . False 53 (31, 25) 7 9 7 9 7 . False 57 (31, 26) 7 9 7 9 9 . True 57 (31, 27) 7 9 9 7 7 . True 58 (31, 29) 9 7 9 9 7 . False 61 (31, 3) 2 3 5 6 3 . True 34 (31, 30) 9 7 9 9 7 . True 61 (31, 33) 9 9 7 9 7 . True 64 (31, 34) 9 9 7 9 9 . True 65 (31, 38) 9 9 9 9 7 . True 69 (31, 39) 9 9 9 9 7 . False 69 (31, 5) 2 3 5 6 7 . True 36 (31, 6) 2 3 5 7 5 . True 37 (31, 7) 2 3 5 7 7 . True 38 (31, 9) 2 3 7 7 5 . True 40 (32, 31) 9 9 7 7 9 . True 63 (33, 31) 9 9 7 9 7 . True 64 (34, 31) 9 9 7 9 7 . False 64 (35, 31) 9 9 9 7 7 . True 66 (38, 31) 9 9 9 7 9 . False 67 (39, 31) 9 9 9 9 7 . False 69 -------- ----------- ----- -- unseen: 15/21 -------- ----------- ----- -- (3, 31) 2 3 5 6 3 . True 34 (6, 31) 2 3 5 7 5 . True 37 (10, 31) 2 3 7 7 5 . False 40 (13, 31) 2 7 7 5 7 . False 43 (14, 31) 2 7 7 7 5 . False 44 (19, 31) 7 7 7 7 7 . True 50 (20, 31) 7 7 7 7 9 . True 51 (21, 31) 7 7 7 9 7 . True 52 (26, 31) 7 9 7 9 7 . True 57 (28, 31) 9 7 7 9 7 . True 59 (30, 31) 9 7 9 9 7 . True 61 (31, 1) 2 3 4 3 4 . True 32 (31, 12) 2 7 7 5 7 . True 43 (31, 19) 7 7 7 7 7 . True 50 (31, 22) 7 7 9 7 9 . False 54 (31, 24) 7 7 9 9 7 . True 55 (31, 28) 9 7 7 9 7 . True 59 (31, 31) 9 9 7 7 9 . False 63 (31, 36) 9 9 9 7 9 . True 67 (31, 8) 2 3 7 5 7 . False 40 (36, 31) 9 9 9 7 9 . True 67 -------- ----------- ----- -- -------------------------------------------------------------------------------- 32: 58 examples seen: 26/37 -------- ----------- ----- -- (0, 32) 2 3 4 3 4 . True 32 (2, 32) 2 3 5 6 3 . True 34 (10, 32) 2 7 7 5 6 . False 43 (11, 32) 2 7 7 7 5 . False 44 (14, 32) 8 7 5 6 7 . True 46 (16, 32) 7 7 7 5 6 . True 48 (17, 32) 7 7 7 7 5 . True 49 (21, 32) 7 7 7 9 9 . True 53 (22, 32) 7 7 9 7 9 . True 54 (25, 32) 7 9 7 9 7 . True 57 (27, 32) 9 7 9 7 7 . False 60 (28, 32) 9 7 9 7 7 . True 60 (29, 32) 9 7 9 7 9 . False 60 (30, 32) 9 9 7 7 9 . False 63 (32, 0) 2 3 5 4 2 . True 32 (32, 1) 2 3 5 4 2 . False 32 (32, 10) 2 7 5 5 6 . True 42 (32, 12) 2 7 7 7 5 . True 44 (32, 13) 7 5 7 5 6 . False 46 (32, 15) 7 5 7 5 7 . False 46 (32, 17) 7 7 7 7 5 . True 49 (32, 20) 7 7 7 9 7 . True 52 (32, 22) 7 7 9 7 9 . True 54 (32, 25) 7 9 7 9 7 . True 57 (32, 28) 9 7 7 9 7 . False 59 (32, 29) 9 7 9 9 7 . True 61 (32, 3) 2 3 5 6 5 . True 35 (32, 30) 9 9 7 7 9 . False 63 (32, 31) 9 9 7 7 9 . True 63 (32, 38) 9 9 9 9 7 . False 69 (32, 4) 2 3 5 6 7 . True 36 (32, 5) 2 3 5 7 5 . True 37 (32, 6) 2 3 5 7 7 . True 38 (32, 7) 2 3 7 5 6 . True 39 (33, 32) 9 9 7 9 9 . True 65 (35, 32) 9 9 9 7 9 . True 67 (37, 32) 9 9 9 9 7 . True 69 -------- ----------- ----- -- unseen: 8/21 -------- ----------- ----- -- (4, 32) 2 3 5 6 5 . False 35 (5, 32) 2 3 5 6 7 . False 36 (6, 32) 2 3 7 5 6 . False 39 (7, 32) 2 3 7 5 6 . True 39 (8, 32) 2 3 7 5 7 . True 40 (12, 32) 8 7 5 6 7 . False 46 (13, 32) 8 7 5 6 7 . False 46 (15, 32) 7 7 5 7 7 . True 47 (18, 32) 7 7 7 5 7 . False 49 (19, 32) 7 7 7 7 9 . True 51 (20, 32) 7 7 9 7 7 . False 53 (23, 32) 7 7 9 9 7 . True 55 (26, 32) 9 7 7 9 7 . False 59 (32, 18) 7 7 7 5 6 . False 48 (32, 2) 2 3 5 6 3 . True 34 (32, 23) 7 7 9 9 7 . True 55 (32, 33) 9 9 7 9 7 . False 64 (32, 34) 9 9 7 9 9 . False 65 (32, 36) 9 9 9 7 9 . False 67 (34, 32) 9 9 9 7 7 . True 66 (39, 32) 9 9 9 9 7 . False 69 -------- ----------- ----- -- -------------------------------------------------------------------------------- 33: 53 examples seen: 31/42 -------- ----------- ----- -- (1, 33) 2 3 5 6 3 . True 34 (4, 33) 2 3 5 7 5 . True 37 (6, 33) 2 3 7 5 6 . True 39 (8, 33) 2 3 7 7 7 . True 41 (9, 33) 2 7 5 7 5 . False 43 (10, 33) 2 7 7 5 6 . True 43 (13, 33) 7 5 7 5 6 . True 46 (14, 33) 7 7 5 6 7 . True 47 (19, 33) 7 7 7 9 7 . True 52 (23, 33) 7 9 7 7 7 . False 55 (25, 33) 7 9 9 7 7 . True 58 (26, 33) 9 7 7 9 7 . True 59 (27, 33) 9 7 9 9 7 . False 61 (28, 33) 9 7 9 9 7 . True 61 (29, 33) 9 7 9 9 9 . True 62 (31, 33) 9 9 7 9 7 . True 64 (33, 11) 2 7 7 7 5 . True 44 (33, 13) 7 5 7 5 6 . True 46 (33, 15) 7 7 5 7 5 . False 47 (33, 16) 7 7 7 5 7 . True 49 (33, 20) 7 7 9 7 7 . True 53 (33, 22) 7 9 7 7 7 . True 55 (33, 23) 7 9 7 7 7 . False 55 (33, 24) 7 9 7 9 7 . True 57 (33, 25) 7 9 9 7 7 . True 58 (33, 26) 9 7 7 9 7 . True 59 (33, 28) 9 7 9 7 9 . False 60 (33, 3) 2 3 5 6 7 . True 36 (33, 30) 9 9 7 7 9 . True 63 (33, 31) 9 9 7 9 7 . True 64 (33, 32) 9 9 7 9 9 . True 65 (33, 33) 9 9 9 7 7 . True 66 (33, 36) 9 9 9 9 7 . True 69 (33, 37) 9 9 9 9 7 . False 69 (33, 38) 9 9 9 9 7 . False 69 (33, 5) 2 3 5 7 7 . True 38 (33, 6) 2 3 7 5 6 . True 39 (33, 7) 2 3 7 7 5 . True 40 (33, 9) 2 3 7 7 7 . False 41 (35, 33) 9 9 9 7 9 . False 67 (36, 33) 9 9 9 9 7 . True 69 (39, 33) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 4/11 -------- ----------- ----- -- (2, 33) 2 3 5 6 7 . False 36 (12, 33) 2 7 7 7 5 . False 44 (17, 33) 7 7 7 7 5 . False 49 (20, 33) 7 7 9 7 9 . False 54 (30, 33) 9 9 7 7 9 . True 63 (32, 33) 9 9 7 9 7 . False 64 (33, 2) 2 3 5 6 7 . False 36 (33, 34) 9 9 9 7 9 . True 67 (33, 4) 2 3 5 7 5 . True 37 (34, 33) 9 9 9 7 9 . True 67 (37, 33) 9 9 9 9 7 . False 69 -------- ----------- ----- -- -------------------------------------------------------------------------------- 34: 62 examples seen: 41/50 -------- ----------- ----- -- (0, 34) 2 3 5 6 3 . True 34 (1, 34) 2 3 5 6 5 . True 35 (2, 34) 2 3 5 6 7 . True 36 (3, 34) 2 3 5 7 5 . True 37 (4, 34) 2 3 5 7 7 . True 38 (6, 34) 2 3 7 7 5 . True 40 (8, 34) 2 7 5 5 6 . True 42 (11, 34) 2 7 7 7 7 . True 45 (12, 34) 8 7 5 6 7 . True 46 (14, 34) 8 7 7 5 6 . True 48 (16, 34) 7 7 7 7 7 . True 50 (18, 34) 7 7 7 7 7 . False 50 (20, 34) 7 7 9 7 9 . True 54 (21, 34) 7 7 9 9 7 . True 55 (22, 34) 7 9 7 9 7 . False 57 (24, 34) 9 7 7 7 9 . True 58 (25, 34) 9 7 7 9 7 . True 59 (26, 34) 9 7 9 7 7 . True 60 (27, 34) 9 7 9 9 7 . True 61 (28, 34) 9 9 7 7 9 . False 63 (29, 34) 9 9 7 7 9 . True 63 (30, 34) 9 9 7 9 7 . True 64 (31, 34) 9 9 7 9 9 . True 65 (34, 1) 2 3 5 6 3 . False 34 (34, 10) 2 7 7 7 5 . True 44 (34, 11) 2 7 7 7 7 . True 45 (34, 12) 8 7 5 6 7 . True 46 (34, 13) 7 7 5 6 7 . True 47 (34, 14) 8 7 7 5 6 . True 48 (34, 16) 7 7 7 7 7 . True 50 (34, 19) 7 7 9 7 7 . True 53 (34, 20) 7 7 9 7 9 . True 54 (34, 23) 7 9 7 9 9 . True 57 (34, 24) 7 9 9 7 7 . True 58 (34, 27) 9 7 9 9 7 . True 61 (34, 28) 9 7 9 9 9 . True 62 (34, 29) 9 9 7 7 9 . True 63 (34, 3) 2 3 5 7 5 . True 37 (34, 31) 9 9 7 9 7 . False 64 (34, 35) 9 9 9 9 7 . True 69 (34, 38) 9 9 9 9 9 . False 73 (34, 39) 9 9 9 9 9 . True 73 (34, 4) 2 3 5 7 7 . True 38 (34, 5) 2 3 7 5 6 . True 39 (34, 8) 2 7 5 7 5 . False 43 (34, 9) 2 7 7 5 6 . True 43 (35, 34) 9 9 9 9 7 . True 69 (36, 34) 9 9 9 9 7 . False 69 (37, 34) 9 9 9 9 7 . False 69 (39, 34) 9 9 9 9 9 . True 73 -------- ----------- ----- -- unseen: 4/12 -------- ----------- ----- -- (32, 34) 9 9 7 9 9 . False 65 (33, 34) 9 9 9 7 9 . True 67 (34, 15) 7 7 7 5 6 . False 48 (34, 18) 7 7 7 7 9 . False 51 (34, 2) 2 3 5 7 5 . False 37 (34, 25) 9 7 7 9 9 . False 58 (34, 30) 9 9 7 9 7 . True 64 (34, 32) 9 9 9 7 7 . True 66 (34, 33) 9 9 9 7 9 . True 67 (34, 36) 9 9 9 9 9 . False 73 (34, 37) 9 9 9 9 9 . False 73 (34, 7) 2 7 5 5 6 . False 42 -------- ----------- ----- -- -------------------------------------------------------------------------------- 35: 63 examples seen: 39/52 -------- ----------- ----- -- (0, 35) 2 3 5 6 5 . True 35 (1, 35) 2 3 5 6 7 . True 36 (2, 35) 2 3 5 7 5 . True 37 (3, 35) 2 3 5 7 7 . True 38 (5, 35) 2 3 7 7 5 . True 40 (6, 35) 2 3 7 7 7 . True 41 (7, 35) 2 7 5 6 7 . True 42 (9, 35) 2 7 7 7 5 . True 44 (11, 35) 8 7 5 6 7 . True 46 (13, 35) 8 7 7 5 6 . True 48 (14, 35) 8 7 7 7 5 . True 49 (15, 35) 7 7 7 7 7 . True 50 (17, 35) 7 7 7 9 7 . True 52 (18, 35) 7 7 7 9 7 . False 52 (20, 35) 7 9 7 7 9 . False 56 (21, 35) 7 9 7 9 7 . False 57 (22, 35) 7 9 7 9 9 . True 57 (23, 35) 9 7 7 9 7 . False 59 (24, 35) 9 7 7 9 7 . True 59 (25, 35) 9 7 9 7 7 . True 60 (27, 35) 9 9 7 7 9 . False 63 (34, 35) 9 9 9 9 7 . True 69 (35, 10) 2 7 7 7 7 . True 45 (35, 13) 7 7 7 5 6 . True 48 (35, 14) 8 7 7 7 5 . True 49 (35, 15) 7 7 7 7 7 . True 50 (35, 16) 7 7 7 7 9 . True 51 (35, 17) 7 7 7 9 7 . True 52 (35, 19) 7 7 9 7 9 . True 54 (35, 20) 7 7 9 9 7 . True 55 (35, 21) 7 9 7 7 9 . True 56 (35, 23) 9 7 7 9 7 . False 59 (35, 25) 9 7 9 7 9 . True 60 (35, 26) 9 7 9 9 7 . True 61 (35, 27) 9 9 7 7 9 . False 63 (35, 28) 9 9 7 7 9 . True 63 (35, 3) 2 3 5 7 7 . True 38 (35, 31) 9 9 9 7 7 . True 66 (35, 32) 9 9 9 7 9 . True 67 (35, 33) 9 9 9 7 9 . False 67 (35, 34) 9 9 9 9 7 . True 69 (35, 35) 9 9 9 9 7 . False 69 (35, 37) 9 9 9 9 9 . False 73 (35, 38) 9 9 9 9 9 . True 73 (35, 39) 9 9 9 9 9 . False 73 (35, 4) 2 3 7 5 6 . True 39 (35, 5) 2 3 7 7 5 . True 40 (35, 8) 2 7 7 5 6 . True 43 (35, 9) 2 7 7 7 5 . True 44 (36, 35) 9 9 9 9 7 . False 69 (38, 35) 9 9 9 9 9 . True 73 (39, 35) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 6/11 -------- ----------- ----- -- (8, 35) 2 7 7 5 6 . True 43 (28, 35) 9 9 7 9 7 . False 64 (35, 0) 2 3 5 6 7 . False 36 (35, 1) 2 3 5 6 7 . True 36 (35, 11) 2 7 7 7 7 . False 45 (35, 12) 8 7 7 5 6 . False 48 (35, 18) 7 7 9 7 7 . True 53 (35, 22) 7 9 7 9 7 . True 57 (35, 29) 9 9 7 9 7 . True 64 (35, 30) 9 9 9 7 7 . False 66 (35, 7) 2 7 5 6 7 . True 42 -------- ----------- ----- -- -------------------------------------------------------------------------------- 36: 52 examples seen: 30/34 -------- ----------- ----- -- (4, 36) 2 3 7 7 5 . True 40 (5, 36) 2 3 7 7 7 . True 41 (8, 36) 2 7 7 7 5 . True 44 (9, 36) 2 7 7 7 7 . True 45 (12, 36) 8 7 7 5 6 . True 48 (15, 36) 7 7 7 7 9 . True 51 (16, 36) 7 7 7 9 7 . True 52 (20, 36) 7 9 7 7 9 . True 56 (22, 36) 9 7 7 7 9 . True 58 (23, 36) 9 7 7 9 7 . True 59 (24, 36) 9 7 9 7 7 . True 60 (28, 36) 9 9 7 9 7 . True 64 (33, 36) 9 9 9 9 7 . True 69 (36, 0) 2 3 5 6 7 . True 36 (36, 11) 7 7 5 6 7 . True 47 (36, 12) 8 7 7 5 6 . True 48 (36, 13) 8 7 7 7 5 . True 49 (36, 14) 8 7 7 7 9 . True 50 (36, 15) 7 7 7 7 9 . True 51 (36, 16) 7 7 7 9 7 . True 52 (36, 18) 7 7 9 7 9 . True 54 (36, 19) 7 7 9 9 7 . True 55 (36, 20) 7 9 7 7 9 . True 56 (36, 22) 9 7 7 7 9 . True 58 (36, 26) 9 9 7 7 9 . False 63 (36, 27) 9 9 7 7 9 . True 63 (36, 28) 9 9 7 9 7 . True 64 (36, 29) 9 9 7 9 9 . True 65 (36, 33) 9 9 9 9 7 . True 69 (36, 34) 9 9 9 9 7 . False 69 (36, 35) 9 9 9 9 7 . False 69 (36, 39) 9 9 9 9 9 . False 73 (36, 4) 2 3 7 7 5 . True 40 (36, 8) 2 7 7 7 5 . True 44 -------- ----------- ----- -- unseen: 6/18 -------- ----------- ----- -- (0, 36) 2 3 5 6 7 . True 36 (1, 36) 2 3 5 7 7 . False 38 (3, 36) 2 3 7 7 5 . False 40 (10, 36) 2 7 7 7 7 . False 45 (30, 36) 9 9 7 9 9 . False 65 (31, 36) 9 9 9 7 9 . True 67 (32, 36) 9 9 9 7 9 . False 67 (34, 36) 9 9 9 9 9 . False 73 (36, 2) 2 3 5 7 7 . True 38 (36, 30) 9 9 9 7 9 . False 67 (36, 31) 9 9 9 7 9 . True 67 (36, 38) 9 9 9 9 9 . False 73 (36, 5) 2 3 7 7 5 . False 40 (36, 6) 2 7 5 6 7 . True 42 (36, 9) 2 7 7 7 5 . False 44 (37, 36) 9 9 9 9 9 . True 73 (38, 36) 9 9 9 9 9 . False 73 (39, 36) 9 9 9 9 9 . False 73 -------- ----------- ----- -- -------------------------------------------------------------------------------- 37: 61 examples seen: 31/45 -------- ----------- ----- -- (0, 37) 2 3 5 7 5 . True 37 (3, 37) 2 3 7 7 5 . True 40 (4, 37) 2 3 7 7 5 . False 40 (5, 37) 2 7 5 5 6 . True 42 (6, 37) 2 7 5 7 5 . True 43 (11, 37) 8 7 7 5 6 . True 48 (12, 37) 8 7 7 5 7 . True 49 (16, 37) 7 7 9 7 7 . True 53 (17, 37) 7 7 9 7 9 . True 54 (18, 37) 7 7 9 7 7 . False 53 (19, 37) 7 9 7 7 9 . True 56 (20, 37) 7 9 7 9 7 . True 57 (21, 37) 7 9 9 7 7 . True 58 (22, 37) 9 7 7 9 7 . True 59 (23, 37) 9 7 9 7 7 . True 60 (24, 37) 9 7 9 7 9 . False 60 (25, 37) 9 7 9 9 7 . False 61 (26, 37) 9 9 7 7 9 . True 63 (27, 37) 9 9 7 9 7 . True 64 (28, 37) 9 9 7 9 9 . True 65 (29, 37) 9 9 7 9 9 . False 65 (30, 37) 9 9 9 7 9 . True 67 (33, 37) 9 9 9 9 7 . False 69 (35, 37) 9 9 9 9 9 . False 73 (37, 0) 2 3 5 7 5 . True 37 (37, 11) 8 7 7 5 6 . True 48 (37, 12) 8 7 7 7 5 . True 49 (37, 15) 7 7 7 7 9 . False 51 (37, 16) 7 7 9 7 7 . True 53 (37, 17) 7 7 9 7 9 . True 54 (37, 19) 7 9 7 9 7 . False 57 (37, 2) 2 3 7 5 6 . True 39 (37, 21) 7 9 9 7 7 . True 58 (37, 22) 9 7 7 9 7 . True 59 (37, 25) 9 9 7 7 9 . False 63 (37, 26) 9 9 7 9 7 . False 64 (37, 29) 9 9 9 7 7 . True 66 (37, 3) 2 3 7 7 5 . True 40 (37, 32) 9 9 9 9 7 . True 69 (37, 34) 9 9 9 9 7 . False 69 (37, 6) 2 7 7 5 6 . True 43 (37, 7) 2 7 7 7 5 . True 44 (37, 9) 8 7 5 6 7 . True 46 (38, 37) 9 9 9 9 9 . False 73 (39, 37) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 6/16 -------- ----------- ----- -- (9, 37) 2 7 7 7 5 . False 44 (10, 37) 8 7 5 6 7 . False 46 (34, 37) 9 9 9 9 9 . False 73 (37, 1) 2 3 5 7 5 . False 37 (37, 14) 8 7 9 7 7 . True 51 (37, 18) 7 9 7 7 7 . True 55 (37, 24) 9 7 9 7 9 . False 60 (37, 27) 9 9 7 9 7 . True 64 (37, 33) 9 9 9 9 7 . False 69 (37, 36) 9 9 9 9 9 . True 73 (37, 37) 9 9 9 9 9 . False 73 (37, 38) 9 9 9 9 9 . False 73 (37, 39) 9 9 9 9 9 . False 73 (37, 4) 2 3 7 7 7 . True 41 (37, 5) 2 7 5 5 6 . True 42 (37, 8) 8 7 5 6 7 . False 46 -------- ----------- ----- -- -------------------------------------------------------------------------------- 38: 64 examples seen: 39/53 -------- ----------- ----- -- (0, 38) 2 3 5 7 7 . True 38 (1, 38) 2 3 7 5 6 . True 39 (2, 38) 2 3 7 5 7 . True 40 (3, 38) 2 3 7 7 7 . True 41 (4, 38) 2 7 5 5 6 . True 42 (5, 38) 2 7 5 7 7 . True 43 (7, 38) 8 5 7 5 6 . True 45 (9, 38) 7 7 5 6 7 . True 47 (11, 38) 8 7 7 5 7 . True 49 (12, 38) 8 7 7 9 7 . True 50 (13, 38) 8 7 9 7 7 . True 51 (14, 38) 8 7 9 7 9 . True 52 (16, 38) 7 7 9 7 9 . True 54 (17, 38) 7 7 9 9 7 . True 55 (18, 38) 7 7 9 9 7 . False 55 (19, 38) 7 9 7 9 7 . True 57 (20, 38) 7 9 9 7 7 . True 58 (21, 38) 9 7 7 9 7 . True 59 (22, 38) 9 7 9 7 7 . True 60 (25, 38) 9 9 7 7 9 . True 63 (26, 38) 9 9 7 9 7 . True 64 (28, 38) 9 9 9 7 7 . True 66 (29, 38) 9 9 9 7 7 . False 66 (30, 38) 9 9 9 7 9 . False 67 (31, 38) 9 9 9 9 7 . True 69 (32, 38) 9 9 9 9 7 . False 69 (33, 38) 9 9 9 9 7 . False 69 (34, 38) 9 9 9 9 9 . False 73 (35, 38) 9 9 9 9 9 . True 73 (38, 0) 2 3 5 7 7 . True 38 (38, 10) 8 7 5 7 7 . False 49 (38, 12) 8 7 7 7 9 . True 50 (38, 14) 8 7 9 7 9 . True 52 (38, 15) 7 7 7 9 7 . False 52 (38, 16) 7 7 9 7 9 . True 54 (38, 19) 7 9 7 9 7 . True 57 (38, 2) 2 3 7 9 7 . True 40 (38, 21) 9 7 7 9 7 . True 59 (38, 22) 9 7 9 7 7 . True 60 (38, 24) 9 7 9 9 7 . False 61 (38, 26) 9 9 7 9 7 . True 64 (38, 27) 9 9 7 9 9 . True 65 (38, 28) 9 9 7 9 9 . False 65 (38, 29) 9 9 9 7 9 . True 67 (38, 3) 2 3 7 7 9 . True 41 (38, 30) 9 9 9 7 9 . False 67 (38, 31) 9 9 9 7 9 . False 67 (38, 35) 9 9 9 9 9 . True 73 (38, 37) 9 9 9 9 9 . False 73 (38, 6) 2 7 7 7 5 . True 44 (38, 7) 2 7 7 7 7 . True 45 (38, 8) 8 7 5 6 7 . True 46 (39, 38) 9 9 9 9 9 . False 73 -------- ----------- ----- -- unseen: 4/11 -------- ----------- ----- -- (8, 38) 8 7 5 6 7 . True 46 (15, 38) 7 7 9 7 7 . True 53 (23, 38) 9 7 9 9 7 . True 61 (36, 38) 9 9 9 9 9 . False 73 (37, 38) 9 9 9 9 9 . False 73 (38, 1) 2 3 5 7 7 . False 38 (38, 17) 7 7 9 7 9 . False 54 (38, 20) 9 7 7 7 9 . True 58 (38, 36) 9 9 9 9 9 . False 73 (38, 5) 2 7 5 6 5 . False 42 (38, 9) 8 7 5 6 7 . False 46 -------- ----------- ----- -- -------------------------------------------------------------------------------- ###Markdown Calculating CWUBCJan 2016 Given JSON summaries of projects, calculate Cumulative Weighted Unique Block Count (CWUBC) of projectsSee Proposal, Page 4: http://benjixie.com/meng_proposal.pdfREQUIRED: ai2summarizer.py (https://github.com/bxie/ai2_summarizer)See also: Trajectory.ipynb CWUBC Steps: parse directory and load JSON from directory calcualte T_all matrix (see proposal) calculate block weighting POPPS Steps: Determine blocks corresponding to each programming skill Calculate POPPS matrixClustering: Separate users based on CWUBC Plot POPPS of each group Run K-Means clustering on CWUBC trajectory matrix Plot POPPS of each cluster CSP Principles Trajectory:1. Isolate CSP Blocks1. Trajectory of CSP Blocks (freq, not binary)Other: Analyze slope of CWUBC PCA Categorize Clusters (elbow) Prior Knowledge: Cluster based only on first n projects ###Code import os import os.path import re import json import csv import pickle import numpy as np import pandas as pd #plotting import matplotlib.pyplot as plt import matplotlib import matplotlib.ticker as mtick #making plots look pretty %matplotlib inline matplotlib.style.use('ggplot') pd.options.display.mpl_style = 'default' from collections import Counter from sklearn.cluster import KMeans # ROOT_DIR = "/Users/bxie/Documents/ai2_users_random_small/" ROOT_DIR = "/Users/bxie/Documents/ai2_users_random/" NB_DIR = "/Users/bxie/programming/ai2_user_trajectory/data/" REGEX_ROOT_IGNORE = 'python|\.|README' REGEX_SUMMARY = 'summary\.json' SUMMARY_SUFFIX = "_summary.json" USER_ID_RAND = "000317" PROJ_ID_RAND = "4673362639978496" THRESHOLD = 20 """ code to get blocks """ """ return dictionary of (user ids, num projects) for users w/ at least min_num_projects """ def get_users(min_num_projects): #regex to ignore non-project files ignore = 'python|\.|README' regexp=re.compile(ignore) #use: regexp.search(fname) fnames = filter(lambda x: regexp.search(x) is None, os.listdir(ROOT_DIR)) super_users = {} for fname in fnames: num_projects = len(get_all_projects(fname)) if num_projects > min_num_projects: super_users[fname] = num_projects return super_users """ Given user_id (user directory name), return list of all project ids """ def get_all_projects(user_id): unfiltered_project_names = os.listdir("{}{}".format(ROOT_DIR, user_id)) project_names = filter(lambda x: x.isdigit(), unfiltered_project_names) return project_names """ given user id and project id, return project summary (as dictionary) """ def get_summary(user_id, project_id): summary_dir = "{}{}/{}{}".format(ROOT_DIR, user_id, project_id, SUMMARY_SUFFIX) with open(summary_dir) as data_file: data = json.load(data_file) return data """ Given project_id (user directory name), return lists of all active blocks, orphaned blocks """ def get_blocks(summary): screen_names = filter(lambda x: x.find("*")<0, summary.keys()) blocks_count = Counter({}) orphan_count = Counter({}) for sname in screen_names: #if has blocks if has_blocks(summary, sname): blocks_count += Counter(summary[sname]['Blocks']['Active Blocks']['Types']) if has_blocks(summary, sname, check_active=False): orphan_count += Counter(summary[sname]['Blocks']['Orphan Blocks']['Types']) return dict(blocks_count), dict(orphan_count) """ Given blocks dict, save to CSV """ def save_blocks_to_csv(blocks_dict, new_fname_path): writer = csv.writer(open("{}.csv".format(new_fname_path), 'wb')) for key, value in blocks_dict.items(): writer.writerow([key, value]) return True """"""""""""""" Helper Functions """"""""""""""" """ Given project summary(dict) and screen name(str) and designation of active (default) or orphan blocks, return boolean to determine if screen has those blocks """ def has_blocks(summary, screen_name, check_active=True): block_name = 'Active Blocks' if check_active else 'Orphan Blocks' return type(summary[screen_name]['Blocks']) == dict and type(summary[screen_name]['Blocks'][block_name]) == dict """ Get all types of blocks """ """ get count of all blocks of projects (up to upper_bound # of projects) by users with at least n (threshold) projects """ def get_all_blocks(threshold=0, upper_bound=THRESHOLD, have_upper_bound=True): counter_active = Counter({}) counter_orphan = Counter({}) for user_id in get_users(threshold): project_ids = get_all_projects(user_id) if have_upper_bound: project_ids = project_ids[:upper_bound] # only select first n projects as defined by upper_bound for project_id in project_ids: # print "{}, {}".format(user_id, project_id) active, orphan = get_blocks(get_summary(user_id, project_id)) counter_active += Counter(active) counter_orphan += Counter(orphan) return dict(counter_active), dict(counter_orphan) """ get count of all blocks by users with at least n (threshold) projects return tuple of dictionaries (active, orphan blocks) key: block type, value; block frequnecy """ def get_blocks_project_count(threshold=0): counter_active = Counter({}) counter_orphan = Counter({}) for user_id in get_users(threshold): project_ids = get_all_projects(user_id) if threshold > 0: project_ids = project_ids[:threshold] #analyze first n projects only for project_id in project_ids: # print "{}, {}".format(user_id, project_id) active, orphan = get_blocks(get_summary(user_id, project_id)) active = {val:1 for val in active} #1 per project orphan = {val:1 for val in orphan} counter_active += Counter(active) counter_orphan += Counter(orphan) return dict(counter_active), dict(counter_orphan) """ get list of all block types """ def get_all_block_types(active_blocks, orphan_blocks): return list(set(active_blocks.keys() + orphan_blocks.keys())) """ load pickled block types """ def load_block_types(fname): block_types = open(fname, 'rb') output = pickle.load(block_types) block_types.close() return output """ save pickled block types """ def save_block_types(block_types_list, fname): block_types = open(fname, 'wb') pickle.dump(block_types_list, block_types) block_types.close() """ Calculating trajectory matrix (CWUBC) """ # order of this is important block_types_fname = 'jeff_types.pkl' BLOCK_TYPES = load_block_types(NB_DIR+block_types_fname) def get_all_trajectories(threshold=THRESHOLD): user_ids = get_users(threshold) user_traj_vectors = [] #list of user trajectory vectors for uid in user_ids: V_u = get_trajectory(uid) user_traj_vectors.append(V_u) return np.vstack(user_traj_vectors) # given a user_id, return trajectory as vector of # of blocks used at each project # BXX TODO: Add weighting def get_trajectory(user_id, threshold=THRESHOLD): P_b = get_binary_matrix(user_id, threshold) V_u = np.sum(P_b, axis=1) return V_u """ given user id, get CUMULATIVE binary matrix of users x blocks """ def get_binary_matrix(user_id, threshold=THRESHOLD): P_u = get_freq_matrix(user_id, threshold) # print P_u[:, BLOCK_TYPES.index('color_make_color')] P_c = np.cumsum(P_u, axis = 0) # print P_c[:, BLOCK_TYPES.index('color_make_color')] return P_c>0 """ given user id, get non-cumulative binary matrix of users x blocks """ def get_binary_matrix_non_cum(user_id, threshold=THRESHOLD): P_u = get_freq_matrix(user_id, threshold) # print P_u[:, BLOCK_TYPES.index('color_make_color')] P_u[P_u>0]=1 #binary matrix # print P_c[:, BLOCK_TYPES.index('color_make_color')] return P_u # given user_id, return matrix of frequency of blocks of each project # output: n x d matrix where n=# of projects (THRESHOLD), d = # of block types def get_freq_matrix(user_id, threshold=THRESHOLD): output = np.zeros((threshold, len(BLOCK_TYPES))) project_ids = get_all_projects(user_id)[:threshold] # getting first n projects from user for i in range(threshold): pid = project_ids[i] summary = get_summary(user_id, pid) blocks = get_blocks(summary)[0] for blk, count in blocks.items(): output[i, BLOCK_TYPES.index(blk)] = count return output #normalize traj_matrix by max (if by_max) or by sum def normalize_trajectory(traj_matrix, by_max=True): if by_max: user_norm = traj_matrix[:,-1] #final UBC for each user else: user_norm = traj_matrix.sum(axis=1) output = traj_matrix.astype(float) / user_norm[:, np.newaxis] return np.nan_to_num(output) #NaN from divide by zero error def difference_trajectory(traj_matrix): return np.diff(traj_matrix, axis=1) """ Calculating POPPS To get block type, from browser console: bs = Blocklies['5066549580791808_Screen1']; bs.selected.type """ #mapping programming skill to block types POPPS_MAP = { 'cond': [ 'controls_if', #conditional 'controls_choose' ], 'list': [ 'lists_create_with', #list 'lists_create_with', 'lists_add_items', 'lists_is_in', 'lists_length', 'lists_is_empty', 'lists_pick_random_item', 'lists_position_in', 'lists_select_item', 'lists_insert_item', 'lists_replace_item', 'lists_remove_item', 'lists_append_list', 'lists_copy', 'lists_is_list', 'lists_to_csv_row', 'lists_to_csv_table', 'lists_from_csv_row', 'lists_from_csv_table', 'lists_lookup_in_pairs' ], 'loop': [ 'controls_forEach', #loop 'controls_forRange', 'controls_while' ], 'logic': [ 'logic_negate', #operator 'logic_or', 'logic_boolean', 'logic_false', 'logic_operation', 'logic_compare' ], 'var': [ 'lexical_variable_set', 'lexical_variable_get', 'local_declaration_expression', 'local_declaration_statement'], #variable 'proc': [ 'procedures_defnoreturn', #procedure 'procedures_callreturn', 'procedures_defreturn', 'procedures_callnoreturn' ], 'proc_def': [ 'procedures_defnoreturn', #procedure 'procedures_defreturn', ], } # flat list of all CC blocks (formerly known as POPPS blocks) POPPS_ALL_BLOCKS = [] """ given binary matrix to show POPPS, return vector for average proportion of users who have not learned skill by project i """ def get_average_survival(popps_matrix): return np.average(popps_matrix, axis=0) """ given specific programming skill (string) from POPPS_MAP.keys(), optional list of user ids (select_users), and optional threshold for min number of projects users must have return binary matrix to show POPPS (row: user, column: 1 if used skill by that project) """ def get_popps_all_users(prog_skill, select_users=[], threshold=THRESHOLD, block_types=BLOCK_TYPES): user_ids = get_users(threshold) if len(select_users)==0 else select_users user_popps_vectors = [] #list of user trajectory vectors for uid in user_ids: P_b = get_specific_popps_binary(uid, prog_skill, threshold, block_types) user_popps_vectors.append(P_b) return np.vstack(user_popps_vectors) """ given user id (string), specific programming skill (string) from POPPS_MAP.keys(), optional thershold for number of projects to analyze, and optional block types matrix (block_types_matrix), return binary matrix for all POPPS that is 1 if user has skill by project i """ def get_specific_popps_binary(user_id, prog_skill, threshold=THRESHOLD, block_types= BLOCK_TYPES): if prog_skill not in POPPS_MAP: raise Exception("{} not in POPPS_MAP. Select from {}".format(prog_skill, POPPS_MAP.keys())) popps_binary = np.zeros([1, threshold]) popps_binary[:] = 1 P_b = get_binary_matrix(user_id, threshold) block_inds = get_block_indices(POPPS_MAP[prog_skill], block_types) found_proj_ind = np.argwhere(P_b[:,block_inds]==True) #locations in P_b that show block in project if len(found_proj_ind): #get first project that contains a block pertaining to prog_skill first_proj_ind = np.min(np.argwhere(P_b[:,block_inds]==True)[:,0]) popps_binary[0, first_proj_ind:] = 0 return popps_binary """ given user id (int as string), optional thershold for number of projects to analyze, and optional block types matrix (block_types_matrix), return binary matrix for all POPPS that is 1 if user has skill by project i """ def get_all_popps_binary(user_id, threshold=THRESHOLD, block_types= BLOCK_TYPES): num_popps = len(POPPS_MAP) popps_binary = np.zeros([num_popps, threshold]) popps_binary[:,:] = 1 for i in range(num_popps): prog_skill = POPPS_MAP.keys()[i] if prog_skill not in POPPS_MAP: raise Exception("{} not in POPPS_MAP. Select from {}".format(prog_skill, POPPS_MAP.keys())) P_b = get_binary_matrix(user_id, threshold) block_inds = get_block_indices(POPPS_MAP[prog_skill], block_types) found_proj_ind = np.argwhere(P_b[:,block_inds]==True) #locations in P_b that show block in project if len(found_proj_ind): #get first project that contains a block pertaining to prog_skill first_proj_ind = np.min(np.argwhere(P_b[:,block_inds]==True)[:,0]) popps_binary[i, first_proj_ind:] = 0 return popps_binary """ HELPER FUNCTIONS """ """ Given list of block types to identify (selected_blocks) and optional blocks types matrix (block_types) return list of indices in matrix for given types """ def get_block_indices(selected_blocks, block_types = BLOCK_TYPES): indices = [] for blk_type in selected_blocks: indices.append(block_types.index(unicode(blk_type))) return list(set(indices)) for key in POPPS_MAP.keys(): POPPS_ALL_BLOCKS += POPPS_MAP[key] POPPS_ALL_BLOCKS_INDS = get_block_indices(POPPS_ALL_BLOCKS) OTHER_BLOCKS_INDS = list(set(range(0,len(BLOCK_TYPES))) - set(POPPS_ALL_BLOCKS_INDS)) #ensure disjoint sets len(BLOCK_TYPES) == len(POPPS_ALL_BLOCKS_INDS) + len(OTHER_BLOCKS_INDS) """ isolating CC blocks """ """ given user_id, return 1D array (vector) of cumulative trajectory of # of block types in each project """ def get_cc_trajectory(user_id, filter_blocks=True, block_inds=POPPS_ALL_BLOCKS_INDS): mat_f = get_binary_matrix(user_id) if filter_blocks: mat_f = mat_f[: , block_inds] #select only relevant blocks mat_f = np.sum(mat_f, axis=1) return mat_f def get_all_cc_trajectories(block_inds=POPPS_ALL_BLOCKS_INDS, threshold=THRESHOLD): user_ids = get_users(threshold) user_traj_vectors = [] #list of user trajectory vectors for uid in user_ids: V_u = get_cc_trajectory(uid, block_inds=block_inds) user_traj_vectors.append(V_u) return np.vstack(user_traj_vectors) """ UNUSED """ """ CC block count in each project """ def get_cc_trajectory_repeats(user_id, block_inds=POPPS_ALL_BLOCKS_INDS, threshold=THRESHOLD): mat_f = get_freq_matrix(user_id) mat_f[mat_f>0] = 1 #binary matrix mat_f = mat_f[: , block_inds] #select only relevant blocks mat_f = np.cumsum(mat_f, axis=0) mat_f = np.sum(mat_f, axis=1) return mat_f ###Output _____no_output_____ ###Markdown Sophistication of ProjectsLearning rate of users decreases with time => breadth learning decreases. Is there an emphasis on depth learning? Or does learning stagnate? ###Code """ given a user id, count_types: True to count block types, false to count frequency optionally list of block indices to select return the vector representing number of block types used in each block (not cumulative) """ def get_counts_by_project(user_id, count_types=False, filter_blocks=False, block_inds=POPPS_ALL_BLOCKS_INDS): if count_types: mat_f = get_binary_matrix_non_cum(user_id) else: mat_f = get_freq_matrix(user_id) if filter_blocks: mat_f = mat_f[: , block_inds] #select only relevant blocks return np.sum(mat_f, axis = 1) def get_all_avg_counts_by_project(threshold=THRESHOLD, count_types=False, filter_blocks=False, block_inds=POPPS_ALL_BLOCKS_INDS): uids = get_users(threshold) count_vectors = [] for user_id in uids: count_vec = get_counts_by_project(user_id, count_types=False, filter_blocks=filter_blocks, block_inds=block_inds) count_vectors.append(count_vec) return np.expand_dims(np.average(count_vectors, axis=0), axis=1) # sandbox counts = get_all_avg_counts_by_project(filter_blocks=True, block_inds=OTHER_BLOCKS_INDS) counts_cc = get_all_avg_counts_by_project(filter_blocks=True) # print counts_cc # print counts plt.plot(counts) plt.plot(counts_cc) # plot_trajectory(counts_list, title="Average Cumulative Sum of Block Types", # ylabel="Cum. Number of Block Types", # legend = ['Comp. Concepts Blocks', 'Non-CC Blocks'], legend_loc=2, percent=False) print counts_cc print counts_cc.shape x = np.expand_dims(counts_cc, axis=1) def plot_counts_by_project(counts_list, title="Frequency of Blocks by Project", ylabel="Number of Blocks", legend = ['Comp. Concepts Blocks', 'Non-CC Blocks'], legend_loc=2, percent=False): # fig = plt.figure(figsize=(11.3,7)) fig = plt.figure(figsize=(11.3,5)) ax = fig.add_subplot(1,1,1) plt.xlabel('Project Number', fontsize=20, color='black') plt.ylabel(ylabel, fontsize=20, color='black') plt.title(title, fontsize=24, color='black') my_legend = legend for i in range(len(counts_list)): t_mat = counts_list[i] if percent: t_mat = t_mat * 100 #for percent if i==1: plt.plot(t_mat, linewidth=5, linestyle='dashed') else: plt.plot(t_mat, linewidth=5) plt.legend(my_legend, loc=legend_loc, fontsize=16) if percent: fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' yticks = mtick.FormatStrFormatter(fmt) ax.yaxis.set_major_formatter(yticks) return fig, ax counts_list = [counts_cc, counts] plot_counts_by_project(counts_list) np.array([0.0]) + counts_cc """ get all block types shouldn't need to run if have saved pickled block types (blocks_type_fname) """ # active, orphan = get_all_blocks(0) # all_types = get_all_block_types(active, orphan)# flat list of all CC blocks (formerly known as POPPS blocks) all_cc_blocks = [] for key in POPPS_MAP.keys(): all_cc_blocks += POPPS_MAP[key] cc_block_inds = get_block_indices(all_cc_blocks) len(BLOCK_TYPES) # save block types # save_blocks_to_csv(active, NB_DIR + "jeff_0_active") # save_blocks_to_csv(orphan, NB_DIR + "jeff_0_orphan") # save_block_types(all_types, NB_DIR + "jeff_types.pkl") # print 'all saved!' #get trajectories T_all = get_all_trajectories() #NB: associating blocks and block types now less trivial T_all_cc = get_all_cc_trajectories(block_inds=POPPS_ALL_BLOCKS_INDS) T_all_not = get_all_cc_trajectories(block_inds=OTHER_BLOCKS_INDS) # save_block_types(T_all, 'traj.pkl') print 'done' # np.shape(np.average(T_all, axis=0)) ###Output done ###Markdown Block Frequency Analysis ###Code #blocks counts #THIS TAKES TIME active_total, orphan_total = get_all_blocks(threshold=20) # total # of blocks used in all projects active_proj, orphan_proj = get_blocks_project_count(threshold=20) # num of projects to have specific block. len(active_total) c = Counter(active_proj) # filter(lambda k: k in all_cc_blocks, active.keys()) cc_dict = {k: active_proj[k] for k in all_cc_blocks} cc_count = Counter(cc_dict) # print cc_count.most_common(10) # print cc_count_sorted = cc_count.most_common() cc_count_sorted btypes = [] counts = [] for key, count in cc_count_sorted: btypes.append(key) counts.append(count) counts_reversed = counts[::-1] btypes_reversed = btypes[::-1] for key, count in cc_count_sorted: print "{}\t{}".format(key, float(count)) # print "{}\t{}".format(key, float(count)/sum(counts)*100) print len(counts) index = np.arange(len(counts)) yticks = ["{}. {}".format(len(btypes_reversed)-i, btypes_reversed[i]) for i in range(len(btypes_reversed))] print yticks #Histogram of CC block frequency fig, ax = plt.subplots() rects1 = ax.barh(np.arange(0, len(counts))-0.4, counts_reversed) # rects1 = ax.bar(np.arange(0, len(counts))+0.5, counts, width=1) fig.set_size_inches(4.5,10) # plt.xticks(index, ['']+btypes, rotation='vertical', fontsize=16) plt.yticks(index, btypes_reversed, fontsize=14, color='black') # plt.yticks(index, yticks, fontsize=14, color='black') #adds number to ytick ax.set_ylabel('Block Type', fontsize=14, color='black') ax.set_xlabel('Number of Projects', fontsize=14, color='black') plt.tick_params(axis='x', which='major', labelsize=11, color='black') # plt.tick_params(axis='both', which='minor', labelsize=8) plt.title("Frequency of Computational Concept Blocks . \n", fontsize=18, color='black') plt.autoscale() plt.show() counts_reversed """ plotting """ linestyles = ['solid', 'dashed', 'dotted', 'dashdot'] """ Given list of trajectory matrices (list of ndarray) and text describing grouping methods return plot of average trajectory of each matrix in list """ def plot_cwubc_avg(traj_matrix_list, add_zero=True, grouped_by_text=""): plt.figure(figsize=(11.3,7)) plt.xlabel('Project Number', fontsize=20, color='black') plt.ylabel('Cum. Number of Block Types', fontsize=20, color='black') plt.title("Average Cumulative Sum of Block Types \n for Users Clustered By {}".format(grouped_by_text), fontsize=24) my_legend = [] for i in range(len(traj_matrix_list)): t_mat = traj_matrix_list[i] num_users = np.shape(t_mat)[0] if add_zero: t_mat = np.insert(t_mat, 0, 0, axis=1) #0 added in beginning for plot T_avg = np.average(t_mat, axis=0) #avg of each column/at each project plt.plot(T_avg, linewidth=5, linestyle = linestyles[i % len(linestyles)]) my_legend.append("Cluster {} ({} users)".format(i, num_users)) plt.legend(my_legend, loc=2, fontsize=16) """ Given trajectory matrix (ndarray), plot trajectory of all users (rows) separately """ def plot_cwubc_all_users(traj_matrix, add_zero=True): plt.figure(figsize=(12,8)) num_users = np.shape(traj_matrix)[0] if add_zero: T_all_plot = np.insert(traj_matrix, 0, 0, axis=1) #0 added in beginning for plot else: T_all_plot = traj_matrix # plt.plot(T_all_mean, linestyle='dotted', linewidth=5) plt.xlabel('Project Number') plt.ylabel('Number of Unique Blocks') plt.title("Cummulative Number of Blocks Used by AI User") for i in range(T_all_plot.shape[0]): plt.plot(T_all_plot[i,:]) #TODO: figuer out return """ HELPER FUNCTIONS """ """ Given number of groups, return list of human-readable strings to be element of POPPS plot that splits 100% into num_groups groups ex: num_groups = 4 => ['<25%','25-50%','50-75%','>75%'] """ def create_legend(num_groups): vals = range(0,101,100/num_groups) output = [] output.append("<{}%".format(vals[1])) for i in range(1,len(vals)-2): output.append("{}-{}%".format(vals[i], vals[i+1])) output.append(">{}%".format(vals[-2])) return output # given 1D numpy array, return same array w/ 0.0 # added to first term def add_zero(vector): return np.insert(0.0, 1, vector) """ Grouping Users by final CWUBC (AKA dumb clustering) """ """ given CWUBC trajectory matrix (traj_matrix, ndarray) and number of desired groups (n, as int), split traj_matrix according to final CWUBC. return list of n matrices representing traj_matrix split n ways and list of lists of indices in matrix that correspond to each split """ def split_by_end_cwubc(traj_matrix, n): end_cwubc = traj_matrix[:,-1] thresholds = np.percentile(traj_matrix[:,-1], range(0,101,100/n)) #get thresholds for spliting n ways # indices = [] output = [] indices = [] for i in range(len(thresholds)-1): # indices.append(np.argwhere(np.all([end_cwubc>=thresholds[i], end_cwubc<thresholds[i+1]], axis=0))) inds = np.argwhere(np.all([end_cwubc>=thresholds[i], end_cwubc<thresholds[i+1]], axis=0)).flatten() indices.append(inds) output.append(traj_matrix[inds]) return output, indices ### DEPRECATED ### #Splitting users by CWUBC and comparing POPPS """ given list of lists of indicies (list of int), list of skills (strings corresponding to POPPS_MAP.keys()), plot POPPS survival curve """ def plot_popps(grouped_inds, grouped_by_text="<something>", skills=POPPS_MAP.keys()): for skill in skills: user_ids = [] popps = [] all_user_ids = np.array(get_users(THRESHOLD).keys()) legend = [] for i in range(len(grouped_inds)): indices = grouped_inds[i] temp_uids = all_user_ids[indices] user_ids.append(temp_uids) p = get_popps_all_users(skill, temp_uids) p_avg = get_average_survival(p) p_avg = np.insert(p_avg, 0, 1.0) popps.append(p_avg) legend.append("{} ({} users)".format(i, len(temp_uids))) plt.figure(figsize=(12,8)) plt.title("Surirval Curve of Users Grouped by {}: {}".format(grouped_by_text.title(), skill.title())) plt.xlabel("Project") plt.ylabel("Proportion of Users Who Have Never Used {}".format(skill.title())) for p_avg in popps: plt.plot(p_avg, linewidth=5) plt.legend(legend) # n = 3 # mats, inds = split_by_end_cwubc(T_all, n) # for skill in POPPS_MAP.keys(): # user_ids = [] # popps = [] # all_user_ids = np.array(get_users(THRESHOLD).keys()) # for i in range(len(inds)): # indices = inds[i] # temp_uids = all_user_ids[indices] # user_ids.append(temp_uids) # p = get_popps_all_users(skill, temp_uids) # p_avg = get_average_survival(p) # p_avg = np.insert(p_avg, 0, 1.0) # popps.append(p_avg) # plt.figure(figsize=(12,8)) # plt.title("Surirval Curve of Users Grouped by CWUBC: {}".format(skill.title())) # plt.xlabel("Project") # plt.ylabel("Proportion of Users Who Have Never Used Concept") # for p_avg in popps: # plt.plot(p_avg, linewidth=5) # plt.legend(create_legend(n)) # plot_cwubc_avg(mats) # plot_cwubc_all_users(mats[3]) ###Output _____no_output_____ ###Markdown Trajectory Comparison: All Blocks vs Comp. ConceptsTODO:- function to plot these (input: trajectory list, title, ylabel, legend)- see if learning rate is exponential decay [See SO Answer](http://stackoverflow.com/questions/3938042/fitting-exponential-decay-with-no-initial-guessing) ###Code # plot_trajectory(traj_mat_list, title="", ylabel="", percent=False, legend_loc=2) def plot_trajectory(traj_mat_list, title="Average Cumulative Sum of Block Types", ylabel="Cum. Number of\nBlock Types", legend = ['Comp. Concepts Blocks', 'Non-CC Blocks'], legend_loc=2, percent=False): # fig = plt.figure(figsize=(11.3,7)) fig = plt.figure(figsize=(11.3,5)) ax = fig.add_subplot(1,1,1) plt.xlabel('Project Number', fontsize=20, color='black') plt.ylabel(ylabel, fontsize=20, color='black') plt.title(title, fontsize=24, color='black') my_legend = legend for i in range(len(traj_mat_list)): t_mat = traj_mat_list[i] if percent: t_mat = t_mat * 100 #for percent num_users = np.shape(t_mat)[0] t_mat = np.insert(t_mat, 0, 0, axis=1) #0 added in beginning for plot T_avg = np.average(t_mat, axis=0) #avg of each column/at each project if i==1: plt.plot(T_avg, linewidth=5, linestyle='dashed') else: plt.plot(T_avg, linewidth=5) my_legend.append("{} ({} users)".format(i, num_users)) plt.legend(my_legend, loc=legend_loc, fontsize=16) if percent: fmt = '%.0f%%' # Format you want the ticks, e.g. '40%' yticks = mtick.FormatStrFormatter(fmt) ax.yaxis.set_major_formatter(yticks) return fig, ax """ Plotting UBC of all blocks vs CT blocks """ mats, inds = split_by_end_cwubc(T_all, 1) mats_not, inds_not = split_by_end_cwubc(T_all_not, 1) mats_cc, inds_cc = split_by_end_cwubc(T_all_cc, 1) both_mats = [mats_cc[0], mats_not[0]] #Avg Block Count plot_trajectory(both_mats) #Normalized Learning Rate mats_delta = [ normalize_trajectory(difference_trajectory(mats_cc[0]), by_max=False), normalize_trajectory(difference_trajectory(mats_not[0]), by_max=False) ] plot_trajectory(mats_delta, title="Normalized Average Learning Rate", ylabel="% of Block Types\nIntroduced", percent=True, legend_loc=1) #Normalized Block Count mats_norm = [normalize_trajectory(mats_cc[0]), normalize_trajectory(mats_not[0])] # both_mats_norm = [normalize_trajectory(mats_cc[0])] plot_trajectory(mats_norm, title="Normalized Avg. Cum. Sum of Block Types", ylabel="% of Cum. Number\nof Block Types", percent=True, legend_loc=2) """ Clustering """ """ given trajectory matrix (n x d where d is num of projects) and optional number of clusters, return list of trajectory matrices for each cluster of users """ def k_means(traj_matrix, num_clusters = 3): estimator = KMeans(n_clusters=num_clusters) estimator.fit(traj_matrix) predict = estimator.predict(traj_matrix) cluster_ind = [] #list of lists of ind in given cluster T_cluster = [] for i in range(num_clusters): cluster_ind.append(np.argwhere(predict==i).flatten()) T_cluster.append(traj_matrix[cluster_ind[i]]) print "{} has {} users".format(i, len(cluster_ind[i])) return T_cluster, cluster_ind T_cluster = k_means(T_all, 3)[0] print delta = np.diff(T_all, axis=1) T_diff_ind = k_means(delta, 3)[1] T_diff = [] T_diff_not = [] T_diff_cc = [] for i in range(3): T_diff.append(T_all[T_diff_ind[i]]) T_diff_not.append(T_all_not[T_diff_ind[i]]) T_diff_cc.append(T_all_cc[T_diff_ind[i]]) T_diff[2] # T_diff_ind[2] x = get_users(20) x mats, inds = split_by_end_cwubc(T_all, 3) # plot_cwubc_avg(mats, 'end block count') # plot_cwubc_avg(T_cluster, 'kmeans clustering') plot_cwubc_avg(T_diff, grouped_by_text='Learning Rate') traj_mat_list_not = T_diff_not traj_mat_list_cc = T_diff_cc for i in range(len(traj_mat_list_not)): traj_both = [normalize_trajectory(traj_mat_list_cc[i]), normalize_trajectory(traj_mat_list_not[i])] plot_trajectory(traj_both, title="Avg Distinct Block Count (Normalized), Cluster {}".format(i), ylabel="% of Cum. Number of Unique Blocks", percent=True, legend_loc=4) ###Output _____no_output_____ ###Markdown Grouping based on slope of trajectory, K-MeansSmallest Cluster (~10 users) has sharp spike in UBC from 1st to 2nd project but sample too small to determine if relevant. ###Code # grouped_inds = k_means(T_all, 3)[1] g_text = "KMeans diff" delta = np.diff(T_all, axis=1) grouped_inds = k_means(delta, 3)[1] T_diff = [] for i in range(3): T_diff.append(T_all[grouped_inds[i]]) plot_cwubc_avg(T_diff, g_text) # plot_popps(grouped_inds, grouped_by_text=g_text) ###Output _____no_output_____ ###Markdown Attempting Fixed Effect Modelsx: UBCy: of projects using procedures ( of procedures ###Code """ getting ind where project uses procedures """ """ given user_id (string) and prog_skill (string that is in POPPS_MAP.keys()), return vector of length threshold that is 1 if prog_skill is used in that project, 0 else """ # def get_specific_popps_location(user_id, prog_skill, threshold=THRESHOLD, block_types= BLOCK_TYPES): # if prog_skill not in POPPS_MAP: # raise Exception("{} not in POPPS_MAP. Select from {}".format(prog_skill, POPPS_MAP.keys())) # popps_count = np.zeros(threshold) # P_f = get_freq_matrix(user_id, threshold) # block_inds = get_block_indices(POPPS_MAP[prog_skill], block_types) # found_proj_ind = np.unique(np.argwhere(P_f[:,block_inds]>0)[:,0]) #project inds in P_f that have prog skill in project # if len(found_proj_ind): # popps_count[found_proj_ind] = 1 # return popps_count """ given user_id (string) and prog_skill (string that is in POPPS_MAP.keys()), optional binary (boolean) that returns binary/boolean vector instead of true counts if true, return vector of length threshold that shows number of blocks related to prog_skill used in project """ def get_specific_popps_counts(user_id, prog_skill, binary=False, threshold=THRESHOLD, block_types= BLOCK_TYPES): if prog_skill not in POPPS_MAP: raise Exception("{} not in POPPS_MAP. Select from {}".format(prog_skill, POPPS_MAP.keys())) popps_count = np.zeros(threshold) P_f = get_freq_matrix(user_id, threshold) block_inds = get_block_indices(POPPS_MAP[prog_skill], block_types) blk_count = P_f[:,block_inds][:,0] #num of prog skill blocks in each project # print blk_count if binary: return blk_count>0 return blk_count uid = '000317' proj_inds = get_specific_popps_counts(uid, 'proc') # num_proj = np.nonzero(proj_inds>0)[0].shape[0] # num_proj np.sum(proj_inds) #getting UBC and # of projects w/ procedure for each user #end UBC ubc = T_all[:,-1] # print ubc is_binary = True data = np.zeros([len(ubc), 2]) data[:,0] = ubc # print user_ids user_ids = get_users(20) for i in range(len(user_ids)): uid = user_ids.keys()[i] proj_inds = get_specific_popps_counts(uid, 'proc', binary=is_binary) if is_binary: count = np.nonzero(proj_inds>0)[0].shape[0] else: count = np.sum(proj_inds) data[i,1] = count x = data[:,0] y = data[:,1] fit = np.polyfit(x,y,1) p = np.poly1d(fit) xp = np.linspace(0,200,1000) _ = plt.plot(x, y, '.', xp, p(xp), '-') # plt.scatter(x, y) # calculating correlation np.corrcoef(x,y)[0,1] pf = get_freq_matrix('000317', 20) block_inds = get_block_indices(POPPS_MAP['proc'], BLOCK_TYPES) found_proj_ind = np.argwhere(pf[:,block_inds]>0) #locations in P_b that show block in project found_proj_ind len(np.unique(found_proj_ind[:,0])) x=np.zeros(10) x[[2,4,6]]=2 x pf[:,block_inds] ###Output _____no_output_____ ###Markdown The wikis concerned reinforces the idea that these are imported revision. I know dewiki has a policy of importing pages from other wikis before translating them, and it looks like [enwikibooks](https://en.wikibooks.org/wiki/Wikibooks:Requests_for_import) and [simplewiki](https://simple.wikipedia.org/wiki/Wikipedia:Importers) do as well. ###Code emn_only.groupby("emn_wiki")["emn_wiki"].count().sort_values(ascending=False).head(20) ###Output _____no_output_____ ###Markdown Looking at 10 random rows, all ten represent imported revisions. ###Code emn_only.sample(10, random_state=18300941).iloc[:, 8:].reset_index(drop=True) # Filter with a datetime object because there's a "0001-11-30" month which causes all sorts of weirdness year_2001 = pd.to_datetime("2001") emo_only.groupby("emo_month")["emo_wiki"].count()[year_2001:].plot(); emo_only.groupby("emo_wiki")["emo_wiki"].count().sort_values(ascending=False).head(20) ###Output _____no_output_____ ###Markdown Looking at 10 random rows, all ten represent revisions where the user name was [revision deleted](https://www.mediawiki.org/wiki/Manual:RevisionDelete). ###Code emo_only.sample(10, random_state=18300941).iloc[:, :8].reset_index(drop=True) ###Output _____no_output_____ ###Markdown Taken together, these had only a minimal impact on the discrepancy. ###Code ae_matched_sql = """ select month, count(*) as active_editors from ( select cast({table_abbrev}.month as date) as month, {table_abbrev}.user_name, sum({table_abbrev}.content_edits) as content_edits, max({table_abbrev}.bot_flag) as bot_flag from neilpquinn.{table} {table_abbrev} inner join neilpquinn.{other_table} {other_table_abbrev} on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where {table_abbrev}.local_user_id != 0 group by {table_abbrev}.month, {table_abbrev}.user_name ) global_edits where content_edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_matched_sql = ae_matched_sql.format( table="editor_month_official", table_abbrev="emo", other_table="editor_month_new", other_table_abbrev="emn" ) emn_ae_matched_sql = ae_matched_sql.format( table="editor_month_new", table_abbrev="emn", other_table="editor_month_official", other_table_abbrev="emo" ) emo_ae_matched = hive.run(emo_ae_matched_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") emn_ae_matched = hive.run(emn_ae_matched_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") (emn_ae_matched - emo_ae_matched)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown Content edit counts So now let's look at the rows that exist in both datasets. Since this is a much bigger group, we'll only look at the past two year of data. ###Code matched_rows = hive.run([ "set hive.resultset.use.unique.column.names=true", """ select * from neilpquinn.editor_month_official emo inner join neilpquinn.editor_month_new emn on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where emo.month >= "2017-02-01" and emn.month >= "2017-02-01" """ ]).rename(columns=lambda x: x.replace(".", "_")) ###Output _____no_output_____ ###Markdown 12% have different numbers of content edits! ###Code rows = len(matched_rows) len(matched_rows.query("emo_content_edits != emn_content_edits")) / rows ###Output _____no_output_____ ###Markdown Of those rows with differing numbers of content edits, `editor_month_official` shows more 96% of the time and `editor_month_new` more only 4% of the time. ###Code differing_content_edit_rows = len(matched_rows.query("emo_content_edits != emn_content_edits")) len(matched_rows.query("emo_content_edits > emn_content_edits")) / differing_content_edit_rows ###Output _____no_output_____ ###Markdown Oof. There seem to be at least four different problems at work:Deleted pages where all the revisions have null `page_namespace_historical`, `page_namespace_is_content` and `page_namespace_is_content_historical`:* nlwiki page 5160672* commonswiki page 71797356* wikidatawiki page 9637937* arwiki page 4970274* commonswiki page 73916373* ruwiki page 7054391Revisions with null `page_namespace_historical` and `page_namespace_is_content_historical`. Most but not all of the revisions to the pages concerned are affected. * https://en.wikipedia.org/w/index.php?diff=67017781 (page 28408157)* https://www.wikidata.org/w/index.php?diff=155712677 (page 21524228)* https://pt.wikipedia.org/w/index.php?diff=1691356 (page 96328)* https://en.wikipedia.org/w/index.php?diff=820879007 (page 56326900)Revisions where the join to the page table seems to have failed entirely, because where almost all revisions have null `page_title`, `page_namespace`, and `page_namespace_is_content` (including historical fields) and `page_creation_timestamp`. Most but not all of the revisions to the pages concerned are affected.* https://en.wikipedia.org/w/index.php?diff=859361756 (page 40012938)* https://pt.wikipedia.org/w/index.php?diff=2692528 (page 3177643)* https://en.wikipedia.org/w/index.php?diff=269025183 (page 29397754)* https://en.wikipedia.org/w/index.php?diff=347411263 (page 30865452)Revisions with null page data (as above) because the referenced pages simply don't exist in the underlying page table. These may be botched deletions.* https://ru.wikipedia.org/w/index.php?diff=78824747* https://da.wikipedia.org/w/index.php?diff=1751290* https://nl.wikipedia.org/w/index.php?diff=1363616* https://en.wikipedia.org/w/index.php?diff=17967486 ###Code matched_rows.query("emo_content_edits > emn_content_edits").sample(10)[ ["emo_month", "emo_wiki", "emo_local_user_id", "emo_user_name", "emo_content_edits", "emn_content_edits"] ] ###Output _____no_output_____ ###Markdown In the less common case where `editor_month_new` shows more edits, the reasons seem to be:* content namespaces not included in the list for `editor_month_official`: the Page namespace (104) and Index namespace (106) on enwikisource, the Author namespace (102) and Page namespace (104) on dewikisource, the Page namespace on guwikisource (122), the List namespace of ltwiki (104)* edits to pages later moved out of content namespaces (e.g. from the main namespace to the user namespace)* a history merge that moved edits in the Draft namespace to the main namespace (e.g. with the page https://en.wikipedia.org/w/index.php?title=Wyatt_Omsberg&action=history) ###Code matched_rows.query("emn_content_edits > emo_content_edits").sample(10)[ ["emo_month", "emo_wiki", "emo_local_user_id", "emo_user_name", "emo_content_edits", "emn_content_edits"] ] ###Output _____no_output_____ ###Markdown This, finally, makes an big impact on the discrepancy: at its largest, it goes from about -19 000 to about -1 200, and in the past year, it goes from about -4 000 to about +50. ###Code ae_all_ns_sql = """ select month, count(*) as active_editors from ( select cast({table_abbrev}.month as date) as month, {table_abbrev}.user_name, sum({table_abbrev}.edits) as edits, max({table_abbrev}.bot_flag) as bot_flag from neilpquinn.{table} {table_abbrev} inner join neilpquinn.{other_table} {other_table_abbrev} on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where {table_abbrev}.local_user_id != 0 group by {table_abbrev}.month, {table_abbrev}.user_name ) global_edits where edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_all_ns_sql = ae_all_ns_sql.format( table="editor_month_official", table_abbrev="emo", other_table="editor_month_new", other_table_abbrev="emn" ) emn_ae_all_ns_sql = ae_all_ns_sql.format( table="editor_month_new", table_abbrev="emn", other_table="editor_month_official", other_table_abbrev="emo" ) emo_ae_all_ns = hive.run(emo_ae_all_ns_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") emn_ae_all_ns = hive.run(emn_ae_all_ns_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") (emn_ae_all_ns - emo_ae_all_ns)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown Overall edit counts Only about 0.1% of rows differ in their overall edit count. ###Code differing_edits = matched_rows.query("emo_edits != emn_edits") len(differing_edits) / rows ###Output _____no_output_____ ###Markdown About 63% of these rows show more edits in `editor_month_new`. ###Code len(differing_edits.query("emn_edits > emo_edits")) / len(differing_edits) ###Output _____no_output_____ ###Markdown The extra edits in `editor_month_new` all seem to be due to imported revisions: for example, where a user was credited with imported revisions *in addition* to making regular revisions during that month, or had some revisions imported before the row in `editor_month_official` was generated, and others imported between that time and now. ###Code differing_edits.query( "emn_edits > emo_edits" ).groupby("emo_wiki")["emo_wiki"].count().sort_values(ascending=False).head(20) differing_edits.query( "(emn_edits > emo_edits) & (emo_wiki == 'commonswiki')" ).sample(10)[ ["emo_month", "emo_wiki", "emo_local_user_id", "emo_user_name", "emo_edits", "emn_edits"] ] ###Output _____no_output_____ ###Markdown The extra edits in `editor_month_official` all seem to be due to revision deletion. ###Code differing_edits.query( "emo_edits > emn_edits" ).groupby("emo_wiki")["emo_wiki"].count().sort_values(ascending=False).head(20) differing_edits.query( "(emo_edits > emn_edits) & (emo_local_user_id != 0)" ).sample(10)[ ["emo_month", "emo_wiki", "emo_local_user_id", "emo_user_name", "emo_edits", "emn_edits"] ] ###Output _____no_output_____ ###Markdown This doesn't make a significant impact on the discrepancy; overall, while revision importing and deletion add an unfortunate instability to our metrics, the impact is not big enough for serious concern. ###Code ae_equal_edits_sql = """ select month, count(*) as active_editors from ( select cast({table_abbrev}.month as date) as month, {table_abbrev}.user_name, greatest(sum({table_abbrev}.edits), sum({other_table_abbrev}.edits)) as edits, max({table_abbrev}.bot_flag) as bot_flag from neilpquinn.{table} {table_abbrev} inner join neilpquinn.{other_table} {other_table_abbrev} on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where {table_abbrev}.local_user_id != 0 group by {table_abbrev}.month, {table_abbrev}.user_name ) global_edits where edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_equal_edits_sql = ae_equal_edits_sql.format( table="editor_month_official", table_abbrev="emo", other_table="editor_month_new", other_table_abbrev="emn" ) emn_ae_equal_edits_sql = ae_equal_edits_sql.format( table="editor_month_new", table_abbrev="emn", other_table="editor_month_official", other_table_abbrev="emo" ) emo_ae_equal_edits = hive.run(emo_ae_equal_edits_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") emn_ae_equal_edits = hive.run(emn_ae_equal_edits_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") (emn_ae_equal_edits - emo_ae_equal_edits)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown User names Let's look at differing user names, filtering out the rows representing anonymous editors because `editor_month_official` gives the user name as an empty string, where `editor_month_new` gives it as null. ###Code differing_names = matched_rows.query("emn_user_name != emo_user_name & emo_local_user_id !=0") pct_str(len(differing_names) / len(matched_rows)) ###Output _____no_output_____ ###Markdown These are all cases where the user was renamed after the `editor_month_official` row was generated. ###Code differing_names.sample(10)[ ["emo_wiki", "emo_month", "emo_user_name", "emn_user_name"] ] ###Output _____no_output_____ ###Markdown Rerunning the active editor numbers, grouping in both cases by the user name in `editor_month_new`, it has a significant effect on the discrepancy (although not as significant as the content edits issues). ###Code ae_new_names_sql = """ select month, count(*) as active_editors from ( select cast({table_abbrev}.month as date) as month, emn.user_name, greatest(sum({table_abbrev}.edits), sum({other_table_abbrev}.edits)) as edits, max({table_abbrev}.bot_flag) as bot_flag from neilpquinn.{table} {table_abbrev} inner join neilpquinn.{other_table} {other_table_abbrev} on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where {table_abbrev}.local_user_id != 0 group by {table_abbrev}.month, emn.user_name ) global_edits where edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_new_names_sql = ae_new_names_sql.format( table="editor_month_official", table_abbrev="emo", other_table="editor_month_new", other_table_abbrev="emn" ) emn_ae_new_names_sql = ae_new_names_sql.format( table="editor_month_new", table_abbrev="emn", other_table="editor_month_official", other_table_abbrev="emo" ) emo_ae_new_names = hive.run(emo_ae_new_names_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") emn_ae_new_names = hive.run(emn_ae_new_names_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") (emn_ae_new_names - emo_ae_new_names)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown Only the `editor_month_official` active editors number would have changed, since we were already grouping `editor_month_new` by its own `user_name` column. But it looks like very little of that change happened in the past two years (the range covered by the above `differing_names` dataset. ###Code (emo_ae_equal_edits - emo_ae_new_names)["2001":].plot() ###Output _____no_output_____ ###Markdown So let's get an older sample of differing-name rows and see what's going on. ###Code older_matched_rows = hive.run([ "set hive.resultset.use.unique.column.names=true", """ select * from neilpquinn.editor_month_official emo inner join neilpquinn.editor_month_new emn on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where emo.month >= "2005-01-01" and emo.month < "2007-01-01" """ ]).rename(columns=lambda x: x.replace(".", "_")) ###Output _____no_output_____ ###Markdown It looks like all of these are cases where `editor_month_new` has a null username, almost certainly cases of [T218463](https://phabricator.wikimedia.org/T218463). ###Code older_matched_rows.query("emo_user_name != emn_user_name")[ ["emo_wiki", "emo_month", "emo_user_name", "emn_user_name"] ].sample(20) ###Output _____no_output_____ ###Markdown Bot flag A very small number of rows differ in their categorization as bots. ###Code differing_bot_flags = matched_rows.query("emo_bot_flag != emn_bot_flag") len(differing_bot_flags) / len(matched_rows) ###Output _____no_output_____ ###Markdown This is because the `editor_month_official` considers a user a bot if they were *ever* in the "bot" group, whereas `editor_month_new` considers them a bot in a given month if they were in the group during the month or at the time `mediawiki_history` was generated.`editor_month_new` seems to have a better approach, producing the correct result in 17 out of the 20 cases below, mainly because many human users add themselves to the bot group temporarily (sometimes for just 30 minutes or less) for testing or to make a spate of edits without cluttering up the recent changes feed. Moreover, the 3 remaining cases, where real bots were not flagged as such in `editor_month_new`, would have been caught by the user name filter anyway. ###Code bot_flag_columns = [ "emo_wiki", "emo_month", "emo_user_name", "emo_bot_flag", "emn_user_name", "emn_bot_flag" ] differing_bot_flags.sample(20)[bot_flag_columns] ae_same_bots_sql = """ select month, count(*) as active_editors from ( select cast({table_abbrev}.month as date) as month, emn.user_name, greatest(sum({table_abbrev}.edits), sum({other_table_abbrev}.edits)) as edits, max(emn.bot_flag) as bot_flag from neilpquinn.{table} {table_abbrev} inner join neilpquinn.{other_table} {other_table_abbrev} on emo.month = emn.month and emo.wiki = emn.wiki and emo.local_user_id = emn.local_user_id where {table_abbrev}.local_user_id != 0 group by {table_abbrev}.month, emn.user_name ) global_edits where edits >= 5 and not bot_flag and user_name not regexp "bot\\b" group by month """ emo_ae_same_bots_sql = ae_same_bots_sql.format( table="editor_month_official", table_abbrev="emo", other_table="editor_month_new", other_table_abbrev="emn" ) emn_ae_same_bots_sql = ae_same_bots_sql.format( table="editor_month_new", table_abbrev="emn", other_table="editor_month_official", other_table_abbrev="emo" ) emo_ae_same_bots = hive.run(emo_ae_same_bots_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") emn_ae_same_bots = hive.run(emn_ae_same_bots_sql).assign(month=lambda df: pd.to_datetime(df["month"])).set_index("month") ###Output _____no_output_____ ###Markdown And with that, we seem to have taken care of the entire discrepancy! It's not terribly suprising, considering that I have now essentially picked a winner in every case where the two datasets differ, but it's still deeply refreshing after so much investigation 😁 ###Code (emn_ae_same_bots - emo_ae_same_bots)["2001":].plot( title="Deviation of 'new' active editors from 'official'" ); ###Output _____no_output_____ ###Markdown Mitigation Based on the findings above, I've regenerated `neilpquinn.editor_month`, working around as many of the issues as possible with [this SQL](https://github.com/wikimedia-research/Editing-movement-metrics/blob/1178702104d1cafd1c003759aa09d9dbd8728d0c/queries/update_editor_month.sql). ###Code mitigated_ae = ( hive.run(""" select month, count(*) as active_editors from ( select cast(month as date) as month, user_name, sum(content_edits) as content_edits, max(bot_by_group) as bot -- `bot_by_group` is misnamed and includes the user name regex from neilpquinn.editor_month where month < "2019-02-01" and user_id != 0 group by month, user_name ) global_edits where content_edits >= 5 and (not bot or user_name in ("Paucabot", "Niabot", "Marbot")) group by month """) .assign(month=lambda df: pd.to_datetime(df["month"])) .set_index("month") ) ###Output _____no_output_____ ###Markdown This seems to have worked really well! ###Code (mitigated_ae - official_ae).plot(title="Deviation of 'mitigated' active editors from 'official'"); ae_comparison = pd.concat([ new_ae.rename(columns=lambda x: "new (mediawiki_history)"), mitigated_ae.rename(columns=lambda x: "mitigated new (mediawiki_history)"), official_ae.rename(columns=lambda x: "old (replicas)") ], axis=1) plt = ae_comparison.plot() plt.set_title("Comparison of active editor calculations"); ###Output _____no_output_____ ###Markdown We first are going to introduce the DAML catalogue for clusters. The goal will be to create an algorithm which can find the cluster and then assign stars in the region to that cluster. A similar idea is employed in https://www.aanda.org/articles/aa/pdf/2002/27/aa2476.pdf ###Code from astroquery.vizier import Vizier #Vizier.ROW_LIMIT = -1 catalog_list=Vizier.find_catalogs('Dias+ 2002-2015') #This is the DAML globular cluster catalogue #The warnings need to be dealt with #An import of all their values catalogs = Vizier.get_catalogs(catalog_list.values()) ###Output WARNING: UnitsWarning: Unit 'Sun' not supported by the VOUnit standard. Did you mean uN? [astropy.units.format.vounit] WARNING: UnitsWarning: The unit 'ct' has been deprecated in the VOUnit standard. [astropy.units.format.utils] WARNING: UnitsWarning: The unit 'pix' has been deprecated in the VOUnit standard. [astropy.units.format.utils] ###Markdown Catalogs has load of different tables, the second one is the list of clusters ###Code cluster_list=catalogs[1] #only has 50 rows sorted_cluster_list=cluster_list[np.argsort(cluster_list['Dist'])] sorted_cluster_list ###Output _____no_output_____ ###Markdown There will be error on our measurements of the distance to our stars, reference Bailey Jones, so we want to order the clusters by the nearest ones We can look at the paper Dias for error on the distance measuremenet about the cluster, must be some error involved The closest ones of course will have the smallest error when relating to Bailer Jones parallax inversion,without doing anything rigarous we will take the closest star cluster and look at gaia data just by inverting the parallax to geta measurement. We will take a window of twice the diameter, and depth twice the diameter. ###Code #Taking the closest cluster closest_cluster=sorted_cluster_list[0] closest_cluster ###Output _____no_output_____ ###Markdown So we can see there is a diameter of 70.0 arcseconds, we will use a window of size 140.0 arcseconds.We have a distance measurement of 269pc. We need to get distance estimates of the Gaia Data in that region Next we are going to call in the GAIA data centered around the catalogued open cluster ###Code #Looking at the cone around the point right_as_center=closest_cluster['RAJ2000'] dec_center=closest_cluster['DEJ2000'] diam=closest_cluster['Diam'] #is the frame right coord = SkyCoord(right_as_center,dec_center, unit=(u.hourangle, u.deg)) rad = u.Quantity(diam, u.arcminute) r = Gaia.cone_search_async(coordinate=coord, radius=rad, verbose=True) gaia_edr3=r.get_results() #Print the table gaia_edr3 ###Output _____no_output_____ ###Markdown Right so we have loads of error stuff here and there is going to be a lot of management of that.Can we trust the distance estimates on this.Either way we need to figure out the depth of this. How many we are going to accept. Now we are going to do Bailer Jones data ###Code Vizier.ROW_LIMIT = -1 bailer = Vizier.query_region(coord, radius=rad, catalog='I/352/gedr3dis') bjones=bailer[0] bjones #see how many matches we have count=0 for i in range (0, len(gaia_edr3['source_id'])): if(gaia_edr3['source_id'][i] not in bjones['Source']): count+=1 count count + len(bjones['Source'])-len(gaia_edr3['source_id']) ###Output _____no_output_____ ###Markdown Okay this gives all of the data that has Bailer jones distance estimates ###Code bailer[0].columns gaia_edr3=gaia_edr3[gaia_edr3['parallax']>=-1000] #there is probably a better way of getting rid of the zero values but we shouldnt have that #Now im getting rid of the values with a nonzero parallax len(gaia_edr3)==len(bjones) #Great, so it works and now we have catalogues with the same values ###Output _____no_output_____ ###Markdown Now we need to add on the columns and merge them together, we order them by source code, that should maek it easier. ###Code gaia_edr3=gaia_edr3[np.argsort(gaia_edr3['source_id'])] bjones=bjones[np.argsort(bjones['Source'])] False in (gaia_edr3['source_id']==bjones['Source']) #these dataframes are weird but basically theyre the same #moreover i think i shoud have a pipline of changing these to more readable stuff lol ###Output _____no_output_____ ###Markdown I will of course tidy up my code more before this but we are just doing it now this way ###Code import pandas as pd gaia_edr3=gaia_edr3.to_pandas() bjones=bjones.to_pandas() #However information about the units has been lost entirely here #The next code is a bit of a ring around btu its going to give us what we want # We have ordered the dataframes by increasing source id so that we shoudl have right sources total_gaia = pd.concat([gaia_edr3,bjones], axis=1, join="inner") total_gaia #Now finally lets just make sure again thaat its all matching in the rows (total_gaia['source_id']==total_gaia['Source']).index[(total_gaia['source_id']==total_gaia['Source'])==False] #Right so this says it all matches up thats good ###Output _____no_output_____ ###Markdown Now we are going to do some of the selection criterionWe have already selected a radius twice the radius of the radius stated of the literature. We are going to make certain initial cuts:1) Parallax cut2) Magnitude cut3) Star cut ###Code print('The closest star cluster value is:', closest_cluster['Dist'], 'pc') ###Output The closest star cluster value is: 269 pc ###Markdown We want to choose sources that given any posterior estimate of their distances including error they are within the desired region. Note we havent used error in the right acention or anything weve calculated so far ###Code #Let us first plot the parallax vs error import matplotlib.pyplot as plt import matplotlib.gridspec as gs ax0=total_gaia['parallax_error'] ax1=total_gaia['parallax'] ax2=total_gaia['parallax_over_error'] fig=plt.figure(figsize=(15,6)) grid=gs.GridSpec(2,2) a1=plt.subplot(grid[0,0]) a2=plt.subplot(grid[0,1]) a3=plt.subplot(grid[1,0]) a1.hist(1.0/(ax2),density=True,bins=1000,range=[-1,5]) a1.set_title('Fractinoal parallax uncertainty') a2.hist(ax2,density=False,bins=1000,range=[-10,50]) a2.set_title('Histogram Plot Parallax/Parallax error') a3.scatter(ax1,ax0,s=0.5) a3.set_title('x:parallax vs error') plt.tight_layout() ###Output _____no_output_____ ###Markdown We want to now use the Bailer Jones paper to get:1) A parallax measurement correspondig to the cluster distance using the likelihood fucntion proposed in the paper2) Use the distance measurements according to him ###Code #The distance measurement to the cluster is closest_cluster['Dist'] closest_cluster_parallax_est=1.0/closest_cluster['Dist'] closest_cluster_parallax_est closest_cluster['Dist'] #This is probably too far away. The parallax is tiny #This is very far away, so what we are going to do is cut using the bailer jones upper_r_bound=closest_cluster['Dist']+closest_cluster['Diam'] lower_r_bound=closest_cluster['Dist']-closest_cluster['Diam'] selection_region=pd.Interval(left=float(lower_r_bound), right=float(upper_r_bound)) ###Output _____no_output_____ ###Markdown First we will get rid of stuff where the digameter values not contained in the percentile region. ###Code selection_gaia=total_gaia[(total_gaia['b_rgeo'] <= upper_r_bound)] selection_gaia=selection_gaia[(selection_gaia['B_rgeo'] <= upper_r_bound)] selection_gaia=selection_gaia[(selection_gaia['b_rgeo'] >= lower_r_bound)] selection_gaia=selection_gaia[(selection_gaia['B_rgeo'] >= lower_r_bound)] selection_gaia ###Output _____no_output_____ ###Markdown So now we have selected objects such that the BJ percentiles are contained within the region plus or minus twice the epected radius.Now let us plot and see what our parallax is like Plot for selected region ###Code ax0=selection_gaia['parallax_error'] ax1=selection_gaia['parallax'] ax2=selection_gaia['parallax_over_error'] fig=plt.figure(figsize=(15,6)) grid=gs.GridSpec(2,2) a1=plt.subplot(grid[0,0]) a2=plt.subplot(grid[0,1]) a3=plt.subplot(grid[1,0]) a4=plt.subplot(grid[1,1]) a1.hist(1.0/(ax2),density=True,bins=1000,range=[-0.3,0.55]) a1.set_title('Fractinoal parallax uncertainty') a2.hist(ax2,density=False,bins=1000,range=[-10,50]) a2.set_title('Histogram Plot Parallax/Parallax error') a3.scatter(ax1,ax0,s=0.5) a3.set_title('x:parallax vs error') a4.hist(ax1,density=False,bins=100,range=[2,6]) a4.set_title('Parallax') plt.tight_layout() ###Output _____no_output_____ ###Markdown There is a fairly uniform scatter from parallax uncertainty. Should analyse this a bit more to be honest. I will We can see there seems to be some sort of peak in the parallax for a lot of the data. Could this correspond to our cluster! ###Code #Lets check with the distance and do a plot that way fig=plt.figure(figsize=(15,6)) a=plt.subplot() def para(x): return (1.0/x)*1000 ax0=selection_gaia['rgeo'] #median posterior densirty ax1=selection_gaia['parallax'].apply(para) a.hist(ax0,density=False,bins=100) a.hist(ax1,density=False,bins=100,color='orange',) a.set_title('Distance') a.vlines(closest_cluster['Dist'],0,70, colors='g') a.vlines(closest_cluster['Dist']+0.5*closest_cluster['Diam'],0,70, colors='r') a.vlines(closest_cluster['Dist']-0.5*closest_cluster['Diam'],0,70, colors='r') plt.tight_layout() ###Output _____no_output_____ ###Markdown T he organge above is standard parallax inversion, blue is bailer jones estimates, lines correspond to center and redius Right so it seems that the majority of the stars are clumped around the distance estimate minus the radius of the literature value. We REALLY need to check the errors and analyse the BJ estimtes of distances and everything. So above we have the green line is the center to this star cluster. But all of the values seem to be gathered arouund the red mark. Weird. Now lets plot the HR diagram and the diagram of kineamtic properties ###Code g_band=selection_gaia['phot_bp_mean_mag']-2.5*np.log10((selection_gaia['rgeo']/10.0)**2) #mean absolute magnitude in G band bp_rp=selection_gaia['bp_rp'] #mean difference proper_motion=selection_gaia['pm'] #total proper motion right_asc=selection_gaia['ra'] dec=np.mod(selection_gaia['dec'],350) #position in motion still with no error bars but i will ig=plt.figure(figsize=(15,6)) grid=gs.GridSpec(2,2) a1=plt.subplot(grid[0,0]) a2=plt.subplot(grid[0,1]) a3=plt.subplot(grid[1,0]) a4=plt.subplot(grid[1,1]) a1.hist(proper_motion,density=True,bins=1000) a1.set_title('Proper motion density') a2.scatter(bp_rp,g_band,s=0.5) a2.invert_yaxis() a2.set_title('HR diagram') a3.scatter(right_asc,dec,s=0.5) a3.set_xlim(-5,10) a3.set_title('RA vs Dec') a4.scatter(right_asc,dec,s=0.5) a4.set_xlim(350,375) a4.set_title('RA vs Dec around 350 ra') plt.tight_layout() #can do something with mod or whatever to get the wrap around # There is a periodic plot or a better way to do this but leave for now fig = plt.figure() ax = fig.add_subplot(projection='3d') ax.set_xlim(-1,3) ax.scatter(right_asc,dec, selection_gaia['rgeo'], s=0.5 ) ###Output _____no_output_____ ###Markdown Analysis Results ###Code import numpy as np import pandas as pd import matplotlib.pyplot as plt plt.rcParams['font.size'] = 16 plt.rcParams['figure.figsize'] = [12, 8] plt.rcParams['lines.linewidth'] = 2.5 pd.set_option("display.max_rows", 20) pd.set_option("display.max_columns", 20) from pathlib import Path import pandas as pd results_dir = Path("results") results_paths = results_dir.glob("*.csv") results = [] for path in results_paths: results.append(pd.read_csv(path)) results_df = pd.concat(results, axis=0) results_df data_names = results_df["data_name"].unique() def plot_metric_for_name(data_name, metric_name, ax=None, remove_drop=False): if ax is None: fig, ax = plt.subplots() results_data_name = results_df[results_df["data_name"] == data_name] info_first = results_data_name.iloc[0] data_name = info_first['data_name'] results_data_name_sorted = results_data_name.sort_values(f"test_{metric_name}_mean") null_encoders = ~results_data_name_sorted[f"test_{metric_name}_mean"].isna() if remove_drop: null_encoders &= (results_data_name_sorted["encoder"] != "drop") y_values = np.arange(np.sum(null_encoders)) ax.errorbar(results_data_name_sorted.loc[null_encoders, f"test_{metric_name}_mean"], y_values, xerr=results_data_name_sorted.loc[null_encoders, f"test_{metric_name}_std"], ls='', marker='o') ax.set_yticks(y_values) ax.set_yticklabels(results_data_name_sorted.loc[null_encoders, "encoder"]) ax.set_title(f"{data_name}: {metric_name}") def plot_all_metrics(data_name, remove_drop=False): results_data_name = results_df[results_df["data_name"] == data_name] info_first = results_data_name.iloc[0] non_null_names = info_first.notnull() test_names = info_first.index.str.startswith("test") score_names = info_first.index[non_null_names & test_names] score_means_names = score_names[score_names.str.endswith("_mean")] metric_names = [name[5:-5] for name in score_means_names] fig, axes = plt.subplots(1, len(metric_names), figsize=(20, 6), constrained_layout=True) for metric_name, ax in zip(metric_names, axes.flatten()): plot_metric_for_name(data_name, metric_name, ax=ax, remove_drop=remove_drop) return fig data_names = ["telco", "amazon_access", "kicks", "taxi", "ames", "churn", "adult", "dresses_sales", "phishing_websites"] fig = plot_all_metrics("telco") for dataset in data_names: plot_all_metrics(dataset) # plt.savefig(f"figures/{dataset}.png") md_names = [f"![{dataset}](figures/{dataset}.png)" for dataset in data_names] print("\n".join(md_names)) ###Output ![telco](figures/telco.png) ![amazon_access](figures/amazon_access.png) ![kicks](figures/kicks.png) ![taxi](figures/taxi.png) ![ames](figures/ames.png) ![churn](figures/churn.png) ![adult](figures/adult.png) ![dresses_sales](figures/dresses_sales.png) ![phishing_websites](figures/phishing_websites.png) ###Markdown Get metadata for datasets ###Code from bench_utils import fetch_openml_and_clean from benchmark import DATA_INFOS data_info = DATA_INFOS['kicks'] def get_metadata(data_info): X, y = fetch_openml_and_clean(data_info) data_info.is_classification n_cats = X.select_dtypes(include=['object', 'category']).shape[1] n_samples, n_features = X.shape return {'dataset_name': data_info.data_name, 'categorical feaatures': n_cats, 'n_features': n_features, 'n_samples': n_samples, 'is_classification': data_info.is_classification, 'openml_url': f'https://www.openml.org/d/{data_info.data_id}'} results_df.columns MD_DATASET_COLUMNS = ["data_name", "categorical features", "n_features", "n_samples", "is_classification", "openml_url"] md_dataset_meta = results_df.drop_duplicates("data_name")[columns_of_interest].set_index("data_name").loc[data_names].reset_index() md_dataset_meta.to_markdown(index=False) data_names all_metadata = [get_metadata(data_info) for data_info in DATA_INFOS.values()] import pandas as pd metadata_df = pd.DataFrame.from_records(all_metadata) from pathlib import Path class BenchmarkResults: def __init__(self, results_dir): self.results = { result_file.with_suffix("").name: result_file for result_file = results_dir.glob("*.csv") } def write_results(self, name): self.results_df.to_csv("") results_path = Path("results").glob("*csv") hhe = list(results_path)[0] import pandas as pd df = pd.read_csv(hhe) df['encoder'].tolist() from bench_utils import load_data from benchmark import DATA_INFOS meta = load_data(DATA_INFOS["Allstate_Claims_Severity"]) df = meta['X'] df import openml datasets_df = openml.datasets.list_datasets(output_format="dataframe") datasets_df.columns with_cats_mask = datasets_df['NumberOfSymbolicFeatures'] >= 4.0 binary_or_regression = (datasets_df["NumberOfClasses"] == 0.0) | (datasets_df["NumberOfClasses"] == 2.0) mid_level_features = (datasets_df["NumberOfFeatures"] <= 2000) & (datasets_df["NumberOfFeatures"] > 8) mid_samples = datasets_df["NumberOfInstances"] >= 5000 dataset_with_cats = datasets_df[with_cats_mask & binary_or_regression & mid_level_features & mid_samples] dataset_with_cats = dataset_with_cats.drop_duplicates("name") dataset_with_cats.sort_values("NumberOfSymbolicFeatures").tail(30) dataset_with_cats[dataset_with_cats["NumberOfClasses"] == 2.0].sort_values("NumberOfSymbolicFeatures").tail(30) dataset_with_cats[dataset_with_cats["NumberOfClasses"]== 0.0] ###Output _____no_output_____ ###Markdown Data and parameters ###Code # directories with input (pdbbind), results and plots, and training stats pdbbind_path = '../pdbbind/v2016' results_path = './results' results_prefix = '%s/batch5-2017-06-05T07:58:47' % results_path # network parameters featurizer = tfbio.data.Featurizer() max_dist = 10 box_size = 21 columns = {name: i for i, name in enumerate(featurizer.FEATURE_NAMES)} num_features = len(columns) # scaling factor for partial charges charge_std = 0.425896 # colors for subsets set_colors = { # PDBbind v. 2016 split 'core': 'r', 'refined': 'g', 'general': 'b', # our split 'training': 'b', 'validation': 'g', 'test': 'r', 'core2013': 'purple' } set_titles = { 'training': 'training set', 'validation': 'validation set', 'test': 'core set v. 2016', 'core2013': 'core set v. 2013' } protein_data = pd.read_csv('protein_data.csv') protein_data.head() affinity_data = pd.read_csv('affinity_data_cleaned.csv') affinity_data = affinity_data.rename(columns={'set': 'pdbbind_set'}) affinity_data.head() dataset_split = [] for set_name in ['training', 'validation', 'test']: with h5py.File('%s/%s_set.hdf' % (pdbbind_path, set_name), 'r') as f: dataset_split.append(pd.DataFrame({'set': set_name, 'pdbid': list(f.keys())})) dataset_split = pd.concat(dataset_split, ignore_index=True) dataset_split.head() affinity_data = pd.merge(affinity_data, dataset_split) affinity_data.head() affinity_data['set'].value_counts() # training logs downloaded from tensorboard training_mse = pd.read_csv('%s-training_set_mse_all.csv' % results_prefix) validation_mse = pd.read_csv('%s-validation_set_mse_all.csv' % results_prefix) ###Output _____no_output_____ ###Markdown Create the network ###Code graph = tf.Graph() with graph.as_default(): saver = tf.train.import_meta_graph('./%s-best.meta' % results_prefix, clear_devices=True) # get tensors we need to get predictions and the error x = graph.get_tensor_by_name('input/structure:0') y = graph.get_tensor_by_name('output/prediction:0') t = graph.get_tensor_by_name('input/affinity:0') keep_prob = graph.get_tensor_by_name('fully_connected/keep_prob:0') mse = graph.get_tensor_by_name('training/mse:0') # get tensors we might need to analyze the network # activations on hidden layers hidden_layers = [ graph.get_tensor_by_name('convolution/conv0/h_pool:0'), graph.get_tensor_by_name('convolution/conv1/h_pool:0'), graph.get_tensor_by_name('convolution/conv2/h_pool:0'), graph.get_tensor_by_name('fully_connected/fc0/h_dropout/mul:0'), graph.get_tensor_by_name('fully_connected/fc1/h_dropout/mul:0'), graph.get_tensor_by_name('fully_connected/fc2/h_dropout/mul:0') ] # weights weights = [ graph.get_tensor_by_name('convolution/conv0/w:0'), graph.get_tensor_by_name('convolution/conv1/w:0'), graph.get_tensor_by_name('convolution/conv2/w:0'), graph.get_tensor_by_name('fully_connected/fc0/w:0'), graph.get_tensor_by_name('fully_connected/fc1/w:0'), graph.get_tensor_by_name('fully_connected/fc2/w:0'), ] ###Output _____no_output_____ ###Markdown Training progress ###Code best_model = validation_mse[validation_mse['Value'] == validation_mse['Value'].min()] best_epoch = best_model.index + 1 best_value = best_model['Value'] fig, ax = plt.subplots(figsize=(3.3, 2.5)) # plot rmse instead of mse ax.plot(range(1, 21), training_mse['Value'] ** 0.5, label=set_titles['training']) ax.plot(range(1, 21), validation_mse['Value'] ** 0.5, label=set_titles['validation']) ax.vlines(best_epoch, 0, 2, color='r', linestyles='--', zorder=4, label='selected model') ax.set_xlabel('Epoch') ax.set_ylabel('RMSE') ax.set_xlim(0, 21) ax.set_xticks(range(0, 21, 2)) ax.grid(True, axis='y') ax.set_ylim(0.9, 1.9) ax.set_yticks(np.arange(0.9, 1.9, 0.1)) ax.legend(frameon=True, loc='lower left') fig.tight_layout() fig.savefig('%s/rmse.pdf' % results_path); ###Output _____no_output_____ ###Markdown Predictions Predict on PDBbind v2013 core set ###Code # load the data affinity = [] coords = [] features = [] ids = [] with h5py.File('%s/core2013.hdf' % pdbbind_path, 'r') as f: for pdb_id in f: ids.append(pdb_id) dataset = f[pdb_id] coords.append(dataset[:, :3]) features.append(dataset[:, 3:]) affinity.append(dataset.attrs['affinity']) affinity = np.reshape(affinity, (-1, 1)) # prepare grids batch_grid = [] for crd, f in zip(coords, features): batch_grid.append(tfbio.data.make_grid(crd, f)) batch_grid = np.vstack(batch_grid) batch_grid[..., columns['partialcharge']] /= charge_std # restore the trained model and predict affinities with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) pred_affinity = session.run(y, feed_dict={x: batch_grid, keep_prob: 1.0}) ###Output INFO:tensorflow:Restoring parameters from ././results/batch5-2017-06-05T07:58:47-best ###Markdown Merge with predictions for v2016 The predictions for PDBbind v 2016 were already computed at the end of the training (see `train.py` script) and saved in &lt;prefix&gt;-predictions.csv file. ###Code predictions = pd.concat( [ pd.read_csv('%s-predictions.csv' % results_prefix), pd.DataFrame({'pdbid': ids, 'predicted': pred_affinity.flatten(), 'real': affinity.flatten(), 'set': 'core2013'}) ] ) predictions.head() for set_name, table in predictions.groupby('set'): rmse = ((table['predicted'] - table['real']) ** 2).mean() ** 0.5 mae = (np.abs(table['predicted'] - table['real'])).mean() corr = scipy.stats.pearsonr(table['predicted'], table['real']) lr = LinearRegression() lr.fit(table[['predicted']], table['real']) y_ = lr.predict(table[['predicted']]) sd = (((table['real'] - y_) ** 2).sum() / (len(table) - 1)) ** 0.5 print('%10s set: RMSE=%.3f, MAE=%.3f, R=%.2f (p=%.2e), SD=%.3f' % (set_name, rmse, mae, *corr, sd)) grid = sns.jointplot('real', 'predicted', data=table, stat_func=None, color=set_colors[set_name], space=0.0, size=3, s=10, edgecolor='w', ylim=(0, 16), xlim=(0, 16)) grid.ax_joint.text(1, 14, set_titles[set_name]) grid.ax_joint.set_xticks(range(0, 16, 5)) grid.ax_joint.set_yticks(range(0, 16, 5)) grid.fig.savefig('%s/pred_%s.pdf' % (results_path, set_name)) predictions.to_csv('%s-all_predictions.csv' % results_prefix, index=False) ###Output _____no_output_____ ###Markdown Select examples Get protein with the biggest number of complexes in the v2016 core set (which was used as test set) ###Code core_pdbids = list(affinity_data[affinity_data['pdbbind_set'] == 'core']['pdbid']) core_idx = np.in1d(protein_data['pdbid'], core_pdbids) num_complexes = (protein_data .loc[core_idx] .groupby('uniprotid') ['name'] .agg(len) .sort_values(ascending=False)) num_complexes[:10] unid = num_complexes.index[0] unid complexes = protein_data.loc[(protein_data['uniprotid'] == unid), 'pdbid'] examples = affinity_data.loc[np.in1d(affinity_data['pdbid'], complexes), ['pdbid', 'pdbbind_set', 'set']] examples = examples.reset_index(drop=True) num_examples = len(examples) print(num_examples, 'examples') examples.head() # load the input and affinities for selected examples affinity = [] coords = [] features = [] ids = [] for set_name, table in examples.groupby('set'): with h5py.File('%s/%s_set.hdf' % (pdbbind_path, set_name), 'r') as f: for pdb_id in table['pdbid']: ids.append(pdb_id) dataset = f[pdb_id] coords.append(dataset[:, :3]) features.append(dataset[:, 3:]) affinity.append(dataset.attrs['affinity']) affinity = np.reshape(affinity, (-1, 1)) ###Output _____no_output_____ ###Markdown Results for different orientation of the input Let's check whether we get similar results for differently presented input.Our model is not invariant to input orientation.Each complex was centered at ligand's geometric center, so we do not need to worry about translations.However our model might be sensitive to input rotation.We will predict affinity for 24 orientations of a molecular complex and check if they are stable. ###Code rot_predictions = [] with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) for rotation in range(24): print(rotation) batch_grid = np.zeros((num_examples, box_size, box_size, box_size, num_features)) for i, (crds, ft) in enumerate(zip(coords, features)): crds = tfbio.data.rotate(crds, rotation) batch_grid[i] = tfbio.data.make_grid(crds, ft) batch_grid[..., columns['partialcharge']] /= charge_std pred_affinity = session.run(y, feed_dict={x: batch_grid, t: np.reshape(affinity, (num_examples, 1)), keep_prob: 1.0}) rot_predictions.append(pd.DataFrame({'rotation': rotation, 'pdbid': ids, 'predicted': np.squeeze(pred_affinity)})) rot_predictions = pd.concat(rot_predictions) rot_predictions = pd.merge(rot_predictions, affinity_data) rot_predictions = rot_predictions.sort_values('predicted') rot_predictions['pdbid'] = rot_predictions['pdbid'].str.upper() palette = {} for set_name, idx in rot_predictions.groupby('set')['pdbid'].agg(lambda x: set(x)).items(): for i in idx: palette[i] = set_colors[set_name] # plot range of predicted affinities for each complex # sort by predicted value and color by training/validation/test split fig, ax = plt.subplots(figsize=(3.3, 8)) sns.boxplot(y='pdbid', x='predicted', data=rot_predictions, ax=ax, palette=palette, linewidth=1, fliersize=2) ax.set_xlim(3,) ax.set_xlabel('Predicted affinity') ax.set_ylabel('PDB ID') # we need to manually add the legend handles = [] labels = [] for set_name in ['training', 'validation', 'test']: handles.append(Rectangle((0, 0), 1, 1, fc=set_colors[set_name], lw=1, ec='k')) labels.append(set_titles[set_name]) ax.legend(handles, labels, loc='upper right') fig.savefig('%s/rotations.pdf' % results_path, bbox_inches='tight'); ###Output _____no_output_____ ###Markdown Network properties Feature importance Check distribution of weights for each of the feautures.The higher the absolute value of the weight, the more information comes out of this part of an input. ###Code # get outgoing weights for each feature with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) w0 = session.run(weights[0]) w0 = pd.DataFrame(np.transpose(w0, [0, 1, 2, 4, 3]).reshape((-1, num_features)), columns=featurizer.FEATURE_NAMES) ###Output INFO:tensorflow:Restoring parameters from ././results/batch5-2017-06-05T07:58:47-best ###Markdown Check how much the distribution of weights for each feature differs from the initial one - truncated normal with std=0.001.Compute fraction of weights that are more than 1*std away from the mean. ###Code diff = (w0.abs() > 0.001).mean() diff.sort_values(ascending=False) # range between 25th and 75th percentiles perc_diff = ((w0.apply(lambda x: np.percentile(x, 75)) - w0.apply(lambda x: np.percentile(x, 25))) .sort_values(ascending=False)) perc_diff # plot range of weights, do not show outliers fig, ax = plt.subplots(figsize=(3.3, 3)) sns.boxplot(data=w0, fliersize=0, orient='h', order=perc_diff.index, ax=ax) ax.set_xlim(-0.055, 0.055) ax.set_xticks(np.arange(-0.04, 0.05, 0.02)) ax.set_ylim(19, -1) fig.tight_layout() fig.savefig('%s/fi_box.pdf' % results_path) ###Output _____no_output_____ ###Markdown Find parts of input that are crucial for predicting activity ###Code # select a single ligand, that was predicted to be active ligand = '3ws8' rotation = 2 ligand_idx = ids.index(ligand) ligand_idx ligand_grid = tfbio.data.make_grid(coords[ligand_idx], features[ligand_idx]) ligand_rot_grid = tfbio.data.make_grid(tfbio.data.rotate(coords[ligand_idx], rotation), features[ligand_idx]) for grid in (ligand_grid, ligand_rot_grid): grid[..., columns['partialcharge']] /= charge_std ###Output _____no_output_____ ###Markdown Baseline prediction Check what is the baseline - prediction that our model returns, when we do not give him any inforation about the complex.(We can think of it as an analogy to intercept in linear model.) ###Code with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) zero_pred = session.run(y, feed_dict={x: np.zeros_like(ligand_grid), keep_prob: 1.0}) zero_pred ###Output INFO:tensorflow:Restoring parameters from ././results/batch5-2017-06-05T07:58:47-best ###Markdown Make sure that our model did not learned to just recognize ligands or proteins and uses both ligand and protein to predict binding affinity. ###Code no_lig = np.vstack((ligand_grid, ligand_rot_grid)) no_lig[no_lig[..., columns['molcode']] == 1.0] = 0.0 with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) no_lig_pred = session.run(y, feed_dict={x: no_lig, keep_prob: 1.0}) no_lig_pred no_prot = np.vstack((ligand_grid, ligand_rot_grid)) no_prot[no_prot[..., columns['molcode']] == -1.0] = 0.0 with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) no_prot_pred = session.run(y, feed_dict={x: no_prot, keep_prob: 1.0}) no_prot_pred ###Output INFO:tensorflow:Restoring parameters from ././results/batch5-2017-06-05T07:58:47-best ###Markdown Interestingly, ligand with no protein gives higher predictions - this information is more important for the model.We can also see in the weights' distribution, that weights associated with the `molcode` are more often positive.This kind of filters recognizes ligand, while filters with strongly negative values recognize protein. Set parts of an input to 0 ###Code box = 5 # same size as in convolutional layers step = 3 steps_in_loop = box_size // step mean_pred = rot_predictions[rot_predictions['pdbid'] == ligand.upper()]['predicted'].mean() mean_pred # prepare grids with a single deleted box in each modified = np.repeat(ligand_grid, steps_in_loop**3, axis=0) origins = [] num = 0 for i in range(0, box_size-step+1, step): for j in range(0, box_size-step+1, step): for k in range(0, box_size-step+1, step): origins.append((i, j, k)) modified[num, i:i+box, j:j+box, k:k+box] = 0.0 num += 1 assert num == steps_in_loop ** 3 origins = np.array(origins) with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) modified_pred = session.run(y, feed_dict={x: modified, keep_prob: 1.0}) sns.boxplot(modified_pred); # get 10 boxes with lowest predictions - those are ost important parts of an input important_idx = np.argsort(modified_pred[:, 0])[:10] important_idx def get_box_atoms(indices, grid): """Get atoms from the grid that are in the boxes specified with indices""" important_atoms = [] for idx in indices: i, j, k = origins[idx] tmp = grid[0][i:i+box, j:j+box, k:k+box] atom_table = pd.DataFrame(tmp[tmp[..., columns['molcode']] != 0], columns=featurizer.FEATURE_NAMES) atom_x, atom_y, atom_z = np.where(tmp[..., columns['molcode']] != 0) atom_x += i atom_y += j atom_z += k atom_table['x'] = atom_x atom_table['y'] = atom_y atom_table['z'] = atom_z atom_table['idx'] = idx important_atoms.append(atom_table) important_atoms = pd.concat(important_atoms, ignore_index=True) important_atoms['partialcharge'] *= charge_std return important_atoms # columns we want to print to_print = ['x', 'y', 'z', 'B', 'C', 'N', 'O', 'P', 'S', 'Se', 'hyb', 'partialcharge', 'hydrophobic', 'aromatic', 'acceptor', 'donor', 'ring', 'idx'] def plot_boxes(complex_idx, rot, box_indices): """Plot molecular complex in the specified rotation and the boxes specified by indices""" from mpl_toolkits import mplot3d fig = plt.figure(figsize=(6, 6)) crds = tfbio.data.rotate(coords[complex_idx], rot) ft = features[complex_idx] ax = fig.add_subplot(111, projection='3d') mx, my, mz = crds[ft[:, columns['molcode']] == 1.0].T + max_dist ax.scatter(mx, my, mz, label='ligand', c='b', s=20) mx, my, mz = crds[ft[:, columns['molcode']] == -1.0].T + max_dist ax.scatter(mx, my, mz, label='protein', c='g', s=5) for i, j, k in origins[box_indices]: alpha = 0.05 ax.plot_surface([i, i+box], [[j, j], [j+box, j+box]], k, alpha=alpha, color='gray') ax.plot_surface([i, i+box], [[j, j], [j+box, j+box]], k+box, alpha=alpha, color='gray') ax.plot_surface(i, [[j, j], [j+box, j+box]], [k, k+box], alpha=alpha, color='gray') ax.plot_surface(i+box, [[j, j], [j+box, j+box]], [k, k+box], alpha=alpha, color='gray') ax.plot_surface([i, i+box], j, [k, k+box], alpha=alpha, color='gray') ax.plot_surface([i, i+box], j+box, [[k, k], [k+box, k+box]], alpha=alpha, color='gray') ax.set_xlabel('X') ax.set_ylabel('Y') ax.set_zlabel('Z') ax.legend(loc=(0.75, 0.75), frameon=True) return fig, ax fig, ax = plot_boxes(ligand_idx, 0, important_idx) ax.set_xlim(0, 21) ax.set_ylim(0, 21) ax.set_zlim(0, 21) fig.tight_layout() fig.savefig('%s/changes.pdf' % results_path); important_atoms = get_box_atoms(important_idx, ligand_grid) (important_atoms.loc[((important_atoms['molcode'] == -1.0)), to_print] .sort_values(['x', 'y', 'z']) .drop_duplicates(subset=['x', 'y', 'z'])) ###Output _____no_output_____ ###Markdown Check what happens when we use different orientation ###Code modified_rot = np.repeat(ligand_rot_grid, steps_in_loop**3, axis=0) num = 0 for i in range(0, box_size-step+1, step): for j in range(0, box_size-step+1, step): for k in range(0, box_size-step+1, step): modified_rot[num, i:i+box, j:j+box, k:k+box] = 0.0 num += 1 assert num == steps_in_loop**3 with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) modified_rot_pred = session.run(y, feed_dict={x: modified_rot, keep_prob: 1.0}) sns.boxplot(modified_rot_pred); important_idx_rot = np.argsort(modified_rot_pred[:, 0])[:10] important_idx_rot fig, ax = plot_boxes(ligand_idx, rotation, important_idx_rot) ax.view_init(330, 60) ax.set_xlim(0, 21) ax.set_ylim(-1, 20) ax.set_zlim(-1, 20) fig.tight_layout() fig.savefig('%s/changes_rot.pdf' % results_path); important_atoms_rot = get_box_atoms(important_idx_rot, ligand_rot_grid) (important_atoms_rot.loc[((important_atoms_rot['molcode'] == -1.0)), to_print] .sort_values(['x', 'y', 'z']) .drop_duplicates(subset=['x', 'y', 'z'])) ###Output _____no_output_____ ###Markdown How the activations differ ###Code with tf.Session(graph=graph) as session: saver.restore(session, './%s-best' % results_prefix) activations = session.run(hidden_layers, feed_dict={x: np.vstack((ligand_grid, ligand_rot_grid)), keep_prob: 1.0}) fig, axs = plt.subplots(nrows=len(hidden_layers), figsize=(3.3, 4)) axs = axs.flatten() for i, ax in enumerate(axs): tmp = activations[i].reshape((2, -1)) d = scipy.spatial.distance.pdist(tmp, metric='cos') vmin, vmax = np.percentile(tmp, [1, 99]) sns.heatmap(tmp, xticklabels=False, yticklabels=['original', 'rotated'], vmin=vmin, vmax=vmax, cmap=plt.cm.bone_r, ax=ax, cbar=False); if d < 1e-2: ax.set_title('layer %i (d=%.1e)' % (i+1, d)) else: ax.set_title('layer %i (d=%.4f)' % (i+1, d)) fig.tight_layout() # save as PNG - each heatmap consists of thousands of tiny rectangles fig.savefig('%s/activations.png' % results_path, dpi=300); ###Output _____no_output_____ ###Markdown Data on North American mushrooms from https://archive.ics.uci.edu/ml/datasets/Mushroom. We're answering questions based on the data:* Can a machine learning model reliably identify poisonous mushrooms based on the data?* Does any one feature reliably classify mushroom toxicity?* Can we formulate simple, memorizable rules for reliably classifying mushroom toxicity? ###Code import pandas as pd from sklearn.ensemble import RandomForestClassifier from sklearn.model_selection import train_test_split from sklearn.metrics import f1_score from sklearn.tree import export_graphviz, DecisionTreeClassifier from functools import reduce ###Output _____no_output_____ ###Markdown We are importing the "expanded" data file, which contains more samples than the single-character version. ###Code # Input column names, which aren't included in the expanded data file names = [ 'Toxicity', 'Cap Shape', 'Cap Surface', 'Cap Color', 'Bruises?', 'Odor', 'Gill Attachment', 'Gill Spacing', 'Gill Size', 'Gill Color', 'Stalk Shape', 'Stalk Root', 'Stalk Surface Above Ring', 'Stalk Surface Below Ring', 'Stalk Color Above Ring', 'Stalk Color Below Ring', 'Veil Type', 'Veil Color', 'Ring Number', 'Ring Type', 'Spore Print Color', 'Population', 'Habitat' ] df = pd.read_csv('data/expanded', skiprows=9, names=names, index_col=None, engine='python', skipfooter=1); df # Assess data variability df.describe().loc['unique'] ###Output _____no_output_____ ###Markdown Veil type has only one value, so we can remove that feature later. ###Code # Assess missing data df.isna().sum() ###Output _____no_output_____ ###Markdown There appears to be no missing data. ###Code # Transform features # Convert binary bruised state to boolean values def bool_bruises(dfin): dfin_no_bruises = dfin.drop(columns='Bruises?') dfin_bool_bruises = dfin['Bruises?'].apply(lambda x: x == 'BRUISES') return pd.concat([dfin_no_bruises, dfin_bool_bruises], axis=1) # Drop veil type, because it has one value drop_veil_type = lambda dfin: dfin.drop(columns='Veil Type') # Convert class to boolean values def bool_toxicity(dfin): dfin_no_toxicity = dfin.drop(columns='Toxicity') dfin_toxic = dfin['Toxicity'].apply(lambda x: x == 'POISONOUS') dfin_toxic.name = 'Toxic?' return pd.concat([dfin_toxic, dfin_no_toxicity], axis=1) # One-hot encode one_hot_encode = lambda dfin: pd.get_dummies(dfin) fns = [bool_bruises, bool_toxicity, drop_veil_type, one_hot_encode] df_trans = reduce(lambda res, fn: fn(res), fns, df); df_trans ###Output _____no_output_____ ###Markdown Although other categories beside _Bruised?_ may have only two categories, _Bruised?_ was the only column treated as binary in the data, so we have transformed it to boolean values to reflect that. ###Code # Assess distribution of class df_trans['Toxic?'].mean() ###Output _____no_output_____ ###Markdown We have similarly sized edible and poisonous samples. ###Code # Create machine learning model X = df_trans.drop(columns='Toxic?') y = df_trans['Toxic?'] X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=0) random_forest_model = RandomForestClassifier(random_state=0).fit(X_train, y_train); random_forest_model f1_score(random_forest_model.predict(X_test), y_test) ###Output _____no_output_____ ###Markdown That's extremely accurate! ###Code # Save the DOT data and convert it to PNG ! mkdir dot ! mkdir images export_graphviz(random_forest_model.estimators_[0], out_file='dot/subestimatortree.dot', feature_names=X.columns, class_names=['Edible', 'Poisonous']) ! dot -Tpng dot/subestimatortree.dot -o images/subestimatortree.png # Create a decision tree with a depth of 1 decision_tree_model1 = DecisionTreeClassifier(random_state=0, max_depth=1).fit(X, y); decision_tree_model1 # Save the DOT data and convert it to PNG export_graphviz(decision_tree_model1, out_file='dot/tree1.dot', feature_names=X.columns, class_names=['Edible', 'Poisonous']) ! dot -Tpng dot/tree1.dot -o images/tree1.png # Create a decision tree with a depth of 2 decision_tree_model2 = DecisionTreeClassifier(random_state=0, max_depth=2).fit(X, y) dot_data2 = export_graphviz(decision_tree_model2, out_file='dot/tree2.dot', feature_names=X.columns, class_names=['Edible', 'Poisonous']) graph2 = graphviz.Source(dot_data2) ! dot -Tpng dot/tree2.dot -o images/tree2.png # Create a decision tree with a depth of 3 decision_tree_model3 = DecisionTreeClassifier(random_state=0, max_depth=3).fit(X, y) dot_data3 = export_graphviz(decision_tree_model3, out_file='dot/tree3.dot', feature_names=X.columns, class_names=['Edible', 'Poisonous']) graph3 = graphviz.Source(dot_data3) ! dot -Tpng dot/tree3.dot -o images/tree3.png # Since odor is important, what were the different odors? df['Odor'].value_counts() ###Output _____no_output_____ ###Markdown finding unique usernames ###Code df.user_screen_name.value_counts() c2=df.in_reply_to_screen_name.value_counts() c3=df.retweet_or_quote_screen_name.value_counts() pd.unique(df.in_reply_to_screen_name) s1=pd.DataFrame(c2) s2=pd.DataFrame(c3) s2 s1.to_csv('reply_username_list.csv', index=True) s2.to_csv('retweet_username_list.csv', index=True) s1.index s3 = s1[s1.index.isin(s2.index)] s3 ###Output _____no_output_____ ###Markdown adding types I = InstituitionOI = Other InstituitionsP = Person/IndividualNo Account = Account deleted in reply usernames ###Code # in_reply_to_screen_name filepath = os.path.join( "\\".join([os.getcwd(), "reply_username_list.csv"]) ) df_s1 = pd.read_csv(filepath, index_col=False) df_s1.rename(columns={"Unnamed: 0":"username"},inplace=True) df_s1.head() # df_s1[df_s1['username'].str.contains("TAMU")] ###Output _____no_output_____ ###Markdown TAMU AGGIE _ & numbers ###Code df_s1['type'] = df_s1.username.map(lambda x: 'I' if x.lower().__contains__("tamu") else 'I' if x.lower().__contains__("aggie") else 'P' if x.__contains__("_") else 'P' if any(chr.isdigit() for chr in x) else np.nan) df_s1 df_s1=df_s1.sort_values(by=['type']) df_s1.reset_index(drop=True) ###Output _____no_output_____ ###Markdown retweet usernames ###Code # retweet_or_quote_screen_name filepath = os.path.join( "\\".join([os.getcwd(), "retweet_username_list.csv"]) ) df_s2 = pd.read_csv(filepath, index_col=False) df_s2.rename(columns={"Unnamed: 0":"username"},inplace=True) df_s2.head() ###Output _____no_output_____ ###Markdown TAMU AGGIE _ & numbers ###Code # df_s2['type'] = df_s2.username.map(lambda x: 'I' if x.lower().__contains__("tamu") else 'I' if x.lower().__contains__("aggie") else 'P' if x.__contains__("_") else 'P' if any(chr.isdigit() for chr in x) else np.nan) df_s2['type'] = df_s2.username.map(lambda x: 'I' if x.lower().__contains__("tamu") else 'I' if x.lower().__contains__("aggie") else 'P' if x.__contains__( "_") else 'P' if any(chr.isdigit() for chr in x) else 'OI' if x.lower().__contains__("texas") else 'OI' if x.lower().__contains__("school") else 'OI' if x.lower().__contains__("tx") else 'OI' if x.lower().__contains__("news") else 'OI' if x.isupper() else np.nan) ###Output _____no_output_____ ###Markdown numbers & _ ###Code df_s2 df_s2=df_s2.sort_values(by=['type']) df_s2.reset_index(drop=True) ###Output _____no_output_____ ###Markdown saving data ###Code # df_s1.to_csv('reply_username_list.csv', index=True) # df_s2.to_csv('retweet_username_list.csv', index=True) ###Output _____no_output_____ ###Markdown Analysis of HAJ Hannover Halfmarathon 2019 ###Code import os import pandas as pd import matplotlib.pyplot as plt from matplotlib.pyplot import figure import nbimporter from src import scraper def hour_to_decimal(hour: str) -> float: digits = hour.split(':') return int(digits[0]) + int(digits[1]) / 60.0 + int(digits[2]) / 6000.0 def histogram(columns, header, xlabel, ylabel='Frequency'): for column in columns: plt.hist(column, bins=50, rwidth=0.85, alpha=0.4) plt.xlabel(xlabel) plt.ylabel(ylabel) plt.title(header) plt.show() AGE_CLASSES = { '–': -1, 'JU18': 0, 'JU20': 1, 'HK': 2, '30': 3, '35': 4, '40': 5, '45': 6, '50': 7, '55': 8, '60': 9, '65': 10, '70': 11, '75': 12, '80': 13, 'M85': 14, } data_m = pd.read_csv(scraper.get_csv(2019, 'M'), delimiter=scraper.DELIMITER) data_w = pd.read_csv(scraper.get_csv(2019, 'W'), delimiter=scraper.DELIMITER) data_m_w = pd.concat([data_w, data_m]) data_m_w.head() data_m['Finish_decimal'] = data_m['Finish'].apply(hour_to_decimal) data_w['Finish_decimal'] = data_w['Finish'].apply(hour_to_decimal) ###Output _____no_output_____ ###Markdown Overview men an women ###Code histogram([data_m['Finish_decimal'], data_w['Finish_decimal']], 'Distribution of finishing times', 'hours') main_age_class_m = data_m[data_m['AC'] == 'HK'] main_age_class_w = data_w[data_w['AC'] == 'HK'] histogram([main_age_class_m['Finish_decimal'], main_age_class_w['Finish_decimal']], 'Distribution of finishing times of main age class (HK)', 'Hours') ###Output _____no_output_____ ###Markdown Top clubs by number ###Code data_m_w['Club'].value_counts().head(20) ###Output _____no_output_____ ###Markdown Detail analysis men Top and worst placements ###Code data_m.head() data_m.tail() ###Output _____no_output_____ ###Markdown Average finish times ###Code data_m.groupby('AC').mean() ###Output _____no_output_____ ###Markdown Number of people in age class ###Code data_m['AC'].value_counts().plot.bar() ###Output _____no_output_____ ###Markdown Distribution of finishing times in age classes ###Code # add map age classes to integers data_m['AC_label'] = data_m['AC'] data_m['AC_label'] = data_m.AC.replace(AGE_CLASSES) data_m.boxplot(by='AC_label', column='Finish_decimal') plt.xticks(range(1, len(AGE_CLASSES) + 1), list(AGE_CLASSES.keys())) plt.show() ###Output _____no_output_____ ###Markdown Correlation of numeric colums ###Code data_m.corr() ###Output _____no_output_____ ###Markdown Analisis of business healthOn this analisis I have defined the following KPIs:- Number of sessions per month and company type- Number of clients lost per month and company type- Total and percentage profit per month and company typeThis KPIs are based on the database that has been created on the Docker container __app__ that has the scrip __app.py__ in where the tables are created and populated with fake data.![alt text](img/db_image.png "Database")The database has 3 tables:- sessions- companies- subscriptionsFor the calculation of all the KPIs I only used SQL for handling all the data aggregations and transformations. ###Code import numpy as np import pandas as pd import psycopg2 import matplotlib.pyplot as plt # Database params POSTGRES_HOST='localhost' POSTGRES_PASSWORD='password' POSTGRES_USER='user' POSTGRES_DB='db' # Get the connection to the database def get_db_conn(): conn = psycopg2.connect(f"dbname='{POSTGRES_DB}' user='{POSTGRES_USER}' host='{POSTGRES_HOST}' password='{POSTGRES_PASSWORD}'") conn.autocommit = True return(conn) # Create a bar plot def bar_plot(date,col1,label1,col2,label2,title,ylable,type="default"): width = 0.35 x = np.arange(len(date)) fig, ax = plt.subplots(figsize=(14,5)) if(type == "stacked"): rects1 = ax.bar(date, col1, 0.35, label=label1) rects2 = ax.bar(date, col2, 0.35, bottom=col1, label=label2) ax.bar_label(rects1, padding=3) ax.bar_label(rects2, padding=3) else: rects1 = ax.bar(x - width/2, col1, 0.35, label=label1) rects2 = ax.bar(x + width/2, col2, 0.35, label=label2) ax.bar_label(rects1, padding=3) ax.bar_label(rects2, padding=3) ax.set_ylabel(ylable) ax.set_title(title) ax.legend() ax.set_xticks(x, date) fig.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Number of sessions per month and company type ###Code # Connect to the database conn = get_db_conn() cur = conn.cursor() cur.execute(""" SELECT year || '-' || month AS date, COUNT(*) AS number_companies, SUM(CASE WHEN company_size = 'large' THEN 1 ELSE 0 END) AS number_companies_large, SUM(CASE WHEN company_size = 'small' THEN 1 ELSE 0 END) AS number_companies_small, SUM(number_sessions) AS total_sessions, SUM(CASE WHEN company_size = 'large' THEN number_sessions ELSE 0 END) AS total_sessions_large, SUM(CASE WHEN company_size = 'small' THEN number_sessions ELSE 0 END) AS total_sessions_small FROM ( SELECT session_company_id AS company_id, EXTRACT(YEAR FROM session_created_at) AS year, EXTRACT(MONTH FROM session_created_at) AS month, COUNT(*) AS number_sessions FROM sessions GROUP BY session_company_id, year, month ) AS t0 INNER JOIN companies AS t1 ON t0.company_id = t1.company_id GROUP BY year, month ORDER BY year, month; """) sessions = pd.DataFrame(cur.fetchall(), columns=[i[0] for i in cur.description]) cur.close() sessions.head(100) # Nº of sessions by month and company size bar_plot(sessions.date, sessions.total_sessions_large, 'large', sessions.total_sessions_small, 'small', 'Nº of sessions by month and company size', 'Nº of sessions','stacked') # Nº of sessions by month and company size bar_plot(sessions.date, sessions.total_sessions_large, 'large', sessions.total_sessions_small, 'small', 'Nº of sessions by month and company size', 'Nº of sessions') ###Output _____no_output_____ ###Markdown Total and percentage profit per month and company type ###Code # Connect to the database conn = get_db_conn() cur = conn.cursor() cur.execute(""" SELECT date, number_large_clients, number_small_clients, profit_large_clients, profit_small_clients, ROUND(profit_large_clients::numeric*100/total_profit_clients::numeric,2) AS percentage_profit_large_clients, ROUND(profit_small_clients::numeric*100/total_profit_clients::numeric,2) AS percentage_profit_small_clients FROM ( SELECT year || '-' || month AS date, SUM(CASE WHEN company_size = 'large' THEN 1 ELSE 0 END) AS number_large_clients, SUM(CASE WHEN company_size = 'small' THEN 1 ELSE 0 END) AS number_small_clients, SUM(CASE WHEN company_size = 'large' THEN sub_price ELSE 0 END) AS profit_large_clients, SUM(CASE WHEN company_size = 'small' THEN sub_price ELSE 0 END) AS profit_small_clients, SUM(sub_price) AS total_profit_clients FROM ( SELECT session_company_id AS company_id, EXTRACT(YEAR FROM session_created_at) AS year, EXTRACT(MONTH FROM session_created_at) AS month FROM sessions GROUP BY session_company_id, year, month ) AS t0 INNER JOIN companies AS t1 ON t0.company_id = t1.company_id INNER JOIN subscriptions AS t2 ON t1.company_size = t2.sub_id GROUP BY year, month ORDER BY year, month ) AS final; """) profit = pd.DataFrame(cur.fetchall(), columns=[i[0] for i in cur.description]) cur.close() profit.head(100) # Total profit per month and company size bar_plot(profit.date, profit.profit_large_clients, 'large', profit.profit_small_clients, 'small', 'Total profit per month and company size', 'Total profit (€)','stacked') # Percentage of profit per month and company size bar_plot(profit.date, profit.percentage_profit_large_clients, 'large', profit.percentage_profit_small_clients, 'small', 'Percentage of profit per month and company size', 'Percentage of profit','stacked') ###Output _____no_output_____ ###Markdown Number of clients lost per month and company type ###Code # Connect to the database conn = get_db_conn() cur = conn.cursor() cur.execute(""" WITH number_companies AS ( SELECT ROW_NUMBER() OVER (ORDER BY (SELECT 1)) AS number, date, number_companies, number_companies_large, number_companies_small FROM ( SELECT year || '-' || month AS date, COUNT(*) AS number_companies, SUM(CASE WHEN company_size = 'large' THEN 1 ELSE 0 END) AS number_companies_large, SUM(CASE WHEN company_size = 'small' THEN 1 ELSE 0 END) AS number_companies_small FROM ( SELECT session_company_id AS company_id, EXTRACT(YEAR FROM session_created_at) AS year, EXTRACT(MONTH FROM session_created_at) AS month FROM sessions GROUP BY session_company_id, year, month ) AS t0 INNER JOIN companies AS t1 ON t0.company_id = t1.company_id GROUP BY year, month ORDER BY year, month ) AS t1 ) SELECT date, lost_clients, SUM(lost_clients) OVER (ORDER BY number ASC) AS total_lost_clients, lost_clients_large, SUM(lost_clients_large) OVER (ORDER BY number ASC) AS total_lost_clients_large, lost_clients_small, SUM(lost_clients_small) OVER (ORDER BY number ASC) AS total_lost_clients_small FROM ( SELECT current_month.date AS date, current_month.number AS number, CASE WHEN old_month.number_companies IS NULL THEN 0 ELSE old_month.number_companies - current_month.number_companies END AS lost_clients, CASE WHEN old_month.number_companies_large IS NULL THEN 0 ELSE old_month.number_companies_large - current_month.number_companies_large END AS lost_clients_large, CASE WHEN old_month.number_companies_small IS NULL THEN 0 ELSE old_month.number_companies_small - current_month.number_companies_small END AS lost_clients_small FROM number_companies AS current_month LEFT JOIN number_companies AS old_month ON current_month.number = old_month.number+1 ) AS final; """) lost_clients = pd.DataFrame(cur.fetchall(), columns=[i[0] for i in cur.description]) cur.close() lost_clients.head(100) # Nº of lost clients by month and company size bar_plot(lost_clients.date, lost_clients.lost_clients_large, 'large', lost_clients.lost_clients_small, 'small', 'Nº of lost clients by month and company size', 'Nº of lost clients') # Nº of accumulated lost clients by month and company size bar_plot(lost_clients.date, lost_clients.total_lost_clients_large, 'large', lost_clients.total_lost_clients_small, 'small', 'Nº of accumulated lost clients by month and company size', 'Nº of lost clients') ###Output _____no_output_____ ###Markdown BEMSデータ評価用整形 ###Code import pandas as pd import numpy as np import copy import datetime import os df = pd.read_excel('data\src\TREND_76_6904050_20210701_20210807_20210808110542.xlsx') floors = [5] # floors = [5] ac_arr = { 4:["4f0","4f1","4f2","4f3","4f4","4f5","4f6","4f7","4f8","4f9"], 5:["5f0","5f1","5f2","5f3","5f4","5f5","5f6","5f7","5f8","5f9"], 6:["6f0","6f1","6f2","6f3","6f4","6f5","6f6","6f7","6f8","6f9"] } key_map_floor_dict = { 4:{ "時間":"信号名称", "4f0設定温度":"C4F 事務室中ペリ PACG_設定温度", "4f0運転モード":"C4F 事務室中ペリ PACG_運転モード", "4f0風速":"C4F 事務室中ペリ PACG_風速", # "4f0風速":"C4F 事務室中ペリ_風速", "4f0吸込温度":"C4F 事務室中ペリ PACG_吸込温度", "4f1設定温度":"C4F 事務室中ペリ PACG_設定温度", "4f1運転モード":"C4F 事務室中ペリ PACG_運転モード", "4f1風速":"C4F 事務室中ペリ PACG_風速", # "4f1風速":"C4F 事務室中ペリ_風速", "4f1吸込温度":"C4F 事務室中ペリ PACG_吸込温度", "4f2設定温度":"C4F 事務室中 PACG_設定温度", "4f2運転モード":"C4F 事務室中 PACG_運転モード", "4f2風速":"C4F 事務室中 PACG_風速", "4f2吸込温度":"C4F 事務室中 PACG_吸込温度", "4f3設定温度":"C4F 事務室中 PACG_設定温度", "4f3運転モード":"C4F 事務室中 PACG_運転モード", "4f3風速":"C4F 事務室中 PACG_風速", "4f3吸込温度":"C4F 事務室中 PACG_吸込温度", "4f4設定温度":"C4F 事務室南ペリ PACG_設定温度", "4f4運転モード":"C4F 事務室南ペリ PACG_運転モード", "4f4風速":"C4F 事務室南ペリ PACG_風速", "4f4吸込温度":"C4F 事務室南ペリ PACG_吸込温度", "4f5設定温度":"C4F 事務室南ペリ PACG_設定温度", "4f5運転モード":"C4F 事務室南ペリ PACG_運転モード", "4f5風速":"C4F 事務室南ペリ PACG_風速", "4f5吸込温度":"C4F 事務室南ペリ PACG_吸込温度", "4f6設定温度":"C4F 事務室南 PACG_設定温度", "4f6運転モード":"C4F 事務室南 PACG_運転モード", "4f6風速":"C4F 事務室南 PACG_風速", "4f6吸込温度":"C4F 事務室南 PACG_吸込温度", "4f7設定温度":"C4F 事務室南 PACG_設定温度", "4f7運転モード":"C4F 事務室南 PACG_運転モード", "4f7風速":"C4F 事務室南 PACG_風速", "4f7吸込温度":"C4F 事務室南 PACG_吸込温度", "4f8設定温度":"C4F 事務室南 PACG_設定温度", "4f8運転モード":"C4F 事務室南 PACG_運転モード", "4f8風速":"C4F 事務室南 PACG_風速", "4f8吸込温度":"C4F 事務室南 PACG_吸込温度", "4f9設定温度":"C4F 事務室東南 PAC_設定温度", "4f9運転モード":"C4F 事務室東南 PAC_運転モード", "4f9風速":"C4F 事務室東南 PAC_風速", "4f9吸込温度":"C4F 事務室東南 PAC_吸込温度", "外気温":"B館 RF 外気温度" }, 5:{ "時間":"信号名称", "5f0設定温度":"C5F 事務室中ペリ PACG_設定温度", "5f0運転モード":"C5F 事務室中ペリ PACG_運転モード", "5f0風速":"C5F 事務室中ペリ PACG_風速", "5f0吸込温度":"C5F 事務室中ペリ PACG_吸込温度", "5f1設定温度":"C5F 事務室中ペリ PACG_設定温度", "5f1運転モード":"C5F 事務室中ペリ PACG_運転モード", "5f1風速":"C5F 事務室中ペリ PACG_風速", "5f1吸込温度":"C5F 事務室中ペリ PACG_吸込温度", "5f2設定温度":"C5F 事務室中 PACG_設定温度", "5f2運転モード":"C5F 事務室中 PACG_運転モード", "5f2風速":"C5F 事務室中 PACG_風速", "5f2吸込温度":"C5F 事務室中 PACG_吸込温度", "5f3設定温度":"C5F 事務室中 PACG_設定温度", "5f3運転モード":"C5F 事務室中 PACG_運転モード", "5f3風速":"C5F 事務室中 PACG_風速", "5f3吸込温度":"C5F 事務室中 PACG_吸込温度", "5f4設定温度":"C5F 事務室南ペリ PACG_設定温度", "5f4運転モード":"C5F 事務室南ペリ PACG_運転モード", "5f4風速":"C5F 事務室南ペリ PACG_風速", "5f4吸込温度":"C5F 事務室南ペリ PACG_吸込温度", "5f5設定温度":"C5F 事務室南ペリ PACG_設定温度", "5f5運転モード":"C5F 事務室南ペリ PACG_運転モード", "5f5風速":"C5F 事務室南ペリ PACG_風速", "5f5吸込温度":"C5F 事務室南ペリ PACG_吸込温度", "5f6設定温度":"C5F 事務室南 PACG_設定温度", "5f6運転モード":"C5F 事務室南 PACG_運転モード", "5f6風速":"C5F 事務室南 PACG_風速", "5f6吸込温度":"C5F 事務室南 PACG_吸込温度", "5f7設定温度":"C5F 事務室南 PACG_設定温度", "5f7運転モード":"C5F 事務室南 PACG_運転モード", "5f7風速":"C5F 事務室南 PACG_風速", "5f7吸込温度":"C5F 事務室南 PACG_吸込温度", "5f8設定温度":"C5F 事務室南 PACG_設定温度", "5f8運転モード":"C5F 事務室南 PACG_運転モード", "5f8風速":"C5F 事務室南 PACG_風速", "5f8吸込温度":"C5F 事務室南 PACG_吸込温度", "5f9設定温度":"C5F 事務室東南 PAC_設定温度", "5f9運転モード":"C5F 事務室東南 PAC_運転モード", "5f9風速":"C5F 事務室東南 PAC_風速", "5f9吸込温度":"C5F 事務室東南 PAC_吸込温度", "5気温":"B館 RF 外気温度" }, 6:{ "時間":"信号名称", "6f0設定温度":"C6F 事務室中ぺリ PACG_設定温度", "6f0運転モード":"C6F 事務室中ペリ PACG_運転モード", "6f0風速":"C6F 事務室中ペリ PACG_風速", "6f0吸込温度":"C6F 事務室中ぺリ PACG_吸込温度", "6f1設定温度":"C6F 事務室中ぺリ PACG_設定温度", "6f1運転モード":"C6F 事務室中ペリ PACG_運転モード", "6f1風速":"C6F 事務室中ペリ PACG_風速", "6f1吸込温度":"C6F 事務室中ぺリ PACG_吸込温度", "6f2設定温度":"C6F 事務室中 PACG_設定温度", "6f2運転モード":"C6F 事務室中 PACG_運転モード", "6f2風速":"C6F 事務室中 PACG_風速", "6f2吸込温度":"C6F 事務室中 PACG_吸込温度", "6f3設定温度":"C6F 事務室中 PACG_設定温度", "6f3運転モード":"C6F 事務室中 PACG_運転モード", "6f3風速":"C6F 事務室中 PACG_風速", "6f3吸込温度":"C6F 事務室中 PACG_吸込温度", "6f4設定温度":"C6F 事務室南ペリ PACG_設定温度", "6f4運転モード":"C6F 事務室南ペリ PACG_運転モード", "6f4風速":"C6F 事務室南ペリ PACG_風速", "6f4吸込温度":"C6F 事務室南ペリ PACG_吸込温度", "6f5設定温度":"C6F 事務室南ペリ PACG_設定温度", "6f5運転モード":"C6F 事務室南ペリ PACG_運転モード", "6f5風速":"C6F 事務室南ペリ PACG_風速", "6f5吸込温度":"C6F 事務室南ペリ PACG_吸込温度", "6f6設定温度":"C6F 事務室南 PACG_設定温度", "6f6運転モード":"C6F 事務室南 PACG_運転モード", #"6f6風速":"C6F 事務室南 PACG_風速", "6f6吸込温度":"C6F 事務室南 PACG_吸込温度", "6f7設定温度":"C6F 事務室南 PACG_設定温度", "6f7運転モード":"C6F 事務室南 PACG_運転モード", #"6f7風速":"C6F 事務室南 PACG_風速", "6f7吸込温度":"C6F 事務室南 PACG_吸込温度", "6f8設定温度":"C6F 事務室南 PACG_設定温度", "6f8運転モード":"C6F 事務室南 PACG_運転モード", #"6f8風速":"C6F 事務室南 PACG_風速", "6f8吸込温度":"C6F 事務室南 PACG_吸込温度", "6f9設定温度":"C6F 事務室東南 PAC_設定温度", "6f9運転モード":"C6F 事務室東南 PAC_運転モード", "6f9風速":"C6F 事務室東南 PAC_風速", "6f9吸込温度":"C6F 事務室東南 PAC_吸込温度", "外気温":"B館 RF 外気温度" }, } data_all = {} for floor in floors: result_df = pd.DataFrame() data_all[floor] = result_df def init_cvt(df): df.columns = df.loc[6] df = df.drop(df.index[[0,1,2, 3,4, 5,6,7,8,9]]) return df.loc[:,~df.columns.str.contains("ロスナイ|湿度|電力量|電流|ロスナイ")] def split_floor_data(df,floor_arr): df = df.reset_index() start_time = df["信号名称"].loc[0] end_time = df["信号名称"].loc[len(df)-1] df_floors = {} for floor in floor_arr: df_floors[floor] = df.loc[:,df.columns.str.contains("信号名称|外気温度|{}F".format(floor))] return df_floors, start_time, end_time def select_columns(df): control_columns = [] init_bems_columns = [] for c in df.columns: if "吸込温度" in c: init_bems_columns.append(c) else: if("時間" in c) or ("外気温" in c): init_bems_columns.append(c) control_columns.append(c) else: control_columns.append(c) return init_bems_columns,control_columns df_cvt = init_cvt(df) df_cvt_arr,start_time,end_time = split_floor_data(df_cvt,floors) df_cvt_arr def adjustment_items(df_arr,season): df_result_dic = {} for floor,df in df_arr.items(): air_con_area = [f'C{floor}F 事務室北ペリ PACG_',f'C{floor}F 事務室北 PACG_',f'C{floor}F 事務室中ペリ PACG_',f'C{floor}F 事務室中 PACG_',f'C{floor}F 事務室南ペリ PACG_',f'C{floor}F 事務室南 PACG_',f'C{floor}F 事務室東南 PAC_'] df_result = copy.deepcopy(df) for one in air_con_area: # 運連状態が0なら電源OFF(0) df_result.loc[df_result[one+'運転']==0,one+'運転モード'] = 0 # 運転状態が1で省エネレベルが2,3または運転モードが3なら送風(3) df_result.loc[(df_result[one+'運転']==1) & ((df_result[f'C館 {floor}F G50_省エネレベル'] == 2) | (df_result[f'C館 {floor}F G50_省エネレベル'] == 3) | (df_result[one+'運転モード'] == 3)),one+'運転モード'] = 3 # 夏期の場合 if season == 0: # 運転状態が1で省エネレベルが1の場合は冷房(1) df_result.loc[(df_result[one+'運転']==1) & (df_result[f'C館 {floor}F G50_省エネレベル'] == 1),one+'運転モード'] = 1 # 冬期の場合 elif season == 1: # 運転状態が1で省エネレベルが1で運転モードが2のとき暖房(2) df_result.loc[(df_result[one+'運転']==1) & ((df_result[f'C館 {floor}F G50_省エネレベル'] == 1) & (df_result[one+'運転モード'] == 2)),one+'運転モード'] = 2 # 冬季のインペリ側 if (one == f'C{floor}F 事務室中 PACG_') or (one == f'C{floor}F 事務室南 PACG_'): # インペリ側で運転ONかつ暖房のときは+4℃アップ制御 df_result.loc[(df_result[one+'運転']==1) & (df_result[one+'運転モード'] == 2),one+'吸込温度'] += 4 # 中間期の場合 else: # 運転状態が1で省エネレベルが1の場合は冷房(1) df_result.loc[(df_result[one+'運転']==1) & (df_result[f'C館 {floor}F G50_省エネレベル'] == 1),one+'運転モード'] = 1 # 運転状態が1で省エネレベルが1で運転モードが2のとき暖房(2) df_result.loc[(df_result[one+'運転']==1) & ((df_result[f'C館 {floor}F G50_省エネレベル'] == 1) & (df_result[one+'運転モード'] == 2)),one+'運転モード'] = 2 df_result_dic[floor] = df_result return df_result_dic result_df_dic = adjustment_items(df_cvt_arr,1) for floor in floors: for key,value in key_map_floor_dict[floor].items(): data_all[floor][key] = result_df_dic[floor][value].values date_gap = (end_time - start_time).days data_all[5] result_arr = [] base_time = start_time for i in range(1,date_gap+1) : floors_data = {} floors_control_data = {} floors_init_bems_data = {} for key,value in data_all.items(): next_time = base_time + datetime.timedelta(days=1) _value = value[(value["時間"] >= datetime.datetime(base_time.year,base_time.month,base_time.day))&(value["時間"] < datetime.datetime(next_time.year,next_time.month,next_time.day))] floors_data[key] = _value bems_columns, control_columns = select_columns(_value) floors_control_data[key] = _value[control_columns] floors_init_bems_data[key] = _value[bems_columns] result_arr.append( { "time":"{0}_{1}_{2}".format(base_time.year,base_time.month,base_time.day), "data":floors_data, "control":floors_control_data, "init_bems":floors_init_bems_data }) base_time = next_time def select_columns(df): control_columns = [] init_bems_columns = [] for c in df.columns: if "吸込温度" in c: init_bems_columns.append(c) else: if("時間" in c) or ("外気温" in c): init_bems_columns.append(c) control_columns.append(c) else: control_columns.append(c) return init_bems_columns,control_columns all_data_dir_path = "data/evaluation/base/" control_data_dir_path = "data/evaluation/control/" init_bems_data_dir_path = "data/evaluation/init_bems/" for i in result_arr: time_dir = i["time"] + "/" os.makedirs(all_data_dir_path + time_dir,exist_ok=True) os.makedirs(control_data_dir_path + time_dir,exist_ok=True) os.makedirs(init_bems_data_dir_path + time_dir,exist_ok=True) for key in i["data"].keys(): file_all_data_path = all_data_dir_path + time_dir + "all_bems_data{}.csv".format(key) file_control_path = control_data_dir_path + time_dir + "control_{}.csv".format(key) file_init_bems_path = init_bems_data_dir_path + time_dir + "init_bems_{}.csv".format(key) i["data"][key].to_csv(file_all_data_path,encoding='utf_8_sig',index=False) i["control"][key].to_csv(file_control_path,encoding='utf_8_sig',index=False) i["init_bems"][key].to_csv(file_init_bems_path,encoding='utf_8_sig',index=False) ###Output _____no_output_____ ###Markdown Project 1: Quora Question Pairs Description:This notebook uses NLP to generate predictions for the Quora Question Pairs dataset from https://www.kaggle.com/c/quora-question-pairs/data ###Code from pathlib import Path import random import io import spacy import numpy as np import pandas as pd from sklearn.linear_model import LogisticRegression from sklearn.ensemble import RandomForestClassifier from sklearn.decomposition import TruncatedSVD from sklearn.model_selection import train_test_split from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.naive_bayes import MultinomialNB from sklearn.metrics import accuracy_score from sklearn.svm import SVC from sklearn.metrics import confusion_matrix from nltk.sentiment.vader import SentimentIntensityAnalyzer ###Output _____no_output_____ ###Markdown Function definitions, Training Set Import, Preprocessing Define helper functions to calculate cosine similarity ###Code def parse(nlp, docs): parsed_docs = [] for doc in nlp.pipe(list(docs), n_threads=10): parsed_docs.append(doc) return parsed_docs def get_similarity(docs): return docs[0].similarity(docs[1]) def get_sentiment(text): sid = SentimentIntensityAnalyzer() polarity = sid.polarity_scores(text) compound = polarity['compound'] neg = polarity['neg'] neu = polarity['neu'] pos = polarity['pos'] return compound, neg, neu, pos sentiment_vectorized = np.vectorize(get_sentiment) ###Output _____no_output_____ ###Markdown Load in train.csv. For faster computation, only load 2.5% of the full sample, or about 10,000 rows ###Code random.seed(42) csv = Path.cwd().joinpath('train.csv') p = 0.025 df = pd.read_csv(csv, index_col='id', skiprows=lambda i: i>0 and random.random() > p) df['is_duplicate'].value_counts() ###Output _____no_output_____ ###Markdown Calculate cosine similarity between question 1 and question 2, then concatenate the questions for TFIDF generation ###Code nlp = spacy.load('en_core_web_lg') df['q1_parsed'] = parse(nlp, df['question1'].astype(str)) df['q2_parsed'] = parse(nlp, df['question2'].astype(str)) df.head() df['similarity'] = df[['q1_parsed', 'q2_parsed']].apply(get_similarity, axis=1) df['q_concat'] = df['question1'].map(str) + ' ' + df['question2'] df.head() ###Output _____no_output_____ ###Markdown Calculate polarity scores for each question ###Code sentiment1 = sentiment_vectorized(df['question1'].values) sentiment2 = sentiment_vectorized(df['question2'].values) df['compound1'] = sentiment1[0] df['neg1'] = sentiment1[1] df['neu1'] = sentiment1[2] df['pos1'] = sentiment1[3] df['compound2'] = sentiment2[0] df['neg2'] = sentiment2[1] df['neu2'] = sentiment2[2] df['pos2'] = sentiment2[3] df.head() ###Output _____no_output_____ ###Markdown Calculate absolute differences in sentimentality for each question-pair ###Code df['compound_diff'] = (df['compound1'] - df['compound2']).abs() df['neg_diff'] = (df['neg1'] - df['neg2']).abs() df['neu_diff'] = (df['neu1'] - df['neu2']).abs() df['pos_diff'] = (df['pos1'] - df['pos2']).abs() df.head(10) ###Output _____no_output_____ ###Markdown Train-test split ###Code x = df.drop(['question1', 'question2', 'qid1', 'qid2', 'compound1', 'neg1', 'neu1', 'pos1', 'compound2', 'neg2', 'neu2', 'pos2', 'is_duplicate'], axis=1) y = df['is_duplicate'] x_train, x_test, y_train, y_test = train_test_split( x, y, stratify=y, random_state=42 ) x_train.head() ###Output _____no_output_____ ###Markdown TF-IDF VectorizerGenerate TF-IDF's for the train and test sets ###Code vectorizer = TfidfVectorizer() train_tfidf = vectorizer.fit_transform( x_train['q_concat'].values.astype('U') ) test_tfidf = vectorizer.transform( x_test['q_concat'].values.astype('U') ) x_train_bow = pd.merge( x_train.drop('q_concat', axis=1), pd.DataFrame(train_tfidf.todense(), index=x_train.index), on=x_train.index ).set_index('key_0') x_test_bow = pd.merge( x_test.drop('q_concat', axis=1), pd.DataFrame(test_tfidf.todense(), index=x_test.index), on=x_test.index ).set_index('key_0') x_train_bow.head() ###Output _____no_output_____ ###Markdown Model 1: Logistic Regression ###Code logit = LogisticRegression(solver='sag', random_state=42) logit.fit(x_train_bow, y_train) preds = logit.predict(x_test_bow) print(accuracy_score(y_test, preds)) print(confusion_matrix(y_test, preds)) ###Output _____no_output_____ ###Markdown Model 2: Multinomial Naive BayesMultinomial Naive Bayes shows a strong bias towards non-duplicate predictions ###Code mnb = MultinomialNB() mnb.fit(x_train_bow, y_train) preds = mnb.predict(x_test_bow) print(accuracy_score(y_test, preds)) print(confusion_matrix(y_test, preds)) ###Output _____no_output_____ ###Markdown Feature transformation: Singular Value DecompositionUsing sklearn's TruncatedSVD class, reduce the TF-IDF's into a lower feature space of 100 components ###Code svd = TruncatedSVD(n_components=100, random_state=42) train_tfidf_lsa = svd.fit_transform(train_tfidf) test_tfidf_lsa = svd.transform(test_tfidf) x_train_lsa = pd.merge( x_train.drop('q_concat', axis=1), pd.DataFrame(train_tfidf_lsa, index=x_train.index), on=x_train.index ).set_index('key_0') x_test_lsa = pd.merge( x_test.drop('q_concat', axis=1), pd.DataFrame(test_tfidf_lsa, index=x_test.index), on=x_test.index ).set_index('key_0') x_train_lsa.head() ###Output _____no_output_____ ###Markdown Model 1: Logistic RegressionNot much improvement over the non-reduced dataset ###Code logit = LogisticRegression(C=999999, solver='liblinear', random_state=42) logit.fit(x_train_lsa, y_train) preds = logit.predict(x_test_lsa) print(accuracy_score(y_test, preds)) print(confusion_matrix(y_test, preds)) ###Output _____no_output_____ ###Markdown Model 2: Support Vector MachineUsing cosine similarity, sentiment differences, and the decomposed TF-IDF's as features, the linear Support Vector Machine Classifier demonstrates greatly improved performance over Multinomial Naive Bayes, with much less bias toward non-duplicate predictions ###Code svc = SVC(kernel='linear', random_state=42) svc.fit(x_train_lsa, y_train) preds = svc.predict(x_test_lsa) print(accuracy_score(y_test, preds)) print(confusion_matrix(y_test, preds)) ###Output _____no_output_____ ###Markdown Imports and configuration ###Code %matplotlib inline import pandas as pd import numpy as np import matplotlib.pyplot as plt plt.style.use('fivethirtyeight') plt.rcParams['figure.figsize'] = (8, 5) plt.rcParams['axes.titlesize'] = 15 plt.rcParams['axes.titlepad'] = 20 PARTIES = ['D', 'R'] PARTY_NAME = {'D': 'Democrat', 'R':'Republican', '3':'Third-Party', 'I':'Independent', 'U':'Unknown', 'L': 'Libertarian'} PARTY_COLORS = {'D': '#3498db', 'R':'#e74c3c', '3':'#9b59b6', 'I':'#2ecc71', 'U':'#34495e', 'L': '#AAAAAA'} #TODO: add colors from the fivethirtyeight palette instead ###Output _____no_output_____ ###Markdown Loading data ###Code def _csv_records(filename, all_pipe_sep): with open(filename) as f: for line in f: if all_pipe_sep: yield [t.strip()[:-1].strip() for t in line[1:].split(',|')] else: yield [t.replace('|', '').strip() for t in line.split(',')] def csv_to_dataframe(filename, cols=None, all_pipe_sep=True): df = pd.DataFrame(_csv_records(filename, all_pipe_sep), columns=cols or []) for col in df: if set(df[col].unique()) == {'', 'Y'}: df[col] = (df[col] == 'Y') else: df[col] = df[col].replace('', None) return df # Candidates columns = ['cycle', 'fecc_and_id', 'c_id', 'name', 'party', 'dist_id_run_for', 'dist_id_curr', 'curr_cand', 'cycle_cand', 'crpico', 'recipcode', 'no_pacs'] cands = csv_to_dataframe('data/campaign_finance/cands16.txt', cols=columns) crpico = dict(I='incumbent', C='challenger', O='open_seat', U='unknown') cands['crpico'] = cands['crpico'].apply(lambda s : crpico[s] if s in crpico else s or None) # PACS contributions columns = ['cycle', 'fec_rec_no', 'pac_id', 'c_id', 'amount', 'date', 'real_code', 'type', 'di', 'fecc_and_id'] pacs = csv_to_dataframe('data/campaign_finance/pacs16.txt', all_pipe_sep=False, cols=columns) pacs['amount'] = pacs['amount'].astype(pd.np.int) pacs['date'] = pd.to_datetime(pacs['date'], dayfirst=False, infer_datetime_format=True) # Removing some unexpected values pacs = pacs[pacs['amount'] > 0] pacs = pacs[(pacs['date'] >= pd.datetime(2014, 12, 1)) & (pacs['date'] < pd.datetime(2017, 1, 1))] # Union of candidates/PACS contributions df = pacs.merge(cands, on=['c_id', 'cycle']).sort_values('date') ###Output _____no_output_____ ###Markdown Visualization ###Code cands.sample(3, random_state=0) pacs.sample(3, random_state=0) df.sample(3, random_state=0) t_df = df[df.amount < df.amount.quantile(.95)] t_df = t_df.pivot_table('amount', t_df.index, 'party') fig = t_df.plot.hist(stacked=True, bins=30) _ = plt.legend() amount_per_week = df.resample('7D', on='date').amount amount_per_week.sum().plot.line() _ = plt.title('Sum of the contributions, week by week.') amount_per_week.mean().plot.line() _ = plt.title('Mean of the contributions, week by week.') t_df = df.set_index('date').groupby('party').resample('7D').amount.mean() for party in df.party.unique(): t_df.loc[party, :].plot.line(label=PARTY_NAME[party], c=PARTY_COLORS[party]) plt.xticks([]) _ = plt.legend() _ = plt.title('Mean contributions per week, by party.') t_df = df.set_index('date').groupby('party').resample('7D').amount.sum() for party in df.party.unique(): t_df.loc[party, :].plot.line(label=PARTY_NAME[party], c=PARTY_COLORS[party], sharex=True) plt.xticks([]) _ = plt.legend() _ = plt.title('Sum of the contributions per week, by party.') ###Output _____no_output_____ ###Markdown Work In Progress: ###Code t_df = df.set_index('date').groupby('party').resample('7D').amount.sum().reset_index() pd.pivot_table(t_df, values='amount', columns='party', index='date').plot() from sklearn.gaussian_process import GaussianProcessRegressor from sklearn.gaussian_process.kernels import RBF, ConstantKernel, RationalQuadratic import scipy as sp date_mask = (df['date'] >= pd.datetime(2015, 1, 1)) t_df = df[date_mask].set_index('date').resample('7D').mean().fillna(0) t_df.amount = (t_df.amount - t_df.amount.mean()) / t_df.amount.std() kernel = ConstantKernel(1.0, (1e-3, 1e3)) * RBF(1, (1e-2, 1e2)) #kernel = RationalQuadratic(1.0, 1.0, (1e-5, 1e5)) regr = GaussianProcessRegressor(kernel=kernel) sample_df = t_df.sample(int(len(t_df) * 1.0), random_state=0) regr.fit(sample_df.index.asi8.reshape(-1, 1), sample_df.amount.values) x = pd.date_range(start=t_df.index[0], end=t_df.index[-1], freq='15D') y_pred, sigma = regr.predict(x.asi8.reshape(-1, 1), return_std=True) confidence = 0.90 conf_interval = sp.stats.norm.interval(confidence) plt.plot(x, y_pred, 'b--', label=u'Prediction') plt.scatter(x, y_pred, s=3, c='black') plt.plot(t_df.index, t_df.amount, 'r-', label=u'Actual', alpha=0.5) plt.fill(np.concatenate([x, x[::-1]]), np.concatenate([y_pred + conf_interval[0] * sigma, (y_pred + conf_interval[1] * sigma)[::-1]]), alpha=.2, fc='b', ec='None', label='{}% confidence interval'.format(confidence * 100)) plt.legend() ###Output _____no_output_____ ###Markdown Imports ###Code import numpy as np import matplotlib.pyplot as plt import pandas as pd import torch import os import math import pickle plt.rcParams["font.family"] = "Liberation Sans" plt.rcParams["font.size"] = 12 plt.rcParams['xtick.labelsize'] = 10 plt.rcParams['ytick.labelsize'] = 10 plt.rcParams['lines.linewidth'] = 0.5 plt.rcParams['figure.autolayout'] = True plt.rcParams['axes.spines.right'] = False plt.rcParams['axes.spines.top'] = False plt.rcParams['axes.xmargin'] = 0 from preprocess import load_features_labels features, labels, batch_ind = load_features_labels() print(features.shape) GAS_IDENTITIES = { 1: "Acetone", 2: "Acetaldehyde", 3: "Ethanol", 4: "Ethylene", 5: "Ammonia", 6: "Toluene" } ###Output _____no_output_____ ###Markdown Basic statistics Number of samples per label per batch ###Code n_labels = np.unique(labels).shape[0] df = pd.DataFrame() for batch_num, (start, end) in enumerate(batch_ind): print(f"Batch {batch_num+1}: {end-start} samples") for label in range(n_labels): n_matching = (labels[start:end]==label).astype(np.long).sum() df = df.append({ # add one to be consistent with original data indexing "label": label+1, "batch": batch_num+1, "count": n_matching }, ignore_index=True) print(f" gas {label+1}: {n_matching} samples") df.pivot("batch", "label", "count").plot(kind='bar', figsize=(12, 6)) plt.ylabel("Count") plt.title("Amount of data in each batch") plt.show() ###Output Batch 1: 445 samples gas 1: 90 samples gas 2: 98 samples gas 3: 83 samples gas 4: 30 samples gas 5: 70 samples gas 6: 74 samples Batch 2: 1244 samples gas 1: 164 samples gas 2: 334 samples gas 3: 100 samples gas 4: 109 samples gas 5: 532 samples gas 6: 5 samples Batch 3: 1586 samples gas 1: 365 samples gas 2: 490 samples gas 3: 216 samples gas 4: 240 samples gas 5: 275 samples gas 6: 0 samples Batch 4: 161 samples gas 1: 64 samples gas 2: 43 samples gas 3: 12 samples gas 4: 30 samples gas 5: 12 samples gas 6: 0 samples Batch 5: 197 samples gas 1: 28 samples gas 2: 40 samples gas 3: 20 samples gas 4: 46 samples gas 5: 63 samples gas 6: 0 samples Batch 6: 2300 samples gas 1: 514 samples gas 2: 574 samples gas 3: 110 samples gas 4: 29 samples gas 5: 606 samples gas 6: 467 samples Batch 7: 3613 samples gas 1: 649 samples gas 2: 662 samples gas 3: 360 samples gas 4: 744 samples gas 5: 630 samples gas 6: 568 samples Batch 8: 294 samples gas 1: 30 samples gas 2: 30 samples gas 3: 40 samples gas 4: 33 samples gas 5: 143 samples gas 6: 18 samples Batch 9: 470 samples gas 1: 61 samples gas 2: 55 samples gas 3: 100 samples gas 4: 75 samples gas 5: 78 samples gas 6: 101 samples Batch 10: 3600 samples gas 1: 600 samples gas 2: 600 samples gas 3: 600 samples gas 4: 600 samples gas 5: 600 samples gas 6: 600 samples ###Markdown Readings from a single odor class over time A basic plot reveals temporal dynamics which do not depend on the ###Code class_1_indices, = np.where(labels==0) readings = features[class_1_indices] x = np.arange(readings.shape[0]) feature_ids = [0] n_plots = len(feature_ids) fig, axes = plt.subplots(n_plots, 1, figsize=(7, 2.5), sharex=True) if axes is not list: axes = [axes] for plot_id, feat_id in enumerate(feature_ids): y = readings[:, feat_id] ax = axes[plot_id] ax.plot(x, y, c="black", linewidth=1) ax.set_ylabel(f"Feature {feat_id+1} Z-score") for start, _ in batch_ind: # Draw a line at the first sample whose index is equal to order greater than the batch start if start == 0: continue for sub_i, i in enumerate(class_1_indices): if i >= start: break ax.axvline(sub_i, linestyle='--', linewidth=1) ax.set_xlabel("Samples of Acetone") # plt.tight_layout() fig.savefig("writeup/figure_sources/fig_1.svg") from preprocess import _load_raw_data import matplotlib.pyplot as plt import numpy as np features, labels, batch_ind = _load_raw_data(include_gas_6=False) anamolous_sensor = 1 readings = features[labels==0] x = np.arange(readings.shape[0]) y = readings[:, anamolous_sensor] plt.figure(figsize=(12, 4)) plt.plot(x, y) plt.ylabel("Raw Reading") plt.xlabel("Samples of Odor 1") plt.title("Verifying that an outlier in the z-scores is present in the raw data") plt.tight_layout() ###Output _____no_output_____ ###Markdown Identifying outliersPrint the index of any feature with a standard deviation of more than 5, and also print that feature value. ###Code (features > 50).nonzero() ###Output _____no_output_____ ###Markdown Visualizing features and labels for figures ###Code # Visualize features and labels from each batch import numpy as np import math import cairo from mpl_toolkits.axes_grid1 import make_axes_locatable from batches import features, labels, batch_ind n_samples = 6 n_feats = 10 batches = list(range(10)) x = [] y = [] for batch in batches: samp = np.random.choice(np.arange(*batch_ind[batch]), n_samples, replace=False) x.append(features[samp, :n_feats]) y.append(labels[samp]) x = np.stack(x) y = np.stack(y) print("x shape", x.shape, "y shape", y.shape) fig, axes = plt.subplots(len(batches)+1, 2, figsize=(4, 16)) for row in range(len(batches)+1): for col in range(2): ax = axes[row, col] if row == len(batches): if col == 0: plt.colorbar(im_gray, cax=ax, orientation="horizontal") else: plt.colorbar(im_color, cax=ax, orientation="horizontal") continue if col == 0: im_gray = ax.imshow(x[row], cmap="gray") else: im_color = ax.imshow(y[row].reshape(n_samples, 1), cmap="rainbow") # divider = make_axes_locatable(ax) # cax = divider.append_axes('top', size=0.5, pad=0.35) ax.set_xticks([]) ax.set_yticks([]) # plt.colorbar(im_gray) fig.savefig("writeup/fig_data_matrix_raw.svg", format="svg") fig, axes = plt.subplots(len(batches)+1, 2, figsize=(4, 4)) for row in range(len(batches)+1): for col in range(2): ax = axes[row, col] if row == len(batches): if col == 0: plt.colorbar(im_gray, cax=ax, orientation="horizontal") else: plt.colorbar(im_color, cax=ax, orientation="horizontal") continue if col == 0: im_gray = ax.imshow(x[row], cmap="gray") else: im_color = ax.imshow(y[row].reshape(n_samples, 1), cmap="rainbow") im_color.set_clim(0.0, 4.0) # divider = make_axes_locatable(ax) # cax = divider.append_axes('top', size=0.5, pad=0.35) ax.set_xticks([]) ax.set_yticks([]) # plt.colorbar(im_gray) fig.savefig("writeup/fig_data_matrix_raw.svg", format="svg") # Visualize features and labels from each batch import matplotlib.pyplot as plt import numpy as np import math import cairo from mpl_toolkits.axes_grid1 import make_axes_locatable from batches import features, labels, batch_ind, samples_in_batch_by_label, N_ODOR_CLASSES n_feats = 10 batches = list(range(10)) x = [] y = [] k = 3 for batch in batches: xb = [] yb = [] for c in range(N_ODOR_CLASSES): choices = samples_in_batch_by_label[batch][c] samp = np.random.choice(choices, k, replace=False) xb.append(features[samp, :n_feats]) yb.append(labels[samp]) x.append(np.stack(xb)) y.append(np.stack(yb)) # x shape (batches, classes, k, features) # y shape (batches, classes, k,) x = np.stack(x) y = np.stack(y) print("x shape", x.shape, "y shape", y.shape) fig, axes = plt.subplots(x.shape[0], x.shape[2], figsize=(8, 16)) for batch in range(x.shape[0]): for samp in range(x.shape[2]): ax = axes[batch, samp] data = x[batch, :, samp] im_gray = ax.imshow(data, cmap="gray") im_gray.set_clim(-1.0, 1.0) ax.set_xticks([]) ax.set_yticks([]) # plt.colorbar(im_gray) fig.savefig("writeup/batch_matrix_raw.svg", format="svg") ###Output x shape (10, 5, 3, 10) y shape (10, 5, 3) ###Markdown Basic classification techniques ANOVAHere we run a one-way ANOVA to test the null hypothesis that the data from the different batches have the same mean. This analysis however makes the assumption that samples are independent which isn't evidently true looking at the plots above. ###Code import scipy.stats features_z = scipy.stats.zscore(features, axis=0) unique_labels = np.unique(labels) features_by_label = [] for label in unique_labels: features_by_label.append(features_z[labels==label]) scipy.stats.f_oneway ###Output _____no_output_____ ###Markdown Principal Components ###Code import numpy as np from sklearn.decomposition import PCA from batches import split_all pca = PCA(n_components=2) new_features = pca.fit_transform(split_all.features) print(pca.explained_variance_ratio_) import matplotlib.colors as mcolors import matplotlib.pyplot as plt plt.figure(figsize=(8, 8)) colors = list(mcolors.TABLEAU_COLORS) for i, (start, end) in enumerate(split_all.batch_ind): batch = i+1 batch = new_features[start:end] plt.scatter(batch[:, 0], batch[:, 1], color=colors[i], label=batch, alpha=100/(end-start)) # plt.legend() ###Output _____no_output_____ ###Markdown LDA Inference of the chemical from the features, within-batchAn LDA is able to discriminate odors within a batch (no generalization tested). ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis print(labels.shape, features.shape) batches_feats = [features[s:t] for s, t in batch_ind] batches_label = [labels[s:t] for s, t in batch_ind] batches_accuracy = [] batches_lda_models = [] for feats_batch, labels_batch in zip(batches_feats, batches_label): X = feats_batch y = labels_batch print(X.shape, y.shape) clf = LinearDiscriminantAnalysis() batches_lda_models.append(clf) clf.fit(X, y) y_pred = clf.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] batches_accuracy.append(accuracy) print("="*80) for batch_i, accuracy in enumerate(batches_accuracy): print(f"Accuracy achieved by batch {batch_i}: {accuracy}") ###Output (12077,) (12077, 128) (371, 128) (371,) (1239, 128) (1239,) (1586, 128) (1586,) (161, 128) (161,) (197, 128) (197,) (1833, 128) (1833,) (3045, 128) (3045,) (276, 128) (276,) (369, 128) (369,) (3000, 128) (3000,) ================================================================================ Accuracy achieved by batch 0: 1.0 Accuracy achieved by batch 1: 1.0 Accuracy achieved by batch 2: 0.9993694829760403 Accuracy achieved by batch 3: 1.0 Accuracy achieved by batch 4: 1.0 Accuracy achieved by batch 5: 0.9950900163666121 Accuracy achieved by batch 6: 0.9990147783251232 Accuracy achieved by batch 7: 1.0 Accuracy achieved by batch 8: 1.0 Accuracy achieved by batch 9: 0.9956666666666667 ###Markdown Inference of the chemical from the features, within-batch (50/50 train/test split)With a 50/50 train/test split, the LDA classifier succeeds to generalize to classify within-batch. ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis print(labels.shape, features.shape) batches_feats = [features[s:t] for s, t in batch_ind] batches_label = [labels[s:t] for s, t in batch_ind] batches_sizes = [batch.shape[0] for batch in batches_label] R_inds = [np.random.choice(np.arange(size), int(size/2)) for size in batches_sizes] T_inds = [np.setdiff1d(np.arange(size), ind, assume_unique=True) for ind, size in zip(R_inds, batches_sizes)] batches_feats_R = [feat[ind] for feat, ind in zip(batches_feats, R_inds)] batches_label_R = [label[ind] for label, ind in zip(batches_label, R_inds)] batches_feats_T = [feat[ind] for feat, ind in zip(batches_feats, T_inds)] batches_label_T = [label[ind] for label, ind in zip(batches_label, T_inds)] batches_lda_models = [] for feats_batch, labels_batch in zip(batches_feats_R, batches_label_R): X = feats_batch y = labels_batch print(X.shape, y.shape) clf = LinearDiscriminantAnalysis() batches_lda_models.append(clf) clf.fit(X, y) # test batches_accuracy = [] for feats_batch, labels_batch, clf in zip(batches_feats_T, batches_label_T, batches_lda_models): X = feats_batch y = labels_batch y_pred = clf.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] batches_accuracy.append(accuracy) for batch_i, accuracy in enumerate(batches_accuracy): print(f"Accuracy achieved by batch {batch_i}: {accuracy}") type(np.arange(5)[0].item()) ###Output _____no_output_____ ###Markdown Inference of the chemical from the features, between-batchMake a matrix between batches. This shows that, as you would expect, discriminators trained on one batch perform the best on themselves, followed by their neighbors. ###Code # Use the models trained in a previous cell n_batches = len(batches_lda_models) cross_accuracy = np.empty((n_batches, n_batches)) for i, model_i in enumerate(batches_lda_models): for j, (feats_batch_j, labels_batch_j) in enumerate(zip(batches_feats, batches_label)): X = feats_batch_j y = labels_batch_j y_pred = model_i.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] cross_accuracy[i, j] = accuracy # plt.figure(figsize=(6, 8)) plt.imshow(cross_accuracy) # plt.xticks(np.arange(n_batches), labels=np.arange(n_batches)+1) # plt.yticks(np.arange(n_batches), labels=np.arange(n_batches)+1) plt.title("Prediction accuracy of LDA (similarity) between batches") plt.xlabel("Target") plt.ylabel("Source") plt.colorbar() # Use the models trained in a previous cell n_batches = len(batches_lda_models) cross_accuracy = np.empty((n_batches, n_batches)) for i, model_i in enumerate(batches_lda_models): for j, (feats_batch_j, labels_batch_j) in enumerate(zip(batches_feats, batches_label)): X = feats_batch_j y = labels_batch_j y_pred = model_i.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] cross_accuracy[i, j] = accuracy fig, ax = plt.subplots() x = np.arange(1, 11) # ax.plot(x, cross_accuracy[0], c="purple") # ax.axvline(1, c="purple", linestyle="--") ax.plot(x, cross_accuracy[3], c="blue", marker="x", markersize=10) ax.axvline(4, c="blue", linestyle="--") ax.plot(x, cross_accuracy[6], c="black", marker="x", markersize=10) ax.axvline(7, c="black", linestyle="--") ax.set_xticks(x) ax.set_ylim([0.0, 1.0]) ax.set_yticks(np.arange(0, 1.1, 0.1)) ax.grid(axis='y', color='#F7BFBE') fig.savefig("writeup/lda_centers.png") ###Output _____no_output_____ ###Markdown Inference of chemical from the features, all the dataCan a single LDA model classify every smell in all the batches? Random 50/50 train/test split. ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis size = features.shape[0] R_ind = np.random.choice(np.arange(size), int(size/2)) T_ind = np.setdiff1d(np.arange(size), R_ind, assume_unique=True) batches_feats_R = features[R_ind] batches_label_R = labels[R_ind] batches_feats_T = features[T_ind] batches_label_T = labels[T_ind] X = batches_feats_R y = batches_label_R print(X.shape, y.shape) clf = LinearDiscriminantAnalysis() batches_lda_models.append(clf) clf.fit(X, y) # test accuracy = [] X = batches_feats_T y = batches_label_T y_pred = clf.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] print(f"Accuracy achieved: {accuracy}") ###Output (6955, 128) (6955,) Accuracy achieved: 0.948371817643576 ###Markdown Train on 1..T-1, test on TFor each batch number T=1...9, (0-indexed) train an LDA model on batch 0..T-1; then evaluate on batch T ###Code from sklearn.discriminant_analysis import LinearDiscriminantAnalysis from batches import split_all features, labels, batch_ind = split_all.features, split_all.labels, split_all.batch_ind print(labels.shape, features.shape) # batches_X[T] contains all data 0...T (including batch T) (0-indexed) batches_feats = [features[0:t] for s, t in batch_ind] batches_label = [labels[0:t] for s, t in batch_ind] batches_accuracy = [] batches_lda_models = [] for feats_batch, labels_batch in zip(batches_feats, batches_label): X = feats_batch y = labels_batch print(X.shape, y.shape) clf = LinearDiscriminantAnalysis() batches_lda_models.append(clf) clf.fit(X, y) y_pred = clf.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] batches_accuracy.append(accuracy) print("="*80) for batch_i, accuracy in enumerate(batches_accuracy): print(f"Accuracy achieved by batch {batch_i}: {accuracy}") # batches_lda_models[t] is trained on batches 0...t # so test on batch t+1=T batches = [] accuracies = [] for T in range(1, 10): model = batches_lda_models[T-1] start, end = batch_ind[T] X = features[start:end] y = labels[start:end] y_pred = model.predict(X) accuracy = (y_pred==y).astype(np.long).sum().item() / y.shape[0] accuracies.append(accuracy) batches.append(T + 1) fig, ax = plt.subplots(figsize=(6, 4)) ax.plot(batches, accuracies, color="black", marker="x", markersize=10) ax.set_xticks(batches) ax.set_ylim([0.0, 1.0]) ax.set_yticks(np.arange(0, 1.1, 0.1)) ax.grid(axis='y', color='#F7BFBE') fig.savefig("writeup/lda_up_to.png") ###Output _____no_output_____ ###Markdown Neural Network Classifiers Training curves Early stopping pretraining ###Code # data_folder = "output/backprop_context_earlystop_share2" data_folder = "output/backprop_context_patientearlystop_epoch1" # data_folder = "backprop_context_patientearlystop_share_epoch0" import matplotlib.pyplot as plt import torch import os Ts = list(range(3, 10)) samp_max = 20 fig, axes = plt.subplots(len(Ts), 1, figsize=(12, 2*len(Ts))) for T, ax in zip(Ts, axes): lloss = torch.load(os.path.join(data_folder, f"val_lloss_{T}.pt")) lacc = torch.load(os.path.join(data_folder, f"val_lacc_{T}.pt")) li = torch.load(os.path.join(data_folder, f"val_li_{T}.pt")) stop_time = torch.load(os.path.join(data_folder, f"val_stop_time_{T}.pt")) print(f"Stop time for T={T}: {stop_time}") ax.set_ylabel(f"Batch={T+1}") line_loss, = ax.plot(li[:samp_max], lloss[:samp_max]) line_acc, = ax.plot(li[:samp_max], lacc[:samp_max]) ax.hlines(1.0, 0, max(li[:samp_max]), linestyles="dashed") ax.set_xlabel("n samples seen") fig.legend([line_loss, line_acc], ["Training Loss", "Testing Accuracy"], loc="upper right") # [Context is sequences ] [T=4] for i, acc in enumerate(lacc[0:20]): print(f"{acc}") patience = 10 consec = 0 last_best = float('-inf') last_best_i = 0 for i, k in enumerate(lacc): if k > last_best: print(f"better i={i}") last_best = k consec = 0 last_best_i = i else: consec += 1 if consec >= patience: print(f"Violated patience at i={i}") consec = 0 print(last_best_i) ###Output 0 0.7246666666666667 1 0.83 2 0.7806666666666666 3 0.8153333333333334 4 0.7873333333333333 5 0.8513333333333334 6 0.808 7 0.7106666666666667 8 0.8093333333333333 9 0.7953333333333333 10 0.8453333333333334 better i=0 better i=1 better i=5 5 ###Markdown Final training ###Code data_folder = "output/nocontext_schedule1" # Accuracy over time graph import torch import os Ts = list(range(2, 10)) fig, axes = plt.subplots(len(Ts), 1, figsize=(4, 16)) for T, ax in zip(Ts, axes): lloss = torch.load(os.path.join(data_folder, f"lloss_{T}.pt")) lacc = torch.load(os.path.join(data_folder, f"lacc_{T}.pt")) li = torch.load(os.path.join(data_folder, f"li_{T}.pt")) ax.set_ylabel(f"Batch={T+1}") line_loss, = ax.plot(li, lloss) line_acc, = ax.plot(li, lacc) ax.hlines(1.0, 0, max(li), linestyles="dashed") ax.set_xlabel("n samples seen") fig.legend([line_loss, line_acc], ["Training Loss", "Testing Accuracy"], loc="upper right") # [Context is sequences ] [T=4] # Final accuracies import matplotlib.pyplot as plt import torch import os vergara_eyeballed = [1.0, 0.74, 0.88, 0.93, 0.95, 0.70, 0.70, 0.92, 0.75, 0.65] Ts = list(range(2, 10)) batches = [t+1 for t in Ts] accs = [] for T, ax in zip(Ts, axes): acc = torch.load(os.path.join(data_folder, f"acc_{T}.pt")) accs.append(acc) plt.plot(batches, accs, label="Choose-k neural network") plt.plot(batches, vergara_eyeballed[2:], label="Weighted SVM ensemble") plt.title("Generalization performance") plt.xlabel("Batch") plt.ylabel("Final testing accuracy") plt.legend() ###Output _____no_output_____ ###Markdown Adjustable accuracy plots ###Code # Default Parameters show_legend = True draw_errors = True draw_plot = False show_scatter = False draw_axis = False show_svm = False use_offset = False show_vergara = False save_figure = False #data_folders = ([f"output/backprop{n}" for n in range(10)], # [f"output/backprop_dropout{n}" for n in range(10)]) #dataset_names = ("Backprop", "Backprop+Dropout") # data_folders = ([f"output/backprop{n}" for n in range(10)], # [f"output/evolve{n}" for n in range(10)], # [f"output/backprop_ensemble{n}" for n in range(10)]) # dataset_names = ("With Context", "Evolve With Context", "Ensemble") # data_folders = ([f"output/backprop{n}" for n in range(10)], # [f"output/evolve{n}" for n in range(10)], # [f"output/evolve_uber{n}" for n in range(10)]) # dataset_names = ("Backprop", "Evolve (old)", "Evolve (new)") # data_folders = ([f"output/backprop{n}" for n in range(10)],) # dataset_names = ("Context Model",) # data_folders = ([f"output/ensemble_long{n}" for n in range(3)], # [f"output/nocontext_long{n}" for n in range(3)], # [f"/media/jamie/PATRIOT/sensor-drift_bak/output/backprop{n}" for n in range(10)], # [f"/media/jamie/PATRIOT/sensor-drift_bak/output/backprop_context_earlystop_share{n}" for n in range(3)], # ) # dataset_names = ("Ensemble", # "NoContext", # "Context", # "ContextShare" # ) # FIGURE 2B parametrrs # data_folders = ([f"output/nocontext_long{n}" for n in range(3)],) # dataset_names = ("Context Model",) # figure_path = "writeup/figure_sources/feedforward_accuracy.png" # FIGURE 3 parametrrs # data_folders = ([f"output/ensemble_long{n}" for n in range(3)],) # dataset_names = ("Ensemble Model",) # figure_path = "writeup/figure_sources/ensemble_accuracy.png" # show_svm = True # FIGURE 4B parametrrs # data_folders = ([f"output/context_long{n}" for n in range(3)],) # dataset_names = ("Context",) # figure_path = "writeup/figure_sources/context_accuracy.png" # FIGURE 4C parametrrs # data_folders = ([f"output/context_share_long{n}" for n in range(3)],) # dataset_names = ("Context Share") # figure_path = "writeup/figure_sources/context_share_accuracy.png" # # n_trial = 5 # data_folders = ( # [f"output/nocontext_medium{n}" for n in range(n_trial)], # [f"output/context_medium{n}" for n in range(n_trial)] # ) # dataset_names = [ # "NoContext", # "Context", # ] n_trial = 30 subselection = None #[2, -1] data_folders = ([f"output/ensemble_harddecay{n}" for n in range(n_trial)], [f"output/nocontext_harddecay{n}" for n in range(n_trial)], [f"output/context_harddecay_k1{n}" for n in range(n_trial)], [f"output/context_lstm_harddecay{n}" for n in range(n_trial)], [f"output/context_harddecay_relu{n}" for n in range(n_trial)], [f"output/nocontext_big_short_harddecay{n}" for n in range(n_trial)] ) # data_folders = ([f"output/ensemble_short_harddecay{n}" for n in range(n_trial)], # [f"output/nocontext_short_harddecay{n}" for n in range(n_trial)], # [f"output/context_short_harddecay{n}" for n in range(n_trial)], # [f"output/context_lstm_short_harddecay{n}" for n in range(n_trial)], # [f"output/context_short_harddecay_relu{n}" for n in range(n_trial)], # ) dataset_names = ["Feedforward NN Ensemble", "Feedforward NN", "Feedforward+Context NN", "LSTM", "Context relu", "Feedforward+Context NN Big" ] if subselection is not None: data_folders = [data_folders[idx] for idx in subselection] dataset_names = [dataset_names[idx] for idx in subselection] # Final accuracies all_points = [] Ts = list(range(2, 10)) batches = [t+1 for t in Ts] # For each method, for each batch, for each n, there is an accuracy df = pd.DataFrame(columns=["method", "batch", "n", "accuracy"]) for method_i, method_folders in enumerate(data_folders): for T, batch in zip(Ts, batches): for n, n_folder in enumerate(method_folders): try: acc = torch.load(os.path.join(n_folder, f"acc_{T}.pt")) except FileNotFoundError: print("not found", dataset_names[method_i], "T=", T) df = df.append({ "method": method_i, "batch": batch, "n": n, "accuracy": acc }, ignore_index=True) if show_svm: method_i += 1 print("method_i", method_i) if "SVM Ensemble" not in dataset_names: dataset_names.append("SVM Ensemble") dirpath = "svm_ensemble_results/setting2" for trial in range(n_trial): try: with open(os.path.join(dirpath, f"accuracies_trial{trial}.pkl"), "rb") as f: accs = pickle.load(f) except FileNotFoundError: print("not found", dataset_names[method_i], "T=", T) accs = accs[-len(batches):] for i, batch in enumerate(batches): acc = accs[i] df = df.append({ "method": method_i, "batch": batch, "n": trial, "accuracy": acc }, ignore_index=True) # For each method, for each batch, calculate the mean and 95% confidence interval df2 = pd.DataFrame(columns=["method", "batch", "mu", "err"]) for method_index, method_name in enumerate(dataset_names): for T, batch in zip(Ts, batches): data = df[(df.method==method_index) & (df.batch==batch)].accuracy try: err = 1.96 * data.std() / math.sqrt(data.count()) except ZeroDivisionError: print(method_name, data, "T=", T, data, method_index) continue df2 = df2.append({ "method": method_index, "batch": batch, "mu": data.mean().item(), "err": err.item() }, ignore_index=True) if use_offset: OFFSET = 0.15 else: OFFSET = 0.0 colors = ("black", "b", "r", "y", "c", "m", "k") markers = ("$\u25EF$", "$\u25EF$", "v", "v", "*", "*") fig, ax = plt.subplots(1, 1) for i in sorted(df2.method.unique()): i = int(i) off = OFFSET if draw_errors or draw_plot else 0.0 m = df[df.method == i] # Scatter plot the accuracies if show_scatter: ax.scatter( x=m.batch-off, y=m.accuracy, marker=markers[i], s=100, label=dataset_names[i], c=colors[i]) # Error bars if draw_errors: ax.errorbar( x=df2[df2.method == i].batch, y=df2[df2.method == i].mu, yerr=df2[df2.method == i].err, c=colors[i], label=dataset_names[i], capsize=10) # Line if draw_plot: ax.plot( df2[df2.method == i].batch, df2[df2.method == i].mu, c=colors[i], markersize=10) if show_vergara: vergara_eyeballed = [1.0, 0.74, 0.88, 0.93, 0.95, 0.70, 0.70, 0.92, 0.75, 0.65] ax.plot(batches, vergara_eyeballed[2:], linestyle='--', c="g", marker="$\u25EF$", label="Weighted SVM ensemble") ax.set_ylim([0.0, 1.1]) if draw_axis: plt.xlabel("Batch") plt.ylabel("Test Accuracy") # Legend if show_legend: plt.legend() ax.set_xticks(np.arange(3, 11)) ax.set_ylim([0.7, 1.0]) ax.set_yticks(np.arange(0.7, 1.0, 0.1)) ax.grid(axis='y', color='#F7BFBE') plt.show() if save_figure: fig.savefig(figure_path) ###Output _____no_output_____ ###Markdown Results Figure ###Code n_trial = 30 data_folders = ( [f"output/nocontext_harddecay{n}" for n in range(n_trial)], [f"output/context_harddecay_k1{n}" for n in range(n_trial)], [f"output/ensemble_harddecay{n}" for n in range(n_trial)], [f"output/context_lstm_harddecay{n}" for n in range(n_trial)], ) dataset_names = [ "Feedforward NN", "Feedforward+Context NN", "Feedforward NN Ensemble", "LSTM", ] # Default Parameters show_legend = True draw_errors = True draw_plot = False show_scatter = False draw_axis = False show_svm = True use_offset = False show_vergara = False save_figure = False # Final accuracies all_points = [] Ts = list(range(2, 10)) batches = [t+1 for t in Ts] # For each method, for each batch, for each n, there is an accuracy df = pd.DataFrame(columns=["method", "batch", "n", "accuracy"]) for method_i, method_folders in enumerate(data_folders): for T, batch in zip(Ts, batches): for n, n_folder in enumerate(method_folders): try: acc = torch.load(os.path.join(n_folder, f"acc_{T}.pt")) except FileNotFoundError: print("not found", dataset_names[method_i], "T=", T) df = df.append({ "method": method_i, "batch": batch, "n": n, "accuracy": acc }, ignore_index=True) if show_svm: method_i += 1 print("method_i", method_i) if "SVM Ensemble" not in dataset_names: dataset_names.append("SVM Ensemble") dirpath = "svm_ensemble_results/setting2" for trial in range(n_trial): try: with open(os.path.join(dirpath, f"accuracies_trial{trial}.pkl"), "rb") as f: accs = pickle.load(f) except FileNotFoundError: print("not found", dataset_names[method_i], "T=", T) accs = accs[-len(batches):] for i, batch in enumerate(batches): acc = accs[i] df = df.append({ "method": method_i, "batch": batch, "n": trial, "accuracy": acc }, ignore_index=True) # For each method, for each batch, calculate the mean and 95% confidence interval df2 = pd.DataFrame(columns=["method", "batch", "mu", "err"]) for method_index, method_name in enumerate(dataset_names): for T, batch in zip(Ts, batches): data = df[(df.method==method_index) & (df.batch==batch)].accuracy try: err = 1.96 * data.std() / math.sqrt(data.count()) except ZeroDivisionError: print(method_name, data, "T=", T, data, method_index) continue df2 = df2.append({ "method": method_index, "batch": batch, "mu": data.mean().item(), "err": err.item() }, ignore_index=True) if use_offset: OFFSET = 0.15 else: OFFSET = 0.0 colors = ("#e41a1c", "#377eb8", "#4daf4a", "#984ea3", "#ff7f00") markers = ("$\u25EF$", "$\u25EF$", "v", "v", "*", "*") fig, axes = plt.subplots(1, 2, figsize=(7.05, 3), sharey=True) highlights = [[0, 1], [2, 3]] for ax, highlight in zip(axes, highlights): for i in sorted(df2.method.unique()): i = int(i) off = OFFSET if draw_errors or draw_plot else 0.0 m = df[df.method == i] # Scatter plot the accuracies if show_scatter: ax.scatter( x=m.batch-off, y=m.accuracy, marker=markers[i], s=100, label=dataset_names[i], c=colors[i]) # Error bars if i in highlight: alpha = 1.0 else: alpha = 0.2 if draw_errors: ax.errorbar( x=df2[df2.method == i].batch, y=df2[df2.method == i].mu, yerr=df2[df2.method == i].err, c=colors[i], label=dataset_names[i], capsize=10, linewidth=1, elinewidth=1, capthick=1, alpha=alpha) # Line if draw_plot: ax.plot( df2[df2.method == i].batch, df2[df2.method == i].mu, c=colors[i], markersize=10) if show_vergara: vergara_eyeballed = [1.0, 0.74, 0.88, 0.93, 0.95, 0.70, 0.70, 0.92, 0.75, 0.65] ax.plot(batches, vergara_eyeballed[2:], linestyle='--', c="g", marker="$\u25EF$", label="Weighted SVM ensemble") ax.set_ylim([0.0, 1.1]) if draw_axis: plt.xlabel("Batch") plt.ylabel("Test Accuracy") # Legend import matplotlib.patches as patches legend_rectangles = [] legend_lables = [] for method_i in sorted(df2.method.unique()): method_i = int(method_i) legend_lables.append(dataset_names[method_i]) rect = patches.Rectangle((0, 0), 1, 1, facecolor=colors[method_i]) legend_rectangles.append(rect) axes[0].legend(legend_rectangles[:2], legend_lables[:2], loc=(0.02, 0.02)) axes[1].legend(legend_rectangles[2:], legend_lables[2:], loc=(0.02, 0.02)) # Axes and ticks axes[0].set_xticks(np.arange(3, 11)) axes[1].set_xticks(np.arange(3, 11)) ax.set_ylim([0.4, 1.0]) ax.set_yticks(np.arange(0.4, 1.05, 0.1)) axes[0].set_ylabel("Accuracy") axes[0].grid(axis='y', color='#bbbbbb') axes[1].grid(axis='y', color='#bbbbbb') axes[0].set_xlabel("Batch") axes[1].set_xlabel("Batch") plt.show() figure_path = "writeup/figure_sources/fig_3.svg" fig.savefig(figure_path) pd.__version__ ###Output _____no_output_____ ###Markdown Statistical testsThese require the "df" and "df2" variables to be present from the previous cells. ###Code import pingouin as pg # First test: For each batch, run an ANOVA for methods considered # This will be used to selectively bold results in the table if False: print("#" * 80) print("### ANOVA, pairwise t-tests for each batch") print("#" * 80) for batch in range(3, 11): df_batch = df[df.batch == batch] print() print(f"### batch {batch}:") aov = pg.welch_anova( dv='accuracy', between='method', data=df_batch ) print("ANOVA:") print(aov) pgs = pg.pairwise_ttests( data=df_batch, dv='accuracy', between='method', correction=True ) print("Pairwise TTests:") print(pgs) print() # Second test: Run an ANOVA for the grand means print("#" * 80) print("### Second test") print("#" * 80) # Third test: Run an ANOVA for the grand means, blocked by batch print("#" * 80) print("### Significance test for context, no context") print("#" * 80) context_index = dataset_names.index("Feedforward+Context NN") nocontext_index = dataset_names.index("Feedforward NN") df_context = df[(df.method == context_index) | (df.method == nocontext_index)] aov = pg.anova( dv='accuracy', between=['method', 'batch'], data=df_context ) print("ANOVA:") print(aov) if False: print("#" * 80) print("### Significance test for context, no context, by batch") print("#" * 80) for batch in range(3, 11): print() print(f"### batch {batch}:") df_batch = df_context[df.batch == batch] pgs = pg.pairwise_ttests( data=df_batch, dv='accuracy', between='method', correction=True ) print("Pairwise TTests:") print(pgs) print() pgs = pg.pairwise_ttests( data=df, dv='accuracy', between=['method'], correction=True ) print("Pairwise TTests:") print(pgs) # Did LSTM outperform RNN? print("#" * 80) print("### Significance test for context, LSTM") print("#" * 80) context_index = dataset_names.index("Feedforward+Context NN") lstm_index = dataset_names.index("LSTM") df_context = df[(df.method == context_index) | (df.method == lstm_index)] aov = pg.anova( dv='accuracy', between=['method', 'batch'], data=df_context ) print("ANOVA:") print(aov) # Did the large RNN outperform the other one? print("#" * 80) print("### Significance test for context, big context") print("#" * 80) context_index = dataset_names.index("Feedforward+Context NN") large_context_index = dataset_names.index("Feedforward+Context NN Big") df_context = df[(df.method == context_index) | (df.method == large_context_index)] aov = pg.anova( dv='accuracy', between=['method', 'batch'], data=df_context ) print("ANOVA:") print(aov) print("#" * 80) print("### Significance test for SVM ensemble, NN ensemble") print("#" * 80) id_1 = dataset_names.index("Feedforward NN Ensemble") id_2 = dataset_names.index("SVM Ensemble") df_context = df[(df.method == id_1) | (df.method == id_2)] aov = pg.anova( dv='accuracy', between=['method', 'batch'], data=df_context ) print("ANOVA:") print(aov) # Third test: Run an ANOVA for the grand means, blocked by batch print("#" * 80) print("### Significance test for context, no context") print("#" * 80) ###Output ################################################################################ ### Second test ################################################################################ ################################################################################ ### Significance test for context, no context ################################################################################ ANOVA: Source SS DF MS F p-unc np2 0 method 0.021 1 0.021 5.294861 2.183088e-02 0.011283 1 batch 2.334 7 0.333 84.069429 1.781386e-78 0.559139 2 method * batch 0.042 7 0.006 1.529066 1.551741e-01 0.022548 3 Residual 1.840 464 0.004 NaN NaN NaN Pairwise TTests: Contrast A B Paired Parametric T dof Tail p-unc \ 0 method 0.0 1.0 False True -2.922 464.78 two-sided 0.003644 1 method 0.0 2.0 False True -4.443 442.42 two-sided 0.000011 2 method 0.0 3.0 False True -3.276 438.39 two-sided 0.001138 3 method 0.0 4.0 False True -4.644 454.88 two-sided 0.000004 4 method 0.0 5.0 False True -3.613 461.17 two-sided 0.000336 5 method 1.0 2.0 False True -1.529 471.13 two-sided 0.126912 6 method 1.0 3.0 False True -0.214 468.94 two-sided 0.830592 7 method 1.0 4.0 False True -1.820 476.34 two-sided 0.069352 8 method 1.0 5.0 False True -0.728 477.74 two-sided 0.466948 9 method 2.0 3.0 False True 1.417 477.84 two-sided 0.157073 10 method 2.0 4.0 False True -0.355 476.16 two-sided 0.723015 11 method 2.0 5.0 False True 0.777 473.47 two-sided 0.437516 12 method 3.0 4.0 False True -1.729 474.92 two-sided 0.084386 13 method 3.0 5.0 False True -0.561 471.63 two-sided 0.574822 14 method 4.0 5.0 False True 1.093 477.38 two-sided 0.275076 BF10 hedges 0 6.218 -0.266 1 1252.874 -0.405 2 17.7 -0.299 3 2947.857 -0.423 4 53.384 -0.329 5 0.315 -0.139 6 0.104 -0.020 7 0.504 -0.166 8 0.131 -0.066 9 0.268 0.129 10 0.108 -0.032 11 0.136 0.071 12 0.432 -0.158 13 0.118 -0.051 14 0.181 0.100 ################################################################################ ### Significance test for context, LSTM ################################################################################ ANOVA: Source SS DF MS F p-unc np2 0 method 0.015 1 0.015 3.617390 5.779753e-02 0.007736 1 batch 1.666 7 0.238 57.395916 5.330224e-59 0.464062 2 method * batch 0.051 7 0.007 1.747027 9.618675e-02 0.025679 3 Residual 1.924 464 0.004 NaN NaN NaN ################################################################################ ### Significance test for context, big context ################################################################################ ANOVA: Source SS DF MS F p-unc np2 0 method 0.005 1 0.005 1.257770 2.626536e-01 0.002703 1 batch 2.233 7 0.319 80.245739 6.665702e-76 0.547635 2 method * batch 0.033 7 0.005 1.179373 3.130049e-01 0.017481 3 Residual 1.845 464 0.004 NaN NaN NaN ################################################################################ ### Significance test for SVM ensemble, NN ensemble ################################################################################ ###Markdown Print Table 1 ###Code # Final accuracies import pandas as pd import matplotlib.pyplot as plt import torch import os import math from tabulate import tabulate all_points = [] Ts = list(range(2, 10)) batches = [t+1 for t in Ts] # For each method, for each batch, for each n, there is an accuracy df = pd.DataFrame(columns=["method", "batch", "n", "accuracy"]) for method_i, method_folders in enumerate(data_folders): for T, batch in zip(Ts, batches): for n, n_folder in enumerate(method_folders): try: acc = torch.load(os.path.join(n_folder, f"acc_{T}.pt")) except FileNotFoundError: print("not found", dataset_names[method_i], "T=", T) df = df.append({ "method": method_i, "batch": batch, "n": n, "accuracy": acc }, ignore_index=True) if show_svm: method_i += 1 if "SVM Ensemble" not in dataset_names: dataset_names.append("SVM Ensemble") dirpath = "svm_ensemble_results/setting2" for trial in range(n_trial): try: with open(os.path.join(dirpath, f"accuracies_trial{trial}.pkl"), "rb") as f: accs = pickle.load(f) except FileNotFoundError: print("not found", dataset_names[method_i], "T=", T) accs = accs[-len(batches):] for i, batch in enumerate(batches): acc = accs[i] df = df.append({ "method": method_i, "batch": batch, "n": trial, "accuracy": acc }, ignore_index=True) # For each method, for each batch, calculate the mean and 95% confidence interval df2 = pd.DataFrame(columns=["method", "batch", "mu", "err"]) for method_index, method_name in enumerate(dataset_names): for T, batch in zip(Ts, batches): data = df[(df.method==method_index) & (df.batch==batch)].accuracy try: err = 1.96 * data.std() / math.sqrt(data.count()) except ZeroDivisionError: print(method_name, data, "T=", T) continue df2 = df2.append({ "method": method_index, "batch": batch, "mu": data.mean().item(), "err": err.item() }, ignore_index=True) # Compute a grand total mean and 95% CI for method_index, method_name in enumerate(dataset_names): data = df[(df.method==method_index) & (df.batch>=3)].accuracy try: err = 1.96 * data.std() / math.sqrt(data.count()) except ZeroDivisionError: print(method_name, data) continue df2 = df2.append({ "method": method_index, "batch": "$\mu", "mu": data.mean().item(), "err": err.item() }, ignore_index=True) draw_errors = False headers = list(range(3, 11)) + ["$\mu$"] table = [] for i in sorted(df2.method.unique()): i = int(i) off = OFFSET if draw_errors else 0.0 means = df2[df2.method == i].mu.tolist() errs = df2[df2.method == i].err.tolist() # means.append(np.mean(means)) if draw_errors: row = [f"{means[j]:.3f} $\pm$ {errs[j]:.3f}" for j in range(len(means))] else: row = [f"{means[j]:.3f}" for j in range(len(means))] row.insert(0, dataset_names[i]) table.append(row) headers.insert(0, "Batch") # bold the largest value in each column for column_id, _ in enumerate(table[0]): if column_id == 0: continue max_row_id = -1 max_row_val = -np.inf for row_id, _ in enumerate(table): val = float(table[row_id][column_id]) if val > max_row_val: max_row_id = row_id max_row_val = val table[max_row_id][column_id] = f"\\textbf{{{max_row_val:.3f}}}" print(tabulate(table, headers, tablefmt="latex_raw", floatfmt=".3f")) # How much improvement did the Context model have over NoContext? print() print("Average accuracy over all batches:") indices = [0, 1, 2, 3, 4] for i in indices: means = df2[df2.method == i].mu.tolist() avg = np.mean(means) print(f"{dataset_names[i]}: {avg}") ###Output \begin{tabular}{llllllllll} \hline Batch & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & $\mu$ \\ \hline Feedforward NN Ensemble & 0.921 & \textbf{0.904} & 0.979 & 0.903 & 0.777 & 0.679 & 0.864 & 0.693 & 0.840 \\ Feedforward NN & 0.881 & 0.875 & 0.974 & 0.959 & 0.792 & 0.839 & 0.896 & 0.737 & 0.869 \\ Feedforward+Context NN & 0.882 & 0.869 & 0.975 & 0.947 & \textbf{0.820} & 0.864 & \textbf{0.939} & 0.763 & 0.882 \\ LSTM & 0.891 & 0.877 & 0.923 & 0.913 & 0.809 & 0.849 & 0.932 & \textbf{0.773} & 0.871 \\ Context relu & \textbf{0.924} & 0.878 & 0.949 & 0.955 & 0.786 & \textbf{0.880} & 0.939 & 0.769 & \textbf{0.885} \\ No Context & 0.864 & 0.885 & \textbf{0.981} & \textbf{0.960} & 0.790 & 0.851 & 0.913 & 0.761 & 0.876 \\ \hline \end{tabular} Average accuracy over all batches: Feedforward NN Ensemble: 0.8399901791138339 Feedforward NN: 0.8690827237475173 Feedforward+Context NN: 0.8821937662788277 LSTM: 0.8709034082551901 Context relu: 0.8851380506704699 ###Markdown Print Table 2 ###Code from main_backprop_context import ContextModel from main_backprop_nocontext import NoContextModel def count_parameters(model): return sum(p.numel() for p in model.parameters() if p.requires_grad) print("Number of parameters:") context_model = ContextModel(k=1) print(f"Context Model: {count_parameters(context_model)}") no_context_model = NoContextModel() print(f"No Context Model: {count_parameters(no_context_model)}") # Find the size of a No Context model with equal # parameters to the Context Modle n_context_parameters = count_parameters(ContextModel(k=1)) n_nocontext_parameters = 0 skill_size = 20 while n_nocontext_parameters < n_context_parameters: skill_size += 1 n_nocontext_parameters = count_parameters(NoContextModel(skill_size=skill_size)) print(f"NoContext skill_size={skill_size}: {n_nocontext_parameters} parameters") skill_size -= 1 n_nocontext_parameters = count_parameters(NoContextModel(skill_size=skill_size)) print(f"NoContext skill_size={skill_size}: {n_nocontext_parameters} parameters") ###Output NoContext skill_size=96: 14429 parameters NoContext skill_size=95: 14280 parameters ###Markdown Single-Network Models ###Code # Evaluate the accuracy of the single-network models on all batches from main_backprop_ensemble import NoContextModel, test_network from batches import split_all import pickle import numpy as np n_trials = 30 def evaluate_accuracies(T: int, trial: int): """Load the network trained using batch T, and evaluate it on every batch 0..9 :return: Array with 10 entries""" data_folder = f"output/ensemble_harddecay{trial}" net = NoContextModel() net.load_state_dict(torch.load(os.path.join(data_folder, f"model_{T}.pt"))) accuracies = [] for t in range(10): acc = test_network(net, t, split_all) accuracies.append(acc) accuracies = np.array(accuracies) return accuracies def evaluate_accuracies_all_trials(T: int): """:return: Accuracies shape (trials, batches)""" trials = [] for trial in range(n_trials): accuracies = evaluate_accuracies(T, trial) trials.append(accuracies) return np.stack(trials) all_accuracies = [] for batch in range(10): accuracies = evaluate_accuracies_all_trials(batch) # batches 0-indexed all_accuracies.append(accuracies) with open("output/single_network_accuracies.pkl", "wb") as f: pickle.dump(all_accuracies, f) with open("output/single_network_accuracies.pkl", "rb") as f: all_accuracies = pickle.load(f) colors = ['#d7191c', '#d98330', '#7bad74', '#2b83ba'] # Left plot selected_batches = [1, 3, 5, 7] fig, axes = plt.subplots(1, 2, figsize=(7.05, 3), sharey=True) ax = axes[0] for i, train_batch in enumerate(selected_batches): accuracies = all_accuracies[train_batch] errs = [] means = [] for batch in range(10): data = accuracies[:, batch] err = 1.96 * data.std() / math.sqrt(data.shape[0]) mean = data.mean() errs.append(err) means.append(mean) ax.axvline(train_batch+1, c=colors[i], linestyle="--", linewidth=1) ax.errorbar( x=list(range(1, 11)), y=means, yerr=errs, c=colors[i], # label=dataset_names[i], capsize=10, linewidth=1, elinewidth=1, capthick=1, ) ax.set_ylabel("Accuracy") ax.set_xlabel("Batch") ax.set_ylim([0.0, 1.0]) ax.set_yticks(np.arange(0, 1.1, 0.1)) ax.set_xticks(np.arange(1, 11)) ax.grid(axis='y', color='#bbbbbb') def flatten_and_index(arr): flat = [] ind = [] for i, sub in enumerate(arr): flat += sub ind += [i] * len(sub) return ind, flat ax = axes[1] accuracies_by_difference = [[] for _ in range(10)] for train_batch in range(10): accuracies = all_accuracies[train_batch] for test_batch in range(10): data = accuracies[:, test_batch] difference = abs(train_batch-test_batch) accuracies_by_difference[difference] += data.tolist() errs = [] means = [] for difference, accuracies in enumerate(accuracies_by_difference): err = 1.96 * np.std(accuracies) / math.sqrt(len(accuracies)) mean = np.mean(accuracies) errs.append(err) means.append(mean) ax.errorbar( x=list(range(10)), y=means, yerr=errs, c='black', # label=dataset_names[i], capsize=10, linewidth=1, elinewidth=1, capthick=1, ) # x, y = flatten_and_index(accuracies_by_difference) # ax.scatter(x, y, alpha=0.2) ax.set_xticks(np.arange(10)) ax.grid(axis='y', color='#bbbbbb') ax.set_xlabel("Difference of Batches") fig.savefig("writeup/figure_sources/feedforward_centers.svg") ###Output _____no_output_____ ###Markdown analyse launches, which contains "corona" or "covid" in `spec` ###Code import pandas as pd import matplotlib.pyplot as plt import matplotlib.dates as mdates from urllib.parse import unquote %matplotlib inline df = pd.read_csv("covid_binder_launches_2019_12_01_2020_09_10.csv") # convert timestamp to datetime df["date"] = pd.to_datetime(df["timestamp"]) # select only the columns that are needed for analysis df = df[["date", "provider", "spec"]] # set date as index df.set_index('date',inplace=True) df.head() ###Output _____no_output_____ ###Markdown Launch analysis Number of launches ###Code len(df) ###Output _____no_output_____ ###Markdown Number of launches per day ###Code # .size() returns Series, so convert it into dataframe df_launch = df.groupby([df.index.date]).size().to_frame(name="launches") ax = df_launch.plot(y="launches", kind="bar", use_index=True, figsize=(20, 5)) # show x labels only for beginning of weeks, otherwise it not readable x = [i.strftime('%b %d') if i.isoweekday() == 1 else "" for i in df_launch.index] # set_xticklabels return the list, pass it to a variable in order not to output them _ = ax.set_xticklabels(x, rotation=0) ###Output _____no_output_____ ###Markdown Repo analysis ###Code df.provider.unique() def unique_repo_info(provider, spec): """ Strips out the ref info and returns the unique repo info from provider and spec. """ prefix = { 'GitHub': 'gh', 'Gist': 'gist', 'GitLab': 'gl', 'Git': 'git', 'Zenodo': 'zenodo', 'Figshare': 'figshare', 'Hydroshare': 'hydroshare', 'Dataverse': 'dataverse', } if provider == 'GitHub': org, repo_name, _ = spec.split('/', 2) namespace = f"{org}/{repo_name}" elif provider == 'GitLab': quoted_namespace, _ = spec.split('/', 1) namespace = unquote(quoted_namespace) elif provider == 'Git': quoted_repo_url, _ = spec.rsplit('/', 1) namespace = unquote(quoted_repo_url) else: raise Exception(f"parsing {provider} is not implemented") if namespace.endswith(".git"): namespace = namespace[:-(len(".git"))] repo = f'{prefix[provider]}/{namespace}' return repo df["repo"] = df.apply(lambda row: unique_repo_info(row["provider"], row["spec"]), axis=1) df_repo = df[["repo"]] df_repo.head() ###Output _____no_output_____ ###Markdown Number of unique repos ###Code len(df_repo.repo.unique()) ###Output _____no_output_____ ###Markdown Popular repos ###Code df_repo.groupby(["repo"]).size().reset_index(name="launches").sort_values("launches", ascending=False).head(5) ###Output _____no_output_____ ###Markdown Number of launched repos per day ###Code # nunique: https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.core.groupby.SeriesGroupBy.nunique.html df_repo_unique = df_repo.groupby([df_repo.index.date]).nunique() df_repo_unique.columns = ["repos"] ax = df_repo_unique.plot(y="repos", kind="bar", use_index=True, figsize=(20, 5)) # show x labels only for beginning of weeks, otherwise it not readable x = [i.strftime('%b %d') if i.isoweekday() == 1 else "" for i in df_repo_unique.index] # set_xticklabels return the list, pass it to a variable in order not to output them _ = ax.set_xticklabels(x, rotation=90) ###Output _____no_output_____ ###Markdown plot graphs in database ###Code for g in gs.graphs.values(): g.plot() from gspan import gSpan min_support = 30 alt = False gs = gSpan( database_file_name='/data/experiments/DocRED/DataViewer/results/docred_train.data', min_support=min_support, min_num_vertices=2, # max_num_vertices=3, min_num_edges=1, # max_ngraphs=5, is_undirected=False, verbose=False, visualize=False, where=True, alternative_support=alt ) """Run the gSpan algorithm.""" # gathered = gs.run(gather=True) # print(len(gathered)) # print(list(pdfs.edge for pdfs in gathered[0])) gs.run() df1 = gs._report_df df1.to_pickle(f'all_patterns_support_{min_support}{"_alt" if alt else ""}.pkl') gathered = gs.run(gather=True) print(list(sorted(set(pdfs.gid for pdfs in gathered[0])))) from perspective import PerspectiveWidget, Table import pandas as pd df1 = pd.read_pickle(f'all_patterns_support_{min_support}{"_alt" if alt else ""}.pkl') PerspectiveWidget(df1) print(df1['description'][58]) import itertools with open('/data/experiments/DocRED/DataViewer/results/docred_train.data', 'r', encoding='utf8') as graph: transactions = [] for line in graph: line = line.strip() t, *rest = line.split() if t == 't': c = int(rest[-1]) # if c >= 5: # break transactions.append({'v':[], 'e':[]}) elif t == 'v': transactions[c][t].append(rest[-1]) else: # t == 'e': transactions[c][t].append([int(rest[0]), int(rest[1]), rest[2]]) # for t in transactions: # print() # print(t) # for i, e in enumerate(t['e']): # print(f'#{i}: {t["v"][e[0]]}_{e[0]} {t["v"][e[1]]}_{e[1]} {e[2]}') # print() def get_edge_patterns(pattern): pattern_dict = {'v':[], 'e':[]} for line in pattern.split('\n'): line = line.strip() t, *rest = line.split() if t == 't': continue elif t == 'v': pattern_dict[t].append(rest[-1]) else: # t == 'e': pattern_dict[t].append([int(rest[0]), int(rest[1]), rest[2]]) return [(pattern_dict['v'][start], pattern_dict['v'][end], label) for start, end, label in pattern_dict['e']], pattern_dict def get_candidates(graph, edge_pattern): vs = graph['v'] es = graph['e'] candidate_edges = [] for i, (start, end, label) in enumerate(es): if (vs[start], vs[end], label) == edge_pattern: candidate_edges.append(i) return candidate_edges def trace(graph2, pattern2, steps, ignore_permutations=False): # vs2 = pattern2['v'] es2 = pattern2 candidate_paths = itertools.product(*steps) candidate_paths = [p for p in candidate_paths if len(p) == len(set(p))] gvs = graph2['v'] ges = graph2['e'] out = [] # print("Candidates:", candidate_paths) varsets = list() for cp2 in candidate_paths: # Check if it's valid. We trust the labels and the types. # This is basically a type of variable resolution, heh. variables = dict() okay = True # print(cp2) # print(es2) if len(cp2) == len(es2): for step, e in zip(cp2, es2): # print(step, e) v0, v1, _ = e start, end, _ = ges[step] if v0 in variables: # print(f"{variables[v0]}!={start} ? (start): {variables}") if variables[v0] != start: okay = False break if v1 in variables: # print(f"{variables[v1]}!={end} ? (end): {variables}") if variables[v1] != end: okay = False break variables[v0] = start variables[v1] = end if not okay: continue varset = set(variables.values()) # If we didn't assign the same value to different variables if len(varset) == len(variables): # If we haven't used exactly this set of values before. # That is, if we change the order of values and it's still the same pattern, # then it's just one instance of that pattern. Permutation invariance. if varset in varsets and ignore_permutations: continue varsets.append(varset) out.append(cp2) return out def debug_one(df, index, verbose=True): tot = 0 pattern = df['description'][index] support = df['support'][index] edge_patterns, pattern_dict = get_edge_patterns(pattern) if verbose: print(pattern) for tr in transactions: possible_steps = [get_candidates(tr, ep) for ep in edge_patterns] # possible_steps = [[10], [3], [5], [9]] founds = trace(tr, pattern_dict['e'], possible_steps) if verbose: print(founds) tot += len(founds) if verbose: print(index, tot, support) def debug_all(df): for i, (pattern, support) in enumerate(zip(df['description'], df['support'])): tot = 0 edge_patterns, pattern_dict = get_edge_patterns(pattern) for tr in transactions: possible_steps = [get_candidates(tr, ep) for ep in edge_patterns] founds = trace(tr, pattern_dict['e'], possible_steps) # print(founds) tot += len(founds) if tot != support: print(i, tot, support) # debug_one(df1, 19) # debug_all(df1) # from multiprocessing.dummy import Pool, Lock # def make_corrections(df_in): # counts = [0 for _ in range(len(df_in['support']))] # lock = Lock() # def count_(inp): # # print(inp) # i, pattern = inp # tot = 0 # edge_patterns, pattern_dict = get_edge_patterns(pattern) # for tr in transactions: # possible_steps = [get_candidates(tr, ep) for ep in edge_patterns] # founds = trace(tr, pattern_dict['e'], possible_steps) # # print(founds) # tot += len(founds) # lock.acquire() # print(i, tot) # counts[i] = tot # lock.release() # pool = Pool(23) # # print(list(zip(*enumerate(df_in['description'])))) # pool.map(count_, enumerate(df_in['description'])) # df_in["counts"] = counts # return df_in # df2 = pd.read_pickle(f'all_patterns_support_{min_support}_wcounts.pkl') import multiprocessing as mp import numpy as np def count_(inp): # print(inp) counts = np.zeros(len(df1['support']), dtype=int) j, tr = inp tot = 0 for i, pattern in enumerate(df1['description']): edge_patterns, pattern_dict = get_edge_patterns(pattern) possible_steps = [get_candidates(tr, ep) for ep in edge_patterns] founds = trace(tr, pattern_dict['e'], possible_steps, ignore_permutations=True) counts[i] += len(founds) print(f'{j},', end='') return counts def make_corrections_2(df_in): lock = Lock() p = mp.Pool(mp.cpu_count()) res = p.map_async(count_, enumerate(transactions)) p.close() p.join() print() # print(np.sum(res.get(), axis=0)) df_in["counts"] = np.sum(res.get(), axis=0) return df_in # df2 = pd.read_pickle(f'all_patterns_support_{min_support}_wcounts_2.pkl') df2 = make_corrections_2(df1) df2.to_pickle(f'all_patterns_support_{min_support}_wcounts_noperms_gids.pkl') PerspectiveWidget(df2) # Now we want to calculate the coverage the patterns have of the dev/eval set. # Then after we want to do the same for predictions (which will need to be formatted...) # Document coverage: # Basically do the counting but mark triples which are included. def trace_coverage(graph2, pattern2, steps, coverage, ignore_permutations=True): # vs2 = pattern2['v'] es2 = pattern2 candidate_paths = itertools.product(*steps) candidate_paths = [p for p in candidate_paths if len(p) == len(set(p))] gvs = graph2['v'] ges = graph2['e'] if coverage is None: coverage = np.zeros(len(ges), dtype=int) # print("Candidates:", candidate_paths) varsets = list() for cp2 in candidate_paths: # Check if it's valid. We trust the labels and the types. # This is basically a type of variable resolution, heh. variables = dict() okay = True # print(cp2) # print(es2) if len(cp2) == len(es2): for step, e in zip(cp2, es2): # print(step, e) v0, v1, _ = e start, end, _ = ges[step] if v0 in variables: # print(f"{variables[v0]}!={start} ? (start): {variables}") if variables[v0] != start: okay = False break if v1 in variables: # print(f"{variables[v1]}!={end} ? (end): {variables}") if variables[v1] != end: okay = False break variables[v0] = start variables[v1] = end if not okay: continue varset = set(variables.values()) # If we didn't assign the same value to different variables if len(varset) == len(variables): # If we haven't used exactly this set of values before. # That is, if we change the order of values and it's still the same pattern, # then it's just one instance of that pattern. Permutation invariance. if varset in varsets and ignore_permutations: continue varsets.append(varset) coverage[list(cp2)] = 1 return coverage def map_coverage(inp): # print(inp) # counts = np.zeros(len(df2['support']), dtype=int) j, tr = inp tot = 0 coverage = None for i, pattern in enumerate(df2['description']): edge_patterns, pattern_dict = get_edge_patterns(pattern) possible_steps = [get_candidates(tr, ep) for ep in edge_patterns] coverage = trace_coverage(tr, pattern_dict['e'], possible_steps, coverage) if sum(coverage) == len(coverage): break # counts[i] += len(founds) # print(f'{j},') return np.sum(coverage), len(coverage) # return counts def find_coverage(trs): lock = Lock() p = mp.Pool(mp.cpu_count()) res = p.map_async(map_coverage, enumerate(trs)) p.close() p.join() covered, total = zip(*res.get()) print(f'{sum(covered)}/{sum(total)}: {sum(covered)/sum(total)}%') # print(sum(covered), sum(total)) # print(np.sum(res.get(), axis=0)) # df_in["counts"] = np.sum(res.get(), axis=0) # return df_in find_coverage(transactions) # map_coverage((0, transactions[0])) with open('/data/experiments/DocRED/DataViewer/results/docred_dev.data', 'r', encoding='utf8') as graph: transactions_dev = [] for line in graph: line = line.strip() t, *rest = line.split() if t == 't': c = int(rest[-1]) # if c >= 5: # break transactions_dev.append({'v':[], 'e':[]}) elif t == 'v': transactions_dev[c][t].append(rest[-1]) else: # t == 'e': transactions_dev[c][t].append([int(rest[0]), int(rest[1]), rest[2]]) find_coverage(transactions_dev) # When I come back from vacation. # I need to make sure to redo a lot of this. ###Output _____no_output_____ ###Markdown Carregando os dados coletados da primeira página e limpando os resultados. O campo local foi separado em dois: cidade e UF. Já no campo receita os símbolos foram removidos e o formato foi transformado para numérico (antes estava como texto). ###Code def load_main_data(file_path): ''' Função que carrega os dados coletadas no primeiro nível do crawler carregando os dados com os nomes das empresas, link para o segundo nível, localização da empresa e redimento em milhões no ano. Os dados são carregados de um arquivo pickle, contendo uma lista de dicionários com os dados, onde as chaves são os nomes das variáveis e os valores os conteúdos. Os dados são carregados em um dataframe com a biblioteca pandas e em seguida os dados são limpos: - a receita é transformada em número (float) e o símbolo '$' e a letra 'M' são removidos de todos os registros. - a cidade é extraída do campo local (primeira parte antes da vírgula) - o UF é extraído do local sendo a parte intermediária do local separados por vírgulas - o nome das empresas são reformatadas para o formato título (primeiras letras de cada palavra como tamanho maiúsculo) ''' with open(file_path, "rb") as file: regs_data = pickle.load(file) df = pd.DataFrame(regs_data) df['receita_milhao'] = df['receita'].str.strip('$|M').astype('float') df['cidade'] = df['local'].str.split(',').apply(lambda x: x[0]).str.strip() df['uf'] = df['local'].str.split(',').apply(lambda x: x[1]).str.strip() df['empresa_nome'] = df['empresa_nome'].str.title() return df[['empresa_nome', 'receita_milhao', 'cidade', 'uf', 'empresa_href']] file_path = r'data\test_scrap.pickle' main_df = load_main_data(file_path) ###Output _____no_output_____ ###Markdown Testando se todos os links (empresa_href) começam com um link válido. Um endereço válido começaria com: 'https://www.dnb.com/business-directory/company-profiles' ###Code main_df['empresa_href'].str.startswith('https://www.dnb.com/business-directory/company-profiles').all() def load_desc_data(file_path): with open(file_path, "rb") as file: regs_data = pickle.load(file) df = pd.DataFrame(regs_data) df['descricao'] = (df['descricao']. str.strip('<span class="company_summary">'). str.split('\n<br><br>\n', expand=True)[0]. str.replace('&amp;', '&').str.strip()) df['industria'] = df['industria'].str.join('; ') df.rename(columns={'url': 'empresa_href'}, inplace=True) return df[['empresa_href', 'descricao', 'industria']] file_path = r'data\inner_scrap.pickle' desc_df = load_desc_data(file_path) desc_df df = pd.merge(main_df, desc_df) df def ecdf(data): x = data.sort_values() y = np.arange(1, len(data) + 1) / len(data) return x, y thereshold = 2000 data = df.loc[df['receita_milhao'] < thereshold, 'receita_milhao'] x, y = ecdf(data) plt.plot(x, y, marker='.', linestyle='none') plt.show() plt.blo df['receita_milhao'].sort_values() df.to_csv('cafe_data.csv', sep=';', encoding='UTF-8') df['industria'].str.split('; ').explode().reset_index().drop_duplicates()['industria'].value_counts() uf_df = df.groupby('uf').agg({'receita_milhao': 'sum', 'empresa_nome': 'count'}) uf_df.rename(columns={'empresa_nome': 'n_empresas'}, inplace=True) uf_df['receita_media'] = uf_df['receita_milhao'] / uf_df['n_empresas'] uf_df.sort_values(by='receita_milhao', ascending=False, inplace=True) uf_df ###Output _____no_output_____ ###Markdown Analysis of the Freewar statistics Imports and Setup ###Code from datetime import datetime from pathlib import Path import pandas as pd from matplotlib import dates as mdates from matplotlib import pyplot as plt from matplotlib import ticker from tqdm import tqdm csv_path = Path.cwd() / 'FreewarStatistics.csv' ###Output _____no_output_____ ###Markdown Read the Data ###Code csv_date_parser = lambda d: datetime.strptime(d, '%d.%m.%y %H:%M') df = pd.read_csv(csv_path, parse_dates=['date'], date_parser=csv_date_parser) (df.head(5)) ###Output _____no_output_____ ###Markdown Plot XP ###Code fig, ax = plt.subplots(figsize=(16, 9)) ax.plot_date(df['date'], df['xp'], 'k-') # grid ax.grid() ax.minorticks_on() ax.grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2) # text ax.set_title('All Data', fontsize=32, fontweight='bold') ax.set_xlabel('Time', fontsize=24, fontweight='bold') ax.set_ylabel('Experience [xp]', fontsize=24, fontweight='bold') # Add second y-axis ax2 = ax.twinx() ax2.plot_date(df['date'], df['total'], 'r-') ax2.set_ylabel('Total Assets [gm]', color='red', fontsize=24, fontweight='bold') ax2.tick_params(axis='y', labelcolor='red') # format x-axis ax.xaxis.set_major_locator(mdates.MonthLocator(interval=6)) ax.xaxis.set_major_formatter(mdates.DateFormatter('%b %Y')) ax.xaxis.set_tick_params(rotation=45) ax.xaxis.set_tick_params(labelsize=16) # format y-axis y_formatter = ticker.EngFormatter('') ax.yaxis.set_major_formatter(y_formatter) ax2.yaxis.set_major_formatter(y_formatter) ax.yaxis.set_tick_params(labelsize=16) ax2.yaxis.set_tick_params(labelsize=16) # white background for title and axes fig.patch.set_facecolor('white') fig.patch.set_alpha(0.7) ###Output _____no_output_____ ###Markdown Save the Figure ###Code fig.savefig('FreewarStatistics.pdf', bbox_inches='tight') fig.savefig('FreewarStatistics.svg', bbox_inches='tight') fig.savefig('FreewarStatistics.png', dpi=600, bbox_inches='tight') fig.savefig('FreewarStatistics_small.png', dpi=40, bbox_inches='tight') print('Figure saved! ' + datetime.now().strftime('%d.%m.%Y %H:%M')) ###Output Figure saved! 12.01.2022 20:14 ###Markdown Plot years ###Code years = range(2016, datetime.now().year + 1) fig, axs = plt.subplots(len(years), 1, figsize=(16, len(years) * 7)) i = -1 for year in tqdm(reversed(years), desc='plot years'): i += 1 filtered = df[df['date'].dt.strftime('%Y') == str(year)] axs[i].plot_date(filtered['date'], filtered['xp'], 'k-') # grid axs[i].grid() axs[i].minorticks_on() axs[i].grid(b=True, which='minor', color='#999999', linestyle='-', alpha=0.2) # text axs[i].set_title(f'Data for {year}', fontsize=32, fontweight='bold') if year == years[-1]: axs[i].xaxis.tick_top() axs[i].xaxis.set_label_position('top') axs[i].set_ylabel('Experience [xp]', fontsize=24, fontweight='bold') # Add second y-axis ax2 = axs[i].twinx() ax2.plot_date(filtered['date'], filtered['total'], 'r-') ax2.set_ylabel('Total Assets [gm]', color='red', fontsize=24, fontweight='bold') ax2.tick_params(axis='y', labelcolor='red') # format x-axis axs[i].set_xlim([datetime(year, 1, 1), datetime(year, 12, 31)]) axs[i].xaxis.set_major_locator(mdates.MonthLocator(interval=1)) axs[i].xaxis.set_major_formatter(mdates.DateFormatter('%b')) if year not in [years[0], years[-1]]: axs[i].xaxis.set_ticklabels([]) axs[i].xaxis.set_tick_params(rotation=45) axs[i].xaxis.set_tick_params(labelsize=16) # format y-axis y_formatter = ticker.EngFormatter('') axs[i].yaxis.set_major_formatter(y_formatter) ax2.yaxis.set_major_formatter(y_formatter) axs[i].yaxis.set_tick_params(labelsize=16) ax2.yaxis.set_tick_params(labelsize=16) # white background for title and axes fig.patch.set_facecolor('white') fig.patch.set_alpha(0.7) ###Output plot years: 7it [00:00, 43.74it/s] ###Markdown Save Figure ###Code fig.savefig('FreewarStatistics_years.pdf', bbox_inches='tight') fig.savefig('FreewarStatistics_years.svg', bbox_inches='tight') fig.savefig('FreewarStatistics_years.png', dpi=600, bbox_inches='tight') fig.savefig('FreewarStatistics_years_small.png', dpi=40, bbox_inches='tight') ###Output _____no_output_____ ###Markdown Profile of RMSD ###Code for i in range(1,11): log = log_dict['ts_%d'%i] x = [0] + [1 + i * 5 for i in range(len(log)-1)] plt.plot(x, log, linewidth = 1.6) pacs_ave = np.mean([log_dict['ts_%d'%i] for i in range(1,11)], axis = 0) plt.plot(x, pacs_ave, color = 'red', linewidth=3) plt.figure(figsize=(7,2)) sns.boxplot(best_dict['ts']) ###Output /anaconda/lib/python3.6/site-packages/seaborn/categorical.py:454: FutureWarning: remove_na is deprecated and is a private function. Do not use. box_data = remove_na(group_data) ###Markdown This is an investigatory analysis into the sales data of a restaurant... It has been done mainly SQL but on top of pyspark... So lets get started... First we import the pyspark and the findspark modules... and also initialize the findspark module... ###Code import findspark findspark.init('/Users/nishantuzir/spark-2.3.0-bin-hadoop2.7') import pyspark ###Output _____no_output_____ ###Markdown now we initialize the SparkContext objects... ###Code sc = pyspark.SparkContext() ###Output _____no_output_____ ###Markdown here we read both the json files...using the wholeTextFiles method...one thing to know here is that the wholeTextFiles method produces a tuple RDD whose 1st element is a filename and the 2nd element is the data with lines separated by whitespace. We use map to create the new RDD using the 2nd element of the tuple. ###Code data1 = sc.wholeTextFiles('/data/orders.json').map(lambda x: x[1]) data2 = sc.wholeTextFiles('/data/order_items.json').map(lambda x: x[1]) ###Output _____no_output_____ ###Markdown as said earlier that the data is in the form of lines separated by whitespace, we need to remove these useless white spaces. That we will do using the re package... ###Code import re data1 = data1.map(lambda x: re.sub('\s+','',x)) data2 = data2.map(lambda x: re.sub('\s+','',x)) ###Output _____no_output_____ ###Markdown after that we import the SQLContext and initialize it... ###Code from pyspark.sql import SQLContext sqlcontext = SQLContext(sc) ###Output _____no_output_____ ###Markdown now its time to conume the RDD using the SQLContext object named sqlcontext...after that, we create a temporary table using registerTempTable and pass the name of the tables inside it.. ###Code orders = sqlcontext.read.json(data1) order_items = sqlcontext.read.json(data2) orders.registerTempTable('orders') order_items.registerTempTable('order_items') ###Output _____no_output_____ ###Markdown So we are done with the preparation part...now lets do some analysis using good old SQL running on top of Spark!! ###Code sqlcontext.sql('select * from orders' ).show(5) sqlcontext.sql('select * from order_items').show(5) ###Output +-----------+---+--------------------+--------+ |amount_paid| id| name|order_id| +-----------+---+--------------------+--------+ | 205| 0| chicken-burger| 114| | 225| 1|chicken-tikka-san...| 2825| | 185| 2|almond-choco-dip-...| 4717| | 105| 3| juice| 1035| | 185| 4|grilled-cheese-sa...| 1023| +-----------+---+--------------------+--------+ only showing top 5 rows ###Markdown So, everything is working just fine!! We are good to go... Let's see how many orders are placed per day... ###Code sqlcontext.sql('select ordered_at,count(1) as total_orders from orders group by 1 order by 1').show(10) ###Output +----------+------------+ |ordered_at|total_orders| +----------+------------+ |2015-08-09| 1| |2015-08-11| 5| |2015-08-12| 1| |2015-08-13| 2| |2015-08-14| 9| |2015-08-15| 4| |2015-08-16| 5| |2015-08-17| 6| |2015-08-18| 4| |2015-08-19| 10| +----------+------------+ only showing top 10 rows ###Markdown Now let's see the total revenue collected from all the orders per day...to do that, we will have to use the join command... ###Code sqlcontext.sql('select ordered_at, round(sum(amount_paid),2) as revenue_collected from orders join order_items on orders.id = order_items.order_id where name = "kale-smoothie" group by ordered_at order by ordered_at').show(20) ###Output +----------+-----------------+ |ordered_at|revenue_collected| +----------+-----------------+ |2015-08-23| 175| |2015-08-26| 175| |2015-08-27| 175| |2015-09-01| 175| |2015-09-03| 175| |2015-09-05| 175| |2015-09-10| 175| |2015-09-11| 175| |2015-09-12| 175| |2015-09-13| 175| |2015-09-20| 350| |2015-09-23| 175| |2015-09-26| 525| |2015-09-28| 175| |2015-09-29| 175| |2015-09-30| 175| |2015-10-04| 175| |2015-10-06| 175| |2015-10-09| 175| |2015-10-10| 350| +----------+-----------------+ only showing top 20 rows ###Markdown well we cant say much from this....lets break this down...we will see the total revenue collected per food item for the entire duration of the time that has been depicted in the dataset...and we will arrannge it in descending order... ###Code sqlcontext.sql('select name, round(sum(amount_paid), 2) as total_revenue from order_items group by name order by 2 desc').show() ###Output +--------------------+-------------+ | name|total_revenue| +--------------------+-------------+ |chicken-tikka-san...| 1130400| |grilled-cheese-sa...| 770155| | chicken-burger| 711350| |almond-choco-dip-...| 525955| | soda| 195525| | juice| 104685| | cake| 96660| | banana-smoothie| 18900| | kale-smoothie| 12600| +--------------------+-------------+ ###Markdown it seems to be somewhat comprehensible now... lets now see the percentage of revenue each of the food items represent...this will give a better idea.. ###Code sqlcontext.sql('select name, round(sum(amount_paid) /(select sum(amount_paid) from order_items) * 100.0, 2) as pct from order_items group by 1 order by 2 desc').show() ###Output +--------------------+-----+ | name| pct| +--------------------+-----+ |chicken-tikka-san...| 31.7| |grilled-cheese-sa...| 21.6| | chicken-burger|19.95| |almond-choco-dip-...|14.75| | soda| 5.48| | juice| 2.94| | cake| 2.71| | banana-smoothie| 0.53| | kale-smoothie| 0.35| +--------------------+-----+ ###Markdown whoa!! looks like smoothies are not bringing in much revenue!lets be absolutely sure about this... to do this we need to group the food items into food categries such as these sandwich, burger, juice etc... ###Code sqlcontext.sql('select *,case name when "kale-smoothie" then "smoothie" when "banana-smoothie" then "smoothie" when "orange-juice" then "drink" when "soda" then "drink" when "almond-choco-dip-biscotti" then "desert" when "grilled-cheese-sandwich" then "sandwich" when "chicken-tikka-sandwich" then "sandwich" when "chicken-burger" then "burger" else "desert" end as category from order_items order by id limit 100').show() ###Output +-----------+---+--------------------+--------+--------+ |amount_paid| id| name|order_id|category| +-----------+---+--------------------+--------+--------+ | 205| 0| chicken-burger| 114| burger| | 225| 1|chicken-tikka-san...| 2825|sandwich| | 185| 2|almond-choco-dip-...| 4717| desert| | 105| 3| juice| 1035| desert| | 185| 4|grilled-cheese-sa...| 1023|sandwich| | 205| 5| chicken-burger| 4359| burger| | 225| 6|chicken-tikka-san...| 3929|sandwich| | 205| 7| chicken-burger| 3704| burger| | 185| 8|grilled-cheese-sa...| 1666|sandwich| | 225| 9|chicken-tikka-san...| 1477|sandwich| | 225| 10|chicken-tikka-san...| 4369|sandwich| | 185| 11|grilled-cheese-sa...| 998|sandwich| | 205| 12| chicken-burger| 2730| burger| | 225| 13|chicken-tikka-san...| 3038|sandwich| | 205| 14| chicken-burger| 3602| burger| | 225| 15|chicken-tikka-san...| 1484|sandwich| | 225| 16|chicken-tikka-san...| 4382|sandwich| | 225| 17|chicken-tikka-san...| 4778|sandwich| | 185| 18|grilled-cheese-sa...| 646|sandwich| | 205| 19| chicken-burger| 4692| burger| +-----------+---+--------------------+--------+--------+ only showing top 20 rows ###Markdown now we will see the percentage sales of each of the categories of food items that we prepared in the last command... ###Code sqlcontext.sql('select case name when "kale-smoothie" then "smoothie" when "banana-smoothie" then "smoothie" when "orange-juice" then "drink" when "soda" then "drink" when "almond-choco-dip-biscotti" then "desert" when "grilled-cheese-sandwich" then "sandwich" when "chicken-tikka-sandwich" then "sandwich" when "chicken-burger" then "burger" else "desert" end as category, round(1.0 * sum(amount_paid) /(select sum(amount_paid) from order_items) * 100, 2) as pct from order_items group by 1 order by 2 desc').show(20) ###Output +--------+-----+ |category| pct| +--------+-----+ |sandwich|53.29| | desert|20.39| | burger|19.95| | drink| 5.48| |smoothie| 0.88| +--------+-----+ ###Markdown So it looks like smoothies are really not bringing in the big bucks for the restaurant...So should they remove the items al together???Well, lets get a closer look..Infact, before taking them out of the menu, we need to figure out how many customers ordered them... ###Code sqlcontext.sql('select name, count(distinct order_id) as distinct_order_ids from order_items group by 1 order by 2 desc').show() ###Output +--------------------+------------------+ | name|distinct_order_ids| +--------------------+------------------+ |chicken-tikka-san...| 3168| |grilled-cheese-sa...| 2832| | chicken-burger| 2487| |almond-choco-dip-...| 2175| | soda| 2041| | juice| 905| | cake| 669| | banana-smoothie| 105| | kale-smoothie| 72| +--------------------+------------------+ ###Markdown well looks like smoothies are not ordered by many people, especially kale-smoothies!What might be the reason? Don't they like it?what about the 72 people who ordered the smoothie in the course of 5 months...!Lets have a look at the reorder rate of kale-smoothie...the reorder rate can be defined as the ratio of total number of distinct orders for a food item to the total number customers purchasing them...if the ratio is high that means a high reorder rate and vice-versa... ###Code sqlcontext.sql('select name, round(1.0 * count(distinct order_id) / count(delivered_to), 2) as reorder_rate from order_items join orders on orders.id = order_items.order_id group by 1 order by 2 desc').show() ###Output +--------------------+------------+ | name|reorder_rate| +--------------------+------------+ | kale-smoothie| 1.00| | banana-smoothie| 0.97| | cake| 0.93| | juice| 0.91| | soda| 0.78| |almond-choco-dip-...| 0.76| | chicken-burger| 0.72| |grilled-cheese-sa...| 0.68| |chicken-tikka-san...| 0.63| +--------------------+------------+ ###Markdown The distributions of breweries in the US ###Code import pandas as pd import numpy as np import seaborn as sns sns.set_theme(style="ticks") import matplotlib.pyplot as plt %matplotlib inline plt.rcParams["figure.figsize"] = (12, 8) file = './breweries.csv' df = pd.read_csv(file) display(df.head(2)) #select only the brewries in the states df = df[(df['country'] == 'United States') & (df['state'] != 'Alaska') & (df['state'] != 'Hawaii') \ & (df['brewery_type']!='closed') & (df['brewery_type']!='planning')] #drop the NaN values for those without location information df['longitude'].dropna(axis=0, inplace=True) df.dropna(subset=['longitude', 'latitude'], inplace=True) #print (df.isnull().sum()) #plot the spatial distrubutioin of each brewries longitude = df['longitude'].to_numpy() latitude = df['latitude'].to_numpy() brewery_types = df['brewery_type'].unique() brewery_types_summary = {} for brewery_type in brewery_types: #print(brewery_type) sel = df['brewery_type'] == brewery_type print (brewery_type, ":", sum (sel)) brewery_types_summary[brewery_type] = sum (sel) plt.plot(df[sel].longitude, df[sel].latitude, 'o', alpha=1, label=brewery_type) #print(df['brewery_type'].unique()) plt.legend(loc='best', fontsize='x-large') plt.title("brewery types across lower 48 states", fontsize='xx-large') plt.show() #print(brewery_types_summary) myList = brewery_types_summary.items() myList = sorted(myList) labels, counts = zip(*myList) sorted_labels = np.arange(len(labels)) plt.bar(sorted_labels, counts) plt.xticks(sorted_labels, labels, rotation='vertical', fontsize='xx-large') plt.ylabel("numbers", fontsize='xx-large') plt.show() df = df.sort_values(by='state') brewery_state = df['state'].unique() brewpub_stat_per_state = {} micro_stat_per_state = {} for state in brewery_state: sel = (df['brewery_type'] == 'brewpub') & (df['state'] == state) brewpub = sum(sel) sel = (df['brewery_type'] == 'micro') & (df['state'] == state) micro = sum(sel) sel = (df['state'] == state) total = sum(sel) brewpub_stat_per_state[state] = brewpub / total micro_stat_per_state[state] = micro / total bar_width = 1 brewpubList = brewpub_stat_per_state.items() brewpub = sorted(brewpubList) states, brewpub = zip(*brewpub) sorted_states = np.arange(len(states)) plt.bar(sorted_states, brewpub, bar_width, label='brew pub') microList = micro_stat_per_state.items() microList = sorted(microList) states, micro = zip(*microList) sorted_states = np.arange(len(states)) plt.bar(sorted_states, micro, bar_width, bottom = brewpub, label='micro brewery') plt.xticks(sorted_states, states, rotation='vertical', fontsize='x-large') plt.ylabel("brew pub vs microbrewery", fontsize='xx-large') plt.legend(fontsize='xx-large') plt.ylim([0, 1.25]) plt.show() ###Output _____no_output_____ ###Markdown ###Code import pandas as pd data = pd.read_json("/Users/pbhagwat/DEV/UnivAi/Assignment3/RestroRecommender/Data/yelp_dataset/yelp_academic_dataset_review.json") print(data.head()) ###Output _____no_output_____ ###Markdown Road User Classificationby Kuanchieh Peng Problem StatementBuild a best feasible model that will be later used to classify road users in real time. **The top priorities are: maximizing classification accuracy on unseen data and minimizing prediction speed**. BackgroundAutomatic emergency braking (AEB) system on cars brakes automatically when sensing possible collision with another road user. AEB is designed to reduce vehicle speed the most when sensing collision with cars, then bikers, finally reduces vehicle speed the least when sensing collision with pedestrians. Therefore, **in this project, we especially don't want to misclassify an actual car as another type of road user**. Steps- **EDA & Preprocessing** - Cleaning - Handling outliers - Converting independent and dependent variables into desired data types - Transformation - Uninvariate displots and boxplots to spot skewness - Scaling - Checking Multicollinearity - Bivariate correlation heatmaps and pairplots to understand pairwise correlations - Checking Linear Separability - Training a hard margin linear SVC to test linear separability- **Model Selection**- **Evaluation Metric Selection**- **Modeling** - Logistic Regression - XGBoost- **Evaluation** - F-Beta Score - Prediction Speed - ROC curve (AUC) Sources- Dataset is "Mobile Accelerometer Car 12K" from Kaggle.- Background information derived from "City Safety, 2020 XC90 owner's manual" from Volvo. Imports ###Code !pip install hyperopt # for preprocessing import pandas as pd import numpy as np from sklearn.pipeline import make_pipeline from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import MinMaxScaler # for visualizations import seaborn as sns import matplotlib.pyplot as plt from mpl_toolkits import mplot3d # for modeling from sklearn.model_selection import train_test_split from sklearn.model_selection import cross_val_score import statsmodels.api as sm from sklearn.svm import LinearSVC from sklearn.linear_model import LogisticRegression import xgboost as xgb from hyperopt import hp from sklearn.model_selection import RepeatedStratifiedKFold # for evaluation from sklearn.metrics import fbeta_score from sklearn.metrics import confusion_matrix from sklearn.metrics import classification_report from sklearn.metrics import roc_auc_score from sklearn.metrics import roc_curve import time # for suppressing system warnings import warnings warnings.simplefilter(action = 'ignore', category = FutureWarning) warnings.simplefilter(action = 'ignore', category = RuntimeWarning) df = pd.read_csv('vrudata.csv') original_df = df.copy() ###Output _____no_output_____ ###Markdown Pipeline ###Code class bold: start = '\033[1m' end = '\033[0m' def information(df): # Prints typically useful statistical information about given dataframe. print("This dataframe consists of ", df.shape[1], " columns and", df.shape[0], " rows.") print("This dataframe consists of ", df.isnull().sum().sum(), " null entires.") print("This dataframe consists of ", df[df.duplicated()].shape[0], " duplicate rows.") print(df[df['target'] == 1].shape[0], " rows belong to class target = 1.") print(df[df['target'] == 0].shape[0], " rows belong to class target = 0.") print("") print(bold.start, "Notable statistics of numeric features in this dataset:", bold.end) print("") print(df.describe()) print("") print(bold.start, "Object type of features in this dataset:", bold.end) print("") df.info() def dist_box(x, title = ''): fig, axes = plt.subplots(nrows = 2, ncols = 1, figsize = (14.4, 7.2)) for ax in axes: sns.kdeplot(x, shade = False, ax = ax) kdeline = ax.lines[0] xs = kdeline.get_xdata() ys = kdeline.get_ydata() if ax == axes[0]: middle = x.mean() sdev = x.std() left = middle - sdev right = middle + sdev ax.set_title('Mean and SD') else: left, middle, right = np.percentile(x, [25, 50, 75]) ax.set_title('Median and Quartiles') ax.vlines(middle, 0, np.interp(middle, xs, ys), ls = ':') ax.fill_between(xs, 0, ys, alpha = 0.2) ax.fill_between(xs, 0, ys, where = (left <= xs) & (xs <= right), interpolate = True, alpha = 0.2) fig.suptitle(title, fontsize = 16) plt.show() def three_d_scatter(df, target = 'target'): fig = plt.figure(figsize = (14.4, 10.8)) ax = fig.add_subplot(111, projection = '3d') df_target1 = df[df[target] == 1] df_target0 = df[df[target] == 0] legend_properties = {} ax.scatter(df_target1['acc_x'], df_target1['acc_y'], df_target1['acc_z'], marker = 'x', label = 'Cars') ax.scatter(df_target0['acc_x'], df_target0['acc_y'], df_target0['acc_z'], marker = 'o', label = 'Non Cars') plt.legend(loc = 'best', prop = legend_properties) plt.show() space = {'learning_rate' : hp.uniform('learning_rate', 0, 1), 'max_depth' : hp.uniform('max_depth', 4, 10), 'n_estimators' : hp.uniform('n_estimators', 100, 200), 'gamma': hp.uniform ('gamma', 1, 9), 'colsample_bytree' : hp.choice('colsample_bytree', [1]), 'seed' : 60} def logit_objective(space): clf = LogisticRegression(**params, random_state = 60, verbose = True) cv = RepeatedStratifiedKFold(n_splits = 10, n_repeats = 3, random_state = 60) score = cross_val_score(clf, X_train, y_train, cv = cv, scoring = 'f1_macro') best_score = max(score) loss = 1 - best_score return {'loss': loss, 'params': params, 'status': STATUS_OK} def xgb_objective(space): clf = xgb.XGBClassifier( learning_rate = space['learning_rate'], max_depth = int(space['max_depth']), n_estimators = space['n_estimators'], objective = space['objective'], gamma = space['gamma'], reg_alpha = int(space['reg_alpha']), min_child_weight = int(space['min_child_weight']), ) evaluation = [(X_train, y_train), (X_test, y_test)] clf.fit(X_train, y_train, eval_set = evaluation, eval_metric = "auc", early_stopping_rounds = 10, verbose = True) pred = clf.predict(X_test) accuracy = accuracy_score(y_test, pred > 0.5) return {'loss': -accuracy, 'status': STATUS_OK } def f_score(y_pred, dtrain): y_true = dtrain.get_label() err = 1 - f1_score(y_true, np.round(y_pred)) return 'f1_err', err def evaluate(ytest, y_pred, speed): confusion = confusion_matrix(y_test, y_pred) fbeta = fbeta_score(y_test, y_pred, average = 'binary', beta = 1.2) print(bold.start, "Classification Report:", bold.end) print("") print(classification_report(y_test, y_pred)) print(bold.start, "F - 1.2 Score:", bold.end) print("") print("{:.6f}".format(fbeta)) print("") print(bold.start, "Prediction speed:", bold.end) print("") print("{:.6f} seconds".format(speed)) def roc(model_string, y_test, y_pred): roc_auc = roc_auc_score(y_test, y_pred) fpr, tpr, thresholds = roc_curve(y_test, y_pred) plt.figure(figsize = (9.6, 7.2)) plt.grid() plt.plot(fpr, tpr, label = model_string + ' (AUC = {:.2f})'.format(roc_auc)) plt.plot([0, 1], [0, 1],'r--') plt.xlim([0.0, 1.0]) plt.ylim([0.0, 1.0]) plt.xlabel('False Positive Rate') plt.ylabel('True Positive Rate') plt.title('Receiver Operating Characteristic') plt.legend(loc = "best") plt.show() ###Output _____no_output_____ ###Markdown EDA ###Code df.head(3) ###Output _____no_output_____ ###Markdown Cleaning ###Code information(df) ###Output This dataframe consists of 4 columns and 120000 rows. This dataframe consists of 0 null entires. This dataframe consists of 8186 duplicate rows. 0 rows belong to class target = 1. 0 rows belong to class target = 0.  Notable statistics of numeric features in this dataset:  acc_x acc_y acc_z count 120000.000000 120000.000000 120000.000000 mean -0.354549 5.367115 6.729311 std 1.931744 3.420114 2.588606 min -12.509735 -19.051361 -19.093689 25% -1.116619 1.902695 4.829160 50% -0.529119 6.922834 6.459327 75% -0.092177 8.182184 9.212952 max 36.782090 13.737244 60.973206  Object type of features in this dataset:  <class 'pandas.core.frame.DataFrame'> RangeIndex: 120000 entries, 0 to 119999 Data columns (total 4 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 acc_x 120000 non-null float64 1 acc_y 120000 non-null float64 2 acc_z 120000 non-null float64 3 target 120000 non-null object dtypes: float64(3), object(1) memory usage: 3.7+ MB ###Markdown - There are no missing values in the dataframe.- The three features acc_x, acc_y, acc_z are in desired data type (float, instead of string like object).- Notable statistic: The data has perfectly balanced classes.- Our target variable is categorical; map not_car, car to values 0, 1. ###Code df = pd.read_csv('vrudata.csv') encoder = {'not car' : 0, 'car' : 1} df['target'].replace(encoder, inplace = True) df.head(3) ###Output _____no_output_____ ###Markdown Transformation- Use df.skew() to determine whether our features are skewed, meaning whether transformation is neeeded.- Visualization using distplot-boxplot combined plots for better interpretability. ###Code df.skew(axis = 0) ###Output _____no_output_____ ###Markdown - acc_x has large skewness therefore needs transformation. Skewness of acc_y, acc_z are fine. ###Code dist_box(df['acc_x'], 'acc_x') ###Output _____no_output_____ ###Markdown - acc_x is right skewed. Perform log transformation on the data. ###Code df['acc_x'] = np.log(abs(original_df['acc_x'])) dist_box(df['acc_x'], 'acc_x') df.skew(axis = 0) ###Output _____no_output_____ ###Markdown - Skewness in acc_x is nonw acceptale and much better than before. ###Code dist_box(df['acc_y'], 'acc_y') ###Output _____no_output_____ ###Markdown - accy is only slgihtly (skew coefficient < 1) but obviously left skewed (apparently mean < median < mode). ###Code dist_box(df['acc_z'], 'acc_z') ###Output _____no_output_____ ###Markdown Scaling- Our features are not normally distributed but has no outliers. Therefore, use min-max scaler. ###Code scaler = MinMaxScaler() df = pd.DataFrame(scaler.fit_transform(df), columns = df.columns) df.head(3) ###Output _____no_output_____ ###Markdown Checking Multicollinearity ###Code corr = df.corr() plt.figure(figsize = (9.6, 7.2)) sns.heatmap(corr, xticklabels = corr.columns, yticklabels = corr.columns, annot = True) plt.title("Correlation Heatmap") plt.show() ###Output _____no_output_____ ###Markdown - The correlation between acc_y and acc_z is -0.6, rather strong, meaning there is some multicollinearity in the dataset. Consider removing one of the two variables if using logistic regression.- acc_y highly correlated to target variables. Reasonable explanation: cars can achieve much larger accelerations on forawrd-backward motions (which is the y-axis for accelerometer on phone, determined by how road users place phone) compared to pedestrains or bikers. ###Code sns.pairplot(df, hue = 'target') plt.show() ###Output _____no_output_____ ###Markdown Checking Linear Separability ###Code three_d_scatter(df, target = 'target') ###Output _____no_output_____ ###Markdown - According to the 3-D graph above, data of the two classes might be linearly separable.- In the following block, to determine whether the data is linearly separable, I trained a hard margin SVC with the data. If the training is able to find a margin for the hard margin SVM, the data is linearly separable; vice versa.- I used a linear SVC with the regularization parameter C set to infinity for the hard margin SVC desired. For large values of C, the optimization will choose a smaller-margin hyperplane if that hyperplane does a better job of getting all the training points classified correctly. When C is set a infininty, we get a hard margin SVM. ###Code X_train, X_test, y_train, y_test = train_test_split(df[{'acc_x', 'acc_y', 'acc_z'}], df['target'], test_size = 0.2, random_state = 42) svc = make_pipeline(StandardScaler(), LinearSVC(C = float('inf'), max_iter = 1000)) svc.fit(X_train, y_train) print("Training accuracy:", svc.score(X_train, y_train)) print("Accuracy:", svc.score(X_test, y_test)) ###Output Accuracy: 0.8060416666666667 ###Markdown - The hard margin SVC found a margin and did not overfit. As a result, the data is linearly separable. Model Selection>We want to prioritize getting the best **classification accuracy on unknown data** and **classification speed**. We can sacrifice training speed and interpretability of the model since the model will be used by vehicles on roads in real time.>The entire dataset consists of 3 continuous feature columns, 1 categorical target column, and 120,000 rows. That is, we have a **small feature set** and a **large dataset**. There are no missing or questionable values in the dataset. The distribution of the transformed three variables are still slightly **skewed** left, right, and right in the order acc_x, acc_y, and acc_z. There are **no outliers** in any of the three. Data of the two classes are **linearly separable.**I will use **logistic regression** as my baseline model. The reasons I think logistic regression would serve as a great baseline model in this project are:1. It is efficient to train.2. It tends to work well andnot overfit with low dimensional datasets like ours.3. Works since our dataset is linearly separable.I will use **XGBoost** as my expected best performing model. The reasons I think XGBoost is the better choice over other boosting and bagging algorithms such as random forest are:1. Much better prediction speed compared to bagging algorithms.2. Great accuracy performance as it pushes the limit of computation resources for boosted tree algorithms.3. Sophisticated but not prone to overfitting as long as parameters are tuned properly.4. Handles large datasets well.5. Difficult to interpret but we can sacrifice interpretability thanks to the background of this project.Then, I will use SGD for optimization because:1. We have a large amount of data. Evaluation Metric selectionAccuracy is one of our two main concerns. According to our background information, **avoiding type II errors is more important** than avoiding type I error, while we want to avoid both. Therefore, I will use F-beta score with beta = 1.2 to evaluate the accuracy performance of our model.Prediction speed is the other main concern. I will use pandas library "time" to assess the prediction speed performance of our model. Logistic Regression Feature Selection- Reminder: The correlation between acc_y and acc_z is -0.6. Might have to remove one of the two variables to make sure the model has little to no multicollinearity (one of the assumptions of logistic regression). ###Code X_train, X_test, y_train, y_test = train_test_split(df[{'acc_x', 'acc_y', 'acc_z'}], df['target'], test_size = 0.2, random_state = 60) X_train['intercept'] = 1 logit = sm.Logit(y_train, X_train) result = logit.fit() X_train = X_train.drop('intercept', axis = 1) result.summary2() ###Output _____no_output_____ ###Markdown - acc_x has p-value of 0.276 > 0.05. Remove acc_x from our feature set. ###Code X_train_logit = X_train.drop('acc_x', axis = 1) X_test_logit = X_test.drop('acc_x', axis = 1) ###Output _____no_output_____ ###Markdown Fitting the Model ###Code logit = LogisticRegression() logit.fit(X_train_logit, y_train) print("Training accuracy: {:.4f}".format(logit.score(X_train_logit, y_train))) temp = X_test.drop('acc_x', axis = 1) ######### start_time = time.time() logit_y_pred = logit.predict(temp) logit_speed = time.time() - start_time ######### del temp print("Prediction Accuracy: {:.4f}".format(logit.score(X_test_logit, y_test))) ###Output Prediction Accuracy: 0.9297 ###Markdown Evaluation ###Code evaluate(y_test, logit_y_pred, logit_speed) roc('Logistic Regression', y_test, logit_y_pred) ###Output _____no_output_____ ###Markdown XGBoost Fitting the Model ###Code space = {'learning_rate' : hp.uniform('learning_rate', 0, 1), 'max_depth' : hp.uniform('max_depth', 4, 10), 'n_estimators' : hp.quniform('n_estimators', 100, ), 'gamma': hp.uniform ('gamma', 1, 9), 'colsample_bytree' : hp.choice('colsample_bytree', [1]), 'seed' : 60} xgboost = xgb.XGBClassifier(learning_rate = 0.1, n_estimators = 200, seed = 60) xgboost.fit(X_train, y_train) print("Training accuracy: {:.4f}".format(xgboost.score(X_train, y_train))) ######### start_time = time.time() xgboost_y_pred = xgboost.predict(X_test) xgboost_speed = time.time() - start_time ######### print("Prediction Accuracy: {:.4f}".format(xgboost.score(X_test, y_test))) def xgb_objective(space): clf = xgb.XGBClassifier( max_depth = int(space['max_depth']), n_estimators = space['n_estimators'], gamma = space['gamma'], reg_alpha = int(space['reg_alpha']), min_child_weight = int(space['min_child_weight']), ) evaluation = [(X_train, y_train), (X_test, y_test)] clf.fit(X_train, y_train, eval_set = evaluation, eval_metric = "auc", early_stopping_rounds = 10, verbose = True) pred = clf.predict(X_test) accuracy = accuracy_score(y_test, pred > 0.5) return {'loss': -accuracy, 'status': STATUS_OK } ###Output _____no_output_____ ###Markdown 人口動態を見る 所属しているメンバーの年齢構成を見る ###Code data[data.single == 10][data.belong == 1] ages = {} for i in range(16): ages[i+1] = data[data.single == i+1][data.belong == 1].age.values f,a = plt.subplots(4,4,figsize=(15,15)) a = a.ravel() for idx, ax in enumerate(a): ax.hist(ages[idx+1]) ax.set_title("member age when %s single" %(idx+1)) ax.set_xlim([11, 26]) ax.set_ylim([0,10]) plt.tight_layout() ###Output /Users/susu/anaconda/lib/python3.5/site-packages/ipykernel/__main__.py:1: UserWarning: Boolean Series key will be reindexed to match DataFrame index. if __name__ == '__main__': /Users/susu/anaconda/lib/python3.5/site-packages/ipykernel/__main__.py:4: UserWarning: Boolean Series key will be reindexed to match DataFrame index. ###Markdown 3期生所属後、どのメンバーも26歳になったら抜けていると仮定して、6年後まで1年ごとに年齢構成を見る ###Code age_16 = data[data.single == 16][data.belong == 1].age.values age_3rd = data[data.term == 3][data.single == 16].age.values age_all = np.r_[age_16,age_3rd] ages = np.ones((6, len(age_all))) ages[0,:] = age_all for i in range(5): ages[i+1, :] = ages[i, :] + 1 f,a = plt.subplots(2,3,figsize=(10,8)) a = a.ravel() years = [2016, 2017, 2018, 2019, 2020, 2021] for idx, ax in enumerate(a): ax.hist(ages[idx, :][ages[idx, :]<26]) ax.set_title("%s" %years[idx]) ax.set_xlim([11, 26]) ax.set_ylim([0,14]) plt.tight_layout() ###Output _____no_output_____ ###Markdown Filter all dataThis takes the raw results for both experiments and removes the following:* Empty columns* Privac sensitive columns* Rejected workers* Contradicting answers that were not rejected workers* Workers that did the first experiment twice* Iphone and android users* Time spent on scenarios must be > 2 ###Code import os import pandas as pd inputFolder = folder+"/Data/1.raw/" outputFolder = folder+"/Data/2.filtered/" for f in os.listdir(inputFolder): # ignore non csv files if not f.endswith('csv'): continue print f # load data df = pd.read_csv(inputFolder+f) # remove empty columns print 'Columns:',df.shape[1] df.dropna(axis=1, how='all', inplace=True) print 'Columns:',df.shape[1],"Empty" # remove rejected workers print 'Rows:',df.shape[0] df = df[df['_tainted'] == False] print 'Rows:',df.shape[0],"Rejected" # remove contradicting answers that were not rejected workers if 'spam' not in df.columns: df['spam'] = 0 df = df[df['spam'] == 0] print 'Rows:',df.shape[0],"Contradicting" # remove workers that did the first experiment twice # take their first answer as the true data if f == 'exp1_f1232791.csv': workers = df['_worker_id'] if f == 'exp1_f1233325.csv': df = df[~df['_worker_id'].isin(workers)] print 'Rows:',df.shape[0],"Doubles" # remove iphone and android users df = df[df.apply(lambda row: 'iPhone' not in row['browser'], axis=1)] print 'Rows:',df.shape[0],"iPhone" df = df[df.apply(lambda row: 'Android' not in row['browser'], axis=1)] print 'Rows:',df.shape[0],"Android" # remove if time is not > 2 if 'time_none' in df.columns: df = df[df['time_none'] > 2] df = df[df['time_warning'] > 2] df = df[df['time_danger'] > 2] else: df = df[df['time_suggestion'] > 2] df = df[df['time_hours'] > 2] df = df[df['time_numerical'] > 2] print 'Rows:',df.shape[0],"time" # overwrite privacy sensitive columns df['_ip'] = 0 df['browser'] = 0 df['_city'] = 0 df['_region'] = 0 df['naam'] = 0 print 'Columns:',df.shape[1],"Privacy" print 'Rows:',df.shape[0],"time" df.to_csv(outputFolder+f, index=False) #df.head() ###Output exp1_f1232791.csv Columns: 62 Columns: 37 Empty Rows: 200 Rows: 178 Rejected Rows: 178 Contradicting Rows: 178 Doubles Rows: 176 iPhone Rows: 176 Android Rows: 175 time Columns: 38 Privacy Rows: 175 time exp1_f1233325.csv Columns: 64 Columns: 38 Empty Rows: 725 Rows: 613 Rejected Rows: 610 Contradicting Rows: 471 Doubles Rows: 470 iPhone Rows: 462 Android Rows: 449 time Columns: 38 Privacy Rows: 449 time exp2_f1233802.csv Columns: 74 Columns: 43 Empty Rows: 628 Rows: 535 Rejected Rows: 535 Contradicting Rows: 535 Doubles Rows: 533 iPhone Rows: 522 Android Rows: 501 time Columns: 43 Privacy Rows: 501 time ###Markdown Combined results of both experiments ###Code import crowdtruth class config(): inputColumns = ['a'] outputColumns = [ 'experiment1','experiment2', 'alert_suggestion', 'alert_numerical', 'feeling_danger', 'feeling_hours', 'feeling_none', 'feeling_numerical', 'feeling_suggestion', 'feeling_warning', 'imageorder', 'income', 'indebt', 'nobuyreason', 'product', 'regret', 's_danger', 's_hours', 's_none', 's_numerical', 's_suggestion', 's_warning', 'time_danger', 'time_hours', 'time_none', 'time_numerical', 'time_pre', 'time_suggestion', 'time_warning', 'warnings'] # processing of a closed task open_ended_task = False annotation_vector = []#['s_none','s_warning','s_danger'] def processJudgments(self, judgments): if 's_none' not in judgments.columns: judgments['experiment1'] = 0 judgments['experiment2'] = 1 judgments['s_suggestion'] = judgments['s_suggestion'].map(lambda x: str(x)[:-1]) judgments['s_hours'] = judgments['s_hours'].map(lambda x: str(x)[:-1]) judgments['s_numerical'] = judgments['s_numerical'].map(lambda x: str(x)[:-1]) judgments['time_suggestion'] = judgments['time_suggestion'].astype('int') judgments['time_hours'] = judgments['time_hours'].astype('int') judgments['time_numerical'] = judgments['time_numerical'].astype('int') judgments['s_none'] = 0 judgments['s_warning'] = 0 judgments['s_danger'] = 0 judgments['time_none'] = 0 judgments['time_warning'] = 0 judgments['time_danger'] = 0 judgments['feeling_none'] = 0 judgments['feeling_warning'] = 0 judgments['feeling_danger'] = 0 else : judgments['experiment1'] = 1 judgments['experiment2'] = 0 judgments['alert_suggestion'] = -1 judgments['alert_numerical'] = -1 judgments['s_none'] = judgments['s_none'].map(lambda x: str(x)[:-1]) judgments['s_warning'] = judgments['s_warning'].map(lambda x: str(x)[:-1]) judgments['s_danger'] = judgments['s_danger'].map(lambda x: str(x)[:-1]) judgments['time_none'] = judgments['time_none'].astype('int') judgments['time_warning'] = judgments['time_warning'].astype('int') judgments['time_danger'] = judgments['time_danger'].astype('int') judgments['s_suggestion'] = 0 judgments['s_hours'] = 0 judgments['s_numerical'] = 0 judgments['time_suggestion'] = 0 judgments['time_hours'] = 0 judgments['time_numerical'] = 0 judgments['feeling_suggestion'] = 0 judgments['feeling_hours'] = 0 judgments['feeling_numerical'] = 0 judgments['spam'] = '0' #judgments['time_pre'] = judgments['time_pre'].astype('int') #judgments.fillna(0, inplace=True) #print judgments.head() return judgments data, config = crowdtruth.load( directory = "/Users/benjamin/Box Sync/TFI Research/Data/2.filtered/", config = config() ) for p in config.output: #print p #print data['judgments']['output.'+p] data['judgments']['output.'+p] = data['judgments']['output.'+p].apply(lambda x: ','.join(x)) #print data['judgments'].head() import pandas as pd # aggregate post questions posts = { 'income' : 'income', 'nobuyreason' : 'nobuyreason', 'timing_suggestion' : 'alert_suggestion', 'timing_numerical' : 'alert_numerical', 'warnings' : 'warnings', 'affordcheck' : 'indebt', 'payontime' : 'regret' } data['judgments']['output.experiment1'] = data['judgments']['output.experiment1'].astype('int') data['judgments']['output.experiment2'] = data['judgments']['output.experiment2'].astype('int') for p in posts: data[p] = data['judgments'].copy() data[p] = data[p][['output.'+posts[p],'output.experiment1','output.experiment2','output.s_none','output.s_warning','output.s_danger','output.s_suggestion','output.s_hours','output.s_numerical']] data[p].columns = [p,'experiment1','experiment2','none','warning','danger','suggestion','hours','numerical'] data[p]['none'] = data[p]['none'].apply(lambda x: 1 if x == 'submit' else 0) data[p]['warning'] = data[p]['warning'].apply(lambda x: 1 if x == 'submit' else 0) data[p]['danger'] = data[p]['danger'].apply(lambda x: 1 if x == 'submit' else 0) data[p]['suggestion'] = data[p]['suggestion'].apply(lambda x: 1 if x == 'submit' else 0) data[p]['hours'] = data[p]['hours'].apply(lambda x: 1 if x == 'submit' else 0) data[p]['numerical'] = data[p]['numerical'].apply(lambda x: 1 if x == 'submit' else 0) agg = { p : 'count', 'experiment1' : 'sum', 'experiment2' : 'sum', 'none' : 'sum', 'warning' : 'sum', 'danger' : 'sum', 'suggestion' : 'sum', 'hours' : 'sum', 'numerical' : 'sum', } data[p] = data[p].groupby(p).agg(agg) data[p]['none'] = data[p].apply(lambda row: row['none'] / float(row['experiment1']), axis = 1) data[p]['warning'] = data[p].apply(lambda row: row['warning'] / float(row['experiment1']), axis = 1) data[p]['danger'] = data[p].apply(lambda row: row['danger'] / float(row['experiment1']), axis = 1) data[p]['suggestion'] = data[p].apply(lambda row: row['suggestion'] / float(row['experiment2']), axis = 1) data[p]['hours'] = data[p].apply(lambda row: row['hours'] / float(row['experiment2']), axis = 1) data[p]['numerical'] = data[p].apply(lambda row: row['numerical'] / float(row['experiment2']), axis = 1) data[p] = data[p].T #print data[p] # financial responsibility data['responsibility'] = data['judgments'].copy() data['responsibility'] = data['responsibility'][['output.experiment1','output.experiment2','output.indebt','output.regret','output.s_none','output.s_warning','output.s_danger','output.s_suggestion','output.s_hours','output.s_numerical']] data['responsibility'].columns = ['experiment1','experiment2','affordcheck','payontime','none','warning','danger','suggestion','hours','numerical'] data['responsibility']['affordcheck'] = data['responsibility']['affordcheck'].apply(lambda x: 1 if x == 'eens' else 0) data['responsibility']['payontime'] = data['responsibility']['payontime'].apply(lambda x: 1 if x == 'eens' else 0) data['responsibility']['responsibility'] = data['responsibility']['affordcheck'] + data['responsibility']['payontime'] data['responsibility']['none'] = data['responsibility']['none'].apply(lambda x: 1 if x == 'submit' else 0) data['responsibility']['warning'] = data['responsibility']['warning'].apply(lambda x: 1 if x == 'submit' else 0) data['responsibility']['danger'] = data['responsibility']['danger'].apply(lambda x: 1 if x == 'submit' else 0) data['responsibility']['suggestion'] = data['responsibility']['suggestion'].apply(lambda x: 1 if x == 'submit' else 0) data['responsibility']['hours'] = data['responsibility']['hours'].apply(lambda x: 1 if x == 'submit' else 0) data['responsibility']['numerical'] = data['responsibility']['numerical'].apply(lambda x: 1 if x == 'submit' else 0) agg = { 'experiment1' : 'sum', 'experiment2' : 'sum', 'none' : 'sum', 'warning' : 'sum', 'danger' : 'sum', 'suggestion' : 'sum', 'hours' : 'sum', 'numerical' : 'sum', } data['responsibility'] = data['responsibility'].groupby(['responsibility']).agg(agg) data['responsibility']['none'] = data['responsibility'].apply(lambda row: row['none'] / float(row['experiment1']), axis = 1) data['responsibility']['warning'] = data['responsibility'].apply(lambda row: row['warning'] / float(row['experiment1']), axis = 1) data['responsibility']['danger'] = data['responsibility'].apply(lambda row: row['danger'] / float(row['experiment1']), axis = 1) data['responsibility']['suggestion'] = data['responsibility'].apply(lambda row: row['suggestion'] / float(row['experiment2']), axis = 1) data['responsibility']['hours'] = data['responsibility'].apply(lambda row: row['hours'] / float(row['experiment2']), axis = 1) data['responsibility']['numerical'] = data['responsibility'].apply(lambda row: row['numerical'] / float(row['experiment2']), axis = 1) data['responsibility'] = data['responsibility'].T #print data['responsibility'] import pandas as pd import numpy as np # # aggregate by time exposure # data['scenarios'] = data['judgments'][['output.s_none','output.s_warning','output.s_danger','output.s_suggestion','output.s_hours','output.s_numerical']].apply(pd.Series.value_counts).T data['scenarios'].index = ['none','warning','danger','suggestion','hours','numerical'] rows = data['judgments'].index.size #data['scenarios']['cancel_ratio'] = data['scenarios']['cancel'].apply(lambda x: float(x) / rows) #data['scenarios']['submit_ratio'] = 0 data['scenarios']['submit_ratio'] = data['scenarios'].apply(lambda row: row['submit'] / (float(row['cancel']) + float(row['submit'])), axis=1) #print data['scenarios'] data['scenarios']['duration_avg'] = 0 data['scenarios'].loc['none','duration_avg'] = np.asarray(data['judgments']['output.time_none'], dtype=np.float).mean() data['scenarios'].loc['warning','duration_avg'] = np.asarray(data['judgments']['output.time_warning'], dtype=np.float).mean() data['scenarios'].loc['danger','duration_avg'] = np.asarray(data['judgments']['output.time_danger'], dtype=np.float).mean() data['scenarios'].loc['suggestion','duration_avg'] = np.asarray(data['judgments']['output.time_suggestion'], dtype=np.float).mean() data['scenarios'].loc['hours','duration_avg'] = np.asarray(data['judgments']['output.time_hours'], dtype=np.float).mean() data['scenarios'].loc['numerical','duration_avg'] = np.asarray(data['judgments']['output.time_numerical'], dtype=np.float).mean() # scenarios data['scenarios'] = data['judgments'].copy() data['scenarios'] = data['scenarios'][['output.experiment1','output.experiment2','output.s_none','output.s_warning','output.s_danger','output.s_suggestion','output.s_hours','output.s_numerical']] data['scenarios'].columns = ['experiment1','experiment2','none','warning','danger','suggestion','hours','numerical'] data['scenarios']['none'] = data['scenarios']['none'].apply(lambda x: 1 if x == 'submit' else 0) data['scenarios']['warning'] = data['scenarios']['warning'].apply(lambda x: 1 if x == 'submit' else 0) data['scenarios']['danger'] = data['scenarios']['danger'].apply(lambda x: 1 if x == 'submit' else 0) data['scenarios']['suggestion'] = data['scenarios']['suggestion'].apply(lambda x: 1 if x == 'submit' else 0) data['scenarios']['hours'] = data['scenarios']['hours'].apply(lambda x: 1 if x == 'submit' else 0) data['scenarios']['numerical'] = data['scenarios']['numerical'].apply(lambda x: 1 if x == 'submit' else 0) # t.tests import scipy.stats exp1 = data['scenarios'][data['scenarios']['experiment1'] == 1] print 'none-warning t-test',scipy.stats.ttest_rel(exp1['none'],exp1['warning']) agg = { 'experiment1' : 'sum', 'experiment2' : 'sum', 'none' : 'sum', 'warning' : 'sum', 'danger' : 'sum', 'suggestion' : 'sum', 'hours' : 'sum', 'numerical' : 'sum', } data['scenarios'] = data['scenarios'].groupby(['experiment1']).agg(agg) data['scenarios']['none'] = data['scenarios'].apply(lambda row: row['none'] / float(row['experiment1']), axis = 1) data['scenarios']['warning'] = data['scenarios'].apply(lambda row: row['warning'] / float(row['experiment1']), axis = 1) data['scenarios']['danger'] = data['scenarios'].apply(lambda row: row['danger'] / float(row['experiment1']), axis = 1) data['scenarios']['suggestion'] = data['scenarios'].apply(lambda row: row['suggestion'] / float(row['experiment2']), axis = 1) data['scenarios']['hours'] = data['scenarios'].apply(lambda row: row['hours'] / float(row['experiment2']), axis = 1) data['scenarios']['numerical'] = data['scenarios'].apply(lambda row: row['numerical'] / float(row['experiment2']), axis = 1) #data['scenarios'] = data['scenarios'].T #print data['scenarios'].head() from scipy import stats anova = data['judgments'].copy() anova[['output.s_none','output.s_warning','output.s_danger']] = anova[['output.s_none','output.s_warning','output.s_danger']].apply(lambda x: x.replace('cancel',1)) anova[['output.s_none','output.s_warning','output.s_danger']] = anova[['output.s_none','output.s_warning','output.s_danger']].apply(lambda x: x.replace('submit',0)) F, p = stats.f_oneway(anova['output.s_none'], anova['output.s_warning'], anova['output.s_danger']) print F,p anova = data['judgments'].copy() anova[['output.s_suggestion','output.s_hours','output.s_numerical']] = anova[['output.s_suggestion','output.s_hours','output.s_numerical']].apply(lambda x: x.replace('cancel',1)) anova[['output.s_suggestion','output.s_hours','output.s_numerical']] = anova[['output.s_suggestion','output.s_hours','output.s_numerical']].apply(lambda x: x.replace('submit',0)) F, p = stats.f_oneway(anova['output.s_suggestion'], anova['output.s_hours'], anova['output.s_numerical']) print F,p # feelings def pos(feelings): for f in feelings.split(','): if f in ['tevreden','blij','opgewonden','opgelucht']: return 1 return 0 def neg(feelings): for f in feelings.split(','): if f in ['bezorgd','schuldig','verdrietig','boos','beschaamd','ontevreden']: return 1 return 0 def neutral(feelings): for f in feelings.split(','): if f in ['weetniet']: return 1 return 0 feelings = data['judgments'].copy() feelings = feelings[['output.s_none','output.s_warning','output.s_danger','output.feeling_none','output.feeling_warning','output.feeling_danger','output.s_suggestion','output.s_hours','output.s_numerical','output.feeling_suggestion','output.feeling_hours','output.feeling_numerical']] feelings['s_none_pos'] = feelings['output.feeling_none'].apply(lambda x: pos(x)) feelings['s_none_neg'] = feelings['output.feeling_none'].apply(lambda x: neg(x)) feelings['s_none_neutral'] = feelings['output.feeling_none'].apply(lambda x: neutral(x)) feelings['s_warning_pos'] = feelings['output.feeling_warning'].apply(lambda x: pos(x)) feelings['s_warning_neg'] = feelings['output.feeling_warning'].apply(lambda x: neg(x)) feelings['s_warning_neutral'] = feelings['output.feeling_warning'].apply(lambda x: neutral(x)) feelings['s_danger_pos'] = feelings['output.feeling_danger'].apply(lambda x: pos(x)) feelings['s_danger_neg'] = feelings['output.feeling_danger'].apply(lambda x: neg(x)) feelings['s_danger_neutral'] = feelings['output.feeling_danger'].apply(lambda x: neutral(x)) feelings['s_suggestion_pos'] = feelings['output.feeling_suggestion'].apply(lambda x: pos(x)) feelings['s_suggestion_neg'] = feelings['output.feeling_suggestion'].apply(lambda x: neg(x)) feelings['s_suggestion_neutral'] = feelings['output.feeling_suggestion'].apply(lambda x: neutral(x)) feelings['s_hours_pos'] = feelings['output.feeling_hours'].apply(lambda x: pos(x)) feelings['s_hours_neg'] = feelings['output.feeling_hours'].apply(lambda x: neg(x)) feelings['s_hours_neutral'] = feelings['output.feeling_hours'].apply(lambda x: neutral(x)) feelings['s_numerical_pos'] = feelings['output.feeling_numerical'].apply(lambda x: pos(x)) feelings['s_numerical_neg'] = feelings['output.feeling_numerical'].apply(lambda x: neg(x)) feelings['s_numerical_neutral'] = feelings['output.feeling_numerical'].apply(lambda x: neutral(x)) #print feelings.head() data['feelings'] = feelings data['feeling_count'] = pd.DataFrame() data['feeling_count']['none'] = pd.DataFrame([i for f in data['judgments']['output.feeling_none'].tolist() for i in f.split(',')]).loc[:,0].value_counts() data['feeling_count']['warning'] = pd.DataFrame([i for f in data['judgments']['output.feeling_warning'].tolist() for i in f.split(',')]).loc[:,0].value_counts() data['feeling_count']['danger'] = pd.DataFrame([i for f in data['judgments']['output.feeling_danger'].tolist() for i in f.split(',')]).loc[:,0].value_counts() data['feeling_count']['suggestion'] = pd.DataFrame([i for f in data['judgments']['output.feeling_suggestion'].tolist() for i in f.split(',')]).loc[:,0].value_counts() data['feeling_count']['hours'] = pd.DataFrame([i for f in data['judgments']['output.feeling_hours'].tolist() for i in f.split(',')]).loc[:,0].value_counts() data['feeling_count']['numerical'] = pd.DataFrame([i for f in data['judgments']['output.feeling_numerical'].tolist() for i in f.split(',')]).loc[:,0].value_counts() #data['feeling_count']['none'] = .value_counts() #data['feeling_count']['warning'] = data['judgments']['output.feeling_warning'].value_counts() print data['feeling_count'] crowdtruth.save(data, config, folder+'/Data/3.aggregated/') ###Output _____no_output_____ ###Markdown Load Data ###Code import os import re import json import math import numpy as np import scipy.stats as stats workdir = './' pathdata = os.path.join(workdir, 'data.json') pathqrels = os.path.join(workdir, 'judgments.json') pathtests = os.path.join(workdir, 'tests.json') data = {} qrels = {} tests = {} with open(pathdata, 'r', encoding='utf-8') as f: data = json.load(f) with open(pathqrels, 'r', encoding='utf-8') as f: qrels = json.load(f) with open(pathtests, 'r', encoding='utf-8') as f: tests = json.load(f) ###Output _____no_output_____ ###Markdown Query Measures ###Code # number of queries def numq(data, qrels, tests, sid): return [ len(data[sid]['searches']) ] # unique number of queries def numq_unique(data, qrels, tests, sid): return [ len(set([s['q'] for s in data[sid]['searches']])) ] # number of queries w/o any clicks def numq_noclick(data, qrels, tests, sid): return [ len([1 for s in data[sid]['searches'] if len([1 for r in s['results'] if len(r['click'])>0])>0]) ] # number of characters per query def qlen(data, qrels, tests, sid): return [ len(s['q']) for s in data[sid]['searches'] ] # remove two consecutive duplicate queries def removeDups(queries): nodups = [] for query in queries: if len(nodups)==0 or query!=nodups[-1]: nodups.append(query) return nodups def qsim(q1, q2, n): ngrams1 = set( [ q1[i:i+n] for i in range(len(q1)-n+1) ] ) ngrams2 = set( [ q2[i:i+n] for i in range(len(q2)-n+1) ] ) return len(ngrams1.intersection(ngrams2)) / len(ngrams1.union(ngrams2)) if len(ngrams1.union(ngrams2))>0 else np.nan # unigram similarity between query pairs def qsim_unigram(data, qrels, tests, sid): queries = removeDups( [ s['q'] for s in data[sid]['searches'] ] ) return [ qsim(queries[i], queries[i+1], 1) for i in range(len(queries)-1) ] # bigram similarity between query pairs def qsim_bigram(data, qrels, tests, sid): queries = removeDups( [ s['q'] for s in data[sid]['searches'] ] ) return [ qsim(queries[i], queries[i+1], 2) for i in range(len(queries)-1) ] DVs_query = { 'numq': numq, 'numq_unique': numq_unique, 'numq_noclick': numq_noclick, 'qlen': qlen, 'qsim_unigram': qsim_unigram, 'qsim_bigram': qsim_bigram, } ###Output _____no_output_____ ###Markdown Click Measures ###Code # number of clicks def numclicks(data, qrels, tests, sid): return [ np.sum( [ len(r['click']) for s in data[sid]['searches'] for r in s['results'] ] ) ] # number of clicks by result category def numclicks_misinfo(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ np.sum( [ len(r['click']) for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='misinfo' ] ) ] # number of clicks by result category def numclicks_correct(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ np.sum( [ len(r['click']) for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='correct' ] ) ] # number of clicks by result category def numclicks_nrel(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ np.sum( [ len(r['click']) for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='nrel' ] ) ] # percentage of clicks by result category def ratioclicks_misinfo(data, qrels, tests, sid): num = numclicks_misinfo(data, qrels, tests, sid)[0] total = numclicks(data, qrels, tests, sid)[0] return [ num/total ] # percentage of clicks by result category def ratioclicks_correct(data, qrels, tests, sid): num = numclicks_correct(data, qrels, tests, sid)[0] total = numclicks(data, qrels, tests, sid)[0] return [ num/total ] # percentage of clicks by result category def ratioclicks_nrel(data, qrels, tests, sid): num = numclicks_nrel(data, qrels, tests, sid)[0] total = numclicks(data, qrels, tests, sid)[0] return [ num/total ] # percentage of displayed results by category def ratioresults_misinfo(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ np.sum( [ 1 for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='misinfo' ] ) / np.sum( [ 1 for s in data[sid]['searches'] for r in s['results'] ] ) ] # percentage of displayed results by category def ratioresults_correct(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ np.sum( [ 1 for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='correct' ] ) / np.sum( [ 1 for s in data[sid]['searches'] for r in s['results'] ] ) ] # percentage of displayed results by category def ratioresults_nrel(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ np.sum( [ 1 for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='nrel' ] ) / np.sum( [ 1 for s in data[sid]['searches'] for r in s['results'] ] ) ] # percentage of displayed results by category def misinfo_density(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] num_misinfo = len([r for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='misinfo']) num_correct = len([r for s in data[sid]['searches'] for r in s['results'] if tqrel[r['url']]=='correct']) density = 0 if num_misinfo+num_correct==0 else num_misinfo/(num_misinfo+num_correct) return [ density ] # misinfo NDCG def misinfo_ndcg(data, qrels, tests, sid): tqrel = qrels[data[sid]['task']] return [ rank_misinfo_ndcg(s['results'], tqrel) for s in data[sid]['searches'] ] def rank_misinfo_ndcg(results, tqrel): sum_dcg = 0 sum_idcg = 0 for i in range(len(results)): discount = 1 / math.log2(i+2) rel_r = 1 if tqrel[results[i]['url']]=='misinfo' else 0 rel_ir = 1 sum_dcg += discount*(2**rel_r-1) sum_idcg += discount*(2**rel_ir-1) return sum_dcg/sum_idcg DVs_click = { 'numclicks': numclicks, 'numclicks_misinfo': numclicks_misinfo, 'numclicks_correct': numclicks_correct, 'numclicks_nrel': numclicks_nrel, 'ratioclicks_misinfo': ratioclicks_misinfo, 'ratioclicks_correct': ratioclicks_correct, 'ratioclicks_nrel': ratioclicks_nrel, 'ratioresults_misinfo': ratioresults_misinfo, 'ratioresults_correct': ratioresults_correct, 'ratioresults_nrel': ratioresults_nrel, 'misinfo_density': misinfo_density, 'misinfo_ndcg': misinfo_ndcg } ###Output _____no_output_____ ###Markdown Pre-task and Post-task Survey ###Code def pre_familiar(data, qrels, tests, sid): return [ data[sid]['presurvey']['familiar'] ] def pre_explore(data, qrels, tests, sid): return [ data[sid]['presurvey']['explore'] ] def pre_interest(data, qrels, tests, sid): return [ data[sid]['presurvey']['interest'] ] def pre_credible(data, qrels, tests, sid): return [ data[sid]['presurvey']['credible'] ] def pre_expdiff(data, qrels, tests, sid): return [ data[sid]['presurvey']['expdiff'] ] def pre_capable(data, qrels, tests, sid): return [ data[sid]['presurvey']['capable'] ] def post_sufficient(data, qrels, tests, sid): return [ data[sid]['postsurvey']['sufficient'] ] def post_explore(data, qrels, tests, sid): return [ data[sid]['postsurvey']['explore'] ] def post_effort(data, qrels, tests, sid): return [ data[sid]['postsurvey']['effort'] ] def post_useful(data, qrels, tests, sid): return [ data[sid]['postsurvey']['useful'] ] def post_credible(data, qrels, tests, sid): return [ data[sid]['postsurvey']['credible'] ] def post_confidence(data, qrels, tests, sid): return [ data[sid]['postsurvey']['confidence'] ] DVs_survey = { 'pre_familiar': pre_familiar, 'pre_explore': pre_explore, 'pre_interest': pre_interest, 'pre_credible': pre_credible, 'pre_expdiff': pre_expdiff, 'pre_capable': pre_capable, 'post_sufficient': post_sufficient, 'post_explore': post_explore, 'post_effort': post_effort, 'post_useful': post_useful, 'post_credible': post_credible, 'post_confidence': post_confidence, } ###Output _____no_output_____ ###Markdown Pre-task and Post-task Tests ###Code pretest_answers = {} for testid in [x+1 for x in range(20)]: pretest_answers[testid] = lambda data, qrels, tests, sid, testid=testid:[ data[sid]['pretest'][str(testid)] ] posttest_answers = {} for testid in [x+1 for x in range(20)]: posttest_answers[testid] = lambda data, qrels, tests, sid, testid=testid:[ data[sid]['posttest'][str(testid)] ] deltatest_answers = {} for testid in [x+1 for x in range(20)]: deltatest_answers[testid] = lambda data, qrels, tests, sid, testid=testid:[ data[sid]['posttest'][str(testid)] - data[sid]['pretest'][str(testid)] ] def pre_correctness(data, qrels, tests, sid): correct = 0 total = 0 s = data[sid] for testid in s['pretest']: g = tests[s['task']][testid]['answer'] u = s['pretest'][testid] total += 1 if ( g==1 and u>3 ) or ( g==0 and u<3 ): correct += 1 return [ correct/total ] def post_correctness(data, qrels, tests, sid): correct = 0 total = 0 s = data[sid] for testid in s['posttest']: g = tests[s['task']][testid]['answer'] u = s['posttest'][testid] total += 1 if ( g==1 and u>3 ) or ( g==0 and u<3 ): correct += 1 return [ correct/total ] def diff_correctness(data, qrels, tests, sid): return [ post_correctness(data,qrels,tests,sid)[0] - pre_correctness(data,qrels,tests,sid)[0] ] def pre_deviation(data, qrels, tests, sid): deviation = [] s = data[sid] for testid in s['pretest']: g = 5 if tests[s['task']][testid]['answer']==1 else 1 u = s['pretest'][testid] deviation.append(np.abs(u-g)) return [np.mean(deviation)] def post_deviation(data, qrels, tests, sid): deviation = [] s = data[sid] for testid in s['posttest']: g = 5 if tests[s['task']][testid]['answer']==1 else 1 u = s['posttest'][testid] deviation.append(np.abs(u-g)) return [np.mean(deviation)] def diff_deviation(data, qrels, tests, sid): return [ pre_deviation(data,qrels,tests,sid)[0] - post_deviation(data,qrels,tests,sid)[0] ] DVs_test = { 'pre_correctness': pre_correctness, 'post_correctness': post_correctness, 'diff_correctness': diff_correctness, 'pre_deviation': pre_deviation, 'post_deviation': post_deviation, 'diff_deviation': diff_deviation } DVs_test_task1 = { 'pretest_answers_Q%d'%(x+1):pretest_answers[x+1] for x in range(10) } DVs_test_task1.update( { 'posttest_answers_Q%d'%(x+1):posttest_answers[x+1] for x in range(10) } ) DVs_test_task1.update( { 'deltatest_answers_Q%d'%(x+1):deltatest_answers[x+1] for x in range(10) } ) DVs_test_task2 = { 'pretest_answers_Q%d'%(x+11):pretest_answers[x+11] for x in range(10) } DVs_test_task2.update( { 'posttest_answers_Q%d'%(x+11):posttest_answers[x+11] for x in range(10) } ) DVs_test_task2.update( { 'deltatest_answers_Q%d'%(x+11):deltatest_answers[x+11] for x in range(10) } ) ###Output _____no_output_____ ###Markdown ANOVA Tests ###Code from scipy.stats import f_oneway def getDVvalues( data, qrels, tests, DV, setting, tasks ): values = [] for sid in data: s = data[sid] if s['setting']==setting and s['task'] in tasks: for v in DV(data, qrels, tests, sid): if not np.isnan(v): values.append(v) return values def star(pval): if pval<0.001: return '***' if pval<0.01: return '**' if pval<0.05: return '*' return '' def anovaDVs( data, qrels, tests, DVs, tasks ): print( '%-40s%10s %7s%10s %7s%10s %7s %s' % ( 'DV', 'Low', '', 'Med', '', 'High', '', 'p (ANOVA)' ) ) for DV in DVs: values_low = getDVvalues( data, qrels, tests, DVs[DV], 'Low', tasks ) values_med = getDVvalues( data, qrels, tests, DVs[DV], 'Med', tasks ) values_high = getDVvalues( data, qrels, tests, DVs[DV], 'High', tasks ) mean_low = np.mean( values_low ) mean_med = np.mean( values_med ) mean_high = np.mean( values_high ) sem_low = stats.sem( values_low ) sem_med = stats.sem( values_med ) sem_high = stats.sem( values_high ) f, p = f_oneway( values_low, values_med, values_high ) print( '%-40s%10.3f (%.3f)%10.3f (%.3f)%10.3f (%.3f) p=%.4f %s' % ( DV, mean_low, sem_low, mean_med, sem_med, mean_high, sem_high, p, star(p) ) ) from scipy.stats import f_oneway def anovaDVsLatex( data, qrels, tests, DVs, tasks ): for DV in DVs: values_low = getDVvalues( data, qrels, tests, DVs[DV], 'Low', tasks ) values_med = getDVvalues( data, qrels, tests, DVs[DV], 'Med', tasks ) values_high = getDVvalues( data, qrels, tests, DVs[DV], 'High', tasks ) mean_low = np.mean( values_low ) mean_med = np.mean( values_med ) mean_high = np.mean( values_high ) sem_low = stats.sem( values_low ) sem_med = stats.sem( values_med ) sem_high = stats.sem( values_high ) f, p = f_oneway( values_low, values_med, values_high ) print( '%s & %.2f (%.2f) & %.2f (%.2f) & %.2f (%.2f) & $p=%.3f$ %s \\\\ \hline' % ( DV, mean_low, sem_low, mean_med, sem_med, mean_high, sem_high, p, star(p) ) ) anovaDVs( data, qrels, tests, DVs_query, ['1','2'] ) anovaDVs( data, qrels, tests, DVs_click, ['1','2'] ) anovaDVs( data, qrels, tests, DVs_survey, ['1','2'] ) anovaDVsLatex( data, qrels, tests, DVs_survey, ['1','2'] ) anovaDVs( data, qrels, tests, DVs_test, ['1','2'] ) anovaDVs( data, qrels, tests, DVs_test_task1, ['1'] ) anovaDVs( data, qrels, tests, DVs_test_task2, ['2'] ) ###Output DV Low Med High p (ANOVA) pretest_answers_Q11 4.150 (0.131) 4.150 (0.182) 4.150 (0.244) p=1.0000 pretest_answers_Q12 2.300 (0.219) 2.800 (0.258) 2.850 (0.284) p=0.2487 pretest_answers_Q13 4.200 (0.172) 3.500 (0.276) 3.900 (0.216) p=0.0976 pretest_answers_Q14 2.150 (0.233) 1.900 (0.191) 1.950 (0.185) p=0.6579 pretest_answers_Q15 3.550 (0.246) 3.750 (0.160) 3.550 (0.256) p=0.7692 pretest_answers_Q16 3.600 (0.266) 3.850 (0.196) 3.950 (0.153) p=0.4832 pretest_answers_Q17 4.450 (0.223) 4.600 (0.112) 4.300 (0.179) p=0.4943 pretest_answers_Q18 2.500 (0.295) 2.450 (0.211) 2.850 (0.302) p=0.5306 pretest_answers_Q19 3.100 (0.216) 3.000 (0.192) 3.450 (0.198) p=0.2645 pretest_answers_Q20 3.800 (0.200) 4.000 (0.178) 3.700 (0.179) p=0.5131 posttest_answers_Q11 2.400 (0.294) 2.200 (0.345) 3.350 (0.372) p=0.0442 * posttest_answers_Q12 1.300 (0.164) 1.250 (0.160) 1.950 (0.303) p=0.0496 * posttest_answers_Q13 3.500 (0.286) 3.150 (0.302) 3.250 (0.362) p=0.7265 posttest_answers_Q14 2.700 (0.291) 2.300 (0.231) 2.350 (0.274) p=0.5162 posttest_answers_Q15 2.550 (0.285) 2.300 (0.309) 2.650 (0.327) p=0.7104 posttest_answers_Q16 3.600 (0.255) 3.900 (0.143) 3.850 (0.221) p=0.5655 posttest_answers_Q17 4.650 (0.131) 4.650 (0.109) 4.500 (0.224) p=0.7538 posttest_answers_Q18 1.500 (0.170) 1.850 (0.264) 2.600 (0.255) p=0.0052 ** posttest_answers_Q19 4.600 (0.112) 4.200 (0.236) 3.900 (0.270) p=0.0821 posttest_answers_Q20 2.750 (0.280) 2.450 (0.294) 3.150 (0.293) p=0.2371 deltatest_answers_Q11 -1.750 (0.339) -1.950 (0.336) -0.800 (0.304) p=0.0359 * deltatest_answers_Q12 -1.000 (0.262) -1.550 (0.320) -0.900 (0.383) p=0.3218 deltatest_answers_Q13 -0.700 (0.317) -0.350 (0.357) -0.650 (0.302) p=0.7155 deltatest_answers_Q14 0.550 (0.366) 0.400 (0.255) 0.400 (0.197) p=0.9100 deltatest_answers_Q15 -1.000 (0.308) -1.450 (0.336) -0.900 (0.315) p=0.4378 deltatest_answers_Q16 0.000 (0.218) 0.050 (0.170) -0.100 (0.191) p=0.8563 deltatest_answers_Q17 0.200 (0.172) 0.050 (0.088) 0.200 (0.213) p=0.7623 deltatest_answers_Q18 -1.000 (0.262) -0.600 (0.275) -0.250 (0.347) p=0.2115 deltatest_answers_Q19 1.500 (0.276) 1.200 (0.277) 0.450 (0.344) p=0.0468 * deltatest_answers_Q20 -1.050 (0.328) -1.550 (0.303) -0.550 (0.235) p=0.0608 ###Markdown Plots Query Behavior ###Code import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Num. Queries **', 'Num. Queries (unique) **', 'Query Length *' ] means_low = [ np.mean( getDVvalues( data, qrels, tests, numq, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numq_unique, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, qlen, 'Low', ['1','2'] ) ) ] means_med = [ np.mean( getDVvalues( data, qrels, tests, numq, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numq_unique, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, qlen, 'Med', ['1','2'] ) ) ] means_high = [ np.mean( getDVvalues( data, qrels, tests, numq, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numq_unique, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, qlen, 'High', ['1','2'] ) ) ] sem_low = [ stats.sem( getDVvalues( data, qrels, tests, numq, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numq_unique, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, qlen, 'Low', ['1','2'] ) ) ] sem_med = [ stats.sem( getDVvalues( data, qrels, tests, numq, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numq_unique, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, qlen, 'Med', ['1','2'] ) ) ] sem_high = [ stats.sem( getDVvalues( data, qrels, tests, numq, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numq_unique, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, qlen, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,16]) # ax.set_ylabel('Scores') ax.set_title('Number of Queries and Query Length') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper center') ax.bar_label(rects1, padding=3, fmt='%.2f') ax.bar_label(rects2, padding=3, fmt='%.2f') ax.bar_label(rects3, padding=3, fmt='%.2f') plt.savefig( os.path.join(workdir, 'query.png'), dpi=300 ) plt.show() ###Output _____no_output_____ ###Markdown Query Similarity ###Code import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Query Sim (Unigram) *', 'Query Sim (Bigram) *' ] means_low = [ np.mean( getDVvalues( data, qrels, tests, qsim_unigram, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, qsim_bigram, 'Low', ['1','2'] ) ) ] means_med = [ np.mean( getDVvalues( data, qrels, tests, qsim_unigram, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, qsim_bigram, 'Med', ['1','2'] ) ) ] means_high = [ np.mean( getDVvalues( data, qrels, tests, qsim_unigram, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, qsim_bigram, 'High', ['1','2'] ) ) ] sem_low = [ stats.sem( getDVvalues( data, qrels, tests, qsim_unigram, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, qsim_bigram, 'Low', ['1','2'] ) ) ] sem_med = [ stats.sem( getDVvalues( data, qrels, tests, qsim_unigram, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, qsim_bigram, 'Med', ['1','2'] ) ) ] sem_high = [ stats.sem( getDVvalues( data, qrels, tests, qsim_unigram, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, qsim_bigram, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,0.6]) # ax.set_ylabel('Scores') ax.set_title('Similarities between Query Reformulations') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper center') ax.bar_label(rects1, padding=3, fmt='%.2f') ax.bar_label(rects2, padding=3, fmt='%.2f') ax.bar_label(rects3, padding=3, fmt='%.2f') plt.savefig( os.path.join(workdir, 'qsim.png'), dpi=300 ) plt.show() ###Output _____no_output_____ ###Markdown Click ###Code import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Overall', 'Misinfo. ***', 'Correct ***', 'Irrelevant' ] means_low = [ np.mean( getDVvalues( data, qrels, tests, numclicks, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_misinfo, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_correct, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_nrel, 'Low', ['1','2'] ) ) ] means_med = [ np.mean( getDVvalues( data, qrels, tests, numclicks, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_misinfo, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_correct, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_nrel, 'Med', ['1','2'] ) ) ] means_high = [ np.mean( getDVvalues( data, qrels, tests, numclicks, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_misinfo, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_correct, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, numclicks_nrel, 'High', ['1','2'] ) ) ] sem_low = [ stats.sem( getDVvalues( data, qrels, tests, numclicks, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_misinfo, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_correct, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_nrel, 'Low', ['1','2'] ) ) ] sem_med = [ stats.sem( getDVvalues( data, qrels, tests, numclicks, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_misinfo, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_correct, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_nrel, 'Med', ['1','2'] ) ) ] sem_high = [ stats.sem( getDVvalues( data, qrels, tests, numclicks, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_misinfo, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_correct, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, numclicks_nrel, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,11]) # ax.set_ylabel('Scores') ax.set_title('Number of Clicks by Result Categories') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper right') ax.bar_label(rects1, padding=3, fmt='%.2f') ax.bar_label(rects2, padding=3, fmt='%.2f') ax.bar_label(rects3, padding=3, fmt='%.2f') plt.savefig( os.path.join(workdir, 'numclicks.png'), dpi=300 ) plt.show() ###Output _____no_output_____ ###Markdown Click Ratio ###Code import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Misinfo. ***', 'Correct ***', 'Irrelevant' ] means_low = [ 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_misinfo, 'Low', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_correct, 'Low', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_nrel, 'Low', ['1','2'] ) ) ] means_med = [ 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_misinfo, 'Med', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_correct, 'Med', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_nrel, 'Med', ['1','2'] ) ) ] means_high = [ 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_misinfo, 'High', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_correct, 'High', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioclicks_nrel, 'High', ['1','2'] ) ) ] sem_low = [ 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_misinfo, 'Low', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_correct, 'Low', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_nrel, 'Low', ['1','2'] ) ) ] sem_med = [ 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_misinfo, 'Med', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_correct, 'Med', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_nrel, 'Med', ['1','2'] ) ) ] sem_high = [ 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_misinfo, 'High', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_correct, 'High', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioclicks_nrel, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,80]) plt.gca().set_yticklabels(['%d%%'%x for x in plt.gca().get_yticks()]) ax.set_title('Percentage of Clicks by Result Categories') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper left') ax.bar_label(rects1, padding=3, fmt='%.1f%%') ax.bar_label(rects2, padding=3, fmt='%.1f%%') ax.bar_label(rects3, padding=3, fmt='%.1f%%') plt.savefig( os.path.join(workdir, 'ratioclicks.png'), dpi=300 ) plt.show() ###Output /tmp/ipykernel_8079/114190323.py:49: UserWarning: FixedFormatter should only be used together with FixedLocator plt.gca().set_yticklabels(['%d%%'%x for x in plt.gca().get_yticks()]) ###Markdown Displayed Results Ratio ###Code import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Misinfo. ***', 'Correct ***', 'Irrelevant **' ] means_low = [ 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_misinfo, 'Low', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_correct, 'Low', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_nrel, 'Low', ['1','2'] ) ) ] means_med = [ 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_misinfo, 'Med', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_correct, 'Med', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_nrel, 'Med', ['1','2'] ) ) ] means_high = [ 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_misinfo, 'High', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_correct, 'High', ['1','2'] ) ), 100*np.mean( getDVvalues( data, qrels, tests, ratioresults_nrel, 'High', ['1','2'] ) ) ] sem_low = [ 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_misinfo, 'Low', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_correct, 'Low', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_nrel, 'Low', ['1','2'] ) ) ] sem_med = [ 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_misinfo, 'Med', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_correct, 'Med', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_nrel, 'Med', ['1','2'] ) ) ] sem_high = [ 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_misinfo, 'High', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_correct, 'High', ['1','2'] ) ), 100*stats.sem( getDVvalues( data, qrels, tests, ratioresults_nrel, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,90]) plt.gca().set_yticklabels(['%d%%'%x for x in plt.gca().get_yticks()]) ax.set_title('Percentage of Displayed SERP Results by Categories') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper left') ax.bar_label(rects1, padding=3, fmt='%.1f%%') ax.bar_label(rects2, padding=3, fmt='%.1f%%') ax.bar_label(rects3, padding=3, fmt='%.1f%%') plt.savefig( os.path.join(workdir, 'ratioresults.png'), dpi=300 ) plt.show() ###Output /tmp/ipykernel_8079/2810928405.py:49: UserWarning: FixedFormatter should only be used together with FixedLocator plt.gca().set_yticklabels(['%d%%'%x for x in plt.gca().get_yticks()]) ###Markdown Factual Questions ###Code import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Pre-task ($p=0.274$)', 'Post-task **', '$\Delta$(Pre-task, Post-task) ***' ] means_low = [ 100 * np.mean( getDVvalues( data, qrels, tests, pre_correctness, 'Low', ['1','2'] ) ), 100 * np.mean( getDVvalues( data, qrels, tests, post_correctness, 'Low', ['1','2'] ) ), 100 * np.mean( getDVvalues( data, qrels, tests, diff_correctness, 'Low', ['1','2'] ) ) ] means_med = [ 100 * np.mean( getDVvalues( data, qrels, tests, pre_correctness, 'Med', ['1','2'] ) ), 100 * np.mean( getDVvalues( data, qrels, tests, post_correctness, 'Med', ['1','2'] ) ), 100 * np.mean( getDVvalues( data, qrels, tests, diff_correctness, 'Med', ['1','2'] ) ) ] means_high = [ 100 * np.mean( getDVvalues( data, qrels, tests, pre_correctness, 'High', ['1','2'] ) ), 100 * np.mean( getDVvalues( data, qrels, tests, post_correctness, 'High', ['1','2'] ) ), 100 * np.mean( getDVvalues( data, qrels, tests, diff_correctness, 'High', ['1','2'] ) ) ] sem_low = [ 100 * stats.sem( getDVvalues( data, qrels, tests, pre_correctness, 'Low', ['1','2'] ) ), 100 * stats.sem( getDVvalues( data, qrels, tests, post_correctness, 'Low', ['1','2'] ) ), 100 * stats.sem( getDVvalues( data, qrels, tests, diff_correctness, 'Low', ['1','2'] ) ) ] sem_med = [ 100 * stats.sem( getDVvalues( data, qrels, tests, pre_correctness, 'Med', ['1','2'] ) ), 100 * stats.sem( getDVvalues( data, qrels, tests, post_correctness, 'Med', ['1','2'] ) ), 100 * stats.sem( getDVvalues( data, qrels, tests, diff_correctness, 'Med', ['1','2'] ) ) ] sem_high = [ 100 * stats.sem( getDVvalues( data, qrels, tests, pre_correctness, 'High', ['1','2'] ) ), 100 * stats.sem( getDVvalues( data, qrels, tests, post_correctness, 'High', ['1','2'] ) ), 100 * stats.sem( getDVvalues( data, qrels, tests, diff_correctness, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,100]) plt.gca().set_yticklabels(['%d%%'%x for x in plt.gca().get_yticks()]) ax.set_title('Factual Question: Correct Rate') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper right') ax.bar_label(rects1, padding=3, fmt='%.1f%%') ax.bar_label(rects2, padding=3, fmt='%.1f%%') ax.bar_label(rects3, padding=3, fmt='%.1f%%') plt.savefig( os.path.join(workdir, 'factq_correct.png'), dpi=300 ) plt.show() import matplotlib.pyplot as plt import numpy as np import scipy.stats as stats labels = [ 'Pre-task ($p=0.091$)', 'Post-task **', '$\Delta$(Pre-task, Post-task) **' ] means_low = [ np.mean( getDVvalues( data, qrels, tests, pre_deviation, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, post_deviation, 'Low', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, diff_deviation, 'Low', ['1','2'] ) ) ] means_med = [ np.mean( getDVvalues( data, qrels, tests, pre_deviation, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, post_deviation, 'Med', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, diff_deviation, 'Med', ['1','2'] ) ) ] means_high = [ np.mean( getDVvalues( data, qrels, tests, pre_deviation, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, post_deviation, 'High', ['1','2'] ) ), np.mean( getDVvalues( data, qrels, tests, diff_deviation, 'High', ['1','2'] ) ) ] sem_low = [ stats.sem( getDVvalues( data, qrels, tests, pre_deviation, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, post_deviation, 'Low', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, diff_deviation, 'Low', ['1','2'] ) ) ] sem_med = [ stats.sem( getDVvalues( data, qrels, tests, pre_deviation, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, post_deviation, 'Med', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, diff_deviation, 'Med', ['1','2'] ) ) ] sem_high = [ stats.sem( getDVvalues( data, qrels, tests, pre_deviation, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, post_deviation, 'High', ['1','2'] ) ), stats.sem( getDVvalues( data, qrels, tests, diff_deviation, 'High', ['1','2'] ) ) ] x = np.arange( len(labels) ) fig, ax = plt.subplots( 1, 1, figsize=(7,3), dpi=300 ) rects1 = ax.bar( x - 0.25, means_low, 0.23, label='Low', color=(0.8, 0.8, 0.8), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_low ) rects2 = ax.bar( x , means_med, 0.23, label='Med', color=(0.6, 0.6, 0.6), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_med ) rects3 = ax.bar( x + 0.25, means_high, 0.23, label='High', color=(0.4, 0.4, 0.4), edgecolor=(0.1,0.1,0.1), capsize=5, yerr=sem_high ) # Add some text for labels, title and custom x-axis tick labels, etc. ax.set_ylim([0,2]) # ax.set_ylabel('Scores') ax.set_title('Factual Question: Deviation from Correct Answer') ax.set_xticks(x) ax.set_xticklabels(labels) ax.legend(loc='upper right') ax.bar_label(rects1, padding=3, fmt='%.2f') ax.bar_label(rects2, padding=3, fmt='%.2f') ax.bar_label(rects3, padding=3, fmt='%.2f') plt.savefig( os.path.join(workdir, 'factq_dev.png'), dpi=300 ) plt.show() ###Output _____no_output_____ ###Markdown Data Analysis ###Code df ###Output _____no_output_____ ###Markdown Size of the dataset is quite small, and neural networks tend to overfit on small datasets. While a small MLP would perhaps fare ok, I prefer using XGBoost due to the tabular nature of the data. Idea 1: Create an extra column from the car's manufacturer We are going to assume that the word of the `car name` column is the manufacturer. This will give us another datapoint. While the physical characteristics like weight and horsepower should be much more indicative of the value of the target variable, one could assume that each manufacturer has their own proprietary technology that might reduce the mpg or something along those lines. Under the mantra of **_more data cannot hurt_**, we will perform an with and without these added feature. ###Code df_mfct = df.copy() df_mfct['mfct'] = df_mfct['car name'].transform(lambda x: x.split(' ')[0]) df_mfct Counter(df_mfct.mfct), f'NUMBER OF MANUFACTURERS: {len(set(Counter(df_mfct.mfct)))}' ###Output _____no_output_____ ###Markdown Our assumption seems to hold pretty well! Although there is some minor data noise: `volkswagen` and `vw` likely refer to the same manufacturer. Same goes with `mercedes-benz` and `mercedes` or `maxda` and `mazda` (cute typo!) or `toyota` and `toyouta`. Let's quickly solve this issue. ###Code replacement_dict = { 'vw': 'volkswagen', 'vokswagen': 'volkswagen', 'mercedes': 'mercedes-benz', 'maxda': 'mazda', 'toyouta': 'toyota', 'chevroelt': 'chevrolet', 'chevy': 'chevrolet', 'capri': 'ford' } df_mfct['mfct'] = df_mfct['mfct'].transform(lambda x: replacement_dict[x] if x in replacement_dict else x) Counter(df_mfct.mfct) ###Output _____no_output_____ ###Markdown I will quickly drop exactly 1 row for which I cannot find any extra information out in the wild. It is for the greater good and won't hurt us too much. ###Code df_mfct = df_mfct[df_mfct['mfct'] != 'hi'] ###Output _____no_output_____ ###Markdown Idea 2: Use the geographical position of the producer as another data point I will admit, this might inch towards overthinking. But different manufacturers design cars for different consumer realities e.g. USA based producers might not have fuel efficiency i.e. mpg in mind when building a car since gasoline is quite cheap in the country. Let us introduce a new categorical feature for where the manufacturer is located. On the other hand, big manufacturers tend to ship worlwide + the dataset seems to be compiled on USA-based cars from Kaggle's dataset metadata. This feature might be thoroughly useless, but investigating is worth it. We will look the data on the internet for this task. Nota bene: The origin feature might be doing this already. It is categorically encoded, with a domain of [1, 2, 3]. These might be the USA, Europe, Asia i.e. continents of origin, but the metadata says nothign about this. We will proceed with both, although some duplication might be possible. ###Code geo_dict = { 'chevrolet': 'USA', 'buick': 'USA', 'plymouth': 'USA', 'amc': 'USA', 'ford': 'USA', 'pontiac': 'USA', 'dodge': 'USA', 'toyota': 'Japan', 'datsun': 'Japan', 'volkswagen': 'Germany', 'peugeot': 'France', 'audi': 'Germany', 'saab': 'Sweden', 'bmw': 'Germany', 'mercury': 'USA', 'opel': 'Germany', 'fiat': 'Italy', 'oldsmobile': 'USA', 'chrysler': 'USA', 'mazda': 'Japan', 'volvo': 'Sweden', 'renault': 'France', 'honda': 'Japan', 'subaru': 'Japan', 'mercedes-benz': 'Germany', 'cadillac': 'USA', 'triumph': 'UK', 'nissan': 'Japan' } ###Output _____no_output_____ ###Markdown Pretty nice! Most companies are clustered around `USA`, `Japan` and `Germany`, which raises my hopes ###Code df_mfct_geo = df_mfct.copy() df_mfct_geo['geo'] = df_mfct_geo['mfct'].apply(lambda x: geo_dict[x].lower()) df_mfct_geo ###Output _____no_output_____ ###Markdown Idea 3: Change model year XX to XXXX representation It seems the model year implicitly assumes the 20th century, and thus values are 19XX. Again, this is paranoid me, but I'd prefer to use the full representation, in case someone tries to use this model in the 21st century, thus making predictions more robust. Also, I find the use of whitespace in column names deeply offensive. ###Code df_mfct_geo_year = df_mfct_geo.copy() df_mfct_geo_year['model_year'] = df_mfct_geo_year['model year'].apply(lambda x: int(f"19{x}")) del df_mfct_geo_year['model year'] df_mfct_geo_year ###Output _____no_output_____ ###Markdown Preparing the data Dealing with horsepower missing values 6 rows have a missing rows value. The rows are marked with '?', turning the whole column into a string column. We replace '?' with NaN, turn the column into floats, and use a linear interpolation provided by pandas. **Update: interpolating increases MAE, just drop the rows** ###Code df_mfct_geo_year_hp = df_mfct_geo_year.copy() # df_mfct_geo_year_hp['horsepower'] = df_mfct_geo_year_hp['horsepower'].apply(lambda x: int(x) if x != '?' else np.nan) # df_mfct_geo_year_hp['horsepower'] = df_mfct_geo_year_hp['horsepower'].interpolate() ###Output _____no_output_____ ###Markdown Hot encoding the `geo` feature and the `mfct` feature ###Code mfct_ohe = pd.get_dummies(df_mfct_geo_year['mfct'], dummy_na=True) mfct_ohe = mfct_ohe.rename(columns={np.nan: 'mfct_nan'}) mfct_ohe geo_ohe = pd.get_dummies(df_mfct_geo_year['geo'], dummy_na=True) geo_ohe = geo_ohe.rename(columns={np.nan: 'geo_nan'}) geo_ohe ###Output _____no_output_____ ###Markdown Putting it all together Let's append the OHE columns together and drop the ones that they are replacing ###Code df_concat = pd.concat([df_mfct_geo_year_hp, mfct_ohe, geo_ohe], axis=1) df_concat df_final = df_concat.drop(columns=['car name', 'mfct', 'geo']) # for col in ['cylinders', 'displacement', 'horsepower', 'weight', 'acceleration', 'model_year']: # scaler = StandardScaler() # df_final[col] = scaler.fit_transform(df_final[col].values.reshape(-1, 1)) df_final y, X = df_final[['mpg']].to_numpy().reshape(-1, ), df_final.drop(columns=['mpg']).to_numpy() y.shape, X.shape ###Output _____no_output_____ ###Markdown Model evaluation We will use cross validation and the MEA to evaluate the model. We will test the effect of the hypotheses mentioned above regarding features. We should be careful about setting all random states in cross_validation and models to fixed values in order to get reproducible results. First hypothesis - enhanced columns ###Code model = XGBRegressor(seed=42, random_state=42, colsample_bytree=1) cv = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) scores = cross_val_score(model, X, y, scoring='neg_mean_absolute_error', cv=cv, n_jobs=-1) scores = np.absolute(scores) print('Mean MAE %.3f STD MAE %.3f' % (scores.mean(), scores.std()) ) ###Output /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index /Users/bratu/Desktop/dsp/venv/lib/python3.9/site-packages/xgboost/compat.py:36: FutureWarning: pandas.Int64Index is deprecated and will be removed from pandas in a future version. Use pandas.Index with the appropriate dtype instead. from pandas import MultiIndex, Int64Index ###Markdown Second hypothesis - plain columns By plain columns we understand columns that do not carry any information about manufacturer or geolocation. ###Code list(geo_ohe.columns) df_final_second_h = df_final.drop(columns=list(geo_ohe.columns) + list(mfct_ohe.columns)) df_final_second_h y_sec_hyp, X_sec_hyp = df_final_second_h[['mpg']].to_numpy().reshape(-1, ), df_final_second_h.drop(columns=['mpg']).to_numpy() y_sec_hyp.shape, X_sec_hyp.shape model_sec_hyp = XGBRegressor(seed=42, random_state=42, colsample_bytree=1) cv_sec_hyp = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) scores_sec_hyp = cross_val_score(model_sec_hyp, X_sec_hyp, y_sec_hyp, scoring='neg_mean_absolute_error', cv=cv_sec_hyp, n_jobs=-1) scores_sec_hyp = np.absolute(scores_sec_hyp) print('Mean MAE %.3f STD MAE %.3f' % (scores_sec_hyp.mean(), scores_sec_hyp.std()) ) ###Output Mean MAE 2.049 STD MAE 0.298 ###Markdown Third hypothesis - plain columns minus origins Quick test to determine wether the origin column is relevant. It might encode all the geoencode information I was speculating above. ###Code df_final_third_h = df_final.drop(columns=list(geo_ohe.columns) + list(mfct_ohe.columns) + ['origin']) df_final_third_h y_third_hyp, X_third_hyp = df_final_third_h[['mpg']].to_numpy().reshape(-1, ), df_final_third_h.drop(columns=['mpg']).to_numpy() y_third_hyp.shape, X_third_hyp.shape model_third_hyp = XGBRegressor(seed=42, random_state=42, colsample_bytree=1) cv_third_hyp = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) scores_third_hyp = cross_val_score(model_third_hyp, X_sec_hyp, y_sec_hyp, scoring='neg_mean_absolute_error', cv=cv_third_hyp, n_jobs=-1) scores_third_hyp = np.absolute(scores_third_hyp) print('Mean MAE %.3f STD MAE %.3f' % (scores_third_hyp.mean(), scores_third_hyp.std()) ) ###Output Mean MAE 2.049 STD MAE 0.298 ###Markdown Fourth hypothesis: Only the `manufacturer` enhanced column matters ###Code df_final_fourth_h = df_final.drop(columns=list(geo_ohe.columns)) df_final_fourth_h y_fourth_h, X_fourth_h = df_final_fourth_h[['mpg']].to_numpy().reshape(-1, ), df_final_fourth_h.drop(columns=['mpg']).to_numpy() y_fourth_h.shape, X_fourth_h.shape model_fourth_hyp = XGBRegressor(seed=42, random_state=42, colsample_bytree=1) cv_fourth_hyp = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) scores_fourth_hyp = cross_val_score(model_fourth_hyp, X_fourth_h, y_fourth_h, scoring='neg_mean_absolute_error', cv=cv_fourth_hyp, n_jobs=-1) scores_fourth_hyp = np.absolute(scores_fourth_hyp) print('Mean MAE %.3f STD MAE %.3f' % (scores_fourth_hyp.mean(), scores_fourth_hyp.std()) ) ###Output Mean MAE 2.013 STD MAE 0.314 ###Markdown Fifth hypothesis: Only the `geo` enhanced column matters ###Code df_final_fifth_h = df_final.drop(columns=list(list(mfct_ohe.columns))) df_final_fifth_h y_fifth_h, X_fifth_h = df_final_fifth_h[['mpg']].to_numpy().reshape(-1, ), df_final_fifth_h.drop(columns=['mpg']).to_numpy() y_fifth_h.shape, X_fifth_h.shape model_fifth_hyp = XGBRegressor(seed=42, random_state=42, colsample_bytree=1) cv_fifth_hyp = RepeatedKFold(n_splits=10, n_repeats=3, random_state=42) scores_fifth_hyp = cross_val_score(model_fifth_hyp, X_fifth_h, y_fifth_h, scoring='neg_mean_absolute_error', cv=cv_fifth_hyp, n_jobs=-1) scores_fifth_hyp = np.absolute(scores_fifth_hyp) print('Mean MAE %.3f STD MAE %.3f' % (scores_fifth_hyp.mean(), scores_fifth_hyp.std()) ) ###Output Mean MAE 2.021 STD MAE 0.303 ###Markdown Conclusion We conclude that our enhanced columns indeed improve the performance of the model (hypotheses 1 + 4). Adding only the manufacturer feature fares a better (4) than adding both, although scores are quite close, and 1 has lower variation. These things considered, we will move with the engineered manufacturer feature into training, where we will leverage Bayesian search for hyperparameter optimization. ###Code # with open('best.csv', 'w+') as fp: # df_final_fourth_h.to_csv(fp) ###Output _____no_output_____ ###Markdown __XDF latency analysis of LSL data streams: Unity (triggered) vs EEG (measured)__ __Situation__ Every 500ms a beep sound is played and the background color changes one frame from black to white. __Unity (90 FPS):__- Color change (black or white background)- Beep sound (audio playing or not) __EEG (1024 Hz):__- Photodiode (light sensor)- Microphone (audio sensor) __TODO__* [x] Read XDF file and header and select the right data (timestamps and values)* [x] Compute the timestamps from 0* [x] Visualize the data: unity audio vs microphone and unity color vs photodiode* [x] Compare the timestamps (length, duration, sample count..): Original vs Calculated vs FileInfo* [x] Descriptive statistics of timestamps distribution and plot* [x] Actual latency test: select the microphone and photodiode peaks (starting points) and compare with the unity ones* [x] Test all recordings* [x] Make and test long recordings (half an hour) and check with two computers (local network setup)* [ ] Find out why sometimes Unity timestamps start before the EEG ones* [ ] Find out why sometimes there are two Diode spikes during one colour change* [ ] ... __Dependencies__ ###Code import matplotlib.pyplot as plt import numpy as np import os import pandas as pd import pyxdf from scipy.signal import find_peaks import seaborn as sns ###Output _____no_output_____ ###Markdown __Files (recordings)__ ###Code files = os.listdir("data") # get all files from the folder "data" files.sort() # sort them alphabetically recordings = [] for file in files: if file.startswith("."): # filter hidden/config files files.remove(file) # remove hidden/config file for i, file in enumerate(files): # store and display all files recordings.append(file) print(f"recordings[{i}] = {file}") ###Output recordings[0] = final_test.xdf recordings[1] = ftest1.xdf recordings[2] = ftest2.xdf recordings[3] = ftest3.xdf recordings[4] = ftest_build1.xdf recordings[5] = ftest_build2.xdf recordings[6] = ftest_build3.xdf recordings[7] = ftest_lsl12.xdf recordings[8] = long2.xdf recordings[9] = long3.xdf recordings[10] = long4.xdf recordings[11] = short_new.xdf recordings[12] = short_test.xdf recordings[13] = short_test_old1.xdf recordings[14] = test.xdf ###Markdown __Helper functions__ ###Code a_ch_name = "Audio" c_ch_name = "Diode" e_ch_name = "openvibeSignal" def select_streams(data): global s_channels s_channels = {data[i]["info"]["name"][0]: i for i in range(len(data))} # Time values a = s_channels[a_ch_name] # unity audio stream channel c = s_channels[c_ch_name] # unity color stream channel e = s_channels[e_ch_name] # eeg stream channel (diode and microphone) return a, c, e ###Output _____no_output_____ ###Markdown __Checking if EEG data was received before Unity data for all recordings__ ###Code print("EEG received first (✔/✗):") for file in recordings: # check all files streams, fileheader = pyxdf.load_xdf(f"data/{file}") # load a XDF file a_ch, c_ch, e_ch = select_streams(streams) # select the data stream channels a_t = streams[a_ch]["time_stamps"][0] # get the first unity timestamp e_t = streams[e_ch]["time_stamps"][0] # get the first eeg timestamp if a_t - e_t < 0: # unity received first (negative difference) print(f"✗ {file}") else: # eeg received first (positive difference) print(f"✔ {file}") ###Output EEG received first (✔/✗): ✔ final_test.xdf ✔ ftest1.xdf ✔ ftest2.xdf ✔ ftest3.xdf ✔ ftest_build1.xdf ✔ ftest_build2.xdf ✔ ftest_build3.xdf ✔ ftest_lsl12.xdf ✔ long2.xdf ✗ long3.xdf ✔ long4.xdf ✗ short_new.xdf ✔ short_test.xdf ✔ short_test_old1.xdf ✔ test.xdf ###Markdown __Read XDF data__ ###Code file = recordings[11] # select a file print(f"File: {file}") # display the file name streams, fileheader = pyxdf.load_xdf(f"data/{file}") # load the XDF file fileheader # just a dict describing the version and format of the XDF file ###Output File: short_new.xdf ###Markdown __Automatically select the stream channels__ ###Code a_ch, c_ch, e_ch = select_streams(streams) s_channels ###Output _____no_output_____ ###Markdown __Read EEG and Unity timestamps and sensor data__ ###Code u_ts = streams[a_ch]["time_stamps"] # unity timestamps e_ts = streams[e_ch]["time_stamps"] # eeg timestamps # Diode values eeg = np.transpose(streams[e_ch]["time_series"]) # select the photodiode and microphone sensor information # there's recordings with diode data on channels 65 and 66 # so we check which is the right one for this recording if max(eeg[64]) != 0.0: e_color = eeg[64] # channel 65 of the ANT amplifier else: e_color = eeg[65] # channel 66 of the ANT amplifier e_audio = eeg[69] # channel 70 of the ANT amplifier # select unity audio and background color change markers # format: [currentFrame, value, timestamp] u_color = np.transpose(streams[c_ch]["time_series"]) u_audio = np.transpose(streams[a_ch]["time_series"]) e_color = -e_color # invert diode data polarity, easier to visualize ###Output _____no_output_____ ###Markdown __Preprocess data: calculate meaningful timestamps__ ###Code # calculate time values for unity and eeg from 0 e_time = [0] length = len(e_ts) [e_time.append(e_ts[i + 1] - e_ts[0]) for i in range(length) if i < length - 1] u_time = [0] length = len(u_ts) [u_time.append(u_ts[i + 1] - u_ts[0]) for i in range(length) if i < length - 1] # calculate the diff and shift the values left (negative) or right (positive) diff = u_ts[0] - e_ts[0] u_time = [i + diff for i in u_time] # if diff is negative unity data was received before eeg if diff < 0: print("Unity data received first ✗") if diff < -0.98: #so if the difference cannot be explained by normal EEG sampling print("Something went wrong with this recording") else: print("EEG data received first ✔") ###Output Unity data received first ✗ ###Markdown __Data preview__ ###Code # interactive: widget, not interactive: inline %matplotlib inline sns.set(rc={"figure.figsize": (14, 5)}) # set figure size sns.set_style("darkgrid") # set seaborn plotting style f_n = -0.2 # starting point (s) s_n = 0.1 # ending point (s) start_e = 1024 * f_n # eeg sampling rate = 1024 start_u = 90 * f_n # unity sampling rate = 90 five_sec = 1024 * s_n # N of eeg in 5 s f_sec = 90 * s_n # N of unity in 5 s u_height = 3500 # factor to improve unity (true/1) values visualization e_t = np.array(e_time) u_t = np.array(u_time) # select range of timestamps, diode and microphone values (eeg) e_time_selection = e_t[(e_t > f_n) & (e_t < s_n)] e_color_selection = e_color[(e_t > f_n) & (e_t < s_n)] e_audio_selection = e_audio[(e_t > f_n) & (e_t < s_n)] # select a range of timestamps, color and audio values (unity) u_time_selection = u_t[(u_t > f_n) & (u_t < s_n)] u_color_selection = u_color[(u_t > f_n) & (u_t < s_n)] u_audio_selection = u_audio[1][(u_t > f_n) & (u_t < s_n)] # plot the selected range to compare eeg vs unity values plt.plot(e_time_selection, e_color_selection * 0.05) plt.plot(e_time_selection, e_audio_selection) plt.plot(u_time_selection, u_color_selection * u_height, marker="o") plt.plot(u_time_selection, u_audio_selection * u_height, marker="x") plt.title(f"Sample: N = {five_sec}") plt.ylabel("Sensor value") plt.xlabel("Time (s)") plt.xticks(np.arange(f_n, s_n, step=0.5)) labels = ["photosensor", "microphone", "color", "audio"] plt.legend(labels, loc="upper right") # set the legend plt.show() ###Output _____no_output_____ ###Markdown __Timestamps comparison (original vs computed vs file info)__ ###Code # store unity and eeg timestamps as pandas series # dataframe is not needed since it's 1D array eeg_t = pd.Series(streams[e_ch]["time_stamps"]) unity_t = pd.Series(streams[a_ch]["time_stamps"]) print("Original timestamps") print("===================") u_start = u_ts[0] u_end = u_ts[-1] e_start = e_ts[0] e_end = e_ts[-1] u_length = u_end - u_start e_length = e_end - e_start print(f"EEG first timestamp: {e_start}") print(f"EEG last timestamp: {e_end}") print(f"EEG length: {e_length}") print(f"EEG sample count: {len(e_ts)}") print(f"Unity first timestamp: {u_start}") print(f"Unity last timestamp: {u_end}") print(f"Unity length: {u_length}") print(f"Unity sample count: {len(u_ts)}") print(f"Start difference: {abs(u_start - e_start)}") print(f"Length difference: {abs(u_length - e_length)}") print("") print("Computed timestamps") print("====================") u_start = u_time[0] # [-1:] returns the index and the type as well but [-1:].values[0] also works u_end = u_time[-1] e_start = e_time[0] e_end = e_time[-1] u_length = u_end - u_start e_length = e_end - e_start print(f"EEG first timestamp: {e_start}") print(f"EEG last timestamp: {e_end}") print(f"EEG length: {e_length}") print(f"EEG sample count: {len(e_time)}") print(f"Unity first timestamp: {u_start}") print(f"Unity last timestamp: {u_end}") print(f"Unity length: {u_length}") print(f"Unity sample count: {len(u_time)}") print(f"Start difference: {abs(u_start - e_start)}") print(f"Length difference: {abs(u_length - e_length)}") print("") print("File info") print("========") e_info = streams[e_ch]["info"] e_footer = streams[e_ch]["footer"]["info"] u_info = streams[a_ch]["info"] u_footer = streams[a_ch]["footer"]["info"] print(f"EEG stream created at: {e_info['created_at'][0]}") print(f"Unity stream created at: {u_info['created_at'][0]}") print(f"EEG first timestamp: {e_footer['first_timestamp'][0]}") print(f"EEG last timestamp: {e_footer['last_timestamp'][0]}") print(f"EEG sample count: {e_footer['sample_count'][0]}") print(f"Unity first timestamp: {u_footer['first_timestamp'][0]}") print(f"Unity last timestamp: {u_footer['last_timestamp'][0]}") print(f"Unity sample count: {u_footer['sample_count'][0]}") ###Output Original timestamps =================== EEG first timestamp: 2896.829572491063 EEG last timestamp: 2961.329951709267 EEG length: 64.50037921820376 EEG sample count: 66048 Unity first timestamp: 2896.824495070672 Unity last timestamp: 2961.3178294674435 Unity length: 64.49333439677139 Unity sample count: 5806 Start difference: 0.005077420390989573 Length difference: 0.007044821432373283 Computed timestamps ==================== EEG first timestamp: 0 EEG last timestamp: 64.50037921820376 EEG length: 64.50037921820376 EEG sample count: 66048 Unity first timestamp: -0.005077420390989573 Unity last timestamp: 64.4882569763804 Unity length: 64.49333439677139 Unity sample count: 5806 Start difference: 0.005077420390989573 Length difference: 0.007044821432373283 File info ======== EEG stream created at: 2865.822203900000 Unity stream created at: 74999.42783250001 EEG first timestamp: 2896.8412703 EEG last timestamp: 2961.3132359 EEG sample count: 66047 Unity first timestamp: 75012.3227705 Unity last timestamp: 75076.8157208 Unity sample count: 5805 ###Markdown __Descriptive statistics: EEG timestamps__ ###Code e_time_dist = [e_ts[i + 1] - e_ts[i] for i in range(len(e_ts) - 1)] u_time_dist = [u_ts[i + 1] - u_ts[i] for i in range(len(u_ts) - 1)] e_time_dist = pd.DataFrame(np.array(e_time_dist), columns=["eeg"]) u_time_dist = pd.DataFrame(np.array(u_time_dist), columns=["unity"]) e_time_dist.describe() ###Output _____no_output_____ ###Markdown The EEG samples look really constant over time __Descriptive statistics: Unity timestamps__ ###Code u_time_dist.describe() ###Output _____no_output_____ ###Markdown It does not seem the case for the unity samples __Time sampling plot comparison__ ###Code %matplotlib inline sns.set(rc={"figure.figsize": (3, 9)}) # set figure size sns.set_style("whitegrid") # set seaborn plotting style p = sns.boxplot(x=u_time_dist, orient="v") p.set_title("Time distribution (s)") plt.show() ###Output _____no_output_____ ###Markdown __Calculating the Latencies__ __Diode__ ###Code # get all the first peaks of each of the four recordings e_col_peaks = find_peaks(e_color, height=10000, distance=400) # here the len of unity is one longer than the len of u_col_peaks = find_peaks(u_color) # since we are only intersted in the position of the peaks not the height, lets only take the first column ec_peak = e_col_peaks[0] uc_peak = u_col_peaks[0] # now we have the column where the peak occurs, now we need the corresponding time stamp ec_time = [e_time[e] for e in ec_peak] uc_time = [u_time[e] for e in uc_peak] # calculate the differneces between EEG and unity c_diff = np.empty(len(uc_time)) c_diff[:] = np.nan c_diff = [] length = len(uc_time) # to make sure we do not start with j = 0 if EEG starts before Unity if np.array(uc_time)[0] > 0.25: j = 1 else: j = 0 for i in range(length): if (uc_time[i] - ec_time[j] > -0.25) and (uc_time[i] - ec_time[j] < 0): # add the difference between EEG and unity peak c_diff.append(uc_time[i] - ec_time[j]) if j < len(ec_time): j = j + 1 else: # add nan if there is no EEG peak c_diff.append(np.nan) # check the nan values (and compare them to the graph) nan_val = [] # get the indices of all nan values so we can check if there a diode is actually missing nan_val.append(np.argwhere(np.isnan(c_diff))) n = np.ravel(nan_val) # to make it look nicer # contains the untiy timestamps when the diode is missing --> to check in graph time_st = np.array(uc_time)[np.array(n)] print(time_st) ###Output [0.36199287] ###Markdown __Speaker__ ###Code # get all the first peaks of each of the four recordings e_audio_peaks = find_peaks(e_audio, height=2100, distance=400) # here the len of unity is one longer than the len of u_audio_peaks = find_peaks(u_audio[1]) # since we are only intersted in the position of the peaks not the height, lets only take the first column ea_peak = e_audio_peaks[0] ua_peak = u_audio_peaks[0] # now we have the column where the peak occurs, now we need the corresponding time stamp ea_time = [e_time[e] for e in ea_peak] ua_time = [u_time[e] for e in ua_peak] # calculate the differneces between EEG and unity a_diff = [] length = len(ua_time) # to make sure we do not start with j = 0 if EEG starts before Unity if np.array(uc_time)[0] > 0.25: j = 1 else: j = 0 for i in range(length): if (ua_time[i] - ea_time[j] > -0.3) and (ua_time[i] - ea_time[j] < 0): # print(uc_time[i] - ec_time[j]) a_diff.append(ua_time[i] - ea_time[j]) if j < len(ea_time): j = j + 1 else: a_diff.append(np.nan) nan_val = [] # get the indices of all nan values so we can check if there a diode is actually missing nan_val.append(np.argwhere(np.isnan(a_diff))) n = np.ravel(nan_val) # to make it look nicer time_st = np.array(ua_time)[np.array(n)] # contains the untiy timestamps when the diode is missing --> to check in graph print(time_st) ###Output [] ###Markdown __Data Preview__ ###Code # interactive: widget, not interactive: inline %matplotlib inline sns.set(rc={"figure.figsize": (14, 5)}) # set figure size sns.set_style("darkgrid") # set seaborn plotting style f_n = 0.2 # starting point (s) s_n = 0.5 # ending point (s) start_e = 1024 * f_n # eeg sampling rate = 1024 start_u = 90 * f_n # unity sampling rate = 90 five_sec = 1024 * s_n # N of eeg in 5 s f_sec = 90 * s_n # N of unity in 5 s u_height = 3500 # factor to improve unity (true/1) values visualization e_t = np.array(e_time) u_t = np.array(u_time) # select range of timestamps, diode and microphone values (eeg) e_time_selection = e_t[(e_t > f_n) & (e_t < s_n)] e_color_selection = e_color[(e_t > f_n) & (e_t < s_n)] e_audio_selection = e_audio[(e_t > f_n) & (e_t < s_n)] # select a range of timestamps, color and audio values (unity) u_time_selection = u_t[(u_t > f_n) & (u_t < s_n)] u_color_selection = u_color[(u_t > f_n) & (u_t < s_n)] u_audio_selection = u_audio[1][(u_t > f_n) & (u_t < s_n)] # plot the selected range to compare eeg vs unity values plt.plot(e_time_selection, e_color_selection * 0.05) plt.plot(e_time_selection, e_audio_selection) plt.plot(u_time_selection, u_color_selection * u_height, marker="o") plt.plot(u_time_selection, u_audio_selection * u_height, marker="x") plt.title(f"Sample: N = {five_sec}") plt.ylabel("Sensor value") plt.xlabel("Time (s)") plt.xticks(np.arange(f_n, s_n, step=0.5)) labels = ["photosensor", "microphone", "color", "audio"] plt.legend(labels, loc="upper right") # set the legend plt.show() ###Output _____no_output_____ ###Markdown __Descriptive Statistics__ ###Code # Descriptive Statistics of colour peak diff c_diff_data = pd.DataFrame(c_diff) c_diff_data.describe() ###Output _____no_output_____ ###Markdown * ftest1: -0.080 till -0.073* ftest2: -0.078 till -0.073* ftest3: -0.080 till -0.074* test: -0.100 till -0.072* ftest_build1: -0.077 till -0.074* ftest_build2: -0.080 till -0.074* ftest_build3: -0.080 till -0.074* ftest_lsl12: -* final test: -0.076 till -0.074 ###Code # Descriptive Statistics of audio peak diff a_diff_data = pd.DataFrame(a_diff) a_diff_data.describe() ###Output _____no_output_____ ###Markdown Analysis of neural tangent kernel performanceGiven the pre-generated neural tangent kernel (NTK) output from the main code (by default in the directory `'./kernel_output'`), we examine the classification performance on the MNIST dataset of the exact, sparsified, and diagonal NTKs. Additionally, for the quantum algorithms of sparsified and diagonal NTKs, the condition number and the number of measurements required for post-selection/readout are verified to be bounded by $O(\log n)$. ###Code import numpy as np import glob from IPython.display import set_matplotlib_formats set_matplotlib_formats('pdf', 'svg') import matplotlib import seaborn as sns sns.set(font_scale=1.3) sns.set_style("whitegrid", {"axes.facecolor": ".97"}) import matplotlib.pyplot as plt ###Output _____no_output_____ ###Markdown Sparsity pattern First, a sparsity pattern is constructed in $\tilde O(n)$ time. In the proposed quantum algorithm, this is performed once when the data is stored in a binary QRAM data structure (also in $\tilde O(n)$ time). Given a sparsity pattern with at most $s = O(\log n)$ nonzero elements in any row or column, multiple neural networks (of different architectures) can be efficiently trained in logarithmic time using the same sparsity pattern. ###Code def get_target_sparsity(m): """ Get expected matrix sparsity, chosen to be O(log n). """ return np.log(m.shape[0]) def block_diagonal(m): """ Prepare a block diagonal matrix [[1, 0], [0, 1]] corresponding to the two data classes in the NTK matrix. """ class_size = m.shape[0]//2 ones_class = np.ones((class_size, class_size)) zeros_class = np.zeros((class_size, class_size)) class_0 = np.block([[ones_class, zeros_class], [zeros_class, zeros_class]]) class_1 = np.block([[zeros_class, zeros_class], [zeros_class, ones_class]]) return class_0, class_1 def get_sparsity_pattern(m): """ Prepare in O(n log n) time a sparsity pattern over the n x n matrix with a pseudorandom generator. """ target_sparsity = get_target_sparsity(m) # procedure produces an equivalent distribution of 1s and 0s as sampling individual # matrix elements i.i.d. from binomial distribution # since we'll take half of the generated indices, we set the probability of a nonzero # element to be double the target sparsity p_one = min(2*target_sparsity/m.shape[0], 1.0) # for each row, sample the binomial distribution to get the number of nonzero indices # matches in expectation get_target_sparsity(m), i.e. O(log n) # reference the upper triangular indices according to the lower triangular indices # can be done efficiently by mapping indices instead of copying matrix elements one_filter = np.zeros(m.shape) for i in range(m.shape[0]): # find O(log n) indices num_nonzero = np.random.randint(m.shape[0], size=np.random.binomial(m.shape[0], p_one)) one_filter[i][num_nonzero] = 1 one_filter = np.tril(one_filter) + np.tril(one_filter, -1).T # set all NTK matrix elements from opposite classes to be zero # since the NTK is larger for more similar data examples, this biases the sparse # matrix towards selecting more important examples class_0, class_1 = block_diagonal(m) one_filter = one_filter * (class_0 + class_1) # make sure the diagonal is ones np.fill_diagonal(one_filter, 1) return one_filter def sparsify_unbiased(m, sparsity_pattern): """ Sparsify NTK matrix `m` using a given sparsity pattern. Used for the fully-connected network. """ return m * sparsity_pattern def sparsify_biased(m, sparsity_pattern, t0, t1): """ Sparsify NTK matrix `m` using a given sparsity pattern, then additionally sparsify by setting elements below `t0` and `t1` in classes 0 and 1 respectively to 0. Used for the convolutional network. """ class_0, class_1 = block_diagonal(m) one_filter = sparsity_pattern * ((m > t0) * class_0 + (m > t1) * class_1) np.fill_diagonal(one_filter, 1) kernel_train_sparse = m * one_filter # we expect a factor of ~target_sparsity by Gershgorin's theorem # empirically, the well-conditioning of the kernel makes it scale better than this f = 0.76 * get_target_sparsity(m)**0.9 conditioning = f * np.diag(kernel_train_sparse)*np.eye(kernel_train_sparse.shape[0]) kernel_train_conditioned = kernel_train_sparse + conditioning return kernel_train_conditioned def compute_class_percentiles(m, percentile): """ Compute the truncation thresholds for `sparsify_biased`. This is evaluated over a small subset (n = 16) of the training set to efficiently bias the sparsification towards large off-diagonal elements. """ class_size = m.shape[0]//2 ones_class = np.ones((class_size, class_size)) zeros_class = np.zeros((class_size, class_size)) class_0 = np.block([[ones_class - np.eye(class_size), zeros_class], [zeros_class, zeros_class]]) class_1 = np.block([[zeros_class, zeros_class], [zeros_class, ones_class - np.eye(class_size)]]) t0 = np.percentile(np.abs(m * class_0), percentile) t1 = np.percentile(np.abs(m * class_1), percentile) return t0, t1 def get_sparsity(m): """ Get maximum number of nonzero elements in any row or column. """ return np.amax(np.sum(m != 0, axis=0)) ###Output _____no_output_____ ###Markdown We verify that the sparsity pattern does indeed scale like $O(\log n)$. ###Code Ns = [16, 32, 64, 128, 256, 512] sparsity_trials = 100 sparsities = np.zeros(len(Ns)) sparsities_std = np.zeros(len(Ns)) for i in range(len(Ns)): N = Ns[i] sparsities_N = [] for t in range(sparsity_trials): sparsity_pattern = get_sparsity_pattern(np.zeros((N, N))) s = get_sparsity(sparsity_pattern) sparsities_N.append(s) sparsities[i] = np.mean(sparsities_N) sparsities_std[i] = np.std(sparsities_N)/np.sqrt(len(sparsities_N)) plt.figure(figsize=(5, 4)) plt.errorbar(Ns, sparsities, yerr=2*sparsities_std, fmt='o', c='C1') plt.xlabel('Training set size') plt.ylabel('Sparsity') plt.xscale('log') plt.xticks(Ns) plt.minorticks_off() plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Neural network performanceFour quantities characterize the infinite-width neural network and its sparsified and diagonal approximations:* Binary classification accuracy: all three networks are evaluated on a balanced sample of the MNIST test set (separate from the training set).* Condition number: to invert the sparsified NTK $\tilde K$ efficiently with a quantum linear systems algorithm, the condition number $\kappa(\tilde K)$ (defined to be the ratio of the largest to smallest singular values) must be bounded by $O(\log n)$.* Post-selection measurements: to prepare the quantum state $|k_*\rangle = \frac{1}{\sqrt{P}} \sum_{i=0}^{n-1} k_i |i\rangle$ of the NTK evaluated between test data $\mathbf x_*$ and the training data $\{\mathbf x_i\}$, we require $O(1/P)$ measurements for $P = \sum_i k_i^2$. Here, $k_i$ corresponds to the kernel $k(\mathbf x_*, \mathbf x_i)$ normalized and clipped to lie within $-1 \leq k_i \leq 1$. To efficiently prepare the state, the number of measurements must be bounded by $O(\log n)$.* Readout measurements: to perform the final readout, we estimate the sign of state overlap $o = \langle k_* | y \rangle$ (for the diagonal approximation) or $o = \langle k_* | \tilde K^{-1} | y\rangle$ (for the sparsified approximation). This requires $O(1/|o|^2)$ measurements, which must be bounded by $O(\log n)$ for efficient readout. ###Code def classify(ntk_mean): """ Classify raw output of the NTK on the test dataset, assuming the test data is sampled i.i.d. from the underlying data distribution (i.e. balanced). """ thresh = np.median(ntk_mean) out = np.sign(ntk_mean - thresh) return out def get_file_prefix(fp, seed, N, trial): """ NTK output filename """ return fp + '_seed' + str(seed) + '_data' + str(N) + '_trial' + str(trial) + '_' def analyze(file_prefix, Ns, sparsify_fnc, sparsify_args=(), sparsity_bootstraps=3, plot_margin=0): """ Plot the accuracy, condition number, number of measurements for post-selection, and number of measurements for readout. """ Ns = np.array(Ns) accs_mean = [] accs_std = [] measurements = [] post_selections = [] measurements_std = [] post_selections_std = [] all_kappas = [] for n_ind in range(len(Ns)): N = Ns[n_ind] # load data prefix = get_file_prefix(file_prefix, '*', N, '*') suffixes = ['kernel_train.npy', 'kernel_test.npy', 'kernel_test_normalized.npy', 'train_label.npy', 'test_label.npy'] files = [] for suffix in suffixes: files.append(sorted(glob.glob(prefix + '*' + suffix))) all_dense = [] all_sparse = [] all_identity = [] all_scale = [] trial_p = [] trial_overlaps_diag = [] trial_overlaps_sparse = [] kappas = [] for i in range(len(files[0])): # load files kernel_train = np.load(files[0][i]) kernel_test = np.load(files[1][i]) kernel_test_normalized = np.load(files[2][i]) train_label = np.load(files[3][i]) test_label = np.load(files[4][i]) # bootstrap over different sparsity patterns for s in range(sparsity_bootstraps): # randomize sparsity pattern sparsity_pattern = get_sparsity_pattern(kernel_train) # sparsify kernel kernel_train_sparse = sparsify_fnc(kernel_train, sparsity_pattern, *sparsify_args) kernel_train_identity = np.diag(kernel_train)*np.eye(kernel_train.shape[0]) # calculate condition number eigs = np.linalg.eigvals(kernel_train_sparse) kappa = np.amax(np.abs(eigs))/np.amin(np.abs(eigs)) kappas.append(kappa) # solve A^{-1}y for A being the exact NTK, sparsified NTK, and diagonal NTK inv_y_dense = np.linalg.inv(kernel_train) @ train_label inv_y_dense /= np.sqrt(np.sum(inv_y_dense**2)) inv_y_sparse = np.linalg.inv(kernel_train_sparse) @ train_label inv_y_sparse /= np.sqrt(np.sum(inv_y_sparse**2)) inv_y_diag = np.linalg.inv(kernel_train_identity) @ train_label inv_y_diag /= np.sqrt(np.sum(inv_y_diag**2)) # prepare |k_*> state ki = kernel_test_normalized / np.amax(np.abs(kernel_test_normalized)) p = np.sum(ki**2, axis=1) ki = ki / np.sqrt(p[:, np.newaxis]) # prepare |y> state ny = len(train_label) y = train_label / np.sqrt(ny) trial_p.append(p) # for post-selection measurements trial_overlaps_diag.append(ki @ y) # <k_*|y> trial_overlaps_sparse.append(ki @ inv_y_sparse) # <k_*|\tilde K^{-1}|y> # classify with the exact, sparsified, and diagonal NTKs mean_dense = kernel_test @ inv_y_dense mean_sparse = kernel_test_normalized @ inv_y_sparse mean_identity = kernel_test_normalized @ inv_y_diag correct_dense = classify(mean_dense) == test_label correct_sparse = classify(mean_sparse) == test_label correct_identity = classify(mean_identity) == test_label all_dense = np.concatenate((all_dense, correct_dense)) all_sparse = np.concatenate((all_sparse, correct_sparse)) all_identity = np.concatenate((all_identity, correct_identity)) all_scale.append([trial_p, trial_overlaps_diag, trial_overlaps_sparse]) # compute the mean and standard deviation of all quantities all_out = [all_dense, all_sparse, all_identity] accs_mean_s = [] accs_std_s = [] for i in range(len(all_out)): correct = all_out[i] accs_mean_s.append(np.mean(correct)) accs_std_s.append(np.std(correct)/np.sqrt(len(correct))) accs_mean.append(accs_mean_s) accs_std.append(accs_std_s) scale = np.concatenate(all_scale, axis=1) p = scale[0, :, :].flatten() post_measurements = N/p post_selections.append(np.median(post_measurements)) bootstraps = 5 # Poisson bootstrapping medians = np.zeros(bootstraps) for b in range(bootstraps): r = np.random.poisson(size=post_measurements.shape) pm = r * post_measurements medians[b] = np.median(pm) post_selections_std.append(np.std(medians)/np.sqrt(bootstraps)) overlaps = scale[1:, :, :].reshape(2, -1) # enough measurements for stdev to be O(overlap) these_measurements = 1/overlaps**2 - 1 measurements.append(np.median(these_measurements, axis=1)) bootstraps = 5 # Poisson bootstrapping medians = np.zeros((bootstraps, 2)) for b in range(bootstraps): r = np.random.poisson(size=these_measurements.shape) pm = r * these_measurements medians[b] = np.median(pm, axis=1) measurements_std.append(np.std(medians, axis=0)/np.sqrt(bootstraps)) all_kappas.append(kappas) accs_mean = np.array(accs_mean) accs_std = np.array(accs_std) post_selections = (np.array(post_selections), np.array(post_selections_std)) measurements = (np.array(measurements), np.array(measurements_std)) kappa = [] kappa_std = [] for row in all_kappas: kappa.append(np.mean(row)) kappa_std.append(np.std(row)/np.sqrt(len(row))) kappa = np.array(kappa) kappa_std = np.array(kappa_std) # plot everything plt.figure(figsize=(5, 4)) plt.errorbar(Ns - Ns*plot_margin, accs_mean[:, 0], yerr=2*accs_std[:, 0], label='Exact NTK', fmt='o') plt.errorbar(Ns, accs_mean[:, 1], yerr=2*accs_std[:, 1], label='Sparse NTK', fmt='o') plt.errorbar(Ns + Ns*plot_margin, accs_mean[:, 2], yerr=2*accs_std[:, 2], label='Diagonal NTK', fmt='o') plt.xlabel('Training set size') plt.ylabel('Accuracy') plt.xscale('log') plt.xticks(Ns) plt.minorticks_off() plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.legend(loc='lower right') plt.tight_layout() plt.show() plt.figure(figsize=(5, 4)) plt.errorbar(Ns, kappa, yerr=2*kappa_std, fmt='o', c='C1') plt.xlabel('Training set size') plt.ylabel('Condition number') plt.xscale('log') plt.xticks(Ns) plt.minorticks_off() plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.gca().get_yaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter( useOffset=False)) plt.tight_layout() plt.show() plt.figure(figsize=(5, 4)) plt.errorbar(Ns, post_selections[0], yerr=2*post_selections[1], fmt='o') plt.xlabel('Training set size') plt.ylabel('Measurements (post-selection)') plt.xscale('log') plt.xticks(Ns) plt.minorticks_off() plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.tight_layout() plt.show() plt.figure(figsize=(5, 4)) plt.errorbar(Ns - Ns*plot_margin/2, measurements[0][:, 1], yerr=2*measurements[1][:, 1], label='Sparse NTK', c='C1', fmt='o') plt.errorbar(Ns + Ns*plot_margin/2, measurements[0][:, 0], yerr=2*measurements[1][:, 0], label='Diagonal NTK', c='C2', fmt='o') plt.xlabel('Training set size') plt.ylabel('Measurements (readout)') plt.xscale('log') plt.xticks(Ns) plt.minorticks_off() plt.gca().get_xaxis().set_major_formatter(matplotlib.ticker.ScalarFormatter()) plt.legend() plt.tight_layout() plt.show() ###Output _____no_output_____ ###Markdown Plot the results for the fully-connected neural network. ###Code analyze('kernel_output/fully-connected', Ns, sparsify_unbiased, plot_margin=1/8) ###Output _____no_output_____ ###Markdown Estimate the appropriate normalization threshold for preparing $|k_*\rangle$ based on a small subset ($n=16$) of the training set, and then plot the results for the convolutional neural network. ###Code fp = 'kernel_output/convolutional' base_n = 16 base_ntk = np.load(sorted(glob.glob(get_file_prefix(fp, '*', base_n, '*') + 'kernel_train.npy'))[0]) sparsify_args = compute_class_percentiles(base_ntk, 90) analyze(fp, Ns, sparsify_biased, sparsify_args=sparsify_args, plot_margin=1/8) ###Output _____no_output_____ ###Markdown Analysis of Sales data DatasetThe given dataset contains monthly total sales of a company for the period 2013-2016. Objectives1. To analyse the sales data and understand the performance of the company.2. Find patterns and construct a model to forecast future sales. Load sales data and create visualization ###Code from time_series import TimeSeries # Imports for data visualization import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters from matplotlib.dates import DateFormatter from matplotlib import dates as mpld register_matplotlib_converters() ts = TimeSeries('dataset/monthly_sales.csv', train_size=0.8) print("Sales Data") print(ts.data.describe()) print("Head and Tail of the time series") print(ts.data.head(5).iloc[:,1]) print(ts.data.tail(5).iloc[:,1]) # Plot of raw time series data plt.plot(ts.data.index,ts.data.sales) plt.gcf().autofmt_xdate() date_format = mpld.DateFormatter('%Y-%m') plt.gca().xaxis.set_major_formatter(date_format) plt.title("Sales Data Analysis (2013-2016)") plt.xlabel("Time") plt.ylabel("Sales") plt.show() ###Output Sales Data sales count 48.000000 mean 47858.351667 std 25221.124187 min 4519.890000 25% 29790.100000 50% 39339.515000 75% 65833.345000 max 118447.830000 Head and Tail of the time series date 2013-01-01 14236.90 2013-02-01 4519.89 2013-03-01 55691.01 2013-04-01 28295.35 2013-05-01 23648.29 Name: sales, dtype: float64 date 2016-08-01 63120.89 2016-09-01 87866.65 2016-10-01 77776.92 2016-11-01 118447.83 2016-12-01 83829.32 Name: sales, dtype: float64 ###Markdown Seasonal Decompose of the time seriesSeasonal decompose is a method used to decompose the components of a time series into the following:- Level - average value in the series.- Trend - increasing or decreasing value in the series.- Seasonality - repeating short-term cycle in the series.- Noise - random variation in the series.The analysis of the components individually provide better insights for model selection. ###Code from statsmodels.tsa.seasonal import seasonal_decompose result_add = seasonal_decompose(ts.data.iloc[:,1],period=12,model='additive') result_add.plot() plt.gcf().autofmt_xdate() date_format = mpld.DateFormatter('%y-%m') plt.gca().xaxis.set_major_formatter(date_format) result_mul = seasonal_decompose(ts.data.iloc[:,1],period=12,model='multiplicative') result_mul.plot() plt.gcf().autofmt_xdate() date_format = mpld.DateFormatter('%y-%m') plt.gca().xaxis.set_major_formatter(date_format) plt.show() ###Output _____no_output_____ ###Markdown Observations from Seasonal Decompose1. The time series seems to roughly have a constant seasonality but has an overall **increasing trend**.2. A slightly decreasing trend is observed till 2014-07 after that an increasing trend is observed. Model SelectionFrom the above observations we can evidently conclude that **Holt-Winter additive model** would be an appropriate choice as there is a constant seasonality component along with an increasing trend. ###Code from statsmodels.tsa.holtwinters import ExponentialSmoothing # Scaling down the data by a factor of 1000 ts.set_scale(1000) # Training the model model = ExponentialSmoothing(ts.train,trend='additive',seasonal='additive',seasonal_periods=12).fit(damping_slope=1) plt.plot(ts.train.index,ts.train,label="Train") plt.plot(ts.test.index,ts.test,label="Actual") # Create a 5 year forecast plt.plot(model.forecast(60),label="Forecast") plt.legend(['Train','Actual','Forecast']) plt.gcf().autofmt_xdate() date_format = mpld.DateFormatter('%Y-%m') plt.gca().xaxis.set_major_formatter(date_format) plt.title("Sales Data Analysis (2013-2016)") plt.xlabel("Time") plt.ylabel("Sales (x1000)") plt.show() ###Output _____no_output_____ ###Markdown Validation of the modelLet's do a brief comparison between the additive and the multiplicative models. ###Code from statsmodels.tsa.holtwinters import ExponentialSmoothing ts = TimeSeries('dataset/monthly_sales.csv', train_size=0.8) # Additive model model_add = ExponentialSmoothing(ts.data.iloc[:,1],trend='additive',seasonal='additive',seasonal_periods=12,damped=True).fit(damping_slope=0.98) prediction = model_add.predict(start=ts.data.iloc[:,1].index[0],end=ts.data.iloc[:,1].index[-1]) plt.plot(ts.data.iloc[:,1].index,ts.data.iloc[:,1],label="Train") plt.plot(ts.data.iloc[:,1].index,prediction,label="Model") plt.plot(model_add.forecast(60)) plt.legend(['Actual','Model','Forecast']) plt.gcf().autofmt_xdate() date_format = mpld.DateFormatter('%Y-%m') plt.gca().xaxis.set_major_formatter(date_format) plt.title("Sales Data Analysis (2013-2016)") plt.xlabel("Time") plt.ylabel("Sales") plt.show() # Multiplicative model model_mul = ExponentialSmoothing(ts.data.iloc[:,1],trend='additive',seasonal='multiplicative',seasonal_periods=12,damped=True).fit() prediction = model_mul.predict(start=ts.data.iloc[:,1].index[0],end=ts.data.iloc[:,1].index[-1]) plt.plot(ts.data.iloc[:,1].index,ts.data.iloc[:,1],label="Train") plt.plot(ts.data.iloc[:,1].index,prediction,label="Model") plt.plot(model_mul.forecast(60)) plt.legend(['Actual','Model','Forecast']) plt.gcf().autofmt_xdate() date_format = mpld.DateFormatter('%Y-%m') plt.gca().xaxis.set_major_formatter(date_format) plt.title("Sales Data Analysis (2013-2016)") plt.xlabel("Time") plt.ylabel("Sales") plt.show() print(model_add.summary()) print(model_mul.summary()) ###Output ExponentialSmoothing Model Results ================================================================================ Dep. Variable: endog No. Observations: 48 Model: ExponentialSmoothing SSE 5088109579.122 Optimized: True AIC 920.991 Trend: Additive BIC 952.801 Seasonal: Additive AICC 948.133 Seasonal Periods: 12 Date: Fri, 27 Mar 2020 Box-Cox: False Time: 16:57:56 Box-Cox Coeff.: None ================================================================================= coeff code optimized --------------------------------------------------------------------------------- smoothing_level 0.1052632 alpha True smoothing_slope 0.1052632 beta True smoothing_seasonal 0.3684211 gamma True initial_level 23914.153 l.0 True initial_slope 0.0098000 b.0 True damping_slope 0.9800000 phi False initial_seasons.0 -9677.2525 s.0 True initial_seasons.1 -19394.263 s.1 True initial_seasons.2 31776.858 s.2 True initial_seasons.3 4381.1975 s.3 True initial_seasons.4 -265.86250 s.4 True initial_seasons.5 10680.977 s.5 True initial_seasons.6 10032.237 s.6 True initial_seasons.7 3995.3175 s.7 True initial_seasons.8 57863.198 s.8 True initial_seasons.9 7539.2375 s.9 True initial_seasons.10 54714.568 s.10 True initial_seasons.11 45631.467 s.11 True --------------------------------------------------------------------------------- ExponentialSmoothing Model Results ================================================================================ Dep. Variable: endog No. Observations: 48 Model: ExponentialSmoothing SSE 5235252441.242 Optimized: True AIC 922.359 Trend: Additive BIC 954.169 Seasonal: Multiplicative AICC 949.502 Seasonal Periods: 12 Date: Fri, 27 Mar 2020 Box-Cox: False Time: 16:57:56 Box-Cox Coeff.: None ================================================================================= coeff code optimized --------------------------------------------------------------------------------- smoothing_level 0.0526304 alpha True smoothing_slope 0.0526304 beta True smoothing_seasonal 0.4739722 gamma True initial_level 23914.153 l.0 True initial_slope 0.0103101 b.0 True damping_slope 0.9781040 phi True initial_seasons.0 0.8216244 s.0 True initial_seasons.1 0.4627010 s.1 True initial_seasons.2 2.1666146 s.2 True initial_seasons.3 1.3637967 s.3 True initial_seasons.4 1.3727428 s.4 True initial_seasons.5 1.4773012 s.5 True initial_seasons.6 1.4485307 s.6 True initial_seasons.7 1.4558825 s.7 True initial_seasons.8 3.2280199 s.8 True initial_seasons.9 1.7354292 s.9 True initial_seasons.10 3.4934260 s.10 True initial_seasons.11 3.1794103 s.11 True --------------------------------------------------------------------------------- ###Markdown IntroductionWe will analyze a sample of AIS data from the Danish Maritime Authority.The data as been preprocessed using postgres, postgis, and timescaledb. We performed the following:- Remove position with incorrect coordinates- Keep one position every thirty minutes using timescaledb- Calculate a fishing score based on [Global Fish Watch heuristic model](https://github.com/GlobalFishingWatch/vessel-scoring/blob/master/notebooks/Model-Descriptions.ipynb)- Calculate a distance from land using land polygon from [pgosmdata](https://github.com/gma2th/pgosmdata) and postgis nearest neighbor algorithm- Create fishing zones with dbscan algorithmIn this notebook we will:- Load and explore the data- Find ships with the longest self-reported fishing time- Find ships with the longest fishing time that does not report fishing in their navigational status- Find the longest trip of the day ###Code %matplotlib inline import datetime as dt import geopandas as gpd import numpy as np import movingpandas as mpd import pandas as pd from shapely.geometry import Polygon from fiona.crs import from_epsg import warnings warnings.simplefilter("ignore") ###Output _____no_output_____ ###Markdown Loading sample AIS data ###Code %%time SAMPLING_DELTA = dt.timedelta(minutes=30) _df = gpd.read_file('data/aisdk_30min.gpkg') df = _df.copy(deep=True) print("Finished reading {}".format(len(df))) ###Output _____no_output_____ ###Markdown Let's have a first look at the data: ###Code df.head() df.describe() df.describe(include = ['O']) df.columns ###Output _____no_output_____ ###Markdown Preprocessing What type of ships are in our dataset? ###Code df['ship_type'].value_counts().plot(kind='bar', figsize=(15,3)) ###Output _____no_output_____ ###Markdown The vessel might be spoofing its vessel type, but we will only work with vessels with a type fishing: ###Code df = df[df.ship_type == 'Fishing'] ###Output _____no_output_____ ###Markdown Most of the navigational statuses are "Engaged in fishing", but there is also a lot of unknown values: ###Code df.navigational_status.value_counts().plot(kind="bar") ###Output _____no_output_____ ###Markdown There are a lot of records with speed over ground (SOG) values of zero in this dataframe: ###Code df['sog'].hist(bins=100, figsize=(15,3)) ###Output _____no_output_____ ###Markdown Let's get rid of the rows with a SOG of zero: ###Code print("Original size: {} rows".format(len(df))) df = df[df.sog>0.0] print("Reduced to {} rows after removing 0 speed records".format(len(df))) df['sog'].hist(bins=100, figsize=(15,3)) ###Output _____no_output_____ ###Markdown Let's plot the positions: ###Code df.hvplot(geo=True, tiles="OSM", color='red', alpha=0.2) ###Output _____no_output_____ ###Markdown Analysis We will use movingpandas to build and plot trajectories.We first need to create a temporal index: ###Code df['t'] = pd.to_datetime(df['bucket']) df = df.set_index('t') %%time # MIN_LENGTH = 100 # meters traj_collection = mpd.TrajectoryCollection(df, 'mmsi') print("Finished creating {} trajectories".format(len(traj_collection))) ###Output _____no_output_____ ###Markdown Find ships with the longest self-reported fishing time ###Code df[df["navigational_status"] == "Engaged in fishing"].groupby("mmsi").size().nlargest(10) * SAMPLING_DELTA traj_collection.get_trajectory(211519000).hvplot(cmap='Dark2', height=300, line_width=5.0) ###Output _____no_output_____ ###Markdown Find ships with the longest fishing time that does not report fishing in their navigational status ###Code df[(df["navigational_status"] != "Engaged in fishing") & (df["fishing_score"] > 0.5) & (df["distance_from_land"] > 1000)].groupby("mmsi").size().nlargest(10) * SAMPLING_DELTA traj_collection.get_trajectory(235007860).hvplot(cmap='Dark2', height=300, line_width=5.0) ###Output _____no_output_____ ###Markdown Find the longest trip of the day ###Code traj_collection.df = pd.DataFrame([(traj.id, traj) for traj in traj_collection.trajectories], columns=["id", "trajectory"]) traj_collection.df["length"] = traj_collection.df.trajectory.apply(lambda traj: traj.get_length()) traj_collection.df.sort_values("length", ascending=False).head() traj_collection.get_trajectory(220141000).hvplot(cmap='Dark2', height=300, line_width=5.0) ###Output _____no_output_____ ###Markdown feas_error (TP and TD) vs m,k ###Code fraction = np.round(groupedData3["rows_proj_y"].to_numpy()/groupedData3["rows_y"].to_numpy(),2) groupedData3["fraction"] = fraction fraction_vals = sorted(list(set(fraction))) groupedData3 groupedData3[groupedData3["fraction"]==0.3]["TP_feas_error"] # graph feas_error (TP and TD) vs m,k fig,(ax1,ax2) = plt.subplots(1,2,figsize=(15,7),sharey=True) iter = 0 for fract in fraction_vals: iter += 1 ax1.plot(list(groupedData3[groupedData3["fraction"]==fract]["rows_y"]),list(groupedData3[groupedData3["fraction"]==fract]["TP_feas_error"]),color=(1.0-np.round(iter/len(fraction_vals),1),0.0,np.round(iter/len(fraction_vals),1)),label=str(fract)) ax1.set_xlabel("n",fontsize=17) ax1.set_ylabel("feasibility error TP",fontsize=16) leg = ax1.legend(loc="upper left",fontsize=14) leg.set_title("k/n",prop={'size':14}) iter = 0 for fract in fraction_vals: iter += 1 ax2.plot(list(groupedData3[groupedData3["fraction"]==fract]["rows_y"]),list(groupedData3[groupedData3["fraction"]==fract]["TD_feas_error"]),color=(1.0-np.round(iter/len(fraction_vals),1),0.0,np.round(iter/len(fraction_vals),1)),label=str(fract)) ax2.set_xlabel("n",fontsize=17) ax2.set_ylabel("feasibility error TDP",fontsize=16) leg = ax2.legend(loc="upper left",fontsize=14) leg.set_title("k/n",prop={'size':14}) plt.subplots_adjust(wspace=0.1) plt.savefig("feasibility_error.png",dpi=600) plt.show() ###Output _____no_output_____ ###Markdown obj_val (P,TP,TD) vs m,k ###Code # graph feas_error (TP and TD) vs m,k fig,(ax1,ax2,ax3) = plt.subplots(1,3,figsize=(15,7),sharey=True) iter = 0 for fract in fraction_vals: iter += 1 ax1.plot(list(groupedData3[groupedData3["fraction"]==fract]["rows_y"]),list(groupedData3[groupedData3["fraction"]==fract]["obj_val_P"]),color=(1.0-np.round(iter/len(fraction_vals),1),0.0,np.round(iter/len(fraction_vals),1)),label=str(fract)) ax1.set_xlabel("n",fontsize=17) ax1.set_ylabel("objective value P",fontsize=16) leg = ax1.legend(loc="upper left",fontsize=14) leg.set_title("k/n",prop={'size':14}) iter = 0 for fract in fraction_vals: iter += 1 ax2.plot(list(groupedData3[groupedData3["fraction"]==fract]["rows_y"]),list(groupedData3[groupedData3["fraction"]==fract]["obj_val_TP"]),color=(1.0-np.round(iter/len(fraction_vals),1),0.0,np.round(iter/len(fraction_vals),1)),label=str(fract)) ax2.set_xlabel("n",fontsize=17) ax2.set_ylabel("objective value TP",fontsize=16) leg = ax2.legend(loc="upper left",fontsize=14) leg.set_title("k/n",prop={'size':14}) iter = 0 for fract in fraction_vals: iter += 1 ax3.plot(list(groupedData3[groupedData3["fraction"]==fract]["rows_y"]),list(groupedData3[groupedData3["fraction"]==fract]["obj_val_TDP"]),color=(1.0-np.round(iter/len(fraction_vals),1),0.0,np.round(iter/len(fraction_vals),1)),label=str(fract)) ax3.set_xlabel("n",fontsize=17) ax3.set_ylabel("objective value TDP",fontsize=16) leg = ax3.legend(loc="upper left",fontsize=14) leg.set_title("k/n",prop={'size':14}) plt.subplots_adjust(wspace=0.1) plt.savefig("objective_val.png",dpi=600) plt.show() ###Output _____no_output_____ ###Markdown Table of Contents Part I: Data Overview 1.) [Setup](setup) &nbsp;&nbsp;&nbsp;&nbsp; 1.1.) [Standard Imports](standard_imports) &nbsp;&nbsp;&nbsp;&nbsp; 1.2.) [Visualization Imports](vis_imports) &nbsp;&nbsp;&nbsp;&nbsp; 1.3.) [Helpers](helpers) &nbsp;&nbsp;&nbsp;&nbsp; 1.4.) [Load data](load) 2.) [General Overview](general) &nbsp;&nbsp;&nbsp;&nbsp; 2.1.) [Timezone](timezone) &nbsp;&nbsp;&nbsp;&nbsp; 2.2.) [Oldest Transcript](oldest) &nbsp;&nbsp;&nbsp;&nbsp; 2.3.) [5 Oldest Stories](old_5) &nbsp;&nbsp;&nbsp;&nbsp; 2.4.) [Date spread](date_spread) &nbsp;&nbsp;&nbsp;&nbsp; 2.5.) [Earliest interview](earliest_interview) &nbsp;&nbsp;&nbsp;&nbsp; 2.6.) [Total words spoken](speaker_total_words) 3.) [Trends](trends) &nbsp;&nbsp;&nbsp;&nbsp; 3.1.) [Topic Popularity](topic_popularity) Part II: Is News a Bad Movie?1.) [Setup](movies_setup) &nbsp;&nbsp;&nbsp;&nbsp; 1.1.) [Load data](movies_load) &nbsp;&nbsp;&nbsp;&nbsp; 1.2.) [Process Data](movies_process) 2.) [Model Training](training) &nbsp;&nbsp;&nbsp;&nbsp; 2.1.) [Clean Movie Reviews](movies_clean) &nbsp;&nbsp;&nbsp;&nbsp; 2.2.) [Vectorizing words](vectorize_words) &nbsp;&nbsp;&nbsp;&nbsp; 2.3.) [Split into train, test](split_train_test) &nbsp;&nbsp;&nbsp;&nbsp; 2.4.) [Basic model](basic_model) &nbsp;&nbsp;&nbsp;&nbsp; 2.5.) [LGBM](lgb_model) &nbsp;&nbsp;&nbsp;&nbsp; 2.6.) [Score of LGBM model](lgb_score) &nbsp;&nbsp;&nbsp;&nbsp; 2.7.) [Distribution of predictions](pred_dist) 3.) [Sentiment Analysis](sent_analysis) &nbsp;&nbsp;&nbsp;&nbsp; 3.1.) [Sentiment by Speaker](speaker_sentiment) &nbsp;&nbsp;&nbsp;&nbsp; 3.2.) [Extreme Sentiments](speaker_sentiment_extreme) &nbsp;&nbsp;&nbsp;&nbsp; 3.3.) [KDE Plots](speaker_sentiment_kde) &nbsp;&nbsp;&nbsp;&nbsp; 3.4.) [Positive examples](speaker_sentiment_pos) &nbsp;&nbsp;&nbsp;&nbsp; 3.5.) [Negative Examples](speaker_sentiment_neg) &nbsp;&nbsp;&nbsp;&nbsp; 3.6.) [Topic Sentiment](topic_sentiment) &nbsp;&nbsp;&nbsp;&nbsp; 3.7.) [PBS Sentiment](pbs_sentiment) --- [^](toc) Setup [^](toc) Standard imports ###Code ### Standard imports import pandas as pd import numpy as np pd.options.display.max_columns = 50 ### Time imports import datetime import time # Counter from collections import Counter # Operator import operator # Regular Expressions import re # Directory helper import glob # Language processing import import nltk # Random import random # Progress bar from tqdm import tqdm ### Removes warnings that occassionally show in imports import warnings warnings.filterwarnings('ignore') ###Output _____no_output_____ ###Markdown [^](toc) Visualization imports ###Code ### Standard imports import matplotlib.pyplot as plt import seaborn as sns %matplotlib inline sns.set() ### Altair import altair as alt alt.renderers.enable('notebook') ### Plotly from plotly.offline import init_notebook_mode, iplot import plotly.graph_objs as go import plotly.plotly as py from plotly import tools init_notebook_mode(connected=True) # WordCloud from wordcloud import WordCloud # Folium import folium ###Output _____no_output_____ ###Markdown [^](toc) Helpers ###Code # A short hand way to plot most bar graphs def pretty_bar(data, ax, xlabel=None, ylabel=None, title=None, int_text=False, x=None, y=None): if x is None: x = data.values if y is None: y = data.index # Plots the data fig = sns.barplot(x, y, ax=ax) # Places text for each value in data for i, v in enumerate(x): # Decides whether the text should be rounded or left as floats if int_text: ax.text(0, i, int(v), color='k', fontsize=14) else: ax.text(0, i, round(v, 3), color='k', fontsize=14) ### Labels plot ylabel != None and fig.set(ylabel=ylabel) xlabel != None and fig.set(xlabel=xlabel) title != None and fig.set(title=title) def pretty_transcript(transcript, convert_name=False): for speaker in transcript: if convert_name: speaker[0] = clean_names(speaker[0]) print(color.UNDERLINE, speaker[0] + ":", color.END) for txt in speaker[1:]: print("\n\n ".join(txt)) print() def get_trend(series, ROLLING_WINDOW=16): trend = series.rolling( window=ROLLING_WINDOW, center=True, min_periods=1).mean() trend = trend.rolling( window=ROLLING_WINDOW // 2, center=True, min_periods=1).mean() trend = trend.rolling( window=ROLLING_WINDOW // 4, center=True, min_periods=1).mean() return trend ### Used to style Python print statements class color: BOLD = '\033[1m' UNDERLINE = '\033[4m' END = '\033[0m' ###Output _____no_output_____ ###Markdown [^](toc) Load data ###Code pbs = pd.read_json("data/PBS-newhour-clean.json") pbs = pbs.sort_values("Date") pbs.Story.fillna("", inplace=True) pbs["Year"] = pbs.Date.map(lambda x: x.year) pbs["Month"] = pbs.Date.map(lambda x: x.month) print("Shape of pbs:", pbs.shape) pbs.head() ###Output Shape of pbs: (17617, 9) ###Markdown [^](toc) General Overview [^](toc) Timezone ###Code pbs.Timezone.value_counts() ###Output _____no_output_____ ###Markdown [^](toc) Oldest Clip ###Code temp = pbs.iloc[0] print(temp.Title) print(temp.URL) ###Output Watergate: The NewsHour’s 1973 Special Report https://www.pbs.org/newshour/show/robert-macneil-and-jim-lehrer-and-the-watergate-hearings ###Markdown [^](toc) Oldest TranscriptThe oldest complete transcript on PBS's website is an interview with Fidel Castro in February of 1985. ###Code temp = pbs[pbs.Transcript.map(lambda x: x != [])].iloc[0] print(f"{color.BOLD}{temp.Date}{color.END}") print(f"{color.BOLD}{temp.Title}{color.END}") print() pretty_transcript(temp.Transcript) ###Output 1985-02-11 06:00:00 Robert MacNeil Interviews Fidel Castro Part I  ROBERT MACNEIL:  Our major focus section tonight is a newsmaker interview with Cuban President Fidel Castro. Last month the U.S. and Cuba successfully negotiated an agreement under which Cuba will take back 2,500 “undesirables” who came in the Mariel boat lift of 1980, and the United States will reopen normal immigration procedures in Havana. Since then Castro has said he’d be willing to talk further about improving relations. Washington has reacted coldly, saying Castro is saying nothing new, and it wants to see Cuban deeds, not words. How far Castro wishes to push his new effort has not been clear, but in Havana part of his motivation is obvious. Havana today expresses the weaknesses of the Cuban revolution. Its successes are in the countryside, where better nutrition, health care and education have changed more lives. Havana, the symbol of the decadent past, was neglected, with little new building. But with an economy still unable to meet all Fidel’s goals and an acute need for hard currency, old Havana is getting a facelift to attract tourists. Buildings and streets from the Spanish colonial period are being refurbished as is the square of the old cathedral. The bulk of the tourists are still people from the Eastern bloc, their presence symbolizing Castro’s dependence on the Communist world for economic survival in the face of the American trade blocade. That’s been in force for a quarter of a century and has been tightened by the Reagan administration. Cuba’s lifeline is a procession of Soviet merchant ships bringing virtually everything, from oil and lumber to light bulbs. They return taking Cuban sugar, citrus and nickel, but recently not enough to meet the planned quotas. So Cuban consumers have been asked to tighten their belts again, to wait for more attractive consumer goods while a big drive is made to boost exports to the Soviet bloc and to the West, both to meet Cuba’s commitments to her Communist partners and to earn hard currency to pay her Western debts. This is the context for the growing suggestions that Castro, 26 years after his revolution, would like to patch things up with the U.S. There is no slackening of revolutionary zeal. The spirit that defeated the Bay of Pigs invasion of 1961 is constantly nourished, and the symbols of Castro’s rise to power are a national shrine. The revolution is still young enough to enjoy tweaking Uncle Sam’s beard. This poster says, “Mr. Imperialist, we are absolutely not afraid of you.” It is located close to the U.S. mission, now called the U.S. Interest Section — because there are no full-scale diplomatic relations — where U.S. officials try to read the signals that Castro is sending. On Friday night President Castro sat down with me for the first major American television interview in six years. With a Cuban government interpreter we talked for more than four hours, first about relations with the United States.  ROBERT MACNEIL:  Mr. President, every time that you begin to talk about improving relations with the United States, Washington says, “Show us deeds, not words.” What actions or deeds are you prepared to make to improve relations with the United States?  FIDEL CASTRO:  You said every time I speak of improving relations; actually there are not many times. Now then, I have read a few statements in which it is said that they want deeds and not words. I believe that that is a style of speaking. I would say a style of a great power. I understand that it is not easy for the United States to change its style. We are a small country. We cannot speak in those terms, but we are also a country with a lot of dignity and no one can suppose that we would beg the United States for an improvement of relations. We have never done so, and we shall never do it. My intention is not that they believe what we say but rather simply to analyze our ideas and to go deeper in them and to make objective analyses of events. It is not a matter of faith, of confidence. It is a matter of objectivity.  ROBERT MACNEIL:  Let’s go through an objective analysis. The State Department and the White House always say that there are three obstacles to improving relations between Cuba and the United States. And they are your allegiance to the Soviet Union, what they call subversion in this hemisphere and the large number of your troops in Africa. Sometimes they also mention human rights in Cuba. The White House mentioned human rights in Cuba this week again. Can we discuss in detail each of these, starting with relations with the Soviet Union? Is there a formula by which you could keep your ties to the Soviet Union and improve relations with the United States?  FIDEL CASTRO:  If the United States believed that there are three obstacles, actually there are quite few, quite little. I thought there were much more. Now, then, if we analyze these three types of obstacles, the first, that is the relations that we have with the Soviet Union, with the socialist countries and with any other country are matters of our sovereignty and that cannot be questioned, or at least we are not ready to discuss that. And this is always — this is something that I always say in a very frank way. If, in order to improve our relations with the United States, we must give up our convictions and our principles, then relations will not improve on those lines. If we are going to question our sovereignty, then they will not improve either. Relations between Cuba and the Soviet Union are based in the most strict respect for independence and sovereignty of our country. We have friendly relations, very close relations, and these relations cannot be affected in order to improve relation thing. The countries that do those things simply are not respected, and actually we are not going to change neither our flag nor our ideas. In our relations with the Soviet Union, in our friendship will be maintained intangible. I say this being fully frank and fully sincere. And it is necessary that this be understood.  ROBERT MACNEIL:  The director of Cuban affairs in the State Department, Kenneth Skout, he said in a speech in December what Cuba could not do and still retain Moscow’s favor is to alter its fundamental commitment to unswerving support for Soviet policy. And so my question is, isn’t that unswerving support for Soviet policy the price of the Soviet aid that keeps the Cuban economy going?  FIDEL CASTRO:  Well, we coincide in many things with the Soviet Union because we have a community of political principles. It is a socialist country; we are a socialist country. We do have many things in common with the Soviet Union and in many international problems we have a common stance that is based on political ideas and principles. It is a friendly country of whose friendship we will not reject and of which we do not feel ashamed of because, actually, we are not going to fight with our friends to become friends of our adversaries. That we shall never do. And the Soviets have never imposed any conditions on us, on their assistance, and they have never attempted to tell us what we should do, what we must do, with which countries we are to trade and with which countries should we have relations. So I simply can’t understand where these theories come from. But if that our relations with the Soviets are an obstacle and if someone thinks that we are going to sell out or that we are going to give up our banners or our flags or that we are going to change our ideas, that is an error. Cuba is a country that cannot be bought. And countries that are bought are simply not respected.  ROBERT MACNEIL:  I think what the United States government is saying is that your economic dependence on Moscow makes you automatically a part of the Soviet camp in having to agree to policies like the Soviet intervention in Afghanistan. Would you, Fidel Castro, who values the independence and integrity of a small country, would you alone have approved the Soviet intervention in Afghanistan if you had been free to make your own choice? Did you privately and personally approve of the Soviet intervention in Afghanistan?  FIDEL CASTRO:  When it was put forth at the U.N., that is, the question, the issue, we said clearly that in that conflict, in that attack, that tremendous attack against the Soviet Union led by the United States, we were not going to be on the side of the United States. Simply that. And we were then on the side of the Soviet Union. That is, we did not deal or delve on the topic; that is what we said. This is opposition because of this.  ROBERT MACNEIL:  But isn’t that the point? That your friendship and dependence on the Soviet Union makes you part of the camp and therefore take positions which Washington regards as anti-American positions?  FIDEL CASTRO:  You establish this dependency as something that is actual in fact and action. But in today’s world, in the economic arena, no one is absolutely independent, not even the United States nor Japan nor Western Europe. They depend on oil, raw materials, and for many other countries they need markets, they need trade. That is, no country is totally independent economically.  ROBERT MACNEIL:  Is it not true that your role in return for all the aid you get from the Soviet Union is to be a thorn in America’s side?  FIDEL CASTRO:  If that were true, we would not be talking about improving relations with the United States. If our role is to be a thorn, then it would not be convenient for us. Actually it does not bring us great benefits, either. That is, we are based on a conviction and it is the necessity to struggle in our area, in Central America, throughout the world. It is a duty, actually a duty that we have in order to lower tensions and to achieve relations of peace in the world. And I say this sincerely, although I am a revolutionary. I was a revolutionary, I am a revolutionary, and I shall always be a revolutionary. And I will not change a single of my principles for a thousand relations with a thousand countries like the United States.  ROBERT MACNEIL:  Will the Soviet Union continue to provide you with the aid and support it does, do you believe, if you have good relations with the United States?  FIDEL CASTRO:  Look, our relations with the Soviet Union, with the socialist countries are solid things based on principles and have absolutely nothing to do with our economic and political relations with the United States. I will say one thing, though. The Soviet Union and the Soviet people feel great appreciation and great respect toward Cuba. But it is they respect Cuba because they admire, as other peoples do, the courage of Cuba, Cuba’s staunchness and Cuba’s capability to resist for over 26 years the aggressions, the economic blockade and the brutality of the United States.  ROBERT MACNEIL:  Would the Soviet Union like it if you had better relations with the United States, the blockade perhaps were lifted and the economic burden on the Soviet Union were shared or lessened?  FIDEL CASTRO:  The United States will pay us for our sugar at the price of the Soviets, or will they be buying the nickel and they will be maintaining the type of relations and trade that we have with the socialist countries. But I believe that the idea that we have any needs to trade with the United States should be totally eradicated. Everything we have done during these 26 years, we have done it without trade with the United States. And our future has been conceived without trade with the United States. Actually, we have not asked for the Soviet Union — generally we don’t ask their opinion on our economic or political relations in an international arena. But I know the Soviet Union very well and I know the policy of the Soviet Union, and the Soviet Union would never be against Cuba’s developing its economic relations with the other capitalist countries, including the United States.  ROBERT MACNEIL:  So, to move on to the second point that Washington says is an obstacle to better relations — what the White House spokesman Larry Speakes called this week your subversion in the hemisphere. Let me quote you again Mr. Skout of the State Department. “It is Cuba’s striving, with Soviet support, to introduce Marxist-Leninist regimes throughout the hemisphere which still lies at the heart of our differences.” Would you comment on that?  FIDEL CASTRO:  Well, I could also accuse the Pope of practicing subversion in Latin America and preaching Christianity and Catholicism. He visited many countries even recently. He has met with natives and said that the land had to be given to the natives and the land properties. And he declared that schools were necessary for the children, jobs for the workers and for the families, medicine and doctors for the ill and also foodstuffs or housing. What we preach is more or less that. And besides, it is what we have done in our country. So then, we will continue being Marxist and we’ll continue being socialist, and we will always say that our social system is more just. But we have said also, because we are convinced about it, we have said the following, and which is my answer to that. Neither can Cuba export revolution because revolutions cannot be exported, and the economic-social factors, the cultural-historical factors that determine the movement of revolution cannot be exported. The external, the huge external debt of Latin America cannot be exported. The formula applied by the International Monetary Fund cannot be exported by Cuba. The unequal trade cannot be exported by Cuba. Underdevelopment and poverty cannot be exported by Cuba, and that is why Cuba cannot export revolution. It is absurd. It is ridiculous to say that revolutions can be exported. But the United States cannot, in the event, avoid them either. The United States accuses us maybe of wanting to promote change. Well then, we would like to see changes occur, but changes will come whether the United States likes it or not, whether or not Cuba likes it. I could answer by saying that the United States wants to maintain an unjust social order that has meant for the peoples of this hemisphere poverty, hunger, underdevelopment, diseases, ignorance — and the United States wants to maintain that. And we could also say that the United States wants to avoid change. If we are accused of wanting to promote change, we can also accuse the United States of wanting to avoid change and of wanting to maintain an unjust social regime. But actually neither can we export it, nor can the revolution avoid it — nor can the United States avoid it.  ROBERT MACNEIL:  In supporting militarily the Sandinista regime in Nicaragua, is Cuba not helping to sustain and introduce a Marxist-Leninist regime?  FIDEL CASTRO:  In Nicaragua, by offering military cooperation? Well, we are helping an independent country, we are helping a just revolution to defend itself. That’s simply what we are doing. In the same way that, for example, the United States has also sent weapons to this — in this hemisphere to other people. It sent weapons to Somoza. It sent weapons to Trujillo when Trujillo was there. It sent weapons to Pinochet. It sent weapons to all of the repressive governments of Latin America, governments that murdered, tortured dozens of thousands of people, governments which disappeared tens of thousands of people. They had no moral obstacle in giving any economic, financial and military assistance to these governments. So, with what moral grounds can it be questioned; that is, can our right be questioned to help Nicaragua and Nicaragua’s right to receive that aid? I ask the following. Can the United States help the counter-revolutionary bands, supply weapons to them — explosives — to fight inside Nicaragua, something that has meant the lives of thousands and thousands of people, and on the other hand question Cuba’s right and Nicaragua’s right for us to give them aid — economic, technical aid, and even some cooperation in the military field?  ROBERT MACNEIL:  So you would not stop giving such aid as a condition of improved relations with the United States?  FIDEL CASTRO:  We shall not make any unilateral decision in our relations and cooperation with Nicaragua. What we have said is that in Central America a politically negotiated solution is possible. What we say is that we support the effort of Contadora to seek solutions of peace in Central America, that we support it staunchly, sincerely, and that we beleive that political solutions exist and peace solutions exist that are convenient for the Nicaraguans, for Central America and for the United States itself, and that we are ready to struggle for that. And also that the agreements that are reached shall be complied by us in a determined way. That is, any agreement reached between Nicaragua and the Contadora framework shall be complied by us to the very letter.  ROBERT MACNEIL:  How hopeful are you that now that some political settlement can be reached in Central America?  FIDEL CASTRO:  I am absolutely convinced. I have a lot of information about the work of Contadora. I have heard all the discussions, all the burning issues there, the positions of the United States, Nicaragua’s positions. And I am convinced, fully convinced, that it is possible to find formulas that would be acceptable by all parties, or to all parties. I have that conviction. I am convinced about that. Now, then. For it, it is necessary for the United States to want to really cooperate in finding a political solution. I believe that as long as the United States is convinced that it can destroy the Sandinista revolution from within by combining the effect of the economic measures against Nicaragua with the economic difficulty inside Nicaragua and the actions of the counterrevolutionary bands, as long as they’re convinced that they can destroy the revolution from within, it will not be seriously ready to seek a political solution to the problems of Central America. Because if it believes that it will destroy the revolution, why negotiate, then? Why reach agreementss? Now, then, Now, when the United States becomes persuaded that it shall not achieve that goal, that the Nicaraguan revolution cannot be destroyed from within, because of the questions I mentioned, the problems I mentioned, I believe that they can face the economic problems with what they produce and with the aid they are receiving, the economic aid they are receiving. If they handle it correctly, efficiently, they can face the economic problems. I’m convinced of that. I am also convinced that they can defeat the bands and that the bands will never be able to defeat —  ROBERT MACNEIL:  Excuse me. By the “bands” you mean what are called in the United States the “contras”?  FIDEL CASTRO:  Yes, the counterrevolutionary bands that will be defeated. They will be defeated. So then a situation will come up before the United States: that is, the United States will have no other alternative but to negotiate seriously to seek a solution or invade Nicaragua. And since, in my view, in my criteria, a U.S. invasion in Nicaragua is inconceivable, since it would mean such a serious mistake, a terrible mistake, that I do not simply think that the United States would really get to the point of making that mistake. I cannot assure you that it might not do it, but I say that it is inconceivable that under the present circumstances in Latin America, under the present circumstances of crisis with the present feeling on the part of Latin American peoples, at the times we’re living in, the aggression and invasion against a Latin American country would be as catastrophic in political terms, it would mean such a political cost, and not only a political cost but also in terms of U.S. lives —  ROBERT MACNEIL:  Let me turn to Africa. The third of those obstacles that Washington sees to improving relations with you, your troops in Angola. You talked recently about circumstances arising which would cause you to bring them home. What would happen — what would have to happen to start bringing the Cuban troops out of Angola?  FIDEL CASTRO:  What is needed there? Well, discussions have taken place with the participation of the United States. The United States has had dialogues, talks with Angola’s leadership. We are informed through the Angolans about these negotiations or talks that have been held with our support and with our full cooperation. That is, they have carried out these negotiations in close contact with Cuba.  ROBERT MACNEIL:  Could you withdraw any of your troops before there is agreement?  FIDEL CASTRO:  No. No. The Angolans would not agree with that, and from our point of view it would be a mistake. And the Angolan proposal, that is, if those circumstances come up, then Angola commits itself, and Cuba of course would support it, to withdrawal in a period of three years what is called the grouping of troops in the south, which is made up by approximately 20,000 men. And even the figure was given. This is the bulk of our troops, actually, but there are still troops in the center and to the north of Angola, including Cabinda. The Angolans have not included these troops in the negotiations, these present negotiations, and their position is that to withdraw those troops, it will be something that would have to be discussed between Angola and Cuba whenever it is considered that they can dispense of these troops.  ROBERT MACNEIL:  Do you think that this projected settlement of the Angola situation, does that erase Cuban troops in Angola as an issue between you and the United States?  FIDEL CASTRO:  Before there were no troops in Angola and relations were very bad with the United States. The day where there are not troops in Angola or in some other place or there are no advisers in Central America, maybe the United States might invent something else.  ROBERT MACNEIL:  Just to sum up our conversation about improving relations with the United States, why is this the right time to raise this, and realistically speaking, how hopeful are you that it can happen?  FIDEL CASTRO:  Whether this is the right — best moment? I believe that if the United States is objective, if it is realistic, I would say that it is the best moment for the United States, not for us. Actually, we can go on for five, 10, 15, 20 more years. The only obligation on our part, really, is toward peace. If there’s peace here and in other areas, we will feel more pleased. If relations are normalized, even more pleased, because it would be then a progressive progress. Peace is convenient for all, but from the political point of view I am convinced — and I’m saying this fully frankly — I think that the United States benefits most than us. We can sit here and wait, calmly, and see what happens in the coming years.  ROBERT MACNEIL:  Tomorrow night Fidel Castro talks candidly about human rights in Cuba, political prisoners, dissent, the controlled press and the mistakes of his revolution. He also discusses what he sees as an explosive economic situation in Latin America. Continue… ###Markdown [^](toc) 5 Oldest Stories ###Code for i in range(5): print(pbs.iloc[i].Date) print(pbs.iloc[i].Story) print() ###Output 1973-05-17 02:26:00 “How high did the scandals reach and was President Nixon himself involved?” That was what the NewsHour’s Robert MacNeil, then co-anchoring with Jim Lehrer, dubbed “the ultimate question” as the program began its gavel-to-gavel coverage of the Watergate hearings on May 17, 1973. 1979-06-29 06:00:00 This MacNeil/Lehrer Report piece highlights the anguish caused by gas shortages at a station in Queens, New York in 1979. 1981-02-27 06:00:00 Robert MacNeil and Jim Lehrer interviewed British Prime Minister Margaret Thatcher for the The MacNeil/Lehrer Report in February of 1981. 1982-10-25 06:00:00 Jim Lehrer and Charlene Hunter Gault report on violence and instability across Guatemala and the actions of Efrain Rios Montt. Gavin Hewitt from the Canadian Broadcasting Corporation reports from Guatemala. Guests are Georges Fauriol of Georgetown University and Dana Martin of the Washington Office on Latin America. 1983-11-30 06:00:00 Robert MacNeil and Charlayne Hunter Gault report on the battles in Washington going on over violence and instability in Guatemala. ###Markdown [^](toc) Date spreadThe activity starts around April 2011, so we have 7 years of history to analyze ###Code temp = (pbs .assign(n=0) .set_index("Date") .groupby(pd.Grouper(freq="M")) .n .apply(len) .sort_index() ) trace = go.Scatter( x=temp.index, y=temp.values, ) layout = go.Layout( title = "Number of transcripts available over time", yaxis=dict(title="Number of transcripts"), xaxis=dict(title="Date"), ) fig = go.Figure(data=[trace], layout=layout) iplot(fig) ###Output _____no_output_____ ###Markdown [^](toc) Earliest interviewI think it's amazing just looking back 7 years. So much has changed, but in another sense, not much has changed.The earliest mention of Donald Trump is in 2011 when he was demanding Obama for his birth certificate. During that segment he is considering running for office. ([link](https://www.pbs.org/newshour/show/with-birth-certificate-release-obama-urges-shift-in-national-dialogue)). This is tangetial, but this [clip](https://www.pbs.org/newshour/show/with-birth-certificate-release-obama-urges-shift-in-national-dialogue) also features PBS' Jim Lehrer 40 years earlier.The earliest mention of Bernie Sanders is him weighing in on the 2011 Debt Ceiling negotitions ([link](https://www.pbs.org/newshour/show/debt-deal-stalemate-spills-into-weekend-for-obama-congress)). He warns that the burden will fall on the working class. ###Code # {x for x in set.union(*pbs.Speakers) if "BEZOS" in x} ### These are just examples pois = {0: "BERNIE SANDERS", 1: "VLADIMIR PUTIN", 2: "DONALD TRUMP", 3: "JUDY WOODRUFF", 4: "BEN CARSON", 5: "STEPHEN COLBERT", 6: "HILLARY CLINTON", 7: "JOHN F. KENNEDY", 8: "ANGELA MERKEL", 9: "JEFF BEZOS", 10: "XI JINPING" } poi = pois[8] print("Showing results for:", poi) pbs[pbs.Speakers.map(lambda x: poi in x)] # {x for x in set.union(*pbs.Speakers) if "RYAN" in x} # pbs[pbs.Speakers.map(lambda x: "ELECT MIKE PENCE" in x)].Transcript.iloc[0] ###Output _____no_output_____ ###Markdown [^](toc) Total words spoken ###Code pois = ["BERNIE SANDERS", "DONALD TRUMP", "HILLARY CLINTON", "BARACK OBAMA", "MITT ROMNEY", "ANGELA MERKEL", "JOSEPH BIDEN", "MIKE PENCE"] def get_num_articles(df, poi): num_articles = len(df[df.Speakers.map(lambda x: poi in x)]) return num_articles def get_num_words(df, poi): speaker_text = list() transcripts = df[df.Speakers.map(lambda x: poi in x)].Transcript.values num_words = 0 for transcript in transcripts: for person in transcript: if person[0] == poi: for txt in person[1]: num_words += len(txt.split(" ")) return num_words articles, words = list(), list() for poi in pois: num_articles = get_num_articles(pbs, poi) num_words = get_num_words(pbs, poi) articles.append(num_articles) words.append(num_words) trace1 = go.Bar( x=pois, y=articles, name='Total articles' ) trace2 = go.Bar( x=pois, y=words, name='Total words' ) data = [trace1, trace2] layout = go.Layout( barmode='group' ) fig = go.Figure(data=data, layout=layout) iplot(fig); ###Output _____no_output_____ ###Markdown [^](toc) Most Popular Speakers ###Code persons = pbs.Speakers.map(list).sum() freq = sorted(Counter(persons).items(), key=operator.itemgetter(1), reverse=True) x, y = list(zip(*freq[:25])) plt.figure(figsize=(14, 14)) sns.barplot(list(y), list(x)); ###Output _____no_output_____ ###Markdown --- [^](toc) Trends [^](toc) Topic PopularityThis shows the popularity of a word for a given month. I measure the fraction of time a word is used for a particular story, then take the average value for a given month.To look at the topic of a topic, multiple moving averages are performed to smooth out fluctuations.There seems to be an increasing trend talking about immigration and racism. Interestingly, PBS has no mention of racism until 2013. ###Code LIMIT_TIME = True topics = ["Obama", "Trump", "Clinton", "Bush", "Immigration", "Congress", "Racism"] def topic_popularity(topic): def popularity_helper(transcript): transcript = list(map(lambda x: x[1][0], transcript)) transcript = (" ".join(transcript).lower()).split(" ") N = len(transcript) counts = Counter(transcript) return (counts[topic.lower()] / N) * 100 return popularity_helper if LIMIT_TIME: temp = pbs[pbs.Year > 2010] else: temp = pbs datas = [] for topic in tqdm(topics): temp["Temp"] = ( temp[temp.Transcript.map(lambda x: x != [])] .Transcript .map(topic_popularity(topic)) ) data = (temp .set_index("Date") .groupby(pd.Grouper(freq="M")) .Temp .apply(np.mean) ) trend = get_trend(data, ROLLING_WINDOW=12) datas.append((topic, data, trend)) traces = [] for topic, data, _ in datas: traces.append(go.Scatter( x=data.index, y=data.values, name=f"{topic} - actual" )) for topic, _, trend in datas: traces.append(go.Scatter( x=trend.index, y=trend.values, name=f"{topic} - trend" )) buttons = [] for i, topic in enumerate(topics): visibility = [i==j for j in range(len(topics))] button = dict( label = topic, method = 'update', args = [{'visible': visibility}, {'title': f"'{topic}' usage over time" }]) buttons.append(button) updatemenus = list([ dict(active=-1, x=-0.15, buttons=buttons ) ]) layout = dict(title='Topic popularity', updatemenus=updatemenus, xaxis=dict(title='Date'), yaxis=dict(title='Percent of words') ) fig = dict(data=traces, layout=layout) fig['layout'].update(height=800, width=800) iplot(fig) ###Output 100%|██████████| 7/7 [00:15<00:00, 2.29s/it] ###Markdown --- Part II: Is News a Bad Movie?I want to see how political sentiment changes over time. However that's hard to quantify, how do I train whether. What is double jeopardy?It does feel very stupid training a model on movie reviews. In addition, I'm using naive bayes and word frequency analysis which is stupid in itself. Models like this don't understand sarcasm, different word meanings, or phrases. However we should be okay.--- [^](toc) Setup [^](toc) Load data ###Code train = pd.read_feather("data/movie_train.csv") test = pd.read_feather("data/movie_test.csv") # train_dir = "data/large-movie-reviews/train/" # test_dir = "data/large-movie-reviews/test/" # train = pd.DataFrame(columns=["Text", "Sentiment"]) # test = pd.DataFrame(columns=["Text", "Sentiment"]) # for df, path in ([train, train_dir], [test, test_dir]): # for sent in ("pos", "neg"): # for txt in tqdm(glob.glob(path + sent + "/*")): # txt = open(txt, "r") # review = txt.read() # df.loc[len(df)] = [review, sent] # txt.close() ### OPTIONAL: Save time and feather the train and test data into a feathered CSV # # train.to_feather("data/movie_train.csv") # # test.to_feather("data/movie_test.csv") # train.head() ###Output _____no_output_____ ###Markdown [^](toc) Process Data ###Code train.Sentiment = train.Sentiment.map(lambda x: int(x == "pos")) test.Sentiment = test.Sentiment.map(lambda x: int(x == "pos")) # Save memory space train.Sentiment = train.Sentiment.astype(np.int8) test.Sentiment = test.Sentiment.astype(np.int8) ###Output _____no_output_____ ###Markdown --- [^](toc) Model training [^](toc) Clean Movie Reviews ###Code bad_words = (">AAARGH!<", "<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<< <<<<<<<<<<<<<<<<<<<<<<<< <<<<<<<", "<grin>", "(comedy)", "(horror)", "(Mr. Director)", "<<<sigh>>>", ">.<", "(<sp?)", "<http://rogerebert.suntimes.com/apps/pb,cs.dll/section?category=ANSWERMAN>", "<3", "-->", "===========>", "</3", ">>>>>>>>>>>>> >>>>>>>>>>>>>>>>> >>>>>>>>>>>>>>>>>>>>>> >>>>>>>> >>>>>>>", ":ZZZZZZZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz..............", "<=8", "Yaaaaaaaaaaaaaawwwwwwwwwwwwwwwwwnnnnnnnnnnnnn!", ":=8O", "ZZZZZZZZzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz...........", ">>> youtube.com/watch?v=cNVrMZX2kms", "<http://rogerebert.suntimes.com/apps/pbcs.dll/section?category=ANSWERMAN>") html_words = ("<hr>", "<br /><br />", "<i>", "</i>", "<em>", "</em>", "<SPOILER>", "</SPOILER>",) def clean_txt(txt, words): for word in words: txt = txt.replace(word, " ") txt = txt.replace("_", " ") txt = txt.strip() return txt def clean_reviews(review): review = clean_txt(review, bad_words) review = clean_txt(review, html_words) return review train.Text = train.Text.map(clean_reviews) test.Text = test.Text.map(clean_reviews) ###Output _____no_output_____ ###Markdown [^](toc) Vectorizing wordsDISCLAIMER: I stole a lot of this code from [Anisotropic](https://www.kaggle.com/arthurtok) and his excellent [kernel](https://www.kaggle.com/arthurtok/spooky-nlp-and-topic-modelling-tutorial). ###Code from sklearn.feature_extraction.text import CountVectorizer from nltk.stem import WordNetLemmatizer lemm = WordNetLemmatizer() class LemmaCountVectorizer(CountVectorizer): def build_analyzer(self): analyzer = super(LemmaCountVectorizer, self).build_analyzer() return lambda doc: (lemm.lemmatize(w) for w in analyzer(doc)) # Storing the entire training text in a list text = list(train.Text.values) # Calling our overwritten Count vectorizer tf_vectorizer = LemmaCountVectorizer(max_df=0.6, min_df=20, stop_words='english', decode_error='ignore') tf = tf_vectorizer.fit_transform(text) ###Output _____no_output_____ ###Markdown [^](toc) Split into train, test ###Code train_x = tf_vectorizer.transform(train.Text).toarray() train_y = train.Sentiment test_x = tf_vectorizer.transform(test.Text).toarray() test_y = test.Sentiment ###Output _____no_output_____ ###Markdown [^](toc) Basic model ###Code from sklearn.naive_bayes import GaussianNB gnb_model = GaussianNB() gnb_model.fit(train_x, train_y) score = gnb_model.score(test_x, test_y) print(f"Naive Bayes score: {round(score * 100, 2)}%") ###Output Naive Bayes score: 66.89% ###Markdown [^](toc) LGBMUsually Naive Bayes is used for classification, but I see great results with Light Gradient Boosting. Also instead of classification, I want to see a spectrum meaning the predictions will be some float in between 0 and 1.I think using a spectrum is more interesting as it differeniates a really negative text from a slighly negative text. ###Code import lightgbm as lgb from sklearn.model_selection import train_test_split training_x, val_x, training_y, val_y = train_test_split(train_x, train_y, test_size=0.2, random_state=17) lgb_train = lgb.Dataset(data=training_x, label=training_y) lgb_eval = lgb.Dataset(data=val_x, label=val_y) params = {'task': 'train', 'boosting_type': 'gbdt', 'objective': 'binary', 'metric': 'auc', 'learning_rate': 0.03, 'num_leaves': 55, 'num_iteration': 2000, 'verbose': 0 , 'subsample':.9, 'max_depth':7, 'reg_alpha':20, 'reg_lambda':20, 'min_split_gain':.05, 'min_child_weight':1, "min_data_in_leaf": 40, "feature_fraction":0.5} start = time.time() lgb_model = lgb.train(params, lgb_train, valid_sets=lgb_eval, early_stopping_rounds=150, verbose_eval=200) print("Training took {} seconds".format(round(time.time() - start))) ###Output Training until validation scores don't improve for 150 rounds. [200] valid_0's auc: 0.885519 [400] valid_0's auc: 0.904419 [600] valid_0's auc: 0.91233 [800] valid_0's auc: 0.916617 [1000] valid_0's auc: 0.919374 [1200] valid_0's auc: 0.921255 [1400] valid_0's auc: 0.922448 [1600] valid_0's auc: 0.923493 Early stopping, best iteration is: [1627] valid_0's auc: 0.923625 Training took 80 seconds ###Markdown [^](toc) Score of LGBM modelThe LGBM model is considerably better than Naive Bayes! More can be done to increase this score, but it's good enough for me! ###Code # Predict predictions = lgb_model.predict(test_x) print("/nFirst 5 valus of predictions") print(" ".join(predictions[:5].astype(str))) # Turn probabilities into classification preds = (predictions > 0.5).astype(int) # Check if predictions are correct and score score = (preds == test_y).astype(int) score = sum(score) / len(score) print(f"LGBM score: {round(score * 100, 2)}%") ###Output /nFirst 5 valus of predictions 0.6823096152655787 0.2563676280349399 0.754158275654756 0.7299133738366266 0.9163257142306617 LGBM score: 84.69% ###Markdown [^](toc) Distribution of predictionsI want to look at the distribution of predictions to see if it is suitable for our purposes.The most important plot here is the predictions by label. ###Code plt.figure(figsize=(16, 12)) ### Nuanced way of creating subplots ax1 = plt.subplot2grid((2, 2), (0, 0)) ax2 = plt.subplot2grid((2, 2), (0, 1)) ax3 = plt.subplot2grid((2, 2), (1, 0), colspan=2) preds = (2 * predictions) - 1 # Left plot: KDE plot of predictions ax1.set_title("Distribution of predictions") ax1.set_xlabel("Prediction") sns.kdeplot(preds, ax=ax1) # Right plot: KDE plot of predictions by label pos_preds = preds[test_y[test_y == 1].index] neg_preds = preds[test_y[test_y == 0].index] ax2.set_title("Predictions by label") ax2.set_xlabel("Prediction") sns.kdeplot(pos_preds, label="Positive", ax=ax2) sns.kdeplot(neg_preds, label="Negative", ax=ax2) # Bottom plot: Histogram plot ax3.set_title("Histogram of predictions") ax3.set_xlabel("Prediction") pd.DataFrame(preds).plot(kind="hist", bins=30, ax=ax3) ax3.legend_.remove(); ###Output _____no_output_____ ###Markdown [^](toc) Sentiment Analysis [^](toc) Sentiment by Speaker ###Code pois = ["BERNIE SANDERS", "DONALD TRUMP", "HILLARY CLINTON", "BARACK OBAMA"] #, "LISA DESJARDINS", "DAVID BROOKS"] pois_sents = dict() poi_txts = dict() def get_speaker_text(df, poi): speaker_text = list() transcripts = df[df.Speakers.map(lambda x: poi in x)].Transcript.values for transcript in transcripts: total_txt = "" for person in transcript: if clean_names(person[0]) == poi: total_txt += " ".join(person[1]) + " " speaker_text.append(total_txt) return speaker_text for poi in pois: txts = get_speaker_text(pbs, poi) poi_txts[poi] = txts txts = tf_vectorizer.transform(txts).toarray() sentiments = lgb_model.predict(txts) sentiments = (2 * sentiments) - 1 pois_sents[poi] = sentiments sents = [(poi, np.mean(sent)) for poi, sent in pois_sents.items()] x, y = list(zip(*sents)) plt.figure(figsize=(14, 6)) plt.ylabel("Sentiment (Positive mean positive attitude)") plt.bar(x, y); ###Output _____no_output_____ ###Markdown [^](toc) Extreme SentimentsFrom experience, I've seen Trump say very negative things so it's strange to see him with the same positivity of Obama.I think it will be fruitful to compare the values in the 10% and 90% percentiles ###Code positive = [(poi, np.percentile(sent, 90)) for poi, sent in pois_sents.items()] negative = [(poi, np.percentile(sent, 10)) for poi, sent in pois_sents.items()] fig, axarr = plt.subplots(2, 1, figsize=(14, 10)) x, y = list(zip(*positive)) axarr[0].set_title("Most positive remarks") axarr[0].set(ylabel="Sentiment (Positive mean positive attitude)") axarr[0].bar(x, y) x, y = list(zip(*negative)) axarr[1].set_title("Most negative remarks") axarr[1].set_ylabel("Sentiment (Positive mean positive attitude)") axarr[1].bar(x, y); ###Output _____no_output_____ ###Markdown [^](toc) KDE PlotsThis is a very interesting plot. Notice how Trump is less likely to say something moderate. Sanders has a small hump on the negative side. ###Code plt.figure(figsize=(14, 8)) all_sents = [(poi, sent) for poi, sent in pois_sents.items()] for person, sentiment in all_sents: sns.kdeplot(sentiment, label=person) ###Output _____no_output_____ ###Markdown [^](toc) Positive examplesThe model is very accurate with Donald Trump and Barack Obama. Almost every other word in Trump's text is positive. The text from Obama is his State of the Union which was incredibly positive. ###Code positive = [(poi, np.argmax(sent)) for poi, sent in pois_sents.items()] for person, txt_index in positive: print(color.UNDERLINE, person, color.END) print(poi_txts[person][txt_index]) print() ###Output  BERNIE SANDERS  Great to be with you. Well, I have been in the Democratic Caucus in the Senate for over 24 years. But, as an independent, my views, in fact, are a little bit different than many of my Democratic colleagues. I worry very much that we have a billionaire class now which has enormous power not only over our economy, but over our political system as well, as a result of Citizens United Supreme Court decision. So, my own view is that we have got to be very, very bold in taking on big money and creating a situation where government begins to work for the middle class and working families of our country, rather than just the wealthy and the powerful. Judy, I’m running for president because, in my view, this country today, our country, faces more serious problems than at any time since the Great Depression. And if you throw in the planetary crisis of climate change, it may well be that the problems today are more severe. Look, for the last 40 years, the great middle class of this country has been disappearing. Median family income today is significantly less than it was in 1999. Millions are working longer hours for lower wages. And, at the same time, we have seen a huge shift of wealth to the top one-tenth of 1 percent. So, today — today, 99 percent of all new income is going to the top 1 percent. The top one-tenth of 1 percent owns almost as much wealth as the bottom 90 percent. That is immoral and unsustainable. Well, I know. Critics are often paid by large corporations or corporate think tanks. The fact of the matter is right now in America we’re losing about $100 billion every single year because very profitable corporations are stashing their money in the Cayman Islands, Bermuda, and other tax havens. And that has got to end. Second of all, we have a situation where hedge fund managers, guys that are making many, many millions of dollars a year, are paying an effective tax rate lower than what nurses or school teachers are paying. And Warren Buffett makes the point that his effective tax rate, as a multibillionaire, is lower than his secretary’s. That’s got to end. The wealthiest people in this country are in fact going to have to start paying their fair share of taxes if I’m elected president. Sure it’s a problem. The problem that we have now is that our political system is increasingly dominated by a billionaire class and by super PACs, who have unbelievable influence over what goes on politically. It is a huge problem. But in terms of this trade agreement, in my view, the Trans-Pacific Partnership trade agreement is a continuation of other disastrous trade agreements, like NAFTA, CAFTA, and permanent normal trade relations with China. These trade agreements, among other things, have contributed to the that we have lost almost 60,000 factories since 2001 and millions of decent-paying jobs. And I think enough is enough. We have got to rebuild our manufacturing base, not send it to China or other countries. Well, I think that’s a very fair question. And I think the American people will have to decide. If you are asking me why it is that the middle class is disappearing and we’re seeing more income and wealth inequality than any time since the 1920s, trade is a very important factor, not the only reason. And it is hard for me to understand how any serious candidate for president, Hillary Clinton or anybody else, can duck this issue. You can’t. You can be for it. You can be against it. But it is being hotly debated right now in Congress. You have got to have a position on it. I have spent the better part of my adult life standing up and fighting for working families. I have taken on virtually every element of the big money establishment, whether it’s the Koch brothers, and the big energy companies, whether it’s the industrial complex, whether it’s Wall Street. You’re looking at the guy who has introduced legislation to break up the largest financial institutions in this country. I have taken on the drug companies. I have taken on the insurance companies. I happen to believe that we should move to a Medicare-for-all single-payer system, similar to what other countries around the world have. So, I think if people understand that establishment politics just no longer is working, that we need some bold ideas, that we need a mass movement of people, millions of people to stand up and say, you know what, enough is enough, this great country belongs to all of us and not just to a handful of billionaires, if people believe that, I will win this election. I don’t think she can, yes. No, no, no, I have supported those efforts on the part of the president. I voted against the war in Iraq. And I think, if you go back and you read what I had to say way back when, you know, it will sound pretty prescient in terms of the destabilization that we have seen in the Middle East. So my view is, the United States has got to play an active role in defeating this barbaric organization, but at the end of the day, it’s going to be the Muslim countries themselves, supported by the United States and other Western countries, that will defeat ISIS and bring some degree of stability into the Middle East. It cannot be American troops on the ground. And I will tell you what I worry about. I think too many of my Republican friends are into perpetual warfare in the Middle East. And that scares the bejesus out of me. And I supported the airstrikes as well. But I do not want to see perpetual warfare in the Middle East. I do not want to see American combat troops on the ground in the Middle East. Thank you very much.    DONALD TRUMP  Reince is a good man. John Kelly will do a fantastic job. General Kelly has been a star, done an incredible job thus far, respected by everybody, a great, great American. Reince Priebus, a good man. Thank you very much.  HILLARY CLINTON    Well, we had a great, great time last night.  The real point is about temperament and fitness and qualifications to hold the most important, hardest job in the world.  And I think people saw last night some very clear differences between us.   Anybody who complains about the microphone is not having a good night.   He loves beauty contests, supporting them and hanging around them.  And he called this woman “Miss Piggy.”  Then he called her “Miss Housekeeping,” because she was Latina.  Donald, she has a name.   Her name is Alicia Machado.   And she has become a U.S. citizen, and you can bet…   … she’s going to vote this November.   At one point, he was kind of digging me for spending time off the campaign trail to get prepared.  And I said, yes, you know what, I did prepare.  And I will tell you something else I prepared for.  I prepared to be president of the United States, and I think that’s good. (CHEERING AND APPLAUSE)  BARACK OBAMA  God is our refuge and strength, a very present help in trouble. Therefore, we will not fear even though the earth be removed and though the mountains be carried into the midst of the sea. Thank you. Thank you. Thank you. The Bible tells us weeping may endure for a night, but joy cometh in the morning. Ten years ago, America confronted one of our darkest nights. Mighty towers crumbled, black smoke billowed up from the Pentagon, airplane wreckage smoldered on a Pennsylvania field. Friends and neighbors, sisters and brothers, mothers and fathers, sons and daughters — they were taken from us with a heartbreaking swiftness and cruelty. And on September 12th, 2001, we awoke to a world in which evil was closer at hand and uncertainty clouded our future. In the decades since, much has changed for Americans. We’ve known war and recession, passionate debates and political divides. We can never get back the lives that were lost on that day or the Americans who made the ultimate sacrifice in the wars that followed. And yet today it is worth remembering what has not changed. Our character as a nation has not changed. Our faith in God and in each other — that has not changed. Our belief in America, born of a timeless ideal that men and women should govern themselves, that all people are created equal and deserve the same freedoms to determine their own destiny — that belief through tests and trials has only been strengthened. These past 10 years have shown that America does not give in to fear. The rescue workers who rushed to the scene, the firefighters who charged up the stairs, the passengers who stormed the cockpit — these patriots define the very nature of courage. Over the years, we’ve also seen a more quiet form of heroism in the ladder company that lost so many men and still suits up and saves lives every day, the businesses that have been rebuilt from nothing, the burn victim who’s bounced back, the families who press on. Last spring, I received a letter from a woman named Suzanne Swain (ph). She had lost her husband and brother in the twin towers and said that she had been robbed of so many would-be proud moments where a father watches their child graduate or tend goal in a lacrosse game or succeed academically. But her daughters are in college, the other doing well in high school. “It has been 10 years of raising these girls on my own,” Suzanne wrote. “I could not be prouder of their strength and resilience.” That spirit typifies our American family, and the hopeful future for those girls is the ultimate rebuke to the hateful killers who took the life of their father. These past 10 years have shown America’s resolve to defend its citizens and our way of life. Diplomats serve in far-off posts and intelligence professionals work tirelessly without recognition. Two million Americans have gone to war since 9/11. They’ve demonstrated that those who do us harm cannot hide from the reach of justice anywhere in the world. America’s been defended not by conscripts but by citizens who choose to serve, young people who signed up straight out of high school, guardsmen and reservists, workers and business people, immigrants and fourth-generation soldiers. They are men and women who left behind lives of comfort for two, three, four, five tours of duty. Too many will never come home. Those that do carry dark memories from distant places and the legacy of fallen friends. The sacrifices of these men and women and of our military families reminds us that the wages of war are great and that while service to our nation is full of glory to Kandahar and Kabul, to Mosul and Basra. But our strength is not measured in our ability to stay in these places. It comes from our commitment to leave those lands to free people and sovereign states and our desire to move from a decade of war to a future of peace. These 10 years have shown that we hold fast to our freedoms. Yes, we’re more vigilant against those who threaten us, and there are inconveniences that come with our common defense. Debates about war and peace, about security and civil liberties have often be fierce these last 10 years, but it is precisely the rigor of these debates and our ability to resolve them in a way that honors our values and our democracy that is the measure of our strength. Meanwhile, our open markets still provide innovators a chance to create and succeed. Our citizens are still free to speak their minds. And our souls are enriched in churches and temples, our synagogues and our mosques. These past 10 years underscores the bonds between all Americans. We have not succumbed to suspicion, nor have we succumbed to mistrust. After 9/11, to his great credit, President Bush made clear what we have reaffirmed today. The United States will never wage war against Islam or any other religion. Immigrants come here from all parts of the globe, and in the biggest cities and the smallest towns, in schools and workplaces, you still see people of every conceivable race and religion and ethnicity, all of them pledging allegiance to the flag, all of them reaching for the same American dream. E pluribus unum — out of many we are one. These past 10 years tell us a story of our resilience. The Pentagon is repaired and filled with patriots working in common purpose. Shanksville is the scene of friendships forged between residents of that town and families who lost loved ones there. New York, New York remains the most vibrant of capitals of arts and industry and fashion and commerce. Where the World Trade Center once stood, the sun glistens off a new tower that reaches towards the sky. Our people still work in skyscrapers. Our stadiums are still filled with fans and our parks full of children playing ball. Our airports hum with travel and our buses and subways take millions where they need to go. And families sit down to Sunday dinner and students prepare for school. This land pulses with the optimism of those who set out for distant shores and the courage of those who died for human freedom. Decades from now, Americans will visit the memorials to those who were lost on 9/11. They’ll run their fingers over the places where the names of those we loved are carved into marble and stone, and they may wonder at the lives that they led. And standing before the white headstones in Arlington and in peaceful cemeteries and small town squares in every corner of the country, they will pay respects to those lost in Iraq and Afghanistan. They’ll see the names of the fallen on bridges and statues, in gardens and schools, and they will know that nothing can break the will of a truly United States of America. They will remember that we’ve overcome slavery and civil war. We’ve overcome red lines and fascism and recession and riots and communism, and yes, terrorism. They will be reminded that we are not perfect. Our democracy is durable, and that democracy, reflecting as it does the imperfections of man, also gives us the opportunity to perfect our union. That is what we honor on days of national commemoration, those aspects of the American experience that are enduring and the determination to move forward as one people. More than monuments, that will be the legacy of 9/11, a legacy of firefighters who walked into fire and soldiers who signed up to serve, of workers who raised new towers and citizens who faced down their private fears, most of all of children who realized the dreams of their parents. It will be said that we kept the faith, that we took a painful blow and we emerged stronger than before. Weeping may endure for a night, but joy cometh in the morning. With a just God as our guide, let us honor those who have been lost. Let us rededicate ourselves to the ideals that define our nation, and let us look to the future with hearts full of hope. May God bless the memory of those we lost, and may God bless the United States of America. (APPLAUSE) ###Markdown [^](toc) Negative ExamplesBernie Sanders and Donald Trump certainly sound like they just saw a bad movie.The model seems to perform very well with Donald Trump and not so well with Hillary Clinton. Trump uses a lot of adjectives and is very direct. Hillary Clinton is somewhat less direct and a bit sarcastic which the model has trouble with. ###Code negative = [(poi, np.argmin(sent)) for poi, sent in pois_sents.items()] for person, txt_index in negative: print(color.UNDERLINE, person, color.END) print(poi_txts[person][txt_index]) print() ###Output  BERNIE SANDERS  Well, what went wrong, Judy, is they brought forth a disastrous health care bill that had the support of all of 12 percent of the American people, that was opposed by the American Medical Association, the American Hospital Association, the AARP. And virtually every national health care organization understood that, when you throw 22 million people off of health insurance, when you cut Medicaid by $800 billion, when you raise premiums for older workers, when you defund Planned Parenthood, and you make it almost impossible for people with preexisting conditions to get the health care they need and can afford, you know what? You have got a bill that’s a stinker, it shouldn’t go anyplace. And it didn’t go anyplace. And that’s a good thing for the American people. And I thank the millions of people who stood up and fought back and said that that legislation is not what this country is about. Well, if he wants to blame me for helping kill that bill, I accept that responsibility completely. This bill was an absolute disaster. Its goal was primarily to give tax breaks to the rich and to large corporations, rather than to address the needs of the American people. If the president wants to blame me and anyone else for preventing 22 million Americans losing their health insurance, I accept that criticism. Of course. Why not — look, nobody has said, Judy, that the Affordable Care Act is anywhere near perfect. It did add 20 million more people to the ranks of the insured. That’s good. Deductibles, however, are too high. Co-payments are too high. Premiums are too high. And we pay by far the highest in the world for prescription drugs, getting ripped off every day by the pharmaceutical industry. So, if the Republicans want to sit down and say how do we improve the Affordable Care Act, not destroy it, how do we improve it, let’s go forward and do that. I have some very specific ideas on that. Well, I’ll tell you. As I just mentioned, the cost of prescription drugs in this country is far, far higher than in any other country. You may recall that Donald Trump as a candidate for president talked about how he was going to take on the pharmaceutical industry and it was going to lower prescription drug costs. Well, we have some ideas to do that. Republicans may have other ideas. Let’s talk about lowering prescription drug costs, saving the federal government substantial sums of money. Let’s talk about having Medicare negotiate prices with the pharmaceutical industry. That’s number one. Number two, there are areas of this country right now where there are no insurance companies offering the Affordable Care Act. Let us provide a public option in every county in America, so if people don’t like what the private insurance companies are offering or there is no offer, let them have at least a public option. Number three, I believe that the American people would very much like to see lowering the eligibility age of Medicare from 65 to 55. And, lastly, in my view — and I speak only for myself — the United States must join the rest of the industrialized world, guarantee health care to all people as a right. And that is why I will be introducing a Medicare-for-all single-payer program. It will not be passed, believe me, in this session of Congress. I know that. But we have got to begin the discussion as to why we spend so much more per capita on health care than any other nation, why we pay the highest prices in the world, why we do not guarantee health care to all people, as every other major country does. Oh, yes. Well, that’s a very good question. And I’m sure that there’s absolutely nobody in the world who knows the answer to it. All that I can say is that we are spending far more per capita than people in any other country, and our health care outcomes are in many cases worse in terms of life expectancy, infant mortality and so forth. So, I think the issue is not necessarily — we may have to spend more money. The issue is to trying to figure out why we end up spending so much more than other countries. And one of the reasons, clearly, high cost of prescription drugs. Second reason, we do very, very badly in terms of primary health care. There are millions of people, even those who have insurance, who can not get to a doctor when they are sick. They end up in the emergency room, very expensive. They end up in the hospital, very, very expensive. If we greatly expanded primary health care, lower the cost of prescription drugs, we take a giant step forward in lowering health care costs in America. Prescription drugs. Thank you, Judy.  DONALD TRUMP  It’s all fake news. It’s phony stuff. It didn’t happen. And it was gotten by opponents of ours. But it should never have been released, but I read what was released. And I think it’s a disgrace. I think it’s an absolute disgrace. I told many people, be careful, because you don’t want to see yourself on television. There are cameras all over the place, and, again, not just Russia, all over. Does anyone really believe that story? I’m also very much of a germaphobe, by the way, believe me. It’s a failing pile of garbage writing it. I think they’re going to suffer the consequences. I think it was disgraceful, disgraceful that the intelligence agencies allowed any information that turned out to be so false and fake out. I think it’s a disgrace, and I say that. And that’s something that Nazi Germany would have done, and did do. The hacking is bad and it shouldn’t be done. But look at the things that were hacked. Look at what was learned from that hacking, that Hillary Clinton got the questions to the debate and didn’t report it? That’s a horrible thing. I think it was Russia, but I think we also get hacked by other countries and other people. If Putin likes Donald Trump, guess what, folks? That’s called an asset, not a liability. Now, Russia will have much greater respect for our country when I’m leading it than when other people have led it. You will see that. Russia will respect our country more. He shouldn’t have done it. I don’t believe he will be doing it more. We could make deals in Russia very easily if we wanted to. I just don’t want to, because I think that would be a conflict. So I have no loans, no dealings and no current pending deals.  HILLARY CLINTON  Let’s do everything we can to win Kentucky in November! Now, some people might say, oh, all anybody wants to hear is just, I’m going to do it, but I’m not telling you what I’m going to do. See, I don’t believe that. Americans take their vote for president seriously. And they’re going to be looking at that TV screen and saying, he still doesn’t have anything to tell us?  BARACK OBAMA  Don’t bet against the American auto industry. Only in politics do people root for bad news, do they greet bad news so enthusiastically. You pay more, they’re licking their chops. And you can bet that since it’s an election year, they’re already dusting off their three-point plan for $2 gas. And I will save you the suspense. Step one is to drill, and step two is to drill and then step three is to keep drilling. Well, the American people aren’t stupid. They know that’s not a plan, especially since we’re already drilling. That’s a bumper sticker. ###Markdown [^](toc) Topic SentimentAre certain words associated with good or bad movies? Look at articles with these words in their summary ###Code chr(65) chr(122) topics = ["Obama", "Trump", "Clinton", "Bush", "Immigration", "Congress"] sents = [] Ns = [] def get_speaker_text(df, poi): speaker_text = list() transcripts = df[df.Speakers.map(lambda x: poi in x)].Transcript.values for transcript in transcripts: total_txt = "" for person in transcript: if clean_names(person[0]) == poi: total_txt += " ".join(person[1]) + " " speaker_text.append(total_txt) return speaker_text for poi in pois: txts = get_speaker_text(pbs, poi) poi_txts[poi] = (txts) txts = tf_vectorizer.transform(txts).toarray() sentiments = lgb_model.predict(txts) sentiments = (2 * sentiments) - 1 pois_sents[poi] = sentiments for topic in topics: stories = pbs[pbs.Story.map(lambda x: topic in x)] Ns.append(len(stories)) ###Output 1537 1725 501 84 37 566 ###Markdown [^](toc) PBS Sentiment ###Code pbs_staff = {"JUDY WOODRUFF", "GWEN IFILL", "JOHN YANG", "RAY SUAREZ", "JIM LEHRER", "JEFFREY BROWN", "HARI SREENIVASAN", "LISA DEJARDIN"} def text_sent(transcript): total_txt = "" for person in transcript: if clean_names(person[0]) in pbs_staff: total_txt += " ".join(person[1]) + " " if total_txt == "": return np.nan txt = tf_vectorizer.transform([total_txt]).astype(np.float64) sentiment = lgb_model.predict(txt) return sentiment[0] temp = pbs[pbs.Speakers.map(lambda x: len(set.union(pbs_staff, x)) > 0)] temp = temp[temp.Year > 2010] temp = (temp .set_index("Date") .Transcript .map(text_sent) .dropna() .groupby(pd.Grouper(freq="M")) ) sent = temp.apply(np.mean) error = temp.apply(np.std) trace = go.Scatter( x=sent.index, y=sent.values, error_y=dict( type='data', array=error.values, visible=True ) ) layout = go.Layout( title = "PBS Newshour Sentiment over time", yaxis=dict(title="Sentiment"), xaxis=dict(title="Date"), ) fig = go.Figure(data=[trace], layout=layout) iplot(fig) ###Output _____no_output_____ ###Markdown Most common words on Movie ReviewsThis code is copied from [Anisotropic](https://www.kaggle.com/arthurtok) and his excellent [kernel](https://www.kaggle.com/arthurtok/spooky-nlp-and-topic-modelling-tutorial). ###Code feature_names = tf_vectorizer.get_feature_names() count_vec = np.asarray(tf.sum(axis=0)).ravel() zipped = list(zip(feature_names, count_vec)) x, y = (list(x) for x in zip(*sorted(zipped, key=lambda x: x[1], reverse=True))) # Now I want to extract out on the top 15 and bottom 15 words Y = np.concatenate([y[0:15], y[-16:-1]]) X = np.concatenate([x[0:15], x[-16:-1]]) # Plotting the Plot.ly plot for the Top 50 word frequencies data = [go.Bar( x = x[0:50], y = y[0:50], marker= dict(colorscale='Jet', color = y[0:50] ), text='Word counts' )] layout = go.Layout( title='Top 50 Word frequencies after Preprocessing' ) fig = go.Figure(data=data, layout=layout) iplot(fig) ###Output _____no_output_____ ###Markdown reliability diagram, expected calibration errorIn multi-class classification setting, the general idea of calibration is that confidence should match accuracy, i.e. when the model is 60% confidence, the probability of it being correct should be 60%.reliability diagram: bin validation examples by predicted probability, then calculate the average accuracy within each bin, plot average accuracy against confidence. ideal calibration should be a diagonal line.expected calibration error (ECE): the difference in expectation between confidence and accuracy is$$\mathbb{E}_{\hat{P}}[|\mathbb{P}(\hat{Y}=Y|\hat{P}=p)-p)|$$This can be approximated by a weighted average of bins' accuracy - confidence difference (the gap showns as red bars in reliability diagrams)$$\text{ECE}=\sum_{i}\frac{|B_i|}{n}|\text{acc}(B_m)-\text{conf}(B_m)|$$ ###Code results = pd.read_csv('./results/hlr.settles.acl16.learning_traces.13m.preds', delimiter='\t') def _bin_prediction(group): return pd.DataFrame([{'prediction': group.pp.mean()}]) ( ggplot( results.groupby( pd.cut(results.p, 20) ).apply(_bin_prediction).reset_index() ) + geom_bar( aes(x='p', y='prediction'), stat='identity', fill='blue', alpha=0.5 ) + theme_fs() + theme( axis_text_x=element_text(rotation=90) ) ) def _bin_rmse(group): return pd.DataFrame([{ 'rmse': ((group.pp - group.p) ** 2).mean() ** (1/2) }]) ( ggplot( results.groupby( pd.cut(results.pp, 20) ).apply(_bin_rmse).reset_index() ) + geom_bar( aes(x='pp', y='rmse'), stat='identity', fill='blue', alpha=0.5 ) + theme_fs() + theme( axis_text_x=element_text(rotation=90) ) ) ###Output _____no_output_____ ###Markdown When our model directly predicts the probability, instead of using ECE, we can directly measure the miscalibration$$\text{ECE}=\sum_i\frac{|B_i|}{n}|\text{precition}(B_i) - \text{ground_truth}(B_i)|$$ ###Code def _bin_miscalibration(group): return pd.DataFrame([{ 'miscalibration': (group.pp - group.p).abs().mean(), 'prediction': group.pp.mean(), 'ground_truth': group.p.mean() }]) miscalibration = results.groupby(pd.cut(results.p, 16)).apply(_bin_miscalibration).reset_index() print('expected calibration error', miscalibration.miscalibration.mean()) ( ggplot(miscalibration) + geom_bar( aes(x='p', y='ground_truth'), stat='identity', fill='blue', alpha=1.0 ) + geom_bar( aes(x='p', y='prediction'), stat='identity', fill='red', color='red', alpha=0.3 ) + theme_fs() + theme( axis_text_x=element_text(rotation=90) ) ) ###Output expected calibration error 0.44739960267593976 ###Markdown Half-life regression (HLR)short-hand for each record \begin{align}&=\\&=\end{align}Regression against recall probability $$l_\text{recall}(;\theta)=(p-f_\theta(x,\Delta))^2$$Regression against back-solved half-life $$l_\text{half-life}(;\theta)=(\frac{-\Delta}{\log_2{p}}-f_\theta(x,\Delta))^2$$Binary recall classification $$l_\text{binary}(;\theta)=\text{xent}(f_\theta(x,\Delta),y)$$Assume that half-life increases exponentially with each repeated exposure, with a linear approximator, you get $f_\theta(x,\Delta)=2^{\theta\cdot x}$. Use this parameterization with regression against both recall probability and back-solved half-life, you get Settles' formulation:$$l(; \theta)=(p-2^{\frac{\Delta}{2^{\theta\cdot x}}})^2+\alpha(\frac{\Delta}{\log_2(p)}-2^{\theta\cdot{x}})^2+\lambda|\theta|_2^2$$Note that this formulation incorporates two heuristics1. the memory strength follows an exponential forgetting curve, hence the half-life2. half-life increases exponentially with number of repetitionsBut in their code the `history_seen` and `history_seen_correct` feature are squre-rooted, so essentially throwing away the second heuristic. ###Code splitpoint = int(0.9 * len(df)) train_df, test_df = df.iloc[:splitpoint], df.iloc[splitpoint:] df1 = pd.DataFrame({ 'pp': results.pp.tolist(), 'hh': results.hh.tolist(), 'p': results.p.tolist(), 'h': results.h.tolist(), 'history_seen': test_df.history_seen.tolist(), 'history_correct': test_df.history_correct.tolist(), 'session_seen': test_df.session_seen.tolist(), 'session_correct': test_df.session_correct.tolist(), 'delta_days': test_df.delta_days.tolist(), }) def _bin_delta(group): return pd.DataFrame([{ 'prediction': group.pp.mean(), 'ground_truth': group.p.mean(), 'delta': group.delta_days.mean(), }]) ( ggplot( df1.groupby( pd.cut(df1.delta_days, 16) ).apply(_bin_delta).reset_index() ) + geom_bar( aes(x='delta', y='ground_truth'), stat='identity', fill='blue', alpha=0.3 ) + geom_bar( aes(x='delta', y='prediction'), stat='identity', fill='red', color='red', alpha=0.3 ) + theme_fs() + theme( axis_text_x=element_text(rotation=90) ) ) def _bin_history_seen(group): return pd.DataFrame([{ 'prediction': group.pp.mean(), 'ground_truth': group.p.mean(), 'seen': group.history_seen.mean(), }]) _df1 = df1.loc[df1.history_seen < 100] ( ggplot( _df1.groupby( pd.cut(_df1.history_seen, 30) ).apply(_bin_history_seen).reset_index() ) + geom_bar( aes(x='seen', y='ground_truth'), stat='identity', fill='blue', alpha=0.3 ) + geom_bar( aes(x='seen', y='prediction'), stat='identity', fill='red', color='red', alpha=0.3 ) + theme_fs() + theme( axis_text_x=element_text(rotation=90) ) ) ###Output _____no_output_____
applications/notebooks/stable/kmeans_model_centroid.ipynb
###Markdown Kmeans over a set of GeoTiffsThis notebook loads a set of GeoTiffs into a **RDD** of Tiles, with each Tile being a band in the GeoTiff. Each GeoTiff file contains **SpringIndex-** or **LastFreeze-** value for one year over the entire USA.Kmeans takes years as dimensions. Hence, the matrix has cells as rows and the years as columns. To cluster on all years, the matrix needs to be transposed. The notebook has two flavors of matrix transpose, locally by the Spark-driver or distributed using the Spark-workers. Once transposed the matrix is converted to a **RDD** of dense vectors to be used by **Kmeans** algorithm from **Spark-MLlib**. The end result is a grid where each cell has a cluster ID which is then saved into a SingleBand GeoTiff. By saving the result into a GeoTiff, the reader can plot it using a Python notebook as the one defined in the [python examples](../examples/python).In this notebook the reader only needs to modify the variables in **Mode of Operation Setup**. Dependencies ###Code import java.io.{ByteArrayInputStream, ByteArrayOutputStream, ObjectInputStream, ObjectOutputStream} import geotrellis.proj4.CRS import geotrellis.raster.io.geotiff.{SinglebandGeoTiff, _} import geotrellis.raster.io.geotiff.writer.GeoTiffWriter import geotrellis.raster.{CellType, DoubleArrayTile, MultibandTile, Tile, UByteCellType} import geotrellis.spark.io.hadoop._ import geotrellis.vector.{Extent, ProjectedExtent} import org.apache.hadoop.io.SequenceFile.Writer import org.apache.hadoop.io.{SequenceFile, _} import org.apache.spark.broadcast.Broadcast import org.apache.spark.mllib.clustering.{KMeans, KMeansModel} import org.apache.spark.mllib.linalg.distributed._ import org.apache.spark.mllib.linalg.{Vector, Vectors} import org.apache.spark.rdd.RDD import org.apache.spark.{SparkConf, SparkContext} import scala.sys.process._ //Spire is a numeric library for Scala which is intended to be generic, fast, and precise. import spire.syntax.cfor._ ###Output _____no_output_____ ###Markdown Mode of operationHere the user can define the mode of operation.* **rdd_offline_mode**: If false it means the notebook will create all data from scratch and store grid0, grid0_index, protected_extent and num_cols_rows (from grid0) into HDFS. Otherwise, these data structures are read from HDFS.* **matrix_offline_mode**: If false it means the notebook will create a mtrix, transposed it and save it to HDFS. Otherwise, these data structures are read from HDFS.* **kmeans_offline_mode**: If false it means the notebook will train kmeans and run kemans and store kmeans model into HDFS. Otherwise, these data structures are read from HDFS.It is also possible to define which directory of GeoTiffs is to be used and on which **band** to run Kmeans. The options are* **BloomFinal** or **LeafFinal** which are multi-band (**4 bands**)* **DamageIndex** and **LastFreeze** which are single-band and if set band_num higher, it will reset to 0For kmeans the user can define the **number of iterations** and **number of clusters** as an inclusive range. Such range is defined using **minClusters**, **maxClusters**, and **stepClusters**. These variables will set a loop starting at **minClusters** and stopping at **maxClusters** (inclusive), iterating **stepClusters** at the time. Note that when using a range **kemans offline mode** is not possible and it will be reset to **online mode**. Mode of Operation setup ###Code var rdd_offline_mode = true var matrix_offline_mode = true var kmeans_offline_mode = true //GeoTiffs to be read from "hdfs:///user/hadoop/spring-index/" var dir_path = "hdfs:///user/hadoop/spring-index/" var offline_dir_path = "hdfs:///user/emma/spring-index/" var geoTiff_dir = "LeafFinal" var band_num = 3 //Years between (inclusive) 1980 - 2015 val model_timeseries = (1980, 2015) var model_first_year = 1989 var model_last_year = 2014 //Mask val toBeMasked = true val mask_path = "hdfs:///user/hadoop/usa_mask.tif" //Kmeans number of iterations and clusters var numIterations = 75 var minClusters = 70 var maxClusters = 70 var stepClusters = 10 var save_rdds = false var save_grids = false var save_kmeans_model = false ###Output _____no_output_____ ###Markdown DON'T MODIFY ANY PIECE OF CODE FROM HERE ON!!!. Mode of operation validation ###Code var single_band = false if (geoTiff_dir == "BloomFinal" || geoTiff_dir == "LeafFinal") { single_band = false } else if (geoTiff_dir == "LastFreeze" || geoTiff_dir == "DamageIndex") { single_band = true if (band_num > 0) { println("Since LastFreezze and DamageIndex are single band, we will use band 0!!!") band_num = 0 } } else { println("Directory unknown, please set either BloomFinal, LeafFinal, LastFreeze or DamageIndex!!!") } if (minClusters > maxClusters) { maxClusters = minClusters stepClusters = 1 } if (stepClusters < 1) { stepClusters = 1 } //Paths to store data structures for Offline runs var mask_str = "" if (toBeMasked) mask_str = "_mask" var grid0_path = offline_dir_path + geoTiff_dir + "Centroid/grid0" + "_"+ band_num + mask_str var grid0_index_path = offline_dir_path + geoTiff_dir + "Centroid/grid0_index" + "_"+ band_num + mask_str var grids_noNaN_path = offline_dir_path + geoTiff_dir + "Centroid/grids_noNaN" + "_"+ band_num + mask_str var metadata_path = offline_dir_path + geoTiff_dir + "Centroid/metadata" + "_"+ band_num + mask_str var grids_matrix_path = offline_dir_path + geoTiff_dir + "Centroid/grids_matrix" + "_"+ band_num + mask_str //Check offline modes var conf = sc.hadoopConfiguration var fs = org.apache.hadoop.fs.FileSystem.get(conf) val rdd_offline_exists = fs.exists(new org.apache.hadoop.fs.Path(grid0_path)) val matrix_offline_exists = fs.exists(new org.apache.hadoop.fs.Path(grids_matrix_path)) if (rdd_offline_mode != rdd_offline_exists) { println("\"Load GeoTiffs\" offline mode is not set properly, i.e., either it was set to false and the required file does not exist or vice-versa. We will reset it to " + rdd_offline_exists.toString()) rdd_offline_mode = rdd_offline_exists } if (matrix_offline_mode != matrix_offline_exists) { println("\"Matrix\" offline mode is not set properly, i.e., either it was set to false and the required file does not exist or vice-versa. We will reset it to " + matrix_offline_exists.toString()) matrix_offline_mode = matrix_offline_exists } if (!fs.exists(new org.apache.hadoop.fs.Path(mask_path))) { println("The mask path: " + mask_path + " is invalid!!!") } //Years //val model_years = 1980 to 2015 val model_years = model_timeseries._1 to model_timeseries._2 if (!model_years.contains(model_first_year) || !(model_years.contains(model_last_year))) { println("Invalid range of years for " + geoTiff_dir + ". I should be between " + model_first_year + " and " + model_last_year) System.exit(0) } var model_years_range = (model_years.indexOf(model_first_year), model_years.indexOf(model_last_year)) var num_kmeans :Int = 1 if (minClusters != maxClusters) { num_kmeans = ((maxClusters - minClusters) / stepClusters) + 1 } var kmeans_model_paths :Array[String] = Array.fill[String](num_kmeans)("") var wssse_path :String = offline_dir_path + geoTiff_dir + "Centroid/" + numIterations +"_wssse" var geotiff_hdfs_paths :Array[String] = Array.fill[String](num_kmeans)("") var geotiff_tmp_paths :Array[String] = Array.fill[String](num_kmeans)("") var numClusters_id = 0 if (num_kmeans > 1) { numClusters_id = 0 cfor(minClusters)(_ <= maxClusters, _ + stepClusters) { numClusters => kmeans_model_paths(numClusters_id) = offline_dir_path + geoTiff_dir + "Centroid/kmeans_model_" + band_num + "_" + numClusters + "_" + numIterations //Check if the file exists val kmeans_exist = fs.exists(new org.apache.hadoop.fs.Path(kmeans_model_paths(numClusters_id))) if (kmeans_exist && !kmeans_offline_mode) { println("The kmeans model path " + kmeans_model_paths(numClusters_id) + " exists, please remove it.") } else if (!kmeans_exist && kmeans_offline_mode) { kmeans_offline_mode = false } geotiff_hdfs_paths(numClusters_id) = offline_dir_path + geoTiff_dir + "Centroid/clusters_" + band_num + "_" + numClusters + "_" + numIterations + ".tif" geotiff_tmp_paths(numClusters_id) = "/tmp/clusters_" + band_num + "_" + geoTiff_dir + "_" + numClusters + "_" + numIterations + ".tif" if (fs.exists(new org.apache.hadoop.fs.Path(geotiff_hdfs_paths(numClusters_id)))) { println("There is already a GeoTiff with the path: " + geotiff_hdfs_paths(numClusters_id) + ". Please make either a copy or move it to another location, otherwise, it will be over-written.") } numClusters_id += 1 } kmeans_offline_mode = false } else { kmeans_model_paths(0) = offline_dir_path + geoTiff_dir + "Centroid/kmeans_model_" + band_num + "_" + minClusters + "_" + numIterations val kmeans_offline_exists = fs.exists(new org.apache.hadoop.fs.Path(kmeans_model_paths(0))) if (kmeans_offline_mode != kmeans_offline_exists) { println("\"Kmeans\" offline mode is not set properly, i.e., either it was set to false and the required file does not exist or vice-versa. We will reset it to " + kmeans_offline_exists.toString()) kmeans_offline_mode = kmeans_offline_exists } geotiff_hdfs_paths(0) = offline_dir_path + geoTiff_dir + "Centroid/clusters_" + band_num + "_" + minClusters + "_" + numIterations + ".tif" geotiff_tmp_paths(0) = "/tmp/clusters_" + band_num + "_" + geoTiff_dir + "_" + minClusters + "_" + numIterations + ".tif" if (fs.exists(new org.apache.hadoop.fs.Path(geotiff_hdfs_paths(0)))) { println("There is already a GeoTiff with the path: " + geotiff_hdfs_paths(0) + ". Please make either a copy or move it to another location, otherwise, it will be over-written.") } } ###Output _____no_output_____ ###Markdown Functions to (de)serialize any structure into Array[Byte] ###Code def serialize(value: Any): Array[Byte] = { val out_stream: ByteArrayOutputStream = new ByteArrayOutputStream() val obj_out_stream = new ObjectOutputStream(out_stream) obj_out_stream.writeObject(value) obj_out_stream.close out_stream.toByteArray } def deserialize(bytes: Array[Byte]): Any = { val obj_in_stream = new ObjectInputStream(new ByteArrayInputStream(bytes)) val value = obj_in_stream.readObject obj_in_stream.close value } ###Output _____no_output_____ ###Markdown Load GeoTiffsUsing GeoTrellis all GeoTiffs of a directory will be loaded into a RDD. Using the RDD, we extract a grid from the first file to lated store the Kmeans cluster_IDS, we build an Index for populate such grid and we filter out here all NaN values. ###Code def hadoopGeoTiffRDD(satellite_filepath :String, pattern :String): RDD[(Int, (ProjectedExtent, Tile))] = { val listFiles = sc.binaryFiles(satellite_filepath + "/" + pattern).sortBy(_._1).keys.collect() var prevRDD :RDD[(Int, (ProjectedExtent, Tile))] = sc.emptyRDD cfor(0)(_ < listFiles.length, _ + 1) { k => val filePath :String = listFiles(k) val kB = sc.broadcast(k) val currRDD = sc.hadoopGeoTiffRDD(filePath).map(m => (kB.value, m)) prevRDD = currRDD.union(prevRDD) //kB.destroy() } prevRDD.sortBy(_._1) } def hadoopMultibandGeoTiffRDD(satellite_filepath :String, pattern :String): RDD[(Int, (ProjectedExtent, MultibandTile))] = { val listFiles = sc.binaryFiles(satellite_filepath + "/" + pattern).sortBy(_._1).keys.collect() var prevRDD :RDD[(Int,(ProjectedExtent, MultibandTile))] = sc.emptyRDD cfor(0)(_ < listFiles.length, _ + 1) { k => val filePath :String = listFiles(k) val kB = sc.broadcast(k) val currRDD = sc.hadoopMultibandGeoTiffRDD(filePath).map(m => (kB.value,m)) prevRDD = currRDD.union(prevRDD) //kB.destroy() } prevRDD.sortBy(_._1) } var t0 = System.nanoTime() //Global variables var projected_extent = new ProjectedExtent(new Extent(0,0,0,0), CRS.fromName("EPSG:3857")) var grid0: RDD[(Long, Double)] = sc.emptyRDD var grid0_index: RDD[Long] = sc.emptyRDD var grids_noNaN_RDD: RDD[(Int, Array[Double])] = sc.emptyRDD var num_cols_rows :(Int, Int) = (0, 0) var cellT :CellType = UByteCellType var grids_RDD :RDD[(Int, Array[Double])] = sc.emptyRDD var mask_tile0 :Tile = new SinglebandGeoTiff(geotrellis.raster.ArrayTile.empty(cellT, num_cols_rows._1, num_cols_rows._2), projected_extent.extent, projected_extent.crs, Tags.empty, GeoTiffOptions.DEFAULT).tile var grid_cells_size :Long = 0 //Load Mask if (toBeMasked) { val mask_tiles_RDD = sc.hadoopGeoTiffRDD(mask_path).values val mask_tiles_withIndex = mask_tiles_RDD.zipWithIndex().map{case (e,v) => (v,e)} mask_tile0 = (mask_tiles_withIndex.filter(m => m._1==0).values.collect())(0) } //Local variables val pattern: String = "*.tif" val filepath: String = dir_path + geoTiff_dir if (rdd_offline_mode) { grids_noNaN_RDD = sc.objectFile(grids_noNaN_path) grid0 = sc.objectFile(grid0_path) grid0_index = sc.objectFile(grid0_index_path) val metadata = sc.sequenceFile(metadata_path, classOf[IntWritable], classOf[BytesWritable]).map(_._2.copyBytes()).collect() projected_extent = deserialize(metadata(0)).asInstanceOf[ProjectedExtent] num_cols_rows = (deserialize(metadata(1)).asInstanceOf[Int], deserialize(metadata(2)).asInstanceOf[Int]) cellT = deserialize(metadata(3)).asInstanceOf[CellType] } else { if (single_band) { //Lets load a Singleband GeoTiffs and return RDD just with the tiles. var geos_RDD = hadoopGeoTiffRDD(filepath, pattern) geos_RDD.cache() var tiles_RDD :RDD[(Int, Tile)] = geos_RDD.map{ case (i,(p,t)) => (i,t)} //Retrive the numbre of cols and rows of the Tile's grid val tiles_withIndex = tiles_RDD//.zipWithIndex().map{case (e,v) => (v,e)} val tile0 = (tiles_withIndex.filter(m => m._1==0).values.collect())(0) num_cols_rows = (tile0.cols,tile0.rows) cellT = tile0.cellType //Retrieve the ProjectExtent which contains metadata such as CRS and bounding box val projected_extents_withIndex = geos_RDD.map{ case (i,(p,t)) => (i,p)}//.keys.zipWithIndex().map { case (e, v) => (v, e) } projected_extent = (projected_extents_withIndex.filter(m => m._1 == 0).values.collect()) (0) if (toBeMasked) { val mask_tile_broad :Broadcast[Tile] = sc.broadcast(mask_tile0) grids_RDD = tiles_RDD.map{ case (i,m) => (i, m.localInverseMask(mask_tile_broad.value, 1, -1000).toArrayDouble().filter(!_.isNaN))} } else { grids_RDD = tiles_RDD.map{ case (i,m) => (i, m.toArrayDouble().filter(!_.isNaN))} } } else { //Lets load Multiband GeoTiffs and return RDD just with the tiles. val geos_RDD = hadoopMultibandGeoTiffRDD(filepath, pattern) geos_RDD.cache() val tiles_RDD = geos_RDD.map{ case (i,(p,t)) => (i,t)} //Retrive the numbre of cols and rows of the Tile's grid val tiles_withIndex = tiles_RDD//.zipWithIndex().map{case (e,v) => (v,e)} val tile0 = (tiles_withIndex.filter(m => m._1==0).values.collect())(0) num_cols_rows = (tile0.cols,tile0.rows) cellT = tile0.cellType //Retrieve the ProjectExtent which contains metadata such as CRS and bounding box val projected_extents_withIndex = geos_RDD.map{ case (i,(p,t)) => (i,p)}//.keys.zipWithIndex().map { case (e, v) => (v, e) } projected_extent = (projected_extents_withIndex.filter(m => m._1 == 0).values.collect()) (0) //Lets read the average of the Spring-Index which is stored in the 4th band val band_numB :Broadcast[Int] = sc.broadcast(band_num) if (toBeMasked) { val mask_tile_broad :Broadcast[Tile] = sc.broadcast(mask_tile0) grids_RDD = tiles_RDD.map{ case (i,m) => (i, m.band(band_numB.value).localInverseMask(mask_tile_broad.value, 1, -1000).toArrayDouble())} } else { grids_RDD = tiles_RDD.map{ case (i,m) => (i, m.band(band_numB.value).toArrayDouble())} } } //Get Index for each Cell val grids_withIndex = grids_RDD if (toBeMasked) { grid0_index = grids_withIndex.filter(m => m._1 == 0).values.flatMap(m => m).zipWithIndex.filter(m => m._1 != -1000.0).map { case (v, i) => (i) } } else { //Dense vector //.filter(m => !m._1.isNaN).map { case (v, i) => (i) } //Sparse Vector grid0_index = grids_withIndex.filter(m => m._1 == 0).values.flatMap(m => m).zipWithIndex.map { case (v, i) => (i) } } //Get the Tile's grid grid0 = grids_withIndex.filter(m => m._1 == 0).values.flatMap( m => m).zipWithIndex.map{case (v,i) => (i,v)} //Lets filter out NaN if (toBeMasked) { grids_noNaN_RDD = grids_RDD.map{ case (i,m) => (i,m.filter(m => m != -1000.0))} } else { //Dense Vector grids_noNaN_RDD = grids_RDD //Parse Vector //grids_noNaN_RDD = grids_RDD.map(m => m.filter(!_.isNaN)) } //Store data in HDFS if (save_rdds) { grid0.saveAsObjectFile(grid0_path) grid0_index.saveAsObjectFile(grid0_index_path) grids_noNaN_RDD.saveAsObjectFile(grids_noNaN_path) } val grids_noNaN_RDD_withIndex = grids_noNaN_RDD//.zipWithIndex().map { case (e, v) => (v, e) } val mod_year_diff = model_first_year-model_timeseries._1 val mod_year_diffB = sc.broadcast(mod_year_diff) grids_noNaN_RDD = grids_noNaN_RDD_withIndex.filterByRange(model_years_range._1, model_years_range._2).map{ case(i,a) => (i-(mod_year_diffB.value),a)} if (save_rdds) { val writer: SequenceFile.Writer = SequenceFile.createWriter(conf, Writer.file(metadata_path), Writer.keyClass(classOf[IntWritable]), Writer.valueClass(classOf[BytesWritable]) ) writer.append(new IntWritable(1), new BytesWritable(serialize(projected_extent))) writer.append(new IntWritable(2), new BytesWritable(serialize(num_cols_rows._1))) writer.append(new IntWritable(3), new BytesWritable(serialize(num_cols_rows._2))) writer.append(new IntWritable(4), new BytesWritable(serialize(cellT))) writer.hflush() writer.close() } } grid_cells_size = grid0_index.count().toInt var t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output Elapsed time: 606837161690ns ###Markdown MatrixWe need to do a Matrix transpose to have clusters per cell and not per year. With a GeoTiff representing a single year, the loaded data looks liks this:```bands_RDD.map(s => Vectors.dense(s)).cache()//The vectors are rows and therefore the matrix will look like this:[Vectors.dense(0.0, 1.0, 2.0),Vectors.dense(3.0, 4.0, 5.0),Vectors.dense(6.0, 7.0, 8.0),Vectors.dense(9.0, 0.0, 1.0)]```To achieve that we convert the **RDD[Vector]** into a distributed Matrix, a [**CoordinateMatrix**](https://spark.apache.org/docs/latest/mllib-data-types.htmlcoordinatematrix), which as a **transpose** method. ###Code t0 = System.nanoTime() //Global variables var grids_matrix: RDD[Vector] = sc.emptyRDD val grid_cells_sizeB = sc.broadcast(grid_cells_size) if (matrix_offline_mode) { grids_matrix = sc.objectFile(grids_matrix_path) } else { //Dense Vector //val mat :RowMatrix = new RowMatrix(grids_noNaN_RDD.map(m => Vectors.dense(m))) //Sparse Vector val indRowMat :IndexedRowMatrix = new IndexedRowMatrix(grids_noNaN_RDD.map{ case (i, m) => (i,m.zipWithIndex)}.map{ case (i,m) => (i,m.filter(!_._1.isNaN))}.map{ case (i,m) => new IndexedRow(i.toLong, Vectors.sparse(grid_cells_sizeB.value.toInt, m.map(v => v._2), m.map(v => v._1)))}) grids_matrix = indRowMat.toCoordinateMatrix().transpose().toIndexedRowMatrix().rows.sortBy(_.index).map(_.vector) if (save_grids) { grids_matrix.saveAsObjectFile(grids_matrix_path) } } t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output [Stage 25:====================================================>(994 + 6) / 1000]Elapsed time: 268104028665ns ###Markdown KmeansWe use Kmeans from Sparl-MLlib. The user should only modify the variables on Kmeans setup. Kmeans Training ###Code t0 = System.nanoTime() //Global variables var kmeans_models :Array[KMeansModel] = new Array[KMeansModel](num_kmeans) var wssse_data :List[(Int, Int, Double)] = List.empty if (kmeans_offline_mode) { numClusters_id = 0 cfor(minClusters)(_ <= maxClusters, _ + stepClusters) { numClusters => if (!fs.exists(new org.apache.hadoop.fs.Path(kmeans_model_paths(numClusters_id)))) { println("One of the files does not exist, we will abort!!!") System.exit(0) } else { kmeans_models(numClusters_id) = KMeansModel.load(sc, kmeans_model_paths(numClusters_id)) } numClusters_id += 1 } val wssse_data_RDD :RDD[(Int, Int, Double)] = sc.objectFile(wssse_path) wssse_data = wssse_data_RDD.collect().toList } else { numClusters_id = 0 if (fs.exists(new org.apache.hadoop.fs.Path(wssse_path))) { val wssse_data_RDD :RDD[(Int, Int, Double)] = sc.objectFile(wssse_path) wssse_data = wssse_data_RDD.collect().toList } grids_matrix.cache() cfor(minClusters)(_ <= maxClusters, _ + stepClusters) { numClusters => println(numClusters) kmeans_models(numClusters_id) = { KMeans.train(grids_matrix, numClusters, numIterations) } // Evaluate clustering by computing Within Set Sum of Squared Errors val WSSSE = kmeans_models(numClusters_id).computeCost(grids_matrix) println("Within Set Sum of Squared Errors = " + WSSSE) wssse_data = wssse_data :+ (numClusters, numIterations, WSSSE) //Save kmeans model if (save_kmeans_model) { if (!fs.exists(new org.apache.hadoop.fs.Path(kmeans_model_paths(numClusters_id)))) { kmeans_models(numClusters_id).save(sc, kmeans_model_paths(numClusters_id)) } } numClusters_id += 1 if (fs.exists(new org.apache.hadoop.fs.Path(wssse_path))) { println("We will delete the wssse file") try { fs.delete(new org.apache.hadoop.fs.Path(wssse_path), true) } catch { case _ : Throwable => { } } } println("Lets create it with the new data") sc.parallelize(wssse_data, 1).saveAsObjectFile(wssse_path) } //Un-persist it to save memory grids_matrix.unpersist() } t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output 70 Within Set Sum of Squared Errors = 4.774033917427731E9 We will delete the wssse file Lets create it with the new data Elapsed time: 619859700965ns ###Markdown Inspect WSSSE ###Code t0 = System.nanoTime() //current println(wssse_data) //from disk if (fs.exists(new org.apache.hadoop.fs.Path(wssse_path))) { var wssse_data_tmp :RDD[(Int, Int, Double)] = sc.objectFile(wssse_path)//.collect()//.toList println(wssse_data_tmp.collect().toList) } t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output List((70,75,7.124371401253984E9), (70,75,4.733514498278134E9), (70,75,4.737721105803598E9), (70,75,4.774033917427731E9)) List((70,75,7.124371401253984E9), (70,75,4.733514498278134E9), (70,75,4.737721105803598E9), (70,75,4.774033917427731E9)) Elapsed time: 208855881ns ###Markdown Run Kmeans clusteringRun Kmeans and obtain the clusters per each cell. ###Code t0 = System.nanoTime() //Cache it so kmeans is more efficient grids_matrix.cache() var kmeans_res: Array[RDD[Int]] = Array.fill(num_kmeans)(sc.emptyRDD) var kmeans_centroids: Array[Array[Double]] = Array.fill(num_kmeans)(Array.emptyDoubleArray) numClusters_id = 0 cfor(minClusters)(_ <= maxClusters, _ + stepClusters) { numClusters => kmeans_res(numClusters_id) = kmeans_models(numClusters_id).predict(grids_matrix) kmeans_centroids(numClusters_id) = kmeans_models(numClusters_id).clusterCenters.map(m => m(0)) numClusters_id += 1 } //Un-persist it to save memory grids_matrix.unpersist() t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output Elapsed time: 48229846ns ###Markdown Sanity testIt can be skipped, it only shows the cluster ID for the first 50 cells ###Code t0 = System.nanoTime() val kmeans_res_out = kmeans_res(0).take(150) kmeans_res_out.foreach(print) println(kmeans_res_out.size) t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output 424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242424242150 Elapsed time: 416618559ns ###Markdown Build GeoTiff with Kmeans cluster_IDsThe Grid with the cluster IDs is stored in a SingleBand GeoTiff and uploaded to HDFS. Assign cluster ID to each grid cell and save the grid as SingleBand GeoTiffTo assign the clusterID to each grid cell it is necessary to get the indices of gird cells they belong to. The process is not straight forward because the ArrayDouble used for the creation of each dense Vector does not contain the NaN values, therefore there is not a direct between the indices in the Tile's grid and the ones in **kmeans_res** (kmeans result).To join the two RDDS the knowledge was obtaing from a stackoverflow post on [how to perform basic joins of two rdd tables in spark using python](https://stackoverflow.com/questions/31257077/how-do-you-perform-basic-joins-of-two-rdd-tables-in-spark-using-python). ###Code t0 = System.nanoTime() numClusters_id = 0 val grid0_index_I = grid0_index.zipWithIndex().map{ case (v,i) => (i,v)} grid0_index_I.cache() grid0.cache() cfor(minClusters)(_ <= maxClusters, _ + stepClusters) { numClusters => //Merge two RDDs, one containing the clusters_ID indices and the other one the indices of a Tile's grid cells val cluster_cell_pos = ((kmeans_res(numClusters_id).zipWithIndex().map{ case (v,i) => (i,v)}).join(grid0_index_I)).map{ case (k,(v,i)) => (v,i)} //Associate a Cluster_IDs to respective Grid_cell val grid_clusters :RDD[ (Long, (Double, Option[Int]))] = grid0.map { case (i, v) => if (v == 0.0) (i, Double.NaN) else (i, v) }.leftOuterJoin(cluster_cell_pos.map{ case (c,i) => (i.toLong, c)}) //Convert all None to NaN val grid_clusters_res = grid_clusters.sortByKey(true).map{case (k, (v, c)) => if (c == None) (k, Int.MaxValue) else (k, c.get)} //Define a Tile val cluster_cellsID :Array[Int] = grid_clusters_res.values.collect() var cluster_cells :Array[Double] = Array.fill(cluster_cellsID.length)(Double.NaN) cfor(0)(_ < cluster_cellsID.length, _ + 1) { cellID => if (cluster_cellsID(cellID) != Int.MaxValue) { cluster_cells(cellID) = kmeans_centroids(numClusters_id)(cluster_cellsID(cellID)) } } val cluster_cellsD = DoubleArrayTile(cluster_cells, num_cols_rows._1, num_cols_rows._2) val geoTif = new SinglebandGeoTiff(cluster_cellsD, projected_extent.extent, projected_extent.crs, Tags.empty, GeoTiffOptions(compression.DeflateCompression)) //Save to /tmp/ GeoTiffWriter.write(geoTif, geotiff_tmp_paths(numClusters_id)) //Upload to HDFS var cmd = "hadoop dfs -copyFromLocal -f " + geotiff_tmp_paths(numClusters_id) + " " + geotiff_hdfs_paths(numClusters_id) Process(cmd)! //Remove from /tmp/ cmd = "rm -fr " + geotiff_tmp_paths(numClusters_id) Process(cmd)! numClusters_id += 1 } grid0_index_I.unpersist() grid0.unpersist() t1 = System.nanoTime() println("Elapsed time: " + (t1 - t0) + "ns") ###Output [Stage 463:===================================================>(996 + 4) / 1000]]DEPRECATED: Use of this script to execute hdfs command is deprecated. Instead use the hdfs command for it. Elapsed time: 107152762405ns
3. Denoising_Autoencoder.ipynb
###Markdown Denoising Autoencoder Importing Libraries ###Code from keras.models import Model from keras.layers import Dense, Input from keras.datasets import mnist import numpy as np import warnings warnings.filterwarnings('ignore') ###Output C:\Users\hp\Anaconda3\lib\site-packages\h5py\__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters Using TensorFlow backend. ###Markdown Preparing Dataset ###Code # Load MNIST Dataset (x_train, _), (x_test, _) = mnist.load_data() x_train = x_train.astype('float32') / 255. x_test = x_test.astype('float32') / 255. x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) print(x_train.shape) print(x_test.shape) ###Output (60000, 784) (10000, 784) ###Markdown Adding noise ###Code # Add random noise corruption_level = 0.3 x_train_noisy = x_train + corruption_level * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + corruption_level * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.) x_test_noisy = np.clip(x_test_noisy, 0., 1.) print(x_train_noisy.shape) print(x_test_noisy.shape) ###Output (60000, 784) (10000, 784) ###Markdown Autoencoder Model ###Code # Hyper parameters batch_size = 128 nb_epoch = 5 # Parameters for MNIST dataset img_rows, img_cols = 28, 28 # Parameters for denoising autoencoder nb_visible = img_rows * img_cols nb_hidden = 32 # Build autoencoder model input_img = Input(shape=(nb_visible,)) encoded = Dense(nb_hidden, activation='relu')(input_img) decoded = Dense(nb_visible, activation='sigmoid')(encoded) autoencoder = Model(input=input_img, output=decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.summary() ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_2 (InputLayer) (None, 784) 0 _________________________________________________________________ dense_3 (Dense) (None, 32) 25120 _________________________________________________________________ dense_4 (Dense) (None, 784) 25872 ================================================================= Total params: 50,992 Trainable params: 50,992 Non-trainable params: 0 _________________________________________________________________ ###Markdown Training ###Code # Train autoencoder.fit(x_train_noisy, x_train, nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, verbose=1, validation_data=(x_test_noisy, x_test)) ###Output Train on 60000 samples, validate on 10000 samples Epoch 1/5 60000/60000 [==============================] - 3s 53us/step - loss: 0.3036 - val_loss: 0.2596 Epoch 2/5 60000/60000 [==============================] - 3s 44us/step - loss: 0.2439 - val_loss: 0.2250 Epoch 3/5 60000/60000 [==============================] - 3s 43us/step - loss: 0.2131 - val_loss: 0.2005 Epoch 4/5 60000/60000 [==============================] - 2s 42us/step - loss: 0.1939 - val_loss: 0.1851 Epoch 5/5 60000/60000 [==============================] - 2s 41us/step - loss: 0.1806 - val_loss: 0.1737 ###Markdown Evaluation ###Code # Evaluate evaluation = autoencoder.evaluate(x_test_noisy, x_test, batch_size=batch_size, verbose=1) print('\nSummary: Loss over the test dataset: %.2f' % (evaluation)) ###Output 10000/10000 [==============================] - 0s 16us/step Summary: Loss over the test dataset: 0.17 ###Markdown Visualize the reconstruction ###Code import matplotlib.pyplot as plt %matplotlib inline # Decode test images decoded_imgs = autoencoder.predict(x_test_noisy) n = 10 # how many digits we will display plt.figure(figsize=(20, 4)) for i in range(n): # display original ax = plt.subplot(2, n, i + 1) plt.imshow(x_test_noisy[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + 1 + n) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ###Output _____no_output_____ ###Markdown Visualize the weights ###Code w = [] for layer in autoencoder.layers: weights = layer.get_weights() w.append(weights) layer1 = np.array(w[1][0]) print("Shape of Hidden Layer",layer1.shape) print("Visualization of Hidden Layer") fig=plt.figure(figsize=(12, 12)) columns = 8 rows = int(nb_hidden/8) for i in range(1, columns*rows +1): fig.add_subplot(rows, columns, i) plt.imshow(layer1[:,i-1].reshape(28,28),cmap='gray') plt.show() ###Output Shape of Hidden Layer (784, 32) Visualization of Hidden Layer ###Markdown Lets corrupt the data too much and see what happpens ###Code # Add random noise corruption_level = 0.7 x_train_noisy = x_train + corruption_level * np.random.normal(loc=0.0, scale=1.0, size=x_train.shape) x_test_noisy = x_test + corruption_level * np.random.normal(loc=0.0, scale=1.0, size=x_test.shape) x_train_noisy = np.clip(x_train_noisy, 0., 1.) x_test_noisy = np.clip(x_test_noisy, 0., 1.) print(x_train_noisy.shape) print(x_test_noisy.shape) ###Output (60000, 784) (10000, 784) ###Markdown Model Training and Evaluation ###Code # Hyper parameters batch_size = 128 nb_epoch = 5 # Parameters for MNIST dataset img_rows, img_cols = 28, 28 # Parameters for denoising autoencoder nb_visible = img_rows * img_cols nb_hidden = 32 # Build autoencoder model input_img = Input(shape=(nb_visible,)) encoded = Dense(nb_hidden, activation='relu')(input_img) decoded = Dense(nb_visible, activation='sigmoid')(encoded) autoencoder = Model(input=input_img, output=decoded) autoencoder.compile(optimizer='adadelta', loss='binary_crossentropy') autoencoder.summary() # Train autoencoder.fit(x_train_noisy, x_train, nb_epoch=nb_epoch, batch_size=batch_size, shuffle=True, verbose=1, validation_data=(x_test_noisy, x_test)) # Evaluate evaluation = autoencoder.evaluate(x_test_noisy, x_test, batch_size=batch_size, verbose=1) print('\nSummary: Loss over the test dataset: %.2f' % (evaluation)) ###Output _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_3 (InputLayer) (None, 784) 0 _________________________________________________________________ dense_5 (Dense) (None, 32) 25120 _________________________________________________________________ dense_6 (Dense) (None, 784) 25872 ================================================================= Total params: 50,992 Trainable params: 50,992 Non-trainable params: 0 _________________________________________________________________ Train on 60000 samples, validate on 10000 samples Epoch 1/5 60000/60000 [==============================] - 3s 49us/step - loss: 0.2956 - val_loss: 0.2646 Epoch 2/5 60000/60000 [==============================] - 3s 42us/step - loss: 0.2619 - val_loss: 0.2564 Epoch 3/5 60000/60000 [==============================] - 3s 43us/step - loss: 0.2473 - val_loss: 0.2357 Epoch 4/5 60000/60000 [==============================] - 2s 37us/step - loss: 0.2280 - val_loss: 0.2194 Epoch 5/5 60000/60000 [==============================] - 2s 37us/step - loss: 0.2151 - val_loss: 0.2088 10000/10000 [==============================] - 0s 15us/step Summary: Loss over the test dataset: 0.21 ###Markdown Visualize the reconstruction ###Code import matplotlib.pyplot as plt %matplotlib inline # Decode test images decoded_imgs = autoencoder.predict(x_test_noisy) n = 10 # how many digits we will display plt.figure(figsize=(20, 4)) for i in range(n): # display original ax = plt.subplot(2, n, i + 1) plt.imshow(x_test_noisy[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) # display reconstruction ax = plt.subplot(2, n, i + 1 + n) plt.imshow(decoded_imgs[i].reshape(28, 28)) plt.gray() ax.get_xaxis().set_visible(False) ax.get_yaxis().set_visible(False) plt.show() ###Output _____no_output_____ ###Markdown Visualize the weights ###Code w = [] for layer in autoencoder.layers: weights = layer.get_weights() w.append(weights) layer1 = np.array(w[1][0]) print("Shape of Hidden Layer",layer1.shape) print("Visualization of Hidden Layer") fig=plt.figure(figsize=(12, 12)) columns = 8 rows = int(nb_hidden/8) for i in range(1, columns*rows +1): fig.add_subplot(rows, columns, i) plt.imshow(layer1[:,i-1].reshape(28,28),cmap='gray') plt.show() ###Output Shape of Hidden Layer (784, 32) Visualization of Hidden Layer
SC0X_Python_Samples.ipynb
###Markdown ###Code !pip install ortools """Simple travelling salesman problem on a circuit board.""" from __future__ import print_function import math from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem.""" data = {} # Locations in block units data['locations'] = [ (288, 149), (288, 129), (270, 133), (256, 141), (256, 157), (246, 157), (236, 169), (228, 169), (228, 161), (220, 169), (212, 169), (204, 169), (196, 169), (188, 169), (196, 161), (188, 145), (172, 145), (164, 145), (156, 145), (148, 145), (140, 145), (148, 169), (164, 169), (172, 169), (156, 169), (140, 169), (132, 169), (124, 169), (116, 161), (104, 153), (104, 161), (104, 169), (90, 165), (80, 157), (64, 157), (64, 165), (56, 169), (56, 161), (56, 153), (56, 145), (56, 137), (56, 129), (56, 121), (40, 121), (40, 129), (40, 137), (40, 145), (40, 153), (40, 161), (40, 169), (32, 169), (32, 161), (32, 153), (32, 145), (32, 137), (32, 129), (32, 121), (32, 113), (40, 113), (56, 113), (56, 105), (48, 99), (40, 99), (32, 97), (32, 89), (24, 89), (16, 97), (16, 109), (8, 109), (8, 97), (8, 89), (8, 81), (8, 73), (8, 65), (8, 57), (16, 57), (8, 49), (8, 41), (24, 45), (32, 41), (32, 49), (32, 57), (32, 65), (32, 73), (32, 81), (40, 83), (40, 73), (40, 63), (40, 51), (44, 43), (44, 35), (44, 27), (32, 25), (24, 25), (16, 25), (16, 17), (24, 17), (32, 17), (44, 11), (56, 9), (56, 17), (56, 25), (56, 33), (56, 41), (64, 41), (72, 41), (72, 49), (56, 49), (48, 51), (56, 57), (56, 65), (48, 63), (48, 73), (56, 73), (56, 81), (48, 83), (56, 89), (56, 97), (104, 97), (104, 105), (104, 113), (104, 121), (104, 129), (104, 137), (104, 145), (116, 145), (124, 145), (132, 145), (132, 137), (140, 137), (148, 137), (156, 137), (164, 137), (172, 125), (172, 117), (172, 109), (172, 101), (172, 93), (172, 85), (180, 85), (180, 77), (180, 69), (180, 61), (180, 53), (172, 53), (172, 61), (172, 69), (172, 77), (164, 81), (148, 85), (124, 85), (124, 93), (124, 109), (124, 125), (124, 117), (124, 101), (104, 89), (104, 81), (104, 73), (104, 65), (104, 49), (104, 41), (104, 33), (104, 25), (104, 17), (92, 9), (80, 9), (72, 9), (64, 21), (72, 25), (80, 25), (80, 25), (80, 41), (88, 49), (104, 57), (124, 69), (124, 77), (132, 81), (140, 65), (132, 61), (124, 61), (124, 53), (124, 45), (124, 37), (124, 29), (132, 21), (124, 21), (120, 9), (128, 9), (136, 9), (148, 9), (162, 9), (156, 25), (172, 21), (180, 21), (180, 29), (172, 29), (172, 37), (172, 45), (180, 45), (180, 37), (188, 41), (196, 49), (204, 57), (212, 65), (220, 73), (228, 69), (228, 77), (236, 77), (236, 69), (236, 61), (228, 61), (228, 53), (236, 53), (236, 45), (228, 45), (228, 37), (236, 37), (236, 29), (228, 29), (228, 21), (236, 21), (252, 21), (260, 29), (260, 37), (260, 45), (260, 53), (260, 61), (260, 69), (260, 77), (276, 77), (276, 69), (276, 61), (276, 53), (284, 53), (284, 61), (284, 69), (284, 77), (284, 85), (284, 93), (284, 101), (288, 109), (280, 109), (276, 101), (276, 93), (276, 85), (268, 97), (260, 109), (252, 101), (260, 93), (260, 85), (236, 85), (228, 85), (228, 93), (236, 93), (236, 101), (228, 101), (228, 109), (228, 117), (228, 125), (220, 125), (212, 117), (204, 109), (196, 101), (188, 93), (180, 93), (180, 101), (180, 109), (180, 117), (180, 125), (196, 145), (204, 145), (212, 145), (220, 145), (228, 145), (236, 145), (246, 141), (252, 125), (260, 129), (280, 133) ] # yapf: disable data['num_vehicles'] = 1 data['depot'] = 0 return data def compute_euclidean_distance_matrix(locations): """Creates callback to return distance between points.""" distances = {} for from_counter, from_node in enumerate(locations): distances[from_counter] = {} for to_counter, to_node in enumerate(locations): if from_counter == to_counter: distances[from_counter][to_counter] = 0 else: # Euclidean distance distances[from_counter][to_counter] = (int( math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1])))) return distances def print_solution(manager, routing, solution): """Prints solution on console.""" print('Objective: {}'.format(solution.ObjectiveValue())) index = routing.Start(0) plan_output = 'Route:\n' route_distance = 0 while not routing.IsEnd(index): plan_output += ' {} ->'.format(manager.IndexToNode(index)) previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) plan_output += ' {}\n'.format(manager.IndexToNode(index)) print(plan_output) plan_output += 'Objective: {}m\n'.format(route_distance) def main(): """Entry point of the program.""" # Instantiate the data problem. data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager(len(data['locations']), data['num_vehicles'], data['depot']) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) distance_matrix = compute_euclidean_distance_matrix(data['locations']) def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return distance_matrix[from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(manager, routing, solution) if __name__ == '__main__': main() #finding shortest path in a graph import numpy as np from __future__ import print_function import math, sys from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp np.set_printoptions(suppress=True,linewidth=sys.maxsize,threshold=sys.maxsize) inf=-1 distances=np.array([ # [ "CH", "CL", "HB", "SL", "IN", "CO", "MT", "WA", "CI", "CN", "RI", "LV", "LX", "NV", "KV", "GR" ] [ 000, 362, inf, 300, 201, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf ], #CH [ inf, 000, 332, inf, inf, 142, 201, inf, inf, 251, inf, inf, inf, inf, inf, inf ], #CL [ inf, inf, 000, inf, inf, inf, 213, 120, inf, inf, inf, inf, inf, inf, inf, inf ], #HB [ inf, inf, inf, 000, 245, inf, inf, inf, inf, inf, inf, 263, inf, 312, inf, inf ], #SL [ inf, inf, inf, inf, 000, 176, inf, inf, 112, inf, inf, 114, inf, inf, inf, inf ], #IN [ inf, inf, inf, inf, inf, 000, inf, inf, 105, inf, inf, inf, inf, inf, inf, inf ], #CO [ inf, inf, inf, inf, inf, inf, 000, 209, inf, 157, inf, inf, inf, inf, inf, inf ], #MT [ inf, inf, inf, inf, inf, inf, inf, 000, inf, inf, 111, inf, inf, inf, inf, inf ], #WA [ inf, inf, inf, inf, inf, inf, inf, inf, 000, 204, inf, inf, 95, inf, inf, inf ], #CI [ inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 318, inf, 177, inf, inf, 244 ], #CN [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, inf, inf, inf, inf, 205 ], #RI [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 86, 175, inf, inf ], #LV [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, inf, 170, inf ], #LX [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 180, inf ], #NV [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 299 ], #KV [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000 ] #GR ]) triinf=np.tril_indices(distances.shape[0], -1) distances[triinf] = distances.T[triinf] #https://stackoverflow.com/questions/16444930/copy-upper-triangle-to-lower-triangle-in-a-python-matrix print(distances) def print_solution(manager, routing, solution): """Prints solution on console.""" print('Objective: {}'.format(solution.ObjectiveValue())) index = routing.Start(0) plan_output = 'Route:\n' route_distance = 0 while not routing.IsEnd(index): plan_output += ' {} ->'.format(manager.IndexToNode(index)) previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) plan_output += ' {}\n'.format(manager.IndexToNode(index)) print(plan_output) plan_output += 'Objective: {}m\n'.format(route_distance) # Create the routing index manager. manager = pywrapcp.RoutingIndexManager(distances.shape[0], 1, 1) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return distances[from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() #results with AUTOMATIC, LOCAL_CHEAPEST_ARC, PATH_CHEAPEST_ARC, PATH_MOST_CONSTRAINED_ARC, UNSET #best result with AUTOMATIC, GLOBAL_CHEAPEST_ARC, PATH_CHEAPEST_ARC, PATH_MOST_CONSTRAINED_ARC, UNSET search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.AUTOMATIC) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(manager, routing, solution) #Christos's Greek Yogurt #https://learning.edx.org/course/course-v1:MITx+CTL.SC0x+2T2020/block-v1:MITx+CTL.SC0x+2T2020+type@sequential+block@7e84b52028df41cd95b7ffef2872d379/block-v1:MITx+CTL.SC0x+2T2020+type@vertical+block@10256a90e6594e3284d9086fcdb0dd14 from ortools.linear_solver import pywraplp import numpy as np def create_data_model(): """Stores the data for the problem.""" data = {} # Boston Seattle Tampa # Chicago # Atlanta # Denver data['obj_coeffs'] = [ [1.04, 1.27, 1.22], [1.23, 1.93, 0.60], [1.92, 0.94, 1.03]] data['constraint_coeffs_min_max'] = [ #quantités livrées ([[1, 0, 0], [1, 0, 0], [1, 0, 0]], 11000, 11000), ([[0, 1, 0], [0, 1, 0], [0, 1, 0]], 6300, 6300), ([[0, 0, 1], [0, 0, 1], [0, 0, 1]], 7400, 7400), #quantités expédiées ([[1, 1, 1], [0, 0, 0], [0, 0, 0]], 0, 10000), ([[0, 0, 0], [1, 1, 1], [0, 0, 0]], 0, 10000), ([[0, 0, 0], [0, 0, 0], [1, 1, 1]], 0, 10000) ] return data data = create_data_model() # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver('CBC') infinity = solver.infinity() x=[[solver.IntVar(0, infinity, f'x[{j},{i}]') for i in range(len(data['obj_coeffs'][j]))] for j in range(len(data['obj_coeffs']))] for c in data['constraint_coeffs_min_max']: constraint = solver.RowConstraint(c[1], c[2], '') for ji,v in np.ndenumerate(c[0]): constraint.SetCoefficient(x[ji[0]][ji[1]], v*1.0) print('Number of constraints =', solver.NumConstraints()) # In Python, you can also set the constraints as follows. # for i in range(data['num_constraints']): # constraint_expr = \ # [data['constraint_coeffs'][i][j] * x[j] for j in range(data['num_vars'])] # solver.Add(sum(constraint_expr) <= data['bounds'][i]) objective = solver.Objective() for ji,v in np.ndenumerate(data['obj_coeffs']): objective.SetCoefficient(x[ji[0]][ji[1]], v*1.0) objective.SetMinimization() # In Python, you can also set the objective as follows. # obj_expr = [data['obj_coeffs'][j] * x[j] for j in range(data['num_vars'])] # solver.Maximize(solver.Sum(obj_expr)) status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print('Objective value =', solver.Objective().Value()) for j in x: for i in j: print(i.name(), ' = ', i.solution_value()) print() print('Problem solved in %f milliseconds' % solver.wall_time()) print('Problem solved in %d iterations' % solver.iterations()) print('Problem solved in %d branch-and-bound nodes' % solver.nodes()) else: print('The problem does not have an optimal solution.') ###Output _____no_output_____ ###Markdown ###Code !pip install ortools """Simple travelling salesman problem on a circuit board.""" from __future__ import print_function import math from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp def create_data_model(): """Stores the data for the problem : (X,Y) of each node.""" data = {} # Locations in block units data['locations'] = [ (288, 149), (288, 129), (270, 133), (256, 141), (256, 157), (246, 157), (236, 169), (228, 169), (228, 161), (220, 169), (212, 169), (204, 169), (196, 169), (188, 169), (196, 161), (188, 145), (172, 145), (164, 145), (156, 145), (148, 145), (140, 145), (148, 169), (164, 169), (172, 169), (156, 169), (140, 169), (132, 169), (124, 169), (116, 161), (104, 153), (104, 161), (104, 169), (90, 165), (80, 157), (64, 157), (64, 165), (56, 169), (56, 161), (56, 153), (56, 145), (56, 137), (56, 129), (56, 121), (40, 121), (40, 129), (40, 137), (40, 145), (40, 153), (40, 161), (40, 169), (32, 169), (32, 161), (32, 153), (32, 145), (32, 137), (32, 129), (32, 121), (32, 113), (40, 113), (56, 113), (56, 105), (48, 99), (40, 99), (32, 97), (32, 89), (24, 89), (16, 97), (16, 109), (8, 109), (8, 97), (8, 89), (8, 81), (8, 73), (8, 65), (8, 57), (16, 57), (8, 49), (8, 41), (24, 45), (32, 41), (32, 49), (32, 57), (32, 65), (32, 73), (32, 81), (40, 83), (40, 73), (40, 63), (40, 51), (44, 43), (44, 35), (44, 27), (32, 25), (24, 25), (16, 25), (16, 17), (24, 17), (32, 17), (44, 11), (56, 9), (56, 17), (56, 25), (56, 33), (56, 41), (64, 41), (72, 41), (72, 49), (56, 49), (48, 51), (56, 57), (56, 65), (48, 63), (48, 73), (56, 73), (56, 81), (48, 83), (56, 89), (56, 97), (104, 97), (104, 105), (104, 113), (104, 121), (104, 129), (104, 137), (104, 145), (116, 145), (124, 145), (132, 145), (132, 137), (140, 137), (148, 137), (156, 137), (164, 137), (172, 125), (172, 117), (172, 109), (172, 101), (172, 93), (172, 85), (180, 85), (180, 77), (180, 69), (180, 61), (180, 53), (172, 53), (172, 61), (172, 69), (172, 77), (164, 81), (148, 85), (124, 85), (124, 93), (124, 109), (124, 125), (124, 117), (124, 101), (104, 89), (104, 81), (104, 73), (104, 65), (104, 49), (104, 41), (104, 33), (104, 25), (104, 17), (92, 9), (80, 9), (72, 9), (64, 21), (72, 25), (80, 25), (80, 25), (80, 41), (88, 49), (104, 57), (124, 69), (124, 77), (132, 81), (140, 65), (132, 61), (124, 61), (124, 53), (124, 45), (124, 37), (124, 29), (132, 21), (124, 21), (120, 9), (128, 9), (136, 9), (148, 9), (162, 9), (156, 25), (172, 21), (180, 21), (180, 29), (172, 29), (172, 37), (172, 45), (180, 45), (180, 37), (188, 41), (196, 49), (204, 57), (212, 65), (220, 73), (228, 69), (228, 77), (236, 77), (236, 69), (236, 61), (228, 61), (228, 53), (236, 53), (236, 45), (228, 45), (228, 37), (236, 37), (236, 29), (228, 29), (228, 21), (236, 21), (252, 21), (260, 29), (260, 37), (260, 45), (260, 53), (260, 61), (260, 69), (260, 77), (276, 77), (276, 69), (276, 61), (276, 53), (284, 53), (284, 61), (284, 69), (284, 77), (284, 85), (284, 93), (284, 101), (288, 109), (280, 109), (276, 101), (276, 93), (276, 85), (268, 97), (260, 109), (252, 101), (260, 93), (260, 85), (236, 85), (228, 85), (228, 93), (236, 93), (236, 101), (228, 101), (228, 109), (228, 117), (228, 125), (220, 125), (212, 117), (204, 109), (196, 101), (188, 93), (180, 93), (180, 101), (180, 109), (180, 117), (180, 125), (196, 145), (204, 145), (212, 145), (220, 145), (228, 145), (236, 145), (246, 141), (252, 125), (260, 129), (280, 133) ] data['num_vehicles'] = 1 data['depot'] = 0 return data def compute_euclidean_distance_matrix(locations): """Creates callback to return distance between points.""" distances = {} for from_counter, from_node in enumerate(locations): distances[from_counter] = {} for to_counter, to_node in enumerate(locations): if from_counter == to_counter: distances[from_counter][to_counter] = 0 else: # Euclidean distance distances[from_counter][to_counter] = (int( math.hypot((from_node[0] - to_node[0]), (from_node[1] - to_node[1])))) return distances def print_solution(manager, routing, solution): """Prints solution on console.""" print('Objective: {}'.format(solution.ObjectiveValue())) index = routing.Start(0) plan_output = 'Route:\n' route_distance = 0 while not routing.IsEnd(index): plan_output += ' {} ->'.format(manager.IndexToNode(index)) previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) plan_output += ' {}\n'.format(manager.IndexToNode(index)) print(plan_output) plan_output += 'Objective: {}m\n'.format(route_distance) data = create_data_model() # Create the routing index manager. manager = pywrapcp.RoutingIndexManager(len(data['locations']), data['num_vehicles'], data['depot']) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) distance_matrix = compute_euclidean_distance_matrix(data['locations']) def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return distance_matrix[from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.PATH_CHEAPEST_ARC) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(manager, routing, solution) #finding shortest path in a graph import numpy as np from __future__ import print_function import math, sys from ortools.constraint_solver import routing_enums_pb2 from ortools.constraint_solver import pywrapcp np.set_printoptions(suppress=True,linewidth=sys.maxsize,threshold=sys.maxsize) inf=-1 distances=np.array([ # [ "CH", "CL", "HB", "SL", "IN", "CO", "MT", "WA", "CI", "CN", "RI", "LV", "LX", "NV", "KV", "GR" ] [ 000, 362, inf, 300, 201, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf ], #CH [ inf, 000, 332, inf, inf, 142, 201, inf, inf, 251, inf, inf, inf, inf, inf, inf ], #CL [ inf, inf, 000, inf, inf, inf, 213, 120, inf, inf, inf, inf, inf, inf, inf, inf ], #HB [ inf, inf, inf, 000, 245, inf, inf, inf, inf, inf, inf, 263, inf, 312, inf, inf ], #SL [ inf, inf, inf, inf, 000, 176, inf, inf, 112, inf, inf, 114, inf, inf, inf, inf ], #IN [ inf, inf, inf, inf, inf, 000, inf, inf, 105, inf, inf, inf, inf, inf, inf, inf ], #CO [ inf, inf, inf, inf, inf, inf, 000, 209, inf, 157, inf, inf, inf, inf, inf, inf ], #MT [ inf, inf, inf, inf, inf, inf, inf, 000, inf, inf, 111, inf, inf, inf, inf, inf ], #WA [ inf, inf, inf, inf, inf, inf, inf, inf, 000, 204, inf, inf, 95, inf, inf, inf ], #CI [ inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 318, inf, 177, inf, inf, 244 ], #CN [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, inf, inf, inf, inf, 205 ], #RI [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 86, 175, inf, inf ], #LV [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, inf, 170, inf ], #LX [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 180, inf ], #NV [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000, 299 ], #KV [ inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, inf, 000 ] #GR ]) triinf=np.tril_indices(distances.shape[0], -1) distances[triinf] = distances.T[triinf] #https://stackoverflow.com/questions/16444930/copy-upper-triangle-to-lower-triangle-in-a-python-matrix print(distances) def print_solution(manager, routing, solution): """Prints solution on console.""" print('Objective: {}'.format(solution.ObjectiveValue())) index = routing.Start(0) plan_output = 'Route:\n' route_distance = 0 while not routing.IsEnd(index): plan_output += ' {} ->'.format(manager.IndexToNode(index)) previous_index = index index = solution.Value(routing.NextVar(index)) route_distance += routing.GetArcCostForVehicle(previous_index, index, 0) plan_output += ' {}\n'.format(manager.IndexToNode(index)) print(plan_output) plan_output += 'Objective: {}m\n'.format(route_distance) # Create the routing index manager. manager = pywrapcp.RoutingIndexManager(distances.shape[0], 1, 1) # Create Routing Model. routing = pywrapcp.RoutingModel(manager) def distance_callback(from_index, to_index): """Returns the distance between the two nodes.""" # Convert from routing variable Index to distance matrix NodeIndex. from_node = manager.IndexToNode(from_index) to_node = manager.IndexToNode(to_index) return distances[from_node][to_node] transit_callback_index = routing.RegisterTransitCallback(distance_callback) # Define cost of each arc. routing.SetArcCostEvaluatorOfAllVehicles(transit_callback_index) # Setting first solution heuristic. search_parameters = pywrapcp.DefaultRoutingSearchParameters() #results with AUTOMATIC, LOCAL_CHEAPEST_ARC, PATH_CHEAPEST_ARC, PATH_MOST_CONSTRAINED_ARC, UNSET #best result with AUTOMATIC, GLOBAL_CHEAPEST_ARC, PATH_CHEAPEST_ARC, PATH_MOST_CONSTRAINED_ARC, UNSET search_parameters.first_solution_strategy = ( routing_enums_pb2.FirstSolutionStrategy.AUTOMATIC) # Solve the problem. solution = routing.SolveWithParameters(search_parameters) # Print solution on console. if solution: print_solution(manager, routing, solution) #Use CASE : Christos's Greek Yogurt #https://learning.edx.org/course/course-v1:MITx+CTL.SC0x+2T2020/block-v1:MITx+CTL.SC0x+2T2020+type@sequential+block@7e84b52028df41cd95b7ffef2872d379/block-v1:MITx+CTL.SC0x+2T2020+type@vertical+block@10256a90e6594e3284d9086fcdb0dd14 #Christos's Yogurt is a popular greek yogurt manufacturer in the United States. #The company has production facilities in Chicago, Atlanta and Denver. #Each facility can make only 10000 containers of yogurt per week. #One of Christos's main customers, Dairy Bucket, has placed a large order. #Dairy Bucket distributes their order over their 3 facilities located in Boston, Seattle and Tampa. #Christos wants to minimize his transportation costs while satisfying Dairy Bucket's order. from ortools.linear_solver import pywraplp import numpy as np def create_data_model(): """Stores the data for the problem.""" data = {} # Shipping Cost (dollars/container) # Boston Seattle Tampa # Chicago # Atlanta # Denver data['obj_coeffs'] = [ [1.04, 1.27, 1.22], [1.23, 1.93, 0.60], [1.92, 0.94, 1.03]] data['constraint_coeffs_min_max'] = [ #Dairy Bucket's Demand (containers/week) ([[1, 0, 0], [1, 0, 0], [1, 0, 0]], 11000, 11000), ([[0, 1, 0], [0, 1, 0], [0, 1, 0]], 6300, 6300), ([[0, 0, 1], [0, 0, 1], [0, 0, 1]], 7400, 7400), #quantités expédiées ([[1, 1, 1], [0, 0, 0], [0, 0, 0]], 0, 10000), ([[0, 0, 0], [1, 1, 1], [0, 0, 0]], 0, 10000), ([[0, 0, 0], [0, 0, 0], [1, 1, 1]], 0, 10000) ] return data data = create_data_model() # Create the mip solver with the SCIP backend. solver = pywraplp.Solver.CreateSolver('CBC') infinity = solver.infinity() x=[[solver.IntVar(0, infinity, f'x[{j},{i}]') for i in range(len(data['obj_coeffs'][j]))] for j in range(len(data['obj_coeffs']))] for c in data['constraint_coeffs_min_max']: constraint = solver.RowConstraint(c[1], c[2], '') for ji,v in np.ndenumerate(c[0]): constraint.SetCoefficient(x[ji[0]][ji[1]], v*1.0) print('Number of constraints =', solver.NumConstraints()) # In Python, you can also set the constraints as follows. # for i in range(data['num_constraints']): # constraint_expr = \ # [data['constraint_coeffs'][i][j] * x[j] for j in range(data['num_vars'])] # solver.Add(sum(constraint_expr) <= data['bounds'][i]) objective = solver.Objective() for ji,v in np.ndenumerate(data['obj_coeffs']): objective.SetCoefficient(x[ji[0]][ji[1]], v*1.0) objective.SetMinimization() # In Python, you can also set the objective as follows. # obj_expr = [data['obj_coeffs'][j] * x[j] for j in range(data['num_vars'])] # solver.Maximize(solver.Sum(obj_expr)) status = solver.Solve() if status == pywraplp.Solver.OPTIMAL: print('Objective value =', solver.Objective().Value()) for j in x: for i in j: print(i.name(), ' = ', i.solution_value()) print() print('Problem solved in %f milliseconds' % solver.wall_time()) print('Problem solved in %d iterations' % solver.iterations()) print('Problem solved in %d branch-and-bound nodes' % solver.nodes()) else: print('The problem does not have an optimal solution.') ###Output Number of constraints = 6 Objective value = 21992.0 x[0,0] = 10000.0 x[0,1] = 0.0 x[0,2] = 0.0 x[1,0] = 1000.0 x[1,1] = 0.0 x[1,2] = 7400.0 x[2,0] = 0.0 x[2,1] = 6300.0 x[2,2] = 0.0 Problem solved in 4.000000 milliseconds Problem solved in 0 iterations Problem solved in 0 branch-and-bound nodes
OSF_SHARE_hacking.ipynb
###Markdown Using the OSF APIFor more information, visit the full [OSF API docs](http://developer.osf.io)!We'll be using the staging version of the OSF and API for this tutorial. Because staging is always in active development, if the endpoints fail to work at any point, feel free to switch to production OSF! Just note that you'll have to create a new token, and that any test work you make public will be available to anyone! Simply remove "staging" from the base STAGING_OSF_API url listed below for production OSF endpoints.Before starting this tutorial, make sure to [create an account on the staging version of the osf](https://staging.osf.io), login to that account, and create an API token by [visitng your settings page](https://staging.osf.io/settings/tokens/).Save your token as an enviornment variable, or replace the enviornment variable below with the text version of your token for local testing. Create a Project, Upload a FileHere's an example of how to create a project (called a node) on the OSF, and then follow the API relationships to upload a file.This is a python implementation of a guide found on the OSF [detailing a typical OSF Workflow](https://osf.io/y9jdt/wiki/Typical%20Workflow/) ###Code import os import json import requests STAGING_OSF_TOKEN = os.environ['STAGING_OSF_TOKEN'] # replace this line with your token instead if you like STAGING_OSF_API = 'https://staging-api.osf.io/v2/' # Let's defne a few helper functions to make sending credentials easier def post_request(url, data, auth): headers = {'Content-Type': 'application/vnd.api+json'} if auth: headers['Authorization'] = 'Bearer {}'.format(auth) data = json.dumps(data) return requests.post(url, headers=headers, data=data) def get_request(url, auth=None): headers = {'Authorization': 'Bearer {}'.format(auth)} return requests.get(url, headers=headers) def put_request(url, data, auth): headers = { 'Content-Type': 'application/vnd.api+json', 'Authorization': 'Bearer {}'.format(auth) } data = json.dumps(data) return requests.put(url, headers=headers, data=data) # Define the data for the node we'd like to create node_data = { "data": { "type":"nodes", "attributes": { "title":"Testing Example", "description": "This is a node created as an example of how to create a node!", "public": False, "category":"project" } } } # Post the data, get a response back with details about our node node_response = post_request(STAGING_OSF_API + 'nodes/', node_data, STAGING_OSF_TOKEN) print(json.dumps(node_response.json(), indent=4)) # Find the files relationship, follow the related -> href link files_link = node_response.json()['data']['relationships']['files']['links']['related']['href'] files_response = get_request(files_link, STAGING_OSF_TOKEN).json() print(json.dumps(files_response, indent=4)) # Find the upload link for OSF Storage in that list - should be the first element in the list for new nodes # A node can have several external storage providers configured upload_link = files_response['data'][0]['links']['upload'] upload_link # Upload the file along with the kind and file name upload_link_with_filename = upload_link + '?kind=file&name=newest_file.txt' file_data = 'This is the entirety of the contents of the file I am uploading. It could have been more, but for an example, a small file seems like a better idea.' put_response = put_request(upload_link_with_filename, file_data, STAGING_OSF_TOKEN) print(json.dumps(put_response.json(), indent=4)) ###Output _____no_output_____ ###Markdown You did it!Visit your project on the OSF and see your newly updated file! ###Code # Check our your project on the OSF by visiting the project's link node_response.json()['data']['links']['html'] ###Output _____no_output_____ ###Markdown Querying the SHARE API ###Code SHARE_API_BASE = 'https://share.osf.io/api/v2/' # Get the total number of SHARE sources sources_query = requests.get(SHARE_API_BASE + 'sources').json() count = sources_query['meta']['pagination']['count'] print('There are {} sources in SHARE'.format(count)) # Get the total number of creativeworks in SHARE creativeworks_search = 'search/creativeworks/_search' base_search = requests.get(SHARE_API_BASE + creativeworks_search).json() total_creativeworks = base_search['hits']['total'] print('There are {} works in SHARE'.format(total_creativeworks)) # Print out the first 10 titles results = base_search['hits']['hits'] for result in results: print(result['_source']['title']) def post_query(url, query): headers = {'Content-Type': 'application/json'} data = json.dumps(query) return requests.post(url, headers=headers, data=data) # Get query forming hints by searching https://share.osf.io/discover search_query = { "query": { "bool": { "must": { "query_string": { "query": "climate change" } }, "filter": [ { "term": { "types": "software" } } ] } } } software_results = post_query(SHARE_API_BASE + creativeworks_search, search_query).json() # Let's check out the details of the first result print(json.dumps(software_results['hits']['hits'][0]['_source'], indent=4)) # Iterate through the first page of results, print each title for result in software_results['hits']['hits']: print(result['_source']['title']) ###Output _____no_output_____
ChurnQuestion.ipynb
###Markdown This model has an accuracy of 89.83%. In the confusion matrix we can see the majority of the errors are type 1 and the errors type 2 are quite low. This model is pretty decent, can be improved but this is not the current goal. We need to check the coefficients of the model in order to see which variables are more realated to the churn action. ###Code coef = pd.DataFrame(clf.coef_[0], index = X_indexes, columns = ['Coefficients']) coef no_dummie_coef = coef.iloc[0:13, 0] dummie_coef = coef.iloc[13:len(coef), 0] dummie_coef.sort_values() ###Output _____no_output_____ ###Markdown It looks like the most important feature from the dummies variables is the Gender. We can see that being male impacts positively on Existing client which means that the females are more prone to churn the bank, this is something that we already measured. We also can see that the people with lower income are more prone to stay in the bankin the same way people with status Married, and people who don't declare the income. ###Code no_dummie_coef.sort_values() ###Output _____no_output_____
site/en/r2/tutorials/estimators/boosted_trees.ipynb
###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output from matplotlib import pyplot as plt # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tf-nightly-2.0-preview import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20) plt.show() ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') plt.show() ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters.2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') plt.show() ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd !pip install tf-nightly-2.0-preview from IPython.display import clear_output import tensorflow as tf tf.random.set_seed(123) # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output _____no_output_____ ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output from matplotlib import pyplot as plt # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') try: !pip install tf-nightly-2.0-preview except Exception: pass import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20) plt.show() ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') plt.show() ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters.2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') plt.show() ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output from matplotlib import pyplot as plt # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tf-nightly-2.0-preview import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20) plt.show() ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') plt.show() ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output _____no_output_____ ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters.2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') plt.show() ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters.2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20) plt.show() ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') plt.show() ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters.2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') plt.show() ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tf-nightly-2.0-preview import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd !pip install tf-nightly-2.0-preview from IPython.display import clear_output import tensorflow as tf tf.random.set_seed(123) # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output _____no_output_____ ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output Feature value: "Third" One-hot encoded: [[ 0. 0. 1.]] ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.765152 accuracy_baseline 0.625000 auc 0.832844 auc_precision_recall 0.789631 average_loss 0.478908 global_step 100.000000 label/mean 0.375000 loss 0.478908 precision 0.703297 prediction/mean 0.350790 recall 0.646465 dtype: float64 ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output accuracy 0.829545 accuracy_baseline 0.625000 auc 0.872788 auc_precision_recall 0.857807 average_loss 0.411839 global_step 100.000000 label/mean 0.375000 loss 0.411839 precision 0.793478 prediction/mean 0.381942 recall 0.737374 dtype: float64 ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np import pandas as pd from IPython.display import clear_output from matplotlib import pyplot as plt # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tf-nightly-2.0-preview import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20) plt.show() ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh') plt.show() ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive') plt.show() ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output _____no_output_____ ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters.2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities') plt.show() ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,) plt.show() ###Output _____no_output_____ ###Markdown Copyright 2019 The TensorFlow Authors. ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown How to train Boosted Trees models in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub This tutorial is an end-to-end walkthrough of training a Gradient Boosting model using decision trees with the `tf.estimator` API. Boosted Trees models are among the most popular and effective machine learning approaches for both regression and classification. It is an ensemble technique that combines the predictions from several (think 10s, 100s or even 1000s) tree models.Boosted Trees models are popular with many machine learning practitioners as they can achieve impressive performance with minimal hyperparameter tuning. Load the titanic datasetYou will be using the titanic dataset, where the (rather morbid) goal is to predict passenger survival, given characteristics such as gender, age, class, etc. ###Code from __future__ import absolute_import, division, print_function import numpy as np import pandas as pd from IPython.display import clear_output # Load dataset. dftrain = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/train.csv') dfeval = pd.read_csv('https://storage.googleapis.com/tf-datasets/titanic/eval.csv') y_train = dftrain.pop('survived') y_eval = dfeval.pop('survived') !pip install tf-nightly-2.0-preview import tensorflow as tf tf.random.set_seed(123) ###Output _____no_output_____ ###Markdown The dataset consists of a training set and an evaluation set:* `dftrain` and `y_train` are the *training set*—the data the model uses to learn.* The model is tested against the *eval set*, `dfeval`, and `y_eval`.For training you will use the following features: Feature Name Description sex Gender of passenger age Age of passenger n_siblings_spouses siblings and partners aboard parch of parents and children aboard fare Fare passenger paid. class Passenger's class on ship deck Which deck passenger was on embark_town Which town passenger embarked from alone If passenger was alone Explore the data Let's first preview some of the data and create summary statistics on the training set. ###Code dftrain.head() dftrain.describe() ###Output _____no_output_____ ###Markdown There are 627 and 264 examples in the training and evaluation sets, respectively. ###Code dftrain.shape[0], dfeval.shape[0] ###Output _____no_output_____ ###Markdown The majority of passengers are in their 20's and 30's. ###Code dftrain.age.hist(bins=20); ###Output _____no_output_____ ###Markdown There are approximately twice as male passengers as female passengers aboard. ###Code dftrain.sex.value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown The majority of passengers were in the "third" class. ###Code dftrain['class'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Most passengers embarked from Southampton. ###Code dftrain['embark_town'].value_counts().plot(kind='barh'); ###Output _____no_output_____ ###Markdown Females have a much higher chance of surviving vs. males. This will clearly be a predictive feature for the model. ###Code pd.concat([dftrain, y_train], axis=1).groupby('sex').survived.mean().plot(kind='barh').set_xlabel('% survive'); ###Output _____no_output_____ ###Markdown Create feature columns and input functionsThe Gradient Boosting estimator can utilize both numeric and categorical features. Feature columns work with all TensorFlow estimators and their purpose is to define the features used for modeling. Additionally they provide some feature engineering capabilities like one-hot-encoding, normalization, and bucketization. In this tutorial, the fields in `CATEGORICAL_COLUMNS` are transformed from categorical columns to one-hot-encoded columns ([indicator column](https://www.tensorflow.org/api_docs/python/tf/feature_column/indicator_column)): ###Code fc = tf.feature_column CATEGORICAL_COLUMNS = ['sex', 'n_siblings_spouses', 'parch', 'class', 'deck', 'embark_town', 'alone'] NUMERIC_COLUMNS = ['age', 'fare'] def one_hot_cat_column(feature_name, vocab): return tf.feature_column.indicator_column( tf.feature_column.categorical_column_with_vocabulary_list(feature_name, vocab)) feature_columns = [] for feature_name in CATEGORICAL_COLUMNS: # Need to one-hot encode categorical features. vocabulary = dftrain[feature_name].unique() feature_columns.append(one_hot_cat_column(feature_name, vocabulary)) for feature_name in NUMERIC_COLUMNS: feature_columns.append(tf.feature_column.numeric_column(feature_name, dtype=tf.float32)) ###Output _____no_output_____ ###Markdown You can view the transformation that a feature column produces. For example, here is the output when using the `indicator_column` on a single example: ###Code example = dict(dftrain.head(1)) class_fc = tf.feature_column.indicator_column(tf.feature_column.categorical_column_with_vocabulary_list('class', ('First', 'Second', 'Third'))) print('Feature value: "{}"'.format(example['class'].iloc[0])) print('One-hot encoded: ', tf.keras.layers.DenseFeatures([class_fc])(example).numpy()) ###Output _____no_output_____ ###Markdown Additionally, you can view all of the feature column transformations together: ###Code tf.keras.layers.DenseFeatures(feature_columns)(example).numpy() ###Output _____no_output_____ ###Markdown Next you need to create the input functions. These will specify how data will be read into our model for both training and inference. You will use the `from_tensor_slices` method in the [`tf.data`](https://www.tensorflow.org/api_docs/python/tf/data) API to read in data directly from Pandas. This is suitable for smaller, in-memory datasets. For larger datasets, the tf.data API supports a variety of file formats (including [csv](https://www.tensorflow.org/api_docs/python/tf/data/experimental/make_csv_dataset)) so that you can process datasets that do not fit in memory. ###Code # Use entire batch since this is such a small dataset. NUM_EXAMPLES = len(y_train) def make_input_fn(X, y, n_epochs=None, shuffle=True): def input_fn(): dataset = tf.data.Dataset.from_tensor_slices((dict(X), y)) if shuffle: dataset = dataset.shuffle(NUM_EXAMPLES) # For training, cycle thru dataset as many times as need (n_epochs=None). dataset = dataset.repeat(n_epochs) # In memory training doesn't use batching. dataset = dataset.batch(NUM_EXAMPLES) return dataset return input_fn # Training and evaluation input functions. train_input_fn = make_input_fn(dftrain, y_train) eval_input_fn = make_input_fn(dfeval, y_eval, shuffle=False, n_epochs=1) ###Output _____no_output_____ ###Markdown Train and evaluate the modelBelow you will do the following steps:1. Initialize the model, specifying the features and hyperparameters. 2. Feed the training data to the model using the `train_input_fn` and train the model using the `train` function.3. You will assess model performance using the evaluation set—in this example, the `dfeval` DataFrame. You will verify that the predictions match the labels from the `y_eval` array.Before training a Boosted Trees model, let's first train a linear classifier (logistic regression model). It is best practice to start with simpler model to establish a benchmark. ###Code linear_est = tf.estimator.LinearClassifier(feature_columns) # Train model. linear_est.train(train_input_fn, max_steps=100) # Evaluation. result = linear_est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Next let's train a Boosted Trees model. For boosted trees, regression (`BoostedTreesRegressor`) and classification (`BoostedTreesClassifier`) are supported. Since the goal is to predict a class - survive or not survive, you will use the `BoostedTreesClassifier`. ###Code # Since data fits into memory, use entire dataset per layer. It will be faster. # Above one batch is defined as the entire dataset. n_batches = 1 est = tf.estimator.BoostedTreesClassifier(feature_columns, n_batches_per_layer=n_batches) # The model will stop training once the specified number of trees is built, not # based on the number of steps. est.train(train_input_fn, max_steps=100) # Eval. result = est.evaluate(eval_input_fn) clear_output() print(pd.Series(result)) ###Output _____no_output_____ ###Markdown Now you can use the train model to make predictions on a passenger from the evaluation set. TensorFlow models are optimized to make predictions on a batch, or collection, of examples at once. Earlier, the `eval_input_fn` is defined using the entire evaluation set. ###Code pred_dicts = list(est.predict(eval_input_fn)) probs = pd.Series([pred['probabilities'][1] for pred in pred_dicts]) probs.plot(kind='hist', bins=20, title='predicted probabilities'); ###Output _____no_output_____ ###Markdown Finally you can also look at the receiver operating characteristic (ROC) of the results, which will give us a better idea of the tradeoff between the true positive rate and false positive rate. ###Code from sklearn.metrics import roc_curve from matplotlib import pyplot as plt fpr, tpr, _ = roc_curve(y_eval, probs) plt.plot(fpr, tpr) plt.title('ROC curve') plt.xlabel('false positive rate') plt.ylabel('true positive rate') plt.xlim(0,) plt.ylim(0,); ###Output _____no_output_____
adaboost-101/adaboost_tutorial.ipynb
###Markdown AdaBoostIn this tutorial, we'll build a stump classifier and apply the AdaBoost algorithm. Our goal is to transform a weak classifier into something useful. This lecture covers the first part of chapter 7 in Peter Harrington's book (Harrington, P. (2012). Machine Learning in Action. Shelter Island, NY: Manning) with some added commentary. ImportsRunning the code below will be comprensive for the tutorial. ###Code # base requirements from IPython.display import Image from IPython.display import display from datetime import * import json from copy import * from pprint import * import pandas as pd import numpy as np import matplotlib.pyplot as plt import json import rpy2 %load_ext rpy2.ipython %R require("ggplot2") % matplotlib inline from ggplot import * randn = np.random.randn # optional import warnings warnings.filterwarnings('ignore') # tutorial requirements #bokeh - http://bokeh.pydata.org/en/latest/docs/installation.html from bokeh.io import output_notebook from bokeh.plotting import figure, output_file, show output_notebook() # inline graphs #import bokeh.sampledata # this download is commented out b/c it's optional # bokeh.sampledata.download() # this download is commented out b/c it's optional ###Output _____no_output_____ ###Markdown FunctionsWe'll dump the major code base into this section. ###Code def stumpClassify(dataMatrix,dimen,threshVal,threshIneq):#just classify the data """ Performs a threshold comparison to classify data. Everything on one side of the threshold is thrown into class -1, and everything on the other side is thrown into class +1. """ retArray = np.ones((np.shape(dataMatrix)[0],1)) #print "retArray" #display(retArray) if threshIneq == 'lt': retArray[dataMatrix[:,dimen] <= threshVal] = -1.0 else: retArray[dataMatrix[:,dimen] > threshVal] = 1.0 return retArray def buildStump(dataArr,classLabels,D): """ Iterates over all of the possible inputs to stumpClassify() and finds the best decision stump for our dataset. Best here will be with respect to the data weight vector D. """ dataMatrix = np.mat(dataArr); labelMat = np.mat(classLabels).T #print "dataMatrix:" #display(dataMatrix) #print "labelMat:" #display(labelMat) m,n = np.shape(dataMatrix) #print ("m:{}, n:{}".format(m,n)) numSteps = 10.0; bestStump = {}; bestClasEst = np.mat(np.zeros((m,1))) #print "bestClasEst:" #display(bestClasEst) minError = np.inf #init error sum, to +infinity #print "minError:" #display(minError) #The first one goes over all the features in our dataset. You’re # considering numeric values, and you calculate the minimum and # maximum to see how large your step size should be. for i in range(n):#loop over all dimensions rangeMin = dataMatrix[:,i].min(); rangeMax = dataMatrix[:,i].max(); stepSize = (rangeMax-rangeMin)/numSteps #print "stepSize:{}".format(stepSize) # The next for loops loop over these values. for j in range(-1,int(numSteps)+1):#loop over all range in current dimension #The last for loop toggles your inequality between greater than and less than for inequal in ['lt', 'gt']: #go over less than and greater than threshVal = (rangeMin + float(j) * stepSize) #value at which we make our decision to classify one way or another predictedVals = stumpClassify(dataMatrix,i,threshVal,inequal) #returns labels for each element errArr = np.mat(np.ones((m,1))) errArr[predictedVals == labelMat] = 0 #print "\n\nerrArr:" #display(errArr) #display(D.T) weightedError = D.T*errArr #calc total error multiplied by D <---------D is constant in this function but varied inside AdaBoost #print "weightedError:" #display(weightedError) ##### ##### uncomment line below for 1st pass ##### #print "split: dim %d, thresh %.2f, thresh ineqal: %s, the weighted error is %.3f" % (i, threshVal, inequal, weightedError) if weightedError < minError: #finds thhe best stump minError = weightedError bestClasEst = predictedVals.copy() bestStump['feature'] = i+1 bestStump['thresh'] = threshVal bestStump['ineq'] = inequal return bestStump,minError,bestClasEst def alpha(error): return float(0.5*np.log((1.0-error)/max(error,1e-16))) def adaBoostTrainDS(dataArr,classLabels,numIt=40): """ The implementation of AdaBoost. We get back a set of weak \ classifiers and weights (the signs of which we use as labels). """ weakClassArr = [] m = np.shape(dataArr)[0] D = np.mat(np.ones((m,1))/m) #init D to all weights being equal aggClassEst = np.mat(np.zeros((m,1))) #init to zero for i in range(numIt): bestStump,error,classEst = buildStump(dataArr,classLabels,D)# note: D varies to improve the classifier alpha = float(0.5*np.log((1.0-error)/max(error,1e-16)))#calc alpha; note: max(error,eps) accounts for error=0 bestStump['alpha'] = alpha weakClassArr.append(bestStump) #store Stump Params in Array #print "classEst: ",classEst.T expon = np.multiply(-1*alpha*np.mat(classLabels).T,classEst) #exponent for D calc, notice that multiplying \ # np.mat(classLabels).T & classEst is for sign \ # that drives D values to 0 or 1 D = np.multiply(D,np.exp(expon)) #Calc New D for next iteration D = D/D.sum() # D.sum() normalizes the values as probabilities that all sum to 1 #calc training error of all classifiers, if this is 0 quit for loop early (use break) aggClassEst += alpha*classEst # <----- the magic; this allows the signs (labels) to be pushed around aggErrors = np.multiply(np.sign(aggClassEst) != np.mat(classLabels).T,np.ones((m,1))) # 1's when error errorRate = aggErrors.sum()/m # percent error print "total error: ",errorRate if errorRate == 0.0: break return weakClassArr,aggClassEst def adaClassify(datToClass,classifierArr): """ Given an unknown datum, we label it from training data. """ dataMatrix = np.mat(datToClass) m = np.shape(dataMatrix)[0] #print "m:{}".format(m) aggClassEst = np.mat(np.zeros((m,1))) # predicted values #print "initial aggClassEst:{}".format(aggClassEst) for i in range(len(classifierArr)): classEst = stumpClassify(dataMatrix,classifierArr[i]['feature']-1\ , classifierArr[i]['thresh']\ , classifierArr[i]['ineq'])#call stump classify aggClassEst += classifierArr[i]['alpha']*classEst print "set{}:{}".format(i,aggClassEst) return np.sign(aggClassEst) def loadData(): """ Loads sample dataset as arrays. """ datMat = np.array([[ 1. , 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) classLabels = np.array([1.0, 1.0, -1.0, -1.0, 1.0]) return datMat,classLabels def loadSimpData(): """ Loads dataset as matrix. """ datMat = np.matrix([[ 1. , 2.1], [2., 1.1], [1.3, 1.], [1., 1.], [2., 1.]]) classLabels = [1.0, 1.0, -1.0, -1.0, 1.0] return datMat,classLabels def build_simple_bokeh_graph(): data,labels = loadData() print "data:" display(data) print "labels:" display(labels) print "Feature 1 data:" d1 = data[(labels==1)] display(d1) print "Feature 2 data:" d2 = data[(labels==-1)] display(d2) ## set up Bokeh figure p = figure( tools="pan,box_zoom,reset,save" , title="Data: Two Features & Two Classes" #y_axis_type="log", y_range=[0.001, 10**11] , x_axis_label='Feature 1' , y_axis_label='Feature 2' ) ## add data to Bokeh figure p.scatter(d1[:,0], d1[:,1], legend="class1", fill_color="red", size=20,marker="circle") p.scatter(d2[:,0], d2[:,1], legend="class2", fill_color="blue", size=20,marker="square") # display Bokeh figure show(p) def run_stump(): # run stump classifier without adaboost datMat,classLabels=loadSimpData() print "Data:" display(datMat) D = np.mat( np.ones((5,1)) / 5 ) print "initial D:" display(D) numSteps = 10.0; print "TEST:" x,y,z=buildStump(datMat,classLabels,D) # note: D is constant here, but this is the value that we will vary with adaboost. print "\n\nRESTULS:" print " bestStump:{}".format(x) print " smallest error:{}".format(y) print " predicted labels:" display(z) def graph_alpha(): # Create graph of alpha values x = np.arange(0.01,1,0.01) alpha_calc = np.vectorize(alpha) y = alpha_calc(x) ## Bokeh output inline #output_notebook() ## set up Bokeh figure p = figure( tools="pan,box_zoom,reset,save" , title="How are the classifiers scored?" #y_axis_type="log", y_range=[0.001, 10**11] , x_axis_label='Error' , y_axis_label='Alpha' ) ## add data to Bokeh figure p.line(x, y, legend="alpha curve", color="blue", line_width=2) # guide line a = np.array([.5,.5]) b = np.array([-1,1]) p.line(a,b, legend="50% error", color="red",line_width = 1, alpha=0.6, line_dash="4 4") # display Bokeh figure show(p) def simple_application(): datArr,labelArr=loadSimpData() print "Building training set." classifierArr = adaBoostTrainDS(datArr,labelArr,30) print "\nclassifierArr:" display(classifierArr[0]) print "Classification of unknown point:" display(adaClassify([0, 0],classifierArr[0])) ###Output _____no_output_____ ###Markdown What is a decision stump?Decision trees typically create a path that uses several features to label a dataset. With a stump, we try to pick a single feature in a dataset and use it to label every element. Let's start with an example. We'll create some labeled data. ###Code build_simple_bokeh_graph() ###Output _____no_output_____ ###Markdown Which individual feature best helps us classify this dataset? As you might note, we'll always have an error. As such, we could call this method a week classifier. Let's first see how to build a decision stump, test if any of values are less than or greater than the threshold value we’re testing, and then loop over a weighted version of the dataset to find the stump that yields the lowest error. __One important distinction at this point is that we're using equal weights across all elements in the dataset.__ Late, we'll use the AdaBoost algorithm to change these weights to optimize the accuracy of the labels. We now have the ability to choose which point on a specific continuous feature we'll use as the threshold value to label our data. Let's see which value and dimension are selected to choose the best stump. Use stump classifier w/out AdaBoost ###Code run_stump() ###Output _____no_output_____ ###Markdown Implement AdaBoostAfter building our stump classifier, we'll try to improve it using AdaBoost. We're going to change one set of values: `D`, which is a vector of weights. We'll change `D` through an iterative process. This weight vector adjust for incorrect labels. So we'll change `D` by evaluating those labels that we classified incorrectly and increasing their weight while simultaneously decreasing the weight on those values that we classify correctly. Initially, all of these weights will be equal, but at each iteration we'll re-evaluate the weights to adjust for failure/success. Hence, each point in the dataset will receive a custom weight depending on how well we classified it in the last iteration. To calculate alpha, $\alpha$, we then sum up the weighted errors for each stump. __In short, the vector `D` is varied per stump - each of which is scored with an alpha value.__ Before we move on to undersatand how adaboots uses the our sets of alpha values, let's look a little more deeply at what this score means.We calculate our error rate with \begin{equation*}\epsilon = \frac{number\ of\ incorrectly\ classified\ examples}{total\ number\ of\ examples}\\ \end{equation*}These errors are multiplied by the weights and then the alpha value is calculated as follows:\begin{equation*}\alpha = \frac{1}{2}ln(\frac{1-\epsilon}{\epsilon})\end{equation*}Let's look at a graph of alpha values. ###Code graph_alpha() ###Output _____no_output_____ ###Markdown What we can learn from this graph?(see Chris McCormick's discussion https://chrisjmccormick.wordpress.com/2013/12/13/adaboost-tutorial/)1. The classifier weight grows exponentially as the error approaches 0. Better classifiers are given exponentially more weight.2. The classifier weight is zero if the error rate is 0.5. A classifier with 50% accuracy is no better than random guessing, so we ignore it.3. The classifier weight grows exponentially negative as the error approaches 1. We give a negative weight to classifiers with worse worse than 50% accuracy. “Whatever that classifier says, do the opposite!”.We end up using alpha through a series of iterations that drive the labeling error closer to zero. The way this works is that we sum together the product of alpha and each stump's predicted values, which provides a vector of floats whose signs indicate our labels. We now understand that alpha relates to the sum of errors and is in some way associated with how much to weight each stump. Now we just need to understand how alpha (\alpha) relates to the individualized weights in vector `D`:Correctly predicted,\begin{equation*}D_{i}^{(t+1)}= \frac{D_{i}^{(t)}e^{-\alpha}}{Sum(D)}\\ \end{equation*}Incorrectly predicted,\begin{equation*}D_{i}^{(t+1)}= \frac{D_{i}^{(t)}e^{\alpha}}{Sum(D)}\\ \end{equation*}D is a probability distribution, so the sum of all the elements in D must be 1.0. Let's consider the entire AdaBoost process: Create a set of weak classifiers using AdaBoostIn this section, we'll apply the AdaBoost algorithm to labeled data. As we evaluate each of the classifiers, we will score them with an alpha value. Finally, we sum the product of the predicted labels and alpha for each point to create a matrix of floats. Each value in this matrix has a sign, which should correspond to the correct lables if our error went to zero. ###Code datMat,classLabels=loadSimpData() adaBoostTrainDS(datMat,classLabels,9) ###Output _____no_output_____ ###Markdown Application of AdaBoostWith the code that we've already written, we have a list of weak classifiers and with their corresponding alpha scores: [ {'alpha': 0.6931471805599453, 'feature': 1, 'ineq': 'lt', 'thresh': 1.3} , {'alpha': 0.9729550745276565, 'feature': 2, 'ineq': 'lt', 'thresh': 1.0} , {'alpha': 0.8958797346140273, 'feature': 1, 'ineq': 'lt', 'thresh': 0.9} ]So we can reuse the threshold value of the corresponding features in each of these weak classifiers as a stump to label the unknown data. We'll recycle `stumpClassify()` with this training data, which means that we can rate classifier's lable using the previously assigned alpha value. See `adaClassify()`. ###Code display(simple_application()) ###Output _____no_output_____ ###Markdown Pros/Cons of AdaBoost(Pro/Con notes below borrowed from Eric Emer's [presentation](http://math.mit.edu/~rothvoss/18.304.3PM/Presentations/1-Eric-Boosting304FinalRpdf.pdf))Pros* Fast * Simple and easy to program* No parameters to tune* No prior knowledge neededabout weak learner* Provably effective givenWeak Learning Assumption* versatileCons* Weak classifiers toocomplex leads tooverfitting.* Weak classifiers too weakcan lead to low margins,and can also lead tooverfitting.* From empirical evidence,AdaBoost is particularlyvulnerable to uniformnoise. SummaryHow does AdaBoost optimize weights?The data points that have been misclassified most by the previous weak classifier are pinpointed and become the focus for the next iteration. By pinpointed, we see these reguarly misclassified elements receiving a larger weight and associated larger error. How does AdaBoost aggregate many weak classifiers into a single prediction?With the score (alpha value) applied to the prediction set for each classifier, we aggregate the scores by their index value. The aggregated vector provides an optimally weighted majority vote of weak classifiers! See Rober Schapire's [Explaining Adaboost](http://rob.schapire.net/papers/explaining-adaboost.pdf) for a good discussion on Adaboost. Appendix Random notes: Bagging* reshuffle your training data to create k different trainig sets andlearn * Combine the k different classifiers by majority votingBoosting* Assign different weights to training samples in a “smart” way sothat different classifiers pay more attention to different samples* Weighted majority voting, the weight of individual classifier isproportional to its accuracy* Ada-boost (1996) was influenced by bagging, and it is superiorto bagging Non linearly separable examplehttp://scikit-learn.org/stable/auto_examples/ensemble/plot_adaboost_twoclass.html ###Code print(__doc__) # Author: Noel Dawe <[email protected]> # # License: BSD 3 clause import numpy as np import matplotlib.pyplot as plt from sklearn.ensemble import AdaBoostClassifier from sklearn.tree import DecisionTreeClassifier from sklearn.datasets import make_gaussian_quantiles # Construct dataset X1, y1 = make_gaussian_quantiles(cov=2., n_samples=200, n_features=2, n_classes=2, random_state=1) X2, y2 = make_gaussian_quantiles(mean=(3, 3), cov=1.5, n_samples=300, n_features=2, n_classes=2, random_state=1) X = np.concatenate((X1, X2)) y = np.concatenate((y1, - y2 + 1)) # Create and fit an AdaBoosted decision tree bdt = AdaBoostClassifier(DecisionTreeClassifier(max_depth=1), algorithm="SAMME", n_estimators=200) bdt.fit(X, y) plot_colors = "br" plot_step = 0.02 class_names = "AB" plt.figure(figsize=(10, 5)) # Plot the decision boundaries plt.subplot(121) x_min, x_max = X[:, 0].min() - 1, X[:, 0].max() + 1 y_min, y_max = X[:, 1].min() - 1, X[:, 1].max() + 1 xx, yy = np.meshgrid(np.arange(x_min, x_max, plot_step), np.arange(y_min, y_max, plot_step)) Z = bdt.predict(np.c_[xx.ravel(), yy.ravel()]) Z = Z.reshape(xx.shape) cs = plt.contourf(xx, yy, Z, cmap=plt.cm.Paired) plt.axis("tight") # Plot the training points for i, n, c in zip(range(2), class_names, plot_colors): idx = np.where(y == i) plt.scatter(X[idx, 0], X[idx, 1], c=c, cmap=plt.cm.Paired, label="Class %s" % n) plt.xlim(x_min, x_max) plt.ylim(y_min, y_max) plt.legend(loc='upper right') plt.xlabel('x') plt.ylabel('y') plt.title('Decision Boundary') # Plot the two-class decision scores twoclass_output = bdt.decision_function(X) plot_range = (twoclass_output.min(), twoclass_output.max()) plt.subplot(122) for i, n, c in zip(range(2), class_names, plot_colors): plt.hist(twoclass_output[y == i], bins=10, range=plot_range, facecolor=c, label='Class %s' % n, alpha=.5) x1, x2, y1, y2 = plt.axis() plt.axis((x1, x2, y1, y2 * 1.2)) plt.legend(loc='upper right') plt.ylabel('Samples') plt.xlabel('Score') plt.title('Decision Scores') plt.tight_layout() plt.subplots_adjust(wspace=0.35) plt.show() ###Output _____no_output_____
Introduction to Data Science in Python/Assignment+4.ipynb
###Markdown ---_You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource._--- ###Code import pandas as pd import numpy as np from scipy.stats import ttest_ind ###Output _____no_output_____ ###Markdown Assignment 4 - Hypothesis TestingThis assignment requires more individual learning than previous assignments - you are encouraged to check out the [pandas documentation](http://pandas.pydata.org/pandas-docs/stable/) to find functions or methods you might not have used yet, or ask questions on [Stack Overflow](http://stackoverflow.com/) and tag them as pandas and python related. And of course, the discussion forums are open for interaction with your peers and the course staff.Definitions:* A _quarter_ is a specific three month period, Q1 is January through March, Q2 is April through June, Q3 is July through September, Q4 is October through December.* A _recession_ is defined as starting with two consecutive quarters of GDP decline, and ending with two consecutive quarters of GDP growth.* A _recession bottom_ is the quarter within a recession which had the lowest GDP.* A _university town_ is a city which has a high percentage of university students compared to the total population of the city.**Hypothesis**: University towns have their mean housing prices less effected by recessions. Run a t-test to compare the ratio of the mean price of houses in university towns the quarter before the recession starts compared to the recession bottom. (`price_ratio=quarter_before_recession/recession_bottom`)The following data files are available for this assignment:* From the [Zillow research data site](http://www.zillow.com/research/data/) there is housing data for the United States. In particular the datafile for [all homes at a city level](http://files.zillowstatic.com/research/public/City/City_Zhvi_AllHomes.csv), ```City_Zhvi_AllHomes.csv```, has median home sale prices at a fine grained level.* From the Wikipedia page on college towns is a list of [university towns in the United States](https://en.wikipedia.org/wiki/List_of_college_townsCollege_towns_in_the_United_States) which has been copy and pasted into the file ```university_towns.txt```.* From Bureau of Economic Analysis, US Department of Commerce, the [GDP over time](http://www.bea.gov/national/index.htmgdp) of the United States in current dollars (use the chained value in 2009 dollars), in quarterly intervals, in the file ```gdplev.xls```. For this assignment, only look at GDP data from the first quarter of 2000 onward.Each function in this assignment below is worth 10%, with the exception of ```run_ttest()```, which is worth 50%. ###Code # Use this dictionary to map state names to two letter acronyms states = {'OH': 'Ohio', 'KY': 'Kentucky', 'AS': 'American Samoa', 'NV': 'Nevada', 'WY': 'Wyoming', 'NA': 'National', 'AL': 'Alabama', 'MD': 'Maryland', 'AK': 'Alaska', 'UT': 'Utah', 'OR': 'Oregon', 'MT': 'Montana', 'IL': 'Illinois', 'TN': 'Tennessee', 'DC': 'District of Columbia', 'VT': 'Vermont', 'ID': 'Idaho', 'AR': 'Arkansas', 'ME': 'Maine', 'WA': 'Washington', 'HI': 'Hawaii', 'WI': 'Wisconsin', 'MI': 'Michigan', 'IN': 'Indiana', 'NJ': 'New Jersey', 'AZ': 'Arizona', 'GU': 'Guam', 'MS': 'Mississippi', 'PR': 'Puerto Rico', 'NC': 'North Carolina', 'TX': 'Texas', 'SD': 'South Dakota', 'MP': 'Northern Mariana Islands', 'IA': 'Iowa', 'MO': 'Missouri', 'CT': 'Connecticut', 'WV': 'West Virginia', 'SC': 'South Carolina', 'LA': 'Louisiana', 'KS': 'Kansas', 'NY': 'New York', 'NE': 'Nebraska', 'OK': 'Oklahoma', 'FL': 'Florida', 'CA': 'California', 'CO': 'Colorado', 'PA': 'Pennsylvania', 'DE': 'Delaware', 'NM': 'New Mexico', 'RI': 'Rhode Island', 'MN': 'Minnesota', 'VI': 'Virgin Islands', 'NH': 'New Hampshire', 'MA': 'Massachusetts', 'GA': 'Georgia', 'ND': 'North Dakota', 'VA': 'Virginia'} def get_list_of_university_towns(): '''Returns a DataFrame of towns and the states they are in from the university_towns.txt list. The format of the DataFrame should be: DataFrame( [ ["Michigan", "Ann Arbor"], ["Michigan", "Yipsilanti"] ], columns=["State", "RegionName"] ) The following cleaning needs to be done: 1. For "State", removing characters from "[" to the end. 2. For "RegionName", when applicable, removing every character from " (" to the end. 3. Depending on how you read the data, you may need to remove newline character '\n'. ''' state = None state_towns = [] data = [] with open('university_towns.txt') as file : for line in file : thisLine = line[:-1] if (thisLine[-6:] == '[edit]'): state = thisLine[:-6] continue if ('(' in line): town = thisLine[:thisLine.index('(')-1] state_towns.append([state,town]) else: town = thisLine state_towns.append([state,town]) data.append(thisLine) df = pd.DataFrame(state_towns,columns = ['State','RegionName']) return df print(get_list_of_university_towns()) def get_recession_start(): '''Returns the year and quarter of the recession start time as a string value in a format such as 2005q3''' gdp = pd.ExcelFile('gdplev.xls') gdp = gdp.parse("Sheet1", skiprows=219) gdp = gdp[['1999q4', 9926.1]] gdp.columns = ['Quarter', 'GDP'] for i in range (2,len(gdp)) : if (gdp.iloc[i-2][1] > gdp.iloc[i-1][1]) and (gdp.iloc[i-1][1] > gdp.iloc[i][1]): return gdp.iloc[i-2][0] print(get_recession_start()) def get_recession_end(): '''Returns the year and quarter of the recession end time as a string value in a format such as 2005q3''' gdplev = pd.ExcelFile('gdplev.xls') gdplev = gdplev.parse("Sheet1", skiprows=219) gdplev = gdplev[['1999q4', 9926.1]] gdplev.columns = ['Quarter','GDP'] start = get_recession_start() start_index = gdplev[gdplev['Quarter'] == start].index.tolist()[0] gdplev=gdplev.iloc[start_index:] for i in range(2, len(gdplev)): if (gdplev.iloc[i-2][1] < gdplev.iloc[i-1][1]) and (gdplev.iloc[i-1][1] < gdplev.iloc[i][1]): return gdplev.iloc[i][0] print(get_recession_end()) def get_recession_bottom(): '''Returns the year and quarter of the recession bottom time as a string value in a format such as 2005q3''' gdplev = pd.ExcelFile('gdplev.xls') gdplev = gdplev.parse("Sheet1", skiprows=219) gdplev = gdplev[['1999q4', 9926.1]] gdplev.columns = ['Quarter','GDP'] start = get_recession_start() start_index = gdplev[gdplev['Quarter'] == start].index.tolist()[0] end = get_recession_end() end_index = gdplev[gdplev['Quarter'] == end].index.tolist()[0] gdplev=gdplev.iloc[start_index:end_index+1] bottom = gdplev['GDP'].min() bottom_index = gdplev[gdplev['GDP'] == bottom].index.tolist()[0]-start_index return gdplev.iloc[bottom_index]['Quarter'] print(get_recession_bottom()) def convert_housing_data_to_quarters(): '''Converts the housing data to quarters and returns it as mean values in a dataframe. This dataframe should be a dataframe with columns for 2000q1 through 2016q3, and should have a multi-index in the shape of ["State","RegionName"]. Note: Quarters are defined in the assignment description, they are not arbitrary three month periods. The resulting dataframe should have 67 columns, and 10,730 rows. ''' hdata = pd.read_csv('City_Zhvi_AllHomes.csv') hdata = hdata.drop(hdata.columns[[0]+list(range(3,51))],axis=1) hdata2 = pd.DataFrame(hdata[['State','RegionName']]) for year in range(2000,2016): hdata2[str(year)+'q1'] = hdata[[str(year)+'-01',str(year)+'-02',str(year)+'-03']].mean(axis=1) hdata2[str(year)+'q2'] = hdata[[str(year)+'-04',str(year)+'-05',str(year)+'-06']].mean(axis=1) hdata2[str(year)+'q3'] = hdata[[str(year)+'-07',str(year)+'-08',str(year)+'-09']].mean(axis=1) hdata2[str(year)+'q4'] = hdata[[str(year)+'-10',str(year)+'-11',str(year)+'-12']].mean(axis=1) year = 2016 hdata2[str(year)+'q1'] = hdata[[str(year)+'-01',str(year)+'-02',str(year)+'-03']].mean(axis=1) hdata2[str(year)+'q2'] = hdata[[str(year)+'-04',str(year)+'-05',str(year)+'-06']].mean(axis=1) hdata2[str(year)+'q3'] = hdata[[str(year)+'-07',str(year)+'-08']].mean(axis=1) hdata2 = hdata2.replace({'State':states}) hdata2 = hdata2.set_index(['State','RegionName']) return hdata2 convert_housing_data_to_quarters() def run_ttest(): '''First creates new data showing the decline or growth of housing prices between the recession start and the recession bottom. Then runs a ttest comparing the university town values to the non-university towns values, return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different=True if the t-test is True at a p<0.01 (we reject the null hypothesis), or different=False if otherwise (we cannot reject the null hypothesis). The variable p should be equal to the exact p value returned from scipy.stats.ttest_ind(). The value for better should be either "university town" or "non-university town" depending on which has a lower mean price ratio (which is equivilent to a reduced market loss).''' unitowns = get_list_of_university_towns() bottom = get_recession_bottom() start = get_recession_start() hdata = convert_housing_data_to_quarters() bstart = hdata.columns[hdata.columns.get_loc(start) -1] hdata['ratio'] = hdata[bottom] - hdata[bstart] hdata = hdata[[bottom,bstart,'ratio']] hdata = hdata.reset_index() unitowns_hdata = pd.merge(hdata,unitowns,how='inner',on=['State','RegionName']) unitowns_hdata['uni'] = True hdata2 = pd.merge(hdata,unitowns_hdata,how='outer',on=['State','RegionName',bottom,bstart,'ratio']) hdata2['uni'] = hdata2['uni'].fillna(False) ut = hdata2[hdata2['uni'] == True] nut = hdata2[hdata2['uni'] == False] t,p = ttest_ind(ut['ratio'].dropna(),nut['ratio'].dropna()) different = True if p < 0.01 else False better = "non-university town" if ut['ratio'].mean() < nut['ratio'].mean() else "university town" return different, p, better run_ttest() ###Output _____no_output_____ ###Markdown ---_You are currently looking at **version 1.1** of this notebook. To download notebooks and datafiles, as well as get help on Jupyter notebooks in the Coursera platform, visit the [Jupyter Notebook FAQ](https://www.coursera.org/learn/python-data-analysis/resources/0dhYG) course resource._--- ###Code import pandas as pd import numpy as np from scipy.stats import ttest_ind ###Output _____no_output_____ ###Markdown Assignment 4 - Hypothesis TestingThis assignment requires more individual learning than previous assignments - you are encouraged to check out the [pandas documentation](http://pandas.pydata.org/pandas-docs/stable/) to find functions or methods you might not have used yet, or ask questions on [Stack Overflow](http://stackoverflow.com/) and tag them as pandas and python related. And of course, the discussion forums are open for interaction with your peers and the course staff.Definitions:* A _quarter_ is a specific three month period, Q1 is January through March, Q2 is April through June, Q3 is July through September, Q4 is October through December.* A _recession_ is defined as starting with two consecutive quarters of GDP decline, and ending with two consecutive quarters of GDP growth.* A _recession bottom_ is the quarter within a recession which had the lowest GDP.* A _university town_ is a city which has a high percentage of university students compared to the total population of the city.**Hypothesis**: University towns have their mean housing prices less effected by recessions. Run a t-test to compare the ratio of the mean price of houses in university towns the quarter before the recession starts compared to the recession bottom. (`price_ratio=quarter_before_recession/recession_bottom`)The following data files are available for this assignment:* From the [Zillow research data site](http://www.zillow.com/research/data/) there is housing data for the United States. In particular the datafile for [all homes at a city level](http://files.zillowstatic.com/research/public/City/City_Zhvi_AllHomes.csv), ```City_Zhvi_AllHomes.csv```, has median home sale prices at a fine grained level.* From the Wikipedia page on college towns is a list of [university towns in the United States](https://en.wikipedia.org/wiki/List_of_college_townsCollege_towns_in_the_United_States) which has been copy and pasted into the file ```university_towns.txt```.* From Bureau of Economic Analysis, US Department of Commerce, the [GDP over time](http://www.bea.gov/national/index.htmgdp) of the United States in current dollars (use the chained value in 2009 dollars), in quarterly intervals, in the file ```gdplev.xls```. For this assignment, only look at GDP data from the first quarter of 2000 onward.Each function in this assignment below is worth 10%, with the exception of ```run_ttest()```, which is worth 50%. ###Code CityLvl = pd.read_csv('City_Zhvi_AllHomes.csv') CityLvl.head() GDP = pd.read_excel('gdplev.xls',skiprows=8, header=None).iloc[:,[4,6]] GDP.columns = ['Quarter','value'] GDP = GDP[GDP['Quarter'] >= '2000q1'].reset_index(drop=True) GDP.head() # Use this dictionary to map state names to two letter acronyms states = {'OH': 'Ohio', 'KY': 'Kentucky', 'AS': 'American Samoa', 'NV': 'Nevada', 'WY': 'Wyoming', 'NA': 'National', 'AL': 'Alabama', 'MD': 'Maryland', 'AK': 'Alaska', 'UT': 'Utah', 'OR': 'Oregon', 'MT': 'Montana', 'IL': 'Illinois', 'TN': 'Tennessee', 'DC': 'District of Columbia', 'VT': 'Vermont', 'ID': 'Idaho', 'AR': 'Arkansas', 'ME': 'Maine', 'WA': 'Washington', 'HI': 'Hawaii', 'WI': 'Wisconsin', 'MI': 'Michigan', 'IN': 'Indiana', 'NJ': 'New Jersey', 'AZ': 'Arizona', 'GU': 'Guam', 'MS': 'Mississippi', 'PR': 'Puerto Rico', 'NC': 'North Carolina', 'TX': 'Texas', 'SD': 'South Dakota', 'MP': 'Northern Mariana Islands', 'IA': 'Iowa', 'MO': 'Missouri', 'CT': 'Connecticut', 'WV': 'West Virginia', 'SC': 'South Carolina', 'LA': 'Louisiana', 'KS': 'Kansas', 'NY': 'New York', 'NE': 'Nebraska', 'OK': 'Oklahoma', 'FL': 'Florida', 'CA': 'California', 'CO': 'Colorado', 'PA': 'Pennsylvania', 'DE': 'Delaware', 'NM': 'New Mexico', 'RI': 'Rhode Island', 'MN': 'Minnesota', 'VI': 'Virgin Islands', 'NH': 'New Hampshire', 'MA': 'Massachusetts', 'GA': 'Georgia', 'ND': 'North Dakota', 'VA': 'Virginia'} CityLvl['State'] = CityLvl['State'].replace(states) CityLvl.head() def get_list_of_university_towns(): '''Returns a DataFrame of towns and the states they are in from the university_towns.txt list. The format of the DataFrame should be: DataFrame( [ ["Michigan", "Ann Arbor"], ["Michigan", "Yipsilanti"] ], columns=["State", "RegionName"] ) The following cleaning needs to be done: 1. For "State", removing characters from "[" to the end. 2. For "RegionName", when applicable, removing every character from " (" to the end. 3. Depending on how you read the data, you may need to remove newline character '\n'. ''' with open("university_towns.txt", "r") as f: lines = f.readlines() unitown = [] for line in lines: if line[-7:]=="[edit]\n": state = line[:-7] continue unitown.append([state, line[:line.find(" (")]]) f.close() UTown = pd.DataFrame(unitown, columns=['State','RegionName']) #print(UTown) return UTown get_list_of_university_towns() def get_recession_start(): '''Returns the year and quarter of the recession start time as a string value in a format such as 2005q3''' values = GDP['value'].values res1 = (values[1:] - values[:-1])<0 res2 = res1[:-1].astype(int) + res1[1:].astype(int) q = (np.where(res2==2)[0][0])+1 #print(q) #print(GDP[q-5:q+5]) return GDP['Quarter'][q] get_recession_start() def get_recession_end(): '''Returns the year and quarter of the recession end time as a string value in a format such as 2005q3''' values = GDP['value'].values res1 = (values[1:] - values[:-1])<0 res2 = res1[:-1].astype(int) + res1[1:].astype(int) grow1 = (values[1:] - values[:-1])>0 grow2 = grow1[:-1].astype(int) + grow1[1:].astype(int) q = (np.where(grow2==2)[0])+1 GDP_res = GDP.iloc[q] GDP_res = GDP_res[GDP_res['Quarter'] >= get_recession_start()].reset_index(drop=True) return GDP_res['Quarter'][1] get_recession_end() def get_recession_bottom(): '''Returns the year and quarter of the recession bottom time as a string value in a format such as 2005q3''' GDP_res = GDP[(GDP['Quarter']>=get_recession_start()) & (GDP['Quarter']<=get_recession_end())].set_index('Quarter') return (GDP_res.idxmin().values[0]) #return GDP_res get_recession_bottom() def convert_housing_data_to_quarters(): '''Converts the housing data to quarters and returns it as mean values in a dataframe. This dataframe should be a dataframe with columns for 2000q1 through 2016q3, and should have a multi-index in the shape of ["State","RegionName"]. Note: Quarters are defined in the assignment description, they are not arbitrary three month periods. The resulting dataframe should have 67 columns, and 10,730 rows. ''' y_range = [str(i) for i in range(2000,2017)] q_begin = ['01','04','07','10'] q_end = ['03','06','09','12'] yq_begin = [] yq_end = [] for y in y_range: for q1, q2 in zip(q_begin,q_end): yq_begin.append(y+'-'+q1) yq_end.append(y+'-'+q2) yq_begin.pop(-1) yq_end.pop(-1) #print(yq_begin) CityLvlDate = CityLvl.set_index(['State','RegionName']) #print(CityLvlDate) date_col = (CityLvlDate.columns>='2000-01') & (CityLvlDate.columns<='2016-12') CityLvlDate = (CityLvlDate.loc[:,date_col]) for q, (start, ending) in enumerate(zip(yq_begin, yq_end)): quarter = (start[:4]+'q'+str(q%4+1)) date_col = (CityLvlDate.columns>=start) & (CityLvlDate.columns<=ending) #print(quarter) CityLvlDate[quarter] = CityLvlDate.loc[:,date_col].apply(np.nanmean,axis=1) used_col = CityLvlDate.loc[:,date_col].columns.values for col in used_col: del CityLvlDate[col] return CityLvlDate convert_housing_data_to_quarters() housingQ = convert_housing_data_to_quarters() from scipy import stats def run_ttest(): '''First creates new data showing the decline or growth of housing prices between the recession start and the recession bottom. Then runs a ttest comparing the university town values to the non-university towns values, return whether the alternative hypothesis (that the two groups are the same) is true or not as well as the p-value of the confidence. Return the tuple (different, p, better) where different=True if the t-test is True at a p<0.01 (we reject the null hypothesis), or different=False if otherwise (we cannot reject the null hypothesis). The variable p should be equal to the exact p value returned from scipy.stats.ttest_ind(). The value for better should be either "university town" or "non-university town" depending on which has a lower mean price ratio (which is equivilent to a reduced market loss).''' housingQ_res = housingQ[get_recession_bottom()] - housingQ[get_recession_start()] housingQ_res = housingQ_res.dropna().to_frame() utown_list = get_list_of_university_towns() utown_list['U'] = True utown_list = utown_list.set_index(['State','RegionName']) housingQ_utown = pd.merge(housingQ_res, utown_list, how='left', left_index=True, right_index=True) housingQ_utown = housingQ_utown.rename(columns={0: "price", 'U': "is U"}) #print(housingQ_utown['is U'] is True) housingQ_utown['is U'] = housingQ_utown['is U'].apply(lambda x: x is True) housingQ_utown['is not U'] = housingQ_utown['is U'].apply(lambda x: x is not True) U_price = housingQ_utown[housingQ_utown['is U']] notU_price = housingQ_utown[housingQ_utown['is not U']] U_price = U_price['price'].values NU_price = notU_price['price'].values tstat, pval = stats.ttest_ind(U_price, NU_price) #print(stats.ttest_ind(U_price, NU_price)) #print(tstat) better = 'university town' if tstat > 0 else 'non-university town' return (pval<.01, pval, better) run_ttest() ###Output _____no_output_____
module2-regression-2/LS_DS_212.ipynb
###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '/Users/keila/Documents/Lambda/Units_Git/DS-Unit-2-Linear-Models/data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. How many observations (rows) are in the train set? In the test set? Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. How many observations (rows) are in the train set? In the test set? Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code import numpy as np train,test = np.split() test = df[df.Year>=2008] train = df[df.Year<2008] print(test) train ###Output Year ... Incumbent Party Vote Share 14 2008 ... 46.32 15 2012 ... 52.00 16 2016 ... 48.20 [3 rows x 6 columns] ###Markdown How many observations (rows) are in the train set? In the test set? ###Code print(len(train)) print(len(test)) ###Output 14 3 ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') print(df.shape) df def wrangle(filepath): # Read in the data, rename columns and set index as 'year' col_names = ['year', 'incumbent', 'challenger', 'income', 'fatalities', 'incumbent_vote_share'] df = pd.read_csv(filepath, header=0, names=col_names, index_col='year') return df df = wrangle(DATA_PATH + 'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code y = df['incumbent_vote_share'] X = df[['income']] ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code print(y.shape, X.shape) mask = X.index < 2008 X_train, y_train = X.loc[mask], y.loc[mask] X_test, y_test = X.loc[~mask], y.loc[~mask] print(X_train.tail(), X_train.shape, y_train.shape) X_test.head() mask ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code train = df[df['Year'] < 2008] test = df[df['Year'] >= 2008] test ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code train.shape, test.shape ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] y_test # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() guess y_train # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') (y_test - y_pred).abs().mean() ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() model # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred_train = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred_train) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_train X_test = test[features] X_test # TODO: Fit the model model.fit(X_train, y_train) # TODO: Apply the model to new data y_pred_train = model.predict(X_train) mean_absolute_error(y_pred_train, y_train) y_pred = model.predict(X_test) mean_absolute_error(y_pred, y_test) ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$$y = \beta_0 + \beta_1x_1 + \beta_2x_2 + \beta_3x_3 + ... + \beta_nx_n$Can you relate the intercept and coefficients to what you see in the plot above? ###Code df.head() model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0:.2f} + {beta1:.2f}*x1 + {beta2:.2f}*x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. How many observations (rows) are in the train set? In the test set? Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code train =df[df['Year']<2008] test = df[df['Year']>=2008] ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code train.shape, test.shape ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output /usr/local/lib/python3.6/dist-packages/statsmodels/tools/_testing.py:19: FutureWarning: pandas.util.testing is deprecated. Use the functions in the public API at pandas.testing instead. ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') x_train = train[features] x_test = test[features] # TODO: Fit the model model.fit(x_train,y_train) # TODO: Apply the model to new data y_pred = model.predict(x_train) (y_pred - y_train).abs().mean() mae = mean_absolute_error(y_train,y_pred) print(f'Train Error: {mae:.2f} precentage points') ###Output Train Error: 1.33 precentage points ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code df['Year'] df['Year'] < 2008 df[df['Year'] < 2008] df['Year'] >= 2008 df[df['Year'] >= 2008] df_train = df[df['Year'] < 2008].copy() df_test = df[df['Year'] >= 2008].copy() df_train.shape, df_test.shape, df.shape ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code print(f'Observations in train: {len(df_train)}') print(f'Observations in test: {len(df_test)}') ###Output Observations in train: 14 Observations in test: 3 ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code df_train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = df_train[target] y_test = df_test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() guess # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( df_train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = df_train[features] X_test = df_test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? basically halved the error from the baseline predictions Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( df_train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = df_train[features] X_test = df_test[features] # TODO: Fit the model model = LinearRegression() model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # TODO: Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.63 percentage points ###Markdown How does the error compare to the prior model? train error is halved againtest error is smaller, but not by much Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( df_train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$$y = \beta_0 + \beta_1x_1 + \beta_2x_2+...\beta_nx_n$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) #values model.coef_ #index features pd.Series(data=model.coef_, index=features) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) # that is intercept ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code # holding one feature constant model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(df_train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(df_train, feature, target, m=3, b=46) squared_errors(df_train, feature, target, m=4, b=46) squared_errors(df_train, feature, target, m=4, b=44) ###Output Mean Squared Error: 14.727814285714283 Root Mean Squared Error: 3.837683453037038 Mean Absolute Error: 2.797142857142856 R^2: 0.5277570066120691 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(df_train[features].values) print('X') print(X) # y is a column vector y = df_train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code # filtering into train and test subsets train = df[df['Year'] < 2007] test = df[df['Year'] > 2007] # features and target declaration features = df.columns[:-1] target = "Incumbent Party Vote Share" # splitting train and test into X and y train_X = train[features] train_y = train[target] test_X = test[features] test_y = test[target] # showing shape of resulting subsets print("Train shape:", train.shape) print("Test shape:", test.shape) # ensuring columns of train_X and test_X are correct train_X.columns ###Output Train shape: (14, 6) Test shape: (3, 6) ###Markdown How many observations (rows) are in the train set? In the test set? ###Code # Train shape: 14 # Test shape: 3 # if we were using k-fold cross validation k = 4 fold_size = df.shape[0] // k folds = [] for i in range(k): curr_fold = df.iloc[i*fold_size:i+1*fold_size, :] if i == k-1: curr_fold = df.iloc[i*fold_size:, :] folds.append(curr_fold) folds[2].head() ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors # target = 'Incumbent Party Vote Share' # y_train = train[target] # y_test = test[target] # did this above y_train = train_y y_test = test_y # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline?~2% better than the baseline! Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell model = LinearRegression() # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_pred, y_train) print("MAE of train dataset:", mae) # TODO: Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_pred, y_test) print("MAE of test dataset:", mae) ###Output MAE of test dataset: 1.6341722692537293 ###Markdown How does the error compare to the prior model?---More than a percentage point better on train dataset and only ~.2% better on test set. Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean?For every percent growth in personal income the prediction of incumbet voting % will be increased by 3.59. For every million of US military fatalities, the model decreases the prediction by .05%. Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) # Stretch goal: Use the Scikit-learn Standard Scaler to standardize the data and fit the multiple regression model. df ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code from sklearn.metrics import mean_absolute_error # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Mean Baseline (using 0 features) Train Error (1952-2004 elections): 4.85 percentage points Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', #the bread y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Linear Regression, dependent on: ['Average Recent Growth in Personal Incomes'] Train Error: 2.65 percentage points Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] # Fit the model model.fit(X_train,y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train,y_pred) print(f'Train error {mae:,.2f}') # Apply the model to new data y_pred_test = model.predict(X_test) mae = mean_absolute_error(y_test,y_pred_test) print(f'Test Error {mae:,.2f}') coeffs = model.coef_ print(f'The model coefficients are: {list(coeffs)}') print(f'This means that the coeff for Bread = {coeffs[0]:,.2f}\n' f'And the coeff for War = {coeffs[1]:,.2f}') ###Output Linear Regression, dependent on: ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] Train error 1.33 Test Error 1.63 The model coefficients are: [3.5900473494560536, -0.05315709351049324] This means that the coeff for Bread = 3.59 And the coeff for War = -0.05 ###Markdown The coefficients tell us that the "War" component has a much smaller impact on the overall result compared to the "Bread" How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig xmin,xmax = -5,5 ymin,ymax = xmin,xmax num = 10 xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) #This gives us a set of coordinates that exists on the x,y print(list(itertools.product(xcoords,ycoords))) print(xcoords,'\n',ycoords,'\n',coords) regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean?As fatalities increase then the incumbent vote share decreases (Our model is really Bread, War, not Bread, Peace) What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code #the beta 1 value (proven) model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code #still beta1 model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code #output = 100* beta2 model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. How many observations (rows) are in the train set? In the test set? Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code train = df[df['Year'] < 2008] train.head() train.dtypes test = df[df['Year'] >= 2008] test.head() ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code print(train.shape) print(test.shape) ###Output (14, 6) (3, 6) ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() guess train['Incumbent Party Vote Share'].mean() train['Average Recent Growth in Personal Incomes'].mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') len(y_train) # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] # TODO: Fit the model model.fit(X_train, y_train) # TODO: Apply the model to new data y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.63 percentage points ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. How many observations (rows) are in the train set? In the test set? Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code from sklearn.metrics import mean_absolute_error # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # Fit the model # Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code train = df[df['Year'] < 2008] # train = df.query('Year' < 2008) test = df[df['Year'] >= 2008] ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code len(train), len(test) ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code from sklearn.metrics import mean_absolute_error # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') (guess - y_train).abs().mean() ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Linear Regression, dependent on: ['Average Recent Growth in Personal Incomes'] Train Error: 2.65 percentage points Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] # Fit the model model.fit(X_train, y_train) y_pred_train = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred_train) print(f'Train Error: {mae:.2f} percentage points') # Apply the model to new data y_pred_test = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred_test) print(f'Test Error: {mae:.2f} percentage points') ###Output Linear Regression, dependent on: ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] Train Error: 1.33 percentage points Test Error: 1.63 percentage points ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept:', '\t'*4 + ' '*4, f'{model.intercept_:.6f}') coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept: 46.254900 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.GridSearchCV, RandomizedSearchCVFortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code # Splitting with slicing syntax train = df[:14] test = df[14:] # Splitting with dataframe filtering train = df[df['Year'] < 2008] test = df[df['Year'] >= 2008] ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() print(guess) # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] # Fit the model model.fit(X_train, y_train) # Check train error y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.63 percentage points ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) # This does not exactly match correlation df.corr()['Incumbent Party Vote Share'] ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code # train = df[df['Year'] < 2008] train = df.query('Year < 2008') test = df.query('Year >= 2008') train ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code train.shape, test.shape ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() [guess] * len(y_train) # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] print(X_train.shape, X_test.shape) # TODO: Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # TODO: Apply the model to new data y_test_pred = model.predict(X_test) mae_test = mean_absolute_error(y_test, y_test_pred) print(f'Train Error: {mae_test:.2f} percentage points') ###Output Train Error: 1.63 percentage points ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code #good for large data sets #train = df[df['Year'] < 2008] #this is more sql like, and a little bit easier to read train = df.query('Year < 2008') test = df.query('Year >= 2008') ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code train.shape, test.shape ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] print(X_train.shape, X_test.shape) # TODO: Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # TODO: Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.63 percentage points ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) #STRETCH GOAL: Use the scikit-learn Standard Scaler to standardize the data and #fit the multiple regression model. ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. How many observations (rows) are in the train set? In the test set? Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code train = df[df['Year']<2008] train ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code test = df[df['Year']>=2008] test # 14 Rows in the training set, 3 in the test set ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell target = 'Incumbent Party Vote Share' # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] y_train = train[target] # TODO: Fit the model model.fit(X_train, y_train) # Training error y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # TODO: Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.63 percentage points ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df df['Year']<2008 train=df[df['Year']<2008] print(train.shape) train test=df[df['Year']>=2008] print(test.shape) test ###Output (3, 6) ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression() # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output _____no_output_____ ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') # TODO: Fit the model # TODO: Apply the model to new data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0} + {beta1}x1 + {beta2}x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output _____no_output_____ ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output _____no_output_____ ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) ###Output _____no_output_____ ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____ ###Markdown Lambda School Data Science*Unit 2, Sprint 1, Module 2*--- Regression 2- Do train/test split- Use scikit-learn to fit a multiple regression- Understand how ordinary least squares regression minimizes the sum of squared errors- Define overfitting/underfitting and the bias/variance tradeoff SetupRun the code cell below. You can work locally (follow the [local setup instructions](https://lambdaschool.github.io/ds/unit2/local/)) or on Colab.Libraries:- matplotlib- numpy- pandas- plotly- scikit-learn ###Code import sys # If you're on Colab: if 'google.colab' in sys.modules: DATA_PATH = 'https://raw.githubusercontent.com/LambdaSchool/DS-Unit-2-Applied-Modeling/master/data/' # If you're working locally: else: DATA_PATH = '../data/' # Ignore this Numpy warning when using Plotly Express: # FutureWarning: Method .ptp is deprecated and will be removed in a future version. Use numpy.ptp instead. import warnings warnings.filterwarnings(action='ignore', category=FutureWarning, module='numpy') ###Output _____no_output_____ ###Markdown Do train/test split Overview Predict Elections! 🇺🇸🗳️ How could we try to predict the 2020 US Presidential election? According to Douglas Hibbs, a political science and economics professor, you can [explain elections with just two features, "Bread and Peace":](https://douglas-hibbs.com/background-information-on-bread-and-peace-voting-in-us-presidential-elections/)> Aggregate two-party vote shares going to candidates of the party holding the presidency during the postwar era are well explained by just two fundamental determinants:>> (1) Positively by weighted-average growth of per capita real disposable personal income over the term. > (2) Negatively by cumulative US military fatalities (scaled to population) owing to unprovoked, hostile deployments of American armed forces in foreign wars. Let's look at the data that Hibbs collected and analyzed: ###Code import pandas as pd df = pd.read_csv(DATA_PATH+'elections/bread_peace_voting.csv') df ###Output _____no_output_____ ###Markdown Data Sources & Definitions- 1952-2012: Douglas Hibbs, [2014 lecture at Deakin University Melbourne](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 40- 2016, Vote Share: [The American Presidency Project](https://www.presidency.ucsb.edu/statistics/elections)- 2016, Recent Growth in Personal Incomes: [The 2016 election economy: the "Bread and Peace" model final forecast](https://angrybearblog.com/2016/11/the-2016-election-economy-the-bread-and-peace-model-final-forecast.html)- 2016, US Military Fatalities: Assumption that Afghanistan War fatalities in 2012-16 occured at the same rate as 2008-12> Fatalities denotes the cumulative number of American military fatalities per millions of US population the in Korea, Vietnam, Iraq and Afghanistan wars during the presidential terms preceding the 1952, 1964, 1968, 1976 and 2004, 2008 and 2012 elections. —[Hibbs](http://www.douglas-hibbs.com/HibbsArticles/HIBBS-PRESVOTE-SLIDES-MELBOURNE-Part1-2014-02-26.pdf), Slide 33 Here we have data from the 1952-2016 elections. We could make a model to predict 1952-2016 election outcomes — but do we really care about that? No, not really. We already know what happened, we don't need to predict it. This is explained in [_An Introduction to Statistical Learning_](http://faculty.marshall.usc.edu/gareth-james/ISL/), Chapter 2.2, Assessing Model Accuracy:> In general, we do not really care how well the method works training on the training data. Rather, _we are interested in the accuracy of the predictions that we obtain when we apply our method to previously unseen test data._ Why is this what we care about? >> Suppose that we are interested in developing an algorithm to predict a stock’s price based on previous stock returns. We can train the method using stock returns from the past 6 months. But we don’t really care how well our method predicts last week’s stock price. We instead care about how well it will predict tomorrow’s price or next month’s price. >> On a similar note, suppose that we have clinical measurements (e.g. weight, blood pressure, height, age, family history of disease) for a number of patients, as well as information about whether each patient has diabetes. We can use these patients to train a statistical learning method to predict risk of diabetes based on clinical measurements. In practice, we want this method to accurately predict diabetes risk for _future patients_ based on their clinical measurements. We are not very interested in whether or not the method accurately predicts diabetes risk for patients used to train the model, since we already know which of those patients have diabetes. So, we're really interested in the 2020 election — but we probably don't want to wait until then to evaluate our model.There is a way we can estimate now how well our model will generalize in the future. We can't fast-forward time, but we can rewind it...We can split our data in **two sets.** For example: 1. **Train** a model on elections before 2008.2. **Test** the model on 2008, 2012, 2016. This "backtesting" helps us estimate how well the model will predict the next elections going forward, starting in 2020. This is explained in [_Forecasting,_ Chapter 3.4,](https://otexts.com/fpp2/accuracy.html) Evaluating forecast accuracy:> The accuracy of forecasts can only be determined by considering how well a model performs on new data that were not used when fitting the model.>>When choosing models, it is common practice to separate the available data into two portions, training and test data, where the training data is used to estimate any parameters of a forecasting method and the test data is used to evaluate its accuracy. Because the test data is not used in determining the forecasts, it should provide a reliable indication of how well the model is likely to forecast on new data.>>![](https://otexts.com/fpp2/fpp_files/figure-html/traintest-1.png)>>The size of the test set is typically about 20% of the total sample, although this value depends on how long the sample is and how far ahead you want to forecast. The following points should be noted.>>- A model which fits the training data well will not necessarily forecast well.>- A perfect fit can always be obtained by using a model with enough parameters.>- Over-fitting a model to data is just as bad as failing to identify a systematic pattern in the data.>>Some references describe the test set as the “hold-out set” because these data are “held out” of the data used for fitting. Other references call the training set the “in-sample data” and the test set the “out-of-sample data”. We prefer to use “training data” and “test data” in this book. **How should we split: Randomly? Before/after a given date?**I recommend you all read a great blog post, [How (and why) to create a good validation set](https://www.fast.ai/2017/11/13/validation-sets/), by fast.ai cofounder Rachel Thomas.She gives great examples to answer the question “When is a random subset not good enough?” I’m not as opposed to random splits as Rachel Thomas seems to be. But it’s worth thinking about the trade-offs!Time-based and random splits can both be useful, and you’ll get repeated hands-on practice with both during this unit! (She also talks about the distinction between validation & test sets, which we’ll introduce in the last lesson of this Sprint.) Follow AlongSplit the data in two sets:1. Train on elections before 2008.2. Test on 2008 and after. ###Code train = df[df['Year'] < 2008] #a pythonic way to write a condition test = df[df['Year'] >= 2008] ###Output _____no_output_____ ###Markdown How many observations (rows) are in the train set? In the test set? ###Code train.shape, test.shape ###Output _____no_output_____ ###Markdown Note that this volume of data is at least two orders of magnitude smaller than we usually want to work with for predictive modeling.There are other validation techniques that could be used here, such as [time series cross-validation](https://scikit-learn.org/stable/modules/cross_validation.htmltime-series-split), or [leave-one-out cross validation](https://scikit-learn.org/stable/modules/cross_validation.htmlleave-one-out-loo) for small datasets. However, for this module, let's start simpler, with train/test split. Using a tiny dataset is intentional here. It's good for learning because we can see all the data at once. ChallengeIn your assignment, you will do train/test split, based on date. Use scikit-learn to fit a multiple regression OverviewWe've done train/test split, and we're ready to fit a model. We'll proceed in 3 steps. The first 2 are review from the previous module. The 3rd is new.- Begin with baselines (0 features) - Simple regression (1 feature)- Multiple regression (2 features) Follow Along Begin with baselines (0 features) What was the average Incumbent Party Vote Share, in the 1952-2004 elections? ###Code train['Incumbent Party Vote Share'].mean() ###Output _____no_output_____ ###Markdown What if we guessed this number for every election? How far off would this be on average? ###Code # Arrange y target vectors target = 'Incumbent Party Vote Share' y_train = train[target] y_test = test[target] # Get mean baseline print('Mean Baseline (using 0 features)') guess = y_train.mean() guess # Train Error from sklearn.metrics import mean_absolute_error y_pred = [guess] * len(y_train) #creates a list of repeating guess values with a length of y_train mae = mean_absolute_error(y_train, y_pred) print(f'Train Error (1952-2004 elections): {mae:.2f} percentage points') # Test Error y_pred = [guess] * len(y_test) #creates a list of repeating guess values with a length of y_test mae = mean_absolute_error(y_test, y_pred) print(f'Test Error (2008-16 elections): {mae:.2f} percentage points') ###Output Test Error (2008-16 elections): 3.63 percentage points ###Markdown Simple regression (1 feature) Make a scatterplot of the relationship between 1 feature and the target.We'll use an economic feature: Average Recent Growth in Personal Incomes. ("Bread") ###Code import pandas as pd import plotly.express as px px.scatter( train, x='Average Recent Growth in Personal Incomes', y='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004', trendline='ols', # Ordinary Least Squares ) ###Output _____no_output_____ ###Markdown 1952 & 1968 are outliers: The incumbent party got fewer votes than predicted by the regression. What do you think could explain those years? We'll come back to this soon, but first... Use scikit-learn to fit the simple regression with one feature.Follow the [5 step process](https://jakevdp.github.io/PythonDataScienceHandbook/05.02-introducing-scikit-learn.htmlBasics-of-the-API), and refer to [Scikit-Learn LinearRegression documentation](https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LinearRegression.html). ###Code # 1. Import the appropriate estimator class from Scikit-Learn from sklearn.linear_model import LinearRegression # 2. Instantiate this class model = LinearRegression(fit_intercept=True) #True means that the y intercept will be taken into consideration. It will not automatically 0,0 as the origin # 3. Arrange X features matrices (already did y target vectors) features = ['Average Recent Growth in Personal Incomes'] X_train = train[features] X_test = test[features] print(f'Linear Regression, dependent on: {features}') # 4. Fit the model model.fit(X_train, y_train) y_pred_train = model.predict(X_train) mae = mean_absolute_error(y_train, y_pred_train) print(f'Train Error: {mae:.2f} percentage points') # 5. Apply the model to new data y_pred = model.predict(X_test) mae = mean_absolute_error(y_test, y_pred) print(f'Test Error: {mae:.2f} percentage points') ###Output Test Error: 1.80 percentage points ###Markdown How does the error compare to the baseline? Multiple regression (2 features) Make a scatterplot of the relationship between 2 features and the target.We'll add another feature: US Military Fatalities per Million. ("Peace" or the lack thereof.)Rotate the scatterplot to explore the data. What's different about 1952 & 1968? ###Code px.scatter_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Use scikit-learn to fit a multiple regression with two features. ###Code # TODO: Complete this cell # Re-arrange X features matrices features = ['Average Recent Growth in Personal Incomes', 'US Military Fatalities per Million'] print(f'Linear Regression, dependent on: {features}') X_train = train[features] X_test = test[features] # TODO: Fit the model model.fit(X_train, y_train) # TODO: Apply the model to new data y_pred_train = model.predict(X_train) mean_absolute_error(y_pred_train, y_train) #Train Data y_pred = model.predict(X_test) mean_absolute_error(y_pred, y_test) #Test Data ###Output _____no_output_____ ###Markdown How does the error compare to the prior model? Plot the plane of best fit For a regression with 1 feature, we plotted the line of best fit in 2D. (There are many ways to do this. Plotly Express's `scatter` function makes it convenient with its `trendline='ols'` parameter.)For a regression with 2 features, we can plot the plane of best fit in 3D!(Plotly Express has a `scatter_3d` function but it won't plot the plane of best fit for us. But, we can write our own function, with the same "function signature" as the Plotly Express API.) ###Code import itertools import numpy as np import plotly.express as px import plotly.graph_objs as go from sklearn.linear_model import LinearRegression def regression_3d(df, x, y, z, num=100, **kwargs): """ Visualize linear regression in 3D: 2 features + 1 target df : Pandas DataFrame x : string, feature 1 column in df y : string, feature 2 column in df z : string, target column in df num : integer, number of quantiles for each feature """ # Plot data fig = px.scatter_3d(df, x, y, z, **kwargs) # Fit Linear Regression features = [x, y] target = z model = LinearRegression() model.fit(df[features], df[target]) # Define grid of coordinates in the feature space xmin, xmax = df[x].min(), df[x].max() ymin, ymax = df[y].min(), df[y].max() xcoords = np.linspace(xmin, xmax, num) ycoords = np.linspace(ymin, ymax, num) coords = list(itertools.product(xcoords, ycoords)) # Make predictions for the grid predictions = model.predict(coords) Z = predictions.reshape(num, num).T # Plot predictions as a 3D surface (plane) fig.add_trace(go.Surface(x=xcoords, y=ycoords, z=Z)) return fig regression_3d( train, x='Average Recent Growth in Personal Incomes', y='US Military Fatalities per Million', z='Incumbent Party Vote Share', text='Year', title='US Presidential Elections, 1952-2004' ) ###Output _____no_output_____ ###Markdown Where are 1952 & 1968 in relation to the plane? Which elections are the biggest outliers now? Roll over points on the plane to see predicted incumbent party vote share (z axis), dependent on personal income growth (x axis) and military fatatlies per capita (y axis). Get and interpret coefficients During the previous module, we got the simple regression's coefficient and intercept. We plugged these numbers into an equation for the line of best fit, in slope-intercept form: $y = mx + b$Let's review this objective, but now for multiple regression.What's the equation for the plane of best fit?$y = \beta_0 + \beta_1x_1 + \beta_2x_2$Can you relate the intercept and coefficients to what you see in the plot above? ###Code model.intercept_, model.coef_ beta0 = model.intercept_ beta1, beta2 = model.coef_ print(f'y = {beta0:.2f} + {beta1:.2f}*x1 + {beta2:.2f}*x2') # This is easier to read print('Intercept', model.intercept_) coefficients = pd.Series(model.coef_, features) print(coefficients.to_string()) ###Output Intercept 46.25489966153873 Average Recent Growth in Personal Incomes 3.590047 US Military Fatalities per Million -0.053157 ###Markdown One of the coefficients is positive, and the other is negative. What does this mean? Let's look at some scenarios. We'll see that one unit's change in an independent variable results in a coefficient worth of change in the dependent variable. What does the model predict if income growth=0%, fatalities=0 ###Code model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown Income growth = 1% (fatalities = 0) ###Code model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[1, 0]]) - model.predict([[0, 0]]) ###Output _____no_output_____ ###Markdown What if... income growth = 2% (fatalities = 0) ###Code model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 0]]) - model.predict([[1, 0]]) ###Output _____no_output_____ ###Markdown What if... (income growth=2%) fatalities = 100 ###Code model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[2, 100]]) - model.predict([[2, 0]]) ###Output _____no_output_____ ###Markdown What if income growth = 3% (fatalities = 100) ###Code model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 100]]) - model.predict([[2, 100]]) ###Output _____no_output_____ ###Markdown What if (income growth = 3%) fatalities = 200 ###Code model.predict([[3, 200]]) ###Output _____no_output_____ ###Markdown The difference between these predictions = ? ###Code model.predict([[3, 200]]) - model.predict([[3, 100]]) ###Output _____no_output_____ ###Markdown ChallengeIn your assignment, you'll fit a Linear Regression with at least 2 features. Understand how ordinary least squares regression minimizes the sum of squared errors OverviewSo far, we've evaluated our models by their absolute error. It's an intuitive metric for regression problems.However, ordinary least squares doesn't directly minimize absolute error. Instead, it minimizes squared error. In this section, we'll introduce two new regression metrics: - Squared error- $R^2$ We'll demostrate two possible methods to minimize squared error:- Guess & check- Linear Algebra Follow Along Guess & CheckThis function visualizes squared errors. We'll go back to simple regression with 1 feature, because it's much easier to visualize.Use the function's m & b parameters to "fit the model" manually. Guess & check what values of m & b minimize squared error. ###Code from matplotlib.patches import Rectangle import matplotlib.pyplot as plt import numpy as np from sklearn.metrics import mean_absolute_error, mean_squared_error, r2_score def squared_errors(df, feature, target, m, b): """ Visualize linear regression, with squared errors, in 2D: 1 feature + 1 target. Use the m & b parameters to "fit the model" manually. df : Pandas DataFrame feature : string, feature column in df target : string, target column in df m : numeric, slope for linear equation b : numeric, intercept for linear requation """ # Plot data fig = plt.figure(figsize=(7,7)) ax = plt.axes() df.plot.scatter(feature, target, ax=ax) # Make predictions x = df[feature] y = df[target] y_pred = m*x + b # Plot predictions ax.plot(x, y_pred) # Plot squared errors xmin, xmax = ax.get_xlim() ymin, ymax = ax.get_ylim() scale = (xmax-xmin)/(ymax-ymin) for x, y1, y2 in zip(x, y, y_pred): bottom_left = (x, min(y1, y2)) height = abs(y1 - y2) width = height * scale ax.add_patch(Rectangle(xy=bottom_left, width=width, height=height, alpha=0.1)) # Print regression metrics mse = mean_squared_error(y, y_pred) rmse = np.sqrt(mse) mae = mean_absolute_error(y, y_pred) r2 = r2_score(y, y_pred) print('Mean Squared Error:', mse) print('Root Mean Squared Error:', rmse) print('Mean Absolute Error:', mae) print('R^2:', r2) ###Output _____no_output_____ ###Markdown Here's what the mean baseline looks like: ###Code feature = 'Average Recent Growth in Personal Incomes' squared_errors(train, feature, target, m=0, b=y_train.mean()) ###Output Mean Squared Error: 31.186940816326533 Root Mean Squared Error: 5.584526910699467 Mean Absolute Error: 4.846938775510204 R^2: 0.0 ###Markdown Notice that $R^2$ is exactly zero. [$R^2$ represents the proportion of the variance for a dependent variable that is explained by the independent variable(s).](https://en.wikipedia.org/wiki/Coefficient_of_determination)The mean baseline uses zero independent variables and explains none of the variance in the dependent variable, so its $R^2$ score is zero.The highest possible $R^2$ score is 1. The lowest possible *Train* $R^2$ score with ordinary least squares regression is 0.In this demo, it's possible to get a negative Train $R^2$, if you manually set values of m & b that are worse than the mean baseline. But that wouldn't happen in the real world.However, in the real world, it _is_ possible to get a negative *Test/Validation* $R^2$. It means that your *Test/Validation* predictions are worse than if you'd constantly predicted the mean of the *Test/Validation* set. ---Now that we've visualized the squared errors for the mean baseline, let's guess & check some better values for the m & b parameters: ###Code squared_errors(train, feature, target, m=3, b=46) #m is the coefficient, b is the intercept ###Output Mean Squared Error: 13.611378571428576 Root Mean Squared Error: 3.6893601845616235 Mean Absolute Error: 2.742142857142858 R^2: 0.5635551863970272 ###Markdown You can run the function repeatedly, with different values for m & b.How do you interpret each metric you see?- Mean Squared Error- Root Mean Squared Error- Mean Absolute Error- $R^2$Does guess & check really get used in machine learning? Sometimes! Some complex functions are hard to minimize, so we use a sophisticated form of guess & check called "gradient descent", which you'll learn about in Unit 4.Fortunately, we don't need to use guess & check for ordinary least squares regression. We have a solution, using linear algebra! Linear AlgebraThe same result that is found by minimizing the sum of the squared errors can be also found through a linear algebra process known as the "Least Squares Solution:"\begin{align}\hat{\beta} = (X^{T}X)^{-1}X^{T}y\end{align}Before we can work with this equation in its linear algebra form we have to understand how to set up the matrices that are involved in this equation. The $\beta$ vectorThe $\beta$ vector represents all the parameters that we are trying to estimate, our $y$ vector and $X$ matrix values are full of data from our dataset. The $\beta$ vector holds the variables that we are solving for: $\beta_0$ and $\beta_1$Now that we have all of the necessary parts we can set them up in the following equation:\begin{align}y = X \beta + \epsilon\end{align}Since our $\epsilon$ value represents **random** error we can assume that it will equal zero on average.\begin{align}y = X \beta\end{align}The objective now is to isolate the $\beta$ matrix. We can do this by pre-multiplying both sides by "X transpose" $X^{T}$.\begin{align}X^{T}y = X^{T}X \beta\end{align}Since anything times its transpose will result in a square matrix, if that matrix is then an invertible matrix, then we should be able to multiply both sides by its inverse to remove it from the right hand side. (We'll talk tomorrow about situations that could lead to $X^{T}X$ not being invertible.)\begin{align}(X^{T}X)^{-1}X^{T}y = (X^{T}X)^{-1}X^{T}X \beta\end{align}Since any matrix multiplied by its inverse results in the identity matrix, and anything multiplied by the identity matrix is itself, we are left with only $\beta$ on the right hand side:\begin{align}(X^{T}X)^{-1}X^{T}y = \hat{\beta}\end{align}We will now call it "beta hat" $\hat{\beta}$ because it now represents our estimated values for $\beta_0$ and $\beta_1$ Lets calculate our $\beta$ parameters with numpy! ###Code # This is NOT something you'll be tested on. It's just a demo. # X is a matrix. Add column of constants for fitting the intercept. def add_constant(X): constant = np.ones(shape=(len(X),1)) return np.hstack((constant, X)) X = add_constant(train[features].values) print('X') print(X) # y is a column vector y = train[target].values[:, np.newaxis] print('y') print(y) # Least squares solution in code X_transpose = X.T X_transpose_X = X_transpose @ X X_transpose_X_inverse = np.linalg.inv(X_transpose_X) X_transpose_y = X_transpose @ y beta_hat = X_transpose_X_inverse @ X_transpose_y print('Beta Hat') print(beta_hat) # Scikit-learn gave the exact same results! model.intercept_, model.coef_ ###Output _____no_output_____ ###Markdown Define overfitting/underfitting and the bias/variance tradeoff Overview Read [_Python Data Science Handbook,_ Chapter 5.3](https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.htmlThe-Bias-variance-trade-off). Jake VanderPlas explains overfitting & underfitting:> Fundamentally, the question of "the best model" is about finding a sweet spot in the tradeoff between bias and variance. Consider the following figure, which presents two regression fits to the same dataset:> >![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-bias-variance-2.png)>> The model on the left attempts to find a straight-line fit through the data. Because the data are intrinsically more complicated than a straight line, the straight-line model will never be able to describe this dataset well. Such a model is said to _underfit_ the data: that is, it does not have enough model flexibility to suitably account for all the features in the data; another way of saying this is that the model has high _bias_.>> The model on the right attempts to fit a high-order polynomial through the data. Here the model fit has enough flexibility to nearly perfectly account for the fine features in the data, but even though it very accurately describes the training data, its precise form seems to be more reflective of the particular noise properties of the data rather than the intrinsic properties of whatever process generated that data. Such a model is said to _overfit_ the data: that is, it has so much model flexibility that the model ends up accounting for random errors as well as the underlying data distribution; another way of saying this is that the model has high _variance_. VanderPlas goes on to connect these concepts to the "bias/variance tradeoff":> From the scores associated with these two models, we can make an observation that holds more generally:>>- For high-bias models, the performance of the model on the validation set is similar to the performance on the training set.>>- For high-variance models, the performance of the model on the validation set is far worse than the performance on the training set.>> If we imagine that we have some ability to tune the model complexity, we would expect the training score and validation score to behave as illustrated in the following figure:>>![](https://jakevdp.github.io/PythonDataScienceHandbook/figures/05.03-validation-curve.png)>> The diagram shown here is often called a validation curve, and we see the following essential features:>>- The training score is everywhere higher than the validation score. This is generally the case: the model will be a better fit to data it has seen than to data it has not seen.>- For very low model complexity (a high-bias model), the training data is under-fit, which means that the model is a poor predictor both for the training data and for any previously unseen data.>- For very high model complexity (a high-variance model), the training data is over-fit, which means that the model predicts the training data very well, but fails for any previously unseen data.>- For some intermediate value, the validation curve has a maximum. This level of complexity indicates a suitable trade-off between bias and variance.>>The means of tuning the model complexity varies from model to model. So far, our only "means of tuning the model complexity" has been selecting one feature or two features for our linear regression models. But we'll quickly start to select more features, and more complex models, with more "hyperparameters."This is just a first introduction to underfitting & overfitting. We'll continue to learn about this topic all throughout this unit. Follow Along Let's make our own Validation Curve, by tuning a new type of model complexity: polynomial degrees in a linear regression. Go back to the the NYC Tribeca condo sales data ###Code # Read NYC Tribeca condo sales data, from first 4 months of 2019. # Dataset has 90 rows, 9 columns. df = pd.read_csv(DATA_PATH+'condos/tribeca.csv') assert df.shape == (90, 9) # Arrange X features matrix & y target vector features = ['GROSS_SQUARE_FEET'] target = 'SALE_PRICE' X = df[features] y = df[target] ###Output _____no_output_____ ###Markdown Do random [train/test split](https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html) ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=11) ###Output _____no_output_____ ###Markdown Repeatedly fit increasingly complex models, and keep track of the scores ###Code from IPython.display import display, HTML from sklearn.linear_model import LinearRegression from sklearn.metrics import r2_score from sklearn.pipeline import make_pipeline from sklearn.preprocessing import PolynomialFeatures # Credit for PolynomialRegression: Jake VanderPlas, Python Data Science Handbook, Chapter 5.3 # https://jakevdp.github.io/PythonDataScienceHandbook/05.03-hyperparameters-and-model-validation.html#Validation-curves-in-Scikit-Learn def PolynomialRegression(degree=2, **kwargs): return make_pipeline(PolynomialFeatures(degree), LinearRegression(**kwargs)) polynomial_degrees = range(1, 10, 2) train_r2s = [] test_r2s = [] for degree in polynomial_degrees: model = PolynomialRegression(degree) display(HTML(f'Polynomial degree={degree}')) model.fit(X_train, y_train) train_r2 = model.score(X_train, y_train) test_r2 = model.score(X_test, y_test) display(HTML(f'<b style="color: blue">Train R2 {train_r2:.2f}</b>')) display(HTML(f'<b style="color: red">Test R2 {test_r2:.2f}</b>')) plt.scatter(X_train, y_train, color='blue', alpha=0.5) plt.scatter(X_test, y_test, color='red', alpha=0.5) plt.xlabel(features) plt.ylabel(target) x_domain = np.linspace(X.min(), X.max()) curve = model.predict(x_domain) plt.plot(x_domain, curve, color='blue') plt.show() display(HTML('<hr/>')) train_r2s.append(train_r2) test_r2s.append(test_r2) display(HTML('Validation Curve')) plt.plot(polynomial_degrees, train_r2s, color='blue', label='Train') plt.plot(polynomial_degrees, test_r2s, color='red', label='Test') plt.xlabel('Model Complexity (Polynomial Degree)') plt.ylabel('R^2 Score') plt.legend() plt.show() ###Output _____no_output_____
src/2017-03-27.ipynb
###Markdown 2017-03-27 ###Code import numpy as np import matplotlib.pyplot as plt from mpl_toolkits.mplot3d import Axes3D import math ###Output _____no_output_____ ###Markdown Nonrigorous Simulation We first establish a working resolution ###Code res = 0.01 dt = res ###Output _____no_output_____ ###Markdown Plotting our solutions We consider the following set of parameters: ###Code default_lambda_1, default_lambda_2, default_lambda_3 = 0.086, 0.141, 0.773 ###Output _____no_output_____ ###Markdown We simulate the path of a solution ###Code def quad2(x_1, y_1, x_2, y_2, lambda_1 = default_lambda_1, lambda_2 = default_lambda_2, lambda_3 = default_lambda_3): """ dz1/dt = lambda_2 * z1^2 - (lambda_2 + lambda_3) * z1 * z2 dz2/dt = lambda_1 * z2^2 - (lambda_1 + lambda_3) * z1 * z2 http://www.math.kit.edu/iag3/~herrlich/seite/wws-11/media/wws-talk-valdez.pdf """ x_1_dot = lambda_2 * (x_1**2 - y_1**2) - (lambda_2 + lambda_3) * (x_1*x_2 - y_1*y_2) y_1_dot = 2 * lambda_2 * x_1 * y_1 - (lambda_2 + lambda_3) * (x_1*y_2 + y_1*x_2) x_2_dot = lambda_1 * (x_2**2 - y_2**2) - (lambda_1 + lambda_3) * (x_1*x_2 - y_1*y_2) y_2_dot = 2 * lambda_1 * x_2 * y_2 - (lambda_1 +lambda_3) * (x_1*y_2 + y_1*x_2) return x_1_dot, y_1_dot, x_2_dot, y_2_dot ###Output _____no_output_____ ###Markdown We have three methods of plotting ###Code def plot_quad(ws, xs, ys, zs, plot_type = 0, txt = ""): if plot_type == 0: print("Plotting Double Plot Quad Viz") plt.figure(1) plt.subplot(2, 1, 1) plt.subplots_adjust(top=0.85) plt.plot(xs, ws) #plt.yscale('linear') plt.title('xy') plt.grid(True) #plt.gca().set_aspect('equal') plt.subplot(2, 1, 2) plt.plot(ys, zs) #plt.yscale('linear') plt.title('wz') plt.grid(True) #plt.gca().set_aspect('equal') plt.suptitle(txt, fontsize=14) plt.show() elif plot_type == 1: print("Plotting Overlain Double Plot Quad Viz") plt.figure(1) plt.plot(xs, ws) plt.plot(ys, zs) #plt.yscale('linear') plt.title('x-w, y-z') plt.grid(True) #plt.gca().set_aspect('equal') plt.suptitle(txt, fontsize=14) plt.show() elif plot_type == 2: print("Plotting Sphere Plot Quad Viz") fig = plt.figure() ax = fig.gca(projection='3d') plt.subplots_adjust(top=0.85) plt.suptitle(txt, fontsize=14) qdist = quad_distance(ws, xs, ys, zs) ws = np.divide(ws, qdist) xs = np.divide(xs, qdist) ys = np.divide(ys, qdist) zs = np.divide(zs, qdist) ax.plot(xs, ys, zs) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title("Nonrigorous Solution") plt.show() else: print("Invalid Plot Type") ###Output _____no_output_____ ###Markdown Here we step through our simulation ###Code stepCnt = 100000 # Need one more for the initial values ws = np.empty((stepCnt + 1,)) xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values ws[0], xs[0], ys[0], zs[0] = ( 0.372854105052, 0.393518965248, -0.0359026080443, -0.216701666067 ) # Stepping through "time". for i in range(stepCnt): # Derivatives of the W, X, Y, Z state w_dot, x_dot, y_dot, z_dot = quad2(ws[i], xs[i], ys[i], zs[i]) ws[i + 1] = ws[i] + (w_dot * dt) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) #plot_quad(ws, xs, ys, zs, float(1)) ###Output _____no_output_____ ###Markdown Seeking a periodic orbitWe will leverage the homoegeneity of the system to find a hypothetical solution (nonrigorously still, of course). We do this by fixing a period T and seeking to minimize the distance between f(x_0 + T) and f(x_0). We will vary x_0, seeking improvements via Newton's method. Random restarts may be necessary. ###Code def f(x_1, y_1, x_2, y_2): """Just a clone of quad2""" return quad2(x_1, y_1, x_2, y_2) def F(x_1, y_1, x_2, y_2, T): """Find f(x + T)""" stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1,)) xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 # Stepping through "time". for i in range(stepCnt): # Derivatives of the W, X, Y, Z state w_dot, x_dot, y_dot, z_dot = f(ws[i], xs[i], ys[i], zs[i]) ws[i + 1] = ws[i] + (w_dot * dt) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) return ws[-1], xs[-1], ys[-1], zs[-1] def quad_dist(w, x, y, z): """Computes the Euclidian distance""" return [w[i]**2 + x[i]**2 + y[i]**2 + z[i]**2 for i in range(len(w))] def quad_sq_distance(x, y): """Computes the squared distance""" dists = [ x[i] - y[i] for i in range(len(x) )] dists = [ dists[i]**2 for i in range(len(x) )] return sum(dists) default_start = (0.372854105052, 0.393518965248, -0.0359026080443, -0.216701666067) ## break up tuple, test testf = f(*default_start) start_point = F(*default_start, 0) end_point = F(*default_start, 1) ## testing print(testf) print(start_point) print(end_point) print(quad_sq_distance(start_point, end_point)) ###Output (-0.06794027539678509, 0.12813928269344135, -0.06568099441507005, 0.08288001831502431) (0.37285410505200001, 0.39351896524800001, -0.035902608044299997, -0.216701666067) (0.30628826341289472, 0.51958905370904163, -0.08841827178792637, -0.13720689546493597) 0.0294019919692 ###Markdown We define g to be ( F(x_0) - F(x_0 + T) )^2 ###Code def g(x_1, y_1, x_2, y_2, T = 1): return quad_sq_distance( F(x_1, y_1, x_2, y_2, T), F(x_1, y_1, x_2, y_2, 0) ) ## Testing print(g(*default_start)) ###Output 0.0294019919692 ###Markdown We try minimizing g while varying only T. ###Code current_T = 105.9 current_dist = 0.7339 current_radius = 5 print(g(*default_start, current_T)) while current_dist > 0.0725: ## compute distances at edges d_up = g(*default_start, current_T + current_radius) d_down = g(*default_start, current_T - current_radius) ## halve the radius current_radius = current_radius / 2 ## determine whether or not to move d_swap = min(d_up, d_down) if current_dist > d_swap: if d_up > d_down: current_T = current_T - current_radius else: current_T = current_T + current_radius current_dist = min(current_dist, d_swap) print("d_down: " + str(d_down) + " d_current: " + str(current_dist) + " d_up: " + str(d_up)) print("T: " + str(current_T) + " radius: " + str(current_radius) + " dist: " + str(current_dist)) print(g(*default_start, current_T)) ###Output 0.357088556366 d_down: 0.806794673054 d_current: 0.150002516851 d_up: 0.150002516851 T: 108.4 radius: 2.5 dist: 0.150002516851 d_down: 0.357088556366 d_current: 0.150002516851 d_up: 0.150002516851 T: 108.4 radius: 1.25 dist: 0.150002516851 d_down: 0.183891097251 d_current: 0.0817850721512 d_up: 0.0817850721512 T: 109.025 radius: 0.625 dist: 0.0817850721512 d_down: 0.086199590712 d_current: 0.0817850721512 d_up: 0.0817850721512 T: 109.025 radius: 0.3125 dist: 0.0817850721512 d_down: 0.0762484007108 d_current: 0.074520993286 d_up: 0.074520993286 T: 109.18125 radius: 0.15625 dist: 0.074520993286 d_down: 0.072553750155 d_current: 0.072553750155 d_up: 0.074520993286 T: 109.103125 radius: 0.078125 dist: 0.072553750155 d_down: 0.072553750155 d_current: 0.072553750155 d_up: 0.0728805925208 T: 109.103125 radius: 0.0390625 dist: 0.072553750155 d_down: 0.0724952627042 d_current: 0.0724952627042 d_up: 0.0726593604254 T: 109.08359375 radius: 0.01953125 dist: 0.0724952627042 0.0725012738654 ###Markdown We see that it is easy to get stuck in infinite loops while in troughs. ###Code iteration_count = 1000 x = default_start import operator def tuple_add(a, b): return tuple(map(operator.add, a, b) ) def tuple_subtract(a, b): b_neg = tuple([-k for k in b]) return tuple(map(operator.add, a, b_neg) ) def list_subtract(a, b): return list(map(operator.sub, a, b)) def approx_derivs(x): """Approximate partial deritatives of x""" gx0 = g(*x) x_1_dot = ( g(*tuple_add(x, (dt, 0, 0 , 0 ) ) ) - gx0 ) / dt x_2_dot = ( g(*tuple_add(x, (0, dt, 0 , 0 ) ) ) - gx0 ) / dt y_1_dot = ( g(*tuple_add(x, (0, 0, dt, 0 ) ) ) - gx0 ) / dt y_2_dot = ( g(*tuple_add(x, (0, 0, 0 , dt) ) ) - gx0 ) / dt return (x_1_dot, x_2_dot, y_1_dot, y_2_dot) def newton_iterate(x): gx0 = g(*x) x_1_dot = ( g(*tuple_add(x, (dt, 0, 0 , 0 ) ) ) - gx0 ) / dt x_2_dot = ( g(*tuple_add(x, (0, dt, 0 , 0 ) ) ) - gx0 ) / dt y_1_dot = ( g(*tuple_add(x, (0, 0, dt, 0 ) ) ) - gx0 ) / dt y_2_dot = ( g(*tuple_add(x, (0, 0, 0 , dt) ) ) - gx0 ) / dt # for i in range(iteration_count): # ## perform Newton iteration # x_dot = approx_derivs(x) # x = tuple_substract(x, x_dot) import numdifftools as nd def g_nd(x): return g(*tuple(x)) g_hessian = nd.core.Hessian(g_nd) g_jacobian = nd.core.Jacobian(g_nd) x_0 = default_start print(g_hessian(x_0)) print("---") print(g_jacobian(x_0)) print("---") print(np.linalg.inv(g_hessian(x_0))) print("---") print(np.matmul(np.linalg.inv(g_hessian(x_0)), np.transpose(g_jacobian(x_0)))) ###Output /Library/Frameworks/Python.framework/Versions/3.5/lib/python3.5/site-packages/scipy/linalg/basic.py:884: RuntimeWarning: internal gelsd driver lwork query error, required iwork dimension not returned. This is likely the result of LAPACK bug 0038, fixed in LAPACK 3.2.2 (released July 21, 2010). Falling back to 'gelss' driver. warnings.warn(mesg, RuntimeWarning) ###Markdown We now begin Newton iterations ###Code x_0 = list(default_start) x = x_0 hessian = nd.core.Hessian(g_nd) jacobian = nd.core.Jacobian(g_nd) for i in range(10): adjust = np.matmul(np.linalg.inv(hessian(x)), np.transpose( jacobian(x))) adjust = np.transpose(adjust)[0] #print(x) #print(adjust) x = list_subtract(x, adjust) print(x) print(g_nd(x)) print(x) print(default_start) print(default_lambda_1, default_lambda_2, default_lambda_3) def newton_search(x_0, T = 1): x = x_0 hessian = nd.core.Hessian(g_nd) jacobian = nd.core.Jacobian(g_nd) for i in range(100): adjust = np.matmul(np.linalg.inv(hessian(x)), np.transpose( jacobian(x))) adjust = np.transpose(adjust)[0] #print(x) #print(adjust) x = list_subtract(x, adjust) print(x) print(g_nd(x)) print(x) x_0 = list([3, 2, 3, 2]) #newton_search(x_0) start_plot_1 = (0, 5, -40, -40) start_plot_1 = default_start stepCnt = 100000 # Need one more for the initial values ws = np.empty((stepCnt + 1,)) xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values ws[0], xs[0], ys[0], zs[0] = start_plot_1 # Stepping through "time". for i in range(stepCnt): # Derivatives of the W, X, Y, Z state w_dot, x_dot, y_dot, z_dot = quad2(ws[i], xs[i], ys[i], zs[i]) ws[i + 1] = ws[i] + (w_dot * dt) xs[i + 1] = xs[i] + (x_dot * dt) ys[i + 1] = ys[i] + (y_dot * dt) zs[i + 1] = zs[i] + (z_dot * dt) # print(w_dot, x_dot, y_dot, z_dot) # print(ws[i], xs[i], ys[i], zs[i]) #plot_quad(ws, xs, ys, zs, 0) #plot_quad(ws, ys, xs, zs, 0) #plot_quad(*start_plot_1) def experiment_1(start_pt = default_start, T = 1, lmbda = [default_lambda_1, default_lambda_2, default_lambda_3], res = 0.001, expmt = "search"): ## define evaluation function def dots(x_0, lmbda): """ dz1/dt = lambda_2 * z1^2 - (lambda_2 + lambda_3) * z1 * z2 dz2/dt = lambda_1 * z2^2 - (lambda_1 + lambda_3) * z1 * z2 http://www.math.kit.edu/iag3/~herrlich/seite/wws-11/media/wws-talk-valdez.pdf """ x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] # print(lmbda) lambda_1 = lmbda[0] lambda_2 = lmbda[1] lambda_3 = lmbda[2] x_1_dot = lambda_2 * (x_1**2 - y_1**2) - (lambda_2 + lambda_3) * (x_1*x_2 - y_1*y_2) y_1_dot = 2 * lambda_2 * x_1 * y_1 - (lambda_2 + lambda_3) * (x_1*y_2 + y_1*x_2) x_2_dot = lambda_1 * (x_2**2 - y_2**2) - (lambda_1 + lambda_3) * (x_1*x_2 - y_1*y_2) y_2_dot = 2 * lambda_1 * x_2 * y_2 - (lambda_1 +lambda_3) * (x_1*y_2 + y_1*x_2) return [x_1_dot, y_1_dot, x_2_dot, y_2_dot] #return [-x_1_dot, -y_1_dot, -x_2_dot, -y_2_dot] def f(x_0, lmbda, T = 1): """Find f(x_0 + T)""" ### TODO: refactor, make into array, then transpose stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1, )) xs = np.empty((stepCnt + 1, )) ys = np.empty((stepCnt + 1, )) zs = np.empty((stepCnt + 1, )) # Setting initial values x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 # Stepping through "time". for i in range(stepCnt): derivs = dots([ ws[i], xs[i], ys[i], zs[i] ], lmbda ) ws[i + 1] = ws[i] + (derivs[0] * dt) xs[i + 1] = xs[i] + (derivs[1] * dt) ys[i + 1] = ys[i] + (derivs[2] * dt) zs[i + 1] = zs[i] + (derivs[3] * dt) return [ ws[-1], xs[-1], ys[-1], zs[-1] ] def g(x_0, lmbda, T = 1): """objective function""" return quad_sq_distance( f(x_0, lmbda, T), f(x_0, lmbda, 0) ) def g_T(x_0): """g instantiated with a fixed period""" return g(x_0, lmbda, T) def newton_search(x_0, T = 1, N = 25): x = x_0 hessian = nd.core.Hessian(g_T) jacobian = nd.core.Jacobian(g_T) for i in range(N): adjust = np.matmul(np.linalg.inv(hessian(x)), np.transpose( jacobian(x))) adjust = np.transpose(adjust)[0] #print(x) #print(adjust) x = list_subtract(x, adjust) print(g_T(x)) print(x) def plot_sim_path(x_0, T): stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1,)) xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 # Stepping through "time". for i in range(stepCnt): # Derivatives of the W, X, Y, Z state derivs = dots([ ws[i], xs[i], ys[i], zs[i] ], lmbda ) ws[i + 1] = ws[i] + (derivs[0] * dt) xs[i + 1] = xs[i] + (derivs[1] * dt) ys[i + 1] = ys[i] + (derivs[2] * dt) zs[i + 1] = zs[i] + (derivs[3] * dt) plot_quad(ws, xs, ys, zs, 0) if expmt == 'search': newton_search(start_pt) if expmt == 'plot': plot_sim_path(x_0, T) # experiment_1((10.2, # 9.3, # 14.4, # 12.2) , expmt = 'plot') # experiment_1((4.2, 3.3, 4.4, 2.2), # T = 10000, # lmbda = [0.086, 0.141, 0.773], # expmt = 'plot') # experiment_1(default_start, # T = 1000000, # lmbda = [0.086, 0.141, 0.773], # expmt = 'plot') # experiment_1((4.2, 3.3, 4.4, 2.2), # T = 1000, # lmbda = [0.086, 0.141, 0.773], # expmt = 'search') # experiment_1(default_start, # T = 1000, # lmbda = [0.086, 0.141, 0.773], # expmt = 'search') ###Output _____no_output_____ ###Markdown Call on 3/31/2017- Time reversal might not work: not all directions are good or bad. If you have some in either direction it's not clear what to do.- Paper by Cvitanovic, reference 8, from Royal society paper: http://rsta.royalsocietypublishing.org/content/369/1944/2345- Very similar to what we've tried: https://journals.aps.org/pre/abstract/10.1103/PhysRevE.69.016217So far: Minimize |F(T) - F(0)|^2, T = 1, s.t. F(o) = f_0- Now I'm waiting on another paper he's looking for, to minimize instead:Question: how do I look for start points? Call of 4/8- Try minimizing instead:phi(t) = int_0^T |f(t + T) - (t)|^2 dtSo that if therewere a periodic orbit , phi(t) = 0 ###Code import scipy.integrate as integrate import scipy.special as special from scipy.integrate import quad def test_integrand(t, a = 0, b = 0): return t**2 + a - b result = quad(test_integrand, 2, 4, args=(0.13, 1.03)) #result_simps = integrate.simps(integrand, 2, 4, args=(0.13, 1.03)) print("Result: " + str(result[0]) + ",\nError Bound: " + str(result[1])) from scipy.optimize import newton def experiment_2(start_pt = default_start, T = 1, lmbda = [default_lambda_1, default_lambda_2, default_lambda_3], res = 0.001, expmt = "search"): ## define evaluation function def dots(x_0, lmbda): """ dz1/dt = lambda_2 * z1^2 - (lambda_2 + lambda_3) * z1 * z2 dz2/dt = lambda_1 * z2^2 - (lambda_1 + lambda_3) * z1 * z2 http://www.math.kit.edu/iag3/~herrlich/seite/wws-11/media/wws-talk-valdez.pdf """ x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] # print(lmbda) lambda_1 = lmbda[0] lambda_2 = lmbda[1] lambda_3 = lmbda[2] x_1_dot = lambda_2 * (x_1**2 - y_1**2) - (lambda_2 + lambda_3) * (x_1*x_2 - y_1*y_2) y_1_dot = 2 * lambda_2 * x_1 * y_1 - (lambda_2 + lambda_3) * (x_1*y_2 + y_1*x_2) x_2_dot = lambda_1 * (x_2**2 - y_2**2) - (lambda_1 + lambda_3) * (x_1*x_2 - y_1*y_2) y_2_dot = 2 * lambda_1 * x_2 * y_2 - (lambda_1 +lambda_3) * (x_1*y_2 + y_1*x_2) return [x_1_dot, y_1_dot, x_2_dot, y_2_dot] #return [-x_1_dot, -y_1_dot, -x_2_dot, -y_2_dot] def f(x_0, lmbda, T = 1): """Find f(x_0 + T)""" ### TODO: refactor, make into array, then transpose stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1, )) xs = np.empty((stepCnt + 1, )) ys = np.empty((stepCnt + 1, )) zs = np.empty((stepCnt + 1, )) # Setting initial values x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 # Stepping through "time". for i in range(stepCnt): derivs = dots([ ws[i], xs[i], ys[i], zs[i] ], lmbda ) ws[i + 1] = ws[i] + (derivs[0] * dt) xs[i + 1] = xs[i] + (derivs[1] * dt) ys[i + 1] = ys[i] + (derivs[2] * dt) zs[i + 1] = zs[i] + (derivs[3] * dt) return [ ws[-1], xs[-1], ys[-1], zs[-1] ] def f_integrand(t, x_0, lmbda, T = 1): return quad_sq_distance(f(x_0, lmbda, t + T), f(x_0, lmbda, t)) def phi(t, x_0, lmbda): """What we want to minimize""" return quad(f_integrand, 0, T, args=(x_0, lmbda))[0] def phi_instance(t): return phi(t, start_pt, lmbda) def newton_search(t, T = 1, N = 25): newton(phi_instance, t) def plot_sim_path(x_0, T): stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1,)) xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) # Setting initial values x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 # Stepping through "time". for i in range(stepCnt): # Derivatives of the W, X, Y, Z state derivs = dots([ ws[i], xs[i], ys[i], zs[i] ], lmbda ) ws[i + 1] = ws[i] + (derivs[0] * dt) xs[i + 1] = xs[i] + (derivs[1] * dt) ys[i + 1] = ys[i] + (derivs[2] * dt) zs[i + 1] = zs[i] + (derivs[3] * dt) plot_quad(ws, xs, ys, zs, 0) if expmt == 'search': newton_search(t = 100) if expmt == 'plot': plot_sim_path(x_0, T) # experiment_2((4.2, 3.3, 4.4, 2.2), # T = 1, # lmbda = [0.086, 0.141, 0.773], # expmt = 'search') # experiment_2(default_start, # T = 1, # lmbda = [0.086, 0.141, 0.773], # expmt = 'search') ###Output _____no_output_____ ###Markdown It appears that the computation takes too long or is too expensive to be interesting. ###Code # experiment_2((-4.2, 3.3, -4.4, 2.2), # T = 100, # lmbda = [0.086, 0.141, 0.773], # expmt = 'search') ###Output _____no_output_____ ###Markdown Same here: It appears that the computation takes too long or is too expensive to be interesting. Can we consider other optimization algorithms, such as: - Nelder-Mead: Like gradient descent- Powell's Conjugate Direction Method- Conjugate Gradient: For system of linear equations- Broyden–Fletcher–Goldfarb–Shanno: Quasi-Newton method- Newton-Conjugate Gradient- Limited Memory BFGS- Truncade Newton- COBYLA: For constrained problem. Licensed, in Fortran.- Sequential Least Squares Programming: quasi-Newton method- Trust Region, dogleg: https://optimization.mccormick.northwestern.edu/index.php/Trust-region_methods - Newton conjugate gradient trust-region algorithm: Questions for 4/12/2017:- How do choose starting points?- What can I do with random restarts?- What can we do with trust regions? Can we explore that? Next Steps from 4/12/2017- Poincare sections: plot it in 3-D. Try a few. - Simulate a path - Write method that sees which side of the section you're on - Record point if it swaps sections ###Code class HyperPlane: def __init__(self, a, b, c, d, e): self.a = a self.b = b self.c = c self.d = d self.e = e def __call__(self, xywz): """Determines which side of the hyperplane that xywz is on""" return self.a * xywz[0] + self.b * xywz[1] + self.c * xywz[2] + self.d * xywz[3] - self.e def whichSide(self, pt): val = self.__call__(pt) if val > 0: return 1 elif val < 0: return -1 else: return 0 def __str__(self): return "Hyperplane: " + str(self.a) + "*x_1 + " + \ str(self.b) + "*y_1 + " + \ str(self.c) + "*x_2 + " + \ str(self.d) + "*y_2" + \ " = " + str(self.e) ## Testing the HyperPlane class testplane = HyperPlane(3,2,1,3,-4) print(testplane([2,2,2,4,1])) print(testplane([-10,-10,-10,-10,-10])) print(testplane.whichSide([2,2,2.4,4,1])) print(testplane.whichSide([0, 0.0, -4.0, 0, 0])) print(testplane.whichSide([-10.3,-10,-10,-10,-10])) print(testplane) class IntersectChecker: def __init__(self, hyperplane = HyperPlane(1, 1, 1, 1, 4) ): self.hyperplane = hyperplane self.flip = 0 def __call__(self, xywz): """ Checks if we crossed the hyperplane given by abcde. Returns 0 if no crossing. Return -1 if crossed from positive to negative. Return 1 if crossed from negative to positive """ val = self.hyperplane.whichSide(xywz) if self.flip == 0: ## oj first pass self.flip = val return 0 elif val != self.flip: ## changed self.flip = val return val else: ## unchanged return 0 def poincarePlot(ws, xs, ys, zs, crossings, txt = " "): ## Plot setup fig = plt.figure() ax = fig.gca(projection='3d') plt.subplots_adjust(top=0.85) plt.suptitle(txt, fontsize=14) ## slice crossings_array = np.array(crossings) indices = list(np.where(crossings_array < 0)[0]) ws = list(np.array(ws)[indices]) xs = list(np.array(xs)[indices]) ys = list(np.array(ys)[indices]) ## execute ax.plot(ws, xs, ys) ax.set_xlabel("X Axis") ax.set_ylabel("Y Axis") ax.set_zlabel("Z Axis") ax.set_title(txt) plt.show() def poincareExtract(ws, xs, ys, zs, crossings): ## slice crossings_array = np.array(crossings) indices = list(np.where(crossings_array < 0)[0]) print("crossings: " + str(len(indices))) ws = list(np.array(ws)[indices]) xs = list(np.array(xs)[indices]) ys = list(np.array(ys)[indices]) zs = list(np.array(zs)[indices]) return ws, xs, ys, zs def experiment_3(start_pt = default_start, T = 1, lmbda = [default_lambda_1, default_lambda_2, default_lambda_3], res = 0.001, hyperplane = HyperPlane(0.2, 0.4, 1.2, -2.1, -1.1), expmt = "search"): ## define evaluation function def dots(x_0, lmbda): """ dz1/dt = lambda_2 * z1^2 - (lambda_2 + lambda_3) * z1 * z2 dz2/dt = lambda_1 * z2^2 - (lambda_1 + lambda_3) * z1 * z2 http://www.math.kit.edu/iag3/~herrlich/seite/wws-11/media/wws-talk-valdez.pdf """ x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] # print(lmbda) lambda_1 = lmbda[0] lambda_2 = lmbda[1] lambda_3 = lmbda[2] x_1_dot = lambda_2 * (x_1**2 - y_1**2) - (lambda_2 + lambda_3) * (x_1*x_2 - y_1*y_2) y_1_dot = 2 * lambda_2 * x_1 * y_1 - (lambda_2 + lambda_3) * (x_1*y_2 + y_1*x_2) x_2_dot = lambda_1 * (x_2**2 - y_2**2) - (lambda_1 + lambda_3) * (x_1*x_2 - y_1*y_2) y_2_dot = 2 * lambda_1 * x_2 * y_2 - (lambda_1 +lambda_3) * (x_1*y_2 + y_1*x_2) return [x_1_dot, y_1_dot, x_2_dot, y_2_dot] ## if reversing time #return [-x_1_dot, -y_1_dot, -x_2_dot, -y_2_dot] def f(x_0, lmbda, T = 1): """Find f(x_0 + T)""" ### TODO: refactor, make into array, then transpose stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1, )) xs = np.empty((stepCnt + 1, )) ys = np.empty((stepCnt + 1, )) zs = np.empty((stepCnt + 1, )) # Setting initial values x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 # Stepping through "time". for i in range(stepCnt): derivs = dots([ ws[i], xs[i], ys[i], zs[i] ], lmbda ) ws[i + 1] = ws[i] + (derivs[0] * dt) xs[i + 1] = xs[i] + (derivs[1] * dt) ys[i + 1] = ys[i] + (derivs[2] * dt) zs[i + 1] = zs[i] + (derivs[3] * dt) return [ ws[-1], xs[-1], ys[-1], zs[-1] ] def f_integrand(t, x_0, lmbda, T = 1): return quad_sq_distance(f(x_0, lmbda, t + T), f(x_0, lmbda, t)) def phi(t, x_0, lmbda): """What we want to minimize""" return quad(f_integrand, 0, T, args=(x_0, lmbda))[0] def phi_instance(t): return phi(t, start_pt, lmbda) def newton_search(t, T = 1, N = 25): newton(phi_instance, t) def plot_sim_path(x_0, T): """Simulate path, collecting Poincare crossings""" stepCnt = math.ceil(T / dt) # Need one more for the initial values ws = np.empty((stepCnt + 1,)) xs = np.empty((stepCnt + 1,)) ys = np.empty((stepCnt + 1,)) zs = np.empty((stepCnt + 1,)) crossings = np.empty((stepCnt + 1,)) # Setting initial values x_1 = x_0[0] y_1 = x_0[1] x_2 = x_0[2] y_2 = x_0[3] ws[0], xs[0], ys[0], zs[0] = x_1, y_1, x_2, y_2 crossings[0] = 0 intersect_checker = IntersectChecker(hyperplane) ## for trackcing min/max/mean of path, relative to hyperplane pts = np.empty((stepCnt,)) # Stepping through "time". for i in range(stepCnt): # Derivatives of the W, X, Y, Z state derivs = dots([ ws[i], xs[i], ys[i], zs[i] ], lmbda ) ws[i + 1] = ws[i] + (derivs[0] * dt) xs[i + 1] = xs[i] + (derivs[1] * dt) ys[i + 1] = ys[i] + (derivs[2] * dt) zs[i + 1] = zs[i] + (derivs[3] * dt) pt = (ws[i + 1], xs[i + 1], ys[i + 1], zs[i + 1]) pts[i] = hyperplane(pt) # print(hyperplane(pt)) crossings[i + 1] = intersect_checker((ws[i + 1], xs[i + 1], ys[i + 1], zs[i + 1])) print(max(pts)) print(min(pts)) print(sum(pts) / len(pts)) poincareExtract(ws, xs, ys, zs, crossings) poincarePlot(ws, xs, ys, zs, crossings, str(hyperplane)) if expmt == 'print': print("not yet implemented") if expmt == 'plot': plot_sim_path(x_0, T) # experiment_3((4.2, 3.3, 4.4, 2.2), # T = 1000, # lmbda = [0.086, 0.141, 0.773], # expmt = 'search') experiment_1( (0.032, 0.308, -0.1, -0.5) , T = 10000, lmbda = [0.086, 0.141, 0.773], expmt = 'plot') # experiment_3(default_start, # T = 10000, # lmbda = [0.086, 0.141, 0.773], # hyperplane = HyperPlane(4, -3, -1, -4, 0), # expmt = 'plot') ###Output Plotting Double Plot Quad Viz
Data Warehouse/Amazon United Kingdom/.ipynb_checkpoints/Amazon_UK - Food - Coffee --ns-checkpoint.ipynb
###Markdown List of Products ###Code amazon_usa = {'health_and_beauty':{'hair_products':{'shampoo':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11057241%2Cn%3A17911764011%2Cn%3A11057651&dc&', 'conditioner':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11057241%2Cn%3A17911764011%2Cn%3A11057251&dc&', 'hair_scalp_treatment':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11057241%2Cn%3A11057431&dc&', 'treatment_oil':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11057241%2Cn%3A10666439011&dc&', 'hair_loss':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11057241%2Cn%3A10898755011&dc&'}, 'skin_care':{'body':{'cleansers':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060521%2Cn%3A11056281&dc&', 'moisturizers':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060521%2Cn%3A11060661&dc&', 'treatments':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060521%2Cn%3A11056421&dc&'}, 'eyes':{'creams':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11061941%2Cn%3A7730090011&dc&', 'gels':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11061941%2Cn%3A7730092011&dc&', 'serums':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11061941%2Cn%3A7730098011&dc&'}, 'face':{'f_cleansers':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060711%2Cn%3A11060901&dc&', 'f_moisturizers':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060711%2Cn%3A11060901&dc&', 'scrubs':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060711%2Cn%3A11061091&dc&', 'toners':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060711%2Cn%3A11061931&dc&', 'f_treatments':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A11060711%2Cn%3A11061931&dc&'}, 'lipcare':'https://www.amazon.com/s?i=beauty-intl-ship&bbn=16225006011&rh=n%3A%2116225006011%2Cn%3A11060451%2Cn%3A3761351&dc&'}}, 'food':{'tea':{'herbal':'https://www.amazon.com/s?k=tea&i=grocery&rh=n%3A16310101%2Cn%3A16310231%2Cn%3A16521305011%2Cn%3A16318401%2Cn%3A16318511&dc&', 'green':'https://www.amazon.com/s?k=tea&i=grocery&rh=n%3A16310101%2Cn%3A16310231%2Cn%3A16521305011%2Cn%3A16318401%2Cn%3A16318471&dc&', 'black':'https://www.amazon.com/s?k=tea&i=grocery&rh=n%3A16310101%2Cn%3A16310231%2Cn%3A16521305011%2Cn%3A16318401%2Cn%3A16318411&dc&', 'chai':'https://www.amazon.com/s?k=tea&i=grocery&rh=n%3A16310101%2Cn%3A16310231%2Cn%3A16521305011%2Cn%3A16318401%2Cn%3A348022011&dc&'}, 'coffee':'https://www.amazon.com/s?k=tea&i=grocery&rh=n%3A16310101%2Cn%3A16310231%2Cn%3A16521305011%2Cn%3A16318031%2Cn%3A2251593011&dc&', 'dried_fruits':{'mixed':'https://www.amazon.com/s?k=dried+fruits&i=grocery&rh=n%3A16310101%2Cn%3A6506977011%2Cn%3A9865332011%2Cn%3A9865334011%2Cn%3A9865348011&dc&', 'mangoes':'https://www.amazon.com/s?k=dried+fruits&rh=n%3A16310101%2Cn%3A9865346011&dc&'}, 'nuts':{'mixed':'https://www.amazon.com/s?k=nuts&rh=n%3A16310101%2Cn%3A16322931&dc&', 'peanuts':'https://www.amazon.com/s?k=nuts&i=grocery&rh=n%3A16310101%2Cn%3A18787303011%2Cn%3A16310221%2Cn%3A16322881%2Cn%3A16322941&dc&', 'cashews':'https://www.amazon.com/s?k=nuts&i=grocery&rh=n%3A16310101%2Cn%3A18787303011%2Cn%3A16310221%2Cn%3A16322881%2Cn%3A16322901&dc&'}}, 'supplements':{'sports':{'pre_workout':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A6973663011%2Cn%3A6973697011&dc&', 'protein':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A6973663011%2Cn%3A6973704011&dc&', 'fat_burner':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A6973663011%2Cn%3A6973679011&dc&', 'weight_gainer':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A6973663011%2Cn%3A6973725011&dc&'}, 'vitamins_dietary':{'supplements':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A3764441%2Cn%3A6939426011&dc&', 'multivitamins':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A3774861&dc&'}}, 'wellness':{'ayurveda':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A10079996011%2Cn%3A13052911%2Cn%3A13052941&dc&', 'essential_oil_set':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A10079996011%2Cn%3A13052911%2Cn%3A18502613011&dc&', 'massage_oil':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A10079996011%2Cn%3A14442631&dc&'}, 'personal_accessories':{'bags':{'women':{'clutches':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A17037745011&dc&', 'crossbody':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A2475899011&dc&', 'fashion':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A16977745011&dc&', 'hobo':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A16977747011&dc&'}}, 'jewelry':{'anklets':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454897011&dc&', 'bracelets':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454898011&dc&', 'earrings':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454917011&dc&', 'necklaces':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454917011&dc&', 'rings':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454939011&dc&'}, 'artisan_fabrics':'https://www.amazon.com/s?k=fabrics&rh=n%3A2617941011%2Cn%3A12899121&dc&'}} amazon_uk = {'health_and_beauty':{'hair_products':{'shampoo':'https://www.amazon.co.uk/b/ref=amb_link_5?ie=UTF8&node=74094031&pf_rd_m=A3P5ROKL5A1OLE&pf_rd_s=merchandised-search-leftnav&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_t=101&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_i=66469031', 'conditioner':'https://www.amazon.co.uk/b/ref=amb_link_6?ie=UTF8&node=2867976031&pf_rd_m=A3P5ROKL5A1OLE&pf_rd_s=merchandised-search-leftnav&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_t=101&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_i=66469031', 'hair_loss':'https://www.amazon.co.uk/b/ref=amb_link_11?ie=UTF8&node=2867979031&pf_rd_m=A3P5ROKL5A1OLE&pf_rd_s=merchandised-search-leftnav&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_t=101&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_i=66469031', 'hair_scalp_treatment':'https://www.amazon.co.uk/b/ref=amb_link_7?ie=UTF8&node=2867977031&pf_rd_m=A3P5ROKL5A1OLE&pf_rd_s=merchandised-search-leftnav&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_t=101&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_i=66469031', 'treatment_oil':'https://www.amazon.co.uk/hair-oil-argan/b/ref=amb_link_8?ie=UTF8&node=2867981031&pf_rd_m=A3P5ROKL5A1OLE&pf_rd_s=merchandised-search-leftnav&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_r=KF9SM53J2HXHP4EJD3AH&pf_rd_t=101&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_p=aaaa7182-fdd6-4b35-8f0b-993e78880b69&pf_rd_i=66469031'}, 'skin_care':{'body':{'cleanser':'https://www.amazon.co.uk/s/ref=lp_344269031_nr_n_3?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A344269031%2Cn%3A344282031&bbn=344269031&ie=UTF8&qid=1581612722&rnid=344269031', 'moisturizers':'https://www.amazon.co.uk/s/ref=lp_344269031_nr_n_1?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A344269031%2Cn%3A2805272031&bbn=344269031&ie=UTF8&qid=1581612722&rnid=344269031'}, 'eyes':{'creams':'https://www.amazon.co.uk/s/ref=lp_118465031_nr_n_0?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118465031%2Cn%3A344259031&bbn=118465031&ie=UTF8&qid=1581612984&rnid=118465031', 'gels':'https://www.amazon.co.uk/s/ref=lp_118465031_nr_n_1?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118465031%2Cn%3A344258031&bbn=118465031&ie=UTF8&qid=1581613044&rnid=118465031', 'serums':'https://www.amazon.co.uk/s/ref=lp_118465031_nr_n_3?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118465031%2Cn%3A344257031&bbn=118465031&ie=UTF8&qid=1581613044&rnid=118465031'}, 'face':{'cleansers':'https://www.amazon.co.uk/s/ref=lp_118466031_nr_n_1?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118466031%2Cn%3A344265031&bbn=118466031&ie=UTF8&qid=1581613120&rnid=118466031', 'moisturizers':'https://www.amazon.co.uk/s/ref=lp_118466031_nr_n_3?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118466031%2Cn%3A2805291031&bbn=118466031&ie=UTF8&qid=1581613120&rnid=118466031', 'toners':'https://www.amazon.co.uk/s/ref=lp_118466031_nr_n_0?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118466031%2Cn%3A344267031&bbn=118466031&ie=UTF8&qid=1581613120&rnid=118466031', 'treatments':'https://www.amazon.co.uk/s?bbn=118466031&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118466031%2Cn%3A18918424031&dc&fst=as%3Aoff&qid=1581613120&rnid=118466031&ref=lp_118466031_nr_n_7'}, 'lipcare':'https://www.amazon.co.uk/s/ref=lp_118464031_nr_n_4?fst=as%3Aoff&rh=n%3A117332031%2Cn%3A%21117333031%2Cn%3A118464031%2Cn%3A118467031&bbn=118464031&ie=UTF8&qid=1581613357&rnid=118464031'}}, 'food':{'tea':{'herbal':'https://www.amazon.co.uk/s?k=tea&i=grocery&rh=n%3A340834031%2Cn%3A358584031%2Cn%3A11711401%2Cn%3A406567031&dc&qid=1581613483&rnid=344155031&ref=sr_nr_n_1', 'green':'https://www.amazon.co.uk/s?k=tea&i=grocery&rh=n%3A340834031%2Cn%3A358584031%2Cn%3A11711401%2Cn%3A406566031&dc&qid=1581613483&rnid=344155031&ref=sr_nr_n_3', 'black':'https://www.amazon.co.uk/s?k=tea&i=grocery&rh=n%3A340834031%2Cn%3A358584031%2Cn%3A11711401%2Cn%3A406564031&dc&qid=1581613483&rnid=344155031&ref=sr_nr_n_2'}, 'coffee':'https://www.amazon.co.uk/s?k=coffee&rh=n%3A340834031%2Cn%3A11711391&dc&qid=1581613715&rnid=1642204031&ref=sr_nr_n_2', 'dried_fruits':{'mixed':'https://www.amazon.co.uk/s?k=dried+fruits&rh=n%3A340834031%2Cn%3A9733163031&dc&qid=1581613770&rnid=1642204031&ref=sr_nr_n_2'}, 'nuts':{'mixed':'https://www.amazon.co.uk/s?k=mixed&rh=n%3A359964031&ref=nb_sb_noss', 'peanuts':'https://www.amazon.co.uk/s?k=peanuts&rh=n%3A359964031&ref=nb_sb_noss', 'cashews':'https://www.amazon.co.uk/s?k=cashew&rh=n%3A359964031&ref=nb_sb_noss'}}, 'supplements':{'sports':{'pre_workout':'https://www.amazon.co.uk/b/?node=5977685031&ref_=Oct_s9_apbd_odnav_hd_bw_b35Hc3L_1&pf_rd_r=C5MZHH5TH5F868B6FQWD&pf_rd_p=8086b6c9-ae16-5c3c-a879-030afa4ee08f&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=2826478031', 'protein':'https://www.amazon.co.uk/b/?node=2826510031&ref_=Oct_s9_apbd_odnav_hd_bw_b35Hc3L_0&pf_rd_r=C5MZHH5TH5F868B6FQWD&pf_rd_p=8086b6c9-ae16-5c3c-a879-030afa4ee08f&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=2826478031', 'fat_burner':'https://www.amazon.co.uk/b/?node=5977737031&ref_=Oct_s9_apbd_odnav_hd_bw_b35Hc3L_2&pf_rd_r=C5MZHH5TH5F868B6FQWD&pf_rd_p=8086b6c9-ae16-5c3c-a879-030afa4ee08f&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=2826478031'}, 'vitamins_dietary':{'supplements':'https://www.amazon.co.uk/b/?_encoding=UTF8&node=2826534031&bbn=65801031&ref_=Oct_s9_apbd_odnav_hd_bw_b35Hdc7_2&pf_rd_r=AY01DQVCB4SE7VVE7MTK&pf_rd_p=1ecdbf02-af23-502a-b7ab-9916ddd6690c&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=2826484031', 'multivitamins':'https://www.amazon.co.uk/b/?_encoding=UTF8&node=2826506031&bbn=65801031&ref_=Oct_s9_apbd_odnav_hd_bw_b35Hdc7_1&pf_rd_r=AY01DQVCB4SE7VVE7MTK&pf_rd_p=1ecdbf02-af23-502a-b7ab-9916ddd6690c&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=2826484031'}}, 'wellness':{'massage_oil':'https://www.amazon.co.uk/b/?node=3360479031&ref_=Oct_s9_apbd_odnav_hd_bw_b50nmJ_4&pf_rd_r=GYVYF52HT2004EDTY67W&pf_rd_p=3f8e4361-c00b-588b-a07d-ff259bf98bbc&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=74073031', 'ayurveda':'https://www.amazon.co.uk/s?k=ayurveda&rh=n%3A65801031%2Cn%3A2826449031&dc&qid=1581686978&rnid=1642204031&ref=sr_nr_n_22'}, 'personal_accessories':{'bags':{'women':{'clutches':'https://www.amazon.co.uk/b/?node=1769563031&ref_=Oct_s9_apbd_odnav_hd_bw_b1vkt8h_3&pf_rd_r=VC8RX89R4V4JJ5TEBANF&pf_rd_p=cefca17f-8dac-5c80-848f-812aff1bfdd7&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=1769559031', 'crossbody':'https://www.amazon.co.uk/b/?node=1769564031&ref_=Oct_s9_apbd_odnav_hd_bw_b1vkt8h_1&pf_rd_r=VC8RX89R4V4JJ5TEBANF&pf_rd_p=cefca17f-8dac-5c80-848f-812aff1bfdd7&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=1769559031', 'fashion':'https://www.amazon.co.uk/b/?node=1769560031&ref_=Oct_s9_apbd_odnav_hd_bw_b1vkt8h_5&pf_rd_r=VC8RX89R4V4JJ5TEBANF&pf_rd_p=cefca17f-8dac-5c80-848f-812aff1bfdd7&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=1769559031', 'hobo':'https://www.amazon.co.uk/b/?node=1769565031&ref_=Oct_s9_apbd_odnav_hd_bw_b1vkt8h_4&pf_rd_r=VC8RX89R4V4JJ5TEBANF&pf_rd_p=cefca17f-8dac-5c80-848f-812aff1bfdd7&pf_rd_s=merchandised-search-11&pf_rd_t=BROWSE&pf_rd_i=1769559031'}}, 'jewelry':{'anklets':'https://www.amazon.co.uk/s/ref=lp_10382835031_nr_n_0?fst=as%3Aoff&rh=n%3A193716031%2Cn%3A%21193717031%2Cn%3A10382835031%2Cn%3A10382860031&bbn=10382835031&ie=UTF8&qid=1581687575&rnid=10382835031', 'bracelets':'https://www.amazon.co.uk/s/ref=lp_10382835031_nr_n_1?fst=as%3Aoff&rh=n%3A193716031%2Cn%3A%21193717031%2Cn%3A10382835031%2Cn%3A10382861031&bbn=10382835031&ie=UTF8&qid=1581687575&rnid=10382835031', 'earrings':'https://www.amazon.co.uk/s/ref=lp_10382835031_nr_n_4?fst=as%3Aoff&rh=n%3A193716031%2Cn%3A%21193717031%2Cn%3A10382835031%2Cn%3A10382865031&bbn=10382835031&ie=UTF8&qid=1581687575&rnid=10382835031', 'necklaces':'https://www.amazon.co.uk/s/ref=lp_10382835031_nr_n_7?fst=as%3Aoff&rh=n%3A193716031%2Cn%3A%21193717031%2Cn%3A10382835031%2Cn%3A10382868031&bbn=10382835031&ie=UTF8&qid=1581687575&rnid=10382835031', 'rings':'https://www.amazon.co.uk/s/ref=lp_10382835031_nr_n_10?fst=as%3Aoff&rh=n%3A193716031%2Cn%3A%21193717031%2Cn%3A10382835031%2Cn%3A10382871031&bbn=10382835031&ie=UTF8&qid=1581687575&rnid=10382835031'}, 'artisan_fabrics':'https://www.amazon.co.uk/s?k=fabric&rh=n%3A11052681%2Cn%3A3063518031&dc&qid=1581687726&rnid=1642204031&ref=a9_sc_1'}} amazon_india = {'health_and_beauty':{'hair_products':{'shampoo':'https://www.amazon.in/b/ref=s9_acss_bw_cg_btyH1_2a1_w?ie=UTF8&node=1374334031&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-5&pf_rd_r=JHDJ4QHM0APVS05NGF4G&pf_rd_t=101&pf_rd_p=41b9c06b-1514-47de-a1c6-f4f13fb55ffe&pf_rd_i=1374305031', 'conditioner':'https://www.amazon.in/b/ref=s9_acss_bw_cg_btyH1_2b1_w?ie=UTF8&node=1374306031&pf_rd_m=A1K21FY43GMZF8&pf_rd_s=merchandised-search-5&pf_rd_r=CBABMCW6C69JRBGZNWWP&pf_rd_t=101&pf_rd_p=41b9c06b-1514-47de-a1c6-f4f13fb55ffe&pf_rd_i=1374305031', 'treatment_oil':''}, 'skin_care':[], 'wellness_product':[]}, 'food':{'tea':[], 'coffee':[], 'dried_fruits':[], 'nuts':[], 'supplements':[]}, 'personal_accessories':{'bags':[], 'jewelry':[], 'artisan_fabrics':[]}} amazon_aus = {'health_and_beauty':{'hair_products':{'shampoo':'https://www.amazon.com.au/b/?_encoding=UTF8&node=5150253051&bbn=4851917051&ref_=Oct_s9_apbd_odnav_hd_bw_b5cXATz&pf_rd_r=6SEM7GFDN7CQ2W4KXM9M&pf_rd_p=9dd4b462-1094-5e36-890d-bb1b694c8b53&pf_rd_s=merchandised-search-12&pf_rd_t=BROWSE&pf_rd_i=5150070051', 'conditioner':'https://www.amazon.com.au/b/?_encoding=UTF8&node=5150226051&bbn=4851917051&ref_=Oct_s9_apbd_odnav_hd_bw_b5cXATz&pf_rd_r=6SEM7GFDN7CQ2W4KXM9M&pf_rd_p=9dd4b462-1094-5e36-890d-bb1b694c8b53&pf_rd_s=merchandised-search-12&pf_rd_t=BROWSE&pf_rd_i=5150070051'}, 'skin_care':[], 'wellness_product':[]}, 'food':{'tea':{'herbal':'', 'green':'', 'black':'', 'chai':''}, 'coffee':'https://www.amazon.com.au/s/ref=lp_5555314051_nr_n_0?fst=as%3Aoff&rh=n%3A5547635051%2Cn%3A%215547636051%2Cn%3A5555314051%2Cn%3A5555382051&bbn=5555314051&ie=UTF8&qid=1584207291&rnid=5555314051', 'dried_fruits':{'mixed':'', 'mangoes':''}, 'nuts':{'mixed':'', 'peanuts':'', 'cashews':''}}, 'supplements':{'sports':{'pre_workout':'', 'protein':'', 'fat_burner':'', 'weight_gainer':''}, 'vitamins_dietary':{'supplements':'', 'multivitamins':''}}, ######## 'wellness':{'ayurveda':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A10079996011%2Cn%3A13052911%2Cn%3A13052941&dc&', 'essential_oil_set':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A10079996011%2Cn%3A13052911%2Cn%3A18502613011&dc&', 'massage_oil':'https://www.amazon.com/s?k=supplements&i=hpc&rh=n%3A3760901%2Cn%3A10079996011%2Cn%3A14442631&dc&'}, 'personal_accessories':{'bags':{'women':{'clutches':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A17037745011&dc&', 'crossbody':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A2475899011&dc&', 'fashion':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A16977745011&dc&', 'hobo':'https://www.amazon.com/s?k=bags&i=fashion-womens-handbags&bbn=15743631&rh=n%3A7141123011%2Cn%3A%217141124011%2Cn%3A7147440011%2Cn%3A15743631%2Cn%3A16977747011&dc&'}}, 'jewelry':{'anklets':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454897011&dc&', 'bracelets':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454898011&dc&', 'earrings':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454917011&dc&', 'necklaces':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454917011&dc&', 'rings':'https://www.amazon.com/s?i=fashion-womens-intl-ship&bbn=16225018011&rh=n%3A16225018011%2Cn%3A7192394011%2Cn%3A7454939011&dc&'}, 'artisan_fabrics':'https://www.amazon.com/s?k=fabrics&rh=n%3A2617941011%2Cn%3A12899121&dc&'}} amazon = {'USA':amazon_usa, 'UK':amazon_uk, 'India':amazon_india, 'Australia':amazon_aus} def hover(browser, xpath): ''' This function makes an automated mouse hovering in the selenium webdriver element based on its xpath. PARAMETER --------- browser: Selenium based webbrowser xpath: str xpath of the element in the webpage where hover operation has to be performed. ''' element_to_hover_over = browser.find_element_by_xpath(xpath) hover = ActionChains(browser).move_to_element(element_to_hover_over) hover.perform() element_to_hover_over.click() def browser(link): '''This funtion opens a selenium based chromebrowser specifically tuned to work for amazon product(singular item) webpages. Few functionality includes translation of webpage, clicking the initial popups, and hovering over product imagesso that the images can be scrape PARAMETER --------- link: str Amazon Product item link RETURN ------ driver: Selenium web browser with operated functions ''' options = Options() prefs = { "translate_whitelists": {"ja":"en","de":'en'}, "translate":{"enabled":"true"} } # helium = r'C:\Users\Dell-pc\AppData\Local\Google\Chrome\User Data\Default\Extensions\njmehopjdpcckochcggncklnlmikcbnb\4.2.12_0' # options.add_argument(helium) options.add_experimental_option("prefs", prefs) options.headless = True driver = webdriver.Chrome(chrome_options=options) driver.get(link) try: driver.find_element_by_xpath('//*[@id="nav-main"]/div[1]/div[2]/div/div[3]/span[1]/span/input').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[3]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[4]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[5]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[6]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[7]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[8]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass try: hover(driver,'//*[@id="altImages"]/ul/li[9]') except: pass try: driver.find_element_by_xpath('//*[@id="a-popover-6"]/div/header/button/i').click() except: pass return driver def scroll_temp(driver): ''' Automated Scroller in Selenium Webbrowser PARAMETER --------- driver: Selenium Webbrowser ''' pre_scroll_height = driver.execute_script('return document.body.scrollHeight;') run_time, max_run_time = 0, 2 while True: iteration_start = time.time() # Scroll webpage, the 100 allows for a more 'aggressive' scroll driver.execute_script('window.scrollTo(0,0.6*document.body.scrollHeight);') post_scroll_height = driver.execute_script('return document.body.scrollHeight;') scrolled = post_scroll_height != pre_scroll_height timed_out = run_time >= max_run_time if scrolled: run_time = 0 pre_scroll_height = post_scroll_height elif not scrolled and not timed_out: run_time += time.time() - iteration_start elif not scrolled and timed_out: break # def scroll(driver): # scroll_temp(driver) # from selenium.common.exceptions import NoSuchElementException # try: # element = driver.find_element_by_xpath('//*[@id="reviewsMedley"]/div/div[1]') # except NoSuchElementException: # try: # element = driver.find_element_by_xpath('//*[@id="reviewsMedley"]') # except NoSuchElementException: # element = driver.find_element_by_xpath('//*[@id="detail-bullets_feature_div"]') # actions = ActionChains(driver) # actions.move_to_element(element).perform() def scroll(driver): scroll_temp(driver) from selenium.common.exceptions import NoSuchElementException try: try: element = driver.find_element_by_xpath('//*[@id="reviewsMedley"]/div/div[1]') except NoSuchElementException: try: element = driver.find_element_by_xpath('//*[@id="reviewsMedley"]') except NoSuchElementException: element = driver.find_element_by_xpath('//*[@id="detail-bullets_feature_div"]') actions = ActionChains(driver) actions.move_to_element(element).perform() except NoSuchElementException: pass def browser_link(product_link,country): '''Returns all the web link of the products based on the first page of the product category. It captures product link of all the pages for that specific product. PARAMETER --------- link: str The initial web link of the product page. This is generally the first page of the all the items for that specfic product RETURN ------ links: list It is a list of strings which contains all the links of the items for the specific product ''' driver = browser(product_link) soup = BeautifulSoup(driver.page_source, 'lxml') try: pages_soup = soup.findAll("ul",{"class":"a-pagination"}) pages = int(pages_soup[0].findAll("li",{'class':'a-disabled'})[1].text) except: pass try: pages_soup = soup.findAll("div",{"id":"pagn"}) pages = int(pages_soup[0].findAll("span",{'class':'pagnDisabled'})[0].text) except: try: pages_soup = soup.findAll("div",{"id":"pagn"}) pages = int(pages_soup[0].findAll("span",{'class':'pagnDisabled'})[1].text) except: pass print(pages) links = [] for page in range(1,pages+1): print(page) link_page = product_link + '&page=' + str(page) driver_temp = browser(link_page) time.sleep(2) soup_temp = BeautifulSoup(driver_temp.page_source, 'lxml') try: search = soup_temp.findAll("div",{"id":"mainResults"}) temp_search = search[1].findAll("a",{'class':'a-link-normal s-access-detail-page s-color-twister-title-link a-text-normal'}) for i in range(len(temp_search)): if country == 'Australia': link = temp_search[i].get('href') else: link = countries_link[country] + temp_search[i].get('href') links.append(link) print(len(links)) except: try: search = soup_temp.findAll("div",{"class":"s-result-list s-search-results sg-row"}) temp_search = search[1].findAll("h2") if len(temp_search) < 2: for i in range(len(search[0].findAll("h2"))): temp = search[0].findAll("h2")[i] for j in range(len(temp.findAll('a'))): link = countries_link[country]+temp.findAll('a')[j].get('href') links.append(link) print(len(links)) else: for i in range(len(search[1].findAll("h2"))): temp = search[1].findAll("h2")[i] for j in range(len(temp.findAll('a'))): link = countries_link[country]+temp.findAll('a')[j].get('href') links.append(link) print(len(links)) except: pass try: search = soup_temp.findAll("div",{"id":"mainResults"}) temp_search = search[0].findAll("a",{'class':'a-link-normal s-access-detail-page s-color-twister-title-link a-text-normal'}) for i in range(len(temp_search)): if country == 'Australia': link = temp_search[i].get('href') else: link = countries_link[country] + temp_search[i].get('href') links.append(link) print(len(links)) except: try: search = soup_temp.findAll("div",{"class":"s-result-list s-search-results sg-row"}) temp_search = search[1].findAll("h2") if len(temp_search) < 2: for i in range(len(search[0].findAll("h2"))): temp = search[0].findAll("h2")[i] for j in range(len(temp.findAll('a'))): link = countries_link[country]+temp.findAll('a')[j].get('href') links.append(link) print(len(links)) else: for i in range(len(search[1].findAll("h2"))): temp = search[1].findAll("h2")[i] for j in range(len(temp.findAll('a'))): link = countries_link[country]+temp.findAll('a')[j].get('href') links.append(link) print(len(links)) except: print('Not Scrapable') return links def indexes(amazon_links,link_list): amazon_dict = amazon_links if len(link_list) == 5: return amazon_dict[link_list[0]][link_list[1]][link_list[2]][link_list[3]][link_list[4]] elif len(link_list) == 4: return amazon_dict[link_list[0]][link_list[1]][link_list[2]][link_list[3]] elif len(link_list) == 3: return amazon_dict[link_list[0]][link_list[1]][link_list[2]] elif len(link_list) == 2: return amazon_dict[link_list[0]][link_list[1]] elif len(link_list) == 1: return amazon_dict[link_list[0]] else: return print("Invalid Product") def products_links(country, **kwargs): amazon_links = amazon[country] directory_temp = [] for key, value in kwargs.items(): directory_temp.append(value) directory = '/'.join(directory_temp) print(directory) product_link = indexes(amazon_links,directory_temp) main_links = browser_link(product_link,country=country) return main_links,directory ###Output _____no_output_____ ###Markdown Product Scraper Function ###Code def delete_images(filename): import os file_path = '/home/jishu/Amazon_AU/' os.remove(file_path + filename) def upload_s3(filename,key): key_id = 'AKIAWR6YW7N5ZKW35OJI' access_key = 'h/xrcI9A2SRU0ds+zts4EClKAqbzU+/iXdiDcgzm' bucket_name = 'amazon-data-ecfullfill' s3 = boto3.client('s3',aws_access_key_id=key_id, aws_secret_access_key=access_key) try: s3.upload_file(filename,bucket_name,key) except FileNotFoundError: pass def product_info(link,directory,country): '''Get all the product information of an Amazon Product''' #Opening Selenium Webdrive with Amazon product driver = browser(link) time.sleep(4) scroll(driver) time.sleep(2) #Initializing BeautifulSoup operation in selenium browser selenium_soup = BeautifulSoup(driver.page_source, 'lxml') time.sleep(2) #Product Title try: product_title = driver.find_element_by_xpath('//*[@id="productTitle"]').text except: product_title = 'Not Scrapable' print(product_title) #Ratings - Star try: rating_star = float(selenium_soup.findAll('span',{'class':'a-icon-alt'})[0].text.split()[0]) except: rating_star = 'Not Scrapable' print(rating_star) #Rating - Overall try: overall_rating = int(selenium_soup.findAll('span',{'id':'acrCustomerReviewText'})[0].text.split()[0].replace(',','')) except: overall_rating = 'Not Scrapable' print(overall_rating) #Company try: company = selenium_soup.findAll('a',{'id':'bylineInfo'})[0].text except: company = 'Not Scrapable' print(country) #Price try: denomination = '$' if country=='UAE': denomination = selenium_soup.findAll('span',{'id':'priceblock_ourprice'})[0].text[:3] price = float(selenium_soup.findAll('span',{'id':'priceblock_ourprice'})[0].text[3:]) else: denomination = selenium_soup.findAll('span',{'id':'priceblock_ourprice'})[0].text[0] price = float(selenium_soup.findAll('span',{'id':'priceblock_ourprice'})[0].text[1:]) except: try: if country=='UAE': try: price = float(selenium_soup.findAll('span',{'id':'priceblock_ourprice'})[0].text[3:].replace(',','')) except: price = float(selenium_soup.findAll('span',{'id':'priceblock_dealprice'})[0].text[3:].replace(',','')) else: try: price = float(selenium_soup.findAll('span',{'id':'priceblock_ourprice'})[0].text[3:].replace(',','')) except: price = float(selenium_soup.findAll('span',{'id':'priceblock_dealprice'})[0].text[3:].replace(',','')) except: denomination = 'Not Scrapable' price = 'Not Scrapable' print(denomination,price) #Product Highlights try: temp_ph = selenium_soup.findAll('ul',{'class':'a-unordered-list a-vertical a-spacing-none'})[0].findAll('li') counter_ph = len(temp_ph) product_highlights = [] for i in range(counter_ph): raw = temp_ph[i].text clean = raw.strip() product_highlights.append(clean) product_highlights = '<CPT14>'.join(product_highlights) except: try: temp_ph = selenium_soup.findAll('div',{'id':'rich-product-description'})[0].findAll('p') counter_ph = len(temp_ph) product_highlights = [] for i in range(counter_ph): raw = temp_ph[i].text clean = raw.strip() product_highlights.append(clean) product_highlights = '<CPT14>'.join(product_highlights) except: product_highlights = 'Not Available' print(product_highlights) #Product Details/Dimensions: #USA try: temp_pd = selenium_soup.findAll('div',{'class':'content'})[0].findAll('ul')[0].findAll('li') counter_pd = len(temp_pd) for i in range(counter_pd): try: if re.findall('ASIN',temp_pd[i].text)[0]: try: asin = temp_pd[i].text.split(' ')[1] except: pass except IndexError: pass try: if re.findall('Product Dimensions|Product Dimension|Product dimensions',temp_pd[i].text)[0]: pd_temp = temp_pd[i].text.strip().split('\n')[2].strip().split(';') try: product_length = float(pd_temp[0].split('x')[0]) except IndexError: pass try: product_width = float(pd_temp[0].split('x')[1]) except IndexError: pass try: product_height = float(pd_temp[0].split('x')[2].split(' ')[1]) except IndexError: pass try: pd_unit = pd_temp[0].split('x')[2].split(' ')[2] except IndexError: pass try: product_weight = float(pd_temp[1].split(' ')[1]) except IndexError: pass try: weight_unit = pd_temp[1].split(' ')[2] except IndexError: pass except: pass try: if re.findall('Shipping Weight|Shipping weight|shipping weight',temp_pd[i].text)[0]: sweight_temp = temp_pd[i].text.split(':')[1].strip().split(' ') shipping_weight = float(sweight_temp[0]) shipping_weight_unit = sweight_temp[1] except IndexError: pass try: if re.findall('Amazon Best Sellers Rank|Amazon Bestsellers Rank',temp_pd[i].text)[0]: x = temp_pd[i].text.replace('\n','').split(' ') indexes = [] for j,k in enumerate(x): if re.findall('#',k): indexes.append(j) try: best_seller_cat = int(temp_pd[i].text.strip().replace('\n','').split(' ')[3].replace(',','')) best_seller_prod = int(x[indexes[0]].split('#')[1].split('in')[0]) except: try: best_seller_cat = x[indexes[0]].split('#')[1] except: pass try: best_seller_prod = x[indexes[1]].split('#')[1].split('in')[0] except: pass except IndexError: pass print(asin) except: pass try: temp_pd = selenium_soup.findAll('div',{'class':'content'})[1].findAll('ul')[0].findAll('li') counter_pd = len(temp_pd) for i in range(counter_pd): try: if re.findall('ASIN',temp_pd[i].text)[0]: try: asin = temp_pd[i].text.split(' ')[1] except: pass except IndexError: pass try: if re.findall('Product Dimensions|Product Dimension|Product dimensions',temp_pd[i].text)[0]: pd_temp = temp_pd[i].text.strip().split('\n')[2].strip().split(';') try: product_length = float(pd_temp[0].split('x')[0]) except IndexError: pass try: product_width = float(pd_temp[0].split('x')[1]) except IndexError: pass try: product_height = float(pd_temp[0].split('x')[2].split(' ')[1]) except IndexError: pass try: pd_unit = pd_temp[0].split('x')[2].split(' ')[2] except IndexError: pass try: product_weight = float(pd_temp[1].split(' ')[1]) except IndexError: pass try: weight_unit = pd_temp[1].split(' ')[2] except IndexError: pass except: pass try: if re.findall('Shipping Weight|Shipping weight|shipping weight',temp_pd[i].text)[0]: sweight_temp = temp_pd[i].text.split(':')[1].strip().split(' ') shipping_weight = float(sweight_temp[0]) shipping_weight_unit = sweight_temp[1] except IndexError: pass try: if re.findall('Amazon Best Sellers Rank|Amazon Bestsellers Rank',temp_pd[i].text)[0]: x = temp_pd[i].text.replace('\n','').split(' ') indexes = [] for j,k in enumerate(x): if re.findall('#',k): indexes.append(j) try: best_seller_cat = int(temp_pd[i].text.strip().replace('\n','').split(' ')[3].replace(',','')) best_seller_prod = int(x[indexes[0]].split('#')[1].split('in')[0]) except: try: best_seller_cat = x[indexes[0]].split('#')[1] except: pass try: best_seller_prod = x[indexes[1]].split('#')[1].split('in')[0] except: pass except IndexError: pass print(asin) except: pass #India try: temp_pd = selenium_soup.findAll('div',{'class':'content'})[0].findAll('ul')[0].findAll('li') counter_pd = len(temp_pd) for i in range(counter_pd): try: if re.findall('ASIN',temp_pd[i].text)[0]: asin = temp_pd[i].text.split(' ')[1] except: pass try: if re.findall('Product Dimensions|Product Dimension|Product dimensions',temp_pd[i].text)[0]: pd_temp = temp_pd[i].text.strip().split('\n')[2].strip().split(' ') try: product_length = float(pd_temp[0]) except: pass try: product_width = float(pd_temp[2]) except: pass try: product_height = float(pd_temp[4]) except: pass try: pd_unit = pd_temp[5] except: pass try: product_weight = float(pd_temp[1].split(' ')[1]) except: pass try: weight_unit = pd_temp[1].split(' ')[2] except: pass print(asin) except IndexError: pass try: if re.findall('Shipping Weight|Shipping weight|shipping weight',temp_pd[i].text)[0]: sweight_temp = temp_pd[i].text.split(':')[1].strip().split(' ') shipping_weight = float(sweight_temp[0]) shipping_weight_unit = sweight_temp[1] except IndexError: pass try: if re.findall('Item Weight|Product Weight|Item weight|Product weight|Boxed-product Weight',temp_pd[i].text)[0]: pd_weight_temp = temp_pd[i].text.replace('\n','').strip().split(' ')[1].strip() product_weight = float(pd_weight_temp.split(' ')[0]) weight_unit = pd_weight_temp.split(' ')[1] except IndexError: pass try: if re.findall('Amazon Best Sellers Rank|Amazon Bestsellers Rank',temp_pd[i].text)[0]: x = temp_pd[i].text.strip().replace('\n','').split(' ') indexes = [] for j,k in enumerate(x): if re.findall('#',k): indexes.append(j) try: best_seller_cat = int(temp_pd[i].text.strip().replace('\n','').split(' ')[3].replace(',','')) best_seller_prod = int(x[indexes[0]].split('#')[1].split('in')[0]) except: try: best_seller_cat = x[indexes[0]].split('#')[1] except: pass try: best_seller_prod = x[indexes[1]].split('#')[1].split('in')[0] except: pass except IndexError: pass print(asin) except: pass try: try: asin = list(selenium_soup.findAll('div',{'class':'pdTab'})[1].findAll('tr')[0].findAll('td')[1])[0] except: pass try: dimensions = list(selenium_soup.findAll('div',{'class':'pdTab'})[0].findAll('tr')[0].findAll('td')[1])[0] except: pass try: weight_temp = list(selenium_soup.findAll('div',{'class':'pdTab'})[1].findAll('tr')[1].findAll('td')[1])[0] except: pass try: best_seller_cat = float(list(selenium_soup.findAll('div',{'class':'pdTab'})[1].findAll('tr')[5].findAll('td')[1])[0].split('\n')[-1].split(' ')[0].replace(',','')) except: pass try: best_seller_prod = int(list(list(list(list(selenium_soup.findAll('div',{'class':'pdTab'})[1].findAll('tr')[5].findAll('td')[1])[5])[1])[1])[0].replace('#','')) except: pass try: product_length = float(dimensions.split('x')[0]) except: pass try: product_width = float(dimensions.split('x')[1]) except: pass try: product_height = float(dimensions.split('x')[2].split(' ')[1]) except: pass try: product_weight = weight_temp.split(' ')[0] except: pass try: weight_unit = weight_temp.split(' ')[1] except: pass try: pd_unit = dimensions.split(' ')[-1] except: pass print(asin) except: try: for j in [0,1]: temp_pd = selenium_soup.findAll('table',{'class':'a-keyvalue prodDetTable'})[j].findAll('tr') for i in range(len(temp_pd)): if re.findall('ASIN',temp_pd[i].text): asin = temp_pd[i].text.strip().split('\n')[3].strip() if re.findall('Item Model Number|Item model number',temp_pd[i].text): bait = temp_pd[i].text.strip().split('\n')[3].strip() if re.findall('Best Sellers Rank|Amazon Best Sellers Rank|Amazon Bestsellers Rank',temp_pd[i].text): x = temp_pd[i].text.strip().replace('\n','').split(' ') indexes = [] for j,k in enumerate(x): if re.findall('#',k): indexes.append(j) best_seller_cat = int(x[indexes[0]].split('#')[1]) best_seller_prod = int(x[indexes[1]].split('#')[1].split('in')[0]) if re.findall('Product Dimensions|Product dimension|Product Dimension',temp_pd[i].text): dimensions = temp_pd[i].text.strip().split('\n')[3].strip().split('x') product_length = float(dimensions[0].strip()) product_width = float(dimensions[1].strip()) product_height = float(dimensions[2].strip().split(' ')[0]) pd_unit = dimensions[2].strip().split(' ')[1] if re.findall('Item Weight|Product Weight|Item weight|Boxed-product Weight',temp_pd[i].text): weight_temp = temp_pd[i].text.strip().split('\n')[3].strip() product_weight = float(weight_temp.split(' ')[0]) weight_unit = weight_temp.split(' ')[1] if re.findall('Shipping Weight|Shipping weight|shipping weight',temp_pd[i].text): sweight_temp = temp_pd[i].text.replace('\n','').strip().split(' ')[1].lstrip().split(' ') shipping_weight = float(sweight_temp[0]) shipping_weight_unit = sweight_temp[1] print(asin,bait) except: try: temp_pd = selenium_soup.findAll('div',{'id':'prodDetails'})[0].findAll('tr') for i in range(len(temp_pd)): if re.findall('ASIN',temp_pd[i].text): asin = temp_pd[i].text.strip().split('\n')[3].strip() if re.findall('Best Sellers Rank|Amazon Best Sellers Rank|Amazon Bestsellers Rank',temp_pd[i].text): x = temp_pd[i].text.strip().replace('\n','').split(' ') indexes = [] for j,k in enumerate(x): if re.findall('#',k): indexes.append(j) best_seller_cat = int(x[indexes[0]].split('#')[1]) best_seller_prod = int(x[indexes[1]].split('#')[1].split('in')[0]) if re.findall('Product Dimensions|Product dimension|Product Dimension',temp_pd[i].text): dimensions = temp_pd[i].text.strip().split('\n')[3].strip().split('x') product_length = float(dimensions[0].strip()) product_width = float(dimensions[1].strip()) product_height = float(dimensions[2].strip().split(' ')[0]) pd_unit = dimensions[2].strip().split(' ')[1] if re.findall('Item Weight|Product Weight|Item weight|Boxed-product Weight',temp_pd[i].text): weight_temp = temp_pd[i].text.strip().split('\n')[3].strip() product_weight = float(weight_temp.split(' ')[0]) weight_unit = weight_temp.split(' ')[1] if re.findall('Shipping Weight|Shipping weight|shipping weight',temp_pd[i].text): sweight_temp = temp_pd[i].text.replace('\n','').strip().split(' ')[1].lstrip().split(' ') shipping_weight = float(sweight_temp[0]) shipping_weight_unit = sweight_temp[1] except: try: temp_pd = selenium_soup.findAll('div',{'id':'detail_bullets_id'})[0].findAll('tr')[0].findAll('li') for i in range(len(temp_pd)): if re.findall('ASIN',temp_pd[i].text): asin = temp_pd[i].text.strip().split(':')[1].strip() if re.findall('Best Sellers Rank|Amazon Best Sellers Rank|Amazon Bestsellers Rank',temp_pd[i].text): x = temp_pd[i].text.strip().replace('\n','').split(' ') indexes = [] for j,k in enumerate(x): if re.findall('#',k): indexes.append(j) best_seller_cat = int(x[indexes[0]].split('#')[1]) best_seller_prod = int(x[indexes[1]].split('#')[1].split('in')[0]) if re.findall('Product Dimensions|Product dimension|Product Dimension',temp_pd[i].text): dimensions = temp_pd[i].text.strip().split('\n')[2].strip().split('x') product_length = float(dimensions[0].strip()) product_width = float(dimensions[1].strip()) product_height = float(dimensions[2].strip().split(' ')[0]) pd_unit = dimensions[2].strip().split(' ')[1] if re.findall('Item Weight|Product Weight|Item weight|Boxed-product Weight',temp_pd[i].text): weight_temp = temp_pd[i].text.strip().split('\n')[2].strip() product_weight = float(weight_temp.split(' ')[0]) weight_unit = weight_temp.split(' ')[1] if re.findall('Shipping Weight|Shipping weight|shipping weight',temp_pd[i].text): sweight_temp = temp_pd[i].text.replace('\n','').strip().split(' ')[1].lstrip().split(' ') shipping_weight = float(sweight_temp[0]) shipping_weight_unit = sweight_temp[1] except: pass try: print(asin) except NameError: asin = 'Not Scrapable' try: print(best_seller_cat) except NameError: best_seller_cat = 'Not Scrapable' try: print(best_seller_prod) except NameError: best_seller_prod = 'Not Scrapable' try: print(product_length) except NameError: product_length = 'Not Scrapable' try: print(product_width) except NameError: product_width = 'Not Scrapable' try: print(product_height) except NameError: product_height = 'Not Scrapable' try: print(product_weight) except NameError: product_weight = 'Not Scrapable' try: print(weight_unit) except NameError: weight_unit = 'Not Scrapable' try: print(pd_unit) except NameError: pd_unit = 'Not Scrapable' try: print(shipping_weight_unit) except NameError: shipping_weight_unit = 'Not Scrapable' try: print(shipping_weight) except NameError: shipping_weight = 'Not Scrapable' print(product_length,product_width,product_height,product_weight,asin,pd_unit, best_seller_cat,best_seller_prod,weight_unit,shipping_weight,shipping_weight_unit) #Customer Review Ratings - Overall time.sleep(0.5) try: temp_crr = selenium_soup.findAll('table',{'id':'histogramTable'})[1].findAll('a') crr_main = {} crr_temp = [] counter_crr = len(temp_crr) for i in range(counter_crr): crr_temp.append(temp_crr[i]['title']) crr_temp = list(set(crr_temp)) for j in range(len(crr_temp)): crr_temp[j] = crr_temp[j].split(' ') stopwords = ['stars','represent','of','rating','reviews','have'] for word in list(crr_temp[j]): if word in stopwords: crr_temp[j].remove(word) print(crr_temp[j]) try: if re.findall(r'%',crr_temp[j][1])[0]: crr_main.update({int(crr_temp[j][0]): int(crr_temp[j][1].replace('%',''))}) except: crr_main.update({int(crr_temp[j][1]): int(crr_temp[j][0].replace('%',''))}) except: try: temp_crr = selenium_soup.findAll('table',{'id':'histogramTable'})[1].findAll('span',{'class':'a-offscreen'}) crr_main = {} counter_crr = len(temp_crr) star = counter_crr for i in range(counter_crr): crr_main.update({star:int(temp_crr[i].text.strip().split('/n')[0].split(' ')[0].replace('%',''))}) star -= 1 except: pass try: crr_5 = crr_main[5] except: crr_5 = 0 try: crr_4 = crr_main[4] except: crr_4 = 0 try: crr_3 = crr_main[3] except: crr_3 = 0 try: crr_2 = crr_main[2] except: crr_2 = 0 try: crr_1 = crr_main[1] except: crr_1 = 0 #Customer Review Ratings - By Feature time.sleep(1) try: driver.find_element_by_xpath('//*[@id="cr-summarization-attributes-list"]/div[4]/a/span').click() temp_fr = driver.find_element_by_xpath('//*[@id="cr-summarization-attributes-list"]').text temp_fr = temp_fr.split('\n') crr_feature_title = [] crr_feature_rating = [] for i in [0,2,4]: crr_feature_title.append(temp_fr[i]) for j in [1,3,5]: crr_feature_rating.append(temp_fr[j]) crr_feature = dict(zip(crr_feature_title,crr_feature_rating)) except: try: temp_fr = driver.find_element_by_xpath('//*[@id="cr-summarization-attributes-list"]').text temp_fr = temp_fr.split('\n') crr_feature_title = [] crr_feature_rating = [] for i in [0,2,4]: crr_feature_title.append(temp_fr[i]) for j in [1,3,5]: crr_feature_rating.append(temp_fr[j]) crr_feature = dict(zip(crr_feature_title,crr_feature_rating)) except: crr_feature = 'Not Defined' try: crr_feature_key = list(crr_feature.keys()) except: pass try: crr_fr_1 = crr_feature[crr_feature_key[0]] except: crr_fr_1 = 0 try: crr_fr_2 = crr_feature[crr_feature_key[1]] except: crr_fr_2 = 0 try: crr_fr_3 = crr_feature[crr_feature_key[2]] except: crr_fr_3 = 0 #Tags: time.sleep(1) try: temp_tags = selenium_soup.findAll('div',{'class':'cr-lighthouse-terms'})[0] counter_tags = len(temp_tags) print('Counter Tags:',counter_tags) tags = [] for i in range(counter_tags): tags.append(temp_tags.findAll('span')[i].text.strip()) print(tags[i]) except: tags = ['None'] try: for feature in crr_feature_key: tags.append(feature) except: pass tags = list(set(tags)) tags = '<CPT14>'.join(tags) print(tags) #Images images = [] for i in [0,3,4,5,6,7,8,9]: try: images.append(selenium_soup.findAll('div',{'class':'imgTagWrapper'})[i].find('img')['src']) except: pass import urllib.request for i in range(len(images)): if asin =='Not Scrapable': product_image = "{}_{}.jpg".format(product_title,i) product_image = product_image.replace('/','') urllib.request.urlretrieve(images[i],product_image) upload_s3("{}_{}.jpg".format(product_title,i), directory+"/images/" + product_image) delete_images(product_image) else: product_image = "{}_{}.jpg".format(asin,i) product_image = product_image.replace('/','') urllib.request.urlretrieve(images[i],product_image) upload_s3("{}_{}.jpg".format(asin,i), directory+"/images/" + product_image) delete_images(product_image) return [product_title,rating_star,overall_rating,company,price, product_highlights,product_length,product_width,product_height, product_weight,asin,pd_unit,best_seller_cat,best_seller_prod, weight_unit,shipping_weight,shipping_weight_unit,crr_5,crr_4, crr_3,crr_2,crr_1,crr_fr_1,crr_fr_2,crr_fr_3,tags,directory] ###Output _____no_output_____ ###Markdown Data Wrangling ###Code def database(product_data,**kwargs): try: try: link = kwargs['link'] except KeyError: print('Error in Link') try: country = kwargs['country'] except KeyError: print("Enter Country Name") try: cat1 = kwargs['cat1'] except KeyError: pass try: cat2 = kwargs['cat2'] except KeyError: pass try: cat3 = kwargs['cat3'] except KeyError: pass try: cat4 = kwargs['cat4'] except KeyError: pass try: product = kwargs['product'] except KeyError: print("Enter Product Name") metadata = [link,country,cat1,cat2,cat3,cat4,product] except NameError: try: cat4 = None metadata = [link,country,cat1,cat2,cat3,cat4,product] except NameError: try: cat4 = None cat3 = None metadata = [link,country,cat1,cat2,cat3,cat4,product] except NameError: cat4 = None cat3 = None cat2 = None metadata = [link,country,cat1,cat2,cat3,cat4,product] conn = sqlite3.connect('{}.db'.format(product)) headers = ['link','country','cat1','cat2','cat3','cat4','product','product_title', 'rating_star','overall_rating','company','price', 'product_highlights','product_length','product_width','product_height', 'product_weight','asin','pd_unit','best_seller_cat','best_seller_prod', 'weight_unit','shipping_weight','shipping_weight_unit','crr_5','crr_4', 'crr_3','crr_2','crr_1','crr_fr_1','crr_fr_2','crr_fr_3','tags','images_link'] product_data.append(metadata) product_data = product_data[-1] + product_data[:len(product_data)-1] temp = pd.DataFrame(data= [product_data],columns=headers) temp.to_sql('Product',conn,if_exists='append') upload_s3(product+'.db',directory+'/'+product+'.db') conn.close() def checkpoint(link_list,directory,product): BUCKET_NAME = 'amazon-data-ecfullfill' key_id = 'AKIAWR6YW7N5ZKW35OJI' access_key = 'h/xrcI9A2SRU0ds+zts4EClKAqbzU+/iXdiDcgzm' KEY = '{}/{}.db'.format(directory,product) s3 = boto3.resource('s3',aws_access_key_id=key_id, aws_secret_access_key=access_key) try: s3.Bucket(BUCKET_NAME).download_file(KEY, 'test.db') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print("The object does not exist.") else: raise conn = sqlite3.connect('test.db') try: df = pd.read_sql('''SELECT * FROM Product''', conn) product_link = df['link'].unique() new_list = [] for i in link_list: if i in product_link: pass else: new_list.append(i) except: new_list = link_list return new_list ###Output _____no_output_____ ###Markdown Execution ###Code #Initializing the product per Jupyter Notebook country = 'Australia' cat1 = 'food' # cat2='tea' # cat3='None' # cat4 = 'None' product='coffee' # links,directory = products_links(country=country,category=cat1,product=product) # test_1 = {'links':links,'directory':directory} # import pickle # with open('au_food_coffee.pkl', 'wb') as f: # pickle.dump(test_1, f) with open('au_food_coffee.pkl', 'rb') as f: file = pickle.load(f) links = file['links'] directory = 'Amazon_AU/food/coffee' #replace links with new_links if interruption for link in new_links: data = product_info(link=link,directory=directory,country=country) conn = sqlite3.connect('{}.db'.format(product)) database(product_data=data,link=link,country=country, cat1=cat1,product=product) # Run if there is an interruption new_links = checkpoint(links,directory,product) len(new_links) len(links) ###Output _____no_output_____ ###Markdown Testing the datasets in S3 ###Code BUCKET_NAME = 'amazon-data-ecfullfill' # replace with your bucket name key_id = 'AKIAWR6YW7N5ZKW35OJI' access_key = 'h/xrcI9A2SRU0ds+zts4EClKAqbzU+/iXdiDcgzm' KEY = 'Amazon_USA/health_and_beauty/hair_products/shampoo/shampoo.db' # replace with your object key s3 = boto3.resource('s3',aws_access_key_id=key_id, aws_secret_access_key=access_key) try: s3.Bucket(BUCKET_NAME).download_file(KEY, 'test.db') except botocore.exceptions.ClientError as e: if e.response['Error']['Code'] == "404": print("The object does not exist.") else: raise conn = sqlite3.connect('shampoo.db') df_USA = pd.read_sql("SELECT * FROM Product",conn) df_USA.iloc[:,:15] df_USA.iloc[:,15:] len(link_db) # def upload_s3(filename,key): # key_id = 'AKIAWR6YW7N5ZKW35OJI' # access_key = 'h/xrcI9A2SRU0ds+zts4EClKAqbzU+/iXdiDcgzm' # bucket_name = 'amazon-data-ecfullfill' # s3 = boto3.client('s3',aws_access_key_id=key_id, # aws_secret_access_key=access_key) # # s3.put_object(Bucket=bucket_name, Key='Amazon/health_and_beauty/hair_product/shampoo') # s3.upload_file(filename,bucket_name,key) ###Output _____no_output_____
notebooks/09_FPR_CNN_Training.ipynb
###Markdown Importing Modules ###Code import os import numpy as np import tensorflow as tf import matplotlib.pyplot as plt from tensorflow.keras.layers import Conv2D, MaxPool2D, Dense, Dropout, Input, Flatten from tensorflow.keras.models import Model from tensorflow.keras.callbacks import ModelCheckpoint from tensorflow.keras.preprocessing.image import ImageDataGenerator from IPython.display import clear_output ###Output _____no_output_____ ###Markdown Mounting Google Drive to access Training Data ###Code from google.colab import drive drive.mount("drive") ###Output Mounted at drive ###Markdown Unzip Data ###Code !unzip drive/MyDrive/Datasets/lc/FPR/FPRDataset.zip clear_output() print("Train Nodule:",len(os.listdir("FPRDataset/train/nodule"))) print("Train Non-Nodule:",len(os.listdir("FPRDataset/train/non-nodule"))) print("Test Nodule:",len(os.listdir("FPRDataset/test/nodule"))) print("Test Non-Nodule:",len(os.listdir("FPRDataset/test/non-nodule"))) ###Output Train Nodule: 5126 Train Non-Nodule: 7500 Test Nodule: 1709 Test Non-Nodule: 2500 ###Markdown Creating train & test data generators ###Code BATCH_SIZE = 96 generator = ImageDataGenerator(rescale=1./255) trainData = generator.flow_from_directory( "FPRDataset/train", target_size=(50,50), batch_size=BATCH_SIZE, color_mode='grayscale', class_mode='binary' ) testData = generator.flow_from_directory( "FPRDataset/test", target_size=(50,50), batch_size=BATCH_SIZE, color_mode='grayscale', class_mode='binary' ) print(trainData.class_indices) print(testData.class_indices) ###Output {'nodule': 0, 'non-nodule': 1} {'nodule': 0, 'non-nodule': 1} ###Markdown Callback function for training ###Code weight_path="checkpoint-{epoch:03d}-{val_loss:.3f}.hdf5" modelcheckpoint = ModelCheckpoint(weight_path, monitor='val_loss', verbose=1, save_best_only=True, save_weights_only=True, mode='min') ###Output _____no_output_____ ###Markdown Defining & creating CNN model ###Code def get_model(): input = Input(shape=(50,50,1)) x = Conv2D(50, (3,3), activation='relu')(input) x = MaxPool2D((2,2))(x) x = Conv2D(64, (3,3), activation='relu')(x) x = Conv2D(64, (3,3), activation='relu')(x) x = MaxPool2D((2,2))(x) x = Flatten()(x) x = Dense(512, activation='relu')(x) x = Dropout(0.4)(x) x = Dense(1, activation='sigmoid')(x) model = Model(inputs=[input], outputs=[x]) return model model = get_model() model.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model.summary() ###Output Model: "model" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= input_1 (InputLayer) [(None, 50, 50, 1)] 0 conv2d (Conv2D) (None, 48, 48, 50) 500 max_pooling2d (MaxPooling2D (None, 24, 24, 50) 0 ) conv2d_1 (Conv2D) (None, 22, 22, 64) 28864 conv2d_2 (Conv2D) (None, 20, 20, 64) 36928 max_pooling2d_1 (MaxPooling (None, 10, 10, 64) 0 2D) flatten (Flatten) (None, 6400) 0 dense (Dense) (None, 512) 3277312 dropout (Dropout) (None, 512) 0 dense_1 (Dense) (None, 1) 513 ================================================================= Total params: 3,344,117 Trainable params: 3,344,117 Non-trainable params: 0 _________________________________________________________________ ###Markdown Train model ###Code with tf.device("/device:GPU:0"): history = model.fit_generator( trainData, epochs=20, validation_data=testData, verbose=1, callbacks=[modelcheckpoint] ) ###Output /usr/local/lib/python3.7/dist-packages/ipykernel_launcher.py:7: UserWarning: `Model.fit_generator` is deprecated and will be removed in a future version. Please use `Model.fit`, which supports generators. import sys ###Markdown Plot the history of training ###Code plt.figure(figsize=(20,6)) for i, met in enumerate(['accuracy', 'loss']): plt.subplot(1,2,i+1) plt.plot(history.history[met], color="b") plt.plot(history.history["val_"+met], color="g") plt.title('Model '+met.capitalize()) plt.xlabel('epochs') plt.ylabel(met) plt.legend(['train', 'val']) ###Output _____no_output_____ ###Markdown Save model ###Code model.save("drive/MyDrive/Datasets/lc/FPR/Training_Logs/2nd_Trial/model.h5") ###Output _____no_output_____ ###Markdown Load checkpoint model ###Code model2 = get_model() model2.compile(optimizer='adam', loss='binary_crossentropy', metrics=['accuracy']) model2.load_weights("checkpoint-008-0.257.hdf5") model2.save("checkpoint_model.h5") ###Output _____no_output_____ ###Markdown Copy saved model to google drive for future use ###Code !cp checkpoint_model.h5 drive/MyDrive/Datasets/lc/FPR/Training_Logs/2nd_Trial/best_checkpoint_model.h5 ###Output _____no_output_____
06.3.astar-8-puzzle.ipynb
###Markdown Solving 8-puzzle using A* Search Algorithmhttps://gist.github.com/flatline/838202 ###Code import random import math _goal_state = [[1,2,3], [4,5,6], [7,8,0]] def index(item, seq): """Helper function that returns -1 for non-found index value of a seq""" if item in seq: return seq.index(item) else: return -1 class EightPuzzle: def __init__(self): # heuristic value self._hval = 0 # search depth of current instance self._depth = 0 # parent node in search path self._parent = None self.adj_matrix = [] for i in range(3): self.adj_matrix.append(_goal_state[i][:]) def __eq__(self, other): if self.__class__ != other.__class__: return False else: return self.adj_matrix == other.adj_matrix def __str__(self): res = '' for row in range(3): res += ' '.join(map(str, self.adj_matrix[row])) res += '\r\n' return res def _clone(self): p = EightPuzzle() for i in range(3): p.adj_matrix[i] = self.adj_matrix[i][:] return p def _get_legal_moves(self): """Returns list of tuples with which the free space may be swapped""" # get row and column of the empty piece row, col = self.find(0) free = [] # find which pieces can move there if row > 0: free.append((row - 1, col)) if col > 0: free.append((row, col - 1)) if row < 2: free.append((row + 1, col)) if col < 2: free.append((row, col + 1)) return free def _generate_moves(self): free = self._get_legal_moves() zero = self.find(0) def swap_and_clone(a, b): p = self._clone() p.swap(a,b) p._depth = self._depth + 1 p._parent = self return p return map(lambda pair: swap_and_clone(zero, pair), free) def _generate_solution_path(self, path): if self._parent == None: return path else: path.append(self) return self._parent._generate_solution_path(path) def set_board(self, start_str): self.adj_matrix = [] id = 0 for row in range(3): vector = [] for col in range(3): ch = start_str[row * 3 + col] vector.append(int(ch)) self.adj_matrix.append(vector) def solve(self, h): """Performs A* search for goal state. h(puzzle) - heuristic function, returns an integer """ def is_solved(puzzle): return puzzle.adj_matrix == _goal_state openl = [self] closedl = [] move_count = 0 while len(openl) > 0: x = openl.pop(0) move_count += 1 if (is_solved(x)): if len(closedl) > 0: return x._generate_solution_path([]), move_count else: return [x] succ = x._generate_moves() idx_open = idx_closed = -1 for move in succ: # have we already seen this node? idx_open = index(move, openl) idx_closed = index(move, closedl) hval = h(move) fval = hval + move._depth if idx_closed == -1 and idx_open == -1: move._hval = hval openl.append(move) elif idx_open > -1: copy = openl[idx_open] if fval < copy._hval + copy._depth: # copy move's values over existing copy._hval = hval copy._parent = move._parent copy._depth = move._depth elif idx_closed > -1: copy = closedl[idx_closed] if fval < copy._hval + copy._depth: move._hval = hval closedl.remove(copy) openl.append(move) closedl.append(x) openl = sorted(openl, key=lambda p: p._hval + p._depth) # if finished state not found, return failure return [], 0 def shuffle(self, step_count): for i in range(step_count): row, col = self.find(0) free = self._get_legal_moves() target = random.choice(free) self.swap((row, col), target) row, col = target def find(self, value): """returns the row, col coordinates of the specified value in the graph""" if value < 0 or value > 8: raise Exception("value out of range") for row in range(3): for col in range(3): if self.adj_matrix[row][col] == value: return row, col def peek(self, row, col): """returns the value at the specified row and column""" return self.adj_matrix[row][col] def poke(self, row, col, value): """sets the value at the specified row and column""" self.adj_matrix[row][col] = value def swap(self, pos_a, pos_b): """swaps values at the specified coordinates""" temp = self.peek(*pos_a) self.poke(pos_a[0], pos_a[1], self.peek(*pos_b)) self.poke(pos_b[0], pos_b[1], temp) def heur(puzzle, item_total_calc, total_calc): """ Heuristic template that provides the current and target position for each number and the total function. Parameters: puzzle - the puzzle item_total_calc - takes 4 parameters: current row, target row, current col, target col. Returns int. total_calc - takes 1 parameter, the sum of item_total_calc over all entries, and returns int. This is the value of the heuristic function """ t = 0 for row in range(3): for col in range(3): val = puzzle.peek(row, col) - 1 target_col = val % 3 target_row = val / 3 # account for 0 as blank if target_row < 0: target_row = 2 t += item_total_calc(row, target_row, col, target_col) return total_calc(t) #some heuristic functions, the best being the standard manhattan distance in this case, as it comes #closest to maximizing the estimated distance while still being admissible. def h_manhattan(puzzle): return heur(puzzle, lambda r, tr, c, tc: abs(tr - r) + abs(tc - c), lambda t : t) def h_manhattan_lsq(puzzle): return heur(puzzle, lambda r, tr, c, tc: (abs(tr - r) + abs(tc - c))**2, lambda t: math.sqrt(t)) def h_linear(puzzle): return heur(puzzle, lambda r, tr, c, tc: math.sqrt(math.sqrt((tr - r)**2 + (tc - c)**2)), lambda t: t) def h_linear_lsq(puzzle): return heur(puzzle, lambda r, tr, c, tc: (tr - r)**2 + (tc - c)**2, lambda t: math.sqrt(t)) def h_default(puzzle): return 0 def main(start_str): p = EightPuzzle() print(p) if start_str is None: p.shuffle(20) else: p.set_board(start_str) print(p) path, count = p.solve(h_manhattan) path.reverse() for i in path: print(i) print("Solved with Manhattan distance exploring", count, "states") path, count = p.solve(h_manhattan_lsq) print("Solved with Manhattan least squares exploring", count, "states") path, count = p.solve(h_linear) print("Solved with linear distance exploring", count, "states") path, count = p.solve(h_linear_lsq) print("Solved with linear least squares exploring", count, "states") # path, count = p.solve(heur_default) # print "Solved with BFS-equivalent in", count, "moves" main("134702865") ###Output _____no_output_____
classes/SQL1_subprocesses.ipynb
###Markdown Subprocesses One of the biggest strengths of Python is that it can be used as a *glue* language. It can 'glue' together a series of programs into a flexible and highly extensible pipline. Why subprocessesOne of the most common, yet complicated, tasks that most programming languages need to do is creating new processes. This could be as simple as seeing what files are present in the current working directory (`ls`) or as complicated as creating a program workflow that *pipes* output from one program into another program's input. Many such tasks are easily taken care of through the use of Python libraries and modules (`import`) that *wrap* the programs into Python code, effectively creating Application Programming Interfaces (API). However, there are many use cases that require the user to make calls to the terminal from ***within*** a Python program. Operating System Conundrum As many in this class have found out, while Python can be installed on most operating systems; doing the same thing in one operating system (Unix) may not always yield the same results in another (Windows).The very first step to making a program **"OS-agnostic"** is through the use of the `os` module. ###Code import os ###Output _____no_output_____ ###Markdown https://docs.python.org/3/library/os.html ###Code #dir(os) help(os.getcwd) os.getcwd() help(os.chdir) # The name of the operating system dependent module imported. # The following names have currently been registered: 'posix', 'nt', 'java' # Portable Operating System Interface - IEEE standard designed to facilitate application portability # (Windows) New Technology - a 32-bit operating system that supports preemptive multitasking # os.name # A list of strings that specifies the search path for modules. import sys sys.path # A mapping object that contains environment variables and their values. os.environ # A mapping object representing the string environment. print(os.environ['HOME']) #Return the value of the environment variable key if it exists, #or default if it doesn’t. key, default and the result are str. print(os.getenv("HOME")) print(os.getenv("PATH")) # Returns the list of directories that will be searched for a named executable, #similar to a shell, when launching a process. # env, when specified, should be an environment variable dictionary to lookup the PATH in. # By default, when env is None, environ is used. os.get_exec_path() ###Output _____no_output_____ ###Markdown The `os` module wraps OS-specific operations into a set of standardized commands. For instance, the Linux end-of-line (EOL) character is a `\n`, but `\r\n` in Windows. In Python, we can just use the following: ###Code # EOL - for the current (detected) environment ''' The string used to separate (or, rather, terminate) lines on the current platform. This may be a single character, such as '\n' for POSIX, or multiple characters, for example, '\r\n' for Windows. Do not use os.linesep as a line terminator when writing files opened in text mode (the default); use a single '\n' instead, on all platforms. ''' os.linesep ###Output _____no_output_____ ###Markdown Another example, in a Linux environment, one must use the following command to list the contents of a given directory:```ls -alh ```In Windows, the equivalent is as follows:```dir```Python allows users to do a single command, in spite of the OS: ###Code # List directory contents os.listdir("ProjectCM") ###Output _____no_output_____ ###Markdown However, the biggest issue for creating an OS-agnostic program is ***paths*** Windows: `"C:\\Users\\MDS\\Documents"`Linux: `/mnt/c/Users/MDS/Documents/`Enter Python: ###Code # path joining from pwd pwd = os.getcwd() print(pwd) print(os.path.dirname(pwd)) os.path.join(pwd,"ProjectCM","demoCM","test.py") ###Output _____no_output_____ ###Markdown `subprocess` If you Google anything on how to run shell commands, but don't specify Python 3.x, you will likely get an answer that includes `popen`, `popen2`, or `popen3`. These were the most prolific ways to *open* a new *p*rocess. In Python 3.x, they encapsulated these functions into a new one called `run` available through the `subprocess` library. ###Code # Import and alias import subprocess as sp ###Output _____no_output_____ ###Markdown `check_output` ###Code help(sp.check_output) # check_output returns a bytestring by default, so I set encoding to convert it to strings. # [command, command line arguments] # change from bytes to string using encoding sp.check_output(["echo","test"],encoding='utf_8') # demonstration, might not work if test.py does not have the parsing code sp.check_output([os.path.join(pwd,"test.py"),"[1,2,3]"],encoding='utf_8') ###Output _____no_output_____ ###Markdown The first thing we will look are trivial examples that demonstrate just capturing the *output* (stdout) of a program However, while the `check_output` function is still in the `subprocess` module, it can easily be converted into into a more specific and/or flexible `run` function signature. `run` ###Code help(sp.run) sub = sp.run( [ 'echo', # The command we want to run 'test' # Arguments for the command ], encoding='utf_8', # Converting byte code stdout=sp.PIPE, # Where to send the output check=True # Whether to raise an error if the process fails ) sub [elem for elem in dir(sub) if not elem.startswith("__")] print(sub.stdout) ###Output _____no_output_____ ###Markdown The main utility of `check_output` was to capture the output (stdout) of a program. By using the `stdout=subprocess.PIPE` argument, the output can easily be captured, along with its return code. A return code signifies the program's exit status: 0 for success, anything else otherwise ###Code sub.returncode ###Output _____no_output_____ ###Markdown With our `run` code above, our program ran to completetion, exiting with status 0. The next example shows a different status. ###Code sp.run( 'exit 1', # Command & arguments shell = True # Run from the shell ) ###Output _____no_output_____ ###Markdown However, if the `check=True` argument is used, it will raise a `CalledProcessError` if your program exits with anything different than 0. This is helpful for detecting a pipeline failure, and exiting or correcting before attempting to continue computation. ###Code sp.run( 'exit 1', # Command & arguments shell = True, # Run from the shell check = True # Check exit status ) sub = sp.run( 'exit 1', # Command & arguments shell = True, # Run from the shell # check = True # Check exit status ) if (sub.returncode != 0): print(f"Exit code {sub.returncode}. Expected 0 when there is no error.") ###Output _____no_output_____ ###Markdown Syntax when using `run`:1. A list of arguments: `subprocess.run(['echo', 'test', ...], ...)` 2. A string and `shell`: `subprocess.run('exit 1', shell = True, ...)` The preferred way of using `run` is the first way. This preference is mainly due to security purposes (to prevent shell injection attacks). It also allows the module to take care of any required escaping and quoting of arguments for a pseudo-OS-agnostic approach. There are some guidelines though:1. Sequence (list) of arguments is generally preferred2. A str is appropriate if the user is just calling a program with no arguments3. The user should use a str to pass argument if `shell` is `True`Your next questions should be, "What is `shell`?" `shell` is just your terminal/command prompt. This is the environment where you call `ls/dir` in. It is also where users can define variables. More importantly, this is where your *environmental variables* are set...like `PATH`.By using `shell = True`, the user can now use shell-based environmental variable expansion from within a Python program. ###Code sp.run( 'echo $PATH', # Command shell = True, # Use the shell stdout=sp.PIPE, # Where to send it encoding='utf_8' # Convert from bytes to string ) # Look at the output p1 = sp.run( 'sleep 5; echo done1', # Command shell = True, # Use the shell stdout=sp.PIPE, # Where to send it encoding='utf_8' # Convert from bytes to string ) print(p1) p2 = sp.run( 'echo done2', # Command shell = True, # Use the shell stdout=sp.PIPE, # Where to send it encoding='utf_8' # Convert from bytes to string ) print(p2) ###Output _____no_output_____ ###Markdown For the most part, you shouldn't need to use `shell` simply because Python has modules in the standard library that can do most of the shell commands. For example `mkdir` can be done with `os.mkdir()`, and `$PATH` can be retrieved using os.getenv("PATH") or os.get_exec_path() as shown above. Blocking vs Non-blocking The last topic of this lecture is "blocking". This is computer science lingo/jargon for whether or not a program ***waits*** until something is complete before moving on. Think of this like a really bad website that takes forever to load because it is waiting until it has rendered all its images first, versus the website that sets the formatting and text while it works on the images. 1. `subprocess.run()` is blocking (it waits until the process is complete)2. `subprocess.Popen()` is non-blocking (it will run the command, then move on) ***Most*** use cases can be handled through the use of `run()`. `run()` is just a *wrapped* version of `Popen()` that simplifies use. However, `Popen()` allows the user a more flexible control of the subprocess call. `Popen()` can be used similar way as run (with more optional parameters). An example use case for `Popen()` is if the user has some intermediate data that needs to get processed, but the output of that data doesn't necessarily affect the rest of the pipeline. `Popen` ###Code p1 = sp.Popen( 'sleep 5; echo done1', # Command shell = True, # Use the shell stdout=sp.PIPE, # Where to send it encoding='utf_8' # Convert from bytes to string ) print(p1) p2 = sp.Popen( 'echo done2', # Command shell = True, # Use the shell stdout=sp.PIPE, # Where to send it encoding='utf_8' # Convert from bytes to string ) print(p2) print("processes ran") print(p1.stdout.read()) print(p2.stdout.read()) print("processes completed") # Use context manager to handle process while it is running, # and gracefully close it with sp.Popen( [ 'echo', # Command 'here we are' # Command line arguments ], encoding='utf_8', # Convert from byte to string stdout=sp.PIPE # Where to send it ) as proc: # Enclose and alias the context manager print( proc.stdout.read() # Look at the output ) for elem in dir(proc): if not elem.startswith('_'): print(elem) ###Output _____no_output_____ ###Markdown ***NOTE***: From here on out, there might be different commands used for **Linux** / **MacOS** or **Windows** ###Code #test_pipe.txt - a file to be used to demonstrate pipe of cat and sort !echo testing > test_pipe.txt !echo the >> test_pipe.txt !echo subprocess >> test_pipe.txt !echo pipe >> test_pipe.txt # mac OS p1 = sp.Popen(['cat','test_pipe.txt'], stdout=sp.PIPE, encoding='utf_8') # windows OS # p1 = sp.Popen(['type','test_pipe.txt'], stdout=sp.PIPE, encoding='utf_8') print(p1.stdout.read()) # mac OS p1 = sp.Popen(['cat','test_pipe.txt'], stdout=sp.PIPE, encoding='utf_8') # windows OS # p1 = sp.Popen(['type','test_pipe.txt'], stdout=sp.PIPE, encoding='utf_8') p2 = sp.Popen(['sort'], stdin=p1.stdout, stdout=sp.PIPE, encoding='utf_8') p1.stdout.close() # Allow p1 to receive a SIGPIPE if p2 exits output = p2.communicate()[0] print(output) ###Output _____no_output_____ ###Markdown `Popen` can create background processes, shell-background-like behavior means not blocking. `Popen` has a lot more functionality than `run`. ###Code sub_popen = sp.Popen( [ 'echo', # Command 'test', # Command line arguments ], encoding='utf_8', # Convert from byte to string stdout=sp.PIPE # Where to send it ) for j in dir(sub_popen): if not j.startswith('_'): print(j) # sub - returned by run for j in dir(sub): if not j.startswith('_'): print(j) sub_popen.kill() # Close the process ###Output _____no_output_____ ###Markdown Example creating child process.https://pymotw.com/3/subprocess/A collection of `Popen` examples: https://www.programcreek.com/python/example/50/subprocess.Popen SQL What is a database? * Is an organized collection of data (files)* A way to store and retrieve that information* A relational database is structured to recognize relations between the data elementsE.g. NCBI Gene https://www.ncbi.nlm.nih.gov/gene/statistics https://www.researchgate.net/profile/Adam_Richards3/publication/282134102/figure/fig3/AS:289128232046602@1445944950296/Database-entity-diagram-Data-collected-from-NCBI-the-Gene-Ontology-and-UniProt-are.png More database examples: * The Python dictionary qualifies* A spreadsheet is a type of database – a table* A fasta file could be considered a database Why use databases?* Databases can handle very large data sets * Databases scale well* Databases are concurrent * Databases are fault-tolerant* Your data has a built-in structure to it* Information of a given type is typically stored only once* You can query the data in a database and easily create meaningful reports* You can relate data from different tables What is the Structured Query Language (SQL) ?* SQL is the standard language for relational database management systems (ANSI)* SQL is used to communicate with a database* SQL can be used to: add, remove, modify, request data * SQL is a declarative language - you describe what you want Relational Database Management Systems* Software programs such as Oracle, MySQL, SQLServer, DB2, postgreSQL are the backbone on which a specific database can be built * They are called RDBMS (relational database management systems)* They handle the data storage, indexing, logging, tracking and security * They have a very fine-grained way of granting permissions to users at the level of commands that may be used * Create a database * Create a table * Update or insert data * View certain tables ... and many more * An important part of learning databases is to understand the type of data which is stored in columns and rows. * Likewise when we get to the database design section, it is critically important to know what type of data you will be modeling and storing (and roughly how much, in traditional systems) * Exactly which types are available depends on the database system SQLite * SQLite is a software library that implements a self-contained, serverless, zero-configuration, embedded high-reliability, full-featured, public-domain SQL database engine. SQLite is the most widely deployed database engine in the world (https://sqlite.org/)* A SQLite database is a single file that is transportable* Check-out bioconductor (annotation) packages that come with sqlite databases * hgu133a.db * https://bioconductor.org/packages/release/data/annotation/html/hgu133a.db.html * org.Hs.eg.db - Genome wide annotation for Human, primarily based on mapping using Entrez Gene identifiers * https://bioconductor.org/packages/release/data/annotation/html/org.Hs.eg.db.html SQLite uses a greatly simplified set of data types:* INTEGER - numeric* REAL - numeric* TEXT – text of any length * Dates are held as text* BLOB – binary large objects * Such as images ###Code from sqlite3 import connect # the file org.Hs.eg.sqlite should be in the datasets folder # if you pulled the info from the class github repo # otherwise retrieve from the class github repo or canvas conn = connect('../datasets/org.Hs.eg.sqlite') curs = conn.cursor() # close cursor and connection curs.close() conn.close() conn = connect('org.Hs.eg.sqlite') curs = conn.cursor() ###Output _____no_output_____ ###Markdown There is a special sqlite_master table that describes the contents of the database Major SQL commands: SELECT, INSERT, DELETE, UPDATE SELECT - Retrieves data from one or more tables and doesn’t change the data at all * SELECT * (means all columns), or the comma separated names of the columns of data you wish to return * They will return (left to right) in the order received. * FROM is the table source or sources (comma separated)* WHERE (optional) is the predicate clause: conditions for the query * Evaluates to True or False for each row * This clause almost always includes Column-Value pairs. * Omitting the Where clause returns ALL the records in that table. * Note: the match is case sensitive* ORDER BY (optional) indicates a sort order for the output data * default is row_id, which can be very non-intuitive * ASCending or DESCending can be appended to change the sort order. (ASC is default)* In most SQL clients, the ";" indicates the end of a statement and requests execution SELECT - which columns to include in the result, use * for all columns FROM - which tables to use WHERE (optional) - predicate clause, which rows to include '*' selects ALL rows and ALL columns and returns them by column order and row_id ###Code sql = '''SELECT * FROM sqlite_master;''' curs.execute(sql) ###Output _____no_output_____ ###Markdown See result header ###Code curs.description ###Output _____no_output_____ ###Markdown See result ###Code for row in curs: print(row) ###Output _____no_output_____ ###Markdown WHERE clause example ###Code sql = ''' SELECT name FROM sqlite_master WHERE type= "table"; ''' curs.execute(sql) for row in curs: print(row) def get_header(cursor): '''Makes a header row from the cursor description. Its tab delimited. Arguments: cursor: a cursor after a select query Returns: string: A string consisting of the column names separated by tabs, no new line ''' return '\t'.join([row[0] for row in cursor.description]) # colNames = [] # for row in cursor.description: # colNames.append(row[0]) # return '\t'.join(colNames) print(get_header(curs)) sql = ''' SELECT * FROM go_bp LIMIT 10; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) ###Output _____no_output_____ ###Markdown http://geneontology.org/docs/guide-go-evidence-codes/* Inferred from Experiment (EXP)* Inferred from Direct Assay (IDA)* Inferred from Physical Interaction (IPI)* Inferred from Mutant Phenotype (IMP)* Inferred from Genetic Interaction (IGI)* Inferred from Expression Pattern (IEP) Aliasing column names to make them easier to understand ###Code sql = ''' SELECT * FROM gene_info LIMIT 5; ''' curs.execute(sql) for i in curs.description: print(i[0]) for row in curs: print(row) sql = ''' SELECT _id 'Gene Identifier', symbol "Gene Symbol" FROM gene_info LIMIT 5; ''' curs.execute(sql) curs.description curs.fetchall() sql = ''' SELECT _id 'ID', symbol "Symbol" FROM gene_info LIMIT 10; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) #select all from go_bp ###Output _____no_output_____ ###Markdown http://geneontology.org/docs/guide-go-evidence-codes/* Inferred from Experiment (EXP)* Inferred from Direct Assay (IDA)* Inferred from Physical Interaction (IPI)* Inferred from Mutant Phenotype (IMP)* Inferred from Genetic Interaction (IGI)* Inferred from Expression Pattern (IEP)* Inferred from High Throughput Experiment (HTP)* Inferred from High Throughput Direct Assay (HDA)* Inferred from High Throughput Mutant Phenotype (HMP)* Inferred from High Throughput Genetic Interaction (HGI)* Inferred from High Throughput Expression Pattern (HEP)* Inferred from Biological aspect of Ancestor (IBA)* Inferred from Biological aspect of Descendant (IBD)* Inferred from Key Residues (IKR)* Inferred from Rapid Divergence (IRD)* Inferred from Sequence or structural Similarity (ISS)* Inferred from Sequence Orthology (ISO)* Inferred from Sequence Alignment (ISA)* Inferred from Sequence Model (ISM)* Inferred from Genomic Context (IGC)* Inferred from Reviewed Computational Analysis (RCA)* Traceable Author Statement (TAS)* Non-traceable Author Statement (NAS)* Inferred by Curator (IC)* No biological Data available (ND)* Inferred from Electronic Annotation (IEA) SELECT - which columns to include in the result FROM - which tables to use WHERE (optional) - predicate clause, which rows to include ORDER BY (optional) - indicates a sort order for the output data ###Code sql = ''' SELECT _id, go_id FROM go_bp WHERE evidence="ND" ORDER BY _id DESC LIMIT 20; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) #curs.fetchall() #for row in curs: print(row) ###Output _____no_output_____ ###Markdown COUNT returns a single number, which is the count of all rows in the table ###Code sql = ''' SELECT count(*) FROM genes; ''' curs.execute(sql) curs.fetchall() sql = ''' SELECT count(_id) AS 'Number of genes' FROM genes; ''' curs.execute(sql) print(get_header(curs)) curs.fetchall()[0][0] ###Output _____no_output_____ ###Markdown DISTINCT selects non-duplicated elements (rows) ###Code sql = ''' SELECT _id FROM go_bp LIMIT 20; ''' curs.execute(sql) curs.fetchall() sql = ''' SELECT DISTINCT _id FROM go_bp LIMIT 10; ''' curs.execute(sql) curs.fetchall() #count the number of rows on go_bp sql = ''' SELECT DISTINCT _id FROM go_bp; ''' curs.execute(sql) result = curs.fetchall() len(result) ###Output _____no_output_____ ###Markdown WHERE clause operators https://www.sqlite.org/lang_expr.html , != inequality = equal '> greater than '>= greater than or equal BETWEEN v1 AND v2 tests that a value to lies in a given range EXISTS test for existence of rows matching query IN tests if a value falls within a given set or query IS [ NOT ] NULL is or is not null [ NOT ] LIKE tests value to see if like or not like another % is the wildcard in SQL, used in conjunction with LIKE ###Code sql = ''' SELECT * FROM go_bp WHERE _id = '1'; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) sql = ''' SELECT * FROM go_bp WHERE _id IN (1,5,7); ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) sql = ''' SELECT * FROM go_bp WHERE evidence = 'ND' AND _id BETWEEN 20 AND 2000 LIMIT 10 ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) sql = ''' SELECT * FROM go_bp WHERE go_id LIKE '%0081%' LIMIT 10; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) # Retrieve rows from go_bp where the go_id is GO:0008104 and evidence is IEA or IDA ###Output _____no_output_____ ###Markdown Sqlite3 also has some PRAGMA methods SQL extension specific to SQLite and used to modify the operation of the SQLite library or to query the SQLite library for internal (non-table) data https://www.sqlite.org/pragma.html The code below shows how to get the schema (columns and columns information) ###Code sql = 'PRAGMA table_info("go_bp")' curs.execute(sql) curs.fetchall() sql = '''SELECT * FROM pragma_table_info("go_bp") ''' curs.execute(sql) curs.fetchall() sql = ''' SELECT _id, symbol, gene_name FROM gene_info WHERE _id IN (SELECT DISTINCT _id FROM go_bp WHERE go_id == 'GO:0008104'); ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) ###Output _____no_output_____ ###Markdown GROUP BY groups by a column and creates summary data for a different column ###Code sql = ''' SELECT go_id, count(*) FROM go_bp GROUP BY go_id LIMIT 10; ''' curs.execute(sql) curs.fetchall() sql = ''' SELECT go_id, count(_id) as gene_no FROM go_bp GROUP BY go_id LIMIT 10; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) ###Output _____no_output_____ ###Markdown HAVING allows restrictions on the rows used or selected ###Code sql = ''' SELECT go_id, count(_id) as gene_no FROM go_bp GROUP BY go_id HAVING gene_no>500; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) # Select gene ids with more than 100 biological processes associated ###Output _____no_output_____ ###Markdown See the create table statement ###Code sql = ''' SELECT name,sql FROM sqlite_master WHERE type= "table" and name == "go_bp" LIMIT 2; ''' curs.execute(sql) print(get_header(curs)) for row in curs.fetchall(): print('\t'.join([str(elem) for elem in row ])) print(row[1]) curs.close() conn.close() ###Output _____no_output_____
model/Reff_estimator.ipynb
###Markdown EpiEstim (python) Configure the data ###Code import pandas as pd import numpy as np import matplotlib.pyplot as plt import seaborn as sns plt.style.use('seaborn-poster') from datetime import datetime as dt from datetime import timedelta import glob from Reff_functions import * from Reff_constants import * from scipy.stats import gamma #Code taken from read_in_cases from Reff_functions. Preprocessing was not helpful for this situation. def read_cases_lambda(case_file_date): path = "../data/COVID-19 UoM "+case_file_date+"*.xlsx" for file in glob.glob(path): df_NNDSS = pd.read_excel(file, parse_dates=['SPECIMEN_DATE','NOTIFICATION_DATE','NOTIFICATION_RECEIVE_DATE','TRUE_ONSET_DATE'], dtype= {'PLACE_OF_ACQUISITION':str}) df_NNDSS.PLACE_OF_ACQUISITION.fillna('00038888',inplace=True) #Fill blanks with simply unknown # df_NNDSS['date_inferred'] = df_NNDSS.TRUE_ONSET_DATE # df_NNDSS.loc[df_NNDSS.TRUE_ONSET_DATE.isna(),'date_inferred'] = df_NNDSS.loc[df_NNDSS.TRUE_ONSET_DATE.isna()].NOTIFICATION_DATE - timedelta(days=5) # df_NNDSS.loc[df_NNDSS.date_inferred.isna(),'date_inferred'] = df_NNDSS.loc[df_NNDSS.date_inferred.isna()].NOTIFICATION_RECEIVE_DATE - timedelta(days=6) df_NNDSS['imported'] = df_NNDSS.PLACE_OF_ACQUISITION.apply(lambda x: 1 if x[-4:]=='8888' and x != '00038888' else 0) df_NNDSS['local'] = 1 - df_NNDSS.imported df_interim = df_NNDSS[['NOTIFICATION_RECEIVE_DATE','STATE','imported','local']] #df_interim = df_interim[~np.isnat(df_interim.NOTIFICATION_DATE)] #Get rid of non-existent dates. # Importantly, imported and local are indicator variables in df_interim. #df_state = df_NNDSS[['NOTIFICATION_DATE','STATE','imported','local']].groupby(['STATE','NOTIFICATION_DATE']).sum() return(df_interim) def tidy_cases_lambda(interim_data, remove_territories=True): #Remove non-existent notification dates interim_data = interim_data[~np.isnat(interim_data.NOTIFICATION_RECEIVE_DATE)] #Filter out territories if(remove_territories): df_linel = interim_data[(interim_data['STATE']!='NT') & (interim_data['STATE']!='ACT')] #Melt down so that imported and local are no longer columns. Allows multiple draws for infection date. #i.e. create linelist data df_linel = df_linel.melt(id_vars = ['NOTIFICATION_RECEIVE_DATE','STATE'], var_name = 'SOURCE',value_name='n_cases') #Reset index or the joining doesn't work df_linel = df_linel[df_linel.n_cases!=0] df_linel = df_linel.reset_index(drop=True) return(df_linel) date = '10Aug' df_interim = read_cases_lambda(date) df_linel = tidy_cases_lambda(df_interim) ###Output _____no_output_____ ###Markdown Part 1: Inferring infection dates$\Lambda$ depends on the infection date (ID), while the data contains the notification date (ND). We obtain ID through the following relationship:$$ID = ND - reporting\_delay - incubation\_period.$$A gamma distribution was fitted to case data using the MLE algorithm to produce distributions for reporting delay and incubation period. ###Code ##uncomment for debugging # notification_dates = df_linel['NOTIFICATION_DATE'] # mean_rd = 5.47 # sd_rd = 4.04 # mean_inc = 2.0 # sd_inc = 1.41 # nreplicates = 3 ##gamma draws take arguments (shape, scale) def draw_inf_dates(df_linelist, shape_rd=2.77, scale_rd=3.17, offset_rd=0, shape_inc=2.0/1.5, scale_inc=1.5, offset_inc=1,nreplicates=1): notification_dates = df_linelist['NOTIFICATION_RECEIVE_DATE'] nsamples = notification_dates.shape[0] # DEFINE DELAY DISTRIBUTION # mean_rd = 5.47 # sd_rd = 4.04 #scale_rd = shape_rd/(scale_rd)**2 #shape_rd = shape_rd/scale_rd # DEFINE INCUBATION PERIOD DISTRIBUTION # mean_inc = 2.0 # sd_inc = 1.41 #scale_inc = (scale_inc)**2/shape_inc #scale**2 = var / shape #shape_inc =(scale_inc)**2/scale_inc**2 #Draw from distributions - these are long vectors inc_period = offset_inc+np.random.gamma(shape_inc, scale_inc, size = (nsamples*nreplicates)) rep_delay = offset_rd+np.random.gamma(shape_rd, scale_rd, size = (nsamples*nreplicates)) #infection date is id_nd_diff days before notification date. This is also a long vector. id_nd_diff = inc_period + rep_delay #Minutes aren't included in df. Take the ceiling because the day runs from 0000 to 2359. This can still be a long vector. whole_day_diff = np.ceil(id_nd_diff) time_day_diffmat = whole_day_diff.astype('timedelta64[D]').reshape((nsamples, nreplicates)) #Vector must be coerced into a nsamples by nreplicates array. Then each column must be subtracted from notification_dates. #Subtract days off of notification dates. notification_mat = np.tile(notification_dates, (nreplicates,1)).T #notification_dates is repeated as a column nreplicates times. infection_dates = notification_mat - time_day_diffmat #Make infection dates into a dataframe datecolnames = [*map(str,range(nreplicates))] infdates_df = pd.DataFrame(infection_dates,columns = datecolnames) #Uncomment this if theres errors #print([df_linelist.shape, infdates_df.shape]) #Combine infection dates and original dataframe df_inf = pd.concat([df_linelist, infdates_df], axis=1, verify_integrity=True) return(df_inf) df_inf = draw_inf_dates(df_linel, nreplicates=1000) df_inf.head() def index_by_infection_date(infections_wide): datecolnames = [*infections_wide.columns[4:]] df_combined = infections_wide[['STATE','SOURCE',datecolnames[0],'n_cases']].groupby(['STATE', datecolnames[0],'SOURCE']).sum() #For each column (cn=column number): concatenate each sample as a column. for cn in range(1,len(datecolnames)): df_addin = infections_wide[['STATE','SOURCE',datecolnames[cn],'n_cases']].groupby(['STATE', datecolnames[cn],'SOURCE']).sum() df_combined = pd.concat([df_combined,df_addin], axis=1, ignore_index = True) #NaNs are inserted for missing values when concatenating. If it's missing, there were zero infections df_combined[np.isnan(df_combined)]=0 #Rename the index. df_combined.index.set_names(["STATE","INFECTION_DATE","SOURCE"], inplace=True) #return(df_combined) ##INCLUDE ALL DAYS WITH ZERO INFECTIONS IN THE INDEX AS WELL. # Reindex to include days with zero total infections. local_infs = df_combined.xs('local',level='SOURCE') imported_infs = df_combined.xs('imported',level='SOURCE') statelist = [*df_combined.index.get_level_values('STATE').unique()] #Should all states have the same start date? Current code starts from the first case in each state. #For the same start date: local_statedict = dict(zip(statelist, np.repeat(None, len(statelist)))) imported_statedict = dict(zip(statelist, np.repeat(None, len(statelist)))) #Determine start date as the first infection date for all. #start_date = np.datetime64("2020-02-01") start_date = df_combined.index.get_level_values('INFECTION_DATE').min() #Determine end dates as the last infected date by state. index_only = df_combined.index.to_frame() index_only = index_only.reset_index(drop=True) maxdates = index_only.groupby(['STATE'])['INFECTION_DATE'].max() for aus_state in statelist: state_data = local_infs.xs(aus_state, level='STATE') #start_date = state_data.index.min() #dftest.index=dftest.reindex(alldates, fill_value=0) alldates = pd.date_range(start_date, maxdates[aus_state]) #All days from start_date to the last infection day. local_statedict[aus_state] = state_data.reindex(alldates, fill_value=0) for aus_state in statelist: state_data = imported_infs.xs(aus_state, level='STATE') alldates = pd.date_range(start_date, maxdates[aus_state]) imported_statedict[aus_state] = state_data.reindex(alldates, fill_value=0) #Convert dictionaries to data frames df_local_inc_zeros = pd.concat(local_statedict) df_local_inc_zeros['SOURCE']='local' df_imp_inc_zeros = pd.concat(imported_statedict) df_imp_inc_zeros['SOURCE']='imported' #Merge dataframes and reindex. df_inc_zeros = pd.concat([df_local_inc_zeros, df_imp_inc_zeros]) df_inc_zeros = df_inc_zeros.reset_index() df_inc_zeros= df_inc_zeros.groupby(['level_0',"level_1","SOURCE"]).sum() df_inc_zeros.index = df_inc_zeros.index.rename(['STATE','INFECTION_DATE',"SOURCE"]) return(df_inc_zeros) df_inc_zeros = index_by_infection_date(df_inf) df_inc_zeros.head() # unit test to ensure min and max dates captures all imputations of # infection dates summary = np.sum(df_inc_zeros, axis=0).describe() #Differences in numbers: start date? assert summary.loc['max'] == summary.loc['min'], "Min number of cases does not match max number, dates have truncated cases" ###Output _____no_output_____ ###Markdown Part 2: Calculating Lambda$$\Lambda_t(w_s) = \sum_{s=1}^t (I_{t-s}^{local} + I_{t-s}^{imported})w_s = \sum_{s=1}^t I_{t-s}w_s,$$where $w_s$ is the probability that the generation interval is $s$ and $I_t$ is the number of infected individuals at time $t$. Part 2a: Discretizing the gamma generation interval distributionIn the formula for $\Lambda_t$, we sum over $w$. We should consider generation interval as a discrete random variable here. ###Code #Define gamma distribution for generation interval #mean_gen = 2 #sd_gen = 1.74 scale_gen = 1#mean_gen/(sd_gen)**2 shape_gen = 2#mean_gen/scale_gen trunc_days = 21 shift=0 xmids = [x+shift for x in range(trunc_days+1)] #Find midpoints for discretisation #scipy uses scale in the compsci sense gamma_vals = gamma.pdf(xmids, a=shape_gen, scale=scale_gen) disc_gamma = gamma_vals/sum(gamma_vals) #Discretisation error check (should sum to 1) print("Sum of gamma values is " + str(sum(gamma_vals))+"; \n Sum of discretised gamma values is " + str(sum(disc_gamma))) xrange = np.linspace(0,trunc_days,150) fig,ax = plt.subplots(figsize=(12,9)) w = ax.bar(xmids,height=disc_gamma, width=1) ax.set_title("Generation time distribution") ax.plot(xrange, gamma.pdf(xrange, a=shape_gen, scale=scale_gen), linewidth=4,alpha=0.8, color="orange") ax.set_xlabel('Days') plt.show() ###Output _____no_output_____ ###Markdown Part 2b: Calculating $\Lambda$ ###Code def generate_lambda(infection_dates, shape_gen=2, scale_gen=1, trunc_day=21,shift=0, offset=1): """ Given array of infection_dates (N_dates by N_samples), where values are possible number of cases infected on this day, generate the force of infection Lambda_t, a N_dates-tau by N_samples array. """ from scipy.stats import gamma #scale_gen = mean_gen/(sd_gen)**2 #shape_gen = mean_gen/scale_gen xmids = [x+shift for x in range(trunc_days+1)] #Find midpoints for discretisation gamma_vals = gamma.pdf(xmids, a=shape_gen, scale=scale_gen) #double check parameterisation of scipy #renormalise the pdf disc_gamma = gamma_vals/sum(gamma_vals) ws = disc_gamma[:trunc_day] #offset ws[offset:] = disc_gamma[:trunc_day-offset] ws[:offset] = 0 lambda_t = np.zeros(shape=(infection_dates.shape[0]-trunc_day+1, infection_dates.shape[1])) for n in range(infection_dates.shape[1]): lambda_t[:,n] = np.convolve(infection_dates[:,n], ws, mode='valid') return lambda_t def lambda_all_states(df_infection, **kwargs): """ Use geenrate lambda on every state """ statelist = [*df_infection.index.get_level_values('STATE').unique()] lambda_dict ={} for state in statelist: df_total_infections = df_infection.groupby(['STATE','INFECTION_DATE']).agg(sum) lambda_dict[state] = generate_lambda( df_total_infections.loc[state].values, **kwargs ) return lambda_dict trunc_day = 21 #get all lambdas lambda_dict = lambda_all_states(df_inc_zeros, shape_gen=2,scale_gen=1,offset=1, trunc_day=trunc_day) lambda_dict['VIC'] ###Output _____no_output_____ ###Markdown 3. Sample from the posteriorUsing Cori et al. 2013, the posterior distribution of $R_{t,\tau}$ is a Gamma distribution with parameters shape and scale\begin{equation}\left( a + \sum^t_{s = t - \tau +1} I_s , \frac{1}{\frac{1}{b} + \sum^t_{ s = t-\tau + 1} \Lambda_s } \right)\end{equation} ###Code def Reff_from_case(cases_by_infection, lamb, prior_a=1, prior_b=5, tau=7, samples=1000): """ Using Cori at al. 2013, given case incidence by date of infection, and the force of infection \Lambda_t on day t, estimate the effective reproduction number at time t with smoothing parameter \tau. cases_by_infection: A T by N array, for T days and N samples lamb : A T by N array, for T days and N samples """ csum_incidence = np.cumsum(cases_by_infection, axis = 0) #remove first few incidences to align with size of lambda # Generation interval length 20 csum_incidence = csum_incidence[20:,:] csum_lambda = np.cumsum(lamb, axis =0) roll_sum_incidence = csum_incidence[tau:, :] - csum_incidence[:-tau, :] roll_sum_lambda = csum_lambda[tau:,:] - csum_lambda[:-tau,:] a = prior_a + roll_sum_incidence b = 1/(1/prior_b + roll_sum_lambda) R = np.random.gamma(a,b) #shape, scale #Need to empty R when there is too few cases... #Use array inputs to output to same size #inputs are T-tau by N, output will be T-tau by N # return a,b, R def generate_summary(samples, dates_by='rows'): """ Given an array of samples (T by N) where rows index the dates, generate summary statistics and quantiles """ if dates_by=='rows': #quantiles of the columns ax = 1 else: #quantiles of the rows ax = 0 mean = np.mean(samples, axis = ax) bottom, lower, median, upper, top = np.quantile(samples, (0.05, 0.25, 0.5, 0.75, 0.95), axis =ax) std = np.std(samples, axis = ax) output = { 'mean':mean, 'std':std, 'bottom':bottom, 'lower':lower, 'median':median, 'upper':upper, 'top': top, } return output def plot_Reff(Reff:dict, dates=None, ax_arg=None, **kwargs): """ Given summary statistics of Reff as a dictionary, plot the distribution over time """ import matplotlib.pyplot as plt plt.style.use('seaborn-poster') from datetime import datetime as dt if ax_arg is None: fig, ax = plt.subplots(figsize=(12,9)) else: fig, ax = ax_arg color_cycle = ax._get_lines.prop_cycler curr_color = next(color_cycle)['color'] if dates is None: dates = range(len(Reff['mean'])) ax.plot(dates, Reff['mean'], color= curr_color, **kwargs) ax.fill_between(dates, Reff['lower'],Reff['upper'], alpha=0.4, color = curr_color) ax.fill_between(dates, Reff['bottom'],Reff['top'], alpha=0.4, color= curr_color) #grid line at R_eff =1 ax.set_yticks([1],minor=True,) ax.set_yticks([0,2,3],minor=False) ax.set_yticklabels([0,2,3],minor=False) ax.yaxis.grid(which='minor',linestyle='--',color='black',linewidth=2) ax.tick_params(axis='x', rotation = 45) return fig, ax ###Output _____no_output_____ ###Markdown 4. Plot the estimates ###Code tau = 14 prior_a=1 prior_b=5 #get all lambdas lambda_DL = lambda_all_states(df_inc_zeros) states = [initial[1] for initial in sorted(list(states_initials.items()))] states.remove('NT') states.remove('ACT') #read in old LSHTM estimates df_L_R = read_in_LSHTM() date_filter = pd.date_range(start='2020-03-01',end='2020-08-01') #prepare NNDSS cases df_cases = df_interim.groupby(['NOTIFICATION_RECEIVE_DATE','STATE']).agg(sum) df_cases = df_cases.reset_index() fig, ax = plt.subplots(nrows=2, ncols=3, sharex=True, sharey=True, figsize=(15,12) ) for i,state in enumerate(states): row = i//3 col = i%3 lambda_state = lambda_DL[state] df_state_I = df_inc_zeros.xs((state,'local'),level=('STATE','SOURCE')) a,b,R = Reff_from_case(df_state_I.values,lambda_state,prior_a=1, prior_b=2, tau=tau) R_summary = generate_summary(R) fig, ax[row,col] = plot_Reff(R_summary, dates=df_state_I.index.values[trunc_days-1+tau:], ax_arg=(fig, ax[row,col]), label='Our Model') #plot formatting ax[row,col].set_title(state) ax[row,col].set_ylim((0,4)) ax[row,col].set_xlim((pd.to_datetime('2020-03-01'),pd.to_datetime('2020-08-10'))) #plot cases behind ax2 = ax[row,col].twinx() ax2.bar(df_cases.loc[df_cases.STATE==state,'NOTIFICATION_RECEIVE_DATE'], df_cases.loc[df_cases.STATE==state,'local']+df_cases.loc[df_cases.STATE==state,'imported'], color='grey', alpha=0.3 ) ax2.bar(df_cases.loc[df_cases.STATE==state,'NOTIFICATION_RECEIVE_DATE'], df_cases.loc[df_cases.STATE==state,'local'], color='grey', alpha=0.8 ) #plot old LSHTM estimates df_june = df_L_R.loc[(df_L_R.date_of_analysis=='2020-07-27')&(df_L_R.state==state)] df = df_june.loc[(df_june.date.isin(date_filter))] ax[row,col].plot(df.date, df['median'], label='Old LSHTM',color='C1') ax[row,col].fill_between(df.date, df['bottom'], df['top'],color='C1', alpha=0.3) ax[row,col].fill_between(df.date, df['lower'], df['upper'],color='C1', alpha=0.3) plt.legend() plt.savefig("../figs/EpyEstim_tau_"+str(tau)+"_"+date+".png",dpi=300) plt.show() ###Output No handles with labels found to put in legend. ###Markdown Sophie's implementationUse this as a unit test for changes to the estimator ###Code #ws is the discretised gamma distribution; reversed due to the formula for lambda t. ws = [*reversed(disc_gamma[:(trunc_days+1)])] #was taken from 1 before. #Calculate lambda t for a given t in one state. def calculate_lambda_t(state_df, t, trunc_days = 21, ws=ws): #t = predict_date_range[30] #state_df = input_state tstart= t-np.timedelta64(trunc_days,'D') relevant_dates = pd.date_range(tstart, t-np.timedelta64(1,'D')) reldates_df = state_df.loc[relevant_dates] #Dates don't matter, since we're calculating lambda t for t = t. reldates_df = reldates_df.reset_index(drop=True) ws_mat = pd.DataFrame(np.tile(ws, (reldates_df.shape[1],1)).T) #lambda_t=sum(reldates*ws) lambda_t = np.sum(reldates_df.mul(ws_mat), axis=0) return(lambda_t) #Loop over states and times to calculate all lambda t's #Input: imported/local counts of infections by date and state. Each column should be a different sample. #Output: Lambda t by date and state. Each column corresponds to a different original sample. def calculate_all_lambdas(infection_df): #Depending on data format, flatten if necessary if type(infection_df.index)!=pd.RangeIndex: infection_df = infection_df.reset_index() #Create data frame with the total number of infections. I_total = infection_df.groupby(['STATE',"INFECTION_DATE"]).sum() #Find states and preallocate to dict statelist = [*I_total.index.get_level_values('STATE').unique()] state_dict = dict(zip(statelist, np.repeat(None, len(statelist)))) predict_reff_from = np.datetime64('2020-02-01') #Calculate Reff for each state. for state in statelist: #print(state) input_state_df = I_total.xs(state, level='STATE') tmax = input_state_df.index.get_level_values('INFECTION_DATE').max() predict_date_range = pd.date_range(predict_reff_from, tmax) date_dict = dict(zip(predict_date_range, np.repeat(None, len(predict_date_range)))) #Find lambda t for every day. for t in predict_date_range: #print(t) date_dict[t] = calculate_lambda_t(input_state_df, t).to_numpy() state_dict[state]=date_dict #Convert dict to a dataframe lambda_df = pd.DataFrame.from_dict({(i,j): state_dict[i][j] for i in state_dict.keys() for j in state_dict[i].keys()}, orient='index') lambda_df.index = pd.MultiIndex.from_tuples(lambda_df.index,names = ['STATE','INFECTION_DATE']) return(lambda_df) lambdas = calculate_all_lambdas(df_inc_zeros) #test run on a state state='SA' tau = 14 #df_VIC = df_inc_zeros.xs(('VIC','local'),level=('STATE','SOURCE')) #lambda_VIC = generate_lambda(df_VIC.values ) #get all lambdas lambda_DL = lambda_all_states(df_inc_zeros) #select lambda for the right state lambda_VIC = lambda_DL[state] df_VIC = df_inc_zeros.xs((state,'local'),level=('STATE','SOURCE')) a,b,R = Reff_from_case(df_VIC.values,lambda_VIC,prior_a=1, prior_b=2, tau = tau) R_summary = generate_summary(R) fig, ax = plot_Reff(R_summary, dates=df_VIC.index.values[20+tau:]) a,b,R = Reff_from_case(df_VIC.values[7:],lambdas.loc[state].values,prior_a=1, prior_b=2, tau = tau) R_summary = generate_summary(R) fig, ax = plot_Reff(R_summary, dates=df_VIC.index.values[27+tau:],ax_arg =(fig,ax)) #grid line at R_eff =1 ax2 = ax.twinx() df_cases = df_interim.groupby(['NOTIFICATION_RECEIVE_DATE','STATE']).agg(sum) df_cases = df_cases.reset_index() ax2.bar(df_cases.loc[df_cases.STATE==state,'NOTIFICATION_RECEIVE_DATE'], df_cases.loc[df_cases.STATE==state,'local']+df_cases.loc[df_cases.STATE==state,'imported'], color='grey', alpha=0.3 ) ax2.bar(df_cases.loc[df_cases.STATE==state,'NOTIFICATION_RECEIVE_DATE'], df_cases.loc[df_cases.STATE==state,'local'], color='grey', alpha=0.8 ) plt.show() ###Output _____no_output_____
notebooks/het04_linear_fits.ipynb
###Markdown Leveraging the dataframe generated in het03, we are going to look at the best summary statistics.First with some plots, then with standard linear models, last with more flexible bayesian modeling. ###Code %run ../scripts/notebook_settings_lean.py ###Output _____no_output_____ ###Markdown Reading in metadata and stats ###Code metadata = pd.read_csv("/home/eriks/primatediversity/people/erik/data/Primate_data_Erik - FROH.csv") stats_df = pd.read_csv("../steps/het_dataframe_het03.txt") ###Output _____no_output_____ ###Markdown Calculating ratios. x autosomes ratio both based on means and medians. ###Code total_df = pd.merge(stats_df, metadata, on = "PDGP_ID") total_df["x_a_ratio"] = total_df.x_het_mean/total_df.aut_het_mean total_df["x_a_ratio_median"] = total_df.x_het_median/total_df.aut_het_median total_df["FROH"] = total_df.FROH.astype(float) ###Output _____no_output_____ ###Markdown Plotting relationship. I am using facetgrid to distinguish between the various geni. ###Code g = sns.FacetGrid(data=total_df, col="GENUS", col_wrap = 10) g.map_dataframe(sns.scatterplot, x="aut_het_mean", y="x_a_ratio", hue="SPECIES") ###Output _____no_output_____ ###Markdown Check on the very low ratios.They seem to be males, as their heterozygosity on autosomes is drastically higher. ###Code total_df.loc[total_df.x_a_ratio < 0.1] g = sns.FacetGrid(data=total_df, col="GENUS", col_wrap = 10) g.map_dataframe(sns.scatterplot, x="FROH", y="x_a_ratio", hue="SPECIES") ###Output _____no_output_____ ###Markdown Distribution without very low individuals. ###Code ss = total_df.loc[total_df.x_a_ratio > 0.05] g = sns.histplot(data=total_df, x="x_a_ratio") g.set_xlabel("X autosome ratio") g.set_title("Based on {} females".format(len(ss))) total_df.loc[total_df.x_a_ratio < 0.1] total_df.loc[total_df.GENUS == "Macaca"] ###Output _____no_output_____ ###Markdown Checking the low outliers ###Code ss = total_df.loc[total_df.x_a_ratio < 0.2] g = sns.FacetGrid(data=ss, col="GENUS", col_wrap = 10) g.map_dataframe(sns.scatterplot, x="FROH", y="x_a_ratio", hue="SPECIES") ###Output _____no_output_____ ###Markdown Additional visualizations inspired by the earlier notebooks (het01/02). ###Code sns.scatterplot(data=total_df, x="aut_het_mean", y="x_a_ratio") ###Output _____no_output_____ ###Markdown Some quick regressions ###Code from sklearn import linear_model from sklearn.feature_selection import RFE from sklearn.svm import SVR ###Output _____no_output_____ ###Markdown I am going to see which columns are best at predicting x_a_ratio (excepting the x_het). ###Code total_df.columns # This is simply too many features for this time. X = total_df[['aut_het_std', 'aut_het_mean', 'aut_het_median', 'aut_std', 'aut_mean', 'aut_median', 'aut_cons_windows', 'aut_q0.05', 'aut_q0.1', 'aut_q0.2', 'aut_q0.3', 'aut_q0.5', 'aut_q0.7', 'aut_q0.9', 'x_q0.05', 'x_q0.1', 'x_q0.2', 'x_q0.3', 'x_q0.5', 'x_q0.7', 'x_q0.9', 'FROH']] X = total_df[['aut_het_std', 'aut_het_mean', 'aut_het_median', 'aut_q0.05', 'aut_q0.1', 'x_q0.05', 'FROH']] y = total_df['x_a_ratio'] lm = linear_model.LinearRegression() model = lm.fit(X,y) predictions = lm.predict(X) print(lm.score(X,y), lm.coef_) estimator = SVR(kernel="linear") selector = RFE(estimator, n_features_to_select=5, step=1) selector = selector.fit(X, y) selector.ranking_ estimator = SVR(kernel="linear") selector = RFE(estimator, n_features_to_select=2, step=1) selector = selector.fit(X, y) selector.ranking_ X = total_df[['aut_het_mean', 'aut_q0.05', 'aut_q0.1', 'x_q0.05', 'FROH']] y = total_df['x_a_ratio'] lm = linear_model.LinearRegression() model = lm.fit(X,y) predictions = lm.predict(X) print(lm.score(X,y), lm.coef_) ###Output 0.1930423565490368 [-2.56051534e-05 -6.54025939e-02 4.53543921e-01 -1.49078831e-03 3.47566926e-01] ###Markdown Normalization check. ###Code normalized_df=(total_df-total_df.mean())/total_df.std() X = normalized_df[['aut_het_mean', 'aut_het_median', 'aut_q0.05', 'aut_q0.1', 'x_q0.05', 'x_q0.1', 'FROH']] y = total_df['x_a_ratio'] lm = linear_model.LinearRegression() model = lm.fit(X,y) predictions = lm.predict(X) print(lm.score(X,y), lm.coef_) ###Output 0.3088028603937024 [-2.82103383e-01 2.82139734e-01 -7.35570037e-02 8.87751310e-02 3.92638873e+00 -3.95338742e+00 -3.87331324e-04]
notebooks/1.0-Data_exploration.ipynb
###Markdown Data exploration ###Code from scipy.io import wavfile import matplotlib.pyplot as plt rate, data = wavfile.read('../data/samples/birds1.wav') data = np.mean(data, axis=1) plt.rc('font', size=12) fig, axs = plt.subplots(2,1, figsize=(20, 10)) axs[0].plot(data) axs[0].set_ylabel('Amplitude') axs[0].set_xlim(0, len(data)) axs[0].tick_params(axis='x', which='both', bottom=False, top=False, labelbottom=False) axs[1].specgram(data, Fs=rate, cmap=plt.get_cmap('magma')) axs[1].set_xlabel('Time') axs[1].set_ylabel('Frequency') plt.tight_layout() plt.show() # fig.savefig('../reports/figures/demo.png', dpi=100) ###Output /home/ignacio/anaconda3/lib/python3.6/site-packages/scipy/io/wavfile.py:273: WavFileWarning: Chunk (non-data) not understood, skipping it. WavFileWarning)
3_AlanineDipeptide.ipynb
###Markdown AlanineDipeptide 1. Training & Loading ###Code import numpy as np import torch from torch import nn import flow import train import utils import math import h5py # Set gobal variables. rootFolder = "./demo/Model_CC(=O)NC(C)C(=O)NC_Batch_200_T_300_depthLevel_1_l8_M2_H128/" device = torch.device("cpu") dtype = torch.float32 smile = "CC(=O)NC(C)C(=O)NC" dataset = "./database/alanine-dipeptide-3x250ns-heavy-atom-positions.npz" # Load paremeters with h5py.File(rootFolder+"/parameter.hdf5","r") as f: n = int(np.array(f["n"])) numFlow = int(np.array(f["numFlow"])) lossPlotStep = int(np.array(f["lossPlotStep"])) hidden = int(np.array(f["hidden"])) nlayers = int(np.array(f["nlayers"])) nmlp = int(np.array(f["nmlp"])) lr = int(np.array(f["lr"])) batchSize = int(np.array(f["batchSize"])) Nepochs = int(np.array(f["Nepochs"])) K = int(np.array(f["K"])) fix = np.array(f["fix"]) scaling = float(np.array(f["scaling"])) # Rebuild the model. def innerBuilder(num): maskList = [] for i in range(nlayers): if i %2==0: b = torch.zeros(num) i = torch.randperm(b.numel()).narrow(0, 0, b.numel() // 2) b.zero_()[i] = 1 b=b.reshape(1,num) else: b = 1-b maskList.append(b) maskList = torch.cat(maskList,0).to(torch.float32) fl = flow.RNVP(maskList, [utils.SimpleMLPreshape([num]+[hidden]*nmlp+[num],[nn.Softplus()]*nmlp+[None]) for _ in range(nlayers)], [utils.SimpleMLPreshape([num]+[hidden]*nmlp+[num],[nn.Softplus()]*nmlp+[utils.ScalableTanh(num)]) for _ in range(nlayers)]) return fl from utils import flowBuilder f = flowBuilder(n,numFlow,innerBuilder,1).to(device).to(dtype) # Load saving. import os import glob name = max(glob.iglob(rootFolder+"savings/"+'*.saving'), key=os.path.getctime) print("load saving at "+name) saved = torch.load(name,map_location=device) f.load(saved); ###Output /Users/lili/anaconda3/lib/python3.6/site-packages/h5py/__init__.py:34: FutureWarning: Conversion of the second argument of issubdtype from `float` to `np.floating` is deprecated. In future, it will be treated as `np.float64 == np.dtype(float).type`. from ._conv import register_converters as _register_converters ###Markdown 2. Analysis ###Code # Calculate modes in the latent space. d0 = f.layerList[0].elements[:n] d1 = f.layerList[0].elements[n:] omega = (1/(torch.exp(d0+d1))).detach() omega, idx = torch.sort(omega) from matplotlib import pyplot as plt klist = np.arange(len(omega)) +1 plt.figure() plt.plot(klist, omega.detach().cpu().numpy(), 'o', markerfacecolor='none', markeredgewidth=2) plt.xlabel('$k$') plt.ylabel('$\omega_k$') plt.yscale('log') plt.legend(loc='lower right') from thirdparty import kraskov_mi Nsamples = 5 Npersample = 1000 loadrange = ['arr_0','arr_1','arr_2'] from utils import loadmd, variance, smile2mass SMILE = smile2mass(smile) pVariance = torch.tensor([variance(torch.tensor(item),K) for item in SMILE]).reshape(1,-1).repeat(3,1).permute(1,0).reshape(-1).to(dtype) theta = loadmd("./database/alanine-dipeptide-3x250ns-backbone-dihedrals.npz",loadrange,1,[0,0,0]).to(dtype) data = loadmd("./database/alanine-dipeptide-3x250ns-heavy-atom-positions.npz",loadrange,scaling,fix).to(dtype) perm = np.arange(data.shape[0]) np.random.shuffle(perm) data = data[perm][:Nsamples* Npersample, :] theta = theta[perm][:Nsamples* Npersample, :] batchsize, halfdim = data.shape[0], data.shape[1] p = torch.randn(batchsize,data.shape[-1]).to(data)*pVariance data = torch.cat([data,p], dim=1) z = f.forward(data)[0] z = z.detach().cpu().numpy() mi_phi = [] mi_psi = [] Nk = 6 for k in range(Nk): for sample in range(Nsamples): mi_phi.append(kraskov_mi(theta[sample*Npersample:(sample+1)*Npersample, 0].reshape(-1, 1), z[sample*Npersample:(sample+1)*Npersample, idx[k]].reshape(-1, 1) )) mi_psi.append( kraskov_mi(theta[sample*Npersample:(sample+1)*Npersample, 1].reshape(-1, 1), z[sample*Npersample:(sample+1)*Npersample, idx[k]].reshape(-1, 1) )) mi_phi = np.array(mi_phi) mi_phi = mi_phi.reshape(Nk, Nsamples) mi_psi = np.array(mi_psi) mi_psi = mi_psi.reshape(Nk, Nsamples) plt.figure() plt.errorbar(np.arange(Nk)+1, mi_phi.mean(axis=1), yerr=mi_phi.std(axis=1)/np.sqrt(Nsamples), fmt='o-', label='$I(Q_k:\Phi)$', markerfacecolor='none', markeredgewidth=2, capsize=8, lw=2) plt.errorbar(np.arange(Nk)+1, mi_psi.mean(axis=1), yerr=mi_psi.std(axis=1)/np.sqrt(Nsamples), fmt='o-', label='$I(Q_k:\Psi)$', markerfacecolor='none', markeredgewidth=2, capsize=8, lw=2) plt.xlabel('$k$') plt.ylabel('$mutual information$') plt.legend(loc='upper right') plt.show() ###Output /Users/lili/anaconda3/lib/python3.6/site-packages/matplotlib/axes/_axes.py:545: UserWarning: No labelled objects found. Use label='...' kwarg on individual plots. warnings.warn("No labelled objects found. " ###Markdown 3. InterpolationInterpolations of the slowest and the second slowest mode, to plot this to video, check [xyzFile2Animation](https://github.com/li012589/xyzFile2Animation) ###Code sample = data[0].reshape(1,-1) latent = f.forward(sample)[0].detach() from copy import deepcopy lat1 = deepcopy(latent) lat2 = deepcopy(latent) omega, idx = torch.sort(omega) omega0 = 1/torch.exp(-f.layerList[0].elements[idx[0]]) omega1 = 1/torch.exp(-f.layerList[0].elements[idx[1]]) lats1 = lat1.repeat(100,1) for i in range(100): Q0 = -omega0 + i/(100-1) * 2*omega0 - f.layerList[0].shift[idx[0]] lats1[i,idx[0]]=Q0 x1 = f.inverse(lats1)[0].detach().numpy()[:,:n] np.savez(smile+'_idx0.npz', x1) print("Generated mode 0 interpolation data:",smile+"_idx0.npz") lats2 = lat2.repeat(100,1) for i in range(100): Q1 = -omega1 + i/(100-1) * 2*omega1 - f.layerList[0].shift[idx[1]] lats2[i,idx[1]]=Q1 x2 = f.inverse(lats2)[0].detach().numpy()[:,:n] np.savez(smile+'_idx1.npz', x2) print("Generated mode 1 interpolation data:",smile+"_idx1.npz") ###Output Generated mode 0 interpolation data: CC(=O)NC(C)C(=O)NC_idx0.npz Generated mode 1 interpolation data: CC(=O)NC(C)C(=O)NC_idx1.npz
Chapter 1 - Getting Started with TensorFlow 2.x/Declaring operations.ipynb
###Markdown How to do it... ###Code print(tf.math.divide(3, 4)) print(tf.math.truediv(3, 4)) print(tf.math.floordiv(3.0, 4.0)) print(tf.math.mod(22.0, 5.0)) print(tf.linalg.cross([1., 0., 0.], [0., 1., 0.])) ###Output tf.Tensor([0. 0. 1.], shape=(3,), dtype=float32) ###Markdown How it works... ###Code # Tangent function (tan(pi/4)=1) def pi_tan(x): return tf.tan(3.14159/x) print(pi_tan(4)) ###Output tf.Tensor(0.99999875, shape=(), dtype=float32) ###Markdown We can also create a custom polynomial function... ###Code def custom_polynomial(value): return tf.math.subtract(3 * tf.math.square(value), value) + 10 print(custom_polynomial(11)) ###Output tf.Tensor(362, shape=(), dtype=int32)
notebooks/nlp/raw/ex2.ipynb
###Markdown Natural Language ClassificationYou did such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output _____no_output_____ ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') print(train_labels[:2]) ###Output _____no_output_____ ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) # Add the TextCategorizer to the empty model nlp.add_pipe(textcat) # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) nlp.add_pipe(textcat) # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code from spacy.util import minibatch import random def train(model, train_data, optimizer): losses = {} random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=8) for batch in batches: # train_data is a list of tuples [(text0, label0), (text1, label1), ...] # Split batch into texts and labels texts, labels = zip(*batch) # Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} #random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=batch_size) for batch in batches: texts, labels = zip(*batch) model.update(texts, labels, sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that predicts the sentiment of text examples. - First, tokenize the texts using `nlp.tokenizer()`. - Then, pass those docs to the TextCategorizer which you can get from `nlp.get_pipe()`. - Use the `textcat.predict()` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(nlp, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(nlp, texts): # Use the tokenizer to tokenize each input text example docs = [nlp.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = nlp.get_pipe('textcat') scores, _ = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____ ###Markdown Natural Language ClassificationYou did a great such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output _____no_output_____ ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') train_labels[:2] ###Output _____no_output_____ ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) # Add the TextCategorizer to the empty model nlp.add_pipe(textcat) # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) nlp.add_pipe(textcat) # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code from spacy.util import minibatch import random def train(model, train_data, optimizer): losses = {} random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=8) for batch in batches: # train_data is a list of tuples [(text0, label0), (text1, label1), ...] # Split batch into texts and labels texts, labels = zip(*batch) # Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} #random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=batch_size) for batch in batches: texts, labels = zip(*batch) model.update(texts, labels, sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that uses a model to predict the sentiment of text examples. The function takes a spaCy model (with a `TextCategorizer`) and a list of texts. First, tokenize the texts using `model.tokenizer`. Then, pass those docs to the TextCategorizer which you can get from `model.get_pipe`. Use the `textcat.predict` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(model, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(model, texts): # Use the tokenizer to tokenize each input text example docs = [model.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = model.get_pipe('textcat') scores, _ = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____ ###Markdown Natural Language ClassificationYou did a great such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking !pip install -U -t /kaggle/working/ git+https://github.com/Kaggle/learntools.git from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output _____no_output_____ ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') print(train_labels[:2]) ###Output _____no_output_____ ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) # Add the TextCategorizer to the empty model nlp.add_pipe(textcat) # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) nlp.add_pipe(textcat) # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code from spacy.util import minibatch import random def train(model, train_data, optimizer): losses = {} random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=8) for batch in batches: # train_data is a list of tuples [(text0, label0), (text1, label1), ...] # Split batch into texts and labels texts, labels = zip(*batch) # Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} #random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=batch_size) for batch in batches: texts, labels = zip(*batch) model.update(texts, labels, sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that predicts the sentiment of text examples. - First, tokenize the texts using `nlp.tokenizer()`. - Then, pass those docs to the TextCategorizer which you can get from `nlp.get_pipe()`. - Use the `textcat.predict()` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(nlp, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(nlp, texts): # Use the tokenizer to tokenize each input text example docs = [nlp.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = nlp.get_pipe('textcat') scores, _ = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____ ###Markdown Natural Language ClassificationYou did a great such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking !pip install -U -t /kaggle/working/ git+https://github.com/Kaggle/learntools.git from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output Setup complete ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') print(train_labels[:2]) ###Output _____no_output_____ ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) # Add the TextCategorizer to the empty model nlp.add_pipe(textcat) # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) nlp.add_pipe(textcat) # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code from spacy.util import minibatch import random def train(model, train_data, optimizer): losses = {} random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=8) for batch in batches: # train_data is a list of tuples [(text0, label0), (text1, label1), ...] # Split batch into texts and labels texts, labels = zip(*batch) # Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} #random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=batch_size) for batch in batches: texts, labels = zip(*batch) model.update(texts, labels, sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that predicts the sentiment of text examples. - First, tokenize the texts using `nlp.tokenizer()`. - Then, pass those docs to the TextCategorizer which you can get from `nlp.get_pipe()`. - Use the `textcat.predict()` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(nlp, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(nlp, texts): # Use the tokenizer to tokenize each input text example docs = [nlp.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = nlp.get_pipe('textcat') scores, _ = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____ ###Markdown Natural Language ClassificationYou did such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking !pip install -U -t /kaggle/working/ git+https://github.com/Kaggle/learntools.git from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output _____no_output_____ ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') print(train_labels[:2]) ###Output _____no_output_____ ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) # Add the TextCategorizer to the empty model nlp.add_pipe(textcat) # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) nlp.add_pipe(textcat) # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code from spacy.util import minibatch import random def train(model, train_data, optimizer): losses = {} random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=8) for batch in batches: # train_data is a list of tuples [(text0, label0), (text1, label1), ...] # Split batch into texts and labels texts, labels = zip(*batch) # Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} #random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=batch_size) for batch in batches: texts, labels = zip(*batch) model.update(texts, labels, sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that predicts the sentiment of text examples. - First, tokenize the texts using `nlp.tokenizer()`. - Then, pass those docs to the TextCategorizer which you can get from `nlp.get_pipe()`. - Use the `textcat.predict()` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(nlp, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(nlp, texts): # Use the tokenizer to tokenize each input text example docs = [nlp.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = nlp.get_pipe('textcat') scores, _ = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____ ###Markdown Natural Language ClassificationYou did such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output _____no_output_____ ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') print(train_labels[:2]) ###Output _____no_output_____ ###Markdown But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? If you're not sure, take a second look at the data, and pay particular attention to the labels that should be fed to the text classifier. ###Code import spacy # Create an empty model nlp = spacy.blank('en') # Add the TextCategorizer to the empty model textcat = nlp.add_pipe('textcat') # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% step_2.assert_check_failed() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank('en') # Add the TextCategorizer to the empty model textcat = nlp.add_pipe('textcat') # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code import random from spacy.util import minibatch from spacy.training.example import Example def train(model, train_data, optimizer, batch_size=8): losses = {} random.seed(1) random.shuffle(train_data) # train_data is a list of tuples [(text0, label0), (text1, label1), ...] for batch in minibatch(train_data, size=batch_size): # Split batch into text and labels for text, labels in batch: doc = nlp.make_doc(text) example = Example.from_dict(doc, labels) # TODO: Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} random.seed(1) random.shuffle(train_data) # train_data is a list of tuples [(text0, label0), (text1, label1), ...] for batch in minibatch(train_data, size=batch_size): # Split batch into text and labels for text, labels in batch: doc = nlp.make_doc(text) example = Example.from_dict(doc, labels) # Update model with texts and labels model.update([example], sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that predicts the sentiment of text examples. - First, tokenize the texts using `nlp.tokenizer()`. - Then, pass those docs to the TextCategorizer which you can get from `nlp.get_pipe()`. - Use the `textcat.predict()` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(nlp, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(nlp, texts): # Use the tokenizer to tokenize each input text example docs = [nlp.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = nlp.get_pipe('textcat') scores = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy # Check your answer step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____ ###Markdown Natural Language ClassificationYou did a great such a great job for DeFalco's restaurant in the previous exercise that the chef has hired you for a new project.The restaurant's menu includes an email address where visitors can give feedback about their food. The manager wants you to create a tool that automatically sends him all the negative reviews so he can fix them, while automatically sending all the positive reviews to the owner, so the manager can ask for a raise. You will first build a model to distinguish positive reviews from negative reviews using Yelp reviews because these reviews include a rating with each review. Your data consists of the text body of each review along with the star rating. Ratings with 1-2 stars count as "negative", and ratings with 4-5 stars are "positive". Ratings with 3 stars are "neutral" and have been dropped from the data.Let's get started. First, run the next code cell. ###Code import pandas as pd # Set up code checking from learntools.core import binder binder.bind(globals()) from learntools.nlp.ex2 import * print("\nSetup complete") ###Output _____no_output_____ ###Markdown Step 1: Evaluate the ApproachIs there anything about this approach that concerns you? After you've thought about it, run the function below to see one point of view. ###Code # Check your answer (Run this code cell to receive credit!) step_1.solution() ###Output _____no_output_____ ###Markdown Step 2: Review Data and Create the modelMoving forward with your plan, you'll need to load the data. Here's some basic code to load data and split it into a training and validation set. Run this code. ###Code def load_data(csv_file, split=0.9): data = pd.read_csv(csv_file) # Shuffle data train_data = data.sample(frac=1, random_state=7) texts = train_data.text.values labels = [{"POSITIVE": bool(y), "NEGATIVE": not bool(y)} for y in train_data.sentiment.values] split = int(len(train_data) * split) train_labels = [{"cats": labels} for labels in labels[:split]] val_labels = [{"cats": labels} for labels in labels[split:]] return texts[:split], train_labels, texts[split:], val_labels train_texts, train_labels, val_texts, val_labels = load_data('../input/nlp-course/yelp_ratings.csv') ###Output _____no_output_____ ###Markdown You will use this training data to build a model. The code to build the model is the same as what you saw in the tutorial. So that is copied below for you.But because your data is different, there are **two lines in the modeling code cell that you'll need to change.** Can you figure out what they are? First, run the cell below to look at a couple elements from your training data. ###Code print('Texts from training data\n------') print(train_texts[:2]) print('\nLabels from training data\n------') print(train_labels[:2]) ###Output _____no_output_____ ###Markdown Now, having seen this data, find the two lines that need to be changed. ###Code import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) # Add the TextCategorizer to the empty model nlp.add_pipe(textcat) # Add labels to text classifier textcat.add_label("ham") textcat.add_label("spam") # Check your answer step_2.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_2.hint() #_COMMENT_IF(PROD)_ step_2.solution() #%%RM_IF(PROD)%% import spacy # Create an empty model nlp = spacy.blank("en") # Create the TextCategorizer with exclusive classes and "bow" architecture textcat = nlp.create_pipe( "textcat", config={ "exclusive_classes": True, "architecture": "bow"}) nlp.add_pipe(textcat) # Add NEGATIVE and POSITIVE labels to text classifier textcat.add_label("NEGATIVE") textcat.add_label("POSITIVE") step_2.assert_check_passed() ###Output _____no_output_____ ###Markdown Step 3: Train FunctionImplement a function `train` that updates a model with training data. Most of this is general data munging, which we've filled in for you. Just add the one line of code necessary to update your model. ###Code from spacy.util import minibatch import random def train(model, train_data, optimizer): losses = {} random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=8) for batch in batches: # train_data is a list of tuples [(text0, label0), (text1, label1), ...] # Split batch into texts and labels texts, labels = zip(*batch) # Update model with texts and labels ____ return losses # Check your answer step_3.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_3.hint() #_COMMENT_IF(PROD)_ step_3.solution() #%%RM_IF(PROD)%% from spacy.util import minibatch import random def train(model, train_data, optimizer, batch_size=8): losses = {} #random.seed(1) random.shuffle(train_data) batches = minibatch(train_data, size=batch_size) for batch in batches: texts, labels = zip(*batch) model.update(texts, labels, sgd=optimizer, losses=losses) return losses step_3.assert_check_passed() # Fix seed for reproducibility spacy.util.fix_random_seed(1) random.seed(1) # This may take a while to run! optimizer = nlp.begin_training() train_data = list(zip(train_texts, train_labels)) losses = train(nlp, train_data, optimizer) print(losses['textcat']) ###Output _____no_output_____ ###Markdown We can try this slightly trained model on some example text and look at the probabilities assigned to each label. ###Code text = "This tea cup was full of holes. Do not recommend." doc = nlp(text) print(doc.cats) ###Output _____no_output_____ ###Markdown These probabilities look reasonable. Now you should turn them into an actual prediction. Step 4: Making PredictionsImplement a function `predict` that uses a model to predict the sentiment of text examples. The function takes a spaCy model (with a `TextCategorizer`) and a list of texts. First, tokenize the texts using `model.tokenizer`. Then, pass those docs to the TextCategorizer which you can get from `model.get_pipe`. Use the `textcat.predict` method to get scores for each document, then choose the class with the highest score (probability) as the predicted class. ###Code def predict(model, texts): # Use the model's tokenizer to tokenize each input text docs = ____ # Use textcat to get the scores for each doc ____ # From the scores, find the class with the highest score/probability predicted_class = ____ return predicted_class # Check your answer step_4.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_4.hint() #_COMMENT_IF(PROD)_ step_4.solution() #%%RM_IF(PROD)%% def predict(model, texts): # Use the tokenizer to tokenize each input text example docs = [model.tokenizer(text) for text in texts] # Use textcat to get the scores for each doc textcat = model.get_pipe('textcat') scores, _ = textcat.predict(docs) # From the scores, find the class with the highest score/probability predicted_class = scores.argmax(axis=1) return predicted_class step_4.assert_check_passed() texts = val_texts[34:38] predictions = predict(nlp, texts) for p, t in zip(predictions, texts): print(f"{textcat.labels[p]}: {t} \n") ###Output _____no_output_____ ###Markdown It looks like your model is working well after going through the data just once. However you need to calculate some metric for the model's performance on the hold-out validation data. Step 5: Evaluate The ModelImplement a function that evaluates a `TextCategorizer` model. This function `evaluate` takes a model along with texts and labels. It returns the accuracy of the model, which is the number of correct predictions divided by all predictions.First, use the `predict` method you wrote earlier to get the predicted class for each text in `texts`. Then, find where the predicted labels match the true "gold-standard" labels and calculate the accuracy. ###Code def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model (using your predict method) predicted_class = ____ # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = ____ # A boolean or int array indicating correct predictions correct_predictions = ____ # The accuracy, number of correct predictions divided by all predictions accuracy = ____ return accuracy step_5.check() # Lines below will give you a hint or solution code #_COMMENT_IF(PROD)_ step_5.hint() #_COMMENT_IF(PROD)_ step_5.solution() #%%RM_IF(PROD)%% def evaluate(model, texts, labels): """ Returns the accuracy of a TextCategorizer model. Arguments --------- model: ScaPy model with a TextCategorizer texts: Text samples, from load_data function labels: True labels, from load_data function """ # Get predictions from textcat model predicted_class = predict(model, texts) # From labels, get the true class as a list of integers (POSITIVE -> 1, NEGATIVE -> 0) true_class = [int(each['cats']['POSITIVE']) for each in labels] # A boolean or int array indicating correct predictions correct_predictions = predicted_class == true_class # The accuracy, number of correct predictions divided by all predictions accuracy = correct_predictions.mean() return accuracy # just changed this. not sure ... step_5.assert_check_passed() accuracy = evaluate(nlp, val_texts, val_labels) print(f"Accuracy: {accuracy:.4f}") ###Output _____no_output_____ ###Markdown With the functions implemented, you can train and evaluate in a loop. ###Code # This may take a while to run! n_iters = 5 for i in range(n_iters): losses = train(nlp, train_data, optimizer) accuracy = evaluate(nlp, val_texts, val_labels) print(f"Loss: {losses['textcat']:.3f} \t Accuracy: {accuracy:.3f}") ###Output _____no_output_____ ###Markdown Step 6: Keep ImprovingYou've built the necessary components to train a text classifier with spaCy. What could you do further to optimize the model?Run the next line to check your answer. ###Code # Check your answer (Run this code cell to receive credit!) step_6.solution() ###Output _____no_output_____
Drug Discovery.ipynb
###Markdown | Name | Date || ---------------------------------------------------| ------------------------------------- || Diaaeldin SHALABY | 14.05.2021 | Hands-on AI IIUnit 3 &mdash; Drug Discovery (Assignment) Authors: B. Schäfl, S. Lehner, J. Schimunek, J. BrandstetterDate: 23-04-2021This file is part of the "Hands-on AI II" lecture material. The following copyright statement applies to all code within this file.Copyright statement:This material, no matter whether in printed or electronic form, may be used for personal and non-commercial educational use only. Any reproduction of this manuscript, no matter whether as a whole or in parts, no matter whether in printed or in electronic form, requires explicit prior acceptance of the authors. Table of contents Extracting Information of MOL/SDF Representations Extracting properties Inspecting atom numbers Atomic Properties and Bonds Extracting atomic properties Extracting bond properties Further Applications Molecular substructure matching Molecular fingerprints Molecular clustering How to use this notebookThis notebook is designed to run from start to finish. There are different tasks (displayed in orange boxes) which require your contribution (in form of code, plain text, ...). Most/All of the supplied functions are imported from the file u3_utils.py which can be seen and treated as a black box. However, for further understanding, you can look at the implementations of the helper functions. In order to run this notebook, the packages which are imported at the beginning of u3_utils.py need to be installed. ###Code # Import pre-defined utilities specific to this notebook. import u3_utils as u3 # Import additional utilities needed in this notebook. import numpy as np import pandas as pd import seaborn as sns from copy import deepcopy from rdkit import Chem # Setup Jupyter notebook (warning: this may affect all Jupyter notebooks running on the same Jupyter server). u3.setup_jupyter() ###Output _____no_output_____ ###Markdown Module versionsAs mentioned in the introductiory slides, specific minimum versions of Python itself as well as of used modules is recommended. ###Code u3.check_module_versions() ###Output Installed Python version: 3.8 (✓) Installed numpy version: 1.19.1 (✓) Installed pandas version: 1.1.3 (✓) Installed PyTorch version: 1.7.1 (✓) Installed scikit-learn version: 0.23.2 (✓) Installed scipy version: 1.5.0 (✓) Installed matplotlib version: 3.3.1 (✓) Installed seaborn version: 0.11.0 (✓) Installed PIL version: 8.0.0 (✓) Installed rdkit version: 2020.09.1 (✓) ###Markdown Extracting Information of MOL/SDF RepresentationsThe first step of working with molecule data is actually getting them into memory. RDKit provides this functionality with SDMolSupplier – be aware, that the specified file is not loaded at once, but piece by piece, depending on what information is retrieved. This behavior is solely for performance reasons, hence you do not need to worry about this besides not deleting/moving the specified data file during the whole process. Execute the notebook until here and try to solve the following tasks: Load the molecule data set molecules.sdf using the appropriate function as supplied by RDKit. To avoid any problems with the lazy loading mechanics of RDKit, print the total amount of loaded molecules. Visualize the $16$ molecules with the lowest LUMO values in a grid including their Formulas as well as their LUMO values. What does the acronym LUMO stand for? Cite your sources (find an appropriate source, even if you know it by heart). ###Code data_molecules = Chem.SDMolSupplier(r'resources/molecules.sdf') num_molecules = len(data_molecules) print(f'{num_molecules} molecules loaded from file.') all_lumo = [] for mol in data_molecules: list(mol.GetPropNames()) all_lumo.append(mol.GetProp(r'LUMO')) all_lumo.sort() lowest_16_lumo = all_lumo[0:16] mol_lowest_16_lumo =[] for mol in data_molecules: if mol.GetProp(r'LUMO') in lowest_16_lumo: mol_lowest_16_lumo.append(mol) # Select specific molecules and extract some of their properties. specific_molecules = mol_lowest_16_lumo specific_molecule_labels = [ f'{mol.GetProp(r"Formula")}: {mol.GetProp(r"LUMO")}' for mol in specific_molecules] # Plot specified molecules with extracted properties as labels in a grid plot. Chem.Draw.MolsToGridImage( specific_molecules, legends=specific_molecule_labels, maxMols=len(specific_molecules), molsPerRow=4) ###Output _____no_output_____ ###Markdown LUMO stands for lowest unoccupied molecular orbital. according to https://en.wikipedia.org/wiki/HOMO_and_LUMO Execute the notebook until here and try to solve the following tasks: For each of the previously found molecules, annote their atoms and compute their respective atom count. Visualize the result in a grid including their Formulas as well as their atom counts (sorted according to atom count). Do you observe visually similar molecules? In either case, comment on their respective differences. ###Code def annotate_molecule_atoms(molecule: Chem.rdchem.Mol) -> Chem.rdchem.Mol: """ Annotate molecule atoms with corresponding atom numbers. :param molecule: molecule to annotate :return: annotated molecule """ molecule_annotated = deepcopy(molecule) for atom in molecule_annotated.GetAtoms(): atom.SetProp(r'atomNote', str(atom.GetIdx())) return molecule_annotated molecules_annotated = [] for molecule in mol_lowest_16_lumo: molecules_annotated.append(annotate_molecule_atoms(molecule)) # Sort list according to atom count molecules_annotated.sort(key=lambda mol: mol.GetNumAtoms()) # Select specific molecules and extract some of their properties. specific_molecules = molecules_annotated specific_molecule_labels = [ f'{mol.GetProp(r"Formula")}: {mol.GetNumAtoms()}' for mol in specific_molecules] # Plot specified molecules with extracted properties as labels in a grid plot. Chem.Draw.MolsToGridImage( specific_molecules, legends=specific_molecule_labels, maxMols=len(specific_molecules), molsPerRow=4) ###Output _____no_output_____ ###Markdown I see a couple of similar molecules. Atomic Properties and BondsExtracting atomic as well as bond properties often allows for a more throrough undertstanding of the molecules at hand. Unsurprisingly, RDKit provides the necessary functionality for this purpose – almost. The missing functionality may be taken from the exercise notebook, but needs to be adapted accordingly. Execute the notebook until here and try to solve the following tasks: Compute the amount of atoms participating in a ring structure for each of the molecules of the previous exercise. Adapt and apply annotate_molecule_atoms in a way to only mark atoms participating in a ring structure with an R. Visualize the result in a grid including their Formulas as well as their amount of ring atoms (sorted according to the last). ###Code # only mark atoms participating in a ring structure with an R. def annotate_molecule_atoms(molecule: Chem.rdchem.Mol) -> Chem.rdchem.Mol: """ Annotate molecule atoms with corresponding atom numbers. :param molecule: molecule to annotate :return: annotated molecule """ molecule_annotated = deepcopy(molecule) for atom in molecule_annotated.GetAtoms(): if atom.IsInRing(): atom.SetProp(r'atomNote', 'R') return molecule_annotated annotated_mols_w_rings = {} for mol in mol_lowest_16_lumo: count_rings = 0 for atom in mol.GetAtoms(): if atom.IsInRing(): count_rings += 1 if count_rings > 0: annotated_mols_w_rings[annotate_molecule_atoms(mol)] = count_rings annotated_mols_w_rings = dict(sorted(annotated_mols_w_rings.items(), key= lambda x: x[1])) # Select specific molecules and extract some of their properties. specific_molecule_labels = [ f'{k.GetProp(r"Formula")}: {v}' for k,v in annotated_mols_w_rings.items()] # Plot specified molecules with extracted properties as labels in a grid plot. Chem.Draw.MolsToGridImage( annotated_mols_w_rings.keys(), legends=specific_molecule_labels, maxMols=len(annotated_mols_w_rings), molsPerRow=4) ###Output _____no_output_____ ###Markdown Execute the notebook until here and try to solve the following tasks: Compute the amount of bonds for each of the molecules of the previous exercise (disregarding their specific type). Adapt and apply annotate_molecule_bonds in a way to mark bonds with the first letter of their respective type. Visualize the result in a grid including their Formulas as well as their amount of bonds (sorted according to the last). ###Code # Adapt and apply annotate_molecule_bonds in a way to mark bonds with the first letter of their respective type. def annotate_molecule_atoms(molecule: Chem.rdchem.Mol) -> Chem.rdchem.Mol: """ Annotate molecule atoms with corresponding atom numbers. :param molecule: molecule to annotate :return: annotated molecule """ molecule_annotated = deepcopy(molecule) for bond in molecule_annotated.GetBonds(): bond.SetProp(r'atomNote', str(bond.GetBondType())[0]) return molecule_annotated annotated_mols_w_bonds = {} for mol in annotated_mols_w_rings: count_bonds = 0 for atom in mol.GetAtoms(): count_bonds += len(atom.GetNeighbors()[-1].GetBonds()) annotated_mols_w_bonds[annotate_molecule_atoms(mol)] = count_bonds annotated_mols_w_bonds = dict(sorted(annotated_mols_w_bonds.items(), key= lambda x: x[1])) # Select specific molecules and extract some of their properties. specific_molecule_labels = [ f'{k.GetProp(r"Formula")}: {v}' for k,v in annotated_mols_w_bonds.items()] # Plot specified molecules with extracted properties as labels in a grid plot. Chem.Draw.MolsToGridImage( annotated_mols_w_bonds.keys(), legends=specific_molecule_labels, maxMols=len(annotated_mols_w_bonds), molsPerRow=4) ###Output _____no_output_____ ###Markdown Further ApplicationsIn the following exercises, you'll have to dig into the more interesting applications of chemoinformatics, namely: molecular substructure matching molecular fingerprints molecular clustering Execute the notebook until here and try to solve the following tasks: Specify a C(=O) template and scan the molecules data set. Visualize the template including a respective atom numbering. For each of the found molecules, annote their atoms and compute their respective substructure matches (w.r.t. C(=0)). Visualize the result in a grid including their substructure matches. Can you recognize the substructures in the plot? ###Code template = Chem.MolFromSmiles(r'C(=O)') Chem.Draw.MolToImage(annotate_molecule_atoms(template)) annotated_mols_w_substructs = {} for mol in data_molecules: has_substructure_match = mol.HasSubstructMatch(template) if has_substructure_match: mol = annotate_molecule_atoms(mol) annotated_mols_w_substructs[mol] = mol.GetSubstructMatch(template) specific_molecule_labels = [ f'{k.GetProp(r"Formula")}: {v}' for k,v in annotated_mols_w_substructs.items()] annotated_mols_w_substructs.values() # Plot specified molecules with extracted properties as labels in a grid plot. Chem.Draw.MolsToGridImage( annotated_mols_w_substructs.keys(), legends=specific_molecule_labels, maxMols=len(annotated_mols_w_substructs), molsPerRow=4) ###Output _____no_output_____ ###Markdown I can recognize the substructures in the cells above. Execute the notebook until here and try to solve the following tasks: Compute the ECFPs from the previously found molecules and visualize them in tabular form (use a fold size of $256$). How many substructures are present in each molecule? Compute and sort their total amount for each molecule. ###Code # First, all molecules need to be converted to corresponding SMILES representations. data_molecules_smiles = [Chem.MolToSmiles(molecule) for molecule in annotated_mols_w_substructs.keys()] # Afterwards, ECFPs are computed and visualized in tabular form. data_molecules_ecfps = u3.compute_ecfps(data_molecules_smiles, fold=256) data_molecules_ecfps pd.DataFrame(data_molecules_ecfps.sum(axis=1), columns=['substructures']).sort_values(by='substructures').transpose() ###Output _____no_output_____ ###Markdown Execute the notebook until here and try to solve the following tasks: Downproject the previously computed ECFPs using PCA. Visualize the result in a scatter plot. Are there any visible clusters? Cluster the resulting downprojections using affinity propagation. Why would k-means be a little bit disadvantageous here? Plot all molecules of all clusters in separate grids including their Compound Name and Activity. Do you see similarities? ###Code # Set default plotting style and random seed for reproducibility. sns.set() np.random.seed(seed=42) # Compute Principal Component Analysis (PCA) and reduce the dimensionality of the ECFPs. data_molecules_ecfps_pca = u3.apply_pca(n_components=2, data=data_molecules_ecfps) u3.plot_points_2d(data=data_molecules_ecfps_pca, figsize=(14, 7)) ###Output _____no_output_____ ###Markdown Are there any visible clusters? - Yes ###Code # Set default plotting style and random seed for reproducibility. sns.set() np.random.seed(seed=42) # Compute affinity propagation on the t-SNE downprojected data set. data_molecules_ecfps_pca_ap = data_molecules_ecfps_pca.copy() data_molecules_ecfps_pca_ap[r'cluster'] = u3.apply_affinity_propagation(data=data_molecules_ecfps_pca_ap) u3.plot_points_2d(data=data_molecules_ecfps_pca_ap, target_column=r'cluster', figsize=(14, 7)) # Select specific molecules and extract some of their properties. def plot_sperate_grids(i): specific_molecules = data_molecules_ecfps_pca_ap[data_molecules_ecfps_pca_ap[r'cluster'] == i].index specific_molecules = [data_molecules[_] for _ in specific_molecules] specific_molecule_labels = [ f'{mol.GetProp(r"Compound Name")}: {mol.GetProp(r"Activity")}' for mol in specific_molecules] # Plot specified molecules with extracted properties as labels in a grid plot. return Chem.Draw.MolsToGridImage( specific_molecules, legends=specific_molecule_labels, maxMols=len(specific_molecules), molsPerRow=4) plot_sperate_grids(0) plot_sperate_grids(1) plot_sperate_grids(2) ###Output _____no_output_____
Lesson-11_6_Packedsequence.ipynb
###Markdown PackedSequence 와 PaddedSequence[링크: PackedSequence에 대한 PyTorch 공식 문서](https://pytorch.org/docs/stable/nn.htmlpackedsequence)이 튜토리얼에서는 RNN / LSTM 계열의 모델에서 sequence batch를 잘 활용할 수 있는 `PackedSequence` 와 `PaddedSequence`를 만드는 법을 배워보겠습니다.PyTorch 라이브러리 안에는 다음 4가지 함수들이 주어집니다.`pad_sequence`, `pack_sequence`, `pack_padded_sequence`, `pad_packed_sequence`하지만 함수 이름만 봐서는 상당히 헷갈릴 수 있기 때문에 다음 그림을 참고하시면 이해하기 편하실 것 같습니다. ###Code import torch import numpy as np from torch.nn.utils.rnn import pad_sequence, pack_sequence, pack_padded_sequence, pad_packed_sequence ###Output _____no_output_____ ###Markdown 예제 데이터실습을 위해 간단한 예제 데이터를 만들었습니다.여기서 잘 기억하셔야할 점은 batch size가 5이고, sequence 중 가장 긴 길이는 13라는 것 입니다. ###Code # Random word from random word generator data = ['hello world', 'midnight', 'calculation', 'path', 'short circuit'] # Make dictionary char_set = ['<pad>'] + list(set(char for seq in data for char in seq)) # Get all characters and include pad token char2idx = {char: idx for idx, char in enumerate(char_set)} # Constuct character to index dictionary print('char_set:', char_set) print('char_set length:', len(char_set)) # Convert character to index and make list of tensors X = [torch.LongTensor([char2idx[char] for char in seq]) for seq in data] # Check converted result for sequence in X: print(sequence) ###Output tensor([15, 10, 4, 4, 17, 11, 16, 17, 6, 4, 3]) tensor([ 1, 2, 3, 5, 2, 18, 15, 7]) tensor([14, 9, 4, 14, 13, 4, 9, 7, 2, 17, 5]) tensor([12, 9, 7, 15]) tensor([ 8, 15, 17, 6, 7, 11, 14, 2, 6, 14, 13, 2, 7]) ###Markdown 다음과 같이 sequence의 길이가 제각각인 것을 확인하실 수 있습니다. ###Code # Make length tensor (will be used later in 'pack_padded_sequence' function) lengths = [len(seq) for seq in X] print('lengths:', lengths) ###Output lengths: [11, 8, 11, 4, 13] ###Markdown Sequence 데이터의 경우 어떻게 batch로 묶을까요?위와같이 Text 나 audio 처럼 sequence 형식인 데이터의 경우 길이가 각각 다 다르기 때문에 하나의 batch로 만들어주기 위해서 일반적으로 제일 긴 sequence 길이에 맞춰 뒷부분에 padding을 추가해줍니다.이 방식이 일반적으로 많이 쓰이는 Padding 방식입니다.하지만 PyTorch에서는 `PackedSequence`라는 것을 쓰면 padding 없이도 정확히 필요한 부분까지만 병렬 계산을 할 수 있습니다. `pad_sequence` 함수를 이용하여 PaddedSequence (그냥 Tensor) 만들기사실, PaddedSequence는 sequence중에서 가장 긴 sequence와 길이를 맞추어주기 위해 padding을 추가한 일반적인 **Tensor**를 말합니다.(따로 PaddedSequence라는 class는 존재하지 않습니다.)이때, `pad_sequence`라는 PyTorch 기본 라이브러리 함수를 이용하면 쉽게 padding을 추가할 수 있습니다.여기서 주의하실 점은 input이 **Tensor들의 list** 로 주어져야합니다. (그냥 **Tensor** 가 아닌 **Tensor들의 list** 입니다.)list 안에 있는 각각의 Tensor들의 shape가 `(?, a, b, ...)` 라고 할때, (여기서 ?는 각각 다른 sequence length 입니다.)`pad_sequence` 함수를 쓰면 `(T, batch_size, a, b, ...)` shape를 가지는 Tensor가 리턴됩니다. (여기서 `T`는 batch안에서 가장 큰 sequence length 입니다.)만약, `pad_sequence`에 명시적으로 `batch_first=True`라는 파라미터를 지정해주면, `(batch_size, T, a, b, ...)` shape를 가지는 Tensor가 리턴됩니다. 기본적으로 padding 값은 0으로 되어있지만, `padding_value=42`와 같이 파라미터를 지정해주면, padding하는 값도 정할 수 있습니다. ###Code # Make a Tensor of shape (Batch x Maximum_Sequence_Length) padded_sequence = pad_sequence(X, batch_first=True) # X is now padded sequence print(padded_sequence) print(padded_sequence.shape) ###Output tensor([[15, 10, 4, 4, 17, 11, 16, 17, 6, 4, 3, 0, 0], [ 1, 2, 3, 5, 2, 18, 15, 7, 0, 0, 0, 0, 0], [14, 9, 4, 14, 13, 4, 9, 7, 2, 17, 5, 0, 0], [12, 9, 7, 15, 0, 0, 0, 0, 0, 0, 0, 0, 0], [ 8, 15, 17, 6, 7, 11, 14, 2, 6, 14, 13, 2, 7]]) torch.Size([5, 13]) ###Markdown `pack_sequence` 함수를 이용하여 PackedSequence 만들기PackedSequence는 위와같이 padding token을 추가하여 sequence의 최대 길이에 맞는 Tensor를 만드는게 아닌,padding을 추가하지 않고 정확히 주어진 sequence 길이까지만 모델이 연산을 하게끔 만드는 PyTorch의 자료구조입니다.이 PackedSequence를 만들기 위해서는 한가지 조건이 필요합니다.- **주어지는 input (list of Tensor)는 길이에 따른 내림차순으로 정렬이 되어있어야 합니다.**따라서 먼저 input을 길이에 따른 내림차순으로 정렬해봅시다. ###Code # Sort by descending lengths sorted_idx = sorted(range(len(lengths)), key=lengths.__getitem__, reverse=True) sorted_X = [X[idx] for idx in sorted_idx] # Check converted result for sequence in sorted_X: print(sequence) ###Output tensor([ 8, 15, 17, 6, 7, 11, 14, 2, 6, 14, 13, 2, 7]) tensor([15, 10, 4, 4, 17, 11, 16, 17, 6, 4, 3]) tensor([14, 9, 4, 14, 13, 4, 9, 7, 2, 17, 5]) tensor([ 1, 2, 3, 5, 2, 18, 15, 7]) tensor([12, 9, 7, 15]) ###Markdown 자, 이제 input Tensor가 정렬되었으니 `pack_sequence`를 이용하여 PackedSequence를 만들어보겠습니다. ###Code packed_sequence = pack_sequence(sorted_X) print(packed_sequence) ###Output PackedSequence(data=tensor([ 8, 15, 14, 1, 12, 15, 10, 9, 2, 9, 17, 4, 4, 3, 7, 6, 4, 14, 5, 15, 7, 17, 13, 2, 11, 11, 4, 18, 14, 16, 9, 15, 2, 17, 7, 7, 6, 6, 2, 14, 4, 17, 13, 3, 5, 2, 7]), batch_sizes=tensor([5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 1])) ###Markdown Embedding 적용해보기자 이제, `PackedSequence`와 padding이 된 Tensor인 `PaddedSequence`를 만들어보았으니, RNN에 input으로 넣어서 테스트해보려고 합니다.그 전에, 위에 예제들에서는 input이 character의 index들을 가지고 있는 데이터였지만, 보통은 주로 이를 embedding한 값을 RNN의 input으로 넣어줍니다.이 튜토리얼에서는 one-hot character embedding을 해보도록 하겠습니다. ###Code # one-hot embedding using PaddedSequence eye = torch.eye(len(char_set)) # Identity matrix of shape (len(char_set), len(char_set)) embedded_tensor = eye[padded_sequence] print(embedded_tensor.shape) # shape: (Batch_size, max_sequence_length, number_of_input_tokens) # one-hot embedding using PackedSequence embedded_packed_seq = pack_sequence([eye[X[idx]] for idx in sorted_idx]) print(embedded_packed_seq.data.shape) ###Output torch.Size([47, 19]) ###Markdown RNN 모델 만들기간단한 RNN 모델을 한번 만들어봅시다. ###Code # declare RNN rnn = torch.nn.RNN(input_size=len(char_set), hidden_size=30, batch_first=True) ###Output _____no_output_____ ###Markdown `PaddedSequence`를 이용하여 RNN에 넣어봅시다. ###Code rnn_output, hidden = rnn(embedded_tensor) print(rnn_output.shape) # shape: (batch_size, max_seq_length, hidden_size) print(hidden.shape) # shape: (num_layers * num_directions, batch_size, hidden_size) ###Output torch.Size([5, 13, 30]) torch.Size([1, 5, 30]) ###Markdown `PackedSequence`를 이용하여 RNN에 넣어봅시다. ###Code rnn_output, hidden = rnn(embedded_packed_seq) print(rnn_output.data.shape) print(hidden.data.shape) ###Output torch.Size([47, 30]) torch.Size([1, 5, 30]) ###Markdown `pad_packed_sequence`위 함수는 `PackedSequence`를 `PaddedSequence`(Tensor)로 바꾸어주는 함수입니다.`PackedSequence`는 각 sequence에 대한 길이 정보도 가지고있기 때문에, 이 함수는 Tensor와 함께 길이에 대한 리스트를 튜플로 리턴해줍니다.리턴값: (Tensor, list_of_lengths) ###Code unpacked_sequence, seq_lengths = pad_packed_sequence(embedded_packed_seq, batch_first=True) print(unpacked_sequence.shape) print(seq_lengths) ###Output torch.Size([5, 13, 19]) tensor([13, 11, 11, 8, 4]) ###Markdown `pack_padded_sequence`반대로, Padding이 된 Tensor인 `PaddedSequence`를 `PackedSequence`로 바꾸어주는 함수도 있습니다.`pack_padded_sequence` 함수는 실제 sequence길이에 대한 정보를 모르기때문에, 파라미터로 꼭 제공해주어야합니다.여기서 주의하여야 할 점은, input인 `PaddedSequence`가 아까 언급드린 **길이에 따른 내림차순으로 정렬되어야 한다는** 조건이 성립되어야 `PackedSequence`로 올바르게 변환될 수 있습니다.아까 저희가 만든 `padded_sequence` 변수는 이 조건을 만족하지 않기 때문에 다시 새로 만들어보겠습니다. ###Code embedded_padded_sequence = eye[pad_sequence(sorted_X, batch_first=True)] print(embedded_padded_sequence.shape) ###Output torch.Size([5, 13, 19]) ###Markdown 이제 이 padding이 된 Tensor를 `PackedSequence`로 변환해보겠습니다. ###Code sorted_lengths = sorted(lengths, reverse=True) new_packed_sequence = pack_padded_sequence(embedded_padded_sequence, sorted_lengths, batch_first=True) print(new_packed_sequence.data.shape) print(new_packed_sequence.batch_sizes) ###Output torch.Size([47, 19]) tensor([5, 5, 5, 5, 4, 4, 4, 4, 3, 3, 3, 1, 1])
Resnet_50Transfer_Learning_CIFAR_10.ipynb
###Markdown Transfer LearningIn this notebook, you will perform transfer learning to train CIFAR-10 dataset on ResNet50 model available in Keras. Imports ###Code import os, re, time, json import PIL.Image, PIL.ImageFont, PIL.ImageDraw import numpy as np try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass import tensorflow as tf from tensorflow.keras.applications.resnet50 import ResNet50 from matplotlib import pyplot as plt import tensorflow_datasets as tfds print("Tensorflow version " + tf.__version__) ###Output _____no_output_____ ###Markdown Parameters - Define the batch size- Define the class (category) names ###Code BATCH_SIZE = 32 classes = ['airplane', 'automobile', 'bird', 'cat', 'deer', 'dog', 'frog', 'horse', 'ship', 'truck'] ###Output _____no_output_____ ###Markdown Define some functions that will help you to create some visualizations. (These will be used later) ###Code #@title Visualization Utilities[RUN ME] #Matplotlib config plt.rc('image', cmap='gray') plt.rc('grid', linewidth=0) plt.rc('xtick', top=False, bottom=False, labelsize='large') plt.rc('ytick', left=False, right=False, labelsize='large') plt.rc('axes', facecolor='F8F8F8', titlesize="large", edgecolor='white') plt.rc('text', color='a8151a') plt.rc('figure', facecolor='F0F0F0')# Matplotlib fonts MATPLOTLIB_FONT_DIR = os.path.join(os.path.dirname(plt.__file__), "mpl-data/fonts/ttf") # utility to display a row of digits with their predictions def display_images(digits, predictions, labels, title): n = 10 indexes = np.random.choice(len(predictions), size=n) n_digits = digits[indexes] n_predictions = predictions[indexes] n_predictions = n_predictions.reshape((n,)) n_labels = labels[indexes] fig = plt.figure(figsize=(20, 4)) plt.title(title) plt.yticks([]) plt.xticks([]) for i in range(10): ax = fig.add_subplot(1, 10, i+1) class_index = n_predictions[i] plt.xlabel(classes[class_index]) plt.xticks([]) plt.yticks([]) plt.imshow(n_digits[i]) # utility to display training and validation curves def plot_metrics(metric_name, title, ylim=5): plt.title(title) plt.ylim(0,ylim) plt.plot(history.history[metric_name],color='blue',label=metric_name) plt.plot(history.history['val_' + metric_name],color='green',label='val_' + metric_name) ###Output _____no_output_____ ###Markdown Loading and Preprocessing Data[CIFAR-10](https://www.cs.toronto.edu/~kriz/cifar.html) dataset has 32 x 32 RGB images belonging to 10 classes. You will load the dataset from Keras. ###Code (training_images, training_labels) , (validation_images, validation_labels) = tf.keras.datasets.cifar10.load_data() ###Output _____no_output_____ ###Markdown Visualize DatasetUse the `display_image` to view some of the images and their class labels. ###Code display_images(training_images, training_labels, training_labels, "Training Data" ) display_images(validation_images, validation_labels, validation_labels, "Training Data" ) ###Output _____no_output_____ ###Markdown Preprocess DatasetHere, you'll perform normalization on images in training and validation set. - You'll use the function [preprocess_input](https://github.com/keras-team/keras-applications/blob/master/keras_applications/resnet50.py) from the ResNet50 model in Keras. ###Code def preprocess_image_input(input_images): input_images = input_images.astype('float32') output_ims = tf.keras.applications.resnet50.preprocess_input(input_images) return output_ims train_X = preprocess_image_input(training_images) valid_X = preprocess_image_input(validation_images) ###Output _____no_output_____ ###Markdown Define the NetworkYou will be performing transfer learning on **ResNet50** available in Keras.- You'll load pre-trained **imagenet weights** to the model.- You'll choose to retain all layers of **ResNet50** along with the final classification layers. ###Code ''' Feature Extraction is performed by ResNet50 pretrained on imagenet weights. Input size is 224 x 224. ''' def feature_extractor(inputs): feature_extractor = tf.keras.applications.resnet.ResNet50(input_shape=(224, 224, 3), include_top=False, weights='imagenet')(inputs) return feature_extractor ''' Defines final dense layers and subsequent softmax layer for classification. ''' def classifier(inputs): x = tf.keras.layers.GlobalAveragePooling2D()(inputs) x = tf.keras.layers.Flatten()(x) x = tf.keras.layers.Dense(1024, activation="relu")(x) x = tf.keras.layers.Dense(512, activation="relu")(x) x = tf.keras.layers.Dense(10, activation="softmax", name="classification")(x) return x ''' Since input image size is (32 x 32), first upsample the image by factor of (7x7) to transform it to (224 x 224) Connect the feature extraction and "classifier" layers to build the model. ''' def final_model(inputs): resize = tf.keras.layers.UpSampling2D(size=(7,7))(inputs) resnet_feature_extractor = feature_extractor(resize) classification_output = classifier(resnet_feature_extractor) return classification_output ''' Define the model and compile it. Use Stochastic Gradient Descent as the optimizer. Use Sparse Categorical CrossEntropy as the loss function. ''' def define_compile_model(): inputs = tf.keras.layers.Input(shape=(32,32,3)) classification_output = final_model(inputs) model = tf.keras.Model(inputs=inputs, outputs = classification_output) model.compile(optimizer='SGD', loss='sparse_categorical_crossentropy', metrics = ['accuracy']) return model model = define_compile_model() model.summary() ###Output _____no_output_____ ###Markdown Train the model ###Code # this will take around 20 minutes to complete EPOCHS = 4 history = model.fit(train_X, training_labels, epochs=EPOCHS, validation_data = (valid_X, validation_labels), batch_size=64) ###Output _____no_output_____ ###Markdown Evaluate the ModelCalculate the loss and accuracy metrics using the model's `.evaluate` function. ###Code loss, accuracy = model.evaluate(valid_X, validation_labels, batch_size=64) ###Output _____no_output_____ ###Markdown Plot Loss and Accuracy CurvesPlot the loss (in blue) and validation loss (in green). ###Code plot_metrics("loss", "Loss") ###Output _____no_output_____ ###Markdown Plot the training accuracy (blue) as well as the validation accuracy (green). ###Code plot_metrics("accuracy", "Accuracy") ###Output _____no_output_____ ###Markdown Visualize predictionsYou can take a look at the predictions on the validation set. ###Code probabilities = model.predict(valid_X, batch_size=64) probabilities = np.argmax(probabilities, axis = 1) display_images(validation_images, probabilities, validation_labels, "Bad predictions indicated in red.") ###Output _____no_output_____
notebooks/quickstarter.ipynb
###Markdown Welcome to the `atiim` quickstarter! `atiim` is the Area-Time Inundatation Index Model which was created to address the challenge of rapidly characterizing spatiotemporally-complex inundation patterns in dynamic systems, such as estuarine tidal-fluvial environments. Load packages ###Code import os import atiim # this is atiim's built in sample data from atiim import SampleData ###Output _____no_output_____ ###Markdown Setup data ###Code # load sample data sample_data = SampleData() gage_data_file = sample_data.sample_gage_data_file dem_file = sample_data.sample_dem basin_shp = sample_data.sample_basin_shapefile gage_shp = sample_data.sample_gage_shapefile # directory to store output files output_dir = os.path.dirname(gage_data_file) ###Output _____no_output_____ ###Markdown Exploring the gage data ###Code gadf = atiim.import_gage_data(gage_data_file) gadf.head(2) ###Output _____no_output_____ ###Markdown Plot the water surface elevation time series from the gage data ###Code atiim.plot_wse_timeseries(data=gadf, save_plot=False, show_plot=True) ###Output _____no_output_____ ###Markdown Plot the cumulative distribution of water surface elevation from the gage data ###Code atiim.plot_wse_cumulative_distribution(data=gage_data_file) ###Output _____no_output_____ ###Markdown Plot the probability density of water surface elevation from the gage data ###Code atiim.plot_wse_probability_density(data=gage_data_file) ###Output _____no_output_____ ###Markdown Plot the exceedance probability of water surface elevation from the gage data ###Code atiim.plot_wse_exceedance_probability(data=gage_data_file) ###Output _____no_output_____ ###Markdown Simulate and explore the area of inundation through the time series of water surface elevations Simulate inundation over the area of interest using the gage data `n_jobs` can be set to run all elevation slices in parallel. Default setting is `1` to run sequentially. See `help(atiim.simulate_inundation)` for more information. ###Code %%time df = atiim.simulate_inundation(dem_file=dem_file, basin_shp=basin_shp, gage_shp=gage_shp, gage_data_file=gage_data_file, run_name='test_1', output_directory=output_dir, write_csv=False, elevation_interval=0.1, hour_interval=1.0, n_jobs=1, verbose=True) df.head(2) ###Output CPU times: user 3.16 s, sys: 152 ms, total: 3.32 s Wall time: 3.45 s ###Markdown Plot the hectare hours of inundation ###Code atiim.plot_inundation_hectare_hours(data=df) ###Output _____no_output_____ ###Markdown Plot the inundation perimeter by water surface elevation ###Code atiim.plot_inundation_perimeter(data=df) ###Output _____no_output_____ ###Markdown Plot the inundated area by water surface elevation with the bankfull elevation noted ###Code atiim.plot_inundation_area(data=df) ###Output _____no_output_____ ###Markdown Explore the DEM Generate hypsometric curve data ###Code hydf = atiim.hypsometric_curve(dem_file=dem_file, elevation_interval=0.1) hydf.head(2) ###Output _____no_output_____ ###Markdown Plot the hypsometric curve by area ###Code atiim.plot_hypsometric_curve(data=hydf) ###Output _____no_output_____ ###Markdown Welcome to the cerf quickstarter! `cerf` is an open-source geospatial Python package for evaluating and analyzing future electricity technology capacity expansion feasibility. Purpose `cerf` was created to:- Evaluate the feasibility of a future scenario-driven electricity technology capacity expansion plan as generated by a parent model,- Site power plants in the least cost configuration when considering regional economics an on-the-ground barriers to siting,- Assist planners and modelers of alternate future realizations of the electricity system to gain an understanding of how siting costs and service area congestion may respond under certain stressors. A brief introductionThe Capacity Expansion Regional Feasibility model (cerf) helps us evaluate the feasibility and structure of future electricity capacity expansion plans by siting power plants in areas that have been deemed the least cost option. We can use cerf to gain an understanding of topics such as: 1) whether or not future projected electricity expansion plans from models such as GCAM are possible to achieve, 2) where and which on-the-ground barriers to siting (e.g., protected areas, cooling water availability) may influence our ability to achieve certain expansions, and 3) how power plant infrastructure build outs and value may evolve into the future when considering locational marginal pricing (LMP) based on the supply and demand of electricity from a grid operations model.Each grid cell in cerf is given an initial value of suitable (0) or unsuitable (1) based on a collection of suitability criteria gleaned from the literature. cerf’s default suitability layers include both those that are common to all thermal technologies as well as technology-specific suitability criteria. Common suitability layers represent categories such as protected lands, critical habitat areas, and much more. Technology-specific suitability layers are those that satisfy requirements that may not be applicable to all technologies. An example would be minimum mean annual flow requirements for cooling water availability for individual thermal technologies.Though cerf provides sample data to run the conterminous United States (CONUS), it could be extended to function for any country or set of regions that had the following prerequisite data sources: a spatial representation of substations or electricity transmission infrastructure, a spatial representation of gas pipeline infrastructure if applicable, any regionally applicable spatial data to construct suitability rasters from, access to hourly zonal LMP, and access to technology-specific information and each technologies accompanying electricity capacity expansion plan per region. The Global Change Analysis Model (GCAM) is used to build our expansion plans and establish our technology-specific requirements through the end of the century. We derive our LMP from a grid operations model that also is harmonized with GCAM to provide consistent projections of energy system evolution. See more about how to generalize cerf for your research here.We introduce a metric named Net Locational Cost (NLC) that is used compete power plant technologies for each grid cell based on the least cost option to site. NLC is calculated by subtracting the Net Operating Value (NOV) of a proposed power plant from the cost of its interconnection to the grid to represent the potential deployment value. Both the NOV parameter which incorporates many technology-specific values such as variable operations and maintenance costs, carbon price, heat rate, etc. and the interconnection cost parameter used for both electricity transmission and gas pipelines are configurable per time step. All equations used in cerf are described in detail in the [documentation](https://immm-sfa.github.io/cerf/user_guide.htmlfundamental-equations-and-concepts). Load packages ###Code import cerf ###Output _____no_output_____ ###Markdown Install package data **NOTE**: The package data will require approximately 195 MB of storage ###Code cerf.install_package_data() ###Output _____no_output_____ ###Markdown Conduct a run with CERF We will be exploring the main functionality of the `cerf` package using our example data which is meant for illustrative purposes only. `cerf` runs using a single YAML configuration file that contains project and technology-specific settings, an electricity capacity expansion plan, and lmp zones pricing data which is described in detail in the docs [here](https://immm-sfa.github.io/cerf/). Expansion plans and technology data are generally generated by models such as GCAM which capture multi-sector dynamics that represent alternate futures based on scenario assumptions for socioeconomics, radiative forcing, etc. The `cerf` package also comes equipped with power plant siting suitability data at a 1-km resolution over the CONUS, publically available data from EIA and HIFLD for transmission and pipeline infrastructure, and generic 8760 locational marginal pricing similar to what you could model using your prefered grid operations model. Get up and running right away! 1. Run `cerf` to site power plants in an expansion plan for a single year for the CONUS ###Code # sample year yr = 2030 # load the sample configuration file path for the target year config_file = cerf.config_file(yr) # run the configuration for the target year and return a data frame result_df = cerf.run(config_file, write_output=False) ###Output _____no_output_____ ###Markdown `cerf` results are returned as a Pandas DataFrame Each record is a sited power plant having a geographic location and other siting attributes. Reminder: `cerf` uses the `USA_Contiguous_Albers_Equal_Area_Conic` projected coordinate reference system in its CONUS example data, so the `xcoord` and `ycoord` are relative to that projection. ###Code result_df.head() ###Output _____no_output_____ ###Markdown 2. Run `cerf` to site power plants in an expansion plan for multiple years for the CONUS This exercise demonstrates how to inherit sites from a previous year's results and keep them in the mix if they have not yet reached retirement. If this is done in `cerf`, users should ensure that their expansion plan is only for new vintage each timestep. ###Code import cerf # process year 2010, 2030, and 2050 for index, yr in enumerate([2010, 2030, 2050]): print(f"\nProcessing year: {yr}") # load the sample configuration file path for the target year config_file = cerf.config_file(yr) # do not intialize the run with previously sited data if it is the first time step if index == 0: result_df = cerf.run(config_file, write_output=False) else: result_df = cerf.run(config_file, write_output=False, initialize_site_data=result_df) ###Output _____no_output_____ ###Markdown Explore the results that account for retirement Since we inherited the each year, and we are only siting new vintage per year, we see power plants from multiple technlogies until they reach their retirement age. We can narrow in on `biomass` power plants in Virginia to see this: ###Code result_df.loc[(result_df['region_name'] == 'virginia') & (result_df['tech_id'] == 9)] ###Output _____no_output_____ ###Markdown Plot the output ###Code cerf.plot_siting(result_df) ###Output _____no_output_____
notebooks/dense_sentiment_classifier.ipynb
###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) ###Output _____no_output_____ ###Markdown **N.B.**: If you're using Google Colab and the above line of code throws this error: [ValueError: Object arrays cannot be loaded when allow_pickle=False](https://stackoverflow.com/questions/55890813/how-to-fix-object-arrays-cannot-be-loaded-when-allow-pickle-false-for-imdb-loa)As of May 24th, 2019 you can resolve this error by executing `!pip install numpy==1.16.2` and restarting the runtime (by default, Colab uses a later version of NumPy -- 1.16.3 -- that causes the error). ###Code x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/jonkrohn/DLTFpT/blob/master/notebooks/dense_sentiment_classifier.ipynb) Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) ###Output _____no_output_____ ###Markdown **N.B.**: If you're using Google Colab and the above line of code throws this error: [ValueError: Object arrays cannot be loaded when allow_pickle=False](https://stackoverflow.com/questions/55890813/how-to-fix-object-arrays-cannot-be-loaded-when-allow-pickle-false-for-imdb-loa)As of May 24th, 2019 you can resolve this error by executing `!pip install numpy==1.16.2` and restarting the runtime (by default, Colab uses a later version of NumPy -- 1.16.3 -- that causes the error). ###Code x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * The TensorFlow Keras module's text utilities [here](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text) quickly preprocess natural language and convert it into an index* The `Tokenizer` class covered therein may do everything you need in a single line of code: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index* Other natural language preprocessing steps you may want to consider for your particular dataset and application are covered in the [*Natural Language Preprocessing* notebook](https://github.com/jonkrohn/DLTFpT/blob/master/notebooks/natural_language_preprocessing.ipynb), including: * removing stop words * either stemming or lemmatization * colocating n-grams, such as bigrams and trigrams ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() # hidden layer model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) # second hidden layer model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 15s 606us/sample - loss: 0.5229 - accuracy: 0.7160 - val_loss: 0.3527 - val_accuracy: 0.8431 Epoch 2/4 25000/25000 [==============================] - 11s 436us/sample - loss: 0.2697 - accuracy: 0.8933 - val_loss: 0.3505 - val_accuracy: 0.8475 Epoch 3/4 25000/25000 [==============================] - 14s 558us/sample - loss: 0.1118 - accuracy: 0.9688 - val_loss: 0.4315 - val_accuracy: 0.8296 Epoch 4/4 25000/25000 [==============================] - 12s 489us/sample - loss: 0.0248 - accuracy: 0.9965 - val_loss: 0.5296 - val_accuracy: 0.8301 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * The TensorFlow Keras module's text utilities [here](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text) quickly preprocess natural language and convert it into an index* The `Tokenizer` class covered therein may do everything you need in a single line of code: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index* Other natural language preprocessing steps you may want to consider for your particular dataset and application are covered in the [*Natural Language Preprocessing* notebook](https://github.com/jonkrohn/DLTFpT/blob/master/notebooks/natural_language_preprocessing.ipynb), including: * removing stop words * either stemming or lemmatization * colocating n-grams, such as bigrams and trigrams ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) # In recent Keras versions, if .predict_proba() throws an error, try .predict() len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * The TensorFlow Keras module's text utilities [here](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text) quickly preprocess natural language and convert it into an index* The `Tokenizer` class covered therein may do everything you need in a single line of code: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index* Other natural language preprocessing steps you may want to consider for your particular dataset and application are covered in the [*Natural Language Preprocessing* notebook](https://github.com/jonkrohn/DLTFpT/blob/master/notebooks/natural_language_preprocessing.ipynb), including: * removing stop words * either stemming or lemmatization * colocating n-grams, such as bigrams and trigrams ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import keras from keras.datasets import imdb from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense, Flatten, Dropout from keras.layers import Embedding # new! from keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! %matplotlib inline ###Output Using TensorFlow backend. ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+"/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code # 84.7% validation accuracy in epoch 2 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 1s - loss: 0.5402 - acc: 0.7095 - val_loss: 0.3701 - val_acc: 0.8367 Epoch 2/4 25000/25000 [==============================] - 0s - loss: 0.2825 - acc: 0.8881 - val_loss: 0.3459 - val_acc: 0.8470 Epoch 3/4 25000/25000 [==============================] - 1s - loss: 0.1279 - acc: 0.9616 - val_loss: 0.4151 - val_acc: 0.8333 Epoch 4/4 25000/25000 [==============================] - 0s - loss: 0.0303 - acc: 0.9941 - val_loss: 0.5222 - val_acc: 0.8322 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.01.hdf5") # zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[489]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[927]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import keras from keras.datasets import imdb from keras.preprocessing.sequence import pad_sequences from keras.models import Sequential from keras.layers import Dense, Flatten, Dropout from keras.layers import Embedding # new! from keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! %matplotlib inline ###Output Using TensorFlow backend. ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code # CODE HERE model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+"/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code # 84.7% validation accuracy in epoch 2 model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 4s - loss: 0.5394 - acc: 0.7058 - val_loss: 0.3658 - val_acc: 0.8368 Epoch 2/4 25000/25000 [==============================] - 3s - loss: 0.2732 - acc: 0.8924 - val_loss: 0.3493 - val_acc: 0.8465 Epoch 3/4 25000/25000 [==============================] - 3s - loss: 0.1131 - acc: 0.9664 - val_loss: 0.4306 - val_acc: 0.8312 Epoch 4/4 25000/25000 [==============================] - 3s - loss: 0.0255 - acc: 0.9956 - val_loss: 0.5283 - val_acc: 0.8337 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.01.hdf5") # zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[489]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[927]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import keras from keras.datasets import imdb # new! from keras.preprocessing.sequence import pad_sequences #new! from keras.models import Sequential from keras.layers import Dense, Flatten, Dropout from keras.layers import Embedding # new! from keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! %matplotlib inline ###Output Using TensorFlow backend. ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. [![Open In Colab](https://colab.research.google.com/assets/colab-badge.svg)](https://colab.research.google.com/github/the-deep-learners/deep-learning-illustrated/blob/master/notebooks/dense_sentiment_classifier.ipynb) Load dependencies ###Code import keras from keras.datasets import imdb # new! from keras.preprocessing.sequence import pad_sequences #new! from keras.models import Sequential from keras.layers import Dense, Flatten, Dropout from keras.layers import Embedding # new! from keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! %matplotlib inline ###Output Using TensorFlow backend. ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * the Keras text utilities [here](https://keras.io/preprocessing/text/) quickly preprocess natural language and convert it into an index* the `keras.preprocessing.text.Tokenizer` class may do everything you need in one line: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) ###Output _____no_output_____ ###Markdown **N.B.**: If you're using Google Colab and the above line of code throws this error: [ValueError: Object arrays cannot be loaded when allow_pickle=False](https://stackoverflow.com/questions/55890813/how-to-fix-object-arrays-cannot-be-loaded-when-allow-pickle-false-for-imdb-loa)As of May 24th, 2019 you can resolve this error by executing `!pip install numpy==1.16.2` and restarting the runtime (by default, Colab uses a later version of NumPy -- 1.16.3 -- that causes the error). ###Code x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output Train on 25000 samples, validate on 25000 samples Epoch 1/4 25000/25000 [==============================] - 2s 80us/step - loss: 0.5612 - acc: 0.6892 - val_loss: 0.3630 - val_acc: 0.8398 Epoch 2/4 25000/25000 [==============================] - 2s 69us/step - loss: 0.2851 - acc: 0.8841 - val_loss: 0.3486 - val_acc: 0.8447 Epoch 3/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.1158 - acc: 0.9646 - val_loss: 0.4252 - val_acc: 0.8337 Epoch 4/4 25000/25000 [==============================] - 2s 70us/step - loss: 0.0237 - acc: 0.9961 - val_loss: 0.5304 - val_acc: 0.8340 ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____ ###Markdown Dense Sentiment Classifier In this notebook, we build a dense neural net to classify IMDB movie reviews by their sentiment. Load dependencies ###Code import tensorflow from tensorflow.keras.datasets import imdb # new! from tensorflow.keras.preprocessing.sequence import pad_sequences #new! from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Flatten, Dropout from tensorflow.keras.layers import Embedding # new! from tensorflow.keras.callbacks import ModelCheckpoint # new! import os # new! from sklearn.metrics import roc_auc_score, roc_curve # new! import pandas as pd import matplotlib.pyplot as plt # new! ###Output _____no_output_____ ###Markdown Set hyperparameters ###Code # output directory name: output_dir = 'model_output/dense' # training: epochs = 4 batch_size = 128 # vector-space embedding: n_dim = 64 n_unique_words = 5000 # as per Maas et al. (2011); may not be optimal n_words_to_skip = 50 # ditto max_review_length = 100 pad_type = trunc_type = 'pre' # neural network architecture: n_dense = 64 dropout = 0.5 ###Output _____no_output_____ ###Markdown Load data For a given data set: * The TensorFlow Keras module's text utilities [here](https://www.tensorflow.org/api_docs/python/tf/keras/preprocessing/text) quickly preprocess natural language and convert it into an index* The `Tokenizer` class covered therein may do everything you need in a single line of code: * tokenize into words or characters * `num_words`: maximum unique tokens * filter out punctuation * lower case * convert words to an integer index* Other natural language preprocessing steps you may want to consider for your particular dataset and application are covered in the [*Natural Language Preprocessing* notebook](https://github.com/jonkrohn/DLTFpT/blob/master/notebooks/natural_language_preprocessing.ipynb), including: * removing stop words * either stemming or lemmatization * colocating n-grams, such as bigrams and trigrams ###Code (x_train, y_train), (x_valid, y_valid) = imdb.load_data(num_words=n_unique_words, skip_top=n_words_to_skip) x_train[0:6] # 0 reserved for padding; 1 would be starting character; 2 is unknown; 3 is most common word, etc. for x in x_train[0:6]: print(len(x)) y_train[0:6] len(x_train), len(x_valid) ###Output _____no_output_____ ###Markdown Restoring words from index ###Code word_index = tensorflow.keras.datasets.imdb.get_word_index() word_index = {k:(v+3) for k,v in word_index.items()} word_index["PAD"] = 0 word_index["START"] = 1 word_index["UNK"] = 2 word_index index_word = {v:k for k,v in word_index.items()} x_train[0] ' '.join(index_word[id] for id in x_train[0]) (all_x_train,_),(all_x_valid,_) = imdb.load_data() ' '.join(index_word[id] for id in all_x_train[0]) ###Output _____no_output_____ ###Markdown Preprocess data ###Code x_train = pad_sequences(x_train, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_valid = pad_sequences(x_valid, maxlen=max_review_length, padding=pad_type, truncating=trunc_type, value=0) x_train[0:6] for x in x_train[0:6]: print(len(x)) ' '.join(index_word[id] for id in x_train[0]) ' '.join(index_word[id] for id in x_train[5]) ###Output _____no_output_____ ###Markdown Design neural network architecture ###Code model = Sequential() model.add(Embedding(n_unique_words, n_dim, input_length=max_review_length)) model.add(Flatten()) model.add(Dense(n_dense, activation='relu')) model.add(Dropout(dropout)) # model.add(Dense(n_dense, activation='relu')) # model.add(Dropout(dropout)) model.add(Dense(1, activation='sigmoid')) # mathematically equivalent to softmax with two classes model.summary() # so many parameters! # embedding layer dimensions and parameters: n_dim, n_unique_words, n_dim*n_unique_words # ...flatten: max_review_length, n_dim, n_dim*max_review_length # ...dense: n_dense, n_dim*max_review_length*n_dense + n_dense # weights + biases # ...and output: n_dense + 1 ###Output _____no_output_____ ###Markdown Configure model ###Code model.compile(loss='binary_crossentropy', optimizer='nadam', metrics=['accuracy']) modelcheckpoint = ModelCheckpoint(filepath=output_dir+ "/weights.{epoch:02d}.hdf5") if not os.path.exists(output_dir): os.makedirs(output_dir) ###Output _____no_output_____ ###Markdown Train! ###Code model.fit(x_train, y_train, batch_size=batch_size, epochs=epochs, verbose=1, validation_data=(x_valid, y_valid), callbacks=[modelcheckpoint]) ###Output _____no_output_____ ###Markdown Evaluate ###Code model.load_weights(output_dir+"/weights.02.hdf5") # NOT zero-indexed y_hat = model.predict_proba(x_valid) len(y_hat) y_hat[0] y_valid[0] plt.hist(y_hat) _ = plt.axvline(x=0.5, color='orange') pct_auc = roc_auc_score(y_valid, y_hat)*100.0 "{:0.2f}".format(pct_auc) float_y_hat = [] for y in y_hat: float_y_hat.append(y[0]) ydf = pd.DataFrame(list(zip(float_y_hat, y_valid)), columns=['y_hat', 'y']) ydf.head(10) ' '.join(index_word[id] for id in all_x_valid[0]) ' '.join(index_word[id] for id in all_x_valid[6]) ydf[(ydf.y == 0) & (ydf.y_hat > 0.9)].head(10) ' '.join(index_word[id] for id in all_x_valid[386]) ydf[(ydf.y == 1) & (ydf.y_hat < 0.1)].head(10) ' '.join(index_word[id] for id in all_x_valid[224]) ###Output _____no_output_____
ml/cc/exercises/intro_to_sparse_data_and_embeddings.ipynb
###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Intro to Sparse Data and Embeddings**Learning Objectives:*** Convert movie-review string data to a sparse feature vector* Implement a sentiment-analysis linear model using a sparse feature vector* Implement a sentiment-analysis DNN model using an embedding that projects data into two dimensions* Visualize the embedding to see what the model has learned about the relationships between wordsIn this exercise, we'll explore sparse data and work with embeddings using text data from movie reviews (from the [ACL 2011 IMDB dataset](http://ai.stanford.edu/~amaas/data/sentiment/)). This data has already been processed into `tf.Example` format. SetupLet's import our dependencies and download the training and test data. [`tf.keras`](https://www.tensorflow.org/api_docs/python/tf/keras) includes a file download and caching tool that we can use to retrieve the data sets. ###Code from __future__ import print_function import collections import io import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from IPython import display from sklearn import metrics tf.logging.set_verbosity(tf.logging.ERROR) train_url = 'https://download.mlcc.google.com/mledu-datasets/sparse-data-embedding/train.tfrecord' train_path = tf.keras.utils.get_file(train_url.split('/')[-1], train_url) test_url = 'https://download.mlcc.google.com/mledu-datasets/sparse-data-embedding/test.tfrecord' test_path = tf.keras.utils.get_file(test_url.split('/')[-1], test_url) ###Output _____no_output_____ ###Markdown Building a Sentiment Analysis Model Let's train a sentiment-analysis model on this data that predicts if a review is generally *favorable* (label of 1) or *unfavorable* (label of 0).To do so, we'll turn our string-value `terms` into feature vectors by using a *vocabulary*, a list of each term we expect to see in our data. For the purposes of this exercise, we've created a small vocabulary that focuses on a limited set of terms. Most of these terms were found to be strongly indicative of *favorable* or *unfavorable*, but some were just added because they're interesting.Each term in the vocabulary is mapped to a coordinate in our feature vector. To convert the string-value `terms` for an example into this vector format, we encode such that each coordinate gets a value of 0 if the vocabulary term does not appear in the example string, and a value of 1 if it does. Terms in an example that don't appear in the vocabulary are thrown away. **NOTE:** *We could of course use a larger vocabulary, and there are special tools for creating these. In addition, instead of just dropping terms that are not in the vocabulary, we can introduce a small number of OOV (out-of-vocabulary) buckets to which you can hash the terms not in the vocabulary. We can also use a __feature hashing__ approach that hashes each term, instead of creating an explicit vocabulary. This works well in practice, but loses interpretability, which is useful for this exercise. See see the tf.feature_column module for tools handling this.* Building the Input Pipeline First, let's configure the input pipeline to import our data into a TensorFlow model. We can use the following function to parse the training and test data (which is in [TFRecord](https://www.tensorflow.org/guide/datasetsconsuming_tfrecord_data) format) and return a dict of the features and the corresponding labels. ###Code def _parse_function(record): """Extracts features and labels. Args: record: File path to a TFRecord file Returns: A `tuple` `(labels, features)`: features: A dict of tensors representing the features labels: A tensor with the corresponding labels. """ features = { "terms": tf.VarLenFeature(dtype=tf.string), # terms are strings of varying lengths "labels": tf.FixedLenFeature(shape=[1], dtype=tf.float32) # labels are 0 or 1 } parsed_features = tf.parse_single_example(record, features) terms = parsed_features['terms'].values labels = parsed_features['labels'] return {'terms':terms}, labels ###Output _____no_output_____ ###Markdown To confirm our function is working as expected, let's construct a `TFRecordDataset` for the training data, and map the data to features and labels using the function above. ###Code # Create the Dataset object. ds = tf.data.TFRecordDataset(train_path) # Map features and labels with the parse function. ds = ds.map(_parse_function) ds ###Output _____no_output_____ ###Markdown Run the following cell to retrieve the first example from the training data set. ###Code n = ds.make_one_shot_iterator().get_next() sess = tf.Session() sess.run(n) ###Output _____no_output_____ ###Markdown Now, let's build a formal input function that we can pass to the `train()` method of a TensorFlow Estimator object. ###Code # Create an input_fn that parses the tf.Examples from the given files, # and split them into features and targets. def _input_fn(input_filenames, num_epochs=None, shuffle=True): # Same code as above; create a dataset and map features and labels. ds = tf.data.TFRecordDataset(input_filenames) ds = ds.map(_parse_function) if shuffle: ds = ds.shuffle(10000) # Our feature data is variable-length, so we pad and batch # each field of the dataset structure to whatever size is necessary. ds = ds.padded_batch(25, ds.output_shapes) ds = ds.repeat(num_epochs) # Return the next batch of data. features, labels = ds.make_one_shot_iterator().get_next() return features, labels ###Output _____no_output_____ ###Markdown Task 1: Use a Linear Model with Sparse Inputs and an Explicit VocabularyFor our first model, we'll build a [`LinearClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) model using 50 informative terms; always start simple!The following code constructs the feature column for our terms. The [`categorical_column_with_vocabulary_list`](https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list) function creates a feature column with the string-to-feature-vector mapping. ###Code # 50 informative terms that compose our model vocabulary informative_terms = ("bad", "great", "best", "worst", "fun", "beautiful", "excellent", "poor", "boring", "awful", "terrible", "definitely", "perfect", "liked", "worse", "waste", "entertaining", "loved", "unfortunately", "amazing", "enjoyed", "favorite", "horrible", "brilliant", "highly", "simple", "annoying", "today", "hilarious", "enjoyable", "dull", "fantastic", "poorly", "fails", "disappointing", "disappointment", "not", "him", "her", "good", "time", "?", ".", "!", "movie", "film", "action", "comedy", "drama", "family") terms_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(key="terms", vocabulary_list=informative_terms) ###Output _____no_output_____ ###Markdown Next, we'll construct the `LinearClassifier`, train it on the training set, and evaluate it on the evaluation set. After you read through the code, run it and see how you do. ###Code my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) feature_columns = [ terms_feature_column ] classifier = tf.estimator.LinearClassifier( feature_columns=feature_columns, optimizer=my_optimizer, ) classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown Task 2: Use a Deep Neural Network (DNN) ModelThe above model is a linear model. It works quite well. But can we do better with a DNN model?Let's swap in a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) for the `LinearClassifier`. Run the following cell, and see how you do. ###Code ##################### Here's what we changed ################################## classifier = tf.estimator.DNNClassifier( # feature_columns=[tf.feature_column.indicator_column(terms_feature_column)], # hidden_units=[20,20], # optimizer=my_optimizer, # ) # ############################################################################### try: classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") except ValueError as err: print(err) ###Output _____no_output_____ ###Markdown Task 3: Use an Embedding with a DNN ModelIn this task, we'll implement our DNN model using an embedding column. An embedding column takes sparse data as input and returns a lower-dimensional dense vector as output. **NOTE:** *An embedding_column is usually the computationally most efficient option to use for training a model on sparse data. In an [optional section](scrollTo=XDMlGgRfKSVz) at the end of this exercise, we'll discuss in more depth the implementational differences between using an `embedding_column` and an `indicator_column`, and the tradeoffs of selecting one over the other.* In the following code, do the following:* Define the feature columns for the model using an `embedding_column` that projects the data into 2 dimensions (see the [TF docs](https://www.tensorflow.org/api_docs/python/tf/feature_column/embedding_column) for more details on the function signature for `embedding_column`).* Define a `DNNClassifier` with the following specifications: * Two hidden layers of 20 units each * Adagrad optimization with a learning rate of 0.1 * A `gradient_clip_norm` of 5.0 **NOTE:** *In practice, we might project to dimensions higher than 2, like 50 or 100. But for now, 2 dimensions is easy to visualize.* Hint ###Code # Here's a example code snippet you might use to define the feature columns: terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] ###Output _____no_output_____ ###Markdown Complete the Code Below ###Code ########################## YOUR CODE HERE ###################################### terms_embedding_column = # Define the embedding column feature_columns = # Define the feature columns classifier = # Define the DNNClassifier ################################################################################ classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown SolutionClick below for a solution. ###Code ########################## SOLUTION CODE ######################################## terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[20,20], optimizer=my_optimizer ) ################################################################################# classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown Task 4: Convince yourself there's actually an embedding in thereThe above model used an `embedding_column`, and it seemed to work, but this doesn't tell us much about what's going on internally. How can we check that the model is actually using an embedding inside?To start, let's look at the tensors in the model: ###Code classifier.get_variable_names() ###Output _____no_output_____ ###Markdown Okay, we can see that there is an embedding layer in there: `'dnn/input_from_feature_columns/input_layer/terms_embedding/...'`. (What's interesting here, by the way, is that this layer is trainable along with the rest of the model just as any hidden layer is.)Is the embedding layer the correct shape? Run the following code to find out. **NOTE:** *Remember, in our case, the embedding is a matrix that allows us to project a 50-dimensional vector down to 2 dimensions.* ###Code classifier.get_variable_value('dnn/input_from_feature_columns/input_layer/terms_embedding/embedding_weights').shape ###Output _____no_output_____ ###Markdown Spend some time manually checking the various layers and shapes to make sure everything is connected the way you would expect it would be. Task 5: Examine the EmbeddingLet's now take a look at the actual embedding space, and see where the terms end up in it. Do the following:1. Run the following code to see the embedding we trained in **Task 3**. Do things end up where you'd expect?2. Re-train the model by rerunning the code in **Task 3**, and then run the embedding visualization below again. What stays the same? What changes?3. Finally, re-train the model again using only 10 steps (which will yield a terrible model). Run the embedding visualization below again. What do you see now, and why? ###Code import numpy as np import matplotlib.pyplot as plt embedding_matrix = classifier.get_variable_value('dnn/input_from_feature_columns/input_layer/terms_embedding/embedding_weights') for term_index in range(len(informative_terms)): # Create a one-hot encoding for our term. It has 0s everywhere, except for # a single 1 in the coordinate that corresponds to that term. term_vector = np.zeros(len(informative_terms)) term_vector[term_index] = 1 # We'll now project that one-hot vector into the embedding space. embedding_xy = np.matmul(term_vector, embedding_matrix) plt.text(embedding_xy[0], embedding_xy[1], informative_terms[term_index]) # Do a little setup to make sure the plot displays nicely. plt.rcParams["figure.figsize"] = (15, 15) plt.xlim(1.2 * embedding_matrix.min(), 1.2 * embedding_matrix.max()) plt.ylim(1.2 * embedding_matrix.min(), 1.2 * embedding_matrix.max()) plt.show() ###Output _____no_output_____ ###Markdown Task 6: Try to improve the model's performanceSee if you can refine the model to improve performance. A couple things you may want to try:* **Changing hyperparameters**, or **using a different optimizer** like Adam (you may only gain one or two accuracy percentage points following these strategies).* **Adding additional terms to `informative_terms`.** There's a full vocabulary file with all 30,716 terms for this data set that you can use at: https://download.mlcc.google.com/mledu-datasets/sparse-data-embedding/terms.txt You can pick out additional terms from this vocabulary file, or use the whole thing via the `categorical_column_with_vocabulary_file` feature column. ###Code # Download the vocabulary file. terms_url = 'https://download.mlcc.google.com/mledu-datasets/sparse-data-embedding/terms.txt' terms_path = tf.keras.utils.get_file(terms_url.split('/')[-1], terms_url) # Create a feature column from "terms", using a full vocabulary file. informative_terms = None with io.open(terms_path, 'r', encoding='utf8') as f: # Convert it to a set first to remove duplicates. informative_terms = list(set(f.read().split())) terms_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(key="terms", vocabulary_list=informative_terms) terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10,10], optimizer=my_optimizer ) classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Intro to Sparse Data and Embeddings**Learning Objectives:*** Convert movie-review string data to a sparse feature vector* Implement a sentiment-analysis linear model using a sparse feature vector* Implement a sentiment-analysis DNN model using an embedding that projects data into two dimensions* Visualize the embedding to see what the model has learned about the relationships between wordsIn this exercise, we'll explore sparse data and work with embeddings using text data from movie reviews (from the [ACL 2011 IMDB dataset](http://ai.stanford.edu/~amaas/data/sentiment/)). This data has already been processed into `tf.Example` format. SetupLet's import our dependencies and download the training and test data. [`tf.keras`](https://www.tensorflow.org/api_docs/python/tf/keras) includes a file download and caching tool that we can use to retrieve the data sets. ###Code import collections import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from IPython import display from sklearn import metrics tf.logging.set_verbosity(tf.logging.ERROR) train_url = 'https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/train.tfrecord' train_path = tf.keras.utils.get_file(train_url.split('/')[-1], train_url) test_url = 'https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/test.tfrecord' test_path = tf.keras.utils.get_file(test_url.split('/')[-1], test_url) ###Output _____no_output_____ ###Markdown Building a Sentiment Analysis Model Let's train a sentiment-analysis model on this data that predicts if a review is generally *favorable* (label of 1) or *unfavorable* (label of 0).To do so, we'll turn our string-value `terms` into feature vectors by using a *vocabulary*, a list of each term we expect to see in our data. For the purposes of this exercise, we've created a small vocabulary that focuses on a limited set of terms. Most of these terms were found to be strongly indicative of *favorable* or *unfavorable*, but some were just added because they're interesting.Each term in the vocabulary is mapped to a coordinate in our feature vector. To convert the string-value `terms` for an example into this vector format, we encode such that each coordinate gets a value of 0 if the vocabulary term does not appear in the example string, and a value of 1 if it does. Terms in an example that don't appear in the vocabulary are thrown away. **NOTE:** *We could of course use a larger vocabulary, and there are special tools for creating these. In addition, instead of just dropping terms that are not in the vocabulary, we can introduce a small number of OOV (out-of-vocabulary) buckets to which you can hash the terms not in the vocabulary. We can also use a __feature hashing__ approach that hashes each term, instead of creating an explicit vocabulary. This works well in practice, but loses interpretability, which is useful for this exercise. See see the tf.feature_column module for tools handling this.* Building the Input Pipeline First, let's configure the input pipeline to import our data into a TensorFlow model. We can use the following function to parse the training and test data (which is in [TFRecord](https://www.tensorflow.org/programmers_guide/datasets) format) and return a dict of the features and the corresponding labels. ###Code def _parse_function(record): """Extracts features and labels. Args: record: File path to a TFRecord file Returns: A `tuple` `(labels, features)`: features: A dict of tensors representing the features labels: A tensor with the corresponding labels. """ features = { "terms": tf.VarLenFeature(dtype=tf.string), # terms are strings of varying lengths "labels": tf.FixedLenFeature(shape=[1], dtype=tf.float32) # labels are 0 or 1 } parsed_features = tf.parse_single_example(record, features) terms = parsed_features['terms'].values labels = parsed_features['labels'] return {'terms':terms}, labels ###Output _____no_output_____ ###Markdown To confirm our function is working as expected, let's construct a `TFRecordDataset` for the training data, and map the data to features and labels using the function above. ###Code # Create the Dataset object ds = tf.data.TFRecordDataset(train_path) # Map features and labels with the parse function ds = ds.map(_parse_function) ds ###Output _____no_output_____ ###Markdown Run the following cell to retrieve the first example from the training data set. ###Code n = ds.make_one_shot_iterator().get_next() sess = tf.Session() sess.run(n) ###Output _____no_output_____ ###Markdown Now, let's build a formal input function that we can pass to the `train()` method of a TensorFlow Estimator object. ###Code # Create an input_fn that parses the tf.Examples from the given files, # and split them into features and targets. def _input_fn(input_filenames, num_epochs=None, shuffle=True): # Same code as above; create a dataset and map features and labels ds = tf.data.TFRecordDataset(input_filenames) ds = ds.map(_parse_function) if shuffle: ds = ds.shuffle(10000) # Our feature data is variable-length, so we pad and batch # each field of the dataset structure to whatever size is necessary ds = ds.padded_batch(25, ds.output_shapes) ds = ds.repeat(num_epochs) # Return the next batch of data features, labels = ds.make_one_shot_iterator().get_next() return features, labels ###Output _____no_output_____ ###Markdown Task 1: Use a Linear Model with Sparse Inputs and an Explicit VocabularyFor our first model, we'll build a [`LinearClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) model using 54 informative terms; always start simple!The following code constructs the feature column for our terms. The [`categorical_column_with_vocabulary_list`](https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list) function creates a feature column with the string-to-feature-vector mapping. ###Code # 54 informative terms that compose our model vocabulary informative_terms = ("bad", "great", "best", "worst", "fun", "beautiful", "excellent", "poor", "boring", "awful", "terrible", "definitely", "perfect", "liked", "worse", "waste", "entertaining", "loved", "unfortunately", "amazing", "enjoyed", "favorite", "horrible", "brilliant", "highly", "simple", "annoying", "today", "hilarious", "enjoyable", "dull", "fantastic", "poorly", "fails", "disappointing", "disappointment", "not", "him", "her", "good", "time", "?", ".", "!", "movie", "film", "action", "comedy", "drama", "family", "man", "woman", "boy", "girl") terms_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(key="terms", vocabulary_list=informative_terms) ###Output _____no_output_____ ###Markdown Next, we'll construct the `LinearClassifier`, train it on the training set, and evaluate it on the evaluation set. After you read through the code, run it and see how you do. ###Code my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) feature_columns = [ terms_feature_column ] classifier = tf.estimator.LinearClassifier( feature_columns=feature_columns, optimizer=my_optimizer, ) classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print "Training set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print "Test set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" ###Output _____no_output_____ ###Markdown Task 2: Use a Deep Neural Network (DNN) ModelThe above model is a linear model. It works quite well. But can we do better with a DNN model?Let's swap in a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) for the `LinearClassifier`. Run the following cell, and see how you do. ###Code ##################### Here's what we changed ################################## classifier = tf.estimator.DNNClassifier( # feature_columns=[tf.feature_column.indicator_column(terms_feature_column)], # hidden_units=[20,20], # optimizer=my_optimizer, # ) # ############################################################################### try: classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1) print "Training set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1) print "Test set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" except ValueError as err: print err ###Output _____no_output_____ ###Markdown Task 3: Use an Embedding with a DNN ModelIn this task, we'll implement our DNN model using an embedding column. An embedding column takes sparse data as input and returns a lower-dimensional dense vector as output. **NOTE:** *An embedding_column is usually the computationally most efficient option to use for training a model on sparse data. In an [optional section](scrollTo=XDMlGgRfKSVz) at the end of this exercise, we'll discuss in more depth the implementational differences between using an `embedding_column` and an `indicator_column`, and the tradeoffs of selecting one over the other.* In the following code, do the following:* Define the feature columns for the model using an `embedding_column` that projects the data into 2 dimensions (see the [TF docs](https://www.tensorflow.org/api_docs/python/tf/feature_column/embedding_column) for more details on the function signature for `embedding_column`).* Define a `DNNClassifier` with the following specifications: * Two hidden layers of 20 units each * Adagrad optimization with a learning rate of 0.1 * A `gradient_clip_norm` of 5.0 **NOTE:** *In practice, we might project to dimensions higher than 2, like 50 or 100. But for now, 2 dimensions is easy to visualize.* Hint ###Code # Here's a example code snippet you might use to define the feature columns: terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] ###Output _____no_output_____ ###Markdown Complete the Code Below ###Code ########################## YOUR CODE HERE ###################################### terms_embedding_column = # Define the embedding column feature_columns = # Define the feature columns classifier = # Define the DNNClassifier ################################################################################ classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print "Training set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print "Test set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" ###Output _____no_output_____ ###Markdown SolutionClick below for a solution. ###Code ########################## SOLUTION CODE ######################################## terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10,10], optimizer=my_optimizer ) ################################################################################# classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print "Training set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print "Test set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" ###Output _____no_output_____ ###Markdown Task 4: Convince yourself there's actually an embedding in thereThe above model used an `embedding_column`, and it seemed to work, but this doesn't tell us much about what's going on internally. How can we check that the model is actually using an embedding inside?To start, let's look at the tensors in the model: ###Code classifier.get_variable_names() ###Output _____no_output_____ ###Markdown Okay, we can see that there is an embedding layer in there: `'dnn/input_from_feature_columns/input_layer/terms_embedding/...'`. (What's interesting here, by the way, is that this layer is trainable along with the rest of the model just as any hidden layer is.)Is the embedding layer the correct shape? Run the following code to find out. **NOTE:** *Remember, in our case, the embedding is a matrix that allows us to project a 54-dimensional vector down to 2 dimensions.* ###Code classifier.get_variable_value('dnn/input_from_feature_columns/input_layer/terms_embedding/embedding_weights').shape ###Output _____no_output_____ ###Markdown Spend some time manually checking the various layers and shapes to make sure everything is connected the way you would expect it would be. Task 5: Examine the EmbeddingLet's now take a look at the actual embedding space, and see where the terms end up in it. Do the following:1. Run the following code to see the embedding we trained in **Task 3**. Do things end up where you'd expect?2. Re-train the model by rerunning the code in **Task 3**, and then run the embedding visualization below again. What stays the same? What changes?3. Finally, re-train the model again using only 10 steps (which will yield a terrible model). Run the embedding visualization below again. What do you see now, and why? ###Code import numpy as np import matplotlib.pyplot as plt embedding_matrix = classifier.get_variable_value('dnn/input_from_feature_columns/input_layer/terms_embedding/embedding_weights') for term_index in range(len(informative_terms)): # Create a one-hot encoding for our term. It has 0's everywhere, except for # a single 1 in the coordinate that corresponds to that term. term_vector = np.zeros(len(informative_terms)) term_vector[term_index] = 1 # We'll now project that one-hot vector into the embedding space. embedding_xy = np.matmul(term_vector, embedding_matrix) plt.text(embedding_xy[0], embedding_xy[1], informative_terms[term_index]) # Do a little set-up to make sure the plot displays nicely. plt.rcParams["figure.figsize"] = (12, 12) plt.xlim(1.2 * embedding_matrix.min(), 1.2 * embedding_matrix.max()) plt.ylim(1.2 * embedding_matrix.min(), 1.2 * embedding_matrix.max()) plt.show() ###Output _____no_output_____ ###Markdown Task 6: Try to improve the model's performanceSee if you can refine the model to improve performance. A couple things you may want to try:* **Changing hyperparameters**, or **using a different optimizer** like Adam (you may only gain one or two accuracy percentage points following these strategies).* **Adding additional terms to `informative_terms`.** There's a full vocabulary file with all 30,716 terms for this data set that you can use at: https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/terms.txt You can pick out additional terms from this vocabulary file, or use the whole thing via the `categorical_column_with_vocabulary_file` feature column. ###Code !wget https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/terms.txt -O /tmp/terms.txt # Create a feature column from "terms", using a full vocabulary file. informative_terms = None with open("/tmp/terms.txt", 'r') as f: # Convert it to set first to remove duplicates. informative_terms = list(set(f.read().split())) terms_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(key="terms", vocabulary_list=informative_terms) terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10,10], optimizer=my_optimizer ) classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print "Training set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print "Test set metrics:" for m in evaluation_metrics: print m, evaluation_metrics[m] print "---" ###Output _____no_output_____ ###Markdown Copyright 2017 Google LLC. ###Code # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown Intro to Sparse Data and Embeddings**Learning Objectives:*** Convert movie-review string data to a sparse feature vector* Implement a sentiment-analysis linear model using a sparse feature vector* Implement a sentiment-analysis DNN model using an embedding that projects data into two dimensions* Visualize the embedding to see what the model has learned about the relationships between wordsIn this exercise, we'll explore sparse data and work with embeddings using text data from movie reviews (from the [ACL 2011 IMDB dataset](http://ai.stanford.edu/~amaas/data/sentiment/)). This data has already been processed into `tf.Example` format. SetupLet's import our dependencies and download the training and test data. [`tf.keras`](https://www.tensorflow.org/api_docs/python/tf/keras) includes a file download and caching tool that we can use to retrieve the data sets. ###Code from __future__ import print_function import collections import io import math import matplotlib.pyplot as plt import numpy as np import pandas as pd import tensorflow as tf from IPython import display from sklearn import metrics tf.logging.set_verbosity(tf.logging.ERROR) train_url = 'https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/train.tfrecord' train_path = tf.keras.utils.get_file(train_url.split('/')[-1], train_url) test_url = 'https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/test.tfrecord' test_path = tf.keras.utils.get_file(test_url.split('/')[-1], test_url) ###Output _____no_output_____ ###Markdown Building a Sentiment Analysis Model Let's train a sentiment-analysis model on this data that predicts if a review is generally *favorable* (label of 1) or *unfavorable* (label of 0).To do so, we'll turn our string-value `terms` into feature vectors by using a *vocabulary*, a list of each term we expect to see in our data. For the purposes of this exercise, we've created a small vocabulary that focuses on a limited set of terms. Most of these terms were found to be strongly indicative of *favorable* or *unfavorable*, but some were just added because they're interesting.Each term in the vocabulary is mapped to a coordinate in our feature vector. To convert the string-value `terms` for an example into this vector format, we encode such that each coordinate gets a value of 0 if the vocabulary term does not appear in the example string, and a value of 1 if it does. Terms in an example that don't appear in the vocabulary are thrown away. **NOTE:** *We could of course use a larger vocabulary, and there are special tools for creating these. In addition, instead of just dropping terms that are not in the vocabulary, we can introduce a small number of OOV (out-of-vocabulary) buckets to which you can hash the terms not in the vocabulary. We can also use a __feature hashing__ approach that hashes each term, instead of creating an explicit vocabulary. This works well in practice, but loses interpretability, which is useful for this exercise. See see the tf.feature_column module for tools handling this.* Building the Input Pipeline First, let's configure the input pipeline to import our data into a TensorFlow model. We can use the following function to parse the training and test data (which is in [TFRecord](https://www.tensorflow.org/programmers_guide/datasets) format) and return a dict of the features and the corresponding labels. ###Code def _parse_function(record): """Extracts features and labels. Args: record: File path to a TFRecord file Returns: A `tuple` `(labels, features)`: features: A dict of tensors representing the features labels: A tensor with the corresponding labels. """ features = { "terms": tf.VarLenFeature(dtype=tf.string), # terms are strings of varying lengths "labels": tf.FixedLenFeature(shape=[1], dtype=tf.float32) # labels are 0 or 1 } parsed_features = tf.parse_single_example(record, features) terms = parsed_features['terms'].values labels = parsed_features['labels'] return {'terms':terms}, labels ###Output _____no_output_____ ###Markdown To confirm our function is working as expected, let's construct a `TFRecordDataset` for the training data, and map the data to features and labels using the function above. ###Code # Create the Dataset object. ds = tf.data.TFRecordDataset(train_path) # Map features and labels with the parse function. ds = ds.map(_parse_function) ds ###Output _____no_output_____ ###Markdown Run the following cell to retrieve the first example from the training data set. ###Code n = ds.make_one_shot_iterator().get_next() sess = tf.Session() sess.run(n) ###Output _____no_output_____ ###Markdown Now, let's build a formal input function that we can pass to the `train()` method of a TensorFlow Estimator object. ###Code # Create an input_fn that parses the tf.Examples from the given files, # and split them into features and targets. def _input_fn(input_filenames, num_epochs=None, shuffle=True): # Same code as above; create a dataset and map features and labels. ds = tf.data.TFRecordDataset(input_filenames) ds = ds.map(_parse_function) if shuffle: ds = ds.shuffle(10000) # Our feature data is variable-length, so we pad and batch # each field of the dataset structure to whatever size is necessary. ds = ds.padded_batch(25, ds.output_shapes) ds = ds.repeat(num_epochs) # Return the next batch of data. features, labels = ds.make_one_shot_iterator().get_next() return features, labels ###Output _____no_output_____ ###Markdown Task 1: Use a Linear Model with Sparse Inputs and an Explicit VocabularyFor our first model, we'll build a [`LinearClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/LinearClassifier) model using 50 informative terms; always start simple!The following code constructs the feature column for our terms. The [`categorical_column_with_vocabulary_list`](https://www.tensorflow.org/api_docs/python/tf/feature_column/categorical_column_with_vocabulary_list) function creates a feature column with the string-to-feature-vector mapping. ###Code # 50 informative terms that compose our model vocabulary informative_terms = ("bad", "great", "best", "worst", "fun", "beautiful", "excellent", "poor", "boring", "awful", "terrible", "definitely", "perfect", "liked", "worse", "waste", "entertaining", "loved", "unfortunately", "amazing", "enjoyed", "favorite", "horrible", "brilliant", "highly", "simple", "annoying", "today", "hilarious", "enjoyable", "dull", "fantastic", "poorly", "fails", "disappointing", "disappointment", "not", "him", "her", "good", "time", "?", ".", "!", "movie", "film", "action", "comedy", "drama", "family") terms_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(key="terms", vocabulary_list=informative_terms) ###Output _____no_output_____ ###Markdown Next, we'll construct the `LinearClassifier`, train it on the training set, and evaluate it on the evaluation set. After you read through the code, run it and see how you do. ###Code my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) feature_columns = [ terms_feature_column ] classifier = tf.estimator.LinearClassifier( feature_columns=feature_columns, optimizer=my_optimizer, ) classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown Task 2: Use a Deep Neural Network (DNN) ModelThe above model is a linear model. It works quite well. But can we do better with a DNN model?Let's swap in a [`DNNClassifier`](https://www.tensorflow.org/api_docs/python/tf/estimator/DNNClassifier) for the `LinearClassifier`. Run the following cell, and see how you do. ###Code ##################### Here's what we changed ################################## classifier = tf.estimator.DNNClassifier( # feature_columns=[tf.feature_column.indicator_column(terms_feature_column)], # hidden_units=[20,20], # optimizer=my_optimizer, # ) # ############################################################################### try: classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") except ValueError as err: print(err) ###Output _____no_output_____ ###Markdown Task 3: Use an Embedding with a DNN ModelIn this task, we'll implement our DNN model using an embedding column. An embedding column takes sparse data as input and returns a lower-dimensional dense vector as output. **NOTE:** *An embedding_column is usually the computationally most efficient option to use for training a model on sparse data. In an [optional section](scrollTo=XDMlGgRfKSVz) at the end of this exercise, we'll discuss in more depth the implementational differences between using an `embedding_column` and an `indicator_column`, and the tradeoffs of selecting one over the other.* In the following code, do the following:* Define the feature columns for the model using an `embedding_column` that projects the data into 2 dimensions (see the [TF docs](https://www.tensorflow.org/api_docs/python/tf/feature_column/embedding_column) for more details on the function signature for `embedding_column`).* Define a `DNNClassifier` with the following specifications: * Two hidden layers of 20 units each * Adagrad optimization with a learning rate of 0.1 * A `gradient_clip_norm` of 5.0 **NOTE:** *In practice, we might project to dimensions higher than 2, like 50 or 100. But for now, 2 dimensions is easy to visualize.* Hint ###Code # Here's a example code snippet you might use to define the feature columns: terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] ###Output _____no_output_____ ###Markdown Complete the Code Below ###Code ########################## YOUR CODE HERE ###################################### terms_embedding_column = # Define the embedding column feature_columns = # Define the feature columns classifier = # Define the DNNClassifier ################################################################################ classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown SolutionClick below for a solution. ###Code ########################## SOLUTION CODE ######################################## terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[20,20], optimizer=my_optimizer ) ################################################################################# classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____ ###Markdown Task 4: Convince yourself there's actually an embedding in thereThe above model used an `embedding_column`, and it seemed to work, but this doesn't tell us much about what's going on internally. How can we check that the model is actually using an embedding inside?To start, let's look at the tensors in the model: ###Code classifier.get_variable_names() ###Output _____no_output_____ ###Markdown Okay, we can see that there is an embedding layer in there: `'dnn/input_from_feature_columns/input_layer/terms_embedding/...'`. (What's interesting here, by the way, is that this layer is trainable along with the rest of the model just as any hidden layer is.)Is the embedding layer the correct shape? Run the following code to find out. **NOTE:** *Remember, in our case, the embedding is a matrix that allows us to project a 50-dimensional vector down to 2 dimensions.* ###Code classifier.get_variable_value('dnn/input_from_feature_columns/input_layer/terms_embedding/embedding_weights').shape ###Output _____no_output_____ ###Markdown Spend some time manually checking the various layers and shapes to make sure everything is connected the way you would expect it would be. Task 5: Examine the EmbeddingLet's now take a look at the actual embedding space, and see where the terms end up in it. Do the following:1. Run the following code to see the embedding we trained in **Task 3**. Do things end up where you'd expect?2. Re-train the model by rerunning the code in **Task 3**, and then run the embedding visualization below again. What stays the same? What changes?3. Finally, re-train the model again using only 10 steps (which will yield a terrible model). Run the embedding visualization below again. What do you see now, and why? ###Code import numpy as np import matplotlib.pyplot as plt embedding_matrix = classifier.get_variable_value('dnn/input_from_feature_columns/input_layer/terms_embedding/embedding_weights') for term_index in range(len(informative_terms)): # Create a one-hot encoding for our term. It has 0s everywhere, except for # a single 1 in the coordinate that corresponds to that term. term_vector = np.zeros(len(informative_terms)) term_vector[term_index] = 1 # We'll now project that one-hot vector into the embedding space. embedding_xy = np.matmul(term_vector, embedding_matrix) plt.text(embedding_xy[0], embedding_xy[1], informative_terms[term_index]) # Do a little setup to make sure the plot displays nicely. plt.rcParams["figure.figsize"] = (15, 15) plt.xlim(1.2 * embedding_matrix.min(), 1.2 * embedding_matrix.max()) plt.ylim(1.2 * embedding_matrix.min(), 1.2 * embedding_matrix.max()) plt.show() ###Output _____no_output_____ ###Markdown Task 6: Try to improve the model's performanceSee if you can refine the model to improve performance. A couple things you may want to try:* **Changing hyperparameters**, or **using a different optimizer** like Adam (you may only gain one or two accuracy percentage points following these strategies).* **Adding additional terms to `informative_terms`.** There's a full vocabulary file with all 30,716 terms for this data set that you can use at: https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/terms.txt You can pick out additional terms from this vocabulary file, or use the whole thing via the `categorical_column_with_vocabulary_file` feature column. ###Code # Download the vocabulary file. terms_url = 'https://storage.googleapis.com/mledu-datasets/sparse-data-embedding/terms.txt' terms_path = tf.keras.utils.get_file(terms_url.split('/')[-1], terms_url) # Create a feature column from "terms", using a full vocabulary file. informative_terms = None with io.open(terms_path, 'r', encoding='utf8') as f: # Convert it to a set first to remove duplicates. informative_terms = list(set(f.read().split())) terms_feature_column = tf.feature_column.categorical_column_with_vocabulary_list(key="terms", vocabulary_list=informative_terms) terms_embedding_column = tf.feature_column.embedding_column(terms_feature_column, dimension=2) feature_columns = [ terms_embedding_column ] my_optimizer = tf.train.AdagradOptimizer(learning_rate=0.1) my_optimizer = tf.contrib.estimator.clip_gradients_by_norm(my_optimizer, 5.0) classifier = tf.estimator.DNNClassifier( feature_columns=feature_columns, hidden_units=[10,10], optimizer=my_optimizer ) classifier.train( input_fn=lambda: _input_fn([train_path]), steps=1000) evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([train_path]), steps=1000) print("Training set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") evaluation_metrics = classifier.evaluate( input_fn=lambda: _input_fn([test_path]), steps=1000) print("Test set metrics:") for m in evaluation_metrics: print(m, evaluation_metrics[m]) print("---") ###Output _____no_output_____
cleared-demos/pdes/Sparse Matrix Factorizations and Fill-In.ipynb
###Markdown Sparse Matrix Factorizations and Fill-InCopyright (C) 2020 Andreas KloecknerMIT LicensePermission is hereby granted, free of charge, to any person obtaining a copyof this software and associated documentation files (the "Software"), to dealin the Software without restriction, including without limitation the rightsto use, copy, modify, merge, publish, distribute, sublicense, and/or sellcopies of the Software, and to permit persons to whom the Software isfurnished to do so, subject to the following conditions:The above copyright notice and this permission notice shall be included inall copies or substantial portions of the Software.THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS ORIMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THEAUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHERLIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS INTHE SOFTWARE. ###Code import numpy as np import scipy.linalg as la import matplotlib.pyplot as pt import random ###Output _____no_output_____ ###Markdown Here's a helper routine to make a random **symmetric** sparse matrix: ###Code def make_random_sparse_matrix(n, row_fill): nentries = (n*row_fill) // 2 # because of symmetry data = np.random.randn(nentries) rows = np.random.randint(0, n-1, nentries) cols = np.random.randint(0, n-1, nentries) import scipy.sparse as sps coo = sps.coo_matrix((data, (rows, cols)), shape=(n,n)) # NOTE: Cuthill-McKee applies only to symmetric matrices! return (100*np.eye(n) + np.array(coo.todense() + coo.todense().T)) ###Output _____no_output_____ ###Markdown Next, we will take a look at that matrix from a "birds eye view". Every entry with absolute value greater that $10^{-10}$ will show up as a 'dot': ###Code prec = 1e-10 np.random.seed(15) random.seed(15) A = make_random_sparse_matrix(200, 3) print("%d non-zeros" % len(np.where(np.abs(A)>prec)[0])) pt.figure() pt.spy(A, marker=",", precision=prec) ###Output _____no_output_____ ###Markdown Next, let's apply the same visualization to the inverse: ###Code Ainv = la.inv(A) print("%d non-zeros" % len(np.where(np.abs(Ainv) > prec)[0])) pt.spy(Ainv, marker=",", precision=prec) ###Output _____no_output_____ ###Markdown And the Cholesky factorization: ###Code L = la.cholesky(A) print("%d non-zeros" % len(np.where(np.abs(L) > prec)[0])) pt.spy(L, marker=",", precision=prec) ###Output _____no_output_____ ###Markdown Cholesky is often less bad, but in principle affected the same way. Reducing the fill-in Define the *degree* of a row as the number of non-zeros in it. ###Code def degree(mat, row): return len(np.where(mat[row])[0]) print(degree(A, 3)) print(degree(A, 4)) print(degree(A, 5)) ###Output _____no_output_____ ###Markdown Then find an ordering so that all the low degrees come first.The [Cuthill-McKee algorithm](https://en.wikipedia.org/wiki/Cuthill%E2%80%93McKee_algorithm) is a greedy algorithm to find such an ordering: ###Code def argmin2(iterable, return_value=False): it = iter(iterable) try: current_argmin, current_min = next(it) except StopIteration: raise ValueError("argmin of empty iterable") for arg, item in it: if item < current_min: current_argmin = arg current_min = item if return_value: return current_argmin, current_min else: return current_argmin def argmin(iterable): return argmin2(enumerate(iterable)) def cuthill_mckee(mat): """Return a Cuthill-McKee ordering for the given matrix. See (for example) Y. Saad, Iterative Methods for Sparse Linear System, 2nd edition, p. 76. """ # this list is called "old_numbers" because it maps a # "new number to its "old number" old_numbers = [] visited_nodes = set() levelset = [] all_nodes = set(range(len(mat))) while len(old_numbers) < len(mat): if not levelset: unvisited = list(all_nodes - visited_nodes) if not unvisited: break start_node = unvisited[ argmin(degree(mat, node) for node in unvisited)] visited_nodes.add(start_node) old_numbers.append(start_node) levelset = [start_node] next_levelset = set() levelset.sort(key=lambda row: degree(mat, row)) #print(levelset) for node in levelset: row = mat[node] neighbors, = np.where(row) for neighbor in neighbors: if neighbor in visited_nodes: continue visited_nodes.add(neighbor) next_levelset.add(neighbor) old_numbers.append(neighbor) levelset = list(next_levelset) return np.array(old_numbers, dtype=np.intp) cmk = cuthill_mckee(A) ###Output _____no_output_____ ###Markdown Someone (empirically) observed that the *reverse* of the Cuthill-McKee ordering often does better than forward Cuthill-McKee.So construct a permutation matrix corresponding to that: ###Code P = np.eye(len(A))[cmk[::-1]] ###Output _____no_output_____ ###Markdown And then reorder both rows and columns according to that--a similarity transform: ###Code A_reordered = P @ A @ P.T pt.spy(A_reordered, marker=",", precision=prec) ###Output _____no_output_____ ###Markdown Next, let's try Cholesky again: ###Code L = la.cholesky(A_reordered) print("%d non-zeros" % len(np.where(np.abs(L) > prec)[0])) pt.spy(L, marker=",", precision=prec) ###Output _____no_output_____
3rdparty/fast_retraining/experiments/05_FraudDetection.ipynb
###Markdown Experiment 05: Credit card FraudThis experiment uses the data from the Kaggle dataset [Credit Card Fraud Detection](https://www.kaggle.com/dalpozz/creditcardfraud). The dataset is made up of a number of variables which are a result of PCA transformation.The details of the machine we used and the version of the libraries can be found in [experiment 01](01_airline.ipynb). ###Code import json import sys import matplotlib.pyplot as plt import pkg_resources from libs.loaders import load_fraud from libs.timer import Timer from libs.utils import get_number_processors from lightgbm import LGBMClassifier from sklearn.metrics import roc_auc_score, accuracy_score, precision_score, recall_score, f1_score from sklearn.model_selection import train_test_split from sklearn.pipeline import Pipeline, FeatureUnion from sklearn.preprocessing import StandardScaler from xgboost import XGBClassifier import warnings warnings.filterwarnings('ignore') print("System version: {}".format(sys.version)) print("XGBoost version: {}".format(pkg_resources.get_distribution('xgboost').version)) print("LightGBM version: {}".format(pkg_resources.get_distribution('lightgbm').version)) random_seed = 42 %%time df = load_fraud() print(df.shape) df.head() pipeline_steps = [('scale', StandardScaler())] continuous_pipeline = Pipeline(steps=pipeline_steps) featurisers = [('continuous', continuous_pipeline)] number_processors = get_number_processors() print(number_processors) xgb_clf_pipeline = Pipeline(steps=[('features', FeatureUnion(featurisers)), ('clf', XGBClassifier(max_depth=3, learning_rate=0.1, scale_pos_weight=2, n_estimators=100, gamma=0.1, min_child_weight=1, reg_lambda=1, subsample=1, nthread=number_processors ))]) xgb_hist_clf_pipeline = Pipeline(steps=[('features', FeatureUnion(featurisers)), ('clf', XGBClassifier(max_depth=0, learning_rate=0.1, scale_pos_weight=2, n_estimators=100, gamma=0.1, min_child_weight=1, reg_lambda=1, subsample=1, max_leaves=2**3, grow_policy='lossguide', tree_method='hist', nthread=number_processors ))]) lgbm_clf_pipeline = Pipeline(steps=[('features', FeatureUnion(featurisers)), ('clf', LGBMClassifier(num_leaves=2**3, learning_rate=0.1, scale_pos_weight=2, n_estimators=100, min_split_gain=0.1, min_child_weight=1, reg_lambda=1, subsample=1, nthread=number_processors ))]) metrics_dict = { 'Accuracy': accuracy_score, 'Precision': precision_score, 'Recall': recall_score, 'AUC': roc_auc_score, 'F1': f1_score, } def classification_metrics(metrics, y_true, y_pred): return {metric_name:metric(y_true, y_pred) for metric_name, metric in metrics.items()} X = df[[col for col in df.columns if col.startswith('V')]].values y = df['Class'].values X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, random_state=random_seed, test_size=0.3) results_dict = dict() ###Output _____no_output_____ ###Markdown XGBoost ###Code with Timer() as train_t: xgb_clf_pipeline.fit(X_train,y_train) with Timer() as test_t: y_pred = xgb_clf_pipeline.predict(X_test) results_dict['xgb']={ 'train_time': train_t.interval, 'test_time': test_t.interval, 'performance': classification_metrics(metrics_dict, y_test, y_pred) } with Timer() as t_train: xgb_hist_clf_pipeline.fit(X_train,y_train) with Timer() as t_test: y_pred = xgb_hist_clf_pipeline.predict(X_test) results_dict['xgb_hist']={ 'train_time': t_train.interval, 'test_time': t_test.interval, 'performance': classification_metrics(metrics_dict, y_test, y_pred) } ###Output _____no_output_____ ###Markdown LightGBM ###Code with Timer() as train_t: lgbm_clf_pipeline.fit(X_train, y_train) with Timer() as test_t: y_pred = lgbm_clf_pipeline.predict(X_test) results_dict['lgbm']={ 'train_time': train_t.interval, 'test_time': test_t.interval, 'performance': classification_metrics(metrics_dict, y_test, y_pred) } # Results print(json.dumps(results_dict, indent=4, sort_keys=True)) ###Output { "lgbm": { "performance": { "AUC": 0.8749179318834633, "Accuracy": 0.999403110845827, "F1": 0.8131868131868133, "Precision": 0.888, "Recall": 0.75 }, "test_time": 0.05075380699963716, "train_time": 0.6608378439996159 }, "xgb": { "performance": { "AUC": 0.8884197213803287, "Accuracy": 0.9994265182636377, "F1": 0.8243727598566308, "Precision": 0.8778625954198473, "Recall": 0.777027027027027 }, "test_time": 0.06871192899961898, "train_time": 4.349258283999916 }, "xgb_hist": { "performance": { "AUC": 0.8715278294884368, "Accuracy": 0.9993679997191109, "F1": 0.8029197080291971, "Precision": 0.873015873015873, "Recall": 0.7432432432432432 }, "test_time": 0.08524090300034004, "train_time": 2.0142575339996256 } }
site/en/r2/guide/autograph.ipynb
###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-beta0 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function import numpy as np !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: the example above shows how to perform simple conditionals when scalar values are involves. Typical ML code involves batches; in those cases you should consider using the faster and vectorized `tf.where` if possible. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): msg += 'Fizz' elif tf.equal(i % 5, 0): msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown A note on batchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function import numpy as np !pip install tf-nightly-2.0-preview import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: the example above shows how to perform simple conditionals when scalar values are involves. Typical ML code involves batches; in those cases you should consider using the faster and vectorized `tf.where` if possible. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): msg += 'Fizz' elif tf.equal(i % 5, 0): msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown A note on batchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-beta1 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function import numpy as np !pip install tf-nightly-2.0-preview import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: the example above shows how to perform simple conditionals when scalar values are involves. Typical ML code involves batches; in those cases you should consider using the faster and vectorized `tf.where` if possible. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): msg += 'Fizz' elif tf.equal(i % 5, 0): msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown A note on batchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-beta1 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-beta1 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Debugging`tf.function` and AutoGraph work by generating code and tracing it into TensorFlow graphs. This mechanism does not yet support step-by-step debuggers like `pdb`. However, you can call `tf.config.run_functions_eagerly(True)` to temporarily enable eager execution inside the `tf.function' and use your favorite debugger: ###Code @tf.function def f(x): if x > 0: # Try setting a breakpoint here! # Example: # import pdb # pdb.set_trace() x = x + 1 return x tf.config.experimental_run_functions_eagerly(True) # You can now set breakpoints and run the code in a debugger. f(tf.constant(1)) tf.config.experimental_run_functions_eagerly(False) ###Output _____no_output_____ ###Markdown Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np try: %tensorflow_version 2.x # Colab only. except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Debugging`tf.function` and AutoGraph work by generating code and tracing it into TensorFlow graphs. This mechanism does not yet support step-by-step debuggers like `pdb`. However, you can call `tf.config.run_functions_eagerly(True)` to temporarily enable eager execution inside the `tf.function' and use your favorite debugger: ###Code @tf.function def f(x): if x > 0: # Try setting a breakpoint here! # Example: # import pdb # pdb.set_trace() x = x + 1 return x tf.config.experimental_run_functions_eagerly(True) # You can now set breakpoints and run the code in a debugger. f(tf.constant(1)) tf.config.experimental_run_functions_eagerly(False) ###Output _____no_output_____ ###Markdown Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np !pip install tf-nightly-2.0-preview import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: the example above shows how to perform simple conditionals when scalar values are involves. Typical ML code involves batches; in those cases you should consider using the faster and vectorized `tf.where` if possible. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in range(n): if i % 3 == 0: msg += 'Fizz' elif i % 5 == 0: msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Use Python `print`AutoGraph will also convert Python builtins like `print`.Note: due to the parallel nature of calculations in TensorFlow, statements might execute out of order. It's best to use `print` only to inspect actual values, and you should not use it to determine whether the program execution reaches a certain point. ###Code @tf.function def count(n): for i in tf.range(n): print(i) count(tf.constant(5)) ###Output _____no_output_____ ###Markdown Other handy conversions Other builtins that AutoGraph can adapt for TensorFlow`range` and `len`. `range` is a shortcut for `tf.range`: ###Code @tf.function def range_example(n): return range(n) print(range_example(tf.constant(3))) ###Output _____no_output_____ ###Markdown `len` is a shortcut for `.shape[0]`: ###Code @tf.function def len_example(n): return len(n) print(len_example(tf.zeros((20, 10)))) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if v % 2 == 0: v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code def compute_loss(logits, labels): return tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels)) def compute_accuracy(logits, labels): predictions = tf.argmax(logits, axis=1) return tf.reduce_mean(tf.cast(predictions == labels, tf.float32)) def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: tape.watch(model.trainable_variables) logits = model(x) loss = compute_loss(logits, y) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) accuracy = compute_accuracy(logits, y) return loss, accuracy @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 for x, y in train_ds: step += 1 loss, accuracy = train_one_step(model, optimizer, x, y) if step % 10 == 0: print('Step', step, ': loss', loss, '; accuracy', accuracy) return step _ = train(model, optimizer) ###Output _____no_output_____ ###Markdown A note on batchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=len(x)) for i in range(len(x)): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function import numpy as np !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): msg += 'Fizz' elif tf.equal(i % 5, 0): msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): msg += 'Fizz' elif tf.equal(i % 5, 0): msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-beta0 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/g3doc/reference/limitations.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np try: # %tensorflow_version only exists in Colab. !pip install tf-nightly-2.0-preview except Exception: pass import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): for i in tf.range(n): if (i % 3) == 0: tf.print('Fizz') elif (i % 5) == 0: tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if v % 2 == 0: v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Debugging`tf.function` and AutoGraph work by generating code and tracing it into TensorFlow graphs. This mechanism does not yet support step-by-step debuggers like `pdb`. However, you can call `tf.config.run_functions_eagerly(True)` to temporarily enable eager execution inside the `tf.function' and use your favorite debugger: ###Code @tf.function def f(x): if x > 0: # Try setting a breakpoint here! # Example: # import pdb # pdb.set_trace() x = x + 1 return x tf.config.experimental_run_functions_eagerly(True) # You can now set breakpoints and run the code in a debugger. f(tf.constant(1)) tf.config.experimental_run_functions_eagerly(False) ###Output _____no_output_____ ###Markdown Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if step % 10 == 0: tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-alpha0 import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): msg += 'Fizz' elif tf.equal(i % 5, 0): msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub Download notebook TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import, division, print_function, unicode_literals import numpy as np !pip install tensorflow==2.0.0-beta1 import tensorflow as tf ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Functions can be faster than eager code, for graphs with many small ops. But for graphs with a few expensive ops (like convolutions), you may not see much speedup. ###Code import timeit conv_layer = tf.keras.layers.Conv2D(100, 3) @tf.function def conv_fn(image): return conv_layer(image) image = tf.zeros([1, 200, 200, 100]) # warm up conv_layer(image); conv_fn(image) print("Eager conv:", timeit.timeit(lambda: conv_layer(image), number=10)) print("Function conv:", timeit.timeit(lambda: conv_fn(image), number=10)) print("Note how there's not much difference in performance for convolutions") lstm_cell = tf.keras.layers.LSTMCell(10) @tf.function def lstm_fn(input, state): return lstm_cell(input, state) input = tf.zeros([10, 10]) state = [tf.zeros([10, 10])] * 2 # warm up lstm_cell(input, state); lstm_fn(input, state) print("eager lstm:", timeit.timeit(lambda: lstm_cell(input, state), number=10)) print("function lstm:", timeit.timeit(lambda: lstm_fn(input, state), number=10)) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: The previous example uses simple conditionals with scalar values. Batching is typically used in real-world code. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in tf.range(n): if tf.equal(i % 3, 0): tf.print('Fizz') elif tf.equal(i % 5, 0): tf.print('Buzz') else: tf.print(i) fizzbuzz(tf.constant(15)) ###Output _____no_output_____ ###Markdown Keras and AutoGraphAutoGraph is available by default in non-dynamic Keras models. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if tf.equal(v % 2, 0): v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Debugging`tf.function` and AutoGraph work by generating code and tracing it into TensorFlow graphs. This mechanism does not yet support step-by-step debuggers like `pdb`. However, you can call `tf.config.run_functions_eagerly(True)` to temporarily enable eager execution inside the `tf.function' and use your favorite debugger: ###Code @tf.function def f(x): if x > 0: # Try setting a breakpoint here! # Example: # import pdb # pdb.set_trace() x = x + 1 return x tf.config.experimental_run_functions_eagerly(True) # You can now set breakpoints and run the code in a debugger. f(tf.constant(1)) tf.config.experimental_run_functions_eagerly(False) ###Output _____no_output_____ ###Markdown Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code compute_loss = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True) compute_accuracy = tf.keras.metrics.SparseCategoricalAccuracy() def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: logits = model(x) loss = compute_loss(y, logits) grads = tape.gradient(loss, model.trainable_variables) optimizer.apply_gradients(zip(grads, model.trainable_variables)) compute_accuracy(y, logits) return loss @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 loss = 0.0 accuracy = 0.0 for x, y in train_ds: step += 1 loss = train_one_step(model, optimizer, x, y) if tf.equal(step % 10, 0): tf.print('Step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) return step, loss, accuracy step, loss, accuracy = train(model, optimizer) print('Final step', step, ': loss', loss, '; accuracy', compute_accuracy.result()) ###Output _____no_output_____ ###Markdown BatchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=x.shape[0]) for i in tf.range(x.shape[0]): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown Copyright 2018 The TensorFlow Authors.Licensed under the Apache License, Version 2.0 (the "License"); ###Code #@title Licensed under the Apache License, Version 2.0 (the "License"); { display-mode: "form" } # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # https://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. # See the License for the specific language governing permissions and # limitations under the License. ###Output _____no_output_____ ###Markdown tf.function and AutoGraph in TensorFlow 2.0 View on TensorFlow.org Run in Google Colab View source on GitHub TF 2.0 brings together the ease of eager execution and the power of TF 1.0. At the center of this merger is `tf.function`, which allows you to transform a subset of Python syntax into portable, high-performance TensorFlow graphs.A cool new feature of `tf.function` is AutoGraph, which lets you write graph code using natural Python syntax. For a list of the Python features that you can use with AutoGraph, see [AutoGraph Capabilities and Limitations](https://github.com/tensorflow/tensorflow/blob/master/tensorflow/python/autograph/LIMITATIONS.md). For more details about `tf.function`, see the RFC [TF 2.0: Functions, not Sessions](https://github.com/tensorflow/community/blob/master/rfcs/20180918-functions-not-sessions-20.md). For more details about AutoGraph, see `tf.autograph`.This tutorial will walk you through the basic features of `tf.function` and AutoGraph. SetupImport TensorFlow 2.0 Preview Nightly and enable TF 2.0 mode: ###Code from __future__ import absolute_import from __future__ import division from __future__ import print_function import numpy as np !pip install tf-nightly-2.0-preview import tensorflow as tf ###Output _____no_output_____ ###Markdown Install a temporary patch to enable a few extra TF 2.0 upgrades. This piece will be removed soon. ###Code from tensorflow.python.ops import control_flow_util control_flow_util.ENABLE_CONTROL_FLOW_V2 = True ###Output _____no_output_____ ###Markdown The `tf.function` decoratorWhen you annotate a function with `tf.function`, you can still call it like any other function. But it will be compiled into a graph, which means you get the benefits of faster execution, running on GPU or TPU, or exporting to SavedModel. ###Code @tf.function def simple_nn_layer(x, y): return tf.nn.relu(tf.matmul(x, y)) x = tf.random.uniform((3, 3)) y = tf.random.uniform((3, 3)) simple_nn_layer(x, y) ###Output _____no_output_____ ###Markdown If we examine the result of the annotation, we can see that it's a special callable that handles all interactions with the TensorFlow runtime. ###Code simple_nn_layer ###Output _____no_output_____ ###Markdown If your code uses multiple functions, you don't need to annotate them all - any functions called from an annotated function will also run in graph mode. ###Code def linear_layer(x): return 2 * x + 1 @tf.function def deep_net(x): return tf.nn.relu(linear_layer(x)) deep_net(tf.constant((1, 2, 3))) ###Output _____no_output_____ ###Markdown Use Python control flowWhen using data-dependent control flow inside `tf.function`, you can use Python control flow statements and AutoGraph will convert them into appropriate TensorFlow ops. For example, `if` statements will be converted into `tf.cond()` if they depend on a `Tensor`.In the example below, `x` is a `Tensor` but the `if` statement works as expected: ###Code @tf.function def square_if_positive(x): if x > 0: x = x * x else: x = 0 return x print('square_if_positive(2) = {}'.format(square_if_positive(tf.constant(2)))) print('square_if_positive(-2) = {}'.format(square_if_positive(tf.constant(-2)))) ###Output _____no_output_____ ###Markdown Note: the example above shows how to perform simple conditionals when scalar values are involves. Typical ML code involves batches; in those cases you should consider using the faster and vectorized `tf.where` if possible. AutoGraph supports common Python statements like `while`, `for`, `if`, `break`, `continue` and `return`, with support for nesting. That means you can use `Tensor` expressions in the condition of `while` and `if` statements, or iterate over a `Tensor` in a `for` loop. ###Code @tf.function def sum_even(items): s = 0 for c in items: if c % 2 > 0: continue s += c return s sum_even(tf.constant([10, 12, 15, 20])) ###Output _____no_output_____ ###Markdown AutoGraph also provides a low-level API for advanced users. For example we can use it to have a look at the generated code. ###Code print(tf.autograph.to_code(sum_even.python_function, experimental_optional_features=None)) ###Output _____no_output_____ ###Markdown Here's an example of more complicated control flow: ###Code @tf.function def fizzbuzz(n): msg = tf.constant('') for i in range(n): if i % 3 == 0: msg += 'Fizz' elif i % 5 == 0: msg += 'Buzz' else: msg += tf.as_string(i) msg += '\n' return msg print(fizzbuzz(tf.constant(15)).numpy().decode()) ###Output _____no_output_____ ###Markdown Use Python `print`AutoGraph will also convert Python builtins like `print`.Note: due to the parallel nature of calculations in TensorFlow, statements might execute out of order. It's best to use `print` only to inspect actual values, and you should not use it to determine whether the program execution reaches a certain point. ###Code @tf.function def count(n): for i in tf.range(n): print(i) count(tf.constant(5)) ###Output _____no_output_____ ###Markdown Other handy conversions Other builtins that AutoGraph can adapt for TensorFlow`range` and `len`. `range` is a shortcut for `tf.range`: ###Code @tf.function def range_example(n): return range(n) print(range_example(tf.constant(3))) ###Output _____no_output_____ ###Markdown `len` is a shortcut for `.shape[0]`: ###Code @tf.function def len_example(n): return len(n) print(len_example(tf.zeros((20, 10)))) ###Output _____no_output_____ ###Markdown Keras and AutoGraphYou can use `tf.function` with object methods as well. For example, you can decorate your custom Keras models, typically by annotating the model's `call` function. For more information, see `tf.keras`. ###Code class CustomModel(tf.keras.models.Model): @tf.function def call(self, input_data): if tf.reduce_mean(input_data) > 0: return input_data else: return input_data // 2 model = CustomModel() model(tf.constant([-2, -4])) ###Output _____no_output_____ ###Markdown Side effectsJust like in eager mode, you can use operations with side effects, like `tf.assign` or `tf.print` normally inside `tf.function`, and it will insert the necessary control dependencies to ensure they execute in order. ###Code v = tf.Variable(5) @tf.function def find_next_odd(): v.assign(v + 1) if v % 2 == 0: v.assign(v + 1) find_next_odd() v ###Output _____no_output_____ ###Markdown Example: training a simple modelAutoGraph also allows you to move more computation inside TensorFlow. For example, a training loop is just control flow, so it can actually be brought into TensorFlow. Download data ###Code def prepare_mnist_features_and_labels(x, y): x = tf.cast(x, tf.float32) / 255.0 y = tf.cast(y, tf.int64) return x, y def mnist_dataset(): (x, y), _ = tf.keras.datasets.mnist.load_data() ds = tf.data.Dataset.from_tensor_slices((x, y)) ds = ds.map(prepare_mnist_features_and_labels) ds = ds.take(20000).shuffle(20000).batch(100) return ds train_dataset = mnist_dataset() ###Output _____no_output_____ ###Markdown Define the model ###Code model = tf.keras.Sequential(( tf.keras.layers.Reshape(target_shape=(28 * 28,), input_shape=(28, 28)), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(100, activation='relu'), tf.keras.layers.Dense(10))) model.build() optimizer = tf.keras.optimizers.Adam() ###Output _____no_output_____ ###Markdown Define the training loop ###Code def compute_loss(logits, labels): return tf.reduce_mean( tf.nn.sparse_softmax_cross_entropy_with_logits( logits=logits, labels=labels)) def compute_accuracy(logits, labels): predictions = tf.argmax(logits, axis=1) return tf.reduce_mean(tf.cast(predictions == labels, tf.float32)) def train_one_step(model, optimizer, x, y): with tf.GradientTape() as tape: tape.watch(model.variables) logits = model(x) loss = compute_loss(logits, y) grads = tape.gradient(loss, model.variables) optimizer.apply_gradients(zip(grads, model.variables)) accuracy = compute_accuracy(logits, y) return loss, accuracy @tf.function def train(model, optimizer): train_ds = mnist_dataset() step = 0 for x, y in train_ds: step += 1 loss, accuracy = train_one_step(model, optimizer, x, y) if step % 10 == 0: print('Step', step, ': loss', loss, '; accuracy', accuracy) return step _ = train(model, optimizer) ###Output _____no_output_____ ###Markdown A note on batchingIn real applications batching is essential for performance. The best code to convert to AutoGraph is code where the control flow is decided at the _batch_ level. If making decisions at the individual _example_ level, try to use batch APIs to maintain performance.For example, if you have the following code in Python: ###Code def square_if_positive(x): return [i ** 2 if i > 0 else i for i in x] square_if_positive(range(-5, 5)) ###Output _____no_output_____ ###Markdown You may be tempted to write it in TensorFlow as such (and this would work!): ###Code @tf.function def square_if_positive_naive(x): result = tf.TensorArray(tf.int32, size=len(x)) for i in range(len(x)): if x[i] > 0: result = result.write(i, x[i] ** 2) else: result = result.write(i, x[i]) return result.stack() square_if_positive_naive(tf.range(-5, 5)) ###Output _____no_output_____ ###Markdown But in this case, it turns out you can write the following: ###Code def square_if_positive_vectorized(x): return tf.where(x > 0, x ** 2, x) square_if_positive_vectorized(tf.range(-5, 5)) ###Output _____no_output_____
notebooks/Dstripes/adversarial/basic/inference_adversarial/dense/AE/pokemonIAAE_Dense_reconst_ssim.ipynb
###Markdown Settings ###Code %env TF_KERAS = 1 import os sep_local = os.path.sep import sys sys.path.append('..'+sep_local+'..') print(sep_local) os.chdir('..'+sep_local+'..'+sep_local+'..'+sep_local+'..'+sep_local+'..') print(os.getcwd()) import tensorflow as tf print(tf.__version__) ###Output _____no_output_____ ###Markdown Dataset loading ###Code dataset_name='Dstripes' import tensorflow as tf train_ds = tf.data.Dataset.from_generator( lambda: training_generator, output_types=tf.float32 , output_shapes=tf.TensorShape((batch_size, ) + image_size) ) test_ds = tf.data.Dataset.from_generator( lambda: testing_generator, output_types=tf.float32 , output_shapes=tf.TensorShape((batch_size, ) + image_size) ) _instance_scale=1.0 for data in train_ds: _instance_scale = float(data[0].numpy().max()) break _instance_scale import numpy as np from collections.abc import Iterable if isinstance(inputs_shape, Iterable): _outputs_shape = np.prod(inputs_shape) _outputs_shape ###Output _____no_output_____ ###Markdown Model's Layers definition ###Code enc_lays = [tf.keras.layers.Dense(units=intermediate_dim, activation='relu'), tf.keras.layers.Dense(units=intermediate_dim, activation='relu'), tf.keras.layers.Flatten(), tf.keras.layers.Dense(units=latents_dim)] dec_lays = [tf.keras.layers.Dense(units=latents_dim, activation='relu'), tf.keras.layers.Dense(units=intermediate_dim, activation='relu'), tf.keras.layers.Dense(units=_outputs_shape), tf.keras.layers.Reshape(inputs_shape)] ###Output _____no_output_____ ###Markdown Model definition ###Code model_name = dataset_name+'IAAE_Dense_reconst_ssmi' experiments_dir='experiments'+sep_local+model_name from training.autoencoding_basic.autoencoders.autoencoder import autoencoder as AE inputs_shape=image_size variables_params = \ [ { 'name': 'inference', 'inputs_shape':inputs_shape, 'outputs_shape':latents_dim, 'layers': enc_lays } , { 'name': 'generative', 'inputs_shape':latents_dim, 'outputs_shape':inputs_shape, 'layers':dec_lays } ] from utils.data_and_files.file_utils import create_if_not_exist _restore = os.path.join(experiments_dir, 'var_save_dir') create_if_not_exist(_restore) _restore #to restore trained model, set filepath=_restore from statistical.basic_adversarial_losses import \ create_inference_discriminator_real_losses, \ create_inference_discriminator_fake_losses, \ create_inference_generator_fake_losses inference_discriminator_losses = { 'inference_discriminator_real_outputs': create_inference_discriminator_real_losses, 'inference_discriminator_fake_outputs': create_inference_discriminator_fake_losses, 'inference_generator_fake_outputs': create_inference_generator_fake_losses, } ae = AE( name=model_name, latents_dim=latents_dim, batch_size=batch_size, variables_params=variables_params, filepath=None ) from evaluation.quantitive_metrics.structural_similarity import prepare_ssim_multiscale discr2gen_rate = 0.001 gen2trad_rate = 0.1 ae.compile( loss={'x_logits': similarity_to_distance(prepare_ssim_multiscale([ae.batch_size]+ae.get_inputs_shape()))}, adversarial_losses=inference_discriminator_losses, adversarial_weights={'generator_weight': gen2trad_rate, 'discriminator_weight': discr2gen_rate} ) ###Output _____no_output_____ ###Markdown Callbacks ###Code from training.callbacks.sample_generation import SampleGeneration from training.callbacks.save_model import ModelSaver es = tf.keras.callbacks.EarlyStopping( monitor='loss', min_delta=1e-12, patience=12, verbose=1, restore_best_weights=False ) ms = ModelSaver(filepath=_restore) csv_dir = os.path.join(experiments_dir, 'csv_dir') create_if_not_exist(csv_dir) csv_dir = os.path.join(csv_dir, ae.name+'.csv') csv_log = tf.keras.callbacks.CSVLogger(csv_dir, append=True) csv_dir image_gen_dir = os.path.join(experiments_dir, 'image_gen_dir') create_if_not_exist(image_gen_dir) sg = SampleGeneration(latents_shape=latents_dim, filepath=image_gen_dir, gen_freq=5, save_img=True, gray_plot=False) ###Output _____no_output_____ ###Markdown Model Training ###Code ae.fit( x=train_ds, input_kw=None, steps_per_epoch=int(1e4), epochs=int(1e6), verbose=2, callbacks=[ es, ms, csv_log, sg], workers=-1, use_multiprocessing=True, validation_data=test_ds, validation_steps=int(1e4) ) ###Output _____no_output_____ ###Markdown Model Evaluation inception_score ###Code from evaluation.generativity_metrics.inception_metrics import inception_score is_mean, is_sigma = inception_score(ae, tolerance_threshold=1e-6, max_iteration=200) print(f'inception_score mean: {is_mean}, sigma: {is_sigma}') ###Output _____no_output_____ ###Markdown Frechet_inception_distance ###Code from evaluation.generativity_metrics.inception_metrics import frechet_inception_distance fis_score = frechet_inception_distance(ae, training_generator, tolerance_threshold=1e-6, max_iteration=10, batch_size=32) print(f'frechet inception distance: {fis_score}') ###Output _____no_output_____ ###Markdown perceptual_path_length_score ###Code from evaluation.generativity_metrics.perceptual_path_length import perceptual_path_length_score ppl_mean_score = perceptual_path_length_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200, batch_size=32) print(f'perceptual path length score: {ppl_mean_score}') ###Output _____no_output_____ ###Markdown precision score ###Code from evaluation.generativity_metrics.precision_recall import precision_score _precision_score = precision_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200) print(f'precision score: {_precision_score}') ###Output _____no_output_____ ###Markdown recall score ###Code from evaluation.generativity_metrics.precision_recall import recall_score _recall_score = recall_score(ae, training_generator, tolerance_threshold=1e-6, max_iteration=200) print(f'recall score: {_recall_score}') ###Output _____no_output_____ ###Markdown Image Generation image reconstruction Training dataset ###Code %load_ext autoreload %autoreload 2 from training.generators.image_generation_testing import reconstruct_from_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'reconstruct_training_images_like_a_batch_dir') create_if_not_exist(save_dir) reconstruct_from_a_batch(ae, training_generator, save_dir) from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'reconstruct_testing_images_like_a_batch_dir') create_if_not_exist(save_dir) reconstruct_from_a_batch(ae, testing_generator, save_dir) ###Output _____no_output_____ ###Markdown with Randomness ###Code from training.generators.image_generation_testing import generate_images_like_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'generate_training_images_like_a_batch_dir') create_if_not_exist(save_dir) generate_images_like_a_batch(ae, training_generator, save_dir) from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'generate_testing_images_like_a_batch_dir') create_if_not_exist(save_dir) generate_images_like_a_batch(ae, testing_generator, save_dir) ###Output _____no_output_____ ###Markdown Complete Randomness ###Code from training.generators.image_generation_testing import generate_images_randomly from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'random_synthetic_dir') create_if_not_exist(save_dir) generate_images_randomly(ae, save_dir) from training.generators.image_generation_testing import interpolate_a_batch from utils.data_and_files.file_utils import create_if_not_exist save_dir = os.path.join(experiments_dir, 'interpolate_dir') create_if_not_exist(save_dir) interpolate_a_batch(ae, testing_generator, save_dir) ###Output 100%|██████████| 15/15 [00:00<00:00, 19.90it/s]
numpy/agregations.ipynb
###Markdown Aggregations: Min, Max, and Everything In Between Numpy has fast built-in aggregation functions for working on arrays; we'll discuss and demonstrate some of them here Summing the Values in an ArrayAs as quick example, consider computing the sum of all values in an array. Python itself can do this using the buil-in `sum` function: ###Code import numpy as np L = np.random.random(100) sum(L) np.sum(L) ###Output _____no_output_____ ###Markdown NumPy version of the operation is computed much more quickly: ###Code big_array = np.random.rand(1_000_000) %timeit sum(big_array) %timeit np.sum(big_array) ###Output 179 ms ± 18.9 ms per loop (mean ± std. dev. of 7 runs, 1 loop each) 1.18 ms ± 120 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) ###Markdown Minimun and Maximum ###Code min(big_array), max(big_array) %timeit min(big_array) %timeit np.min(big_array) ###Output 84.3 ms ± 2.52 ms per loop (mean ± std. dev. of 7 runs, 10 loops each) 471 µs ± 23.4 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each) ###Markdown For `min` and `max` and `sum`, and seveal other NumPy aggregates a shorter syntax is to use methods ofthe array object itself: ###Code print(big_array.min(), big_array.max(), big_array.sum()) ###Output 6.990105299031768e-07 0.9999992162584009 499848.77304655063 ###Markdown Multi dimensional aggregatesOne common type of aggregation operation is an aggregate along a row or column.Say you have some data stored in a two-dimensional array: ###Code M = np.random.random((3, 4)) print(M) ###Output [[0.17768175 0.26264154 0.63198318 0.50042224] [0.52442396 0.5038188 0.56468719 0.29566009] [0.37235568 0.10338796 0.66210778 0.00653843]] ###Markdown By default, each NumPy aggregation function will return the aggregate over the entire array: M.sum() Aggregation functions take an additional argument specifying the axis along which the aggregate is computed. For example, we can find the minimum value within each column by specifying `axis=0`. ###Code M.min(axis=0) M.max(axis=1) ###Output _____no_output_____ ###Markdown The `axis` keyword specifies the dimension of hte arrya that will be collapsed. So specigying `axis=0` means that the first axis will be collapsed. For two-dimensional arrays, this means that values within each column will be aggregated. Other aggregations functionsMost aggregates have a `NaN` safe counterpart that computes the result while ignoring missing values, which are marked by the special IEEE floating-point `NaN` value.```Function Name NaN-safe Version Descriptionnp.sum np.nansum Compute sum of elementsnp.prod np.nanprod Compute product of elementsnp.mean np.nanmean Compute mean of elementsnp.std np.nanstd Compute standard deviationnp.var np.nanvar Compute variancenp.min np.nanmin Find minimum valuenp.max np.nanmax Find maximum valuenp.argmin np.nanargmin Find index of minimum valuenp.argmax np.nanargmax Find index of maximum valuenp.median np.nanmedian Compute median of elementsnp.percentile np.nanpercentile Compute rank-based statistics of elementsnp.any N/A Evaluate whether any elements are truenp.all N/A Evaluate whether all elements are true``` Example: What is the Average Height of US Presidents?Aggregates available in NumPy can be extremely useful for summarizing a set of values. As a simple example, let's consider the heighs of all US presidents. Thisdata is available in the file presidents_heigths.csv ###Code import pandas as pd data = pd.read_csv('./data/president_heights.csv') data.head() heigths = np.array(data['height(cm)']) print(heigths) print(f"mean heigth:{heigths.mean()}") print(f"Standard deviation:{heigths.std()}") print(f"Minimum heigth:{heigths.min()}") print(f"Maximum heigth:{heigths.max()}") ###Output mean heigth:179.73809523809524 Standard deviation:6.931843442745892 Minimum heigth:163 Maximum heigth:193 ###Markdown The aggregation operation reduced the entire array to a single summarizing value. We may also wish to compute quantiles: ###Code print('25th percentile: ', np.percentile(heigths, 25)) print('median: ', np.median(heigths)) print('75th percentile: ', np.percentile(heigths, 75)) %matplotlib inline import matplotlib.pyplot as plt import seaborn; seaborn.set() # set plot style plt.hist(heigths) plt.title("heigth Distribution of US Presidents") plt.xlabel('height (cm)') plt.ylabel('number'); ###Output _____no_output_____
_labs/Lab04/Lab04-GroupByPivotTables.ipynb
###Markdown Lab 04: Group By, Pivot Tables, and Data CubesThis lab is presented with some revisions from [Dennis Sun at Cal Poly](https://web.calpoly.edu/~dsun09/index.html) and his [Data301 Course](http://users.csc.calpoly.edu/~dsun09/data301/lectures.html) When you have filled out all the questions, submit via [Tulane Canvas](https://tulane.instructure.com/) ###Code %matplotlib inline import numpy as np import pandas as pd titanic_df = pd.read_csv("../data/titanic.csv") ###Output _____no_output_____ ###Markdown In the previous section, we discussed how to restrict our analysis to a particular subset of observations using boolean masks. So, for example, if we wanted to calculate the survival rate for passengers in third class, we would write: ###Code titanic_df[titanic_df.pclass == 3].survived.mean() ###Output _____no_output_____ ###Markdown But what if we wanted to calculate the survival rate by class? We could slice the data set three times, once for each class: ###Code (titanic_df[titanic_df.pclass == 1]['survived'].mean(), titanic_df[titanic_df.pclass == 2]['survived'].mean(), titanic_df[titanic_df.pclass == 3]['survived'].mean()) ###Output _____no_output_____ ###Markdown But this code is inefficient and repetitive. It also does not generalize well to variables with hundreds of possible categories. The problem of calculating the survival rate by class is an example of a problem that can be solved using the **split-apply-combine strategy**. The key insight here is that many data analyses follow the same basic pattern:- First, a data set is **split** into several subsets based on some variable.- Next, some analysis is **applied** to each subset.- Finally, the results from each analysis are **combined**.The three steps are diagrammed in the figure below:![](../images/split_apply_combine.png) [source](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.08-Aggregation-and-Grouping.ipynb)Applying this strategy to our working example above, we should first _split_ up the Titanic data according to the value of `pclass`, _apply_ `.survived.mean()` to each subset, and finally _combine_ the results into one `Series`.[_Note:_ The term "split-apply-combine" was coined by Hadley Wickham in [a 2011 paper](https://www.jstatsoft.org/article/view/v040i01), but the idea is not new. It should already be familiar to you if you know SQL or MapReduce.] Split-Apply-Combine in `pandas`: the `.groupby()` methodTo implement the split-apply-combine strategy in `pandas`, we use the `.groupby()` method. First, we specify one or more variables to split on in the argument to `.groupby()`. Then, we specify our analysis as usual. Pandas will handle splitting the data, applying the analysis to each subset, and combining the results at the end. ###Code titanic_df.groupby("pclass").survived.mean() ###Output _____no_output_____ ###Markdown Compare this line of code with the code to calculate the overall survival rate:`titanic_df.survived.mean()`.The only difference is `.groupby("pclass")`. This turns a `DataFrame` into a `DataFrameGroupBy` object, which behaves like a `DataFrame`, except that any analysis that we specify will be applied to subsets of the `DataFrame` instead of the whole `DataFrame`. You can even make visualizations with `.groupby()`! To plot the age distribution of the survivors and non-survivors, we can group by the `survived` variable and then ask for a histogram of `age`. Behind the scenes, `pandas` will do this once for the survivors and again for the non-survivors and then combine them into one histogram. ###Code titanic_df.groupby("survived").age.plot.hist(alpha=.5, density=True, legend=True) ###Output _____no_output_____ ###Markdown It is also possible to group by more than one variable. Simply pass in a list of variable names to `.groupby()`. For example, the following code calculates the survival rate by class and sex: ###Code survival_rates = titanic_df.groupby(["pclass", "sex"])["survived"].mean() survival_rates ###Output _____no_output_____ ###Markdown It's clear that survival rates on the Titanic varied drastically by class and by sex.Notice that when we use `.groupby()`, the resulting index is whatever variable(s) we grouped by. Since we grouped by two variables, this index actually has two levels. An index with more than one level is called a `MultiIndex` in `pandas`. To access a particular row in a `DataFrame` that is indexed by a `MultiIndex`, we pass in a tuple of the values we want from each level.So, for example, to get female passengers in 2nd class, we would do: ###Code survival_rates.loc[(2, "female")] ###Output _____no_output_____ ###Markdown If we pass in fewer values than there are levels in the index, `pandas` will return everything from the remaining levels. ###Code survival_rates.loc[2] survival_rates.loc[:, 'female'] ###Output _____no_output_____ ###Markdown Note that some times the above won't work depending on how the indicies are setup. It may be eaiser to use the [.xs method sometimes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.xs.html). ###Code survival_rates.xs('female', level=1) ###Output _____no_output_____ ###Markdown Pivot Tables and The Data Cube ###Code titanic_df["adult"] = (titanic_df["age"] >= 18) ###Output _____no_output_____ ###Markdown In Section 2.2, we learned to split a `pandas` `DataFrame` and apply the same analysis to each of the resulting, smaller `DataFrame`s. For example, the following code calculates the proportion of Titanic passengers of each sex, age group, and class who survived: ###Code survivors_table = (titanic_df. groupby(["sex", "adult", "pclass"]). survived. mean()) survivors_table.to_frame() ###Output _____no_output_____ ###Markdown Here's another way to think about these results: there are three dimensions, `sex`, `adult`, and `pclass`, and we calculate a metric, the proportion of survivors, for each of the $2 \times 2 \times 3 = 12$ possible combinations of the dimension values.There are many equivalent ways to represent these results. The representation above is essentially the _tabular form_ that we learned in Chapter 1. Each row represents an observation (i.e., a distinct combination of sex, adult, and class) and each column a variable (i.e., the proportion of passengers who survived). Another way to represent these results is using a **data cube**. In a data cube, the possible values of each dimension are laid out along one dimension of a cube, as shown below:![](../images/datacube.png)The term "data _cube_" is somewhat of a misnomer, since it does not have to be a cube. First, as we can plainly see in the figure above, the dimensions need not all be the same size; some dimensions may have more values than others. Second, a data cube can have any number of dimensions, so it does not have to be three-dimensional. A data cube with $d$ dimensions is really a $d$-dimensional hypercube. A 2-dimensional hypercube is a square (or rectangle), a 1-dimensional hypercube is a line, and a 0-dimensional hypercube is a point.While it is useful to imagine a data cube as a $d$-dimensional hypercube, it is not practical to display data in a hypercube---at least not when $d > 2$. So a data cube is often printed as a two-dimensional table, with multi-level row indexes and columns to represent the dimensions. This two-dimensional representation of the data cube is called a **pivot table**. Here is the code to produce a pivot table from the raw data: ###Code survivors_cube = titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.mean) survivors_cube ###Output _____no_output_____ ###Markdown To create a pivot table, we had to specify - the row index(es): Here, we chose to include two of the dimensions (`adult`, `sex`) along the rows of the pivot table.- the column(s): Here, we chose to include the one remaining dimension (`pclass`) in the columns.- the metric in the cells of the table: Here, we chose to report the _mean_ of the `survived` column in each cell.The resulting pivot table is just stored in an ordinary `DataFrame`; `pandas` does not have a special data structure for pivot tables.Notice how we explicitly specified an aggregation function `aggfunc`. That's because in the original `DataFrame` (`titanic_df`), there were many passengers with the same values for all three dimensions, so each cell of this pivot table actually represents many passengers. In order to summarize all of these passengers by a single value, we have to aggregate the values. The mean is not the only aggregation function we could have used; we could have also calculated the sum, to obtain the _number_ of survivors. ###Code titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.sum ) ###Output _____no_output_____ ###Markdown If the data is in data cube form (i.e., in a pivot table), it can be converted to tabular form by simply stacking the columns, one on top of the other. In `pandas`, this can be done using the `.stack()` function: ###Code survivors_cube.stack(["adult", "pclass"]) ###Output _____no_output_____ ###Markdown Compare the above result with `survivors_table`.Likewise, we can convert a `pandas` object in tabular form to data cube form by _unstacking_ the index, assuming that all of the dimensions are already in the index. ###Code survivors_cube = survivors_table.unstack(["adult", "pclass"]) survivors_cube ###Output _____no_output_____ ###Markdown Stacking tends to produce longer objects with more rows, while unstacking tends to produce wider objects with more columns. For this reason, tabular form is sometimes referred to as "long form", in contrast to the data cube, which is "wide form." Some Features of Data CubesIt is much easier to quickly compare numbers in data cube form than in tabular form. For example, it is apparent from the preceding pivot table that males had much lower survival rates than females just by comparing the numbers across each row; this fact is more difficult to discern from `survivors_table`.It is also more efficient to store data in a data cube. Recall that `survivors_table` and `survivors_cube` contain the exact same information. However, the data cube is 70% smaller than the tabular version of the same data: ###Code survivors_table.__sizeof__(), survivors_cube.__sizeof__() ###Output _____no_output_____ ###Markdown In many implementations of the data cube, it is also faster to access values in a data cube than in a table. Unfortunately, because `pandas` represents data cubes as two-dimensional pivot tables, it does not enjoy these advantages. ###Code survivors_table.loc["female", True, 1] survivors_cube.loc["female", (True, 1)] ###Output _____no_output_____ ###Markdown Data cubes also play nicely with bar charts in `pandas`. When `.plot.bar()` is called on a `pandas` `DataFrame`, one set of bars will be created for each column. So when we call `.plot.bar()` on a pivot table, we will get one set of bars for females and another set of bars for males. ###Code survivors_cube.plot.bar() ###Output _____no_output_____ ###Markdown Notice that the $x$-axis of the bar graph contains all of the dimensions in the row index. So to get `pclass` on the $x$-axis, we have to create a pivot table where `pclass` is the row index: ###Code titanic_df.pivot_table( index="pclass", columns=["adult", "sex"], values="survived", aggfunc=np.mean ).plot.bar() ###Output _____no_output_____ ###Markdown Finally, many analytical operations are easier to do when the data is in data cube format. ExercisesExercises 1-2 deal with the Tips data set (`../data/tips.csv`). ###Code tips_df = pd.read_csv("../data/tips.csv") tips_df["tip_percent"] = tips_df.tip / tips_df.total_bill tips_df.head() ###Output _____no_output_____ ###Markdown **Exercise 1.** On which day of the week does the waiter serve the largest parties, on average? (You did this exercise in the previous section. See how much easier it is to do using `.groupby()`.) ###Code # YOUR CODE HERE ###Output _____no_output_____ ###Markdown **Exercise 2.** Calculate the average bill by day and time. What day-time combination has the highest average bill? ###Code # YOUR CODE HERE ###Output _____no_output_____ ###Markdown **Answer Here:** **Exercise 3.** Extract the average bill for Friday lunch from the result of Exercise 2. ###Code # YOUR CODE HERE ###Output _____no_output_____ ###Markdown **Exercise 4.** Use `.groupby()` to make a visualization comparing the distribution of tip percentages left by males and females. How do they compare? ###Code # YOUR CODE HERE ###Output _____no_output_____ ###Markdown **Exercise 5.** Calculate the average total bill by day, time, and table size. Display the results in a pivot table. ###Code # TYPE YOUR CODE HERE. ###Output _____no_output_____ ###Markdown **Exercise 6.** Make a bar chart showing the average total bill by table size, day, and time. (You will have to decide which variable(s) to represent on the $x$-axis and which variable(s) to represent using different colored bars.) Explain your choice below. ###Code # TYPE YOUR CODE HERE. ###Output _____no_output_____ ###Markdown **Answer Here:** Exercises 3-4 deal with the Ames Housing data set (`../data/ames.tsv`). For more information about the variables in this data set, please refer to the [data documentation](https://ww2.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt). ###Code df_ames = pd.read_csv("../data/ames.tsv", sep='\t') display(df_ames.head()) ###Output _____no_output_____ ###Markdown **Exercise 7.** Calculate the average house price by neighborhood and building type, and store it in data cube form. Use the data cube to determine the neighborhood with the most expensive single-family homes. ###Code # TYPE YOUR CODE HERE. ###Output _____no_output_____ ###Markdown Lab 04: Group By, Pivot Tables, and Data CubesThis lab is presented with some revisions from [Dennis Sun at Cal Poly](https://web.calpoly.edu/~dsun09/index.html) and his [Data301 Course](http://users.csc.calpoly.edu/~dsun09/data301/lectures.html) When you have filled out all the questions, submit via [Tulane Canvas](https://tulane.instructure.com/) ###Code %matplotlib inline import numpy as np import pandas as pd titanic_df = pd.read_csv("../data/titanic.csv") ###Output _____no_output_____ ###Markdown In the previous section, we discussed how to restrict our analysis to a particular subset of observations using boolean masks. So, for example, if we wanted to calculate the survival rate for passengers in third class, we would write: ###Code titanic_df[titanic_df.pclass == 3].survived.mean() ###Output _____no_output_____ ###Markdown But what if we wanted to calculate the survival rate by class? We could slice the data set three times, once for each class: ###Code (titanic_df[titanic_df.pclass == 1]['survived'].mean(), titanic_df[titanic_df.pclass == 2]['survived'].mean(), titanic_df[titanic_df.pclass == 3]['survived'].mean()) ###Output _____no_output_____ ###Markdown But this code is inefficient and repetitive. It also does not generalize well to variables with hundreds of possible categories. The problem of calculating the survival rate by class is an example of a problem that can be solved using the **split-apply-combine strategy**. The key insight here is that many data analyses follow the same basic pattern:- First, a data set is **split** into several subsets based on some variable.- Next, some analysis is **applied** to each subset.- Finally, the results from each analysis are **combined**.The three steps are diagrammed in the figure below:![](../images/split_apply_combine.png) [source](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.08-Aggregation-and-Grouping.ipynb)Applying this strategy to our working example above, we should first _split_ up the Titanic data according to the value of `pclass`, _apply_ `.survived.mean()` to each subset, and finally _combine_ the results into one `Series`.[_Note:_ The term "split-apply-combine" was coined by Hadley Wickham in [a 2011 paper](https://www.jstatsoft.org/article/view/v040i01), but the idea is not new. It should already be familiar to you if you know SQL or MapReduce.] Split-Apply-Combine in `pandas`: the `.groupby()` methodTo implement the split-apply-combine strategy in `pandas`, we use the `.groupby()` method. First, we specify one or more variables to split on in the argument to `.groupby()`. Then, we specify our analysis as usual. Pandas will handle splitting the data, applying the analysis to each subset, and combining the results at the end. ###Code titanic_df.groupby("pclass").survived.mean() ###Output _____no_output_____ ###Markdown Compare this line of code with the code to calculate the overall survival rate:`titanic_df.survived.mean()`.The only difference is `.groupby("pclass")`. This turns a `DataFrame` into a `DataFrameGroupBy` object, which behaves like a `DataFrame`, except that any analysis that we specify will be applied to subsets of the `DataFrame` instead of the whole `DataFrame`. You can even make visualizations with `.groupby()`! To plot the age distribution of the survivors and non-survivors, we can group by the `survived` variable and then ask for a histogram of `age`. Behind the scenes, `pandas` will do this once for the survivors and again for the non-survivors and then combine them into one histogram. ###Code titanic_df.groupby("survived").age.plot.hist(alpha=.5, density=True, legend=True) ###Output _____no_output_____ ###Markdown It is also possible to group by more than one variable. Simply pass in a list of variable names to `.groupby()`. For example, the following code calculates the survival rate by class and sex: ###Code survival_rates = titanic_df.groupby(["pclass", "sex"])["survived"].mean() survival_rates ###Output _____no_output_____ ###Markdown It's clear that survival rates on the Titanic varied drastically by class and by sex.Notice that when we use `.groupby()`, the resulting index is whatever variable(s) we grouped by. Since we grouped by two variables, this index actually has two levels. An index with more than one level is called a `MultiIndex` in `pandas`. To access a particular row in a `DataFrame` that is indexed by a `MultiIndex`, we pass in a tuple of the values we want from each level.So, for example, to get female passengers in 2nd class, we would do: ###Code survival_rates.loc[(2, "female")] ###Output _____no_output_____ ###Markdown If we pass in fewer values than there are levels in the index, `pandas` will return everything from the remaining levels. ###Code survival_rates.loc[2] survival_rates.loc[:, 'female'] ###Output _____no_output_____ ###Markdown Note that some times the above won't work depending on how the indicies are setup. It may be eaiser to use the [.xs method sometimes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.xs.html). ###Code survival_rates.xs('female', level=1) ###Output _____no_output_____ ###Markdown Pivot Tables and The Data Cube ###Code titanic_df["adult"] = (titanic_df["age"] >= 18) ###Output _____no_output_____ ###Markdown In Section 2.2, we learned to split a `pandas` `DataFrame` and apply the same analysis to each of the resulting, smaller `DataFrame`s. For example, the following code calculates the proportion of Titanic passengers of each sex, age group, and class who survived: ###Code survivors_table = (titanic_df. groupby(["sex", "adult", "pclass"]). survived. mean()) survivors_table.to_frame() ###Output _____no_output_____ ###Markdown Here's another way to think about these results: there are three dimensions, `sex`, `adult`, and `pclass`, and we calculate a metric, the proportion of survivors, for each of the $2 \times 2 \times 3 = 12$ possible combinations of the dimension values.There are many equivalent ways to represent these results. The representation above is essentially the _tabular form_ that we learned in Chapter 1. Each row represents an observation (i.e., a distinct combination of sex, adult, and class) and each column a variable (i.e., the proportion of passengers who survived). Another way to represent these results is using a **data cube**. In a data cube, the possible values of each dimension are laid out along one dimension of a cube, as shown below:![](../images/datacube.png)The term "data _cube_" is somewhat of a misnomer, since it does not have to be a cube. First, as we can plainly see in the figure above, the dimensions need not all be the same size; some dimensions may have more values than others. Second, a data cube can have any number of dimensions, so it does not have to be three-dimensional. A data cube with $d$ dimensions is really a $d$-dimensional hypercube. A 2-dimensional hypercube is a square (or rectangle), a 1-dimensional hypercube is a line, and a 0-dimensional hypercube is a point.While it is useful to imagine a data cube as a $d$-dimensional hypercube, it is not practical to display data in a hypercube---at least not when $d > 2$. So a data cube is often printed as a two-dimensional table, with multi-level row indexes and columns to represent the dimensions. This two-dimensional representation of the data cube is called a **pivot table**. Here is the code to produce a pivot table from the raw data: ###Code survivors_cube = titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.mean) survivors_cube ###Output _____no_output_____ ###Markdown To create a pivot table, we had to specify - the row index(es): Here, we chose to include two of the dimensions (`adult`, `sex`) along the rows of the pivot table.- the column(s): Here, we chose to include the one remaining dimension (`pclass`) in the columns.- the metric in the cells of the table: Here, we chose to report the _mean_ of the `survived` column in each cell.The resulting pivot table is just stored in an ordinary `DataFrame`; `pandas` does not have a special data structure for pivot tables.Notice how we explicitly specified an aggregation function `aggfunc`. That's because in the original `DataFrame` (`titanic_df`), there were many passengers with the same values for all three dimensions, so each cell of this pivot table actually represents many passengers. In order to summarize all of these passengers by a single value, we have to aggregate the values. The mean is not the only aggregation function we could have used; we could have also calculated the sum, to obtain the _number_ of survivors. ###Code titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.sum ) ###Output _____no_output_____ ###Markdown If the data is in data cube form (i.e., in a pivot table), it can be converted to tabular form by simply stacking the columns, one on top of the other. In `pandas`, this can be done using the `.stack()` function: ###Code survivors_cube.stack(["adult", "pclass"]) ###Output _____no_output_____ ###Markdown Compare the above result with `survivors_table`.Likewise, we can convert a `pandas` object in tabular form to data cube form by _unstacking_ the index, assuming that all of the dimensions are already in the index. ###Code survivors_cube = survivors_table.unstack(["adult", "pclass"]) survivors_cube ###Output _____no_output_____ ###Markdown Stacking tends to produce longer objects with more rows, while unstacking tends to produce wider objects with more columns. For this reason, tabular form is sometimes referred to as "long form", in contrast to the data cube, which is "wide form." Some Features of Data CubesIt is much easier to quickly compare numbers in data cube form than in tabular form. For example, it is apparent from the preceding pivot table that males had much lower survival rates than females just by comparing the numbers across each row; this fact is more difficult to discern from `survivors_table`.It is also more efficient to store data in a data cube. Recall that `survivors_table` and `survivors_cube` contain the exact same information. However, the data cube is 70% smaller than the tabular version of the same data: ###Code survivors_table.__sizeof__(), survivors_cube.__sizeof__() ###Output _____no_output_____ ###Markdown In many implementations of the data cube, it is also faster to access values in a data cube than in a table. Unfortunately, because `pandas` represents data cubes as two-dimensional pivot tables, it does not enjoy these advantages. ###Code survivors_table.loc["female", True, 1] survivors_cube.loc["female", (True, 1)] ###Output _____no_output_____ ###Markdown Data cubes also play nicely with bar charts in `pandas`. When `.plot.bar()` is called on a `pandas` `DataFrame`, one set of bars will be created for each column. So when we call `.plot.bar()` on a pivot table, we will get one set of bars for females and another set of bars for males. ###Code survivors_cube.plot.bar() ###Output _____no_output_____ ###Markdown Notice that the $x$-axis of the bar graph contains all of the dimensions in the row index. So to get `pclass` on the $x$-axis, we have to create a pivot table where `pclass` is the row index: ###Code titanic_df.pivot_table( index="pclass", columns=["adult", "sex"], values="survived", aggfunc=np.mean ).plot.bar() ###Output _____no_output_____ ###Markdown Finally, many analytical operations are easier to do when the data is in data cube format. ExercisesExercises 1-2 deal with the Tips data set (`../data/tips.csv`). ###Code tips_df = pd.read_csv("../data/tips.csv") tips_df["tip_percent"] = tips_df.tip / tips_df.total_bill tips_df.head() ###Output _____no_output_____ ###Markdown **Exercise 1.** On which day of the week does the waiter serve the largest parties, on average? (You did this exercise in the previous section. See how much easier it is to do using `.groupby()`.) ###Code tips_df.groupby("day")["size"].mean() # The waiter serves the largest parties on average on Sundays. ###Output _____no_output_____ ###Markdown **Exercise 2.** Calculate the average bill by day and time. What day-time combination has the highest average bill? ###Code avg_bill_timeday = tips_df.groupby(["day", "time"]).total_bill.mean() avg_bill_timeday ###Output _____no_output_____ ###Markdown **Answer Here:** The highest average bill is on Sundays at dinner time. **Exercise 3.** Extract the average bill for Friday lunch from the result of Exercise 2. ###Code avg_bill_timeday.loc[("Fri", "Lunch")] ###Output _____no_output_____ ###Markdown **Exercise 4.** Use `.groupby()` to make a visualization comparing the distribution of tip percentages left by males and females. How do they compare? ###Code tips_df.groupby("sex").tip_percent.plot.hist(alpha=.5, legend=True, density=True) # More women tip around the 20% mark, while men are more spread out. ###Output _____no_output_____ ###Markdown **Exercise 5.** Calculate the average total bill by day, time, and table size. Display the results in a pivot table. ###Code pivot = tips_df.pivot_table( index="size", columns=["time", "day"], values="total_bill", aggfunc=np.mean ) pivot ###Output _____no_output_____ ###Markdown **Exercise 6.** Make a bar chart showing the average total bill by table size, day, and time. (You will have to decide which variable(s) to represent on the $x$-axis and which variable(s) to represent using different colored bars.) Explain your choice below. ###Code pivot.plot.bar() # Putting the size on the x-axis allows there to be less bars in one cluster. ###Output _____no_output_____ ###Markdown Exercises 3-4 deal with the Ames Housing data set (`../data/ames.tsv`). For more information about the variables in this data set, please refer to the [data documentation](https://ww2.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt). ###Code df_ames = pd.read_csv("../data/ames.tsv", sep='\t') display(df_ames.head()) ###Output _____no_output_____ ###Markdown **Exercise 7.** Calculate the average house price by neighborhood and building type, and store it in data cube form. Use the data cube to determine the neighborhood with the most expensive single-family homes. ###Code avg_price_cube = df_ames.pivot_table( index="Neighborhood", columns="Bldg Type", values="SalePrice", aggfunc=np.mean ) avg_price_cube["1Fam"].max() # $400,546.04 avg_price_cube ###Output _____no_output_____ ###Markdown Lab 04: Group By, Pivot Tables, and Data CubesThis lab is presented with some revisions from [Dennis Sun at Cal Poly](https://web.calpoly.edu/~dsun09/index.html) and his [Data301 Course](http://users.csc.calpoly.edu/~dsun09/data301/lectures.html) When you have filled out all the questions, submit via [Tulane Canvas](https://tulane.instructure.com/) ###Code %matplotlib inline import numpy as np import pandas as pd titanic_df = pd.read_csv("../data/titanic.csv") ###Output _____no_output_____ ###Markdown In the previous section, we discussed how to restrict our analysis to a particular subset of observations using boolean masks. So, for example, if we wanted to calculate the survival rate for passengers in third class, we would write: ###Code titanic_df[titanic_df.pclass == 3].survived.mean() ###Output _____no_output_____ ###Markdown But what if we wanted to calculate the survival rate by class? We could slice the data set three times, once for each class: ###Code (titanic_df[titanic_df.pclass == 1]['survived'].mean(), titanic_df[titanic_df.pclass == 2]['survived'].mean(), titanic_df[titanic_df.pclass == 3]['survived'].mean()) ###Output _____no_output_____ ###Markdown But this code is inefficient and repetitive. It also does not generalize well to variables with hundreds of possible categories. The problem of calculating the survival rate by class is an example of a problem that can be solved using the **split-apply-combine strategy**. The key insight here is that many data analyses follow the same basic pattern:- First, a data set is **split** into several subsets based on some variable.- Next, some analysis is **applied** to each subset.- Finally, the results from each analysis are **combined**.The three steps are diagrammed in the figure below:![](../images/split_apply_combine.png) [source](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.08-Aggregation-and-Grouping.ipynb)Applying this strategy to our working example above, we should first _split_ up the Titanic data according to the value of `pclass`, _apply_ `.survived.mean()` to each subset, and finally _combine_ the results into one `Series`.[_Note:_ The term "split-apply-combine" was coined by Hadley Wickham in [a 2011 paper](https://www.jstatsoft.org/article/view/v040i01), but the idea is not new. It should already be familiar to you if you know SQL or MapReduce.] Split-Apply-Combine in `pandas`: the `.groupby()` methodTo implement the split-apply-combine strategy in `pandas`, we use the `.groupby()` method. First, we specify one or more variables to split on in the argument to `.groupby()`. Then, we specify our analysis as usual. Pandas will handle splitting the data, applying the analysis to each subset, and combining the results at the end. ###Code titanic_df.groupby("pclass").survived.mean() ###Output _____no_output_____ ###Markdown Compare this line of code with the code to calculate the overall survival rate:`titanic_df.survived.mean()`.The only difference is `.groupby("pclass")`. This turns a `DataFrame` into a `DataFrameGroupBy` object, which behaves like a `DataFrame`, except that any analysis that we specify will be applied to subsets of the `DataFrame` instead of the whole `DataFrame`. You can even make visualizations with `.groupby()`! To plot the age distribution of the survivors and non-survivors, we can group by the `survived` variable and then ask for a histogram of `age`. Behind the scenes, `pandas` will do this once for the survivors and again for the non-survivors and then combine them into one histogram. ###Code titanic_df.groupby("survived").age.plot.hist(alpha=.5, density=True, legend=True) ###Output _____no_output_____ ###Markdown It is also possible to group by more than one variable. Simply pass in a list of variable names to `.groupby()`. For example, the following code calculates the survival rate by class and sex: ###Code survival_rates = titanic_df.groupby(["pclass", "sex"])["survived"].mean() survival_rates ###Output _____no_output_____ ###Markdown It's clear that survival rates on the Titanic varied drastically by class and by sex.Notice that when we use `.groupby()`, the resulting index is whatever variable(s) we grouped by. Since we grouped by two variables, this index actually has two levels. An index with more than one level is called a `MultiIndex` in `pandas`. To access a particular row in a `DataFrame` that is indexed by a `MultiIndex`, we pass in a tuple of the values we want from each level.So, for example, to get female passengers in 2nd class, we would do: ###Code survival_rates.loc[(2, "female")] ###Output _____no_output_____ ###Markdown If we pass in fewer values than there are levels in the index, `pandas` will return everything from the remaining levels. ###Code survival_rates.loc[2] survival_rates.loc[:, 'female'] ###Output _____no_output_____ ###Markdown Note that some times the above won't work depending on how the indicies are setup. It may be eaiser to use the [.xs method sometimes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.xs.html). ###Code survival_rates.xs('female', level=1) ###Output _____no_output_____ ###Markdown Pivot Tables and The Data Cube ###Code titanic_df["adult"] = (titanic_df["age"] >= 18) ###Output _____no_output_____ ###Markdown In Section 2.2, we learned to split a `pandas` `DataFrame` and apply the same analysis to each of the resulting, smaller `DataFrame`s. For example, the following code calculates the proportion of Titanic passengers of each sex, age group, and class who survived: ###Code survivors_table = (titanic_df. groupby(["sex", "adult", "pclass"]). survived. mean()) survivors_table.to_frame() ###Output _____no_output_____ ###Markdown Here's another way to think about these results: there are three dimensions, `sex`, `adult`, and `pclass`, and we calculate a metric, the proportion of survivors, for each of the $2 \times 2 \times 3 = 12$ possible combinations of the dimension values.There are many equivalent ways to represent these results. The representation above is essentially the _tabular form_ that we learned in Chapter 1. Each row represents an observation (i.e., a distinct combination of sex, adult, and class) and each column a variable (i.e., the proportion of passengers who survived). Another way to represent these results is using a **data cube**. In a data cube, the possible values of each dimension are laid out along one dimension of a cube, as shown below:![](../images/datacube.png)The term "data _cube_" is somewhat of a misnomer, since it does not have to be a cube. First, as we can plainly see in the figure above, the dimensions need not all be the same size; some dimensions may have more values than others. Second, a data cube can have any number of dimensions, so it does not have to be three-dimensional. A data cube with $d$ dimensions is really a $d$-dimensional hypercube. A 2-dimensional hypercube is a square (or rectangle), a 1-dimensional hypercube is a line, and a 0-dimensional hypercube is a point.While it is useful to imagine a data cube as a $d$-dimensional hypercube, it is not practical to display data in a hypercube---at least not when $d > 2$. So a data cube is often printed as a two-dimensional table, with multi-level row indexes and columns to represent the dimensions. This two-dimensional representation of the data cube is called a **pivot table**. Here is the code to produce a pivot table from the raw data: ###Code survivors_cube = titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.mean) survivors_cube ###Output _____no_output_____ ###Markdown To create a pivot table, we had to specify - the row index(es): Here, we chose to include two of the dimensions (`adult`, `sex`) along the rows of the pivot table.- the column(s): Here, we chose to include the one remaining dimension (`pclass`) in the columns.- the metric in the cells of the table: Here, we chose to report the _mean_ of the `survived` column in each cell.The resulting pivot table is just stored in an ordinary `DataFrame`; `pandas` does not have a special data structure for pivot tables.Notice how we explicitly specified an aggregation function `aggfunc`. That's because in the original `DataFrame` (`titanic_df`), there were many passengers with the same values for all three dimensions, so each cell of this pivot table actually represents many passengers. In order to summarize all of these passengers by a single value, we have to aggregate the values. The mean is not the only aggregation function we could have used; we could have also calculated the sum, to obtain the _number_ of survivors. ###Code titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.sum ) ###Output _____no_output_____ ###Markdown If the data is in data cube form (i.e., in a pivot table), it can be converted to tabular form by simply stacking the columns, one on top of the other. In `pandas`, this can be done using the `.stack()` function: ###Code survivors_cube.stack(["adult", "pclass"]) ###Output _____no_output_____ ###Markdown Compare the above result with `survivors_table`.Likewise, we can convert a `pandas` object in tabular form to data cube form by _unstacking_ the index, assuming that all of the dimensions are already in the index. ###Code survivors_cube = survivors_table.unstack(["adult", "pclass"]) survivors_cube ###Output _____no_output_____ ###Markdown Stacking tends to produce longer objects with more rows, while unstacking tends to produce wider objects with more columns. For this reason, tabular form is sometimes referred to as "long form", in contrast to the data cube, which is "wide form." Some Features of Data CubesIt is much easier to quickly compare numbers in data cube form than in tabular form. For example, it is apparent from the preceding pivot table that males had much lower survival rates than females just by comparing the numbers across each row; this fact is more difficult to discern from `survivors_table`.It is also more efficient to store data in a data cube. Recall that `survivors_table` and `survivors_cube` contain the exact same information. However, the data cube is 70% smaller than the tabular version of the same data: ###Code survivors_table.__sizeof__(), survivors_cube.__sizeof__() ###Output _____no_output_____ ###Markdown In many implementations of the data cube, it is also faster to access values in a data cube than in a table. Unfortunately, because `pandas` represents data cubes as two-dimensional pivot tables, it does not enjoy these advantages. ###Code survivors_table.loc["female", True, 1] survivors_cube.loc["female", (True, 1)] ###Output _____no_output_____ ###Markdown Data cubes also play nicely with bar charts in `pandas`. When `.plot.bar()` is called on a `pandas` `DataFrame`, one set of bars will be created for each column. So when we call `.plot.bar()` on a pivot table, we will get one set of bars for females and another set of bars for males. ###Code survivors_cube.plot.bar() ###Output _____no_output_____ ###Markdown Notice that the $x$-axis of the bar graph contains all of the dimensions in the row index. So to get `pclass` on the $x$-axis, we have to create a pivot table where `pclass` is the row index: ###Code titanic_df.pivot_table( index="pclass", columns=["adult", "sex"], values="survived", aggfunc=np.mean ).plot.bar() ###Output _____no_output_____ ###Markdown Finally, many analytical operations are easier to do when the data is in data cube format. ExercisesExercises 1-2 deal with the Tips data set (`../data/tips.csv`). ###Code tips_df = pd.read_csv("../data/tips.csv") tips_df["tip_percent"] = tips_df.tip / tips_df.total_bill tips_df.head() ###Output _____no_output_____ ###Markdown **Exercise 1.** On which day of the week does the waiter serve the largest parties, on average? (You did this exercise in the previous section. See how much easier it is to do using `.groupby()`.) ###Code tips_df.rename(columns={"size":"party"}, inplace=True) tips_df.groupby("day").party.mean() # according to this output, the waiter serves the largest parties on Sunday. ###Output _____no_output_____ ###Markdown **Exercise 2.** Calculate the average bill by day and time. What day-time combination has the highest average bill? ###Code day_time_average = tips_df.groupby(["day", "time"])["total_bill"].mean() day_time_average ###Output _____no_output_____ ###Markdown **Answer Here: The combination with the highest average bill is Sunday dinner.** **Exercise 3.** Extract the average bill for Friday lunch from the result of Exercise 2. ###Code day_time_average.loc[("Fri", "Lunch")] ###Output _____no_output_____ ###Markdown **Exercise 4.** Use `.groupby()` to make a visualization comparing the distribution of tip percentages left by males and females. How do they compare? ###Code tips_df.groupby("sex").tip_percent.plot.hist(alpha=.5, density=True, legend=True) ###Output _____no_output_____ ###Markdown **Exercise 5.** Calculate the average total bill by day, time, and table size. Display the results in a pivot table. ###Code bill_cube = tips_df.pivot_table( index="party", columns=["day", "time"], values="total_bill", aggfunc=np.mean ) bill_cube ###Output _____no_output_____ ###Markdown **Exercise 6.** Make a bar chart showing the average total bill by table size, day, and time. (You will have to decide which variable(s) to represent on the $x$-axis and which variable(s) to represent using different colored bars.) Explain your choice below. ###Code tips_df.pivot_table( index="party", columns=["time", "day"], values="total_bill", aggfunc=np.mean ).plot.bar() ###Output _____no_output_____ ###Markdown **Answer Here: After trying each variable as the index, it turned out that "party" was the best one because it required fewer actual bars on the graph in order to represent the data.** Exercises 3-4 deal with the Ames Housing data set (`../data/ames.tsv`). For more information about the variables in this data set, please refer to the [data documentation](https://ww2.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt). ###Code df_ames = pd.read_csv("../data/ames.tsv", sep='\t') display(df_ames.head()) ###Output _____no_output_____ ###Markdown **Exercise 7.** Calculate the average house price by neighborhood and building type, and store it in data cube form. Use the data cube to determine the neighborhood with the most expensive single-family homes. ###Code house_cube = df_ames.pivot_table( index="Neighborhood", columns=["Bldg Type"], values="SalePrice", aggfunc=np.mean ) house_cube ###Output _____no_output_____ ###Markdown Lab 04: Group By, Pivot Tables, and Data CubesThis lab is presented with some revisions from [Dennis Sun at Cal Poly](https://web.calpoly.edu/~dsun09/index.html) and his [Data301 Course](http://users.csc.calpoly.edu/~dsun09/data301/lectures.html) When you have filled out all the questions, submit via [Tulane Canvas](https://tulane.instructure.com/) ###Code %matplotlib inline import numpy as np import pandas as pd titanic_df = pd.read_csv("../data/titanic.csv") ###Output _____no_output_____ ###Markdown In the previous section, we discussed how to restrict our analysis to a particular subset of observations using boolean masks. So, for example, if we wanted to calculate the survival rate for passengers in third class, we would write: ###Code titanic_df[titanic_df.pclass == 3].survived.mean() ###Output _____no_output_____ ###Markdown But what if we wanted to calculate the survival rate by class? We could slice the data set three times, once for each class: ###Code (titanic_df[titanic_df.pclass == 1]['survived'].mean(), titanic_df[titanic_df.pclass == 2]['survived'].mean(), titanic_df[titanic_df.pclass == 3]['survived'].mean()) ###Output _____no_output_____ ###Markdown But this code is inefficient and repetitive. It also does not generalize well to variables with hundreds of possible categories. The problem of calculating the survival rate by class is an example of a problem that can be solved using the **split-apply-combine strategy**. The key insight here is that many data analyses follow the same basic pattern:- First, a data set is **split** into several subsets based on some variable.- Next, some analysis is **applied** to each subset.- Finally, the results from each analysis are **combined**.The three steps are diagrammed in the figure below:![](../images/split_apply_combine.png) [source](https://github.com/jakevdp/PythonDataScienceHandbook/blob/master/notebooks/03.08-Aggregation-and-Grouping.ipynb)Applying this strategy to our working example above, we should first _split_ up the Titanic data according to the value of `pclass`, _apply_ `.survived.mean()` to each subset, and finally _combine_ the results into one `Series`.[_Note:_ The term "split-apply-combine" was coined by Hadley Wickham in [a 2011 paper](https://www.jstatsoft.org/article/view/v040i01), but the idea is not new. It should already be familiar to you if you know SQL or MapReduce.] Split-Apply-Combine in `pandas`: the `.groupby()` methodTo implement the split-apply-combine strategy in `pandas`, we use the `.groupby()` method. First, we specify one or more variables to split on in the argument to `.groupby()`. Then, we specify our analysis as usual. Pandas will handle splitting the data, applying the analysis to each subset, and combining the results at the end. ###Code titanic_df.groupby("pclass").survived.mean() ###Output _____no_output_____ ###Markdown Compare this line of code with the code to calculate the overall survival rate:`titanic_df.survived.mean()`.The only difference is `.groupby("pclass")`. This turns a `DataFrame` into a `DataFrameGroupBy` object, which behaves like a `DataFrame`, except that any analysis that we specify will be applied to subsets of the `DataFrame` instead of the whole `DataFrame`. You can even make visualizations with `.groupby()`! To plot the age distribution of the survivors and non-survivors, we can group by the `survived` variable and then ask for a histogram of `age`. Behind the scenes, `pandas` will do this once for the survivors and again for the non-survivors and then combine them into one histogram. ###Code titanic_df.groupby("survived").age.plot.hist(alpha=.5, density=True, legend=True) ###Output _____no_output_____ ###Markdown It is also possible to group by more than one variable. Simply pass in a list of variable names to `.groupby()`. For example, the following code calculates the survival rate by class and sex: ###Code survival_rates = titanic_df.groupby(["pclass", "sex"])["survived"].mean() survival_rates ###Output _____no_output_____ ###Markdown It's clear that survival rates on the Titanic varied drastically by class and by sex.Notice that when we use `.groupby()`, the resulting index is whatever variable(s) we grouped by. Since we grouped by two variables, this index actually has two levels. An index with more than one level is called a `MultiIndex` in `pandas`. To access a particular row in a `DataFrame` that is indexed by a `MultiIndex`, we pass in a tuple of the values we want from each level.So, for example, to get female passengers in 2nd class, we would do: ###Code survival_rates.loc[(2, "female")] ###Output _____no_output_____ ###Markdown If we pass in fewer values than there are levels in the index, `pandas` will return everything from the remaining levels. ###Code survival_rates.loc[2] survival_rates.loc[:, 'female'] ###Output _____no_output_____ ###Markdown Note that some times the above won't work depending on how the indicies are setup. It may be eaiser to use the [.xs method sometimes](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.xs.html). ###Code survival_rates.xs('female', level=1) ###Output _____no_output_____ ###Markdown Pivot Tables and The Data Cube ###Code titanic_df["adult"] = (titanic_df["age"] >= 18) ###Output _____no_output_____ ###Markdown In Section 2.2, we learned to split a `pandas` `DataFrame` and apply the same analysis to each of the resulting, smaller `DataFrame`s. For example, the following code calculates the proportion of Titanic passengers of each sex, age group, and class who survived: ###Code survivors_table = (titanic_df. groupby(["sex", "adult", "pclass"]). survived. mean()) survivors_table.to_frame() ###Output _____no_output_____ ###Markdown Here's another way to think about these results: there are three dimensions, `sex`, `adult`, and `pclass`, and we calculate a metric, the proportion of survivors, for each of the $2 \times 2 \times 3 = 12$ possible combinations of the dimension values.There are many equivalent ways to represent these results. The representation above is essentially the _tabular form_ that we learned in Chapter 1. Each row represents an observation (i.e., a distinct combination of sex, adult, and class) and each column a variable (i.e., the proportion of passengers who survived). Another way to represent these results is using a **data cube**. In a data cube, the possible values of each dimension are laid out along one dimension of a cube, as shown below:![](../images/datacube.png)The term "data _cube_" is somewhat of a misnomer, since it does not have to be a cube. First, as we can plainly see in the figure above, the dimensions need not all be the same size; some dimensions may have more values than others. Second, a data cube can have any number of dimensions, so it does not have to be three-dimensional. A data cube with $d$ dimensions is really a $d$-dimensional hypercube. A 2-dimensional hypercube is a square (or rectangle), a 1-dimensional hypercube is a line, and a 0-dimensional hypercube is a point.While it is useful to imagine a data cube as a $d$-dimensional hypercube, it is not practical to display data in a hypercube---at least not when $d > 2$. So a data cube is often printed as a two-dimensional table, with multi-level row indexes and columns to represent the dimensions. This two-dimensional representation of the data cube is called a **pivot table**. Here is the code to produce a pivot table from the raw data: ###Code survivors_cube = titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.mean) survivors_cube ###Output _____no_output_____ ###Markdown To create a pivot table, we had to specify - the row index(es): Here, we chose to include two of the dimensions (`adult`, `sex`) along the rows of the pivot table.- the column(s): Here, we chose to include the one remaining dimension (`pclass`) in the columns.- the metric in the cells of the table: Here, we chose to report the _mean_ of the `survived` column in each cell.The resulting pivot table is just stored in an ordinary `DataFrame`; `pandas` does not have a special data structure for pivot tables.Notice how we explicitly specified an aggregation function `aggfunc`. That's because in the original `DataFrame` (`titanic_df`), there were many passengers with the same values for all three dimensions, so each cell of this pivot table actually represents many passengers. In order to summarize all of these passengers by a single value, we have to aggregate the values. The mean is not the only aggregation function we could have used; we could have also calculated the sum, to obtain the _number_ of survivors. ###Code titanic_df.pivot_table( index="sex", columns=["adult", "pclass"], values="survived", aggfunc=np.sum ) ###Output _____no_output_____ ###Markdown If the data is in data cube form (i.e., in a pivot table), it can be converted to tabular form by simply stacking the columns, one on top of the other. In `pandas`, this can be done using the `.stack()` function: ###Code survivors_cube.stack(["adult", "pclass"]) ###Output _____no_output_____ ###Markdown Compare the above result with `survivors_table`.Likewise, we can convert a `pandas` object in tabular form to data cube form by _unstacking_ the index, assuming that all of the dimensions are already in the index. ###Code survivors_cube = survivors_table.unstack(["adult", "pclass"]) survivors_cube ###Output _____no_output_____ ###Markdown Stacking tends to produce longer objects with more rows, while unstacking tends to produce wider objects with more columns. For this reason, tabular form is sometimes referred to as "long form", in contrast to the data cube, which is "wide form." Some Features of Data CubesIt is much easier to quickly compare numbers in data cube form than in tabular form. For example, it is apparent from the preceding pivot table that males had much lower survival rates than females just by comparing the numbers across each row; this fact is more difficult to discern from `survivors_table`.It is also more efficient to store data in a data cube. Recall that `survivors_table` and `survivors_cube` contain the exact same information. However, the data cube is 70% smaller than the tabular version of the same data: ###Code survivors_table.__sizeof__(), survivors_cube.__sizeof__() ###Output _____no_output_____ ###Markdown In many implementations of the data cube, it is also faster to access values in a data cube than in a table. Unfortunately, because `pandas` represents data cubes as two-dimensional pivot tables, it does not enjoy these advantages. ###Code survivors_table.loc["female", True, 1] survivors_cube.loc["female", (True, 1)] ###Output _____no_output_____ ###Markdown Data cubes also play nicely with bar charts in `pandas`. When `.plot.bar()` is called on a `pandas` `DataFrame`, one set of bars will be created for each column. So when we call `.plot.bar()` on a pivot table, we will get one set of bars for females and another set of bars for males. ###Code survivors_cube.plot.bar() ###Output _____no_output_____ ###Markdown Notice that the $x$-axis of the bar graph contains all of the dimensions in the row index. So to get `pclass` on the $x$-axis, we have to create a pivot table where `pclass` is the row index: ###Code titanic_df.pivot_table( index="pclass", columns=["adult", "sex"], values="survived", aggfunc=np.mean ).plot.bar() ###Output _____no_output_____ ###Markdown Finally, many analytical operations are easier to do when the data is in data cube format. ExercisesExercises 1-2 deal with the Tips data set (`../data/tips.csv`). ###Code tips_df = pd.read_csv("../data/tips.csv") tips_df["tip_percent"] = tips_df.tip / tips_df.total_bill tips_df.head() ###Output _____no_output_____ ###Markdown **Exercise 1.** On which day of the week does the waiter serve the largest parties, on average? (You did this exercise in the previous section. See how much easier it is to do using `.groupby()`.) ###Code # YOUR CODE HERE tips_df.groupby(['day'])['size'].mean() #serves largest parties on Sundays ###Output _____no_output_____ ###Markdown **Exercise 2.** Calculate the average bill by day and time. What day-time combination has the highest average bill? ###Code # YOUR CODE HERE avgBill_byDay_byTime = tips_df.groupby(['day','time']).total_bill.mean() avgBill_byDay_byTime #Sunday dinners have highest average bill. ###Output _____no_output_____ ###Markdown **Answer Here:** **Exercise 3.** Extract the average bill for Friday lunch from the result of Exercise 2. ###Code avgBill_byDay_byTime.loc['Fri','Lunch'] ###Output _____no_output_____ ###Markdown **Exercise 4.** Use `.groupby()` to make a visualization comparing the distribution of tip percentages left by males and females. How do they compare? ###Code # YOUR CODE HERE tips_df.groupby(['sex']).tip_percent.plot.hist(alpha=0.5,bins=50,legend=True) #The tip avg. is roughly the same for both sexes, but Males seem to be paying the bill more often. ###Output _____no_output_____ ###Markdown **Exercise 5.** Calculate the average total bill by day, time, and table size. Display the results in a pivot table. ###Code # TYPE YOUR CODE HERE. tips_df.pivot_table(index=['size'],columns=['day','time'],values='total_bill') ###Output _____no_output_____ ###Markdown **Exercise 6.** Make a bar chart showing the average total bill by table size, day, and time. (You will have to decide which variable(s) to represent on the $x$-axis and which variable(s) to represent using different colored bars.) Explain your choice below. ###Code # TYPE YOUR CODE HERE. tips_df.pivot_table(index=['size'],columns=['day','time'],values='total_bill').plot.bar() #I chose to make the index/ x variable the size as this had the most variation and would result in a lot more hard to consume #lines if it had been a dependent variable ###Output _____no_output_____ ###Markdown **Answer Here:** Exercises 3-4 deal with the Ames Housing data set (`../data/ames.tsv`). For more information about the variables in this data set, please refer to the [data documentation](https://ww2.amstat.org/publications/jse/v19n3/decock/DataDocumentation.txt). ###Code df_ames = pd.read_csv("../data/ames.tsv", sep='\t') display(df_ames.head()) df_ames.dtypes ###Output _____no_output_____ ###Markdown **Exercise 7.** Calculate the average house price by neighborhood and building type, and store it in data cube form. Use the data cube to determine the neighborhood with the most expensive single-family homes. ###Code # TYPE YOUR CODE HERE. df_ames.pivot_table( index=["Neighborhood"],columns=["Bldg Type"], values="SalePrice", aggfunc=np.mean ) ###Output _____no_output_____
notebooks/GTO_integrals/.ipynb_checkpoints/GTO_1D_P-checkpoint.ipynb
###Markdown Parameters and two Gaussians ###Code a, b, c, a1, a2 = symbols('a b c a1 a2', positive=True, real=True) g1=x*exp(-a1*x**2) g2=x*exp(-a2*x**2) g1, g2 ###Output _____no_output_____ ###Markdown Normalization constant ###Code N=integrate(g1*g1, (x, -oo, oo)) N 1/sqrt(N) printing.sstrrepr(1/sqrt(N)) ###Output _____no_output_____ ###Markdown Overlap integral S ###Code S=integrate(g1*g2, (x, -oo, oo)) S S.simplify() printing.sstrrepr(S.simplify()) ###Output _____no_output_____ ###Markdown Kinetic energy $T = -\frac{\hbar^2}{2m} \frac{d^2}{dx^2} = \frac{1}{2m}\left(\frac{\hbar}{i}\frac{d}{dx} \right)^2$ ###Code d1=diff(g1,x) d2=diff(g2,x) d1, d2 T = 1/2 * integrate(d1*d2, (x, -oo, oo)) #T=T.simplify() #T=T.factor() T.factor() printing.sstrrepr(T.factor()) ###Output _____no_output_____ ###Markdown Potential $V(x) = (ax^2 - b)e^{-cx^2}$ ###Code v=(a*x**2-b)*exp(-c*x**2) v V = integrate(g1*v*g2, (x, -oo, oo)) V V.factor() printing.sstrrepr(V.factor()) ###Output _____no_output_____
Case_Studies_Notebooks/greenhouse-gas-emissions-by-sector.ipynb
###Markdown ![alt text](https://github.com/callysto/callysto-sample-notebooks/blob/master/notebooks/images/Callysto_Notebook-Banner_Top_06.06.18.jpg?raw=true) Case Study: Greenhouse gas emissions, by sector (1990 - 2008)Greenhouse gas emissions (carbon dioxide equivalents), by industries and households. Industry aggregation is at the L-level of the input-output accounts of Statistics Canada.Geography: CanadaTable ID 38100111Sourcehttps://open.canada.ca/data/en/dataset/2d60830b-ee2e-4fb5-8c6c-f241f6bf76ba ###Code %run -i ./stats_can/helpers.py %run -i ./stats_can/scwds.py %run -i ./stats_can/sc.py from ipywidgets import widgets, VBox, HBox, Button from ipywidgets import Button, Layout, widgets from IPython.display import display, Javascript, Markdown, HTML import datetime as dt import pandas as pd import json import datetime from tqdm import tnrange, tqdm_notebook from time import sleep pd.set_option('display.max_rows', 500) pd.set_option('display.max_columns', 500) style = {'description_width': 'initial'} # # Download data # DATA SET PRODUCT ID for internal use only. productId = '38100111' download_tables(str(productId)) df_fullDATA = zip_table_to_dataframe(productId) # Clean up full dataset - remove internal use columns cols = list(df_fullDATA.loc[:,'REF_DATE':'UOM'])+ ['SCALAR_FACTOR'] + ['VALUE'] df_less = df_fullDATA[cols] df_less2 = df_less.drop(["DGUID"], axis=1) # Display only first five entries df_less2.head() # Fancy user interface to explore datasets def rerun_cell( b ): display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1,\ IPython.notebook.get_selected_index()+3)')) def run_4cell( b ): display(Javascript('IPython.notebook.execute_cell_range(IPython.notebook.get_selected_index()+1,\ IPython.notebook.get_selected_index()+5)')) style = {'description_width': 'initial'} all_the_widgets = [widgets.Dropdown( value = df_less2["Sector"].tolist()[0], options = df_less2["Sector"].unique(), description ='Sector:', style = style, disabled=False)] # Button widget CD_button = widgets.Button( button_style='success', description="Preview Dataset", layout=Layout(width='15%', height='30px'), style=style ) # Connect widget to function - run subsequent cells CD_button.on_click( rerun_cell ) # user menu using categories found above tab3 = VBox(children=[HBox(children=all_the_widgets[0:3]), CD_button]) tab = widgets.Tab(children=[tab3]) tab.set_title(0, 'Load Data Subset') display(tab) sub_df = df_less2[(df_less2["Sector"]==all_the_widgets[0].value)] # Time to plot! import matplotlib.pyplot as plt from pandas.plotting import register_matplotlib_converters from matplotlib.pyplot import figure register_matplotlib_converters() %matplotlib inline # Actual plot of time series figure(num=None, figsize=(8, 6), dpi=80, facecolor='w', edgecolor='k') # Get start and end date, plot value found under "VALUE" command plt.plot(sub_df["REF_DATE"],sub_df["VALUE"],'b--',label='Value') plt.xlabel('Year', fontsize=15) plt.ylabel('Greenhouse Gas Emissions (kilotonnes)',fontsize=15) # Title changes depending on the subcategory explored plt.title(str(all_the_widgets[0].value),fontsize=20) plt.xticks(rotation=90) plt.grid(True) #load "cufflinks" library under short name "cf" import cufflinks as cf #command to display graphics correctly in Jupyter notebook cf.go_offline() def enable_plotly_in_cell(): import IPython from plotly.offline import init_notebook_mode display(IPython.core.display.HTML(''' <script src="/static/components/requirejs/require.js"></script> ''')) init_notebook_mode(connected=False) get_ipython().events.register('pre_run_cell', enable_plotly_in_cell) # pivot table to display total greenhouse gas emissions, by sector and year all_data = pd.pivot_table(df_less2[df_less2["Sector"]!="Total, all sectors"], \ values='VALUE', index=["REF_DATE"],columns=["Sector"]) ###Output _____no_output_____ ###Markdown Total Greenhouse Gas Emissions by Sector, by year (1990 - 2008) ###Code all_data # Plot title="Boxplot of Greenhouse Gas Emissions by Sector (1990 - 2008)" print(title) layout = dict(yaxis=dict(side='left')) my_fig = all_data.iplot(asFigure=True,kind='box',layout=layout) my_fig.layout.legend=dict(x=1.0, y=1.8) my_fig.iplot(filename='line-example.html') # Use pivot command to get average all_data2 = pd.pivot_table(df_less2[df_less2["Sector"]!="Total, all sectors"], \ values='VALUE', index=["Sector"], aggfunc=np.average) ###Output _____no_output_____ ###Markdown Average Greenhouse Gas Emissions by Sector (1990 - 2008) ###Code all_data2 sorted_sector = all_data2.sort_values(by='VALUE', ascending=False) sorted_sector = sorted_sector.reset_index("Sector") sorted_sector.iloc[0:20].iplot(kind="pie",values="VALUE",labels="Sector",title="Average Greenhouse Emissions by Sector") all_data.iplot(labels='Sector',legend=False,title="Time Series, Yearly Greenhouse Gas Emissions, by Sector (1990-2008)",xaxis_title="Year",yaxis_title="Greenhouse Gas Emissions (kilotonnes)") ###Output _____no_output_____
CollaborativeFiltering.ipynb
###Markdown Collaborative FilteringUsing your experience from analyzing Black Scholes, profile and analyze the composability methods used for the Collaborative Filtering algorithm ###Code #!/usr/bin/env python # Copyright (c) 2017, Intel Corporation # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # * Redistributions of source code must retain the above copyright notice, # this list of conditions and the following disclaimer. # * Redistributions in binary form must reproduce the above copyright # notice, this list of conditions and the following disclaimer in the # documentation and/or other materials provided with the distribution. # * Neither the name of Intel Corporation nor the names of its contributors # may be used to endorse or promote products derived from this software # without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import sys import time import timeit import numpy as np import dask.array as da from dask.diagnostics import ProgressBar import random import argparse import numba number_of_users = 40000 features = 900 chunk = 1000 try: import numpy.random_intel as rnd numpy_ver="intel" except: import numpy.random as rnd numpy_ver="std" print("Generating fake similarity") #topk = da.random.normal(size=(features, features), chunks=(features, features)).compute() topk = rnd.normal(size=(features, features)) t = da.from_array(topk, chunks=(features, features)) print("Generating fake user data") #users = da.random.normal(size=(features, number_of_users), chunks=(features, chunk)).compute() #users = rnd.normal(size=(features, number_of_users)) users = np.zeros(shape=(features, number_of_users), dtype=np.float64) objects_idx = np.arange(features) rated = rnd.randint(0, 10, size=number_of_users, dtype=np.int32) for user in range(number_of_users): rnd.shuffle(objects_idx) items_rated = rated[user] users[objects_idx[:items_rated], user] = rnd.randint(1, 5, size=items_rated, dtype=np.int32) u = da.from_array(users, chunks=(features, chunk), name=False) def run_numpy(): x = topk.dot(users) x = np.where(users>0, 0, x) return x.argmax(axis=0) def run_dask(): x = t.dot(u) x = da.where(u>0, 0, x) r = x.argmax(axis=0) return r.compute() @numba.guvectorize('(f8[:],f8[:],i4[:])', '(n),(n)->()', nopython=True, target="parallel") def recommendation(x, u, r): maxx = x[0] r[0] = -1 for i in range(x.shape[0]): if u[i] == 0 and maxx < x[i]: # if user has no rank for the item maxx = x[i] r[0] = i def run_numpy_numba(): x = topk.dot(users) return recommendation(x, users) def run_dask_numba(): x = t.dot(u) r = da.map_blocks(recommendation, x, u, drop_axis=0) return r.compute() ###Output _____no_output_____ ###Markdown Run the standard NumPy version with timeit, cProfile, line_profiler ###Code import cProfile %load_ext line_profiler ###Output _____no_output_____ ###Markdown ![ebooks.jpg](attachment:ebooks.jpg) Kindle eBook Recommendation System: Content-BasedAuthors: Daniel Burdeno --- Contents- Overview- Business Understanding - Collaborative Filtering - Imports - Surprise Data & Split - Baselines - SVD & Grid Searches - NMF & Grid Searches - SVD++ & Grid Searches - Model Evaluation - Recommendation Function - Building - Function - Evaulation - Conclusion Overview > This project aims to build a two system approach to recommending Kindle eBook's to both existing reviewers and new users looking to find similar books. For existing reviewers a collaborative approach is taken by comparing similar reviewer profiles based on exisitng ratings. A content-based approach is taken in order to recommend books based on similar review text data and can be used by anyone. Business Understanding > Currently eBooks are outsold by print books at about a 4 to 1 ratio. In 2020 there was 191 million eBooks sold. While Amazon holds over 70% of the market in eBooks via their kindle platform there is a large untapped potential for increasing eBook sales and promoting the use of eReaders compared to print. By utilzing quality recommendation systems Amazon can boost the interest and useablity of eBooks thus improving upon this market. The kindle platform and eBooks in general are incredidly accesibile for anyone with a tablet, smartphone, computer, or eReader. These eBooks can be immediatley purchased from a multitude of platforms and are able to read within minutes of purchase, which is far superior to obtaining a print book. This notion of real time purchase and useablily plays greater into Amazon's one click purchase philsophy.> The kindle store is also full of cheap reads, with some eBooks even being free with certain subsripctions like prime and unlimited. A broad span of genres are available ranging from things like self-help books, cookbooks, and photography books to more traditional literature genres like Science Fiction & Fantasy and Romance novels. A final huge plus for the advocacy of eBooks is the ease in which readers can rate and reviews books they have either just read or already read. This can all be done via the same platform used to access and read the eBook (aka kindle). Ultimately this plays into the collection of more review and rating data wich in turn can attribute to better performing recommendations for each indiviudal user. A quality recommendation system can thus create a positive feedback loop that not only enhances itself but promotoes the increase in eBook sales across the board. Collaborative Filtering > The Collaborative Filtering system was based on reviewer rating data used to create 'user profiles' which could then be compared with one another. Similar users, based on prior eBook ratings, were then used to return the top recommended books by predicting an estimated rating. This approach is known as user to user. I iterated through several model algorithms and grid searchs before settling on my final model (SVD GS3). This model achieved my lowest Root Mean Squared Error, coming in at 0.782 rating (RMSE). > I heavily utlized the Surprise library within python in order to produce recommendation models. This package utilizes common methods found within sklearn and adapts them for use in building recommendation models. Please see the [documentation](https://surprise.readthedocs.io/en/stable/) and [github](https://github.com/NicolasHug/Surprise) for more information. Imports > The main library used to produce a collaborative filtering model was Surprise. Within this package there are methods of cross validating a model, performing grid searchs, and a plethora of algorithms used for recommendation systems. The Surprise syntax is modeled after sklearn and thus should look familar to most Data Scienctist. It utlizes methods such as .fit and .predict. It also contains Dataset readers in order to transform data into the appropriate form for use in recommendation systems. I utlized Pickle to save my final model which can then be loaded into the app.py file for ease of use. ###Code import pandas as pd import pickle import matplotlib.pyplot as plt from surprise import Dataset, Reader, accuracy from surprise.model_selection import cross_validate, train_test_split, GridSearchCV from surprise.prediction_algorithms import SVD, SVDpp, NMF, BaselineOnly, NormalPredictor plt.style.use('fast') %matplotlib inline # Read in csv file saved from the DataPrepFinal notebook df_rev5 = pd.read_csv('Data/df_rev5.csv') df_rev5.info() # Sanity check for null values, somehow the saved csv had 6 nulls appear despite removing in data prep df_rev5.isna().sum() # Drop the 6 nulls found df_rev5.dropna(inplace=True) ###Output _____no_output_____ ###Markdown Surprise Data & Split > Surprise has a convenient reader function that can load appropriate data into the correct form for recommendation systems. You can set custom scales based on the rating information within your data (in this case 1-5). Using the load_from_df function you can specify which columns to includes. In order to perform user to user comparsion the data needs to be in the format of User ID(reviewerID) followed by Product ID (asin), followed by rating (overall). In the similar convention to sklearn, Surprise also contains a train_test_split function. ###Code # Instantiate reader the same convention as a sklearn class reader = Reader(rating_scale=(1, 5)) # Load user_data from imported dataframe specifiyng which columns to use user_data = Dataset.load_from_df(df_rev5[['reviewerID', 'asin', 'overall']], reader) # Perform an appropriate split for the recommendation models trainset, testset = train_test_split(user_data, test_size=0.2, random_state=42) # How many users and items are in the trainset print('Number of users: ', trainset.n_users, '\n') print('Number of items: ', trainset.n_items, '\n') ###Output Number of users: 97947 Number of items: 92463 ###Markdown Baselines > Surprise has several baseline models on which comparisons can be made. The normal predictor predicts a random rating based solely on the distribution of the dataset, acting kinda of like a dummy model from sklearn. The baseline only algorithm utlizes only the baseline basis in the dataset to return predictions. In order to evaluate model perform I will use the Root Mean Squared Error (RMSE) metric. This metric best represents how far the predicted rating is from the actual rating thus quanitfing the error made when making new predictions for a user, which will be used to return recommendations. ###Code # Instantiate and fit model baseline = NormalPredictor() baseline.fit(trainset) # Return test predictions for model fit on trainset predictions = baseline.test(testset) # Save RMSE score to variable baseline_normal = accuracy.rmse(predictions) # Instantiate and fit model baseline2 = BaselineOnly() baseline2.fit(trainset) # Return test predictions for model fit on trainset predictions = baseline2.test(testset) # Save RMSE score to variable baseline_only = accuracy.rmse(predictions) ###Output Estimating biases using als... RMSE: 0.8163 ###Markdown SVD & Grid Searches > Following the baseline models I explored the Singular Value Decomposition (SVD) algorithm, popularized by Simon Funk, which is famous for winning the netflix recommendation prize. The Surprise package utilizes Funk's SVD version. It is a matrix factorization-based model meaning it transforms the user-item matrix into latent factor matrices. Regularized squared error is minimized using straightforward stochastic gradient descent. Within SVD there are a number of important hyperparameters that can be tuned including but not limited to regularization and learning rate, as well as the number of factors and epochs to train on. This allows for what can be extensive grid searches. ###Code # Cross validate a basic SVD with no hyperparameter tuning expecting sub-par results svd_basic = SVD(random_state=42) results = cross_validate(svd_basic, user_data, measures=['RMSE'], cv=3, n_jobs = -1, verbose=True) # Fit to trainset and predict on the testset for evaluation svd_basic.fit(trainset) predictions = svd_basic.test(testset) svd_simple = accuracy.rmse(predictions) ###Output RMSE: 0.8048 ###Markdown > The basic SVD performed only slightly better than our baseline only model indicating room for improvement through grid search tuning of hyperparamters. Reducing the number of latent factors will help the model better train on the dataset. Increasing the number of epochs (iterations) of training should also improve the RMSE. I also wanted to check if turning off the biased approach would effect the model (default is True). ###Code # Similar convention to sklearn grid search, I setup a dictionary on the hyperparamters I wanted to tune svd_param_grid = {'n_factors':[20, 40], 'n_epochs': [10, 20], 'biased': [True, False]} # Grid Search with CV is instantiate svd_gs_model = GridSearchCV(SVD,param_grid=svd_param_grid,joblib_verbose=10, n_jobs=-1, cv=3) # Model is fit on data and best_params scored based on RMSE are returned svd_gs_model.fit(user_data) svd_gs_model.best_params['rmse'] # Instantiate SVD using the best found hyperparameters svd_model = SVD(n_factors=20, n_epochs=20, random_state=42) # Fit on trainset and make predictions using testset to return RMSE metric svd_model.fit(trainset) predictions = svd_model.test(testset) svd_gs1 = accuracy.rmse(predictions) ###Output RMSE: 0.7964 ###Markdown > While improvement was made it is only slightly better and continued grid searching/hyperparameter tuning is needed to try and further improve the model results. Again I further adjusted the number of factors and increased in the number of training epochs to try and reduce RMSE. I also attempted to fiddle with the regularization and learning rates. ###Code # Setup new hyperparameter dictionary svd_param_grid2 = {'n_factors':[5, 20], 'n_epochs': [20, 40], 'lr_all': [0.05, .005], 'reg_all': [0.01, 0.02]} svd_gs2_model = GridSearchCV(SVD,param_grid=svd_param_grid2,joblib_verbose=10, n_jobs=-1, cv=3) # Return best_params based on RMSE svd_gs2_model.fit(user_data) svd_gs2_model.best_params['rmse'] # Instantiate new SVD using the new best found hyperparameters svd2_model = SVD(n_factors=5, n_epochs=40, random_state=42) # Fit on trainset and make predictions using testset to return RMSE metric svd2_model.fit(trainset) predictions = svd2_model.test(testset) svd_gs2 = accuracy.rmse(predictions) ###Output RMSE: 0.7848 ###Markdown > The second grid searched worked better in order to tune hyperparamters, reducing the RMSE by over .01. I still believe I could achieve a further decrease in RMSE so I performed a third grid search, once again adjusting factors and training epochs as well as investigating a different change in regularizaiton and/or learning rate. ###Code # Setup new hyperparameter dictionary svd_param_grid3 = {'n_factors':[1, 3, 5], 'n_epochs':[40, 50], 'lr_all':[0.005, 0.001], 'reg_all':[0.02, .05]} svd_gs3_model = GridSearchCV(SVD, param_grid=svd_param_grid3, cv=3, joblib_verbose=10, n_jobs=-1, return_train_measures=True) # Return best_params based on RMSE svd_gs3_model.fit(user_data) svd_gs3_model.best_params['rmse'] # Instantiate a third SVD using the new best found hyperparameters svd3_model = SVD(n_factors=1, n_epochs=50, lr_all=0.005, reg_all=0.05, random_state=42) # Fit on trainset and make predictions using testset to return RMSE metric svd3_model.fit(trainset) predictions = svd3_model.test(testset) svd_gs3 = accuracy.rmse(predictions) ###Output RMSE: 0.7824 ###Markdown > This third SVD model showed a very slight increase in performance as compared to the second model. I decided to stop here as further grid searchs would be a waste of time and computational power. I expected the SVD model to out perform other recommendation algorithms that use matrix factorization given its wide spread use and success within the domain. NMF & Grid Searches > In an attempt to explore further algorithms within Surpirse I wanted to try a Non-negative Matrix Factorization (NMF) model. This algorithm is very similar to SVD but keeps all user and item factors positive by setting a very specfic step size for the stochastic gradient descent. The biased version can be very prone to overfitting but this is addressed by reducing the number of factors. Given the similarities to SVD I performed a similar grid search as the third SVD model. ###Code # New hyperparameter dictionary for nmf model nmf_param_grid = {'biased':[True, False], 'n_factors':[10, 5, 1], 'n_epochs': [25, 50]} nmf_gs_model = GridSearchCV(NMF, param_grid=nmf_param_grid, cv=3, joblib_verbose=10, n_jobs=-1, return_train_measures=True) # Fit and return the best hyperparameters nmf_gs_model.fit(user_data) nmf_gs_model.best_params['rmse'] # Instantiate - fit on trainset - score the model on testset nmf_model = NMF(n_factors=1, n_epochs=50, random_state=42, biased=True) nmf_model.fit(trainset) predictions = nmf_model.test(testset) nmf_gs = accuracy.rmse(predictions) ###Output RMSE: 0.7864 ###Markdown > As expected based on its similarity to SVD this model performed only slightly worse than then the second and third SVD models. It had a slightly lower fit time but the increased RMSE is not worth the trade-off. I concluded the SVD was still better performing than nmf. SVD++ & Grid Searches > For a final look at Surprise I wanted to try and utilize the SVD++ algorithm, again, very similar to SVD. The difference is that SVD++ attempts to add an extension onto the base SVD that uses implicit rating as well as explicit. In other words it infers the action of rating an item as a latent factor regardless of the rating value given to the item while also factoring the actual rating value. I thought this might further improve the RMSE by taking into account reviewers who have rated a large number of eBooks. Please note that this Grid Search will take a very long time to run. ###Code # New dictionary for SVD++ svdpp_param_grid = {'n_factors':[1, 5], 'n_epochs':[25, 50], 'reg_all':[0.02, 0.05]} svdpp_gs_model = GridSearchCV(SVDpp, param_grid=svdpp_param_grid, cv=3, joblib_verbose=10, n_jobs=-1, return_train_measures=True) # Fit and return the best_params based on cross validation this will take a VERY long time to run svdpp_gs_model.fit(user_data) svdpp_gs_model.best_params['rmse'] # Instantiate - fit on trainset - score the model on testset SVDpp_model = SVDpp(n_factors=1, n_epochs=25, random_state=42, reg_all=0.05) SVDpp_model.fit(trainset) predictions = SVDpp_model.test(testset) SVDpp_gs = accuracy.rmse(predictions) ###Output RMSE: 0.7845 ###Markdown > Surprisingly the SVD++ did not perform better then the third standard SVD, where I thought it might be able to use implicit ratings to reduce RMSE. It also took considerably longer to fit on the dataset given the addtion of the implicit rating factors. Fit time was more than tripled based on the grid search output timings. Further hyperparameter tuning might work to slighlty improve performance but was not worth the required computational time. Model Evaluation > Based on the selected metric of RMSE, the third SVD model is my best performing model and will be used as the final model within my function in order to make rating predictions and return top recommendations. Below I visualize the difference achieved through the iterative process. I was only able to improve slighly upon the baseline only model however this makes sense given that all these models utilize the baseline bias within their calculations. The scored was dramactically improved from the normal predictor which makes random predictions based on rating distribution (more akin to a true dummy baseline). RMSE was reduced from 1.234 down to 0.782, almost half. I am quite happy with a RMSE of only 0.782 rating taken in the context of a scale from 1-5. I am confident in the model's ability to return estimated rating predictions which can be used to determine which eBooks to recommend to reviewers. ###Code X = ['Baseline Only', 'SVD Basic', 'SVD GS1', 'NMF GS', 'SVDpp GS', 'SVD GS3'] y = [baseline_only, svd_simple, svd_gs1, nmf_gs, SVDpp_gs, svd_gs3] fig, ax = plt.subplots() plt.bar(X, y, color=['black', 'blue', 'blue', 'blue', 'blue', 'green']) plt.xticks(rotation=25) plt.ylim(0.7, .85) plt.grid(False) ax.set_title("Surprise Models") plt.ylabel('Root Mean Squared Error (RMSE)') plt.savefig('Images/Model_bar.png', dpi=300, bbox_inches='tight'); ###Output _____no_output_____ ###Markdown Recommendation Function > My final model (svd3) can now be utilized within a function in order to return top n-recommendations. In order for the model to return meta data associated with the recommendations I have loaded in the cleaned meta5 csv containing the appropriate information. This will also be used to index against eBooks that the inputed reviewers has already rated in order to not return already read books. A user dataframe is created from the rev5 set, which has been subsetted to only include reviewers with 5 or more entries, in order to determine books that a user has already rated. These entries are then dropped from the dataframe on which predicted ratings are performed. This was done so the recommendations do not return any previously rated books to the reviewer which would be useless. The prediction (estimated) rating is then returned as a new column within the eBook meta data frame and used to sort by descending value. Recommendations are made based on top estimated ratings for books the reviewer has not rated. Building ###Code # Using Surprise a full trainset incorporating all data can be built and fit to the model in order to make full predictions trainset_full = user_data.build_full_trainset() svd3_model.fit(trainset_full) # The model is pickled and saved into the Model folder in the repository so it can used in the app.py file pickle.dump(svd3_model, open('Model/collab_model.sav', 'wb')) # Load in the meta data for use in returning eBook recommendation information df_meta5 = pd.read_csv('Data/meta5.csv', index_col='asin') df_meta5.drop(columns =['Unnamed: 0'], inplace=True) df_meta5.info() # Sanity check on meta data df_meta5.head() # The rating data is subset to just show reviewers and the eBooks they have rated df_user = df_rev5.set_index('reviewerID') df_user.drop(columns=['Unnamed: 0', 'reviewText', 'overall'], inplace=True) df_user.head() df_user.to_csv('Data/df_user.csv') # Dual input for unique reviewer ID and how many recommendations you would like user = input('UserId: ') n_recs = int(input('How many recommendations? ')) # Creating a list of the eBooks that said reviewer has already rated have_reviewed = list(df_user.loc[user, 'asin']) # Creating new dataframe from meta data to subset based on already reviewed eBooks not_reviewed = df_meta5.copy() # Dropping indexes (asin) that correspond to already reviewed eBooks not_reviewed.drop(have_reviewed, inplace=True) # Reset index to pull out asin as a seperate column not_reviewed.reset_index(inplace=True) not_reviewed.head() # Obtain rating predictions based on model.predict, passing in user input. Using .apply with lamdba function to iterate through not_reviewed['est_rating'] = not_reviewed['asin'].apply(lambda x: svd3_model.predict(user, x).est) # Sort dataframe based on newly created est_rating problem in order to return top predictions not_reviewed.sort_values(by='est_rating', ascending=False, inplace=True) not_reviewed.head() not_reviewed.rename(columns={'title':'Title', 'author':'Author', 'genre':'Genre', 'print_length':'# Pages', 'word_wise':'Word Wise', 'lending':'Lending', 'asin':'ASIN', 'est_rating':'Estimated Rating'}, inplace=True) not_reviewed[['# Pages', 'Word Wise', 'Lending']] = not_reviewed[['# Pages', 'Word Wise', 'Lending']].astype(int) # Rename columns for better display value and presentation not_reviewed.rename(columns={'title':'Title', 'author':'Author', 'genre':'Genre', 'print_length':'# Pages', 'word_wise':'Word Wise', 'lending':'Lending', 'asin':'ASIN', 'est_rating':'Estimated Rating'}, inplace=True) # Change integers into floats for better display value and presentation not_reviewed[['# Pages', 'Word Wise', 'Lending']] = not_reviewed[['# Pages', 'Word Wise', 'Lending']].astype(int) not_reviewed.head() # Final step is to only return the top n_recs as denoted by input, done using .head(n_recs) not_reviewed.head(n_recs) ###Output _____no_output_____ ###Markdown Function ###Code def user_recommend_books(): user = input('ReviewerId: ') n_recs = int(input('How many recommendations? ')) have_reviewed = list(df_user.loc[user, 'asin']) not_reviewed = df_meta5.copy() not_reviewed.drop(have_reviewed, inplace=True) not_reviewed.reset_index(inplace=True) not_reviewed['est_rating'] = not_reviewed['asin'].apply(lambda x: svd3_model.predict(user, x).est) not_reviewed.sort_values(by='est_rating', ascending=False, inplace=True) not_reviewed.rename(columns={'title':'Title', 'author':'Author', 'genre':'Genre', 'print_length':'# Pages', 'word_wise':'Word Wise', 'lending':'Lending', 'asin':'ASIN', 'est_rating':'Estimated Rating'}, inplace=True) not_reviewed[['# Pages', 'Word Wise', 'Lending']] = not_reviewed[['# Pages', 'Word Wise', 'Lending']].astype(int) return not_reviewed.head(n_recs) ###Output _____no_output_____ ###Markdown Evaulation > The built function can now be used to return recommendations for specfic users. Below I have demonstrated two examples of this. This system is working well, returning a wide range of genres and eBooks. eBook returns are based on the reviewers profile (previously rated eBooks) when compared to other profiles. My final trained SVD model is used to predict an estimated rating for every book that a reviewer has not rated. In turn this is used to return top recommended books based off the highest estimated ratings.> The model performs very well with reviewers who have a wide variety of ratings, true to their preferences. This means that they rate some books highly if they liked them and rate others they don't negatively. This allows the model to accurately distinuish between individual preference profiles. The system begins to break down slightly when looking at users who only gave high ratings. The model has a harder time distinusghing between predicted ratings at the top end and the recommendation system returns a large value of max rated eBooks (5). Reviewers can still recieve recommended books but the system might not be able to determine their unique preferences as well. To improve performance for every user, it should be encouraged to rate books across the spectrum of rating scale so that the model can be retrained to pick up on these subtle nuiances. ###Code # Set display max column width to none for better display and visual pd.set_option('display.max_colwidth', None) user_recommend_books() user_recommend_books() ###Output ReviewerId: A2KQSBNFAYTFYO How many recommendations? 10
Scikit-Learn-Tutorial/3. Training a model on the Iris Dataset.ipynb
###Markdown Scikit Learn Tutorial 3 - Training a model on the Iris Dataset Run in Google Colab View source on GitHub ![Scikit Learn Logo](http://scikit-learn.org/stable/_static/scikit-learn-logo-small.png) Loading in Dataset ###Code import pandas as pd data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']) data.head() ###Output C:\Users\Gilbert\AppData\Local\Continuum\anaconda3\envs\ml\lib\importlib\_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject return f(*args, **kwds) ###Markdown Preprocessing Data Transforming the classes to numeric data ###Code from sklearn.preprocessing import LabelEncoder le = LabelEncoder() data['class'] = le.fit_transform(data['class']) data.head() ###Output _____no_output_____ ###Markdown Split features and label and transform them to a Numpy Array ###Code import numpy as np X = np.array(data.drop(['class'], axis=1)) y = np.array(data['class']) ###Output _____no_output_____ ###Markdown Building Model ###Code from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf.fit(X, y) ###Output C:\Users\Gilbert\AppData\Local\Continuum\anaconda3\envs\ml\lib\site-packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) C:\Users\Gilbert\AppData\Local\Continuum\anaconda3\envs\ml\lib\site-packages\sklearn\linear_model\logistic.py:460: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning. "this warning.", FutureWarning) ###Markdown Evaluating Accuracy In this notebook we are going to evaluate the accuracy on the data which we used to train. You shouldn't to this because you can't be sure if the result you get means anything because the model could just overfit the data. In reality we would split the dataset into a training and test set. We will cover this in the next tutorial. ###Code accuracy = clf.score(X, y) accuracy ###Output _____no_output_____ ###Markdown Scikit Learn Tutorial 3 - Training a model on the Iris Dataset Run in Google Colab View source on GitHub ![Scikit Learn Logo](http://scikit-learn.org/stable/_static/scikit-learn-logo-small.png) Loading in Dataset ###Code import pandas as pd data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']) data.head() ###Output _____no_output_____ ###Markdown Preprocessing Data Transforming the classes to numeric data ###Code from sklearn.preprocessing import LabelEncoder le = LabelEncoder() data['class'] = le.fit_transform(data['class']) data.head() ###Output _____no_output_____ ###Markdown Split features and label and transform them to a Numpy Array ###Code import numpy as np X = np.array(data.drop(['class'], axis=1)) y = np.array(data['class']) ###Output _____no_output_____ ###Markdown Building Model ###Code from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf.fit(X, y) help(clf) ###Output Help on LogisticRegression in module sklearn.linear_model.logistic object: class LogisticRegression(sklearn.base.BaseEstimator, sklearn.linear_model.base.LinearClassifierMixin, sklearn.linear_model.base.SparseCoefMixin) | LogisticRegression(penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) | | Logistic Regression (aka logit, MaxEnt) classifier. | | In the multiclass case, the training algorithm uses the one-vs-rest (OvR) | scheme if the 'multi_class' option is set to 'ovr', and uses the | cross-entropy loss if the 'multi_class' option is set to 'multinomial'. | (Currently the 'multinomial' option is supported only by the 'lbfgs', | 'sag', 'saga' and 'newton-cg' solvers.) | | This class implements regularized logistic regression using the | 'liblinear' library, 'newton-cg', 'sag', 'saga' and 'lbfgs' solvers. **Note | that regularization is applied by default**. It can handle both dense | and sparse input. Use C-ordered arrays or CSR matrices containing 64-bit | floats for optimal performance; any other input format will be converted | (and copied). | | The 'newton-cg', 'sag', and 'lbfgs' solvers support only L2 regularization | with primal formulation, or no regularization. The 'liblinear' solver | supports both L1 and L2 regularization, with a dual formulation only for | the L2 penalty. The Elastic-Net regularization is only supported by the | 'saga' solver. | | Read more in the :ref:`User Guide <logistic_regression>`. | | Parameters | ---------- | penalty : str, 'l1', 'l2', 'elasticnet' or 'none', optional (default='l2') | Used to specify the norm used in the penalization. The 'newton-cg', | 'sag' and 'lbfgs' solvers support only l2 penalties. 'elasticnet' is | only supported by the 'saga' solver. If 'none' (not supported by the | liblinear solver), no regularization is applied. | | .. versionadded:: 0.19 | l1 penalty with SAGA solver (allowing 'multinomial' + L1) | | dual : bool, optional (default=False) | Dual or primal formulation. Dual formulation is only implemented for | l2 penalty with liblinear solver. Prefer dual=False when | n_samples > n_features. | | tol : float, optional (default=1e-4) | Tolerance for stopping criteria. | | C : float, optional (default=1.0) | Inverse of regularization strength; must be a positive float. | Like in support vector machines, smaller values specify stronger | regularization. | | fit_intercept : bool, optional (default=True) | Specifies if a constant (a.k.a. bias or intercept) should be | added to the decision function. | | intercept_scaling : float, optional (default=1) | Useful only when the solver 'liblinear' is used | and self.fit_intercept is set to True. In this case, x becomes | [x, self.intercept_scaling], | i.e. a "synthetic" feature with constant value equal to | intercept_scaling is appended to the instance vector. | The intercept becomes ``intercept_scaling * synthetic_feature_weight``. | | Note! the synthetic feature weight is subject to l1/l2 regularization | as all other features. | To lessen the effect of regularization on synthetic feature weight | (and therefore on the intercept) intercept_scaling has to be increased. | | class_weight : dict or 'balanced', optional (default=None) | Weights associated with classes in the form ``{class_label: weight}``. | If not given, all classes are supposed to have weight one. | | The "balanced" mode uses the values of y to automatically adjust | weights inversely proportional to class frequencies in the input data | as ``n_samples / (n_classes * np.bincount(y))``. | | Note that these weights will be multiplied with sample_weight (passed | through the fit method) if sample_weight is specified. | | .. versionadded:: 0.17 | *class_weight='balanced'* | | random_state : int, RandomState instance or None, optional (default=None) | The seed of the pseudo random number generator to use when shuffling | the data. If int, random_state is the seed used by the random number | generator; If RandomState instance, random_state is the random number | generator; If None, the random number generator is the RandomState | instance used by `np.random`. Used when ``solver`` == 'sag' or | 'liblinear'. | | solver : str, {'newton-cg', 'lbfgs', 'liblinear', 'sag', 'saga'}, optional (default='liblinear'). | | Algorithm to use in the optimization problem. | | - For small datasets, 'liblinear' is a good choice, whereas 'sag' and | 'saga' are faster for large ones. | - For multiclass problems, only 'newton-cg', 'sag', 'saga' and 'lbfgs' | handle multinomial loss; 'liblinear' is limited to one-versus-rest | schemes. | - 'newton-cg', 'lbfgs', 'sag' and 'saga' handle L2 or no penalty | - 'liblinear' and 'saga' also handle L1 penalty | - 'saga' also supports 'elasticnet' penalty | - 'liblinear' does not handle no penalty | | Note that 'sag' and 'saga' fast convergence is only guaranteed on | features with approximately the same scale. You can | preprocess the data with a scaler from sklearn.preprocessing. | | .. versionadded:: 0.17 | Stochastic Average Gradient descent solver. | .. versionadded:: 0.19 | SAGA solver. | .. versionchanged:: 0.20 | Default will change from 'liblinear' to 'lbfgs' in 0.22. | | max_iter : int, optional (default=100) | Maximum number of iterations taken for the solvers to converge. | | multi_class : str, {'ovr', 'multinomial', 'auto'}, optional (default='ovr') | If the option chosen is 'ovr', then a binary problem is fit for each | label. For 'multinomial' the loss minimised is the multinomial loss fit | across the entire probability distribution, *even when the data is | binary*. 'multinomial' is unavailable when solver='liblinear'. | 'auto' selects 'ovr' if the data is binary, or if solver='liblinear', | and otherwise selects 'multinomial'. | | .. versionadded:: 0.18 | Stochastic Average Gradient descent solver for 'multinomial' case. | .. versionchanged:: 0.20 | Default will change from 'ovr' to 'auto' in 0.22. | | verbose : int, optional (default=0) | For the liblinear and lbfgs solvers set verbose to any positive | number for verbosity. | | warm_start : bool, optional (default=False) | When set to True, reuse the solution of the previous call to fit as | initialization, otherwise, just erase the previous solution. | Useless for liblinear solver. See :term:`the Glossary <warm_start>`. | | .. versionadded:: 0.17 | *warm_start* to support *lbfgs*, *newton-cg*, *sag*, *saga* solvers. | | n_jobs : int or None, optional (default=None) | Number of CPU cores used when parallelizing over classes if | multi_class='ovr'". This parameter is ignored when the ``solver`` is | set to 'liblinear' regardless of whether 'multi_class' is specified or | not. ``None`` means 1 unless in a :obj:`joblib.parallel_backend` | context. ``-1`` means using all processors. | See :term:`Glossary <n_jobs>` for more details. | | l1_ratio : float or None, optional (default=None) | The Elastic-Net mixing parameter, with ``0 <= l1_ratio <= 1``. Only | used if ``penalty='elasticnet'`. Setting ``l1_ratio=0`` is equivalent | to using ``penalty='l2'``, while setting ``l1_ratio=1`` is equivalent | to using ``penalty='l1'``. For ``0 < l1_ratio <1``, the penalty is a | combination of L1 and L2. | | Attributes | ---------- | | classes_ : array, shape (n_classes, ) | A list of class labels known to the classifier. | | coef_ : array, shape (1, n_features) or (n_classes, n_features) | Coefficient of the features in the decision function. | | `coef_` is of shape (1, n_features) when the given problem is binary. | In particular, when `multi_class='multinomial'`, `coef_` corresponds | to outcome 1 (True) and `-coef_` corresponds to outcome 0 (False). | | intercept_ : array, shape (1,) or (n_classes,) | Intercept (a.k.a. bias) added to the decision function. | | If `fit_intercept` is set to False, the intercept is set to zero. | `intercept_` is of shape (1,) when the given problem is binary. | In particular, when `multi_class='multinomial'`, `intercept_` | corresponds to outcome 1 (True) and `-intercept_` corresponds to | outcome 0 (False). | | n_iter_ : array, shape (n_classes,) or (1, ) | Actual number of iterations for all classes. If binary or multinomial, | it returns only 1 element. For liblinear solver, only the maximum | number of iteration across all classes is given. | | .. versionchanged:: 0.20 | | In SciPy <= 1.0.0 the number of lbfgs iterations may exceed | ``max_iter``. ``n_iter_`` will now report at most ``max_iter``. | | Examples | -------- | >>> from sklearn.datasets import load_iris | >>> from sklearn.linear_model import LogisticRegression | >>> X, y = load_iris(return_X_y=True) | >>> clf = LogisticRegression(random_state=0, solver='lbfgs', | ... multi_class='multinomial').fit(X, y) | >>> clf.predict(X[:2, :]) | array([0, 0]) | >>> clf.predict_proba(X[:2, :]) # doctest: +ELLIPSIS | array([[9.8...e-01, 1.8...e-02, 1.4...e-08], | [9.7...e-01, 2.8...e-02, ...e-08]]) | >>> clf.score(X, y) | 0.97... | | See also | -------- | SGDClassifier : incrementally trained logistic regression (when given | the parameter ``loss="log"``). | LogisticRegressionCV : Logistic regression with built-in cross validation | | Notes | ----- | The underlying C implementation uses a random number generator to | select features when fitting the model. It is thus not uncommon, | to have slightly different results for the same input data. If | that happens, try with a smaller tol parameter. | | Predict output may not match that of standalone liblinear in certain | cases. See :ref:`differences from liblinear <liblinear_differences>` | in the narrative documentation. | | References | ---------- | | LIBLINEAR -- A Library for Large Linear Classification | https://www.csie.ntu.edu.tw/~cjlin/liblinear/ | | SAG -- Mark Schmidt, Nicolas Le Roux, and Francis Bach | Minimizing Finite Sums with the Stochastic Average Gradient | https://hal.inria.fr/hal-00860051/document | | SAGA -- Defazio, A., Bach F. & Lacoste-Julien S. (2014). | SAGA: A Fast Incremental Gradient Method With Support | for Non-Strongly Convex Composite Objectives | https://arxiv.org/abs/1407.0202 | | Hsiang-Fu Yu, Fang-Lan Huang, Chih-Jen Lin (2011). Dual coordinate descent | methods for logistic regression and maximum entropy models. | Machine Learning 85(1-2):41-75. | https://www.csie.ntu.edu.tw/~cjlin/papers/maxent_dual.pdf | | Method resolution order: | LogisticRegression | sklearn.base.BaseEstimator | sklearn.linear_model.base.LinearClassifierMixin | sklearn.base.ClassifierMixin | sklearn.linear_model.base.SparseCoefMixin | builtins.object | | Methods defined here: | | __init__(self, penalty='l2', dual=False, tol=0.0001, C=1.0, fit_intercept=True, intercept_scaling=1, class_weight=None, random_state=None, solver='warn', max_iter=100, multi_class='warn', verbose=0, warm_start=False, n_jobs=None, l1_ratio=None) | Initialize self. See help(type(self)) for accurate signature. | | fit(self, X, y, sample_weight=None) | Fit the model according to the given training data. | | Parameters | ---------- | X : {array-like, sparse matrix}, shape (n_samples, n_features) | Training vector, where n_samples is the number of samples and | n_features is the number of features. | | y : array-like, shape (n_samples,) | Target vector relative to X. | | sample_weight : array-like, shape (n_samples,) optional | Array of weights that are assigned to individual samples. | If not provided, then each sample is given unit weight. | | .. versionadded:: 0.17 | *sample_weight* support to LogisticRegression. | | Returns | ------- | self : object | | Notes | ----- | The SAGA solver supports both float64 and float32 bit arrays. | | predict_log_proba(self, X) | Log of probability estimates. | | The returned estimates for all classes are ordered by the | label of classes. | | Parameters | ---------- | X : array-like, shape = [n_samples, n_features] | | Returns | ------- | T : array-like, shape = [n_samples, n_classes] | Returns the log-probability of the sample for each class in the | model, where classes are ordered as they are in ``self.classes_``. | | predict_proba(self, X) | Probability estimates. | | The returned estimates for all classes are ordered by the | label of classes. | | For a multi_class problem, if multi_class is set to be "multinomial" | the softmax function is used to find the predicted probability of | each class. | Else use a one-vs-rest approach, i.e calculate the probability | of each class assuming it to be positive using the logistic function. | and normalize these values across all the classes. | | Parameters | ---------- | X : array-like, shape = [n_samples, n_features] | | Returns | ------- | T : array-like, shape = [n_samples, n_classes] | Returns the probability of the sample for each class in the model, | where classes are ordered as they are in ``self.classes_``. | | ---------------------------------------------------------------------- | Methods inherited from sklearn.base.BaseEstimator: | | __getstate__(self) | | __repr__(self, N_CHAR_MAX=700) | Return repr(self). | | __setstate__(self, state) | | get_params(self, deep=True) | Get parameters for this estimator. | | Parameters | ---------- | deep : boolean, optional | If True, will return the parameters for this estimator and | contained subobjects that are estimators. | | Returns | ------- | params : mapping of string to any | Parameter names mapped to their values. | | set_params(self, **params) | Set the parameters of this estimator. | | The method works on simple estimators as well as on nested objects | (such as pipelines). The latter have parameters of the form | ``<component>__<parameter>`` so that it's possible to update each | component of a nested object. | | Returns | ------- | self | | ---------------------------------------------------------------------- | Data descriptors inherited from sklearn.base.BaseEstimator: | | __dict__ | dictionary for instance variables (if defined) | | __weakref__ | list of weak references to the object (if defined) | | ---------------------------------------------------------------------- | Methods inherited from sklearn.linear_model.base.LinearClassifierMixin: | | decision_function(self, X) | Predict confidence scores for samples. | | The confidence score for a sample is the signed distance of that | sample to the hyperplane. | | Parameters | ---------- | X : array_like or sparse matrix, shape (n_samples, n_features) | Samples. | | Returns | ------- | array, shape=(n_samples,) if n_classes == 2 else (n_samples, n_classes) | Confidence scores per (sample, class) combination. In the binary | case, confidence score for self.classes_[1] where >0 means this | class would be predicted. | | predict(self, X) | Predict class labels for samples in X. | | Parameters | ---------- | X : array_like or sparse matrix, shape (n_samples, n_features) | Samples. | | Returns | ------- | C : array, shape [n_samples] | Predicted class label per sample. | | ---------------------------------------------------------------------- | Methods inherited from sklearn.base.ClassifierMixin: | | score(self, X, y, sample_weight=None) | Returns the mean accuracy on the given test data and labels. | | In multi-label classification, this is the subset accuracy | which is a harsh metric since you require for each sample that | each label set be correctly predicted. | | Parameters | ---------- | X : array-like, shape = (n_samples, n_features) | Test samples. | | y : array-like, shape = (n_samples) or (n_samples, n_outputs) | True labels for X. | | sample_weight : array-like, shape = [n_samples], optional | Sample weights. | | Returns | ------- | score : float | Mean accuracy of self.predict(X) wrt. y. | | ---------------------------------------------------------------------- | Methods inherited from sklearn.linear_model.base.SparseCoefMixin: | | densify(self) | Convert coefficient matrix to dense array format. | | Converts the ``coef_`` member (back) to a numpy.ndarray. This is the | default format of ``coef_`` and is required for fitting, so calling | this method is only required on models that have previously been | sparsified; otherwise, it is a no-op. | | Returns | ------- | self : estimator | | sparsify(self) | Convert coefficient matrix to sparse format. | | Converts the ``coef_`` member to a scipy.sparse matrix, which for | L1-regularized models can be much more memory- and storage-efficient | than the usual numpy.ndarray representation. | | The ``intercept_`` member is not converted. | | Notes | ----- | For non-sparse models, i.e. when there are not many zeros in ``coef_``, | this may actually *increase* memory usage, so use this method with | care. A rule of thumb is that the number of zero elements, which can | be computed with ``(coef_ == 0).sum()``, must be more than 50% for this | to provide significant benefits. | | After calling this method, further fitting with the partial_fit | method (if any) will not work until you call densify. | | Returns | ------- | self : estimator ###Markdown Evaluating Accuracy In this notebook we are going to evaluate the accuracy on the data which we used to train. You shouldn't to this because you can't be sure if the result you get means anything because the model could just overfit the data. In reality we would split the dataset into a training and test set. We will cover this in the next tutorial. ###Code accuracy = clf.score(X, y) accuracy ###Output _____no_output_____ ###Markdown Scikit Learn Tutorial 3 - Training a model on the Iris Dataset ![Scikit Learn Logo](http://scikit-learn.org/stable/_static/scikit-learn-logo-small.png) Loading in Dataset ###Code import pandas as pd data = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'class']) data.head() ###Output C:\Users\Gilbert\AppData\Local\Continuum\anaconda3\envs\ml\lib\importlib\_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject return f(*args, **kwds) ###Markdown Preprocessing Data Transforming the classes to numeric data ###Code from sklearn.preprocessing import LabelEncoder le = LabelEncoder() data['class'] = le.fit_transform(data['class']) data.head() ###Output _____no_output_____ ###Markdown Split features and label and transform them to a Numpy Array ###Code import numpy as np X = np.array(data.drop(['class'], axis=1)) y = np.array(data['class']) ###Output _____no_output_____ ###Markdown Building Model ###Code from sklearn.linear_model import LogisticRegression clf = LogisticRegression() clf.fit(X, y) ###Output C:\Users\Gilbert\AppData\Local\Continuum\anaconda3\envs\ml\lib\site-packages\sklearn\linear_model\logistic.py:433: FutureWarning: Default solver will be changed to 'lbfgs' in 0.22. Specify a solver to silence this warning. FutureWarning) C:\Users\Gilbert\AppData\Local\Continuum\anaconda3\envs\ml\lib\site-packages\sklearn\linear_model\logistic.py:460: FutureWarning: Default multi_class will be changed to 'auto' in 0.22. Specify the multi_class option to silence this warning. "this warning.", FutureWarning) ###Markdown Evaluating Accuracy In this notebook we are going to evaluate the accuracy on the data which we used to train. You shouldn't to this because you can't be sure if the result you get means anything because the model could just overfit the data. In reality we would split the dataset into a training and test set. We will cover this in the next tutorial. ###Code accuracy = clf.score(X, y) accuracy ###Output _____no_output_____
vgg_training.ipynb
###Markdown ###Code import numpy as np from keras.models import Sequential from keras import applications from keras import optimizers from keras.layers import Dense, Dropout, Activation, Flatten from keras.layers import Conv2D, MaxPooling2D, Lambda from keras.layers import Dense from keras.wrappers.scikit_learn import KerasClassifier from keras.utils import np_utils from keras.preprocessing.image import ImageDataGenerator from sklearn.model_selection import cross_val_score from sklearn.model_selection import KFold from sklearn.preprocessing import LabelEncoder from sklearn.pipeline import Pipeline from sklearn.cross_validation import train_test_split from sklearn.metrics import roc_curve, auc from sklearn.utils import shuffle import csv import cv2 import scipy import os num_classes = 4 epochs = 20 # BASE_PATH = '/home/ec2-user/cell_classifier/' BASE_DIR = '../' batch_size = 32 def get_model(): model = Sequential() model.add(Lambda(lambda x: x/127.5 - 1., input_shape=(120, 160, 3), output_shape=(120, 160, 3))) model.add(Conv2D(32, (3, 3), input_shape=(120, 160, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(32, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Conv2D(64, (3, 3))) model.add(Activation('relu')) model.add(MaxPooling2D(pool_size=(2, 2))) model.add(Flatten()) # this converts our 3D feature maps to 1D feature vectors model.add(Dense(64)) model.add(Activation('relu')) model.add(Dropout(0.7)) model.add(Dense(1, activation='sigmoid')) model.compile(loss='binary_crossentropy', optimizer='rmsprop', metrics=['accuracy']) return model def top_model(input_shape): model = Sequential() model.add(Flatten(input_shape=input_shape)) model.add(Dense(64, activation='relu')) model.add(Dropout(0.5)) model.add(Dense(1, activation='sigmoid')) model.compile(optimizer='rmsprop', loss='binary_crossentropy', metrics=['accuracy']) return model def get_data(folder): X = [] y = [] for wbc_type in os.listdir(folder): if not wbc_type.startswith('.'): # if wbc_type in ['NEUTROPHIL', 'EOSINOPHIL']: # label = 'MONONUCLEAR' # else: # label = 'POLYNUCLEAR' for image_filename in os.listdir(folder + wbc_type): img_file = cv2.imread(folder + wbc_type + '/' + image_filename) img_file = scipy.misc.imresize(arr=img_file, size=(120, 160, 3)) if img_file is not None: img_arr = np.asarray(img_file) X.append(img_arr) y.append(wbc_type) X = np.asarray(X) y = np.asarray(y) return X,y X_train, y_train = get_data(BASE_DIR + 'images/TRAIN/') X_test, y_test = get_data(BASE_DIR + 'images/TEST/') X_test_simple, y_test_simple = get_data(BASE_DIR + 'images/TEST_SIMPLE/') X_train = X_train * 1./255. X_test = X_test * 1./255. X_test_simple = X_test_simple * 1./255. encoder = LabelEncoder() encoder.fit(y_test_simple) y_train = np_utils.to_categorical(encoder.transform(y_train)) y_test = np_utils.to_categorical(encoder.transform(y_test)) y_test_simple = np_utils.to_categorical(encoder.transform(y_test_simple)) from keras.models import Model from keras.layers import Input from keras import optimizers base_model = applications.VGG16(include_top=False, weights='imagenet') input = Input(shape=(120, 160, 3),name = 'image_input') vgg_output = base_model(input) top_model = Flatten()(vgg_output) top_model = Dense(64, activation='relu')(top_model) predictions = Dense(num_classes, activation='softmax', name='prediction_layer')(top_model) model = Model(input=input, output=predictions) # first: train only the top layers (which were randomly initialized) # i.e. freeze all convolutional InceptionV3 layers layers = base_model.layers[:-2] for layer in layers: layer.trainable = False # compile the model (should be done *after* setting layers to non-trainable) model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy']) model.summary() model.fit(X_train, y_train, epochs=epochs, batch_size=batch_size, validation_split=0.2, shuffle=True, verbose=1) model.save_weights('vgg_top.h5') ###Output _____no_output_____ ###Markdown batch_size = 16 fine-tune the modelmodel.fit( X_train, y_train, validation_data=(X_validation, y_validation), epochs=epochs) ###Code model.load_weights('vgg_top.h5') from sklearn.metrics import accuracy_score print('Predicting on test data') y_pred = np.rint(model.predict(X_test_simple)) print(accuracy_score(y_test_simple, y_pred)) model.summary() print(base_model.layers[-2].name) ###Output _____no_output_____
docs/tutorials/generalized_polynomial_chaos.ipynb
###Markdown Generalized Polynomial ChaosGeneralized polynomial chaos is an advanced polynomial chaos method for dealing with problematic random variables.The problems it deals with include heavy tailed distributions (like Log-lormal, Cauchy, etc.) which breaks premises for using chaos expansion as approximations, and stochastic dependencies, which there currently does not exist numerically stable method for creating.Let us consider an synthetic exponential model than encompases both issues by using a multivariate log-normal distribution for its uncertainty: ###Code import numpy import chaospy coordinates = numpy.linspace(0, 10, 1000) def exponential_model(parameters): param_init, param_rate = parameters return param_init*numpy.e**(-param_rate*coordinates) distribution = chaospy.MvNormal(mu=[10, 1], sigma=[[1.0, 0.09], [0.09, 0.1]]) ###Output _____no_output_____ ###Markdown We are interested in the mean and standard deviation. Monte Carlo integrationAs a baseline we can solve this using quasi-Monte Carlo integration. It requires no modification compared to the stochastic independent case. It consists of generating samples: ###Code samples = distribution.sample(10**5, rule="sobol") ###Output _____no_output_____ ###Markdown evaluate model for each sample: ###Code evaluations = numpy.array([exponential_model(sample) for sample in samples.T]) ###Output _____no_output_____ ###Markdown and performing analysis on samples: ###Code # NBVAL_CHECK_OUTPUT mean = numpy.mean(evaluations, axis=0) std = numpy.std(evaluations, axis=0) (mean[:5].round(5), std[:5].round(5)) ###Output _____no_output_____ ###Markdown We can also plot the final result: ###Code from matplotlib import pyplot pyplot.fill_between(coordinates, mean-std, mean+std, alpha=0.6) pyplot.plot(coordinates, mean) pyplot.axis([0, 6, 0, 10]) pyplot.show() ###Output _____no_output_____ ###Markdown Generalized polynomial chaosPolynomial chaos expansions builds on the assumption of having an orthogonal polynomial expansion. However, the classical extension to the multivariate case assumes that the probabilty distribution consist of stochastically independent components. If the distribution has dependencies, the classical approach will not work.The recommended approach for addressing dependent distribution is to use *generalized polynomial chaos expansion* (g-pce). It assumes that there exists a smooth map $T$ between the dependent variables $Q$ and some other stochastic independent variables $R$, which we can build an expansion for. In other words:$$\hat u(x, q) = \hat u(x, T(r)) = \sum_{n=0}^N c_n \Phi_n(r)$$For multivariate normal distributions, the obvious choice is to select $R$ to be standard normal: ###Code distribution_q = distribution distribution_r = chaospy.J(chaospy.Normal(0, 1), chaospy.Normal(0, 1)) ###Output _____no_output_____ ###Markdown The $T$ is defined as a double Rosenblatt transformation:$$T(r) = F_Q^{-1}\left( F_R(r) \right)$$which in `chaospy` can be constructed as follows: ###Code def transform(samples): return distribution_q.inv(distribution_r.fwd(samples)) ###Output _____no_output_____ ###Markdown This formulation is general and can be used with any two distributions of the same size. Point collocation methodImplementing g-pce for point collocation require us to generate samples from $R$ and transform them using $T$: ###Code samples_r = distribution_r.sample(1000, rule="sobol") samples_q = transform(samples_r) ###Output _____no_output_____ ###Markdown The resluting samples can then be used to solve the equation above using regression-based method: ###Code expansion = chaospy.generate_expansion(7, distribution_r) evaluations = numpy.array([exponential_model(sample) for sample in samples_q.T]) model_approx = chaospy.fit_regression(expansion, samples_r, evaluations) ###Output _____no_output_____ ###Markdown Note that for generating the expansion and the model approximation, we use the distribution from $R$, while for the model evalutation we use the transformed samples from $Q$.The solution model can then be used to do analysis. Just remember that the model is defined with respect to $R$ , not $Q$: ###Code # NBVAL_CHECK_OUTPUT mean = chaospy.E(model_approx, distribution_r) std = chaospy.Std(model_approx, distribution_r) (mean[:5].round(5), std[:5].round(5)) ###Output _____no_output_____ ###Markdown Plotting the final results: ###Code pyplot.fill_between(coordinates, mean-std, mean+std, alpha=0.6) pyplot.plot(coordinates, mean) pyplot.axis([0, 6, 0, 10]) pyplot.show() ###Output _____no_output_____ ###Markdown Pseudo-Spectral ProjectionImplementing g-pce for pseudo-spectral projection require us to generate nodes and weights from $R$ and transform the nodes using $T$: ###Code nodes_r, weights_r = chaospy.generate_quadrature(10, distribution_r, rule="gaussian") nodes_q = transform(nodes_r) ###Output _____no_output_____ ###Markdown The resluting samples can then be used to solve the equation above using the quadrature-based method: ###Code expansion = chaospy.generate_expansion(7, distribution_r) evaluations = numpy.array([exponential_model(sample) for sample in nodes_q.T]) model_approx = chaospy.fit_quadrature(expansion, nodes_r, weights_r, evaluations) ###Output _____no_output_____ ###Markdown Note that for generating the expansion and the model approximation, we use the nodes and weights from $R$, while for the model evalutation we use the transformed samples from $Q$.The solution model, defined with respect to $R$ can then be used to do analysis: ###Code # NBVAL_CHECK_OUTPUT mean = chaospy.E(model_approx, distribution_r) std = chaospy.Std(model_approx, distribution_r) (mean[:5].round(5), std[:5].round(5)) ###Output _____no_output_____ ###Markdown Plotting the final results: ###Code pyplot.fill_between(coordinates, mean-std, mean+std, alpha=0.6) pyplot.plot(coordinates, mean) pyplot.axis([0, 6, 0, 10]) pyplot.show() ###Output _____no_output_____ ###Markdown Cholesky decompositionThe assumption with generalized polynomial chaos expansion is that there exists a smooth mapping to a stochastic independent variable.However, such a mapping does not always exists.In those cases making an orthogonal expansion directly on the dependent variable using Cholesky decomposion.This can be done as follows: ###Code # NBVAL_CHECK_OUTPUT expansion = chaospy.generate_expansion(5, distribution_q, rule="cholesky") expansion[:5].round(10) ###Output _____no_output_____ ###Markdown The method is known to be numerical unstable, so it is important to verify that the expansion is indeed orthogonal: ###Code chaospy.Corr(expansion[-10:], distribution).round(5) ###Output _____no_output_____ ###Markdown This expansion can be used with point colloction method directly: ###Code samples_q = distribution_q.sample(1000, rule="sobol") evaluations = numpy.array([exponential_model(sample) for sample in samples_q.T]) model_approx = chaospy.fit_regression(expansion, samples_q, evaluations) # NBVAL_CHECK_OUTPUT mean = chaospy.E(model_approx, distribution_q) std = chaospy.Std(model_approx, distribution_q) (mean[:5].round(5), std[:5].round(5)) pyplot.fill_between(coordinates, mean-std, mean+std, alpha=0.6) pyplot.plot(coordinates, mean) pyplot.axis([0, 6, 0, 10]) pyplot.show() ###Output _____no_output_____
samples/interoperability/python/tomography-sample.ipynb
###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble ###Code import warnings warnings.simplefilter('ignore') ###Output _____no_output_____ ###Markdown We can enable Q support in Python by importing the `qsharp` package. ###Code import qsharp ###Output Preparing Q# environment... ###Markdown Once we do so, any Q source files in the current working directory are compiled, and their namespaces are made available as Python modules.For instance, the `Quantum.qs` source file provided with this sample implements a `HelloWorld` operation in the `Microsoft.Quantum.Samples.Python` Q namespace: ###Code with open('Quantum.qs') as f: print(f.read()) ###Output // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. namespace Microsoft.Quantum.Samples.Python { open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Preparation; function HelloWorld (pauli : Pauli) : Unit { Message($"Hello, world! {pauli}"); } operation NoisyHadamardChannelImpl (depol : Double, target : Qubit) : Unit { let idxAction = Random([1.0 - depol, depol]); if (idxAction == 0) { H(target); } else { PrepareSingleQubitIdentity(target); } } function NoisyHadamardChannel (depol : Double) : (Qubit => Unit) { return NoisyHadamardChannelImpl(depol, _); } } ###Markdown We can import this `HelloWorld` operation as though it was an ordinary Python function by using the Q namespace as a Python module: ###Code from Microsoft.Quantum.Samples.Python import HelloWorld HelloWorld ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `simulate` method. ###Code HelloWorld.simulate(pauli=qsharp.Pauli.Z) ###Output Hello, world! PauliZ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations. ###Code from qsharp.tomography import single_qubit_process_tomography ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown To use this, we define a new operation that takes a preparation and a measurement, then returns the result of performing that tomographic measurement on the noisy Hadamard operation that we defined in `Quantum.qs`. ###Code experiment = qsharp.compile(""" open Microsoft.Quantum.Samples.Python; open Microsoft.Quantum.Characterization; operation Experiment(prep : Pauli, meas : Pauli) : Result { return SingleQubitProcessTomographyMeasurement(prep, meas, NoisyHadamardChannel(0.1)); } """) ###Output _____no_output_____ ###Markdown Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(experiment, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code for component, version in sorted(qsharp.component_versions().items(), key=lambda x: x[0]): print(f"{component:20}{version}") import sys print(sys.version) ###Output 3.7.6 | packaged by conda-forge | (default, Mar 23 2020, 22:22:21) [MSC v.1916 64 bit (AMD64)] ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble ###Code import warnings warnings.simplefilter('ignore') ###Output _____no_output_____ ###Markdown We can enable Q support in Python by importing the `qsharp` package. ###Code import qsharp ###Output Preparing Q# environment... ###Markdown Once we do so, any Q source files in the current working directory are compiled, and their namespaces are made available as Python modules.For instance, the `Quantum.qs` source file provided with this sample implements a `HelloWorld` operation in the `Microsoft.Quantum.Samples.Python` Q namespace: ###Code with open('Quantum.qs') as f: print(f.read()) ###Output // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. namespace Microsoft.Quantum.Samples.Python { open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Preparation; function HelloWorld (pauli : Pauli) : Unit { Message($"Hello, world! {pauli}"); } operation NoisyHadamardChannelImpl (depol : Double, target : Qubit) : Unit { let idxAction = Random([1.0 - depol, depol]); if (idxAction == 0) { H(target); } else { PrepareSingleQubitIdentity(target); } } function NoisyHadamardChannel (depol : Double) : (Qubit => Unit) { return NoisyHadamardChannelImpl(depol, _); } } ###Markdown We can import this `HelloWorld` operation as though it was an ordinary Python function by using the Q namespace as a Python module: ###Code from Microsoft.Quantum.Samples.Python import HelloWorld HelloWorld ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `simulate` method. ###Code HelloWorld.simulate(pauli=qsharp.Pauli.Z) ###Output Hello, world! PauliZ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations. ###Code from qsharp.tomography import single_qubit_process_tomography ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown To use this, we define a new operation that takes a preparation and a measurement, then returns the result of performing that tomographic measurement on the noisy Hadamard operation that we defined in `Quantum.qs`. ###Code experiment = qsharp.compile(""" open Microsoft.Quantum.Samples.Python; open Microsoft.Quantum.Characterization; operation Experiment(prep : Pauli, meas : Pauli) : Result { return SingleQubitProcessTomographyMeasurement(prep, meas, NoisyHadamardChannel(0.1)); } """) ###Output _____no_output_____ ###Markdown Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(experiment, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code for component, version in sorted(qsharp.component_versions().items(), key=lambda x: x[0]): print(f"{component:20}{version}") import sys print(sys.version) ###Output 3.7.6 | packaged by conda-forge | (default, Mar 23 2020, 22:22:21) [MSC v.1916 64 bit (AMD64)] ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble ###Code import warnings warnings.simplefilter('ignore') ###Output _____no_output_____ ###Markdown We can enable Q support in Python by importing the `qsharp` package. ###Code import qsharp ###Output Preparing Q# environment... . ###Markdown Once we do so, any Q source files in the current working directory are compiled, and their namespaces are made available as Python modules.For instance, the `Quantum.qs` source file provided with this sample implements a `HelloWorld` operation in the `Microsoft.Quantum.Samples.Python` Q namespace: ###Code with open('Quantum.qs') as f: print(f.read()) ###Output // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. namespace Microsoft.Quantum.Samples.Python { open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Preparation; function HelloWorld (pauli : Pauli) : Unit { Message($"Hello, world! {pauli}"); } operation NoisyHadamardChannelImpl (depol : Double, target : Qubit) : Unit { let idxAction = Random([1.0 - depol, depol]); if (idxAction == 0) { H(target); } else { PrepareSingleQubitIdentity(target); } } function NoisyHadamardChannel (depol : Double) : (Qubit => Unit) { return NoisyHadamardChannelImpl(depol, _); } } ###Markdown We can import this `HelloWorld` operation as though it was an ordinary Python function by using the Q namespace as a Python module: ###Code from Microsoft.Quantum.Samples.Python import HelloWorld HelloWorld ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `simulate` method. ###Code HelloWorld.simulate(pauli=qsharp.Pauli.Z) ###Output Hello, world! PauliZ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations. ###Code from qsharp.tomography import single_qubit_process_tomography ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown To use this, we define a new operation that takes a preparation and a measurement, then returns the result of performing that tomographic measurement on the noisy Hadamard operation that we defined in `Quantum.qs`. ###Code experiment = qsharp.compile(""" open Microsoft.Quantum.Samples.Python; open Microsoft.Quantum.Characterization; operation Experiment(prep : Pauli, meas : Pauli) : Result { return SingleQubitProcessTomographyMeasurement(prep, meas, NoisyHadamardChannel(0.1)); } """) ###Output _____no_output_____ ###Markdown Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(experiment, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code for component, version in sorted(qsharp.component_versions().items(), key=lambda x: x[0]): print(f"{component:20}{version}") import sys print(sys.version) ###Output 3.7.4 (default, Jul 17 2019, 23:33:46) [GCC 6.3.0 20170516] ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble ###Code import warnings warnings.simplefilter('ignore') ###Output _____no_output_____ ###Markdown We can enable Q support in Python by importing the `qsharp` package. ###Code import qsharp ###Output Preparing Q# environment... ###Markdown Once we do so, any Q source files in the current working directory are compiled, and their namespaces are made available as Python modules.For instance, the `Quantum.qs` source file provided with this sample implements a `HelloWorld` operation in the `Microsoft.Quantum.Samples.Python` Q namespace: ###Code with open('Quantum.qs') as f: print(f.read()) ###Output // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. namespace Microsoft.Quantum.Samples.Python { open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Preparation; function HelloWorld (pauli : Pauli) : Unit { Message($"Hello, world! {pauli}"); } operation NoisyHadamardChannelImpl (depol : Double, target : Qubit) : Unit { let idxAction = Random([1.0 - depol, depol]); if (idxAction == 0) { H(target); } else { PrepareSingleQubitIdentity(target); } } function NoisyHadamardChannel (depol : Double) : (Qubit => Unit) { return NoisyHadamardChannelImpl(depol, _); } } ###Markdown We can import this `HelloWorld` operation as though it was an ordinary Python function by using the Q namespace as a Python module: ###Code from Microsoft.Quantum.Samples.Python import HelloWorld HelloWorld ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `simulate` method. ###Code HelloWorld.simulate(pauli=qsharp.Pauli.Z) ###Output Hello, world! PauliZ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations. ###Code from qsharp.tomography import single_qubit_process_tomography ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown To use this, we define a new operation that takes a preparation and a measurement, then returns the result of performing that tomographic measurement on the noisy Hadamard operation that we defined in `Quantum.qs`. ###Code experiment = qsharp.compile(""" open Microsoft.Quantum.Samples.Python; open Microsoft.Quantum.Characterization; operation Experiment(prep : Pauli, meas : Pauli) : Result { return SingleQubitProcessTomographyMeasurement(prep, meas, NoisyHadamardChannel(0.1)); } """) ###Output _____no_output_____ ###Markdown Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(experiment, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code for component, version in sorted(qsharp.component_versions().items(), key=lambda x: x[0]): print(f"{component:20}{version}") import sys print(sys.version) ###Output 3.7.3 | packaged by conda-forge | (default, Jul 1 2019, 22:01:29) [MSC v.1900 64 bit (AMD64)] ###Markdown Quantum Process Tomography with Q and Python Abstract In this sample, we will demonstrate interoperability between Q and Python by using the QInfer and QuTiP libraries for Python to characterize and verify quantum processes implemented in Q.In particular, this sample will use *quantum process tomography* to learn about the behavior of a "noisy" Hadamard operation from the results of random Pauli measurements. Preamble ###Code import warnings warnings.simplefilter('ignore') ###Output _____no_output_____ ###Markdown We can enable Q support in Python by importing the `qsharp` package. ###Code import qsharp ###Output Preparing Q# environment... ###Markdown Once we do so, any Q source files in the current working directory are compiled, and their namespaces are made available as Python modules.For instance, the `Quantum.qs` source file provided with this sample implements a `HelloWorld` operation in the `Microsoft.Quantum.Samples.Python` Q namespace: ###Code with open('Quantum.qs') as f: print(f.read()) ###Output // Copyright (c) Microsoft Corporation. All rights reserved. // Licensed under the MIT License. namespace Microsoft.Quantum.Samples.Python { open Microsoft.Quantum.Intrinsic; open Microsoft.Quantum.Canon; open Microsoft.Quantum.Preparation; function HelloWorld (pauli : Pauli) : Unit { Message($"Hello, world! {pauli}"); } operation NoisyHadamardChannelImpl (depol : Double, target : Qubit) : Unit { let idxAction = Random([1.0 - depol, depol]); if (idxAction == 0) { H(target); } else { PrepareSingleQubitIdentity(target); } } function NoisyHadamardChannel (depol : Double) : (Qubit => Unit) { return NoisyHadamardChannelImpl(depol, _); } } ###Markdown We can import this `HelloWorld` operation as though it was an ordinary Python function by using the Q namespace as a Python module: ###Code from Microsoft.Quantum.Samples.Python import HelloWorld HelloWorld ###Output _____no_output_____ ###Markdown Once we've imported the new names, we can then ask our simulator to run each function and operation using the `simulate` method. ###Code HelloWorld.simulate(pauli=qsharp.Pauli.Z) ###Output Hello, world! PauliZ ###Markdown Tomography The `qsharp` interoperability package also comes with a `single_qubit_process_tomography` function which uses the QInfer library for Python to learn the channels corresponding to single-qubit Q operations. ###Code from qsharp.tomography import single_qubit_process_tomography ###Output _____no_output_____ ###Markdown Next, we import plotting support and the QuTiP library, since these will be helpful to us in manipulating the quantum objects returned by the quantum process tomography functionality that we call later. ###Code %matplotlib inline import matplotlib.pyplot as plt import qutip as qt qt.settings.colorblind_safe = True ###Output _____no_output_____ ###Markdown To use this, we define a new operation that takes a preparation and a measurement, then returns the result of performing that tomographic measurement on the noisy Hadamard operation that we defined in `Quantum.qs`. ###Code experiment = qsharp.compile(""" open Microsoft.Quantum.Samples.Python; open Microsoft.Quantum.Characterization; operation Experiment(prep : Pauli, meas : Pauli) : Result { return SingleQubitProcessTomographyMeasurement(prep, meas, NoisyHadamardChannel(0.1)); } """) ###Output _____no_output_____ ###Markdown Here, we ask for 10,000 measurements from the noisy Hadamard operation that we defined above. ###Code estimation_results = single_qubit_process_tomography(experiment, n_measurements=10000) ###Output Preparing tomography model... Performing tomography... ###Markdown To visualize the results, it's helpful to compare to the actual channel, which we can find exactly in QuTiP. ###Code depolarizing_channel = sum(map(qt.to_super, [qt.qeye(2), qt.sigmax(), qt.sigmay(), qt.sigmaz()])) / 4.0 actual_noisy_h = 0.1 * qt.to_choi(depolarizing_channel) + 0.9 * qt.to_choi(qt.hadamard_transform()) ###Output _____no_output_____ ###Markdown We then plot the estimated and actual channels as Hinton diagrams, showing how each acts on the Pauli operators $X$, $Y$ and $Z$. ###Code fig, (left, right) = plt.subplots(ncols=2, figsize=(12, 4)) plt.sca(left) plt.xlabel('Estimated', fontsize='x-large') qt.visualization.hinton(estimation_results['est_channel'], ax=left) plt.sca(right) plt.xlabel('Actual', fontsize='x-large') qt.visualization.hinton(actual_noisy_h, ax=right) ###Output _____no_output_____ ###Markdown We also obtain a wealth of other information as well, such as the covariance matrix over each parameter of the resulting channel.This shows us which parameters we are least certain about, as well as how those parameters are correlated with each other. ###Code plt.figure(figsize=(10, 10)) estimation_results['posterior'].plot_covariance() plt.xticks(rotation=90) ###Output _____no_output_____ ###Markdown Diagnostics ###Code for component, version in sorted(qsharp.component_versions().items(), key=lambda x: x[0]): print(f"{component:20}{version}") import sys print(sys.version) ###Output 3.7.6 (default, Jan 3 2020, 23:35:31) [GCC 8.3.0]
notebooks/test/path_simulation_analysis.ipynb
###Markdown Multi-Frame Motion Deblur Path AnalysisThis notebook generates a simulation object, solves the linear inverse problem, and analyzes the quality ofthe blur path. ###Code %matplotlib notebook %load_ext autoreload %autoreload 2 import numpy as np import scipy as sp import matplotlib.pyplot as plt import scipy.misc as misc import time import sys import itertools import math import imageio import skimage as sk # Libwallerlab imports from libwallerlab.algorithms import iterative as iterative from libwallerlab.opticsalgorithms.motiondeblur import blurkernel from libwallerlab.operators import operators as ops from libwallerlab.utilities import displaytools, iotools from libwallerlab.algorithms import objectivefunctions from libwallerlab.algorithms import regularizers from libwallerlab.operators import proximal as proxops from libwallerlab.utilities.opticstools import Ft, iFt ###Output _____no_output_____ ###Markdown Flow of Notebook1. Generate Object2. Generate Measurements (Images)3. Solve Inverse Problem4. Save measurements and blur kernels in accurate libwallerlab.utilities.iotools.Dataset format To-Do- // linear_y kernels don't extend whole way- // multi-pass kernels- // Add Sarah's PGD kernel optimization methods- // Find out why result is not converging to correct values- // save/load to lwl dataset format- Add nesterov acceleration- Implement CG- Implement FISTA- clean up blurkernel.py Define Motion Blur Parameters ###Code # Image to use when generating object object_file_name = '../../../../../common/test_images/brain_to_scan.png' # Color channel to use when generating object object_color_channel = 2 # Illumination vector generation type blur_vector_type = 'random_phase' # 'random_phase' # can be strobe, constant, random, random_phase, projected_gradient_descent # Motion scanning type scan_type = 'raster' # can be linear_x, linear_y, raster, (add more here) # Flag to scan entire object in multiple times (True) or in individual segments of a single pass (False) full_object_multi_pass = 0 # Method of padding object (for convolution support) object_edge_pad_type = 'mean' # Use spectrally-variant blur kernel (single-led flickering) ## NOT WORKING YET ## use_spectrally_variant_blur = False # Illumination throughput coefficient ( \in [0,1] ) throughput_coefficient = 0.5 # Image size to simulate image_size = np.array([32, 32]) # Object size to image size ratio (>=1, integer) object_size_ratio = 3 # Redundancy in measurements (> 1 means extra pixels are recorded, <1 means not enough) measurement_redundancy = 1 # Directory to save output in simulation_output_dir = '/home/sarah/Dropbox/deblurring/COSI/data/simulations/blurred' # '/Users/zfphil/develop/datasets/' ###Output _____no_output_____ ###Markdown Generate Object Load Object ###Code # Load object brain = imageio.imread(object_file_name) # Generate object with correct size object_size_0 = np.round(np.array([object_size_ratio * image_size[0], object_size_ratio * image_size[1] * (brain.shape[1] / brain.shape[0])])).astype(np.int) # image_size #* 3 # brain_cropped = misc.imresize(brain, size=object_size_0) / 255. brain_cropped = misc.imresize(brain, size=object_size_0) / 255. # Determine object size if scan_type == 'linear_y': brain_cropped = brain_cropped[:image_size[0]*object_size_ratio, :image_size[1]] elif scan_type in ['linear', 'linear_x']: brain_cropped = brain_cropped[:image_size[0], :image_size[1]*object_size_ratio] elif scan_type in ['raster', 'raster_major_both', 'raster_major_y', 'raster_2x']: brain_cropped = brain_cropped[:image_size[0]*object_size_ratio, :image_size[1]*object_size_ratio] # Redefine object size # new_size = np.round([object_size_0[0], object_size_0[0] * (brain.shape[1] / brain.shape[0])]).astype(np.int) object_color_channel = 2 # Choose one of RGB channels (TODO: implement color) object_true = brain_cropped[:, :, object_color_channel] # remove alpha object_size_0 = object_true.shape[:2] print("Object size is %d x %d" % (object_size_0[0], object_size_0[1])) # Plot plt.figure(figsize = (5,2)) plt.imshow(object_true, cmap='gray') # plt.axis('off') ###Output Object size is 96 x 96 ###Markdown Generate Blur Pathway ###Code point_list_segmented object_size_0 point_list_segmented = blurkernel.genRasterMotionPathway(object_size_0, image_size) # Generate illumination vectors using quick and cheap optimization blur_vector_type = 'random_phase' illum_vector_list = [] for kernel_index, positions in enumerate(point_list_segmented): if blur_vector_type == 'constant': illum_vector_list.append(np.ones(positions.shape[0])) elif blur_vector_type == 'strobe': illum_vector_list.append(np.zeros(positions.shape[0])) illum_vector_list[-1][positions.shape[0] // 2] = throughput_coefficient elif blur_vector_type == 'random': illum_vector_list.append(np.random.rand(positions.shape[0])) illum_vector_list[-1] = illum_vector_list[-1] / np.sum(illum_vector_list[-1]) * throughput_coefficient elif blur_vector_type == 'random_phase': k, v = blurkernel.genIllum_pseudoRandom_len(len(positions)) illum_vector_list.append(v) elif blur_vector_type == 'projected_gradient_descent': blur_kernel_fourier = blurkernel.positionListToBlurKernelMap(object_size_0, positions, return_fourier=True) def blurMapCol(i): return (blur_kernel_fourier[i]).reshape(-1) #/ len(positions) result = blurkernel.genIllum(blurMapCol, len(blur_kernel_fourier), maxiter=100, throughputCoeff=throughput_coefficient, resultType='final', verbose=False) illum_vector_list.append(result['xopt']) print('kernel %d has length %d and condition number %.2f' % (kernel_index, len(positions), result['fopt'])) else: raise NotImplementedError('Illumination vector type %s is not implemented.' % blur_vector_type) print(len(point_list_segmented)) # Generate blur kernel maps for each frame blur_kernel_list = np.zeros((len(point_list_segmented), object_size_0[0], object_size_0[1])) for frame_index in range(len(illum_vector_list)): for position_index, position in enumerate(point_list_segmented[frame_index]): blur_kernel_list[frame_index, position[0], position[1]] = illum_vector_list[frame_index][position_index] # Define cropped object sizes and crop true image object_size = blur_kernel_list[0].shape # Show blur kernels displaytools.show3dArray(blur_kernel_list, figsize=(8,6)) plt.matshow(sum(blur_kernel_list)) ###Output _____no_output_____ ###Markdown Quality of Blur Kernel ###Code from libwallerlab.utilities.opticstools import iFt, Ft # Generate windowed coverage for each frame midpoint_list = [] weighted_midpoint_list = [] for frame_index, point_list in enumerate(point_list_segmented): nonzero_illum = np.where(illum_vector_list[frame_index].reshape(-1) != 0) included_point_list = point_list[np.min(nonzero_illum):(np.max(nonzero_illum)+1)] # weighted_midpoint_list.append(np.round(np.average(point_list, axis=0, \ # weights=illum_vector_list[frame_index].reshape(-1)).astype(np.int))) midpoint_list.append(np.round(np.mean(point_list, axis=0)).astype(np.int)) weighted_midpoint_list.append(np.round(np.mean(included_point_list, axis=0)).astype(np.int)) midpoint_kernel_list = np.zeros((len(midpoint_list), object_size_0[0], object_size_0[1])) weighted_midpoint_kernel_list = np.zeros((len(midpoint_list), object_size_0[0], object_size_0[1])) for frame_index in range(len(illum_vector_list)): position = midpoint_list[frame_index] weighted_position = weighted_midpoint_list[frame_index] midpoint_kernel_list[frame_index, position[0], position[1]] = 1 weighted_midpoint_kernel_list[frame_index, weighted_position[0], weighted_position[1]] = 1 _, object_support_mask = blurkernel.genConvolutionSupportList(midpoint_kernel_list, image_size, threshold=1e-2) _, object_support_mask_weighted = blurkernel.genConvolutionSupportList(weighted_midpoint_kernel_list, image_size, threshold=1e-2) displaytools.show3dArray(object_support_mask_weighted, figsize=(8,6)) sv_spectrum = [] for blur_kernel in blur_kernel_list: svs = np.abs(Ft(blur_kernel.astype(np.complex64)))**2 sv_spectrum.append(svs) np.mean(point_list_segmented[2],axis=0) print(midpoint_list) plt.matshow(sum(object_support_mask)) ## spatially varying singular value list spatial_svs = np.zeros([object_size[0], object_size[1], np.prod(object_size)]) for frame_index in range(len(blur_kernel_list)): spatial_svs[object_support_mask[frame_index],:] += sv_spectrum[frame_index].reshape(-1) spatial_svs_weighted = np.zeros([object_size[0], object_size[1], np.prod(object_size)]) for frame_index in range(len(blur_kernel_list)): spatial_svs_weighted[object_support_mask_weighted[frame_index],:] += sv_spectrum[frame_index].reshape(-1) from matplotlib.colors import LogNorm spatial_min_sv = np.amin(spatial_svs, axis=2) spatial_max_sv = np.amax(spatial_svs, axis=2) spatial_cond = np.divide(spatial_max_sv, spatial_min_sv) spatial_min_sv_weighted = np.amin(spatial_svs_weighted, axis=2) spatial_max_sv_weighted = np.amax(spatial_svs_weighted, axis=2) spatial_cond_weighted = np.divide(spatial_max_sv_weighted, spatial_min_sv_weighted) for toplot in ['spatial_min_sv', 'spatial_cond_weighted']: plt.figure(); plt.imshow(eval(toplot), cmap='viridis',norm=LogNorm()); plt.colorbar(); plt.tick_params(labelbottom='off',labelleft='off'); plt.title(toplot) ###Output /home/sarah/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: RuntimeWarning: invalid value encountered in true_divide /home/sarah/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:9: RuntimeWarning: invalid value encountered in true_divide ###Markdown Confirmation of Quality via Simulation: Measurement generations ###Code noise_magnitude = 0# 1e-8 noise_type = 'shot' # Determine maximum kernel support in x/y for all blur kernels in blur_kernel_list. This is how much we will pad our object by. support_size_list = [] for blur_kernel in blur_kernel_list: # support_size_list.append(blurkernel.getBoundingBox(blur_kernel, return_roi=True).size()) support_size_list.append(blurkernel.getPositionListBoundingBox(point_list_segmented).size()) max_kernel_support = np.max(np.asarray(support_size_list),axis=0) # Generate pad operator for object support object_size_padded = (np.asarray(object_size) + max_kernel_support).tolist() # Add to object_size W_object_support = ops.Crop(object_size_padded, object_size, crop_start=(max_kernel_support[0] // 2, max_kernel_support[1] // 2)) # Add support # Pad object with random values (to simulate an extended object) object_extended = W_object_support.H * object_true.reshape(-1).astype(np.complex64) if object_edge_pad_type == 'random': object_extended += (1. - W_object_support.H * np.ones(object_true.size, dtype=np.complex64)) * np.random.rand(np.prod(object_size_padded)) elif object_edge_pad_type == 'zeros': object_extended += (1. - W_object_support.H * np.zeros(object_true.size, dtype=np.complex64)) elif object_edge_pad_type == 'ones': object_extended += (1. - W_object_support.H * np.ones(object_true.size, dtype=np.complex64)) elif object_edge_pad_type == 'mean': object_extended += (1. - W_object_support.H * np.mean(object_true) * np.ones(object_true.size, dtype=np.complex64)) elif object_edge_pad_type == None: object_extended = object_true object_size_padded = object_true.shape W_object_support = ops.Identity(object_true.shape) # Define crop operator for object to image W = ops.Crop(object_size, image_size) A_list = [] y_list = [] C_list = [] y_list_uncropped = [] # Generate forward model operators for each blur kernel for blur_kernel_index, blur_kernel in enumerate(blur_kernel_list): blur_kernel = blur_kernel.astype(np.complex64) / np.sum(np.abs(blur_kernel.astype(np.complex64))) # 2D Convolution Operator with the given kernel C = ops.Convolution(object_size_padded, (W_object_support.H * blur_kernel.reshape(-1)).reshape(object_size_padded)) C_list.append(C) # Forward operator with image crop and full object crop A_list.append(W * W_object_support * C) # Generate measurements using padded convolution y_list.append(A_list[-1] * object_extended.reshape(-1).astype(np.complex64)) # Store uncropped measurements so we can observe what the padding is actually doing y_list_uncropped.append(W_object_support * C * object_extended.reshape(-1).astype(np.complex64)) # Show first three blur kernels, uncropped measurements, and cropped measurements plt.figure(figsize=(8,6)) nshow = min(3, len(blur_kernel_list)) for i in range(nshow): plt.subplot(3, nshow, i+1) plt.imshow(blur_kernel_list[i], interpolation='none') plt.title('Measurement '+str(i)) plt.ylabel('Blur Kernel') plt.subplot(3, nshow, nshow + i + 1) plt.imshow(np.abs(y_list_uncropped[i].reshape(object_size))) plt.ylabel('Uncropped y') plt.subplot(3, nshow, nshow*2 + i + 1) plt.imshow(np.abs(y_list[i].reshape(image_size))) plt.ylabel('Cropped y') ###Output _____no_output_____ ###Markdown Recovery via Gradient Descent ###Code y_list_noise = [] for y in y_list: noise = noise_magnitude * np.random.normal(size=y.shape) if noise_type == 'shot': noise = noise * y y_list_noise.append((y + noise).astype(np.float32)) # Generate measurements from image list y_full = np.empty(0, dtype=np.complex64) for y in y_list_noise: y_full = np.append(y_full, y) # Normalize measurements y_mean = np.mean(np.abs(y_full)) y_full /= y_mean # Generate full A Operator A_full = ops.Vstack(Operators=A_list) # Initialization: choosing a "good" coefficient value will help in convergence initialization = np.ones(object_size_padded, dtype=np.complex64).reshape(-1) # Define cost function objective = objectivefunctions.L2(A_full, y_full) solve_method = 'gd' display_type = 'text' # Solve linear inverse problem if solve_method is 'gd': iteration_count = 300 object_recovered = iterative.GradientDescent(objective).solve(initialization=initialization, step_size=1, iteration_count=iteration_count, display_type=display_type, display_iteration_delta=(iteration_count // 10)) elif solve_method is 'cg': iteration_count = 300 object_recovered = iterative.ConjugateGradient(A_full, y_full).solve(initialization=initialization, iteration_count=iteration_count, display_type=display_type, use_log_y=False, use_log_x=False, debug=True, display_iteration_delta=(iteration_count // 10)) elif solve_method is 'fista': iteration_count = 300 object_recovered = iterative.Fista(objective, proximal_operator=proxops.positivity).solve(initialization=initialization, iteration_count=iteration_count, display_type=display_type, use_log_y=True, use_log_x=False, debug=True, display_iteration_delta=(iteration_count // 10)) ###Output /home/sarah/anaconda3/lib/python3.5/site-packages/ipykernel/__main__.py:5: ComplexWarning: Casting complex values to real discards the imaginary part ###Markdown Show Results ###Code object_recovered_crop = (W_object_support * object_recovered).reshape(object_size) # normalize true object (because zero-frequency is irrelevent and recon is zero-mean) object_true_normalized = object_true / np.mean(object_true) object_recovered_crop = object_recovered_crop / np.mean(object_recovered_crop) # Calculate SSE print('Recovery SSE is %.2f' % np.sum(np.abs(object_true_normalized - object_recovered_crop) ** 2)) plt.figure(figsize=(12, 4)) plt.subplot(1,3,1); i_true = plt.imshow(np.abs(object_true_normalized), cmap='gray'); plt.title('Ground Truth') plt.subplot(1,3,2); i_rec = plt.imshow(np.abs(object_recovered_crop), cmap='gray'); plt.title('Recovered');# i_rec.set_clim(i_true.get_clim()) plt.subplot(1,3,3); plt.imshow(np.abs(object_true_normalized - object_recovered_crop), cmap='gray'); plt.colorbar(); plt.title('Difference') plt.figure(figsize=(12, 4)) plt.subplot(1,3,1); i_true = plt.imshow(np.abs(spatial_cond_weighted), cmap='viridis', norm=LogNorm()); plt.title('condition #'); plt.colorbar(); plt.subplot(1,3,2); i_rec = plt.imshow(np.abs(spatial_min_sv_weighted), cmap='viridis', norm=LogNorm()); plt.title('min sv'); plt.colorbar(); plt.subplot(1,3,3); plt.imshow(np.abs(object_true_normalized - object_recovered_crop), cmap='viridis'); plt.colorbar(); plt.title('Difference') ###Output _____no_output_____
Python/HoloViews/holoviews_demo.ipynb
###Markdown HoloViews examples Following the tutorial First, let's import HoloViews, and make sure we can use it inline in this notebook. ###Code import holoviews as hv import numpy as np %load_ext holoviews.ipython ###Output _____no_output_____ ###Markdown Define a sine function with frequency $f$ and phase $\phi$: ###Code def sine(x, phase=0.0, freq=100.0): return np.sin(freq*x + phase) ###Output _____no_output_____ ###Markdown Define arrays of phases and frequencies to explore. ###Code phases = np.linspace(0.0, 2*np.pi, num=11) freqs = np.linspace(50.0, 150.0, 5) ###Output _____no_output_____ ###Markdown Sample the function in 2D over a grid. ###Code dist = np.linspace(-0.5, 0.5, 202) x, y = np.meshgrid(dist, dist) grid = x**2 + y**2 ###Output _____no_output_____ ###Markdown Now create a HoloViews object out of data. ###Code freq1 = hv.Image(sine(grid, freq=50)) ###Output _____no_output_____ ###Markdown Visualize the object. ###Code freq1 ###Output _____no_output_____ ###Markdown Also show the curve of sine as a function of the distance. ###Code freq1 + hv.Curve(zip(dist, sine(dist**2, freq=50)), kdims=['$r$'], vdims=['amplitude']) ###Output _____no_output_____ ###Markdown Define dimensions and keys for high-dimensional HoloView. ###Code dimensions = ['$\phi$', '$f$'] keys = [(p, f) for p in phases for f in freqs] items = [(k, hv.Image(sine(grid, *k), vdims=['amplitude'])) for k in keys] circular_wave = hv.HoloMap(items, kdims=dimensions) circular_wave ###Output _____no_output_____ ###Markdown Some overlays Define two functions f and g. ###Code def f(x): return np.cos(x)*np.exp(-0.1*x) def g(x): return np.sin(x)*np.exp(-0.1*x) ###Output _____no_output_____ ###Markdown Create x-range. ###Code x = np.linspace(0.0, 50.0, 1001) ###Output _____no_output_____ ###Markdown Compute the curves for functions f and g. ###Code f_curve = hv.Curve((x, f(x)), label=r'$e^{-0.1x} \cos x$') g_curve = hv.Curve((x, g(x)), label=r'$e^{-0.1x} \sin x$') ###Output _____no_output_____ ###Markdown Show the curves side by side. ###Code %%output size=150 f_curve + g_curve ###Output _____no_output_____ ###Markdown Show the curves superimposed. ###Code %%output size=150 f_curve * g_curve ###Output _____no_output_____ ###Markdown Plotting numpy arrays ###Code x = np.linspace(-10.0, 10.0, 101) y = np.cos(2*np.pi*x)*np.exp(-0.3*x) ###Output _____no_output_____ ###Markdown Plotting numpy arrays as a tuple is more intuitive than zipping the arrays. ###Code %%output size=200 hv.Curve((x, y)) ###Output _____no_output_____
notebooks/11_training_deep_neural_networks.ipynb
###Markdown **Chapter 11 – Training Deep Neural Networks** _This notebook contains all the sample code and solutions to the exercises in chapter 11._ Setup First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0. ###Code # Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass # TensorFlow ≥2.0 is required import tensorflow as tf from tensorflow import keras assert tf.__version__ >= "2.0" %load_ext tensorboard # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "deep" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) ###Output _____no_output_____ ###Markdown Vanishing/Exploding Gradients Problem ###Code def logit(z): return 1 / (1 + np.exp(-z)) z = np.linspace(-5, 5, 200) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([-5, 5], [1, 1], 'k--') plt.plot([0, 0], [-0.2, 1.2], 'k-') plt.plot([-5, 5], [-3/4, 7/4], 'g--') plt.plot(z, logit(z), "b-", linewidth=2) props = dict(facecolor='black', shrink=0.1) plt.annotate('Saturating', xytext=(3.5, 0.7), xy=(5, 1), arrowprops=props, fontsize=14, ha="center") plt.annotate('Saturating', xytext=(-3.5, 0.3), xy=(-5, 0), arrowprops=props, fontsize=14, ha="center") plt.annotate('Linear', xytext=(2, 0.2), xy=(0, 0.5), arrowprops=props, fontsize=14, ha="center") plt.grid(True) plt.title("Sigmoid activation function", fontsize=14) plt.axis([-5, 5, -0.2, 1.2]) save_fig("sigmoid_saturation_plot") plt.show() ###Output Saving figure sigmoid_saturation_plot ###Markdown Xavier and He Initialization ###Code [name for name in dir(keras.initializers) if not name.startswith("_")] keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal") init = keras.initializers.VarianceScaling(scale=2., mode='fan_avg', distribution='uniform') keras.layers.Dense(10, activation="relu", kernel_initializer=init) ###Output _____no_output_____ ###Markdown Nonsaturating Activation Functions Leaky ReLU ###Code def leaky_relu(z, alpha=0.01): return np.maximum(alpha*z, z) plt.plot(z, leaky_relu(z, 0.05), "b-", linewidth=2) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([0, 0], [-0.5, 4.2], 'k-') plt.grid(True) props = dict(facecolor='black', shrink=0.1) plt.annotate('Leak', xytext=(-3.5, 0.5), xy=(-5, -0.2), arrowprops=props, fontsize=14, ha="center") plt.title("Leaky ReLU activation function", fontsize=14) plt.axis([-5, 5, -0.5, 4.2]) save_fig("leaky_relu_plot") plt.show() [m for m in dir(keras.activations) if not m.startswith("_")] [m for m in dir(keras.layers) if "relu" in m.lower()] ###Output _____no_output_____ ###Markdown Let's train a neural network on Fashion MNIST using the Leaky ReLU: ###Code (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.fashion_mnist.load_data() X_train_full = X_train_full / 255.0 X_test = X_test / 255.0 X_valid, X_train = X_train_full[:5000], X_train_full[5000:] y_valid, y_train = y_train_full[:5000], y_train_full[5000:] tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, kernel_initializer="he_normal"), keras.layers.LeakyReLU(), keras.layers.Dense(100, kernel_initializer="he_normal"), keras.layers.LeakyReLU(), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1/1719 [..............................] - ETA: 0s - loss: 2.3997 - accuracy: 0.1562WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_train_batch_end` time: 0.0091s). Check your callbacks. 1719/1719 [==============================] - 2s 1ms/step - loss: 1.2819 - accuracy: 0.6229 - val_loss: 0.8886 - val_accuracy: 0.7160 Epoch 2/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.7955 - accuracy: 0.7361 - val_loss: 0.7130 - val_accuracy: 0.7656 Epoch 3/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.6816 - accuracy: 0.7721 - val_loss: 0.6427 - val_accuracy: 0.7900 Epoch 4/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.6217 - accuracy: 0.7944 - val_loss: 0.5900 - val_accuracy: 0.8064 Epoch 5/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5832 - accuracy: 0.8074 - val_loss: 0.5582 - val_accuracy: 0.8200 Epoch 6/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5553 - accuracy: 0.8156 - val_loss: 0.5350 - val_accuracy: 0.8238 Epoch 7/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5339 - accuracy: 0.8224 - val_loss: 0.5156 - val_accuracy: 0.8302 Epoch 8/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5173 - accuracy: 0.8272 - val_loss: 0.5079 - val_accuracy: 0.8284 Epoch 9/10 1719/1719 [==============================] - ETA: 0s - loss: 0.5044 - accuracy: 0.82 - 2s 1ms/step - loss: 0.5041 - accuracy: 0.8290 - val_loss: 0.4895 - val_accuracy: 0.8386 Epoch 10/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4924 - accuracy: 0.8320 - val_loss: 0.4817 - val_accuracy: 0.8396 ###Markdown Now let's try PReLU: ###Code tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, kernel_initializer="he_normal"), keras.layers.PReLU(), keras.layers.Dense(100, kernel_initializer="he_normal"), keras.layers.PReLU(), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 2s 1ms/step - loss: 1.3461 - accuracy: 0.6209 - val_loss: 0.9255 - val_accuracy: 0.7186 Epoch 2/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.8197 - accuracy: 0.7355 - val_loss: 0.7305 - val_accuracy: 0.7630 Epoch 3/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.6966 - accuracy: 0.7694 - val_loss: 0.6565 - val_accuracy: 0.7880 Epoch 4/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.6331 - accuracy: 0.7909 - val_loss: 0.6003 - val_accuracy: 0.8048 Epoch 5/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5917 - accuracy: 0.8057 - val_loss: 0.5656 - val_accuracy: 0.8180 Epoch 6/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5618 - accuracy: 0.8136 - val_loss: 0.5406 - val_accuracy: 0.8238 Epoch 7/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5390 - accuracy: 0.8205 - val_loss: 0.5196 - val_accuracy: 0.8314 Epoch 8/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5213 - accuracy: 0.8257 - val_loss: 0.5113 - val_accuracy: 0.8318 Epoch 9/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5070 - accuracy: 0.8288 - val_loss: 0.4916 - val_accuracy: 0.8380 Epoch 10/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4945 - accuracy: 0.8315 - val_loss: 0.4826 - val_accuracy: 0.8396 ###Markdown ELU ###Code def elu(z, alpha=1): return np.where(z < 0, alpha * (np.exp(z) - 1), z) plt.plot(z, elu(z), "b-", linewidth=2) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([-5, 5], [-1, -1], 'k--') plt.plot([0, 0], [-2.2, 3.2], 'k-') plt.grid(True) plt.title(r"ELU activation function ($\alpha=1$)", fontsize=14) plt.axis([-5, 5, -2.2, 3.2]) save_fig("elu_plot") plt.show() ###Output Saving figure elu_plot ###Markdown Implementing ELU in TensorFlow is trivial, just specify the activation function when building each layer: ###Code keras.layers.Dense(10, activation="elu") ###Output _____no_output_____ ###Markdown SELU This activation function was proposed in this [great paper](https://arxiv.org/pdf/1706.02515.pdf) by Günter Klambauer, Thomas Unterthiner and Andreas Mayr, published in June 2017. During training, a neural network composed exclusively of a stack of dense layers using the SELU activation function and LeCun initialization will self-normalize: the output of each layer will tend to preserve the same mean and variance during training, which solves the vanishing/exploding gradients problem. As a result, this activation function outperforms the other activation functions very significantly for such neural nets, so you should really try it out. Unfortunately, the self-normalizing property of the SELU activation function is easily broken: you cannot use ℓ1 or ℓ2 regularization, regular dropout, max-norm, skip connections or other non-sequential topologies (so recurrent neural networks won't self-normalize). However, in practice it works quite well with sequential CNNs. If you break self-normalization, SELU will not necessarily outperform other activation functions. ###Code from scipy.special import erfc # alpha and scale to self normalize with mean 0 and standard deviation 1 # (see equation 14 in the paper): alpha_0_1 = -np.sqrt(2 / np.pi) / (erfc(1/np.sqrt(2)) * np.exp(1/2) - 1) scale_0_1 = (1 - erfc(1 / np.sqrt(2)) * np.sqrt(np.e)) * np.sqrt(2 * np.pi) * (2 * erfc(np.sqrt(2))*np.e**2 + np.pi*erfc(1/np.sqrt(2))**2*np.e - 2*(2+np.pi)*erfc(1/np.sqrt(2))*np.sqrt(np.e)+np.pi+2)**(-1/2) def selu(z, scale=scale_0_1, alpha=alpha_0_1): return scale * elu(z, alpha) plt.plot(z, selu(z), "b-", linewidth=2) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([-5, 5], [-1.758, -1.758], 'k--') plt.plot([0, 0], [-2.2, 3.2], 'k-') plt.grid(True) plt.title("SELU activation function", fontsize=14) plt.axis([-5, 5, -2.2, 3.2]) save_fig("selu_plot") plt.show() ###Output Saving figure selu_plot ###Markdown By default, the SELU hyperparameters (`scale` and `alpha`) are tuned in such a way that the mean output of each neuron remains close to 0, and the standard deviation remains close to 1 (assuming the inputs are standardized with mean 0 and standard deviation 1 too). Using this activation function, even a 1,000 layer deep neural network preserves roughly mean 0 and standard deviation 1 across all layers, avoiding the exploding/vanishing gradients problem: ###Code np.random.seed(42) Z = np.random.normal(size=(500, 100)) # standardized inputs for layer in range(1000): W = np.random.normal(size=(100, 100), scale=np.sqrt(1 / 100)) # LeCun initialization Z = selu(np.dot(Z, W)) means = np.mean(Z, axis=0).mean() stds = np.std(Z, axis=0).mean() if layer % 100 == 0: print("Layer {}: mean {:.2f}, std deviation {:.2f}".format(layer, means, stds)) ###Output Layer 0: mean -0.00, std deviation 1.00 Layer 100: mean 0.02, std deviation 0.96 Layer 200: mean 0.01, std deviation 0.90 Layer 300: mean -0.02, std deviation 0.92 Layer 400: mean 0.05, std deviation 0.89 Layer 500: mean 0.01, std deviation 0.93 Layer 600: mean 0.02, std deviation 0.92 Layer 700: mean -0.02, std deviation 0.90 Layer 800: mean 0.05, std deviation 0.83 Layer 900: mean 0.02, std deviation 1.00 ###Markdown Using SELU is easy: ###Code keras.layers.Dense(10, activation="selu", kernel_initializer="lecun_normal") ###Output _____no_output_____ ###Markdown Let's create a neural net for Fashion MNIST with 100 hidden layers, using the SELU activation function: ###Code np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28, 28])) model.add(keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal")) for layer in range(99): model.add(keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal")) model.add(keras.layers.Dense(10, activation="softmax")) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) ###Output _____no_output_____ ###Markdown Now let's train it. Do not forget to scale the inputs to mean 0 and standard deviation 1: ###Code pixel_means = X_train.mean(axis=0, keepdims=True) pixel_stds = X_train.std(axis=0, keepdims=True) X_train_scaled = (X_train - pixel_means) / pixel_stds X_valid_scaled = (X_valid - pixel_means) / pixel_stds X_test_scaled = (X_test - pixel_means) / pixel_stds history = model.fit(X_train_scaled, y_train, epochs=5, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/5 1719/1719 [==============================] - 13s 7ms/step - loss: 1.1407 - accuracy: 0.5672 - val_loss: 0.7427 - val_accuracy: 0.7370 Epoch 2/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.6671 - accuracy: 0.7625 - val_loss: 0.5699 - val_accuracy: 0.7966 Epoch 3/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.5736 - accuracy: 0.7926 - val_loss: 0.5386 - val_accuracy: 0.8090 Epoch 4/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.5173 - accuracy: 0.8146 - val_loss: 0.4749 - val_accuracy: 0.8326 Epoch 5/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.5629 - accuracy: 0.8031 - val_loss: 0.6033 - val_accuracy: 0.7966 ###Markdown Now look at what happens if we try to use the ReLU activation function instead: ###Code np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28, 28])) model.add(keras.layers.Dense(300, activation="relu", kernel_initializer="he_normal")) for layer in range(99): model.add(keras.layers.Dense(100, activation="relu", kernel_initializer="he_normal")) model.add(keras.layers.Dense(10, activation="softmax")) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train_scaled, y_train, epochs=5, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/5 1719/1719 [==============================] - 12s 7ms/step - loss: 1.8008 - accuracy: 0.2679 - val_loss: 1.3492 - val_accuracy: 0.3830 Epoch 2/5 1719/1719 [==============================] - 12s 7ms/step - loss: 1.1807 - accuracy: 0.5023 - val_loss: 0.8959 - val_accuracy: 0.6520 Epoch 3/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.9112 - accuracy: 0.6312 - val_loss: 0.8386 - val_accuracy: 0.6718 Epoch 4/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.8412 - accuracy: 0.6644 - val_loss: 0.7453 - val_accuracy: 0.7004 Epoch 5/5 1719/1719 [==============================] - 12s 7ms/step - loss: 0.7553 - accuracy: 0.7056 - val_loss: 0.6965 - val_accuracy: 0.7288 ###Markdown Not great at all, we suffered from the vanishing/exploding gradients problem. Batch Normalization ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.BatchNormalization(), keras.layers.Dense(300, activation="relu"), keras.layers.BatchNormalization(), keras.layers.Dense(100, activation="relu"), keras.layers.BatchNormalization(), keras.layers.Dense(10, activation="softmax") ]) model.summary() bn1 = model.layers[1] [(var.name, var.trainable) for var in bn1.variables] bn1.updates model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.8750 - accuracy: 0.7123 - val_loss: 0.5526 - val_accuracy: 0.8230 Epoch 2/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.5753 - accuracy: 0.8032 - val_loss: 0.4725 - val_accuracy: 0.8472 Epoch 3/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.5190 - accuracy: 0.8205 - val_loss: 0.4376 - val_accuracy: 0.8554 Epoch 4/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4827 - accuracy: 0.8322 - val_loss: 0.4152 - val_accuracy: 0.8598 Epoch 5/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4565 - accuracy: 0.8409 - val_loss: 0.3997 - val_accuracy: 0.8638 Epoch 6/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4398 - accuracy: 0.8475 - val_loss: 0.3867 - val_accuracy: 0.8694 Epoch 7/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4242 - accuracy: 0.8515 - val_loss: 0.3763 - val_accuracy: 0.8702 Epoch 8/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4143 - accuracy: 0.8541 - val_loss: 0.3712 - val_accuracy: 0.8736 Epoch 9/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4023 - accuracy: 0.8582 - val_loss: 0.3630 - val_accuracy: 0.8752 Epoch 10/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.3915 - accuracy: 0.8623 - val_loss: 0.3573 - val_accuracy: 0.8760 ###Markdown Sometimes applying BN before the activation function works better (there's a debate on this topic). Moreover, the layer before a `BatchNormalization` layer does not need to have bias terms, since the `BatchNormalization` layer some as well, it would be a waste of parameters, so you can set `use_bias=False` when creating those layers: ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.BatchNormalization(), keras.layers.Dense(300, use_bias=False), keras.layers.BatchNormalization(), keras.layers.Activation("relu"), keras.layers.Dense(100, use_bias=False), keras.layers.BatchNormalization(), keras.layers.Activation("relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 3s 2ms/step - loss: 1.0317 - accuracy: 0.6757 - val_loss: 0.6767 - val_accuracy: 0.7816 Epoch 2/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.6790 - accuracy: 0.7792 - val_loss: 0.5566 - val_accuracy: 0.8180 Epoch 3/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.5960 - accuracy: 0.8037 - val_loss: 0.5007 - val_accuracy: 0.8360 Epoch 4/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.5447 - accuracy: 0.8193 - val_loss: 0.4666 - val_accuracy: 0.8448 Epoch 5/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.5109 - accuracy: 0.8278 - val_loss: 0.4434 - val_accuracy: 0.8534 Epoch 6/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4898 - accuracy: 0.8337 - val_loss: 0.4263 - val_accuracy: 0.8546 Epoch 7/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4712 - accuracy: 0.8398 - val_loss: 0.4130 - val_accuracy: 0.8570 Epoch 8/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4560 - accuracy: 0.8440 - val_loss: 0.4035 - val_accuracy: 0.8606 Epoch 9/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4441 - accuracy: 0.8473 - val_loss: 0.3942 - val_accuracy: 0.8642 Epoch 10/10 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4332 - accuracy: 0.8505 - val_loss: 0.3874 - val_accuracy: 0.8662 ###Markdown Gradient Clipping All Keras optimizers accept `clipnorm` or `clipvalue` arguments: ###Code optimizer = keras.optimizers.SGD(clipvalue=1.0) optimizer = keras.optimizers.SGD(clipnorm=1.0) ###Output _____no_output_____ ###Markdown Reusing Pretrained Layers Reusing a Keras model Let's split the fashion MNIST training set in two:* `X_train_A`: all images of all items except for sandals and shirts (classes 5 and 6).* `X_train_B`: a much smaller training set of just the first 200 images of sandals or shirts.The validation set and the test set are also split this way, but without restricting the number of images.We will train a model on set A (classification task with 8 classes), and try to reuse it to tackle set B (binary classification). We hope to transfer a little bit of knowledge from task A to task B, since classes in set A (sneakers, ankle boots, coats, t-shirts, etc.) are somewhat similar to classes in set B (sandals and shirts). However, since we are using `Dense` layers, only patterns that occur at the same location can be reused (in contrast, convolutional layers will transfer much better, since learned patterns can be detected anywhere on the image, as we will see in the CNN chapter). ###Code def split_dataset(X, y): y_5_or_6 = (y == 5) | (y == 6) # sandals or shirts y_A = y[~y_5_or_6] y_A[y_A > 6] -= 2 # class indices 7, 8, 9 should be moved to 5, 6, 7 y_B = (y[y_5_or_6] == 6).astype(np.float32) # binary classification task: is it a shirt (class 6)? return ((X[~y_5_or_6], y_A), (X[y_5_or_6], y_B)) (X_train_A, y_train_A), (X_train_B, y_train_B) = split_dataset(X_train, y_train) (X_valid_A, y_valid_A), (X_valid_B, y_valid_B) = split_dataset(X_valid, y_valid) (X_test_A, y_test_A), (X_test_B, y_test_B) = split_dataset(X_test, y_test) X_train_B = X_train_B[:200] y_train_B = y_train_B[:200] X_train_A.shape X_train_B.shape y_train_A[:30] y_train_B[:30] tf.random.set_seed(42) np.random.seed(42) model_A = keras.models.Sequential() model_A.add(keras.layers.Flatten(input_shape=[28, 28])) for n_hidden in (300, 100, 50, 50, 50): model_A.add(keras.layers.Dense(n_hidden, activation="selu")) model_A.add(keras.layers.Dense(8, activation="softmax")) model_A.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_A.fit(X_train_A, y_train_A, epochs=20, validation_data=(X_valid_A, y_valid_A)) model_A.save("my_model_A.h5") model_B = keras.models.Sequential() model_B.add(keras.layers.Flatten(input_shape=[28, 28])) for n_hidden in (300, 100, 50, 50, 50): model_B.add(keras.layers.Dense(n_hidden, activation="selu")) model_B.add(keras.layers.Dense(1, activation="sigmoid")) model_B.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_B.fit(X_train_B, y_train_B, epochs=20, validation_data=(X_valid_B, y_valid_B)) model.summary() model_A = keras.models.load_model("my_model_A.h5") model_B_on_A = keras.models.Sequential(model_A.layers[:-1]) model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid")) model_A_clone = keras.models.clone_model(model_A) model_A_clone.set_weights(model_A.get_weights()) for layer in model_B_on_A.layers[:-1]: layer.trainable = False model_B_on_A.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4, validation_data=(X_valid_B, y_valid_B)) for layer in model_B_on_A.layers[:-1]: layer.trainable = True model_B_on_A.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16, validation_data=(X_valid_B, y_valid_B)) ###Output Epoch 1/4 1/7 [===>..........................] - ETA: 0s - loss: 0.5536 - accuracy: 0.6562WARNING:tensorflow:Callbacks method `on_test_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_test_batch_end` time: 0.0010s). Check your callbacks. 7/7 [==============================] - 0s 50ms/step - loss: 0.5765 - accuracy: 0.6500 - val_loss: 0.5812 - val_accuracy: 0.6369 Epoch 2/4 7/7 [==============================] - 0s 8ms/step - loss: 0.5403 - accuracy: 0.6900 - val_loss: 0.5440 - val_accuracy: 0.6795 Epoch 3/4 7/7 [==============================] - 0s 8ms/step - loss: 0.5037 - accuracy: 0.7300 - val_loss: 0.5122 - val_accuracy: 0.7120 Epoch 4/4 7/7 [==============================] - 0s 8ms/step - loss: 0.4725 - accuracy: 0.7500 - val_loss: 0.4837 - val_accuracy: 0.7333 Epoch 1/16 1/7 [===>..........................] - ETA: 0s - loss: 0.4256 - accuracy: 0.7500WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_train_batch_end` time: 0.0092s). Check your callbacks. 7/7 [==============================] - 0s 23ms/step - loss: 0.3944 - accuracy: 0.8200 - val_loss: 0.3447 - val_accuracy: 0.8651 Epoch 2/16 7/7 [==============================] - 0s 8ms/step - loss: 0.2787 - accuracy: 0.9350 - val_loss: 0.2595 - val_accuracy: 0.9300 Epoch 3/16 7/7 [==============================] - 0s 8ms/step - loss: 0.2077 - accuracy: 0.9650 - val_loss: 0.2104 - val_accuracy: 0.9554 Epoch 4/16 7/7 [==============================] - 0s 8ms/step - loss: 0.1665 - accuracy: 0.9800 - val_loss: 0.1785 - val_accuracy: 0.9696 Epoch 5/16 7/7 [==============================] - 0s 7ms/step - loss: 0.1393 - accuracy: 0.9800 - val_loss: 0.1557 - val_accuracy: 0.9757 Epoch 6/16 7/7 [==============================] - 0s 8ms/step - loss: 0.1194 - accuracy: 0.9950 - val_loss: 0.1389 - val_accuracy: 0.9797 Epoch 7/16 7/7 [==============================] - 0s 8ms/step - loss: 0.1048 - accuracy: 0.9950 - val_loss: 0.1263 - val_accuracy: 0.9838 Epoch 8/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0935 - accuracy: 0.9950 - val_loss: 0.1161 - val_accuracy: 0.9858 Epoch 9/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0845 - accuracy: 1.0000 - val_loss: 0.1064 - val_accuracy: 0.9888 Epoch 10/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0761 - accuracy: 1.0000 - val_loss: 0.0998 - val_accuracy: 0.9899 Epoch 11/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0703 - accuracy: 1.0000 - val_loss: 0.0938 - val_accuracy: 0.9899 Epoch 12/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0648 - accuracy: 1.0000 - val_loss: 0.0887 - val_accuracy: 0.9899 Epoch 13/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0602 - accuracy: 1.0000 - val_loss: 0.0838 - val_accuracy: 0.9899 Epoch 14/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0558 - accuracy: 1.0000 - val_loss: 0.0801 - val_accuracy: 0.9899 Epoch 15/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0524 - accuracy: 1.0000 - val_loss: 0.0768 - val_accuracy: 0.9899 Epoch 16/16 7/7 [==============================] - 0s 8ms/step - loss: 0.0495 - accuracy: 1.0000 - val_loss: 0.0738 - val_accuracy: 0.9899 ###Markdown So, what's the final verdict? ###Code model_B.evaluate(X_test_B, y_test_B) model_B_on_A.evaluate(X_test_B, y_test_B) ###Output 63/63 [==============================] - 0s 1ms/step - loss: 0.0682 - accuracy: 0.9940 ###Markdown Great! We got quite a bit of transfer: the error rate dropped by a factor of 4! ###Code (100 - 96.95) / (100 - 99.25) ###Output _____no_output_____ ###Markdown Faster Optimizers Momentum optimization ###Code optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown Nesterov Accelerated Gradient ###Code optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True) ###Output _____no_output_____ ###Markdown AdaGrad ###Code optimizer = keras.optimizers.Adagrad(lr=0.001) ###Output _____no_output_____ ###Markdown RMSProp ###Code optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9) ###Output _____no_output_____ ###Markdown Adam Optimization ###Code optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999) ###Output _____no_output_____ ###Markdown Adamax Optimization ###Code optimizer = keras.optimizers.Adamax(lr=0.001, beta_1=0.9, beta_2=0.999) ###Output _____no_output_____ ###Markdown Nadam Optimization ###Code optimizer = keras.optimizers.Nadam(lr=0.001, beta_1=0.9, beta_2=0.999) ###Output _____no_output_____ ###Markdown Learning Rate Scheduling Power Scheduling ```lr = lr0 / (1 + steps / s)**c```* Keras uses `c=1` and `s = 1 / decay` ###Code optimizer = keras.optimizers.SGD(lr=0.01, decay=1e-4) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) learning_rate = 0.01 decay = 1e-4 batch_size = 32 n_steps_per_epoch = len(X_train) // batch_size epochs = np.arange(n_epochs) lrs = learning_rate / (1 + decay * epochs * n_steps_per_epoch) plt.plot(epochs, lrs, "o-") plt.axis([0, n_epochs - 1, 0, 0.01]) plt.xlabel("Epoch") plt.ylabel("Learning Rate") plt.title("Power Scheduling", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Exponential Scheduling ```lr = lr0 * 0.1**(epoch / s)``` ###Code def exponential_decay_fn(epoch): return 0.01 * 0.1**(epoch / 20) def exponential_decay(lr0, s): def exponential_decay_fn(epoch): return lr0 * 0.1**(epoch / s) return exponential_decay_fn exponential_decay_fn = exponential_decay(lr0=0.01, s=20) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 25 lr_scheduler = keras.callbacks.LearningRateScheduler(exponential_decay_fn) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[lr_scheduler]) plt.plot(history.epoch, history.history["lr"], "o-") plt.axis([0, n_epochs - 1, 0, 0.011]) plt.xlabel("Epoch") plt.ylabel("Learning Rate") plt.title("Exponential Scheduling", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown The schedule function can take the current learning rate as a second argument: ###Code def exponential_decay_fn(epoch, lr): return lr * 0.1**(1 / 20) ###Output _____no_output_____ ###Markdown If you want to update the learning rate at each iteration rather than at each epoch, you must write your own callback class: ###Code K = keras.backend class ExponentialDecay(keras.callbacks.Callback): def __init__(self, s=40000): super().__init__() self.s = s def on_batch_begin(self, batch, logs=None): # Note: the `batch` argument is reset at each epoch lr = K.get_value(self.model.optimizer.lr) K.set_value(self.model.optimizer.lr, lr * 0.1**(1 / s)) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) lr0 = 0.01 optimizer = keras.optimizers.Nadam(lr=lr0) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 s = 20 * len(X_train) // 32 # number of steps in 20 epochs (batch size = 32) exp_decay = ExponentialDecay(s) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[exp_decay]) n_steps = n_epochs * len(X_train) // 32 steps = np.arange(n_steps) lrs = lr0 * 0.1**(steps / s) plt.plot(steps, lrs, "-", linewidth=2) plt.axis([0, n_steps - 1, 0, lr0 * 1.1]) plt.xlabel("Batch") plt.ylabel("Learning Rate") plt.title("Exponential Scheduling (per batch)", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Piecewise Constant Scheduling ###Code def piecewise_constant_fn(epoch): if epoch < 5: return 0.01 elif epoch < 15: return 0.005 else: return 0.001 def piecewise_constant(boundaries, values): boundaries = np.array([0] + boundaries) values = np.array(values) def piecewise_constant_fn(epoch): return values[np.argmax(boundaries > epoch) - 1] return piecewise_constant_fn piecewise_constant_fn = piecewise_constant([5, 15], [0.01, 0.005, 0.001]) lr_scheduler = keras.callbacks.LearningRateScheduler(piecewise_constant_fn) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[lr_scheduler]) plt.plot(history.epoch, [piecewise_constant_fn(epoch) for epoch in history.epoch], "o-") plt.axis([0, n_epochs - 1, 0, 0.011]) plt.xlabel("Epoch") plt.ylabel("Learning Rate") plt.title("Piecewise Constant Scheduling", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Performance Scheduling ###Code tf.random.set_seed(42) np.random.seed(42) lr_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) optimizer = keras.optimizers.SGD(lr=0.02, momentum=0.9) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[lr_scheduler]) plt.plot(history.epoch, history.history["lr"], "bo-") plt.xlabel("Epoch") plt.ylabel("Learning Rate", color='b') plt.tick_params('y', colors='b') plt.gca().set_xlim(0, n_epochs - 1) plt.grid(True) ax2 = plt.gca().twinx() ax2.plot(history.epoch, history.history["val_loss"], "r^-") ax2.set_ylabel('Validation Loss', color='r') ax2.tick_params('y', colors='r') plt.title("Reduce LR on Plateau", fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown tf.keras schedulers ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) s = 20 * len(X_train) // 32 # number of steps in 20 epochs (batch size = 32) learning_rate = keras.optimizers.schedules.ExponentialDecay(0.01, s, 0.1) optimizer = keras.optimizers.SGD(learning_rate) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4894 - accuracy: 0.8277 - val_loss: 0.4096 - val_accuracy: 0.8592 Epoch 2/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3820 - accuracy: 0.8651 - val_loss: 0.3742 - val_accuracy: 0.8698 Epoch 3/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3487 - accuracy: 0.8766 - val_loss: 0.3737 - val_accuracy: 0.8686 Epoch 4/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3264 - accuracy: 0.8836 - val_loss: 0.3494 - val_accuracy: 0.8800 Epoch 5/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3104 - accuracy: 0.8893 - val_loss: 0.3433 - val_accuracy: 0.8794 Epoch 6/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2958 - accuracy: 0.8952 - val_loss: 0.3416 - val_accuracy: 0.8814 Epoch 7/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2854 - accuracy: 0.8987 - val_loss: 0.3359 - val_accuracy: 0.8816 Epoch 8/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2761 - accuracy: 0.9013 - val_loss: 0.3371 - val_accuracy: 0.8812 Epoch 9/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2678 - accuracy: 0.9052 - val_loss: 0.3268 - val_accuracy: 0.8852 Epoch 10/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2608 - accuracy: 0.9068 - val_loss: 0.3245 - val_accuracy: 0.8850 Epoch 11/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2551 - accuracy: 0.9087 - val_loss: 0.3255 - val_accuracy: 0.8868 Epoch 12/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2497 - accuracy: 0.9129 - val_loss: 0.3307 - val_accuracy: 0.8800 Epoch 13/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2450 - accuracy: 0.9139 - val_loss: 0.3223 - val_accuracy: 0.8868 Epoch 14/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2415 - accuracy: 0.9146 - val_loss: 0.3228 - val_accuracy: 0.8860 Epoch 15/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2375 - accuracy: 0.9166 - val_loss: 0.3214 - val_accuracy: 0.8874 Epoch 16/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2343 - accuracy: 0.9179 - val_loss: 0.3189 - val_accuracy: 0.8890 Epoch 17/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2317 - accuracy: 0.9186 - val_loss: 0.3202 - val_accuracy: 0.8894 Epoch 18/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2291 - accuracy: 0.9197 - val_loss: 0.3174 - val_accuracy: 0.8898 Epoch 19/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2270 - accuracy: 0.9206 - val_loss: 0.3203 - val_accuracy: 0.8896 Epoch 20/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2250 - accuracy: 0.9219 - val_loss: 0.3175 - val_accuracy: 0.8900 Epoch 21/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2229 - accuracy: 0.9223 - val_loss: 0.3185 - val_accuracy: 0.8912 Epoch 22/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2216 - accuracy: 0.9226 - val_loss: 0.3169 - val_accuracy: 0.8912 Epoch 23/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2202 - accuracy: 0.9232 - val_loss: 0.3177 - val_accuracy: 0.8904 Epoch 24/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2188 - accuracy: 0.9242 - val_loss: 0.3171 - val_accuracy: 0.8902 Epoch 25/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2180 - accuracy: 0.9241 - val_loss: 0.3170 - val_accuracy: 0.8912 ###Markdown For piecewise constant scheduling, try this: ###Code learning_rate = keras.optimizers.schedules.PiecewiseConstantDecay( boundaries=[5. * n_steps_per_epoch, 15. * n_steps_per_epoch], values=[0.01, 0.005, 0.001]) ###Output _____no_output_____ ###Markdown 1Cycle scheduling ###Code K = keras.backend class ExponentialLearningRate(keras.callbacks.Callback): def __init__(self, factor): self.factor = factor self.rates = [] self.losses = [] def on_batch_end(self, batch, logs): self.rates.append(K.get_value(self.model.optimizer.lr)) self.losses.append(logs["loss"]) K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor) def find_learning_rate(model, X, y, epochs=1, batch_size=32, min_rate=10**-5, max_rate=10): init_weights = model.get_weights() iterations = len(X) // batch_size * epochs factor = np.exp(np.log(max_rate / min_rate) / iterations) init_lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, min_rate) exp_lr = ExponentialLearningRate(factor) history = model.fit(X, y, epochs=epochs, batch_size=batch_size, callbacks=[exp_lr]) K.set_value(model.optimizer.lr, init_lr) model.set_weights(init_weights) return exp_lr.rates, exp_lr.losses def plot_lr_vs_loss(rates, losses): plt.plot(rates, losses) plt.gca().set_xscale('log') plt.hlines(min(losses), min(rates), max(rates)) plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 2]) plt.xlabel("Learning rate") plt.ylabel("Loss") tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) batch_size = 128 rates, losses = find_learning_rate(model, X_train_scaled, y_train, epochs=1, batch_size=batch_size) plot_lr_vs_loss(rates, losses) class OneCycleScheduler(keras.callbacks.Callback): def __init__(self, iterations, max_rate, start_rate=None, last_iterations=None, last_rate=None): self.iterations = iterations self.max_rate = max_rate self.start_rate = start_rate or max_rate / 10 self.last_iterations = last_iterations or iterations // 10 + 1 self.half_iteration = (iterations - self.last_iterations) // 2 self.last_rate = last_rate or self.start_rate / 1000 self.iteration = 0 def _interpolate(self, iter1, iter2, rate1, rate2): return ((rate2 - rate1) * (self.iteration - iter1) / (iter2 - iter1) + rate1) def on_batch_begin(self, batch, logs): if self.iteration < self.half_iteration: rate = self._interpolate(0, self.half_iteration, self.start_rate, self.max_rate) elif self.iteration < 2 * self.half_iteration: rate = self._interpolate(self.half_iteration, 2 * self.half_iteration, self.max_rate, self.start_rate) else: rate = self._interpolate(2 * self.half_iteration, self.iterations, self.start_rate, self.last_rate) rate = max(rate, self.last_rate) self.iteration += 1 K.set_value(self.model.optimizer.lr, rate) n_epochs = 25 onecycle = OneCycleScheduler(len(X_train) // batch_size * n_epochs, max_rate=0.05) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, batch_size=batch_size, validation_data=(X_valid_scaled, y_valid), callbacks=[onecycle]) ###Output Epoch 1/25 410/430 [===========================>..] - ETA: 0s - loss: 0.6654 - accuracy: 0.7713WARNING:tensorflow:Callbacks method `on_test_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_test_batch_end` time: 0.0018s). Check your callbacks. 430/430 [==============================] - 1s 2ms/step - loss: 0.6572 - accuracy: 0.7739 - val_loss: 0.4871 - val_accuracy: 0.8336 Epoch 2/25 430/430 [==============================] - 1s 2ms/step - loss: 0.4581 - accuracy: 0.8396 - val_loss: 0.4274 - val_accuracy: 0.8522 Epoch 3/25 430/430 [==============================] - 1s 2ms/step - loss: 0.4121 - accuracy: 0.8545 - val_loss: 0.4114 - val_accuracy: 0.8584 Epoch 4/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3836 - accuracy: 0.8642 - val_loss: 0.3869 - val_accuracy: 0.8682 Epoch 5/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3639 - accuracy: 0.8717 - val_loss: 0.3765 - val_accuracy: 0.8680 Epoch 6/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3456 - accuracy: 0.8774 - val_loss: 0.3743 - val_accuracy: 0.8706 Epoch 7/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3329 - accuracy: 0.8810 - val_loss: 0.3635 - val_accuracy: 0.8716 Epoch 8/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3184 - accuracy: 0.8858 - val_loss: 0.3947 - val_accuracy: 0.8612 Epoch 9/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3064 - accuracy: 0.8890 - val_loss: 0.3482 - val_accuracy: 0.8762 Epoch 10/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2943 - accuracy: 0.8927 - val_loss: 0.3399 - val_accuracy: 0.8802 Epoch 11/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2839 - accuracy: 0.8961 - val_loss: 0.3462 - val_accuracy: 0.8794 Epoch 12/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2708 - accuracy: 0.9022 - val_loss: 0.3627 - val_accuracy: 0.8700 Epoch 13/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2536 - accuracy: 0.9083 - val_loss: 0.3356 - val_accuracy: 0.8840 Epoch 14/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2404 - accuracy: 0.9131 - val_loss: 0.3456 - val_accuracy: 0.8804 Epoch 15/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2279 - accuracy: 0.9185 - val_loss: 0.3254 - val_accuracy: 0.8852 Epoch 16/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2159 - accuracy: 0.9232 - val_loss: 0.3292 - val_accuracy: 0.8856 Epoch 17/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2062 - accuracy: 0.9266 - val_loss: 0.3345 - val_accuracy: 0.8880 Epoch 18/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1978 - accuracy: 0.9299 - val_loss: 0.3244 - val_accuracy: 0.8896 Epoch 19/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1892 - accuracy: 0.9342 - val_loss: 0.3234 - val_accuracy: 0.8908 Epoch 20/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1821 - accuracy: 0.9367 - val_loss: 0.3228 - val_accuracy: 0.8918 Epoch 21/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1752 - accuracy: 0.9401 - val_loss: 0.3222 - val_accuracy: 0.8912 Epoch 22/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1700 - accuracy: 0.9419 - val_loss: 0.3186 - val_accuracy: 0.8944 Epoch 23/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1655 - accuracy: 0.9437 - val_loss: 0.3191 - val_accuracy: 0.8940 Epoch 24/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1628 - accuracy: 0.9451 - val_loss: 0.3181 - val_accuracy: 0.8932 Epoch 25/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1611 - accuracy: 0.9461 - val_loss: 0.3174 - val_accuracy: 0.8938 ###Markdown Avoiding Overfitting Through Regularization $\ell_1$ and $\ell_2$ regularization ###Code layer = keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)) # or l1(0.1) for ℓ1 regularization with a factor or 0.1 # or l1_l2(0.1, 0.01) for both ℓ1 and ℓ2 regularization, with factors 0.1 and 0.01 respectively model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)), keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)), keras.layers.Dense(10, activation="softmax", kernel_regularizer=keras.regularizers.l2(0.01)) ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) from functools import partial RegularizedDense = partial(keras.layers.Dense, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), RegularizedDense(300), RegularizedDense(100), RegularizedDense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/2 1719/1719 [==============================] - 3s 2ms/step - loss: 1.6313 - accuracy: 0.8113 - val_loss: 0.7218 - val_accuracy: 0.8310 Epoch 2/2 1719/1719 [==============================] - 3s 2ms/step - loss: 0.7187 - accuracy: 0.8273 - val_loss: 0.6826 - val_accuracy: 0.8382 ###Markdown Dropout ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dropout(rate=0.2), keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"), keras.layers.Dropout(rate=0.2), keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"), keras.layers.Dropout(rate=0.2), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/2 1/1719 [..............................] - ETA: 0s - loss: 3.9425 - accuracy: 0.1250WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_train_batch_end` time: 0.0135s). Check your callbacks. 1719/1719 [==============================] - 3s 2ms/step - loss: 0.5838 - accuracy: 0.7998 - val_loss: 0.3730 - val_accuracy: 0.8644 Epoch 2/2 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4209 - accuracy: 0.8442 - val_loss: 0.3409 - val_accuracy: 0.8728 ###Markdown Alpha Dropout ###Code tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.AlphaDropout(rate=0.2), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.AlphaDropout(rate=0.2), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.AlphaDropout(rate=0.2), keras.layers.Dense(10, activation="softmax") ]) optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 20 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) model.evaluate(X_test_scaled, y_test) model.evaluate(X_train_scaled, y_train) history = model.fit(X_train_scaled, y_train) ###Output 1/1719 [..............................] - ETA: 0s - loss: 0.6203 - accuracy: 0.8125WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_train_batch_end` time: 0.0042s). Check your callbacks. 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4158 - accuracy: 0.8464 ###Markdown MC Dropout ###Code tf.random.set_seed(42) np.random.seed(42) y_probas = np.stack([model(X_test_scaled, training=True) for sample in range(100)]) y_proba = y_probas.mean(axis=0) y_std = y_probas.std(axis=0) np.round(model.predict(X_test_scaled[:1]), 2) np.round(y_probas[:, :1], 2) np.round(y_proba[:1], 2) y_std = y_probas.std(axis=0) np.round(y_std[:1], 2) y_pred = np.argmax(y_proba, axis=1) accuracy = np.sum(y_pred == y_test) / len(y_test) accuracy class MCDropout(keras.layers.Dropout): def call(self, inputs): return super().call(inputs, training=True) class MCAlphaDropout(keras.layers.AlphaDropout): def call(self, inputs): return super().call(inputs, training=True) tf.random.set_seed(42) np.random.seed(42) mc_model = keras.models.Sequential([ MCAlphaDropout(layer.rate) if isinstance(layer, keras.layers.AlphaDropout) else layer for layer in model.layers ]) mc_model.summary() optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True) mc_model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) mc_model.set_weights(model.get_weights()) ###Output _____no_output_____ ###Markdown Now we can use the model with MC Dropout: ###Code np.round(np.mean([mc_model.predict(X_test_scaled[:1]) for sample in range(100)], axis=0), 2) ###Output _____no_output_____ ###Markdown Max norm ###Code layer = keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal", kernel_constraint=keras.constraints.max_norm(1.)) MaxNormDense = partial(keras.layers.Dense, activation="selu", kernel_initializer="lecun_normal", kernel_constraint=keras.constraints.max_norm(1.)) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), MaxNormDense(300), MaxNormDense(100), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/2 1719/1719 [==============================] - 3s 2ms/step - loss: 0.4743 - accuracy: 0.8335 - val_loss: 0.3698 - val_accuracy: 0.8644 Epoch 2/2 1719/1719 [==============================] - 3s 2ms/step - loss: 0.3549 - accuracy: 0.8715 - val_loss: 0.3782 - val_accuracy: 0.8682 ###Markdown Exercises 1. to 7. See appendix A. 8. Deep Learning on CIFAR10 a.*Exercise: Build a DNN with 20 hidden layers of 100 neurons each (that's too many, but it's the point of this exercise). Use He initialization and the ELU activation function.* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal")) ###Output _____no_output_____ ###Markdown b.*Exercise: Using Nadam optimization and early stopping, train the network on the CIFAR10 dataset. You can load it with `keras.datasets.cifar10.load_data()`. The dataset is composed of 60,000 32 × 32–pixel color images (50,000 for training, 10,000 for testing) with 10 classes, so you'll need a softmax output layer with 10 neurons. Remember to search for the right learning rate each time you change the model's architecture or hyperparameters.* Let's add the output layer to the model: ###Code model.add(keras.layers.Dense(10, activation="softmax")) ###Output _____no_output_____ ###Markdown Let's use a Nadam optimizer with a learning rate of 5e-5. I tried learning rates 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3 and 1e-2, and I compared their learning curves for 10 epochs each (using the TensorBoard callback, below). The learning rates 3e-5 and 1e-4 were pretty good, so I tried 5e-5, which turned out to be slightly better. ###Code optimizer = keras.optimizers.Nadam(lr=5e-5) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) ###Output _____no_output_____ ###Markdown Let's load the CIFAR10 dataset. We also want to use early stopping, so we need a validation set. Let's use the first 5,000 images of the original training set as the validation set: ###Code (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.cifar10.load_data() X_train = X_train_full[5000:] y_train = y_train_full[5000:] X_valid = X_train_full[:5000] y_valid = y_train_full[:5000] ###Output Downloading data from https://www.cs.toronto.edu/~kriz/cifar-10-python.tar.gz 170500096/170498071 [==============================] - 58s 0us/step ###Markdown Now we can create the callbacks we need and train the model: ###Code early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] %tensorboard --logdir=./my_cifar10_logs --port=6006 ###Output _____no_output_____ ###Markdown ###Code model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_model.h5") model.evaluate(X_valid, y_valid) ###Output 157/157 [==============================] - 0s 1ms/step - loss: 1.5100 - accuracy: 0.1370 ###Markdown The model with the lowest validation loss gets about 47% accuracy on the validation set. It took 39 epochs to reach the lowest validation loss, with roughly 10 seconds per epoch on my laptop (without a GPU). Let's see if we can improve performance using Batch Normalization. c.*Exercise: Now try adding Batch Normalization and compare the learning curves: Is it converging faster than before? Does it produce a better model? How does it affect training speed?* The code below is very similar to the code above, with a few changes:* I added a BN layer after every Dense layer (before the activation function), except for the output layer. I also added a BN layer before the first hidden layer.* I changed the learning rate to 5e-4. I experimented with 1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3 and 3e-3, and I chose the one with the best validation performance after 20 epochs.* I renamed the run directories to run_bn_* and the model file name to my_cifar10_bn_model.h5. ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) model.add(keras.layers.BatchNormalization()) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="he_normal")) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Activation("elu")) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.Nadam(lr=5e-4) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_bn_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_bn_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_bn_model.h5") model.evaluate(X_valid, y_valid) ###Output Epoch 1/100 2/1407 [..............................] - ETA: 1:06:34 - loss: 2.8693 - accuracy: 0.1094WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0189s vs `on_train_batch_end` time: 5.6669s). Check your callbacks. 1407/1407 [==============================] - 27s 19ms/step - loss: 1.8463 - accuracy: 0.3378 - val_loss: 1.6787 - val_accuracy: 0.3978 Epoch 2/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.6718 - accuracy: 0.4020 - val_loss: 1.5756 - val_accuracy: 0.4356 Epoch 3/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.5998 - accuracy: 0.4298 - val_loss: 1.5205 - val_accuracy: 0.4494 Epoch 4/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.5494 - accuracy: 0.4464 - val_loss: 1.5135 - val_accuracy: 0.4600 Epoch 5/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.5078 - accuracy: 0.4665 - val_loss: 1.4377 - val_accuracy: 0.4818 Epoch 6/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.4683 - accuracy: 0.4772 - val_loss: 1.4168 - val_accuracy: 0.5000 Epoch 7/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.4361 - accuracy: 0.4907 - val_loss: 1.4197 - val_accuracy: 0.5004 Epoch 8/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.4060 - accuracy: 0.5006 - val_loss: 1.3842 - val_accuracy: 0.5060 Epoch 9/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.3822 - accuracy: 0.5096 - val_loss: 1.3783 - val_accuracy: 0.5152 Epoch 10/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.3599 - accuracy: 0.5172 - val_loss: 1.3617 - val_accuracy: 0.5118 Epoch 11/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.3451 - accuracy: 0.5238 - val_loss: 1.3655 - val_accuracy: 0.5184 Epoch 12/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.3181 - accuracy: 0.5337 - val_loss: 1.3868 - val_accuracy: 0.5056 Epoch 13/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.3008 - accuracy: 0.5372 - val_loss: 1.3504 - val_accuracy: 0.5138 Epoch 14/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.2810 - accuracy: 0.5503 - val_loss: 1.3586 - val_accuracy: 0.5250 Epoch 15/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.2647 - accuracy: 0.5530 - val_loss: 1.3559 - val_accuracy: 0.5246 Epoch 16/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.2484 - accuracy: 0.5587 - val_loss: 1.3334 - val_accuracy: 0.5284 Epoch 17/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.2347 - accuracy: 0.5601 - val_loss: 1.3255 - val_accuracy: 0.5330 Epoch 18/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.2170 - accuracy: 0.5686 - val_loss: 1.3625 - val_accuracy: 0.5312 Epoch 19/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.2028 - accuracy: 0.5732 - val_loss: 1.3211 - val_accuracy: 0.5368 Epoch 20/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1903 - accuracy: 0.5783 - val_loss: 1.3487 - val_accuracy: 0.5362 Epoch 21/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1761 - accuracy: 0.5855 - val_loss: 1.3371 - val_accuracy: 0.5300 Epoch 22/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1596 - accuracy: 0.5920 - val_loss: 1.3382 - val_accuracy: 0.5320 Epoch 23/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1522 - accuracy: 0.5922 - val_loss: 1.3482 - val_accuracy: 0.5322 Epoch 24/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1388 - accuracy: 0.5967 - val_loss: 1.3028 - val_accuracy: 0.5482 Epoch 25/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1240 - accuracy: 0.6026 - val_loss: 1.3433 - val_accuracy: 0.5346 Epoch 26/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.1148 - accuracy: 0.6069 - val_loss: 1.3590 - val_accuracy: 0.5320 Epoch 27/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0953 - accuracy: 0.6121 - val_loss: 1.3465 - val_accuracy: 0.5338 Epoch 28/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0924 - accuracy: 0.6148 - val_loss: 1.3575 - val_accuracy: 0.5266 Epoch 29/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0829 - accuracy: 0.6178 - val_loss: 1.3264 - val_accuracy: 0.5488 Epoch 30/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0700 - accuracy: 0.6233 - val_loss: 1.3321 - val_accuracy: 0.5392 Epoch 31/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0585 - accuracy: 0.6242 - val_loss: 1.3544 - val_accuracy: 0.5388 Epoch 32/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0475 - accuracy: 0.6286 - val_loss: 1.3242 - val_accuracy: 0.5492 Epoch 33/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0373 - accuracy: 0.6348 - val_loss: 1.3274 - val_accuracy: 0.5444 Epoch 34/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0276 - accuracy: 0.6365 - val_loss: 1.3468 - val_accuracy: 0.5468 Epoch 35/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0169 - accuracy: 0.6407 - val_loss: 1.3536 - val_accuracy: 0.5362 Epoch 36/100 1407/1407 [==============================] - 21s 15ms/step - loss: 1.0097 - accuracy: 0.6455 - val_loss: 1.3461 - val_accuracy: 0.5424 Epoch 37/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9957 - accuracy: 0.6470 - val_loss: 1.3534 - val_accuracy: 0.5436 Epoch 38/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9947 - accuracy: 0.6506 - val_loss: 1.3715 - val_accuracy: 0.5406 Epoch 39/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9797 - accuracy: 0.6552 - val_loss: 1.3525 - val_accuracy: 0.5466 Epoch 40/100 1407/1407 [==============================] - 20s 15ms/step - loss: 0.9712 - accuracy: 0.6580 - val_loss: 1.3764 - val_accuracy: 0.5410 Epoch 41/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9623 - accuracy: 0.6604 - val_loss: 1.3408 - val_accuracy: 0.5584 Epoch 42/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9557 - accuracy: 0.6632 - val_loss: 1.3715 - val_accuracy: 0.5418 Epoch 43/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9516 - accuracy: 0.6662 - val_loss: 1.3610 - val_accuracy: 0.5444 Epoch 44/100 1407/1407 [==============================] - 21s 15ms/step - loss: 0.9393 - accuracy: 0.6692 - val_loss: 1.3982 - val_accuracy: 0.5364 157/157 [==============================] - 0s 2ms/step - loss: 1.3028 - accuracy: 0.0908 ###Markdown * *Is the model converging faster than before?* Much faster! The previous model took 39 epochs to reach the lowest validation loss, while the new model with BN took 18 epochs. That's more than twice as fast as the previous model. The BN layers stabilized training and allowed us to use a much larger learning rate, so convergence was faster.* *Does BN produce a better model?* Yes! The final model is also much better, with 55% accuracy instead of 47%. It's still not a very good model, but at least it's much better than before (a Convolutional Neural Network would do much better, but that's a different topic, see chapter 14).* *How does BN affect training speed?* Although the model converged twice as fast, each epoch took about 16s instead of 10s, because of the extra computations required by the BN layers. So overall, although the number of epochs was reduced by 50%, the training time (wall time) was shortened by 30%. Which is still pretty significant! d.*Exercise: Try replacing Batch Normalization with SELU, and make the necessary adjustements to ensure the network self-normalizes (i.e., standardize the input features, use LeCun normal initialization, make sure the DNN contains only a sequence of dense layers, etc.).* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.Nadam(lr=7e-4) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_selu_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_selu_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] X_means = X_train.mean(axis=0) X_stds = X_train.std(axis=0) X_train_scaled = (X_train - X_means) / X_stds X_valid_scaled = (X_valid - X_means) / X_stds X_test_scaled = (X_test - X_means) / X_stds model.fit(X_train_scaled, y_train, epochs=100, validation_data=(X_valid_scaled, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_selu_model.h5") model.evaluate(X_valid_scaled, y_valid) model = keras.models.load_model("my_cifar10_selu_model.h5") model.evaluate(X_valid_scaled, y_valid) ###Output 1/157 [..............................] - ETA: 0s - loss: 1.4529 - accuracy: 0.1562WARNING:tensorflow:Callbacks method `on_test_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_test_batch_end` time: 0.0055s). Check your callbacks. 157/157 [==============================] - 0s 1ms/step - loss: 1.4808 - accuracy: 0.1124 ###Markdown We get 51.4% accuracy, which is better than the original model, but not quite as good as the model using batch normalization. Moreover, it took 13 epochs to reach the best model, which is much faster than both the original model and the BN model, plus each epoch took only 10 seconds, just like the original model. So it's by far the fastest model to train (both in terms of epochs and wall time). e.*Exercise: Try regularizing the model with alpha dropout. Then, without retraining your model, see if you can achieve better accuracy using MC Dropout.* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.AlphaDropout(rate=0.1)) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.Nadam(lr=5e-4) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_alpha_dropout_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_alpha_dropout_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] X_means = X_train.mean(axis=0) X_stds = X_train.std(axis=0) X_train_scaled = (X_train - X_means) / X_stds X_valid_scaled = (X_valid - X_means) / X_stds X_test_scaled = (X_test - X_means) / X_stds model.fit(X_train_scaled, y_train, epochs=100, validation_data=(X_valid_scaled, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_alpha_dropout_model.h5") model.evaluate(X_valid_scaled, y_valid) ###Output Epoch 1/100 2/1407 [..............................] - ETA: 33:41 - loss: 2.9857 - accuracy: 0.0938WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0083s vs `on_train_batch_end` time: 2.8708s). Check your callbacks. 1407/1407 [==============================] - 12s 8ms/step - loss: 1.8902 - accuracy: 0.3279 - val_loss: 1.7109 - val_accuracy: 0.3972 Epoch 2/100 1407/1407 [==============================] - 9s 6ms/step - loss: 1.6676 - accuracy: 0.4093 - val_loss: 1.7709 - val_accuracy: 0.3730 Epoch 3/100 1407/1407 [==============================] - 9s 6ms/step - loss: 1.5797 - accuracy: 0.4453 - val_loss: 1.5693 - val_accuracy: 0.4392 Epoch 4/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.5082 - accuracy: 0.4673 - val_loss: 1.5935 - val_accuracy: 0.4456 Epoch 5/100 1407/1407 [==============================] - 9s 6ms/step - loss: 1.4572 - accuracy: 0.4917 - val_loss: 1.5617 - val_accuracy: 0.4638 Epoch 6/100 1407/1407 [==============================] - 9s 6ms/step - loss: 1.4095 - accuracy: 0.5039 - val_loss: 1.5377 - val_accuracy: 0.4852 Epoch 7/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.3640 - accuracy: 0.5208 - val_loss: 1.5591 - val_accuracy: 0.4702 Epoch 8/100 1407/1407 [==============================] - 9s 6ms/step - loss: 1.3237 - accuracy: 0.5375 - val_loss: 1.4880 - val_accuracy: 0.4952 Epoch 9/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.2865 - accuracy: 0.5508 - val_loss: 1.4953 - val_accuracy: 0.4820 Epoch 10/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.2564 - accuracy: 0.5618 - val_loss: 1.5384 - val_accuracy: 0.4826 Epoch 11/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.2247 - accuracy: 0.5730 - val_loss: 1.5087 - val_accuracy: 0.4970 Epoch 12/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.1921 - accuracy: 0.5839 - val_loss: 1.5292 - val_accuracy: 0.5046 Epoch 13/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.1671 - accuracy: 0.5953 - val_loss: 1.5332 - val_accuracy: 0.5088 Epoch 14/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.1404 - accuracy: 0.6027 - val_loss: 1.5649 - val_accuracy: 0.5102 Epoch 15/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.1151 - accuracy: 0.6093 - val_loss: 1.6198 - val_accuracy: 0.5118 Epoch 16/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.0891 - accuracy: 0.6238 - val_loss: 1.7098 - val_accuracy: 0.5032 Epoch 17/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.0736 - accuracy: 0.6278 - val_loss: 1.6176 - val_accuracy: 0.5122 Epoch 18/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.0476 - accuracy: 0.6365 - val_loss: 1.5618 - val_accuracy: 0.5122 Epoch 19/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.0219 - accuracy: 0.6478 - val_loss: 1.6912 - val_accuracy: 0.5124 Epoch 20/100 1407/1407 [==============================] - 8s 6ms/step - loss: 1.0092 - accuracy: 0.6522 - val_loss: 1.6066 - val_accuracy: 0.5058 Epoch 21/100 1407/1407 [==============================] - 9s 6ms/step - loss: 0.9808 - accuracy: 0.6609 - val_loss: 1.7393 - val_accuracy: 0.5126 Epoch 22/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.9608 - accuracy: 0.6696 - val_loss: 1.7431 - val_accuracy: 0.5180 Epoch 23/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.9423 - accuracy: 0.6784 - val_loss: 1.6845 - val_accuracy: 0.5126 Epoch 24/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.9316 - accuracy: 0.6796 - val_loss: 1.8081 - val_accuracy: 0.5174 Epoch 25/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.9234 - accuracy: 0.6862 - val_loss: 1.7531 - val_accuracy: 0.4462 Epoch 26/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.9466 - accuracy: 0.6753 - val_loss: 1.7371 - val_accuracy: 0.5114 Epoch 27/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.8605 - accuracy: 0.7058 - val_loss: 1.7474 - val_accuracy: 0.5100 Epoch 28/100 1407/1407 [==============================] - 8s 6ms/step - loss: 0.8581 - accuracy: 0.7055 - val_loss: 1.7696 - val_accuracy: 0.5038 1/157 [..............................] - ETA: 0s - loss: 1.6199 - accuracy: 0.1250WARNING:tensorflow:Callbacks method `on_test_batch_end` is slow compared to the batch time (batch time: 0.0000s vs `on_test_batch_end` time: 0.0110s). Check your callbacks. 157/157 [==============================] - 0s 1ms/step - loss: 1.4880 - accuracy: 0.1132 ###Markdown The model reaches 50.8% accuracy on the validation set. That's very slightly worse than without dropout (51.4%). With an extensive hyperparameter search, it might be possible to do better (I tried dropout rates of 5%, 10%, 20% and 40%, and learning rates 1e-4, 3e-4, 5e-4, and 1e-3), but probably not much better in this case. Let's use MC Dropout now. We will need the `MCAlphaDropout` class we used earlier, so let's just copy it here for convenience: ###Code class MCAlphaDropout(keras.layers.AlphaDropout): def call(self, inputs): return super().call(inputs, training=True) ###Output _____no_output_____ ###Markdown Now let's create a new model, identical to the one we just trained (with the same weights), but with `MCAlphaDropout` dropout layers instead of `AlphaDropout` layers: ###Code mc_model = keras.models.Sequential([ MCAlphaDropout(layer.rate) if isinstance(layer, keras.layers.AlphaDropout) else layer for layer in model.layers ]) ###Output _____no_output_____ ###Markdown Then let's add a couple utility functions. The first will run the model many times (10 by default) and it will return the mean predicted class probabilities. The second will use these mean probabilities to predict the most likely class for each instance: ###Code def mc_dropout_predict_probas(mc_model, X, n_samples=10): Y_probas = [mc_model.predict(X) for sample in range(n_samples)] return np.mean(Y_probas, axis=0) def mc_dropout_predict_classes(mc_model, X, n_samples=10): Y_probas = mc_dropout_predict_probas(mc_model, X, n_samples) return np.argmax(Y_probas, axis=1) ###Output _____no_output_____ ###Markdown Now let's make predictions for all the instances in the validation set, and compute the accuracy: ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) y_pred = mc_dropout_predict_classes(mc_model, X_valid_scaled) accuracy = np.mean(y_pred == y_valid[:, 0]) accuracy ###Output _____no_output_____ ###Markdown We only get virtually no accuracy improvement in this case (from 50.8% to 50.9%).So the best model we got in this exercise is the Batch Normalization model. f.*Exercise: Retrain your model using 1cycle scheduling and see if it improves training speed and model accuracy.* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.AlphaDropout(rate=0.1)) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.SGD(lr=1e-3) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) batch_size = 128 rates, losses = find_learning_rate(model, X_train_scaled, y_train, epochs=1, batch_size=batch_size) plot_lr_vs_loss(rates, losses) plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 1.4]) keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.AlphaDropout(rate=0.1)) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.SGD(lr=1e-2) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 15 onecycle = OneCycleScheduler(len(X_train_scaled) // batch_size * n_epochs, max_rate=0.05) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, batch_size=batch_size, validation_data=(X_valid_scaled, y_valid), callbacks=[onecycle]) ###Output Epoch 1/15 352/352 [==============================] - 1s 4ms/step - loss: 2.0521 - accuracy: 0.2866 - val_loss: 1.7570 - val_accuracy: 0.3896 Epoch 2/15 352/352 [==============================] - 1s 3ms/step - loss: 1.7567 - accuracy: 0.3797 - val_loss: 1.6460 - val_accuracy: 0.4268 Epoch 3/15 352/352 [==============================] - 1s 3ms/step - loss: 1.6179 - accuracy: 0.4264 - val_loss: 1.6263 - val_accuracy: 0.4242 Epoch 4/15 352/352 [==============================] - 1s 3ms/step - loss: 1.5388 - accuracy: 0.4541 - val_loss: 1.5916 - val_accuracy: 0.4414 Epoch 5/15 352/352 [==============================] - 1s 3ms/step - loss: 1.4916 - accuracy: 0.4702 - val_loss: 1.5995 - val_accuracy: 0.4376 Epoch 6/15 352/352 [==============================] - 1s 3ms/step - loss: 1.4492 - accuracy: 0.4832 - val_loss: 1.5355 - val_accuracy: 0.4572 Epoch 7/15 352/352 [==============================] - 1s 3ms/step - loss: 1.4108 - accuracy: 0.4983 - val_loss: 1.6034 - val_accuracy: 0.4468 Epoch 8/15 352/352 [==============================] - 1s 3ms/step - loss: 1.3462 - accuracy: 0.5234 - val_loss: 1.5510 - val_accuracy: 0.4710 Epoch 9/15 352/352 [==============================] - 1s 3ms/step - loss: 1.2699 - accuracy: 0.5494 - val_loss: 1.5297 - val_accuracy: 0.4898 Epoch 10/15 352/352 [==============================] - 1s 3ms/step - loss: 1.2022 - accuracy: 0.5718 - val_loss: 1.5352 - val_accuracy: 0.4930 Epoch 11/15 352/352 [==============================] - 1s 3ms/step - loss: 1.1300 - accuracy: 0.5984 - val_loss: 1.4993 - val_accuracy: 0.5058 Epoch 12/15 352/352 [==============================] - 1s 3ms/step - loss: 1.0618 - accuracy: 0.6204 - val_loss: 1.4738 - val_accuracy: 0.5190 Epoch 13/15 352/352 [==============================] - 1s 3ms/step - loss: 0.9903 - accuracy: 0.6474 - val_loss: 1.5107 - val_accuracy: 0.5272 Epoch 14/15 352/352 [==============================] - 1s 3ms/step - loss: 0.9262 - accuracy: 0.6698 - val_loss: 1.5351 - val_accuracy: 0.5292 Epoch 15/15 352/352 [==============================] - 1s 3ms/step - loss: 0.8871 - accuracy: 0.6831 - val_loss: 1.5599 - val_accuracy: 0.5318 ###Markdown **Chapter 11 – Training Deep Neural Networks** _This notebook contains all the sample code and solutions to the exercises in chapter 11._ Run in Google Colab Setup First, let's import a few common modules, ensure MatplotLib plots figures inline and prepare a function to save the figures. We also check that Python 3.5 or later is installed (although Python 2.x may work, it is deprecated so we strongly recommend you use Python 3 instead), as well as Scikit-Learn ≥0.20 and TensorFlow ≥2.0. ###Code # Python ≥3.5 is required import sys assert sys.version_info >= (3, 5) # Scikit-Learn ≥0.20 is required import sklearn assert sklearn.__version__ >= "0.20" try: # %tensorflow_version only exists in Colab. %tensorflow_version 2.x except Exception: pass # TensorFlow ≥2.0 is required import tensorflow as tf from tensorflow import keras assert tf.__version__ >= "2.0" %load_ext tensorboard # Common imports import numpy as np import os # to make this notebook's output stable across runs np.random.seed(42) # To plot pretty figures %matplotlib inline import matplotlib as mpl import matplotlib.pyplot as plt mpl.rc('axes', labelsize=14) mpl.rc('xtick', labelsize=12) mpl.rc('ytick', labelsize=12) # Where to save the figures PROJECT_ROOT_DIR = "." CHAPTER_ID = "deep" IMAGES_PATH = os.path.join(PROJECT_ROOT_DIR, "images", CHAPTER_ID) os.makedirs(IMAGES_PATH, exist_ok=True) def save_fig(fig_id, tight_layout=True, fig_extension="png", resolution=300): path = os.path.join(IMAGES_PATH, fig_id + "." + fig_extension) print("Saving figure", fig_id) if tight_layout: plt.tight_layout() plt.savefig(path, format=fig_extension, dpi=resolution) ###Output _____no_output_____ ###Markdown Vanishing/Exploding Gradients Problem ###Code def logit(z): return 1 / (1 + np.exp(-z)) z = np.linspace(-5, 5, 200) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([-5, 5], [1, 1], 'k--') plt.plot([0, 0], [-0.2, 1.2], 'k-') plt.plot([-5, 5], [-3/4, 7/4], 'g--') plt.plot(z, logit(z), "b-", linewidth=2) props = dict(facecolor='black', shrink=0.1) plt.annotate('Saturating', xytext=(3.5, 0.7), xy=(5, 1), arrowprops=props, fontsize=14, ha="center") plt.annotate('Saturating', xytext=(-3.5, 0.3), xy=(-5, 0), arrowprops=props, fontsize=14, ha="center") plt.annotate('Linear', xytext=(2, 0.2), xy=(0, 0.5), arrowprops=props, fontsize=14, ha="center") plt.grid(True) plt.title("Sigmoid activation function", fontsize=14) plt.axis([-5, 5, -0.2, 1.2]) save_fig("sigmoid_saturation_plot") plt.show() ###Output Saving figure sigmoid_saturation_plot ###Markdown Xavier and He Initialization ###Code [name for name in dir(keras.initializers) if not name.startswith("_")] keras.layers.Dense(10, activation="relu", kernel_initializer="he_normal") init = keras.initializers.VarianceScaling(scale=2., mode='fan_avg', distribution='uniform') keras.layers.Dense(10, activation="relu", kernel_initializer=init) ###Output _____no_output_____ ###Markdown Nonsaturating Activation Functions Leaky ReLU ###Code def leaky_relu(z, alpha=0.01): return np.maximum(alpha*z, z) plt.plot(z, leaky_relu(z, 0.05), "b-", linewidth=2) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([0, 0], [-0.5, 4.2], 'k-') plt.grid(True) props = dict(facecolor='black', shrink=0.1) plt.annotate('Leak', xytext=(-3.5, 0.5), xy=(-5, -0.2), arrowprops=props, fontsize=14, ha="center") plt.title("Leaky ReLU activation function", fontsize=14) plt.axis([-5, 5, -0.5, 4.2]) save_fig("leaky_relu_plot") plt.show() [m for m in dir(keras.activations) if not m.startswith("_")] [m for m in dir(keras.layers) if "relu" in m.lower()] ###Output _____no_output_____ ###Markdown Let's train a neural network on Fashion MNIST using the Leaky ReLU: ###Code (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.fashion_mnist.load_data() X_train_full = X_train_full / 255.0 X_test = X_test / 255.0 X_valid, X_train = X_train_full[:5000], X_train_full[5000:] y_valid, y_train = y_train_full[:5000], y_train_full[5000:] tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, kernel_initializer="he_normal"), keras.layers.LeakyReLU(), keras.layers.Dense(100, kernel_initializer="he_normal"), keras.layers.LeakyReLU(), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 2s 1ms/step - loss: 1.6314 - accuracy: 0.5054 - val_loss: 0.8886 - val_accuracy: 0.7160 Epoch 2/10 1719/1719 [==============================] - 2s 892us/step - loss: 0.8416 - accuracy: 0.7247 - val_loss: 0.7130 - val_accuracy: 0.7656 Epoch 3/10 1719/1719 [==============================] - 2s 879us/step - loss: 0.7053 - accuracy: 0.7637 - val_loss: 0.6427 - val_accuracy: 0.7898 Epoch 4/10 1719/1719 [==============================] - 2s 883us/step - loss: 0.6325 - accuracy: 0.7908 - val_loss: 0.5900 - val_accuracy: 0.8066 Epoch 5/10 1719/1719 [==============================] - 2s 887us/step - loss: 0.5992 - accuracy: 0.8021 - val_loss: 0.5582 - val_accuracy: 0.8200 Epoch 6/10 1719/1719 [==============================] - 2s 881us/step - loss: 0.5624 - accuracy: 0.8142 - val_loss: 0.5350 - val_accuracy: 0.8238 Epoch 7/10 1719/1719 [==============================] - 2s 892us/step - loss: 0.5379 - accuracy: 0.8217 - val_loss: 0.5157 - val_accuracy: 0.8304 Epoch 8/10 1719/1719 [==============================] - 2s 895us/step - loss: 0.5152 - accuracy: 0.8295 - val_loss: 0.5078 - val_accuracy: 0.8284 Epoch 9/10 1719/1719 [==============================] - 2s 911us/step - loss: 0.5100 - accuracy: 0.8268 - val_loss: 0.4895 - val_accuracy: 0.8390 Epoch 10/10 1719/1719 [==============================] - 2s 897us/step - loss: 0.4918 - accuracy: 0.8340 - val_loss: 0.4817 - val_accuracy: 0.8396 ###Markdown Now let's try PReLU: ###Code tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, kernel_initializer="he_normal"), keras.layers.PReLU(), keras.layers.Dense(100, kernel_initializer="he_normal"), keras.layers.PReLU(), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 2s 1ms/step - loss: 1.6969 - accuracy: 0.4974 - val_loss: 0.9255 - val_accuracy: 0.7186 Epoch 2/10 1719/1719 [==============================] - 2s 990us/step - loss: 0.8706 - accuracy: 0.7247 - val_loss: 0.7305 - val_accuracy: 0.7630 Epoch 3/10 1719/1719 [==============================] - 2s 980us/step - loss: 0.7211 - accuracy: 0.7621 - val_loss: 0.6564 - val_accuracy: 0.7882 Epoch 4/10 1719/1719 [==============================] - 2s 985us/step - loss: 0.6447 - accuracy: 0.7879 - val_loss: 0.6003 - val_accuracy: 0.8048 Epoch 5/10 1719/1719 [==============================] - 2s 967us/step - loss: 0.6077 - accuracy: 0.8004 - val_loss: 0.5656 - val_accuracy: 0.8182 Epoch 6/10 1719/1719 [==============================] - 2s 984us/step - loss: 0.5692 - accuracy: 0.8118 - val_loss: 0.5406 - val_accuracy: 0.8236 Epoch 7/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5428 - accuracy: 0.8194 - val_loss: 0.5196 - val_accuracy: 0.8314 Epoch 8/10 1719/1719 [==============================] - 2s 983us/step - loss: 0.5193 - accuracy: 0.8284 - val_loss: 0.5113 - val_accuracy: 0.8316 Epoch 9/10 1719/1719 [==============================] - 2s 992us/step - loss: 0.5128 - accuracy: 0.8272 - val_loss: 0.4916 - val_accuracy: 0.8378 Epoch 10/10 1719/1719 [==============================] - 2s 988us/step - loss: 0.4941 - accuracy: 0.8314 - val_loss: 0.4826 - val_accuracy: 0.8398 ###Markdown ELU ###Code def elu(z, alpha=1): return np.where(z < 0, alpha * (np.exp(z) - 1), z) plt.plot(z, elu(z), "b-", linewidth=2) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([-5, 5], [-1, -1], 'k--') plt.plot([0, 0], [-2.2, 3.2], 'k-') plt.grid(True) plt.title(r"ELU activation function ($\alpha=1$)", fontsize=14) plt.axis([-5, 5, -2.2, 3.2]) save_fig("elu_plot") plt.show() ###Output Saving figure elu_plot ###Markdown Implementing ELU in TensorFlow is trivial, just specify the activation function when building each layer: ###Code keras.layers.Dense(10, activation="elu") ###Output _____no_output_____ ###Markdown SELU This activation function was proposed in this [great paper](https://arxiv.org/pdf/1706.02515.pdf) by Günter Klambauer, Thomas Unterthiner and Andreas Mayr, published in June 2017. During training, a neural network composed exclusively of a stack of dense layers using the SELU activation function and LeCun initialization will self-normalize: the output of each layer will tend to preserve the same mean and variance during training, which solves the vanishing/exploding gradients problem. As a result, this activation function outperforms the other activation functions very significantly for such neural nets, so you should really try it out. Unfortunately, the self-normalizing property of the SELU activation function is easily broken: you cannot use ℓ1 or ℓ2 regularization, regular dropout, max-norm, skip connections or other non-sequential topologies (so recurrent neural networks won't self-normalize). However, in practice it works quite well with sequential CNNs. If you break self-normalization, SELU will not necessarily outperform other activation functions. ###Code from scipy.special import erfc # alpha and scale to self normalize with mean 0 and standard deviation 1 # (see equation 14 in the paper): alpha_0_1 = -np.sqrt(2 / np.pi) / (erfc(1/np.sqrt(2)) * np.exp(1/2) - 1) scale_0_1 = (1 - erfc(1 / np.sqrt(2)) * np.sqrt(np.e)) * np.sqrt(2 * np.pi) * (2 * erfc(np.sqrt(2))*np.e**2 + np.pi*erfc(1/np.sqrt(2))**2*np.e - 2*(2+np.pi)*erfc(1/np.sqrt(2))*np.sqrt(np.e)+np.pi+2)**(-1/2) def selu(z, scale=scale_0_1, alpha=alpha_0_1): return scale * elu(z, alpha) plt.plot(z, selu(z), "b-", linewidth=2) plt.plot([-5, 5], [0, 0], 'k-') plt.plot([-5, 5], [-1.758, -1.758], 'k--') plt.plot([0, 0], [-2.2, 3.2], 'k-') plt.grid(True) plt.title("SELU activation function", fontsize=14) plt.axis([-5, 5, -2.2, 3.2]) save_fig("selu_plot") plt.show() ###Output Saving figure selu_plot ###Markdown By default, the SELU hyperparameters (`scale` and `alpha`) are tuned in such a way that the mean output of each neuron remains close to 0, and the standard deviation remains close to 1 (assuming the inputs are standardized with mean 0 and standard deviation 1 too). Using this activation function, even a 1,000 layer deep neural network preserves roughly mean 0 and standard deviation 1 across all layers, avoiding the exploding/vanishing gradients problem: ###Code np.random.seed(42) Z = np.random.normal(size=(500, 100)) # standardized inputs for layer in range(1000): W = np.random.normal(size=(100, 100), scale=np.sqrt(1 / 100)) # LeCun initialization Z = selu(np.dot(Z, W)) means = np.mean(Z, axis=0).mean() stds = np.std(Z, axis=0).mean() if layer % 100 == 0: print("Layer {}: mean {:.2f}, std deviation {:.2f}".format(layer, means, stds)) ###Output Layer 0: mean -0.00, std deviation 1.00 Layer 100: mean 0.02, std deviation 0.96 Layer 200: mean 0.01, std deviation 0.90 Layer 300: mean -0.02, std deviation 0.92 Layer 400: mean 0.05, std deviation 0.89 Layer 500: mean 0.01, std deviation 0.93 Layer 600: mean 0.02, std deviation 0.92 Layer 700: mean -0.02, std deviation 0.90 Layer 800: mean 0.05, std deviation 0.83 Layer 900: mean 0.02, std deviation 1.00 ###Markdown Using SELU is easy: ###Code keras.layers.Dense(10, activation="selu", kernel_initializer="lecun_normal") ###Output _____no_output_____ ###Markdown Let's create a neural net for Fashion MNIST with 100 hidden layers, using the SELU activation function: ###Code np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28, 28])) model.add(keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal")) for layer in range(99): model.add(keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal")) model.add(keras.layers.Dense(10, activation="softmax")) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) ###Output _____no_output_____ ###Markdown Now let's train it. Do not forget to scale the inputs to mean 0 and standard deviation 1: ###Code pixel_means = X_train.mean(axis=0, keepdims=True) pixel_stds = X_train.std(axis=0, keepdims=True) X_train_scaled = (X_train - pixel_means) / pixel_stds X_valid_scaled = (X_valid - pixel_means) / pixel_stds X_test_scaled = (X_test - pixel_means) / pixel_stds history = model.fit(X_train_scaled, y_train, epochs=5, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/5 1719/1719 [==============================] - 12s 6ms/step - loss: 1.3556 - accuracy: 0.4808 - val_loss: 0.7711 - val_accuracy: 0.6858 Epoch 2/5 1719/1719 [==============================] - 9s 5ms/step - loss: 0.7537 - accuracy: 0.7235 - val_loss: 0.7534 - val_accuracy: 0.7384 Epoch 3/5 1719/1719 [==============================] - 9s 5ms/step - loss: 0.7451 - accuracy: 0.7357 - val_loss: 0.5943 - val_accuracy: 0.7834 Epoch 4/5 1719/1719 [==============================] - 9s 5ms/step - loss: 0.5699 - accuracy: 0.7906 - val_loss: 0.5434 - val_accuracy: 0.8066 Epoch 5/5 1719/1719 [==============================] - 9s 5ms/step - loss: 0.5569 - accuracy: 0.8051 - val_loss: 0.4907 - val_accuracy: 0.8218 ###Markdown Now look at what happens if we try to use the ReLU activation function instead: ###Code np.random.seed(42) tf.random.set_seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[28, 28])) model.add(keras.layers.Dense(300, activation="relu", kernel_initializer="he_normal")) for layer in range(99): model.add(keras.layers.Dense(100, activation="relu", kernel_initializer="he_normal")) model.add(keras.layers.Dense(10, activation="softmax")) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train_scaled, y_train, epochs=5, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/5 1719/1719 [==============================] - 11s 5ms/step - loss: 2.0460 - accuracy: 0.1919 - val_loss: 1.5971 - val_accuracy: 0.3048 Epoch 2/5 1719/1719 [==============================] - 8s 5ms/step - loss: 1.2654 - accuracy: 0.4591 - val_loss: 0.9156 - val_accuracy: 0.6372 Epoch 3/5 1719/1719 [==============================] - 8s 5ms/step - loss: 0.9312 - accuracy: 0.6169 - val_loss: 0.8928 - val_accuracy: 0.6246 Epoch 4/5 1719/1719 [==============================] - 8s 5ms/step - loss: 0.8188 - accuracy: 0.6710 - val_loss: 0.6914 - val_accuracy: 0.7396 Epoch 5/5 1719/1719 [==============================] - 8s 5ms/step - loss: 0.7288 - accuracy: 0.7152 - val_loss: 0.6638 - val_accuracy: 0.7380 ###Markdown Not great at all, we suffered from the vanishing/exploding gradients problem. Batch Normalization ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.BatchNormalization(), keras.layers.Dense(300, activation="relu"), keras.layers.BatchNormalization(), keras.layers.Dense(100, activation="relu"), keras.layers.BatchNormalization(), keras.layers.Dense(10, activation="softmax") ]) model.summary() bn1 = model.layers[1] [(var.name, var.trainable) for var in bn1.variables] #bn1.updates #deprecated model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 3s 1ms/step - loss: 1.2287 - accuracy: 0.5993 - val_loss: 0.5526 - val_accuracy: 0.8230 Epoch 2/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5996 - accuracy: 0.7959 - val_loss: 0.4725 - val_accuracy: 0.8468 Epoch 3/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5312 - accuracy: 0.8168 - val_loss: 0.4375 - val_accuracy: 0.8558 Epoch 4/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4884 - accuracy: 0.8294 - val_loss: 0.4153 - val_accuracy: 0.8596 Epoch 5/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4717 - accuracy: 0.8343 - val_loss: 0.3997 - val_accuracy: 0.8640 Epoch 6/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4420 - accuracy: 0.8461 - val_loss: 0.3867 - val_accuracy: 0.8694 Epoch 7/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4285 - accuracy: 0.8496 - val_loss: 0.3763 - val_accuracy: 0.8710 Epoch 8/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4086 - accuracy: 0.8552 - val_loss: 0.3711 - val_accuracy: 0.8740 Epoch 9/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4079 - accuracy: 0.8566 - val_loss: 0.3631 - val_accuracy: 0.8752 Epoch 10/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3903 - accuracy: 0.8617 - val_loss: 0.3573 - val_accuracy: 0.8750 ###Markdown Sometimes applying BN before the activation function works better (there's a debate on this topic). Moreover, the layer before a `BatchNormalization` layer does not need to have bias terms, since the `BatchNormalization` layer some as well, it would be a waste of parameters, so you can set `use_bias=False` when creating those layers: ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.BatchNormalization(), keras.layers.Dense(300, use_bias=False), keras.layers.BatchNormalization(), keras.layers.Activation("relu"), keras.layers.Dense(100, use_bias=False), keras.layers.BatchNormalization(), keras.layers.Activation("relu"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model.fit(X_train, y_train, epochs=10, validation_data=(X_valid, y_valid)) ###Output Epoch 1/10 1719/1719 [==============================] - 3s 1ms/step - loss: 1.3677 - accuracy: 0.5604 - val_loss: 0.6767 - val_accuracy: 0.7812 Epoch 2/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.7136 - accuracy: 0.7702 - val_loss: 0.5566 - val_accuracy: 0.8184 Epoch 3/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.6123 - accuracy: 0.7990 - val_loss: 0.5007 - val_accuracy: 0.8360 Epoch 4/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5547 - accuracy: 0.8148 - val_loss: 0.4666 - val_accuracy: 0.8448 Epoch 5/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5255 - accuracy: 0.8230 - val_loss: 0.4434 - val_accuracy: 0.8534 Epoch 6/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4947 - accuracy: 0.8328 - val_loss: 0.4263 - val_accuracy: 0.8550 Epoch 7/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4736 - accuracy: 0.8385 - val_loss: 0.4130 - val_accuracy: 0.8566 Epoch 8/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4550 - accuracy: 0.8446 - val_loss: 0.4035 - val_accuracy: 0.8612 Epoch 9/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4495 - accuracy: 0.8440 - val_loss: 0.3943 - val_accuracy: 0.8638 Epoch 10/10 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4333 - accuracy: 0.8494 - val_loss: 0.3875 - val_accuracy: 0.8660 ###Markdown Gradient Clipping All Keras optimizers accept `clipnorm` or `clipvalue` arguments: ###Code optimizer = keras.optimizers.SGD(clipvalue=1.0) optimizer = keras.optimizers.SGD(clipnorm=1.0) ###Output _____no_output_____ ###Markdown Reusing Pretrained Layers Reusing a Keras model Let's split the fashion MNIST training set in two:* `X_train_A`: all images of all items except for sandals and shirts (classes 5 and 6).* `X_train_B`: a much smaller training set of just the first 200 images of sandals or shirts.The validation set and the test set are also split this way, but without restricting the number of images.We will train a model on set A (classification task with 8 classes), and try to reuse it to tackle set B (binary classification). We hope to transfer a little bit of knowledge from task A to task B, since classes in set A (sneakers, ankle boots, coats, t-shirts, etc.) are somewhat similar to classes in set B (sandals and shirts). However, since we are using `Dense` layers, only patterns that occur at the same location can be reused (in contrast, convolutional layers will transfer much better, since learned patterns can be detected anywhere on the image, as we will see in the CNN chapter). ###Code def split_dataset(X, y): y_5_or_6 = (y == 5) | (y == 6) # sandals or shirts y_A = y[~y_5_or_6] y_A[y_A > 6] -= 2 # class indices 7, 8, 9 should be moved to 5, 6, 7 y_B = (y[y_5_or_6] == 6).astype(np.float32) # binary classification task: is it a shirt (class 6)? return ((X[~y_5_or_6], y_A), (X[y_5_or_6], y_B)) (X_train_A, y_train_A), (X_train_B, y_train_B) = split_dataset(X_train, y_train) (X_valid_A, y_valid_A), (X_valid_B, y_valid_B) = split_dataset(X_valid, y_valid) (X_test_A, y_test_A), (X_test_B, y_test_B) = split_dataset(X_test, y_test) X_train_B = X_train_B[:200] y_train_B = y_train_B[:200] X_train_A.shape X_train_B.shape y_train_A[:30] y_train_B[:30] tf.random.set_seed(42) np.random.seed(42) model_A = keras.models.Sequential() model_A.add(keras.layers.Flatten(input_shape=[28, 28])) for n_hidden in (300, 100, 50, 50, 50): model_A.add(keras.layers.Dense(n_hidden, activation="selu")) model_A.add(keras.layers.Dense(8, activation="softmax")) model_A.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_A.fit(X_train_A, y_train_A, epochs=20, validation_data=(X_valid_A, y_valid_A)) model_A.save("my_model_A.h5") model_B = keras.models.Sequential() model_B.add(keras.layers.Flatten(input_shape=[28, 28])) for n_hidden in (300, 100, 50, 50, 50): model_B.add(keras.layers.Dense(n_hidden, activation="selu")) model_B.add(keras.layers.Dense(1, activation="sigmoid")) model_B.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_B.fit(X_train_B, y_train_B, epochs=20, validation_data=(X_valid_B, y_valid_B)) model_B.summary() model_A = keras.models.load_model("my_model_A.h5") model_B_on_A = keras.models.Sequential(model_A.layers[:-1]) model_B_on_A.add(keras.layers.Dense(1, activation="sigmoid")) model_A_clone = keras.models.clone_model(model_A) model_A_clone.set_weights(model_A.get_weights()) for layer in model_B_on_A.layers[:-1]: layer.trainable = False model_B_on_A.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_B_on_A.fit(X_train_B, y_train_B, epochs=4, validation_data=(X_valid_B, y_valid_B)) for layer in model_B_on_A.layers[:-1]: layer.trainable = True model_B_on_A.compile(loss="binary_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) history = model_B_on_A.fit(X_train_B, y_train_B, epochs=16, validation_data=(X_valid_B, y_valid_B)) ###Output Epoch 1/4 7/7 [==============================] - 1s 83ms/step - loss: 0.6155 - accuracy: 0.6184 - val_loss: 0.5843 - val_accuracy: 0.6329 Epoch 2/4 7/7 [==============================] - 0s 9ms/step - loss: 0.5550 - accuracy: 0.6638 - val_loss: 0.5467 - val_accuracy: 0.6805 Epoch 3/4 7/7 [==============================] - 0s 8ms/step - loss: 0.4897 - accuracy: 0.7482 - val_loss: 0.5146 - val_accuracy: 0.7089 Epoch 4/4 7/7 [==============================] - 0s 8ms/step - loss: 0.4899 - accuracy: 0.7405 - val_loss: 0.4859 - val_accuracy: 0.7323 Epoch 1/16 7/7 [==============================] - 0s 28ms/step - loss: 0.4380 - accuracy: 0.7774 - val_loss: 0.3460 - val_accuracy: 0.8661 Epoch 2/16 7/7 [==============================] - 0s 9ms/step - loss: 0.2971 - accuracy: 0.9143 - val_loss: 0.2603 - val_accuracy: 0.9310 Epoch 3/16 7/7 [==============================] - 0s 9ms/step - loss: 0.2034 - accuracy: 0.9777 - val_loss: 0.2110 - val_accuracy: 0.9554 Epoch 4/16 7/7 [==============================] - 0s 9ms/step - loss: 0.1754 - accuracy: 0.9719 - val_loss: 0.1790 - val_accuracy: 0.9696 Epoch 5/16 7/7 [==============================] - 0s 9ms/step - loss: 0.1348 - accuracy: 0.9809 - val_loss: 0.1561 - val_accuracy: 0.9757 Epoch 6/16 7/7 [==============================] - 0s 9ms/step - loss: 0.1172 - accuracy: 0.9973 - val_loss: 0.1392 - val_accuracy: 0.9797 Epoch 7/16 7/7 [==============================] - 0s 9ms/step - loss: 0.1137 - accuracy: 0.9931 - val_loss: 0.1266 - val_accuracy: 0.9838 Epoch 8/16 7/7 [==============================] - 0s 9ms/step - loss: 0.1000 - accuracy: 0.9931 - val_loss: 0.1163 - val_accuracy: 0.9858 Epoch 9/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0834 - accuracy: 1.0000 - val_loss: 0.1065 - val_accuracy: 0.9888 Epoch 10/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0775 - accuracy: 1.0000 - val_loss: 0.0999 - val_accuracy: 0.9899 Epoch 11/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0689 - accuracy: 1.0000 - val_loss: 0.0939 - val_accuracy: 0.9899 Epoch 12/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0719 - accuracy: 1.0000 - val_loss: 0.0888 - val_accuracy: 0.9899 Epoch 13/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0565 - accuracy: 1.0000 - val_loss: 0.0839 - val_accuracy: 0.9899 Epoch 14/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0494 - accuracy: 1.0000 - val_loss: 0.0802 - val_accuracy: 0.9899 Epoch 15/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0544 - accuracy: 1.0000 - val_loss: 0.0768 - val_accuracy: 0.9899 Epoch 16/16 7/7 [==============================] - 0s 9ms/step - loss: 0.0472 - accuracy: 1.0000 - val_loss: 0.0738 - val_accuracy: 0.9899 ###Markdown So, what's the final verdict? ###Code model_B.evaluate(X_test_B, y_test_B) model_B_on_A.evaluate(X_test_B, y_test_B) ###Output 63/63 [==============================] - 0s 705us/step - loss: 0.0682 - accuracy: 0.9935 ###Markdown Great! We got quite a bit of transfer: the error rate dropped by a factor of 4.5! ###Code (100 - 97.05) / (100 - 99.35) ###Output _____no_output_____ ###Markdown Faster Optimizers Momentum optimization ###Code optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9) ###Output _____no_output_____ ###Markdown Nesterov Accelerated Gradient ###Code optimizer = keras.optimizers.SGD(lr=0.001, momentum=0.9, nesterov=True) ###Output _____no_output_____ ###Markdown AdaGrad ###Code optimizer = keras.optimizers.Adagrad(lr=0.001) ###Output _____no_output_____ ###Markdown RMSProp ###Code optimizer = keras.optimizers.RMSprop(lr=0.001, rho=0.9) ###Output _____no_output_____ ###Markdown Adam Optimization ###Code optimizer = keras.optimizers.Adam(lr=0.001, beta_1=0.9, beta_2=0.999) ###Output _____no_output_____ ###Markdown Adamax Optimization ###Code optimizer = keras.optimizers.Adamax(lr=0.001, beta_1=0.9, beta_2=0.999) ###Output _____no_output_____ ###Markdown Nadam Optimization ###Code optimizer = keras.optimizers.Nadam(lr=0.001, beta_1=0.9, beta_2=0.999) ###Output _____no_output_____ ###Markdown Learning Rate Scheduling Power Scheduling ```lr = lr0 / (1 + steps / s)**c```* Keras uses `c=1` and `s = 1 / decay` ###Code optimizer = keras.optimizers.SGD(lr=0.01, decay=1e-4) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) import math learning_rate = 0.01 decay = 1e-4 batch_size = 32 n_steps_per_epoch = math.ceil(len(X_train) / batch_size) epochs = np.arange(n_epochs) lrs = learning_rate / (1 + decay * epochs * n_steps_per_epoch) plt.plot(epochs, lrs, "o-") plt.axis([0, n_epochs - 1, 0, 0.01]) plt.xlabel("Epoch") plt.ylabel("Learning Rate") plt.title("Power Scheduling", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Exponential Scheduling ```lr = lr0 * 0.1**(epoch / s)``` ###Code def exponential_decay_fn(epoch): return 0.01 * 0.1**(epoch / 20) def exponential_decay(lr0, s): def exponential_decay_fn(epoch): return lr0 * 0.1**(epoch / s) return exponential_decay_fn exponential_decay_fn = exponential_decay(lr0=0.01, s=20) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 25 lr_scheduler = keras.callbacks.LearningRateScheduler(exponential_decay_fn) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[lr_scheduler]) plt.plot(history.epoch, history.history["lr"], "o-") plt.axis([0, n_epochs - 1, 0, 0.011]) plt.xlabel("Epoch") plt.ylabel("Learning Rate") plt.title("Exponential Scheduling", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown The schedule function can take the current learning rate as a second argument: ###Code def exponential_decay_fn(epoch, lr): return lr * 0.1**(1 / 20) ###Output _____no_output_____ ###Markdown If you want to update the learning rate at each iteration rather than at each epoch, you must write your own callback class: ###Code K = keras.backend class ExponentialDecay(keras.callbacks.Callback): def __init__(self, s=40000): super().__init__() self.s = s def on_batch_begin(self, batch, logs=None): # Note: the `batch` argument is reset at each epoch lr = K.get_value(self.model.optimizer.lr) K.set_value(self.model.optimizer.lr, lr * 0.1**(1 / s)) def on_epoch_end(self, epoch, logs=None): logs = logs or {} logs['lr'] = K.get_value(self.model.optimizer.lr) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) lr0 = 0.01 optimizer = keras.optimizers.Nadam(lr=lr0) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 s = 20 * len(X_train) // 32 # number of steps in 20 epochs (batch size = 32) exp_decay = ExponentialDecay(s) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[exp_decay]) n_steps = n_epochs * len(X_train) // 32 steps = np.arange(n_steps) lrs = lr0 * 0.1**(steps / s) plt.plot(steps, lrs, "-", linewidth=2) plt.axis([0, n_steps - 1, 0, lr0 * 1.1]) plt.xlabel("Batch") plt.ylabel("Learning Rate") plt.title("Exponential Scheduling (per batch)", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Piecewise Constant Scheduling ###Code def piecewise_constant_fn(epoch): if epoch < 5: return 0.01 elif epoch < 15: return 0.005 else: return 0.001 def piecewise_constant(boundaries, values): boundaries = np.array([0] + boundaries) values = np.array(values) def piecewise_constant_fn(epoch): return values[np.argmax(boundaries > epoch) - 1] return piecewise_constant_fn piecewise_constant_fn = piecewise_constant([5, 15], [0.01, 0.005, 0.001]) lr_scheduler = keras.callbacks.LearningRateScheduler(piecewise_constant_fn) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[lr_scheduler]) plt.plot(history.epoch, [piecewise_constant_fn(epoch) for epoch in history.epoch], "o-") plt.axis([0, n_epochs - 1, 0, 0.011]) plt.xlabel("Epoch") plt.ylabel("Learning Rate") plt.title("Piecewise Constant Scheduling", fontsize=14) plt.grid(True) plt.show() ###Output _____no_output_____ ###Markdown Performance Scheduling ###Code tf.random.set_seed(42) np.random.seed(42) lr_scheduler = keras.callbacks.ReduceLROnPlateau(factor=0.5, patience=5) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) optimizer = keras.optimizers.SGD(lr=0.02, momentum=0.9) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid), callbacks=[lr_scheduler]) plt.plot(history.epoch, history.history["lr"], "bo-") plt.xlabel("Epoch") plt.ylabel("Learning Rate", color='b') plt.tick_params('y', colors='b') plt.gca().set_xlim(0, n_epochs - 1) plt.grid(True) ax2 = plt.gca().twinx() ax2.plot(history.epoch, history.history["val_loss"], "r^-") ax2.set_ylabel('Validation Loss', color='r') ax2.tick_params('y', colors='r') plt.title("Reduce LR on Plateau", fontsize=14) plt.show() ###Output _____no_output_____ ###Markdown tf.keras schedulers ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) s = 20 * len(X_train) // 32 # number of steps in 20 epochs (batch size = 32) learning_rate = keras.optimizers.schedules.ExponentialDecay(0.01, s, 0.1) optimizer = keras.optimizers.SGD(learning_rate) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 25 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.5995 - accuracy: 0.7923 - val_loss: 0.4095 - val_accuracy: 0.8606 Epoch 2/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3890 - accuracy: 0.8613 - val_loss: 0.3738 - val_accuracy: 0.8692 Epoch 3/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3530 - accuracy: 0.8772 - val_loss: 0.3735 - val_accuracy: 0.8692 Epoch 4/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3296 - accuracy: 0.8813 - val_loss: 0.3494 - val_accuracy: 0.8798 Epoch 5/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.3178 - accuracy: 0.8867 - val_loss: 0.3430 - val_accuracy: 0.8794 Epoch 6/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2930 - accuracy: 0.8951 - val_loss: 0.3414 - val_accuracy: 0.8826 Epoch 7/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2854 - accuracy: 0.8985 - val_loss: 0.3354 - val_accuracy: 0.8810 Epoch 8/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2714 - accuracy: 0.9039 - val_loss: 0.3364 - val_accuracy: 0.8824 Epoch 9/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2714 - accuracy: 0.9047 - val_loss: 0.3265 - val_accuracy: 0.8846 Epoch 10/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2570 - accuracy: 0.9084 - val_loss: 0.3238 - val_accuracy: 0.8854 Epoch 11/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2502 - accuracy: 0.9117 - val_loss: 0.3250 - val_accuracy: 0.8862 Epoch 12/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2453 - accuracy: 0.9145 - val_loss: 0.3299 - val_accuracy: 0.8830 Epoch 13/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2408 - accuracy: 0.9154 - val_loss: 0.3219 - val_accuracy: 0.8870 Epoch 14/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2380 - accuracy: 0.9154 - val_loss: 0.3221 - val_accuracy: 0.8860 Epoch 15/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2378 - accuracy: 0.9166 - val_loss: 0.3208 - val_accuracy: 0.8864 Epoch 16/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2318 - accuracy: 0.9191 - val_loss: 0.3184 - val_accuracy: 0.8892 Epoch 17/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2266 - accuracy: 0.9212 - val_loss: 0.3197 - val_accuracy: 0.8906 Epoch 18/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2284 - accuracy: 0.9185 - val_loss: 0.3169 - val_accuracy: 0.8906 Epoch 19/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2286 - accuracy: 0.9205 - val_loss: 0.3197 - val_accuracy: 0.8884 Epoch 20/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2288 - accuracy: 0.9211 - val_loss: 0.3169 - val_accuracy: 0.8906 Epoch 21/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2265 - accuracy: 0.9212 - val_loss: 0.3179 - val_accuracy: 0.8904 Epoch 22/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2258 - accuracy: 0.9205 - val_loss: 0.3163 - val_accuracy: 0.8914 Epoch 23/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2224 - accuracy: 0.9226 - val_loss: 0.3170 - val_accuracy: 0.8904 Epoch 24/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2182 - accuracy: 0.9244 - val_loss: 0.3165 - val_accuracy: 0.8898 Epoch 25/25 1719/1719 [==============================] - 2s 1ms/step - loss: 0.2224 - accuracy: 0.9229 - val_loss: 0.3164 - val_accuracy: 0.8904 ###Markdown For piecewise constant scheduling, try this: ###Code learning_rate = keras.optimizers.schedules.PiecewiseConstantDecay( boundaries=[5. * n_steps_per_epoch, 15. * n_steps_per_epoch], values=[0.01, 0.005, 0.001]) ###Output _____no_output_____ ###Markdown 1Cycle scheduling ###Code K = keras.backend class ExponentialLearningRate(keras.callbacks.Callback): def __init__(self, factor): self.factor = factor self.rates = [] self.losses = [] def on_batch_end(self, batch, logs): self.rates.append(K.get_value(self.model.optimizer.lr)) self.losses.append(logs["loss"]) K.set_value(self.model.optimizer.lr, self.model.optimizer.lr * self.factor) def find_learning_rate(model, X, y, epochs=1, batch_size=32, min_rate=10**-5, max_rate=10): init_weights = model.get_weights() iterations = math.ceil(len(X) / batch_size) * epochs factor = np.exp(np.log(max_rate / min_rate) / iterations) init_lr = K.get_value(model.optimizer.lr) K.set_value(model.optimizer.lr, min_rate) exp_lr = ExponentialLearningRate(factor) history = model.fit(X, y, epochs=epochs, batch_size=batch_size, callbacks=[exp_lr]) K.set_value(model.optimizer.lr, init_lr) model.set_weights(init_weights) return exp_lr.rates, exp_lr.losses def plot_lr_vs_loss(rates, losses): plt.plot(rates, losses) plt.gca().set_xscale('log') plt.hlines(min(losses), min(rates), max(rates)) plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 2]) plt.xlabel("Learning rate") plt.ylabel("Loss") tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer=keras.optimizers.SGD(lr=1e-3), metrics=["accuracy"]) batch_size = 128 rates, losses = find_learning_rate(model, X_train_scaled, y_train, epochs=1, batch_size=batch_size) plot_lr_vs_loss(rates, losses) class OneCycleScheduler(keras.callbacks.Callback): def __init__(self, iterations, max_rate, start_rate=None, last_iterations=None, last_rate=None): self.iterations = iterations self.max_rate = max_rate self.start_rate = start_rate or max_rate / 10 self.last_iterations = last_iterations or iterations // 10 + 1 self.half_iteration = (iterations - self.last_iterations) // 2 self.last_rate = last_rate or self.start_rate / 1000 self.iteration = 0 def _interpolate(self, iter1, iter2, rate1, rate2): return ((rate2 - rate1) * (self.iteration - iter1) / (iter2 - iter1) + rate1) def on_batch_begin(self, batch, logs): if self.iteration < self.half_iteration: rate = self._interpolate(0, self.half_iteration, self.start_rate, self.max_rate) elif self.iteration < 2 * self.half_iteration: rate = self._interpolate(self.half_iteration, 2 * self.half_iteration, self.max_rate, self.start_rate) else: rate = self._interpolate(2 * self.half_iteration, self.iterations, self.start_rate, self.last_rate) self.iteration += 1 K.set_value(self.model.optimizer.lr, rate) n_epochs = 25 onecycle = OneCycleScheduler(math.ceil(len(X_train) / batch_size) * n_epochs, max_rate=0.05) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, batch_size=batch_size, validation_data=(X_valid_scaled, y_valid), callbacks=[onecycle]) ###Output Epoch 1/25 430/430 [==============================] - 1s 2ms/step - loss: 0.6572 - accuracy: 0.7740 - val_loss: 0.4872 - val_accuracy: 0.8338 Epoch 2/25 430/430 [==============================] - 1s 2ms/step - loss: 0.4580 - accuracy: 0.8397 - val_loss: 0.4274 - val_accuracy: 0.8520 Epoch 3/25 430/430 [==============================] - 1s 2ms/step - loss: 0.4121 - accuracy: 0.8545 - val_loss: 0.4116 - val_accuracy: 0.8588 Epoch 4/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3837 - accuracy: 0.8642 - val_loss: 0.3868 - val_accuracy: 0.8688 Epoch 5/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3639 - accuracy: 0.8719 - val_loss: 0.3766 - val_accuracy: 0.8688 Epoch 6/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3456 - accuracy: 0.8775 - val_loss: 0.3739 - val_accuracy: 0.8706 Epoch 7/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3330 - accuracy: 0.8811 - val_loss: 0.3635 - val_accuracy: 0.8708 Epoch 8/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3184 - accuracy: 0.8861 - val_loss: 0.3959 - val_accuracy: 0.8610 Epoch 9/25 430/430 [==============================] - 1s 2ms/step - loss: 0.3065 - accuracy: 0.8890 - val_loss: 0.3475 - val_accuracy: 0.8770 Epoch 10/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2943 - accuracy: 0.8927 - val_loss: 0.3392 - val_accuracy: 0.8806 Epoch 11/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2838 - accuracy: 0.8963 - val_loss: 0.3467 - val_accuracy: 0.8800 Epoch 12/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2707 - accuracy: 0.9024 - val_loss: 0.3646 - val_accuracy: 0.8696 Epoch 13/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2536 - accuracy: 0.9079 - val_loss: 0.3350 - val_accuracy: 0.8842 Epoch 14/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2405 - accuracy: 0.9135 - val_loss: 0.3465 - val_accuracy: 0.8794 Epoch 15/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2279 - accuracy: 0.9185 - val_loss: 0.3257 - val_accuracy: 0.8830 Epoch 16/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2159 - accuracy: 0.9232 - val_loss: 0.3294 - val_accuracy: 0.8824 Epoch 17/25 430/430 [==============================] - 1s 2ms/step - loss: 0.2062 - accuracy: 0.9263 - val_loss: 0.3333 - val_accuracy: 0.8882 Epoch 18/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1978 - accuracy: 0.9301 - val_loss: 0.3235 - val_accuracy: 0.8898 Epoch 19/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1892 - accuracy: 0.9337 - val_loss: 0.3233 - val_accuracy: 0.8906 Epoch 20/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1821 - accuracy: 0.9365 - val_loss: 0.3224 - val_accuracy: 0.8928 Epoch 21/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1752 - accuracy: 0.9400 - val_loss: 0.3220 - val_accuracy: 0.8908 Epoch 22/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1700 - accuracy: 0.9416 - val_loss: 0.3180 - val_accuracy: 0.8962 Epoch 23/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1655 - accuracy: 0.9438 - val_loss: 0.3187 - val_accuracy: 0.8940 Epoch 24/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1627 - accuracy: 0.9454 - val_loss: 0.3177 - val_accuracy: 0.8932 Epoch 25/25 430/430 [==============================] - 1s 2ms/step - loss: 0.1610 - accuracy: 0.9462 - val_loss: 0.3170 - val_accuracy: 0.8934 ###Markdown Avoiding Overfitting Through Regularization $\ell_1$ and $\ell_2$ regularization ###Code layer = keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)) # or l1(0.1) for ℓ1 regularization with a factor or 0.1 # or l1_l2(0.1, 0.01) for both ℓ1 and ℓ2 regularization, with factors 0.1 and 0.01 respectively model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)), keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)), keras.layers.Dense(10, activation="softmax", kernel_regularizer=keras.regularizers.l2(0.01)) ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) from functools import partial RegularizedDense = partial(keras.layers.Dense, activation="elu", kernel_initializer="he_normal", kernel_regularizer=keras.regularizers.l2(0.01)) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), RegularizedDense(300), RegularizedDense(100), RegularizedDense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/2 1719/1719 [==============================] - 6s 3ms/step - loss: 3.2911 - accuracy: 0.7924 - val_loss: 0.7218 - val_accuracy: 0.8310 Epoch 2/2 1719/1719 [==============================] - 5s 3ms/step - loss: 0.7282 - accuracy: 0.8245 - val_loss: 0.6826 - val_accuracy: 0.8382 ###Markdown Dropout ###Code model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.Dropout(rate=0.2), keras.layers.Dense(300, activation="elu", kernel_initializer="he_normal"), keras.layers.Dropout(rate=0.2), keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal"), keras.layers.Dropout(rate=0.2), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/2 1719/1719 [==============================] - 6s 3ms/step - loss: 0.7611 - accuracy: 0.7576 - val_loss: 0.3730 - val_accuracy: 0.8644 Epoch 2/2 1719/1719 [==============================] - 5s 3ms/step - loss: 0.4306 - accuracy: 0.8401 - val_loss: 0.3395 - val_accuracy: 0.8722 ###Markdown Alpha Dropout ###Code tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), keras.layers.AlphaDropout(rate=0.2), keras.layers.Dense(300, activation="selu", kernel_initializer="lecun_normal"), keras.layers.AlphaDropout(rate=0.2), keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal"), keras.layers.AlphaDropout(rate=0.2), keras.layers.Dense(10, activation="softmax") ]) optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 20 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) model.evaluate(X_test_scaled, y_test) model.evaluate(X_train_scaled, y_train) history = model.fit(X_train_scaled, y_train) ###Output 1719/1719 [==============================] - 2s 1ms/step - loss: 0.4225 - accuracy: 0.8432 ###Markdown MC Dropout ###Code tf.random.set_seed(42) np.random.seed(42) y_probas = np.stack([model(X_test_scaled, training=True) for sample in range(100)]) y_proba = y_probas.mean(axis=0) y_std = y_probas.std(axis=0) np.round(model.predict(X_test_scaled[:1]), 2) np.round(y_probas[:, :1], 2) np.round(y_proba[:1], 2) y_std = y_probas.std(axis=0) np.round(y_std[:1], 2) y_pred = np.argmax(y_proba, axis=1) accuracy = np.sum(y_pred == y_test) / len(y_test) accuracy class MCDropout(keras.layers.Dropout): def call(self, inputs): return super().call(inputs, training=True) class MCAlphaDropout(keras.layers.AlphaDropout): def call(self, inputs): return super().call(inputs, training=True) tf.random.set_seed(42) np.random.seed(42) mc_model = keras.models.Sequential([ MCAlphaDropout(layer.rate) if isinstance(layer, keras.layers.AlphaDropout) else layer for layer in model.layers ]) mc_model.summary() optimizer = keras.optimizers.SGD(lr=0.01, momentum=0.9, nesterov=True) mc_model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) mc_model.set_weights(model.get_weights()) ###Output _____no_output_____ ###Markdown Now we can use the model with MC Dropout: ###Code np.round(np.mean([mc_model.predict(X_test_scaled[:1]) for sample in range(100)], axis=0), 2) ###Output _____no_output_____ ###Markdown Max norm ###Code layer = keras.layers.Dense(100, activation="selu", kernel_initializer="lecun_normal", kernel_constraint=keras.constraints.max_norm(1.)) MaxNormDense = partial(keras.layers.Dense, activation="selu", kernel_initializer="lecun_normal", kernel_constraint=keras.constraints.max_norm(1.)) model = keras.models.Sequential([ keras.layers.Flatten(input_shape=[28, 28]), MaxNormDense(300), MaxNormDense(100), keras.layers.Dense(10, activation="softmax") ]) model.compile(loss="sparse_categorical_crossentropy", optimizer="nadam", metrics=["accuracy"]) n_epochs = 2 history = model.fit(X_train_scaled, y_train, epochs=n_epochs, validation_data=(X_valid_scaled, y_valid)) ###Output Epoch 1/2 1719/1719 [==============================] - 5s 3ms/step - loss: 0.5763 - accuracy: 0.8020 - val_loss: 0.3674 - val_accuracy: 0.8674 Epoch 2/2 1719/1719 [==============================] - 5s 3ms/step - loss: 0.3545 - accuracy: 0.8709 - val_loss: 0.3714 - val_accuracy: 0.8662 ###Markdown Exercises 1. to 7. See appendix A. 8. Deep Learning on CIFAR10 a.*Exercise: Build a DNN with 20 hidden layers of 100 neurons each (that's too many, but it's the point of this exercise). Use He initialization and the ELU activation function.* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, activation="elu", kernel_initializer="he_normal")) ###Output _____no_output_____ ###Markdown b.*Exercise: Using Nadam optimization and early stopping, train the network on the CIFAR10 dataset. You can load it with `keras.datasets.cifar10.load_data()`. The dataset is composed of 60,000 32 × 32–pixel color images (50,000 for training, 10,000 for testing) with 10 classes, so you'll need a softmax output layer with 10 neurons. Remember to search for the right learning rate each time you change the model's architecture or hyperparameters.* Let's add the output layer to the model: ###Code model.add(keras.layers.Dense(10, activation="softmax")) ###Output _____no_output_____ ###Markdown Let's use a Nadam optimizer with a learning rate of 5e-5. I tried learning rates 1e-5, 3e-5, 1e-4, 3e-4, 1e-3, 3e-3 and 1e-2, and I compared their learning curves for 10 epochs each (using the TensorBoard callback, below). The learning rates 3e-5 and 1e-4 were pretty good, so I tried 5e-5, which turned out to be slightly better. ###Code optimizer = keras.optimizers.Nadam(lr=5e-5) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) ###Output _____no_output_____ ###Markdown Let's load the CIFAR10 dataset. We also want to use early stopping, so we need a validation set. Let's use the first 5,000 images of the original training set as the validation set: ###Code (X_train_full, y_train_full), (X_test, y_test) = keras.datasets.cifar10.load_data() X_train = X_train_full[5000:] y_train = y_train_full[5000:] X_valid = X_train_full[:5000] y_valid = y_train_full[:5000] ###Output _____no_output_____ ###Markdown Now we can create the callbacks we need and train the model: ###Code early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] %tensorboard --logdir=./my_cifar10_logs --port=6006 model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_model.h5") model.evaluate(X_valid, y_valid) ###Output 157/157 [==============================] - 0s 1ms/step - loss: 1.4960 - accuracy: 0.4762 ###Markdown The model with the lowest validation loss gets about 47.6% accuracy on the validation set. It took 27 epochs to reach the lowest validation loss, with roughly 8 seconds per epoch on my laptop (without a GPU). Let's see if we can improve performance using Batch Normalization. c.*Exercise: Now try adding Batch Normalization and compare the learning curves: Is it converging faster than before? Does it produce a better model? How does it affect training speed?* The code below is very similar to the code above, with a few changes:* I added a BN layer after every Dense layer (before the activation function), except for the output layer. I also added a BN layer before the first hidden layer.* I changed the learning rate to 5e-4. I experimented with 1e-5, 3e-5, 5e-5, 1e-4, 3e-4, 5e-4, 1e-3 and 3e-3, and I chose the one with the best validation performance after 20 epochs.* I renamed the run directories to run_bn_* and the model file name to my_cifar10_bn_model.h5. ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) model.add(keras.layers.BatchNormalization()) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="he_normal")) model.add(keras.layers.BatchNormalization()) model.add(keras.layers.Activation("elu")) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.Nadam(lr=5e-4) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_bn_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_bn_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] model.fit(X_train, y_train, epochs=100, validation_data=(X_valid, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_bn_model.h5") model.evaluate(X_valid, y_valid) ###Output Epoch 1/100 1407/1407 [==============================] - 19s 9ms/step - loss: 1.9765 - accuracy: 0.2968 - val_loss: 1.6602 - val_accuracy: 0.4042 Epoch 2/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.6787 - accuracy: 0.4056 - val_loss: 1.5887 - val_accuracy: 0.4304 Epoch 3/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.6097 - accuracy: 0.4274 - val_loss: 1.5781 - val_accuracy: 0.4326 Epoch 4/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.5574 - accuracy: 0.4486 - val_loss: 1.5064 - val_accuracy: 0.4676 Epoch 5/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.5075 - accuracy: 0.4642 - val_loss: 1.4412 - val_accuracy: 0.4844 Epoch 6/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.4664 - accuracy: 0.4787 - val_loss: 1.4179 - val_accuracy: 0.4984 Epoch 7/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.4334 - accuracy: 0.4932 - val_loss: 1.4277 - val_accuracy: 0.4906 Epoch 8/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.4054 - accuracy: 0.5038 - val_loss: 1.3843 - val_accuracy: 0.5130 Epoch 9/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.3816 - accuracy: 0.5106 - val_loss: 1.3691 - val_accuracy: 0.5108 Epoch 10/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.3547 - accuracy: 0.5206 - val_loss: 1.3552 - val_accuracy: 0.5226 Epoch 11/100 1407/1407 [==============================] - 12s 9ms/step - loss: 1.3244 - accuracy: 0.5371 - val_loss: 1.3678 - val_accuracy: 0.5142 Epoch 12/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.3078 - accuracy: 0.5393 - val_loss: 1.3844 - val_accuracy: 0.5080 Epoch 13/100 1407/1407 [==============================] - 12s 9ms/step - loss: 1.2889 - accuracy: 0.5431 - val_loss: 1.3566 - val_accuracy: 0.5164 Epoch 14/100 1407/1407 [==============================] - 12s 9ms/step - loss: 1.2607 - accuracy: 0.5559 - val_loss: 1.3626 - val_accuracy: 0.5248 Epoch 15/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.2580 - accuracy: 0.5587 - val_loss: 1.3616 - val_accuracy: 0.5276 Epoch 16/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.2441 - accuracy: 0.5586 - val_loss: 1.3350 - val_accuracy: 0.5286 Epoch 17/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.2241 - accuracy: 0.5676 - val_loss: 1.3370 - val_accuracy: 0.5408 Epoch 18/100 <<29 more lines>> Epoch 33/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.0336 - accuracy: 0.6369 - val_loss: 1.3682 - val_accuracy: 0.5450 Epoch 34/100 1407/1407 [==============================] - 11s 8ms/step - loss: 1.0228 - accuracy: 0.6388 - val_loss: 1.3348 - val_accuracy: 0.5458 Epoch 35/100 1407/1407 [==============================] - 12s 8ms/step - loss: 1.0205 - accuracy: 0.6407 - val_loss: 1.3490 - val_accuracy: 0.5440 Epoch 36/100 1407/1407 [==============================] - 12s 9ms/step - loss: 1.0008 - accuracy: 0.6489 - val_loss: 1.3568 - val_accuracy: 0.5408 Epoch 37/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9785 - accuracy: 0.6543 - val_loss: 1.3628 - val_accuracy: 0.5396 Epoch 38/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9832 - accuracy: 0.6592 - val_loss: 1.3617 - val_accuracy: 0.5482 Epoch 39/100 1407/1407 [==============================] - 12s 8ms/step - loss: 0.9707 - accuracy: 0.6581 - val_loss: 1.3767 - val_accuracy: 0.5446 Epoch 40/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9590 - accuracy: 0.6651 - val_loss: 1.4200 - val_accuracy: 0.5314 Epoch 41/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9548 - accuracy: 0.6668 - val_loss: 1.3692 - val_accuracy: 0.5450 Epoch 42/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9480 - accuracy: 0.6667 - val_loss: 1.3841 - val_accuracy: 0.5310 Epoch 43/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9411 - accuracy: 0.6716 - val_loss: 1.4036 - val_accuracy: 0.5382 Epoch 44/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9383 - accuracy: 0.6708 - val_loss: 1.4114 - val_accuracy: 0.5236 Epoch 45/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9258 - accuracy: 0.6769 - val_loss: 1.4224 - val_accuracy: 0.5324 Epoch 46/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.9072 - accuracy: 0.6836 - val_loss: 1.3875 - val_accuracy: 0.5442 Epoch 47/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.8996 - accuracy: 0.6850 - val_loss: 1.4449 - val_accuracy: 0.5280 Epoch 48/100 1407/1407 [==============================] - 13s 9ms/step - loss: 0.9050 - accuracy: 0.6835 - val_loss: 1.4167 - val_accuracy: 0.5338 Epoch 49/100 1407/1407 [==============================] - 12s 9ms/step - loss: 0.8934 - accuracy: 0.6880 - val_loss: 1.4260 - val_accuracy: 0.5294 157/157 [==============================] - 1s 2ms/step - loss: 1.3344 - accuracy: 0.5398 ###Markdown * *Is the model converging faster than before?* Much faster! The previous model took 27 epochs to reach the lowest validation loss, while the new model achieved that same loss in just 5 epochs and continued to make progress until the 16th epoch. The BN layers stabilized training and allowed us to use a much larger learning rate, so convergence was faster.* *Does BN produce a better model?* Yes! The final model is also much better, with 54.0% accuracy instead of 47.6%. It's still not a very good model, but at least it's much better than before (a Convolutional Neural Network would do much better, but that's a different topic, see chapter 14).* *How does BN affect training speed?* Although the model converged much faster, each epoch took about 12s instead of 8s, because of the extra computations required by the BN layers. But overall the training time (wall time) was shortened significantly! d.*Exercise: Try replacing Batch Normalization with SELU, and make the necessary adjustements to ensure the network self-normalizes (i.e., standardize the input features, use LeCun normal initialization, make sure the DNN contains only a sequence of dense layers, etc.).* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.Nadam(lr=7e-4) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_selu_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_selu_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] X_means = X_train.mean(axis=0) X_stds = X_train.std(axis=0) X_train_scaled = (X_train - X_means) / X_stds X_valid_scaled = (X_valid - X_means) / X_stds X_test_scaled = (X_test - X_means) / X_stds model.fit(X_train_scaled, y_train, epochs=100, validation_data=(X_valid_scaled, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_selu_model.h5") model.evaluate(X_valid_scaled, y_valid) model = keras.models.load_model("my_cifar10_selu_model.h5") model.evaluate(X_valid_scaled, y_valid) ###Output 157/157 [==============================] - 0s 1ms/step - loss: 1.4633 - accuracy: 0.4792 ###Markdown We get 47.9% accuracy, which is not much better than the original model (47.6%), and not as good as the model using batch normalization (54.0%). However, convergence was almost as fast as with the BN model, plus each epoch took only 7 seconds. So it's by far the fastest model to train so far. e.*Exercise: Try regularizing the model with alpha dropout. Then, without retraining your model, see if you can achieve better accuracy using MC Dropout.* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.AlphaDropout(rate=0.1)) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.Nadam(lr=5e-4) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) early_stopping_cb = keras.callbacks.EarlyStopping(patience=20) model_checkpoint_cb = keras.callbacks.ModelCheckpoint("my_cifar10_alpha_dropout_model.h5", save_best_only=True) run_index = 1 # increment every time you train the model run_logdir = os.path.join(os.curdir, "my_cifar10_logs", "run_alpha_dropout_{:03d}".format(run_index)) tensorboard_cb = keras.callbacks.TensorBoard(run_logdir) callbacks = [early_stopping_cb, model_checkpoint_cb, tensorboard_cb] X_means = X_train.mean(axis=0) X_stds = X_train.std(axis=0) X_train_scaled = (X_train - X_means) / X_stds X_valid_scaled = (X_valid - X_means) / X_stds X_test_scaled = (X_test - X_means) / X_stds model.fit(X_train_scaled, y_train, epochs=100, validation_data=(X_valid_scaled, y_valid), callbacks=callbacks) model = keras.models.load_model("my_cifar10_alpha_dropout_model.h5") model.evaluate(X_valid_scaled, y_valid) ###Output Epoch 1/100 1407/1407 [==============================] - 9s 5ms/step - loss: 2.0583 - accuracy: 0.2742 - val_loss: 1.7429 - val_accuracy: 0.3858 Epoch 2/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.6852 - accuracy: 0.4008 - val_loss: 1.7055 - val_accuracy: 0.3792 Epoch 3/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.5963 - accuracy: 0.4413 - val_loss: 1.7401 - val_accuracy: 0.4072 Epoch 4/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.5231 - accuracy: 0.4634 - val_loss: 1.5728 - val_accuracy: 0.4584 Epoch 5/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.4619 - accuracy: 0.4887 - val_loss: 1.5448 - val_accuracy: 0.4702 Epoch 6/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.4074 - accuracy: 0.5061 - val_loss: 1.5678 - val_accuracy: 0.4664 Epoch 7/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.3718 - accuracy: 0.5222 - val_loss: 1.5764 - val_accuracy: 0.4824 Epoch 8/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.3220 - accuracy: 0.5387 - val_loss: 1.4805 - val_accuracy: 0.4890 Epoch 9/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.2908 - accuracy: 0.5487 - val_loss: 1.5521 - val_accuracy: 0.4638 Epoch 10/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.2537 - accuracy: 0.5607 - val_loss: 1.5281 - val_accuracy: 0.4924 Epoch 11/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.2215 - accuracy: 0.5782 - val_loss: 1.5147 - val_accuracy: 0.5046 Epoch 12/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.1910 - accuracy: 0.5831 - val_loss: 1.5248 - val_accuracy: 0.5002 Epoch 13/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.1659 - accuracy: 0.5982 - val_loss: 1.5620 - val_accuracy: 0.5066 Epoch 14/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.1282 - accuracy: 0.6120 - val_loss: 1.5440 - val_accuracy: 0.5180 Epoch 15/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.1127 - accuracy: 0.6133 - val_loss: 1.5782 - val_accuracy: 0.5146 Epoch 16/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.0917 - accuracy: 0.6266 - val_loss: 1.6182 - val_accuracy: 0.5182 Epoch 17/100 1407/1407 [==============================] - 6s 5ms/step - loss: 1.0620 - accuracy: 0.6331 - val_loss: 1.6285 - val_accuracy: 0.5126 Epoch 18/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.0433 - accuracy: 0.6413 - val_loss: 1.6299 - val_accuracy: 0.5158 Epoch 19/100 1407/1407 [==============================] - 7s 5ms/step - loss: 1.0087 - accuracy: 0.6549 - val_loss: 1.7172 - val_accuracy: 0.5062 Epoch 20/100 1407/1407 [==============================] - 6s 5ms/step - loss: 0.9950 - accuracy: 0.6571 - val_loss: 1.6524 - val_accuracy: 0.5098 Epoch 21/100 1407/1407 [==============================] - 7s 5ms/step - loss: 0.9848 - accuracy: 0.6652 - val_loss: 1.7686 - val_accuracy: 0.5038 Epoch 22/100 1407/1407 [==============================] - 7s 5ms/step - loss: 0.9597 - accuracy: 0.6744 - val_loss: 1.6177 - val_accuracy: 0.5084 Epoch 23/100 1407/1407 [==============================] - 7s 5ms/step - loss: 0.9399 - accuracy: 0.6790 - val_loss: 1.7095 - val_accuracy: 0.5082 Epoch 24/100 1407/1407 [==============================] - 7s 5ms/step - loss: 0.9148 - accuracy: 0.6884 - val_loss: 1.7160 - val_accuracy: 0.5150 Epoch 25/100 1407/1407 [==============================] - 6s 5ms/step - loss: 0.9023 - accuracy: 0.6949 - val_loss: 1.7017 - val_accuracy: 0.5152 Epoch 26/100 1407/1407 [==============================] - 7s 5ms/step - loss: 0.8732 - accuracy: 0.7031 - val_loss: 1.7274 - val_accuracy: 0.5088 Epoch 27/100 1407/1407 [==============================] - 6s 5ms/step - loss: 0.8542 - accuracy: 0.7091 - val_loss: 1.7648 - val_accuracy: 0.5166 Epoch 28/100 1407/1407 [==============================] - 7s 5ms/step - loss: 0.8499 - accuracy: 0.7118 - val_loss: 1.7973 - val_accuracy: 0.5000 157/157 [==============================] - 0s 1ms/step - loss: 1.4805 - accuracy: 0.4890 ###Markdown The model reaches 48.9% accuracy on the validation set. That's very slightly better than without dropout (47.6%). With an extensive hyperparameter search, it might be possible to do better (I tried dropout rates of 5%, 10%, 20% and 40%, and learning rates 1e-4, 3e-4, 5e-4, and 1e-3), but probably not much better in this case. Let's use MC Dropout now. We will need the `MCAlphaDropout` class we used earlier, so let's just copy it here for convenience: ###Code class MCAlphaDropout(keras.layers.AlphaDropout): def call(self, inputs): return super().call(inputs, training=True) ###Output _____no_output_____ ###Markdown Now let's create a new model, identical to the one we just trained (with the same weights), but with `MCAlphaDropout` dropout layers instead of `AlphaDropout` layers: ###Code mc_model = keras.models.Sequential([ MCAlphaDropout(layer.rate) if isinstance(layer, keras.layers.AlphaDropout) else layer for layer in model.layers ]) ###Output _____no_output_____ ###Markdown Then let's add a couple utility functions. The first will run the model many times (10 by default) and it will return the mean predicted class probabilities. The second will use these mean probabilities to predict the most likely class for each instance: ###Code def mc_dropout_predict_probas(mc_model, X, n_samples=10): Y_probas = [mc_model.predict(X) for sample in range(n_samples)] return np.mean(Y_probas, axis=0) def mc_dropout_predict_classes(mc_model, X, n_samples=10): Y_probas = mc_dropout_predict_probas(mc_model, X, n_samples) return np.argmax(Y_probas, axis=1) ###Output _____no_output_____ ###Markdown Now let's make predictions for all the instances in the validation set, and compute the accuracy: ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) y_pred = mc_dropout_predict_classes(mc_model, X_valid_scaled) accuracy = np.mean(y_pred == y_valid[:, 0]) accuracy ###Output _____no_output_____ ###Markdown We get no accuracy improvement in this case (we're still at 48.9% accuracy).So the best model we got in this exercise is the Batch Normalization model. f.*Exercise: Retrain your model using 1cycle scheduling and see if it improves training speed and model accuracy.* ###Code keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.AlphaDropout(rate=0.1)) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.SGD(lr=1e-3) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) batch_size = 128 rates, losses = find_learning_rate(model, X_train_scaled, y_train, epochs=1, batch_size=batch_size) plot_lr_vs_loss(rates, losses) plt.axis([min(rates), max(rates), min(losses), (losses[0] + min(losses)) / 1.4]) keras.backend.clear_session() tf.random.set_seed(42) np.random.seed(42) model = keras.models.Sequential() model.add(keras.layers.Flatten(input_shape=[32, 32, 3])) for _ in range(20): model.add(keras.layers.Dense(100, kernel_initializer="lecun_normal", activation="selu")) model.add(keras.layers.AlphaDropout(rate=0.1)) model.add(keras.layers.Dense(10, activation="softmax")) optimizer = keras.optimizers.SGD(lr=1e-2) model.compile(loss="sparse_categorical_crossentropy", optimizer=optimizer, metrics=["accuracy"]) n_epochs = 15 onecycle = OneCycleScheduler(math.ceil(len(X_train_scaled) / batch_size) * n_epochs, max_rate=0.05) history = model.fit(X_train_scaled, y_train, epochs=n_epochs, batch_size=batch_size, validation_data=(X_valid_scaled, y_valid), callbacks=[onecycle]) ###Output Epoch 1/15 352/352 [==============================] - 3s 6ms/step - loss: 2.2298 - accuracy: 0.2349 - val_loss: 1.7841 - val_accuracy: 0.3834 Epoch 2/15 352/352 [==============================] - 2s 6ms/step - loss: 1.7928 - accuracy: 0.3689 - val_loss: 1.6806 - val_accuracy: 0.4086 Epoch 3/15 352/352 [==============================] - 2s 6ms/step - loss: 1.6475 - accuracy: 0.4190 - val_loss: 1.6378 - val_accuracy: 0.4350 Epoch 4/15 352/352 [==============================] - 2s 6ms/step - loss: 1.5428 - accuracy: 0.4543 - val_loss: 1.6266 - val_accuracy: 0.4390 Epoch 5/15 352/352 [==============================] - 2s 6ms/step - loss: 1.4865 - accuracy: 0.4769 - val_loss: 1.6158 - val_accuracy: 0.4384 Epoch 6/15 352/352 [==============================] - 2s 6ms/step - loss: 1.4339 - accuracy: 0.4866 - val_loss: 1.5850 - val_accuracy: 0.4412 Epoch 7/15 352/352 [==============================] - 2s 6ms/step - loss: 1.4042 - accuracy: 0.5056 - val_loss: 1.6146 - val_accuracy: 0.4384 Epoch 8/15 352/352 [==============================] - 2s 6ms/step - loss: 1.3437 - accuracy: 0.5229 - val_loss: 1.5299 - val_accuracy: 0.4846 Epoch 9/15 352/352 [==============================] - 2s 5ms/step - loss: 1.2721 - accuracy: 0.5459 - val_loss: 1.5145 - val_accuracy: 0.4874 Epoch 10/15 352/352 [==============================] - 2s 6ms/step - loss: 1.1942 - accuracy: 0.5698 - val_loss: 1.4958 - val_accuracy: 0.5040 Epoch 11/15 352/352 [==============================] - 2s 6ms/step - loss: 1.1211 - accuracy: 0.6033 - val_loss: 1.5406 - val_accuracy: 0.4984 Epoch 12/15 352/352 [==============================] - 2s 6ms/step - loss: 1.0673 - accuracy: 0.6161 - val_loss: 1.5284 - val_accuracy: 0.5144 Epoch 13/15 352/352 [==============================] - 2s 6ms/step - loss: 0.9927 - accuracy: 0.6435 - val_loss: 1.5449 - val_accuracy: 0.5140 Epoch 14/15 352/352 [==============================] - 2s 6ms/step - loss: 0.9205 - accuracy: 0.6703 - val_loss: 1.5652 - val_accuracy: 0.5224 Epoch 15/15 352/352 [==============================] - 2s 6ms/step - loss: 0.8936 - accuracy: 0.6801 - val_loss: 1.5912 - val_accuracy: 0.5198
ch2/5. Quantum Random Number Generator.ipynb
###Markdown Quantum Random Number Generator _sort of_start [here](https://livebook.manning.com/book/learn-quantum-computing-with-python-and-q-sharp/chapter-2/v-4/point-7623-374-374-0) ###Code def qrng(device : QuantumDevice) -> bool: with device.using_qubit() as q: q.h() return q.measure() ###Output _____no_output_____
d2l/chapter_attention-mechanisms/attention-scoring-functions.ipynb
###Markdown 注意力打分函数:label:`sec_attention-scoring-functions`在 :numref:`sec_nadaraya-waston` 中,我们使用高斯核来对查询和键之间的关系建模。可以将 :eqref:`eq_nadaraya-waston-gaussian` 中的高斯核的指数部分视为 *注意力打分函数*(attention scoring function),简称 *打分函数*(scoring function),然后把这个函数的输出结果输入到 softmax 函数中进行运算。通过上述步骤,我们将得到与键对应的值的概率分布(即注意力权重)。最后,注意力汇聚的输出就是基于这些注意力权重的值的加权和。从宏观来看,可以使用上述算法来实现 :numref:`fig_qkv` 中的注意力机制框架。:numref:`fig_attention_output` 说明了如何将注意力汇聚的输出计算成为值的加权和,其中 $a$ 表示注意力打分函数。由于注意力权重是概率分布,因此加权和其本质上是加权平均值。![计算注意力汇聚的输出为值的加权和。](../img/attention-output.svg):label:`fig_attention_output`用数学语言描述,假设有一个查询 $\mathbf{q} \in \mathbb{R}^q$ 和 $m$ 个“键-值”对 $(\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}_m)$,其中 $\mathbf{k}_i \in \mathbb{R}^k$,$\mathbf{v}_i \in \mathbb{R}^v$。注意力汇聚函数 $f$ 就被表示成值的加权和:$$f(\mathbf{q}, (\mathbf{k}_1, \mathbf{v}_1), \ldots, (\mathbf{k}_m, \mathbf{v}_m)) = \sum_{i=1}^m \alpha(\mathbf{q}, \mathbf{k}_i) \mathbf{v}_i \in \mathbb{R}^v,$$:eqlabel:`eq_attn-pooling`其中查询 $\mathbf{q}$ 和键 $\mathbf{k}_i$ 的注意力权重(标量)是通过注意力打分函数 $a$ 将两个向量映射成标量,再经过 softmax 运算得到的:$$\alpha(\mathbf{q}, \mathbf{k}_i) = \mathrm{softmax}(a(\mathbf{q}, \mathbf{k}_i)) = \frac{\exp(a(\mathbf{q}, \mathbf{k}_i))}{\sum_{j=1}^m \exp(a(\mathbf{q}, \mathbf{k}_j))} \in \mathbb{R}.$$:eqlabel:`eq_attn-scoring-alpha`正如我们所看到的,选择不同的注意力打分函数 $a$ 会导致不同的注意力汇聚操作。在本节中,我们将介绍两个流行的打分函数,稍后将用他们来实现更复杂的注意力机制。 ###Code import math import torch from torch import nn from d2l import torch as d2l ###Output _____no_output_____ ###Markdown [**遮蔽softmax操作**]正如上面提到的,softmax 运算用于输出一个概率分布作为注意力权重。在某些情况下,并非所有的值都应该被纳入到注意力汇聚中。例如,为了在 :numref:`sec_machine_translation` 中高效处理小批量数据集,某些文本序列被填充了没有意义的特殊词元。为了仅将有意义的词元作为值去获取注意力汇聚,可以指定一个有效序列长度(即词元的个数),以便在计算 softmax 时过滤掉超出指定范围的位置。通过这种方式,我们可以在下面的 `masked_softmax` 函数中实现这样的 *遮蔽 softmax 操作*(masked softmax operation),其中任何超出有效长度的位置都被遮蔽并置为0。 ###Code #@save def masked_softmax(X, valid_lens): """通过在最后一个轴上遮蔽元素来执行 softmax 操作""" # `X`: 3D张量, `valid_lens`: 1D或2D 张量 if valid_lens is None: return nn.functional.softmax(X, dim=-1) else: shape = X.shape if valid_lens.dim() == 1: valid_lens = torch.repeat_interleave(valid_lens, shape[1]) else: valid_lens = valid_lens.reshape(-1) # 在最后的轴上,被遮蔽的元素使用一个非常大的负值替换,从而其 softmax (指数)输出为 0 X = d2l.sequence_mask(X.reshape(-1, shape[-1]), valid_lens, value=-1e6) return nn.functional.softmax(X.reshape(shape), dim=-1) ###Output _____no_output_____ ###Markdown 为了[**演示此函数是如何工作**]的,考虑由两个 $2 \times 4$ 矩阵表示的样本,这两个样本的有效长度分别为 $2$ 和 $3$。经过遮蔽 softmax 操作,超出有效长度的值都被遮蔽为0。 ###Code masked_softmax(torch.rand(2, 2, 4), torch.tensor([2, 3])) ###Output _____no_output_____ ###Markdown 同样,我们也可以使用二维张量为矩阵样本中的每一行指定有效长度。 ###Code masked_softmax(torch.rand(2, 2, 4), torch.tensor([[1, 3], [2, 4]])) ###Output _____no_output_____ ###Markdown [**加性注意力**]:label:`subsec_additive-attention`一般来说,当查询和键是不同长度的矢量时,可以使用加性注意力作为打分函数。给定查询 $\mathbf{q} \in \mathbb{R}^q$ 和键 $\mathbf{k} \in \mathbb{R}^k$,*加性注意力*(additive attention) 的打分函数为$$a(\mathbf q, \mathbf k) = \mathbf w_v^\top \text{tanh}(\mathbf W_q\mathbf q + \mathbf W_k \mathbf k) \in \mathbb{R},$$:eqlabel:`eq_additive-attn`其中可学习的参数是 $\mathbf W_q\in\mathbb R^{h\times q}$、$\mathbf W_k\in\mathbb R^{h\times k}$ 和 $\mathbf w_v\in\mathbb R^{h}$。如 :eqref:`eq_additive-attn` 所示,将查询和键连接起来后输入到一个多层感知机(MLP)中,感知机包含一个隐藏层,其隐藏单元数是一个超参数 $h$。通过使用 $\tanh$ 作为激活函数,并且禁用偏置项,我们将在下面实现加性注意力。 ###Code #@save class AdditiveAttention(nn.Module): """加性注意力""" def __init__(self, key_size, query_size, num_hiddens, dropout, **kwargs): super(AdditiveAttention, self).__init__(**kwargs) self.W_k = nn.Linear(key_size, num_hiddens, bias=False) self.W_q = nn.Linear(query_size, num_hiddens, bias=False) self.w_v = nn.Linear(num_hiddens, 1, bias=False) self.dropout = nn.Dropout(dropout) def forward(self, queries, keys, values, valid_lens): queries, keys = self.W_q(queries), self.W_k(keys) # 在维度扩展后, # `queries` 的形状:(`batch_size`, 查询的个数, 1, `num_hidden`) # `key` 的形状:(`batch_size`, 1, “键-值”对的个数, `num_hiddens`) # 使用广播方式进行求和 features = queries.unsqueeze(2) + keys.unsqueeze(1) features = torch.tanh(features) # `self.w_v` 仅有一个输出,因此从形状中移除最后那个维度。 # `scores` 的形状:(`batch_size`, 查询的个数, “键-值”对的个数) scores = self.w_v(features).squeeze(-1) self.attention_weights = masked_softmax(scores, valid_lens) # `values` 的形状:(`batch_size`, “键-值”对的个数, 值的维度) return torch.bmm(self.dropout(self.attention_weights), values) ###Output _____no_output_____ ###Markdown 让我们用一个小例子来[**演示上面的`AdditiveAttention`类**],其中查询、键和值的形状为(批量大小、步数或词元序列长度、特征大小),实际输出为 $(2,1,20)$、$(2,10,2)$ 和 $(2,10,4)$。注意力汇聚输出的形状为(批量大小、查询的步数、值的维度)。 ###Code queries, keys = torch.normal(0, 1, (2, 1, 20)), torch.ones((2, 10, 2)) # `values` 的小批量数据集中,两个值矩阵是相同的 values = torch.arange(40, dtype=torch.float32).reshape(1, 10, 4).repeat( 2, 1, 1) valid_lens = torch.tensor([2, 6]) attention = AdditiveAttention(key_size=2, query_size=20, num_hiddens=8, dropout=0.1) attention.eval() attention(queries, keys, values, valid_lens) ###Output _____no_output_____ ###Markdown 尽管加性注意力包含了可学习的参数,但由于本例子中每个键都是相同的,所以[**注意力权重**]是均匀的,由指定的有效长度决定。 ###Code d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)), xlabel='Keys', ylabel='Queries') ###Output _____no_output_____ ###Markdown [**缩放点积注意力**]使用点积可以得到计算效率更高的打分函数。但是点积操作要求查询和键具有相同的长度 $d$。假设查询和键的所有元素都是独立的随机变量,并且都满足均值为 $0$ 和方差为 $1$。那么两个向量的点积的均值为 $0$,方差为 $d$。为确保无论向量长度如何,点积的方差在不考虑向量长度的情况下仍然是 $1$,则可以使用 *缩放点积注意力*(scaled dot-product attention) 打分函数:$$a(\mathbf q, \mathbf k) = \mathbf{q}^\top \mathbf{k} /\sqrt{d}$$将点积除以 $\sqrt{d}$。在实践中,我们通常从小批量的角度来考虑提高效率,例如基于 $n$ 个查询和 $m$ 个键-值对计算注意力,其中查询和键的长度为 $d$,值的长度为 $v$。查询 $\mathbf Q\in\mathbb R^{n\times d}$、键 $\mathbf K\in\mathbb R^{m\times d}$ 和值 $\mathbf V\in\mathbb R^{m\times v}$ 的缩放点积注意力是$$ \mathrm{softmax}\left(\frac{\mathbf Q \mathbf K^\top }{\sqrt{d}}\right) \mathbf V \in \mathbb{R}^{n\times v}.$$:eqlabel:`eq_softmax_QK_V`在下面的缩放点积注意力的实现中,我们使用了 dropout 进行模型正则化。 ###Code #@save class DotProductAttention(nn.Module): """缩放点积注意力""" def __init__(self, dropout, **kwargs): super(DotProductAttention, self).__init__(**kwargs) self.dropout = nn.Dropout(dropout) # `queries` 的形状:(`batch_size`, 查询的个数, `d`) # `keys` 的形状:(`batch_size`, “键-值”对的个数, `d`) # `values` 的形状:(`batch_size`, “键-值”对的个数, 值的维度) # `valid_lens` 的形状: (`batch_size`,) 或者 (`batch_size`, 查询的个数) def forward(self, queries, keys, values, valid_lens=None): d = queries.shape[-1] # 设置 `transpose_b=True` 为了交换 `keys` 的最后两个维度 scores = torch.bmm(queries, keys.transpose(1,2)) / math.sqrt(d) self.attention_weights = masked_softmax(scores, valid_lens) return torch.bmm(self.dropout(self.attention_weights), values) ###Output _____no_output_____ ###Markdown 为了[**演示上述的`DotProductAttention`类**],我们使用了与先前加性注意力例子中相同的键、值和有效长度。对于点积操作,令查询的特征维度与键的特征维度大小相同。 ###Code queries = torch.normal(0, 1, (2, 1, 2)) attention = DotProductAttention(dropout=0.5) attention.eval() attention(queries, keys, values, valid_lens) ###Output _____no_output_____ ###Markdown 与加性注意力演示相同,由于键包含的是相同的元素,而这些元素无法通过任何查询进行区分,因此获得了[**均匀的注意力权重**]。 ###Code d2l.show_heatmaps(attention.attention_weights.reshape((1, 1, 2, 10)), xlabel='Keys', ylabel='Queries') ###Output _____no_output_____
tools/Tensorflow/research/object_detection/object_detection_tutorial.ipynb
###Markdown Object Detection DemoWelcome to the object detection inference walkthrough! This notebook will walk you step by step through the process of using a pre-trained model to detect objects in an image. Make sure to follow the [installation instructions](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/installation.md) before you start. Imports ###Code import numpy as np import os import six.moves.urllib as urllib import sys import tarfile import tensorflow as tf import zipfile from distutils.version import StrictVersion from collections import defaultdict from io import StringIO from matplotlib import pyplot as plt from PIL import Image # This is needed since the notebook is stored in the object_detection folder. sys.path.append("..") from object_detection.utils import ops as utils_ops if StrictVersion(tf.__version__) < StrictVersion('1.12.0'): raise ImportError('Please upgrade your TensorFlow installation to v1.12.*.') ###Output _____no_output_____ ###Markdown Env setup ###Code # This is needed to display the images. %matplotlib inline ###Output _____no_output_____ ###Markdown Object detection importsHere are the imports from the object detection module. ###Code from utils import label_map_util from utils import visualization_utils as vis_util ###Output _____no_output_____ ###Markdown Model preparation VariablesAny model exported using the `export_inference_graph.py` tool can be loaded here simply by changing `PATH_TO_FROZEN_GRAPH` to point to a new .pb file. By default we use an "SSD with Mobilenet" model here. See the [detection model zoo](https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md) for a list of other models that can be run out-of-the-box with varying speeds and accuracies. ###Code # What model to download. MODEL_NAME = 'ssd_mobilenet_v1_coco_2017_11_17' MODEL_FILE = MODEL_NAME + '.tar.gz' DOWNLOAD_BASE = 'http://download.tensorflow.org/models/object_detection/' # Path to frozen detection graph. This is the actual model that is used for the object detection. PATH_TO_FROZEN_GRAPH = MODEL_NAME + '/frozen_inference_graph.pb' # List of the strings that is used to add correct label for each box. PATH_TO_LABELS = os.path.join('data', 'mscoco_label_map.pbtxt') ###Output _____no_output_____ ###Markdown Download Model ###Code opener = urllib.request.URLopener() opener.retrieve(DOWNLOAD_BASE + MODEL_FILE, MODEL_FILE) tar_file = tarfile.open(MODEL_FILE) for file in tar_file.getmembers(): file_name = os.path.basename(file.name) if 'frozen_inference_graph.pb' in file_name: tar_file.extract(file, os.getcwd()) ###Output _____no_output_____ ###Markdown Load a (frozen) Tensorflow model into memory. ###Code detection_graph = tf.Graph() with detection_graph.as_default(): od_graph_def = tf.GraphDef() with tf.gfile.GFile(PATH_TO_FROZEN_GRAPH, 'rb') as fid: serialized_graph = fid.read() od_graph_def.ParseFromString(serialized_graph) tf.import_graph_def(od_graph_def, name='') ###Output _____no_output_____ ###Markdown Loading label mapLabel maps map indices to category names, so that when our convolution network predicts `5`, we know that this corresponds to `airplane`. Here we use internal utility functions, but anything that returns a dictionary mapping integers to appropriate string labels would be fine ###Code category_index = label_map_util.create_category_index_from_labelmap(PATH_TO_LABELS, use_display_name=True) ###Output _____no_output_____ ###Markdown Helper code ###Code def load_image_into_numpy_array(image): (im_width, im_height) = image.size return np.array(image.getdata()).reshape( (im_height, im_width, 3)).astype(np.uint8) ###Output _____no_output_____ ###Markdown Detection ###Code # For the sake of simplicity we will use only 2 images: # image1.jpg # image2.jpg # If you want to test the code with your images, just add path to the images to the TEST_IMAGE_PATHS. PATH_TO_TEST_IMAGES_DIR = 'test_images' TEST_IMAGE_PATHS = [ os.path.join(PATH_TO_TEST_IMAGES_DIR, 'image{}.jpg'.format(i)) for i in range(1, 3) ] # Size, in inches, of the output images. IMAGE_SIZE = (12, 8) def run_inference_for_single_image(image, graph): with graph.as_default(): with tf.Session() as sess: # Get handles to input and output tensors ops = tf.get_default_graph().get_operations() all_tensor_names = {output.name for op in ops for output in op.outputs} tensor_dict = {} for key in [ 'num_detections', 'detection_boxes', 'detection_scores', 'detection_classes', 'detection_masks' ]: tensor_name = key + ':0' if tensor_name in all_tensor_names: tensor_dict[key] = tf.get_default_graph().get_tensor_by_name( tensor_name) if 'detection_masks' in tensor_dict: # The following processing is only for single image detection_boxes = tf.squeeze(tensor_dict['detection_boxes'], [0]) detection_masks = tf.squeeze(tensor_dict['detection_masks'], [0]) # Reframe is required to translate mask from box coordinates to image coordinates and fit the image size. real_num_detection = tf.cast(tensor_dict['num_detections'][0], tf.int32) detection_boxes = tf.slice(detection_boxes, [0, 0], [real_num_detection, -1]) detection_masks = tf.slice(detection_masks, [0, 0, 0], [real_num_detection, -1, -1]) detection_masks_reframed = utils_ops.reframe_box_masks_to_image_masks( detection_masks, detection_boxes, image.shape[1], image.shape[2]) detection_masks_reframed = tf.cast( tf.greater(detection_masks_reframed, 0.5), tf.uint8) # Follow the convention by adding back the batch dimension tensor_dict['detection_masks'] = tf.expand_dims( detection_masks_reframed, 0) image_tensor = tf.get_default_graph().get_tensor_by_name('image_tensor:0') # Run inference output_dict = sess.run(tensor_dict, feed_dict={image_tensor: image}) # all outputs are float32 numpy arrays, so convert types as appropriate output_dict['num_detections'] = int(output_dict['num_detections'][0]) output_dict['detection_classes'] = output_dict[ 'detection_classes'][0].astype(np.int64) output_dict['detection_boxes'] = output_dict['detection_boxes'][0] output_dict['detection_scores'] = output_dict['detection_scores'][0] if 'detection_masks' in output_dict: output_dict['detection_masks'] = output_dict['detection_masks'][0] return output_dict for image_path in TEST_IMAGE_PATHS: image = Image.open(image_path) # the array based representation of the image will be used later in order to prepare the # result image with boxes and labels on it. image_np = load_image_into_numpy_array(image) # Expand dimensions since the model expects images to have shape: [1, None, None, 3] image_np_expanded = np.expand_dims(image_np, axis=0) # Actual detection. output_dict = run_inference_for_single_image(image_np_expanded, detection_graph) # Visualization of the results of a detection. vis_util.visualize_boxes_and_labels_on_image_array( image_np, output_dict['detection_boxes'], output_dict['detection_classes'], output_dict['detection_scores'], category_index, instance_masks=output_dict.get('detection_masks'), use_normalized_coordinates=True, line_thickness=8) plt.figure(figsize=IMAGE_SIZE) plt.imshow(image_np) ###Output _____no_output_____
Project-3-data-analysis-final-project/week5_sgd_kaggle.ipynb
###Markdown Специализация "Машинное обучение и анализ данных"Автор материала: программист-исследователь Mail.Ru Group, старший преподаватель Факультета Компьютерных Наук ВШЭ [Юрий Кашницкий](https://yorko.github.io/) Capstone проект №1 Идентификация пользователей по посещенным веб-страницам Неделя 5. Соревнование Kaggle "Catch Me If You Can"На этой неделе мы вспомним про концепцию стохастического градиентного спуска и опробуем классификатор Scikit-learn SGDClassifier, который работает намного быстрее на больших выборках, чем алгоритмы, которые мы тестировали на 4 неделе. Также мы познакомимся с данными [соревнования](https://inclass.kaggle.com/c/catch-me-if-you-can-intruder-detection-through-webpage-session-tracking2) Kaggle по идентификации пользователей и сделаем в нем первые посылки. По итогам этой недели дополнительные баллы получат те, кто попадет в топ-30 публичного лидерборда соревнования.**В этой части проекта Вам могут быть полезны видеозаписи следующих лекций курса "Обучение на размеченных данных":** - [Стохатический градиентный спуск](https://www.coursera.org/learn/supervised-learning/lecture/xRY50/stokhastichieskii-ghradiientnyi-spusk) - [Линейные модели. Sklearn.linear_model. Классификация](https://www.coursera.org/learn/supervised-learning/lecture/EBg9t/linieinyie-modieli-sklearn-linear-model-klassifikatsiia) **Также рекомендуется вернуться и просмотреть [задание](https://www.coursera.org/learn/supervised-learning/programming/t2Idc/linieinaia-rieghriessiia-i-stokhastichieskii-ghradiientnyi-spusk) "Линейная регрессия и стохастический градиентный спуск" 1 недели 2 курса специализации.** Задание1. Заполните код в этой тетрадке 2. Если вы проходите специализацию Яндеса и МФТИ, пошлите тетрадку в соответствующем Peer Review. Если вы проходите курс ODS, выберите ответы в [веб-форме](https://docs.google.com/forms/d/1pLsegkAICL9PzOLyAeH9DmDOBfktte0l8JW75uWcTng). ###Code from __future__ import division, print_function # отключим всякие предупреждения Anaconda import warnings warnings.filterwarnings('ignore') import os import pickle import numpy as np import pandas as pd from scipy.sparse import csr_matrix from sklearn.model_selection import train_test_split from sklearn.linear_model import SGDClassifier from sklearn.metrics import roc_auc_score ###Output _____no_output_____ ###Markdown **Считаем данные [соревнования](https://inclass.kaggle.com/c/catch-me-if-you-can-intruder-detection-through-webpage-session-tracking2) в DataFrame train_df и test_df (обучающая и тестовая выборки).** ###Code # Поменяйте на свой путь к данным PATH_TO_DATA = '/content/' train_df = pd.read_csv(os.path.join(PATH_TO_DATA, 'train_sessions.csv'), index_col='session_id') test_df = pd.read_csv(os.path.join(PATH_TO_DATA, 'test_sessions.csv'), index_col='session_id') print('train_df.shape:', train_df.shape) print('test_df.shape:', test_df.shape) train_df.head() ###Output _____no_output_____ ###Markdown Пример: ###Code train_df.head() ###Output _____no_output_____ ###Markdown **Объединим обучающую и тестовую выборки – это понадобится, чтоб вместе потом привести их к разреженному формату.** ###Code train_test_df = pd.concat([train_df, test_df]) print('train_test_df.shape:', train_test_df.shape) ###Output train_test_df.shape: (336358, 21) ###Markdown В обучающей выборке видим следующие признаки: - site1 – индекс первого посещенного сайта в сессии - time1 – время посещения первого сайта в сессии - ... - site10 – индекс 10-го посещенного сайта в сессии - time10 – время посещения 10-го сайта в сессии - user_id – ID пользователя Сессии пользователей выделены таким образом, что они не могут быть длинее получаса или 10 сайтов. То есть сессия считается оконченной либо когда пользователь посетил 10 сайтов подряд, либо когда сессия заняла по времени более 30 минут. **Посмотрим на статистику признаков.**Пропуски возникают там, где сессии короткие (менее 10 сайтов). Скажем, если человек 1 января 2015 года посетил *vk.com* в 20:01, потом *yandex.ru* в 20:29, затем *google.com* в 20:33, то первая его сессия будет состоять только из двух сайтов (site1 – ID сайта *vk.com*, time1 – 2015-01-01 20:01:00, site2 – ID сайта *yandex.ru*, time2 – 2015-01-01 20:29:00, остальные признаки – NaN), а начиная с *google.com* пойдет новая сессия, потому что уже прошло более 30 минут с момента посещения *vk.com*. ###Code train_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 253561 entries, 1 to 253561 Data columns (total 21 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 site1 253561 non-null int64 1 time1 253561 non-null object 2 site2 250098 non-null float64 3 time2 250098 non-null object 4 site3 246919 non-null float64 5 time3 246919 non-null object 6 site4 244321 non-null float64 7 time4 244321 non-null object 8 site5 241829 non-null float64 9 time5 241829 non-null object 10 site6 239495 non-null float64 11 time6 239495 non-null object 12 site7 237297 non-null float64 13 time7 237297 non-null object 14 site8 235224 non-null float64 15 time8 235224 non-null object 16 site9 233084 non-null float64 17 time9 233084 non-null object 18 site10 231052 non-null float64 19 time10 231052 non-null object 20 target 253561 non-null int64 dtypes: float64(9), int64(2), object(10) memory usage: 42.6+ MB ###Markdown Пример: ###Code train_df.info() test_df.head() ###Output _____no_output_____ ###Markdown Пример: ###Code test_df.head() test_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 82797 entries, 1 to 82797 Data columns (total 20 columns): # Column Non-Null Count Dtype --- ------ -------------- ----- 0 site1 82797 non-null int64 1 time1 82797 non-null object 2 site2 81308 non-null float64 3 time2 81308 non-null object 4 site3 80075 non-null float64 5 time3 80075 non-null object 6 site4 79182 non-null float64 7 time4 79182 non-null object 8 site5 78341 non-null float64 9 time5 78341 non-null object 10 site6 77566 non-null float64 11 time6 77566 non-null object 12 site7 76840 non-null float64 13 time7 76840 non-null object 14 site8 76151 non-null float64 15 time8 76151 non-null object 16 site9 75484 non-null float64 17 time9 75484 non-null object 18 site10 74806 non-null float64 19 time10 74806 non-null object dtypes: float64(9), int64(1), object(10) memory usage: 13.3+ MB ###Markdown Пример: ###Code test_df.info() ###Output <class 'pandas.core.frame.DataFrame'> Int64Index: 82797 entries, 1 to 82797 Data columns (total 20 columns): site1 82797 non-null int64 time1 82797 non-null object site2 81308 non-null float64 time2 81308 non-null object site3 80075 non-null float64 time3 80075 non-null object site4 79182 non-null float64 time4 79182 non-null object site5 78341 non-null float64 time5 78341 non-null object site6 77566 non-null float64 time6 77566 non-null object site7 76840 non-null float64 time7 76840 non-null object site8 76151 non-null float64 time8 76151 non-null object site9 75484 non-null float64 time9 75484 non-null object site10 74806 non-null float64 time10 74806 non-null object dtypes: float64(9), int64(1), object(10) memory usage: 13.3+ MB ###Markdown **В обучающей выборке – 2297 сессий одного пользователя (Alice) и 251264 сессий – других пользователей, не Элис. Дисбаланс классов очень сильный, и смотреть на долю верных ответов (accuracy) непоказательно.** ###Code train_df['target'].value_counts() ###Output _____no_output_____ ###Markdown Пример: ###Code train_df['target'].value_counts() ###Output _____no_output_____ ###Markdown **Пока для прогноза будем использовать только индексы посещенных сайтов. Индексы нумеровались с 1, так что заменим пропуски на нули.** ###Code train_test_df_sites = train_test_df[['site%d' % i for i in range(1, 11)]].fillna(0).astype('int') train_test_df_sites.head(10) ###Output _____no_output_____ ###Markdown Пример: ###Code train_test_df_sites.head(10) ###Output _____no_output_____ ###Markdown **Создайте разреженные матрицы *X_train_sparse* и *X_test_sparse* аналогично тому, как мы это делали ранее. Используйте объединенную матрицу *train_test_df_sites*, потом разделите обратно на обучающую и тестовую части.**Обратите внимание на то, что в сессиях меньше 10 сайтов у нас остались нули, так что первый признак (сколько раз попался 0) по смыслу отличен от остальных (сколько раз попался сайт с индексом $i$). Поэтому первый столбец разреженной матрицы надо будет удалить.**Выделите в отдельный вектор *y* ответы на обучающей выборке.** ###Code def make_csr_matrix(X): data = np.ones(X.size, dtype=int) indices = X.reshape(-1) indptr = np.arange(X.shape[0] + 1) * X.shape[1] return csr_matrix((data, indices, indptr), dtype=int)[:, 1:] train_test_sparse = make_csr_matrix(train_test_df_sites.values) X_train_sparse = train_test_sparse[:train_df.shape[0], :] X_test_sparse = train_test_sparse[-test_df.shape[0]:, :] y = train_df['target'].values ###Output _____no_output_____ ###Markdown **Вопрос 1. Выведите размерности матриц *X_train_sparse* и *X_test_sparse* – 4 числа на одной строке через пробел: число строк и столбцов матрицы *X_train_sparse*, затем число строк и столбцов матрицы *X_test_sparse*.** ###Code def write_answer_to_file(answer, file_address): with open(file_address, 'w') as out_f: out_f.write(str(answer)) write_answer_to_file(' '.join(map(str, list(X_train_sparse.shape + X_test_sparse.shape))), 'answer5_1.txt') !cat answer5_1.txt ###Output 253561 48371 82797 48371 ###Markdown **Сохраним в pickle-файлы объекты *X_train_sparse*, *X_test_sparse* и *y* (последний – в файл *kaggle_data/train_target.pkl*).** ###Code with open(os.path.join(PATH_TO_DATA, 'X_train_sparse.pkl'), 'wb') as X_train_sparse_pkl: pickle.dump(X_train_sparse, X_train_sparse_pkl, protocol=2) with open(os.path.join(PATH_TO_DATA, 'X_test_sparse.pkl'), 'wb') as X_test_sparse_pkl: pickle.dump(X_test_sparse, X_test_sparse_pkl, protocol=2) with open(os.path.join(PATH_TO_DATA, 'train_target.pkl'), 'wb') as train_target_pkl: pickle.dump(y, train_target_pkl, protocol=2) ###Output _____no_output_____ ###Markdown **Разобьем обучающую выборку на 2 части в пропорции 7/3, причем не перемешивая. Исходные данные упорядочены по времени, тестовая выборка по времени четко отделена от обучающей, это же соблюдем и здесь.** ###Code train_share = int(.7 * X_train_sparse.shape[0]) X_train, y_train = X_train_sparse[:train_share, :], y[:train_share] X_valid, y_valid = X_train_sparse[train_share:, :], y[train_share:] ###Output _____no_output_____ ###Markdown **Создайте объект `sklearn.linear_model.SGDClassifier` с логистической функцией потерь и параметром *random_state*=17. Остальные параметры оставьте по умолчанию, разве что *n_jobs*=-1 никогда не помешает. Обучите модель на выборке `(X_train, y_train)`.** ###Code sgd_logit = SGDClassifier(loss='log', n_jobs=-1, random_state=17) sgd_logit.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown **Сделайте прогноз в виде предсказанных вероятностей того, что это сессия Элис, на отложенной выборке *(X_valid, y_valid)*.** ###Code logit_valid_pred_proba = sgd_logit.predict_proba(X_valid) ###Output _____no_output_____ ###Markdown **Вопрос 2. Посчитайте ROC AUC логистической регрессии, обученной с помощью стохастического градиентного спуска, на отложенной выборке. Округлите до 3 знаков после разделителя.** ###Code write_answer_to_file(np.round(roc_auc_score(y_valid, logit_valid_pred_proba[:, 1]), 3), 'answer5_2.txt') !cat answer5_2.txt ###Output 0.934 ###Markdown **Сделайте прогноз в виде предсказанных вероятностей отнесения к классу 1 для тестовой выборки с помощью той же *sgd_logit*, обученной уже на всей обучающей выборке (а не на 70%).** ###Code %%time sgd_logit.fit(X_train_sparse, y) logit_test_pred_proba = sgd_logit.predict_proba(X_test_sparse) ###Output CPU times: user 786 ms, sys: 107 ms, total: 893 ms Wall time: 779 ms ###Markdown **Запишите ответы в файл и сделайте посылку на Kaggle. Дайте своей команде (из одного человека) на Kaggle говорящее название – по шаблону "[YDF & MIPT] Coursera_Username", чтоб можно было легко идентифицировать Вашу посылку на [лидерборде](https://inclass.kaggle.com/c/catch-me-if-you-can-intruder-detection-through-webpage-session-tracking2/leaderboard/public).****Результат, который мы только что получили, соответствует бейзлайну "SGDCLassifer" на лидерборде, задача на эту неделю – как минимум его побить.** ###Code def write_to_submission_file(predicted_labels, out_file, target='target', index_label="session_id"): # turn predictions into data frame and save as csv file predicted_df = pd.DataFrame(predicted_labels, index = np.arange(1, predicted_labels.shape[0] + 1), columns=[target]) predicted_df.to_csv(out_file, index_label=index_label) write_to_submission_file(logit_test_pred_proba[:, 1], 'week5_sgd_test_pred_proba.csv') ###Output _____no_output_____
50_gan_generation/5-1_2_DCGAN.ipynb
###Markdown 5.1-2 DCGANの作成- 本ファイルでは、DCGANのネットワークを実装とDCGANの学習をします。 5.1 学習目標1. Generatorが画像を生成するためにどのようなニューラルネットワークの構造になっているのかを理解する2. Discriminatorが画像の識別をするためにどのようなニューラルネットワークの構造になっているのかを理解する3. GANの一般的な損失関数の形とニューラルネットワークの学習の流れを理解する4. DCGANのネットワークを実装できるようになる 5.2 学習目標1. GANの損失関数の形を理解する2. DCGANを実装し、手書き数字画像が生成できる ###Code # パッケージのimport import random import math import time import pandas as pd import numpy as np from PIL import Image import torch import torch.utils.data as data import torch.nn as nn import torch.nn.functional as F import torch.optim as optim from torchvision import transforms # Setup seeds torch.manual_seed(1234) np.random.seed(1234) random.seed(1234) ###Output _____no_output_____ ###Markdown 転置畳み込みの例 ###Code input = torch.tensor([[[[1., 1.], [2., 2.]]]]) print("入力データ") print(input) print("-----") print("通常の畳み込み") m = nn.Conv2d(1, 1, 2, stride=1, bias=False) m.weight[0, 0, 0, 0] = 1 m.weight[0, 0, 0, 1] = 2 m.weight[0, 0, 1, 0] = 3 m.weight[0, 0, 1, 1] = 4 print("カーネル") print(m.weight) print("出力") print(m(input)) print("-----") print("転置畳み込み") m = nn.ConvTranspose2d(1, 1, 2, stride=1, bias=False) m.weight[0, 0, 0, 0] = 1 m.weight[0, 0, 0, 1] = 2 m.weight[0, 0, 1, 0] = 3 m.weight[0, 0, 1, 1] = 4 print("カーネル") print(m.weight) print("出力") print(m(input)) ###Output 入力データ tensor([[[[1., 1.], [2., 2.]]]]) ----- 通常の畳み込み カーネル Parameter containing: tensor([[[[1., 2.], [3., 4.]]]], grad_fn=<CopySlices>) 出力 tensor([[[[17.]]]], grad_fn=<ThnnConv2DBackward>) ----- 転置畳み込み カーネル Parameter containing: tensor([[[[1., 2.], [3., 4.]]]], grad_fn=<CopySlices>) 出力 tensor([[[[ 1., 3., 2.], [ 5., 13., 8.], [ 6., 14., 8.]]]], grad_fn=<SlowConvTranspose2DBackward>) ###Markdown Generatorの実装 ###Code class Generator(nn.Module): def __init__(self, z_dim=20, image_size=64): super(Generator, self).__init__() self.layer1 = nn.Sequential( nn.ConvTranspose2d(z_dim, image_size * 8, kernel_size=4, stride=1), nn.BatchNorm2d(image_size * 8), nn.ReLU(inplace=True)) self.layer2 = nn.Sequential( nn.ConvTranspose2d(image_size * 8, image_size * 4, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(image_size * 4), nn.ReLU(inplace=True)) self.layer3 = nn.Sequential( nn.ConvTranspose2d(image_size * 4, image_size * 2, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(image_size * 2), nn.ReLU(inplace=True)) self.layer4 = nn.Sequential( nn.ConvTranspose2d(image_size * 2, image_size, kernel_size=4, stride=2, padding=1), nn.BatchNorm2d(image_size), nn.ReLU(inplace=True)) self.last = nn.Sequential( nn.ConvTranspose2d(image_size, 1, kernel_size=4, stride=2, padding=1), nn.Tanh()) # 注意:白黒画像なので出力チャネルは1つだけ def forward(self, z): out = self.layer1(z) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.last(out) return out # 動作確認 import matplotlib.pyplot as plt %matplotlib inline G = Generator(z_dim=20, image_size=64) # 入力する乱数 input_z = torch.randn(1, 20) # テンソルサイズを(1, 20, 1, 1)に変形 input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1) # 偽画像を出力 fake_images = G(input_z) img_transformed = fake_images[0][0].detach().numpy() plt.imshow(img_transformed, 'gray') plt.show() ###Output findfont: Font family ['IPAexGothic'] not found. Falling back to DejaVu Sans. ###Markdown Discriminatorの実装 ###Code class Discriminator(nn.Module): def __init__(self, z_dim=20, image_size=64): super(Discriminator, self).__init__() self.layer1 = nn.Sequential( nn.Conv2d(1, image_size, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.1, inplace=True)) # 注意:白黒画像なので入力チャネルは1つだけ self.layer2 = nn.Sequential( nn.Conv2d(image_size, image_size*2, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.1, inplace=True)) self.layer3 = nn.Sequential( nn.Conv2d(image_size*2, image_size*4, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.1, inplace=True)) self.layer4 = nn.Sequential( nn.Conv2d(image_size*4, image_size*8, kernel_size=4, stride=2, padding=1), nn.LeakyReLU(0.1, inplace=True)) self.last = nn.Conv2d(image_size*8, 1, kernel_size=4, stride=1) def forward(self, x): out = self.layer1(x) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.last(out) return out # 動作確認 D = Discriminator(z_dim=20, image_size=64) # 偽画像を生成 input_z = torch.randn(1, 20) input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1) fake_images = G(input_z) # 偽画像をDに入力 d_out = D(fake_images) # 出力d_outにSigmoidをかけて0から1に変換 print(nn.Sigmoid()(d_out)) ###Output tensor([[[[0.5014]]]], grad_fn=<SigmoidBackward>) ###Markdown GANの損失関数 ###Code # Dの誤差関数のイメージ実装 # maximize log(D(x)) + log(1 - D(G(z))) # ※ xが未定義なので動作はエラーになります #--------------- # 正解ラベルを作成 mini_batch_size = 2 label_real = torch.full((mini_batch_size,), 1) # 偽ラベルを作成 label_fake = torch.full((mini_batch_size,), 0) # 誤差関数を定義 criterion = nn.BCEWithLogitsLoss(reduction='mean') # 真の画像を判定 d_out_real = D(x) # 偽の画像を生成して判定 input_z = torch.randn(mini_batch_size, 20) input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1) fake_images = G(input_z) d_out_fake = D(fake_images) # 誤差を計算 d_loss_real = criterion(d_out_real.view(-1), label_real) d_loss_fake = criterion(d_out_fake.view(-1), label_fake) d_loss = d_loss_real + d_loss_fake # Gの誤差関数のイメージ実装 # maximize log(D(G(z))) # ※ xが未定義なので動作はエラーになります #--------------- # 偽の画像を生成して判定 input_z = torch.randn(mini_batch_size, 20) input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1) fake_images = G(input_z) d_out_fake = D(fake_images) # 誤差を計算 g_loss = criterion(d_out_fake.view(-1), label_real) ###Output _____no_output_____ ###Markdown DataLoaderの作成 ###Code def make_datapath_list(): """学習、検証の画像データとアノテーションデータへのファイルパスリストを作成する。 """ train_img_list = list() # 画像ファイルパスを格納 for img_idx in range(200): img_path = "./data/img_78/img_7_" + str(img_idx)+'.jpg' train_img_list.append(img_path) img_path = "./data/img_78/img_8_" + str(img_idx)+'.jpg' train_img_list.append(img_path) return train_img_list class ImageTransform(): """画像の前処理クラス""" def __init__(self, mean, std): self.data_transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize(mean, std) ]) def __call__(self, img): return self.data_transform(img) class GAN_Img_Dataset(data.Dataset): """画像のDatasetクラス。PyTorchのDatasetクラスを継承""" def __init__(self, file_list, transform): self.file_list = file_list self.transform = transform def __len__(self): '''画像の枚数を返す''' return len(self.file_list) def __getitem__(self, index): '''前処理をした画像のTensor形式のデータを取得''' img_path = self.file_list[index] img = Image.open(img_path) # [高さ][幅]白黒 # 画像の前処理 img_transformed = self.transform(img) return img_transformed # DataLoaderの作成と動作確認 # ファイルリストを作成 train_img_list=make_datapath_list() # Datasetを作成 mean = (0.5,) std = (0.5,) train_dataset = GAN_Img_Dataset( file_list=train_img_list, transform=ImageTransform(mean, std)) # DataLoaderを作成 batch_size = 64 train_dataloader = torch.utils.data.DataLoader( train_dataset, batch_size=batch_size, shuffle=True) # 動作の確認 batch_iterator = iter(train_dataloader) # イテレータに変換 imges = next(batch_iterator) # 1番目の要素を取り出す print(imges.size()) # torch.Size([64, 1, 64, 64]) ###Output torch.Size([64, 1, 64, 64]) ###Markdown 学習させる ###Code # ネットワークの初期化 def weights_init(m): classname = m.__class__.__name__ if classname.find('Conv') != -1: # Conv2dとConvTranspose2dの初期化 nn.init.normal_(m.weight.data, 0.0, 0.02) nn.init.constant_(m.bias.data, 0) elif classname.find('BatchNorm') != -1: # BatchNorm2dの初期化 nn.init.normal_(m.weight.data, 1.0, 0.02) nn.init.constant_(m.bias.data, 0) # 初期化の実施 G.apply(weights_init) D.apply(weights_init) print("ネットワークの初期化完了") # モデルを学習させる関数を作成 def train_model(G, D, dataloader, num_epochs): # GPUが使えるかを確認 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") print("使用デバイス:", device) # 最適化手法の設定 g_lr, d_lr = 0.0001, 0.0004 beta1, beta2 = 0.0, 0.9 g_optimizer = torch.optim.Adam(G.parameters(), g_lr, [beta1, beta2]) d_optimizer = torch.optim.Adam(D.parameters(), d_lr, [beta1, beta2]) # 誤差関数を定義 criterion = nn.BCEWithLogitsLoss(reduction='mean') # パラメータをハードコーディング z_dim = 20 mini_batch_size = 64 # ネットワークをGPUへ G.to(device) D.to(device) G.train() # モデルを訓練モードに D.train() # モデルを訓練モードに # ネットワークがある程度固定であれば、高速化させる torch.backends.cudnn.benchmark = True # 画像の枚数 num_train_imgs = len(dataloader.dataset) batch_size = dataloader.batch_size # イテレーションカウンタをセット iteration = 1 logs = [] # epochのループ for epoch in range(num_epochs): # 開始時刻を保存 t_epoch_start = time.time() epoch_g_loss = 0.0 # epochの損失和 epoch_d_loss = 0.0 # epochの損失和 print('-------------') print('Epoch {}/{}'.format(epoch, num_epochs)) print('-------------') print('(train)') # データローダーからminibatchずつ取り出すループ for imges in dataloader: # -------------------- # 1. Discriminatorの学習 # -------------------- # ミニバッチがサイズが1だと、バッチノーマライゼーションでエラーになるのでさける if imges.size()[0] == 1: continue # GPUが使えるならGPUにデータを送る imges = imges.to(device) # 正解ラベルと偽ラベルを作成 # epochの最後のイテレーションはミニバッチの数が少なくなる mini_batch_size = imges.size()[0] label_real = torch.full((mini_batch_size,), 1).to(device) label_fake = torch.full((mini_batch_size,), 0).to(device) # 真の画像を判定 d_out_real = D(imges) # 偽の画像を生成して判定 input_z = torch.randn(mini_batch_size, z_dim).to(device) input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1) fake_images = G(input_z) d_out_fake = D(fake_images) # 誤差を計算 # print(d_out_real.view(-1)) # print(label_real.astype(flout)) label_real = label_real.type_as(d_out_real.view(-1)) label_fake = label_fake.type_as(d_out_fake.view(-1)) d_loss_real = criterion(d_out_real.view(-1), label_real) d_loss_fake = criterion(d_out_fake.view(-1), label_fake) d_loss = d_loss_real + d_loss_fake # バックプロパゲーション g_optimizer.zero_grad() d_optimizer.zero_grad() d_loss.backward() d_optimizer.step() # -------------------- # 2. Generatorの学習 # -------------------- # 偽の画像を生成して判定 input_z = torch.randn(mini_batch_size, z_dim).to(device) input_z = input_z.view(input_z.size(0), input_z.size(1), 1, 1) fake_images = G(input_z) d_out_fake = D(fake_images) # 誤差を計算 g_loss = criterion(d_out_fake.view(-1), label_real) # バックプロパゲーション g_optimizer.zero_grad() d_optimizer.zero_grad() g_loss.backward() g_optimizer.step() # -------------------- # 3. 記録 # -------------------- epoch_d_loss += d_loss.item() epoch_g_loss += g_loss.item() iteration += 1 # epochのphaseごとのlossと正解率 t_epoch_finish = time.time() print('-------------') print('epoch {} || Epoch_D_Loss:{:.4f} ||Epoch_G_Loss:{:.4f}'.format( epoch, epoch_d_loss/batch_size, epoch_g_loss/batch_size)) print('timer: {:.4f} sec.'.format(t_epoch_finish - t_epoch_start)) t_epoch_start = time.time() return G, D # 学習・検証を実行する # 6分ほどかかる num_epochs = 200 G_update, D_update = train_model( G, D, dataloader=train_dataloader, num_epochs=num_epochs) # 生成画像と訓練データを可視化する # 本セルは良い感じの画像が生成されるまで、何度も実行し直しています。 device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") # 入力の乱数生成 batch_size = 8 z_dim = 20 fixed_z = torch.randn(batch_size, z_dim) fixed_z = fixed_z.view(fixed_z.size(0), fixed_z.size(1), 1, 1) # 画像生成 G_update.eval() fake_images = G_update(fixed_z.to(device)) # 訓練データ batch_iterator = iter(train_dataloader) # イテレータに変換 imges = next(batch_iterator) # 1番目の要素を取り出す # 出力 fig = plt.figure(figsize=(15, 6)) for i in range(0, 5): # 上段に訓練データを plt.subplot(2, 5, i+1) plt.imshow(imges[i][0].cpu().detach().numpy(), 'gray') # 下段に生成データを表示する plt.subplot(2, 5, 5+i+1) plt.imshow(fake_images[i][0].cpu().detach().numpy(), 'gray') ###Output _____no_output_____
Python Data Science Toolbox -Part 2/Bringing it all together/01. Dictionaries for data science.ipynb
###Markdown Dictionaries for data scienceFor this exercise, you'll use what you've learned about the zip() function and combine two lists into a dictionary.These lists are actually extracted from a bigger dataset file of world development indicators from the World Bank. For pedagogical purposes, we have pre-processed this dataset into the lists that you'll be working with.The first list feature_names contains header names of the dataset and the second list row_vals contains actual values of a row from the dataset, corresponding to each of the header names. Instructions- Create a zip object by calling zip() and passing to it feature_names and row_vals. Assign the result to zipped_lists.- Create a dictionary from the zipped_lists zip object by calling dict() with zipped_lists. Assign the resulting dictionary to rs_dict. ###Code import pandas as pd df=pd.read_csv('world_ind_pop_data.csv') df.head() # Pre-defined lists feature_names = ['CountryName', 'CountryCode', 'IndicatorName', 'IndicatorCode', 'Year', 'Value'] row_vals = ['Arab World', 'ARB', 'Adolescent fertility rate (births per 1,000 women ages 15-19)', 'SP.ADO.TFRT', '1960', '133.56090740552298'] # Zip lists: zipped_lists zipped_lists = zip(feature_names, row_vals) # Create a dictionary: rs_dict rs_dict = dict(zipped_lists) # Print the dictionary print(rs_dict) ###Output {'CountryName': 'Arab World', 'CountryCode': 'ARB', 'IndicatorName': 'Adolescent fertility rate (births per 1,000 women ages 15-19)', 'IndicatorCode': 'SP.ADO.TFRT', 'Year': '1960', 'Value': '133.56090740552298'}
midterm/ProjectEuler52.ipynb
###Markdown Project Euler: Problem 52 https://projecteuler.net/problem=52It can be seen that the number, $125874$, and its double, $251748$, contain exactly the same digits, but in a different order.Find the smallest positive integer, $x$, such that $2x$, $3x$, $4x$, $5x$, and $6x$, contain the same digits. First, write a function `same_digits(x,y)` that returns `True` if two integers `x` and `y` have the exact same set of digits and multiplicities and `False` if they have different digits. ###Code def same_digits(x, y): """Do the integers x and y have the same digits, regardless of order.""" '''if len(x)==len(y): a=True for i in x: if i in y: b=True if a==True and b==True: return True''' X=[] Y=[] for i in x: X.append(int(i)) for i in y: Y.append(int(i)) #put X and Y in order if X==Y: return True '''split x and y into a list X and Y use function to put the list in numerical order if X==Y return True''' same_digits('537653','82462846') assert same_digits('132', '321') assert not same_digits('123', '3') assert not same_digits('456', '0987654321') ###Output _____no_output_____ ###Markdown Now use the `same_digits` function to solve this Euler problem. As you work on this problem, be careful to debug and test your code on small integers before trying it on the full search. ###Code # YOUR CODE HERE raise NotImplementedError() assert True # leave this cell to grade the solution ###Output _____no_output_____ ###Markdown Project Euler: Problem 52 https://projecteuler.net/problem=52It can be seen that the number, $125874$, and its double, $251748$, contain exactly the same digits, but in a different order.Find the smallest positive integer, $x$, such that $2x$, $3x$, $4x$, $5x$, and $6x$, contain the same digits. First, write a function `same_digits(x,y)` that returns `True` if two integers `x` and `y` have the exact same set of digits and multiplicities and `False` if they have different digits. ###Code x='123' y='321' if sorted(y)==sorted(x): print('yes') def same_digits(x, y): """Do the integers x and y have the same digits, regardless of order.""" if sorted(x)==sorted(y): return True else: return False assert same_digits('132', '321') assert not same_digits('123', '3') assert not same_digits('456', '0987654321') ###Output _____no_output_____ ###Markdown Now use the `same_digits` function to solve this Euler problem. As you work on this problem, be careful to debug and test your code on small integers before trying it on the full search. ###Code lst=[] for i in range(1,1000000): f=str(i) g=str(int(f)*2) k=str(int(f)*3) h=str(int(f)*4) m=str(int(f)*5) c=str(int(f)*6) if same_digits(f,g)==True: lst.append(f) elif same_digits(f,k)==True: lst.append(f) elif same_digits(f,h)==True: lst.append(f) elif same_digits(f,m)==True: lst.append(f) elif same_digits(f,c)==True: lst.append(f) min(lst) assert True # leave this cell to grade the solution ###Output _____no_output_____ ###Markdown Project Euler: Problem 52 https://projecteuler.net/problem=52It can be seen that the number, $125874$, and its double, $251748$, contain exactly the same digits, but in a different order.Find the smallest positive integer, $x$, such that $2x$, $3x$, $4x$, $5x$, and $6x$, contain the same digits. First, write a function `same_digits(x,y)` that returns `True` if two integers `x` and `y` have the exact same set of digits and multiplicities and `False` if they have different digits. ###Code def same_digits(x, y): """Do the integers x and y have the same digits, regardless of order.""" q = list(filter(lambda x: x in y, y)) p = list(filter(lambda y: y in x, x)) for i in q: if i in p and len(q) == len(p): y = True else: y = False return y #x ='132'; y = '321' # #q = list(filter(lambda x: x in y, y)) #p = list(filter(lambda y: y in x, x)) # #for i in q: # if i in p: # y = True # else: # y = False #print(y) # #print(q) #print(p) assert same_digits('132', '321') assert not same_digits('123', '3') assert not same_digits('456', '0987654321') ###Output _____no_output_____ ###Markdown Now use the `same_digits` function to solve this Euler problem. As you work on this problem, be careful to debug and test your code on small integers before trying it on the full search. ###Code xx=range(1,100) yy=range(1,100) pal_list =[] for xnum in xx: for ynum in yy: pal_list.append((xnum, ynum)) list0 = str(pal_list) # I found the list of the (x,y) combination for range 1 - 100.... I ran out of time :( assert True # leave this cell to grade the solution ###Output _____no_output_____ ###Markdown Project Euler: Problem 52 https://projecteuler.net/problem=52It can be seen that the number, $125874$, and its double, $251748$, contain exactly the same digits, but in a different order.Find the smallest positive integer, $x$, such that $2x$, $3x$, $4x$, $5x$, and $6x$, contain the same digits. First, write a function `same_digits(x,y)` that returns `True` if two integers `x` and `y` have the exact same set of digits and multiplicities and `False` if they have different digits. ###Code def same_digits(x, y): """Do the integers x and y have the same digits, regardless of order.""" z = [] w = [] n = 0 x = str(x) y = str(y) thing = True while n < len(x): z.append(x[n]) n = n+1 n = 0 while n < len(y): w.append(y[n]) n = n+1 z = sorted(z) w = sorted(w) return z == w #same_digits('132', '321') assert same_digits('132', '321') assert not same_digits('123', '3') assert not same_digits('456', '0987654321') ###Output _____no_output_____ ###Markdown Now use the `same_digits` function to solve this Euler problem. As you work on this problem, be careful to debug and test your code on small integers before trying it on the full search. ###Code x = 0 while x < 10000000: x = x + 1 if same_digits(x, 2*x) and same_digits(x, 3*x) and same_digits(x, 4*x) and same_digits(x, 5*x) and same_digits(x, 6*x): z = x break print(z) assert True # leave this cell to grade the solution ###Output _____no_output_____
Imagenet Image Classification using Keras/ImageNet32x32.ipynb
###Markdown ImageNet using AlexNet ###Code import keras from keras.utils import np_utils from keras.models import Sequential from keras.layers import Dense, Activation, Dropout, Flatten, Conv2D, MaxPooling2D from keras.layers.convolutional import Conv2D, MaxPooling2D, ZeroPadding2D from keras.layers.normalization import BatchNormalization import os import numpy as np from PIL import Image from keras.regularizers import l2 from google.colab import files uploaded=files.upload() def get_annotations_map(): valAnnotationsPath = 'tiny-imagenet-200/val/val_annotations.txt' valAnnotationsFile = open(valAnnotationsPath, 'r') valAnnotationsContents = valAnnotationsFile.read() valAnnotations = {} for line in valAnnotationsContents.splitlines(): pieces = line.strip().split() valAnnotations[pieces[0]] = pieces[1] return valAnnotations import zipfile,io data = zipfile.ZipFile(io.BytesIO(uploaded['tiny-imagenet-200.zip']),'r') data.extractall() train_data_dir = 'tiny-imagenet-200/train' validation_data_dir = 'tiny-imagenet-200/val' test_data_dir = 'tiny-imagenet-200/test' target_names = [item for item in os.listdir(train_data_dir) if os.path.isdir(os.path.join(train_data_dir, item))] nb_train_samples = sum([len(files) for _,_ , files in os.walk(train_data_dir)]) nb_validation_samples = sum([len(files) for _,_ , files in os.walk(validation_data_dir)]) nb_test_samples = sum([len(files) for _,_ , files in os.walk(test_data_dir)]) total_nb_samples = nb_train_samples + nb_validation_samples + nb_test_samples nb_classes = len(target_names) # number of output classes print('Training a CNN Multi-Classifier Model ......') print('\n - names of classes: ', target_names, '\n - # of classes: ', nb_classes) print(' - # of trained samples: ', nb_train_samples, '\n - # of validation samples: ', nb_validation_samples, '\n - # of test samples: ', nb_test_samples, '\n - total # of samples: ', total_nb_samples, '\n - train ratio:', round(nb_train_samples/total_nb_samples*100, 2), '\n - validation ratio:', round(nb_validation_samples/total_nb_samples*100, 2), '\n - test ratio:', round(nb_test_samples/total_nb_samples*100, 2), ' %', '\n - # of epochs: ', 2, '\n - batch size: ', 500) def load_images(path,num_classes): #Load images print('Loading ' + str(num_classes) + ' classes') X_train=np.zeros([num_classes*500,3,32,32],dtype='uint8') y_train=np.zeros([num_classes*500], dtype='uint8') print('loading training images...'); trainPath=path+'/train' i=0 j=0 annotations={} for sChild in os.listdir(trainPath): sChildPath = os.path.join(os.path.join(trainPath,sChild),'images') annotations[sChild]=j for c in os.listdir(sChildPath): X=np.array(Image.open(os.path.join(sChildPath,c))) if len(np.shape(X))==2: X_train[i]=np.array([X,X,X]) else: X_train[i]=np.transpose(X,(2,0,1)) y_train[i]=j i+=1 j+=1 if (j >= num_classes): break print('finished loading training images') val_annotations_map = get_annotations_map() X_test = np.zeros([num_classes*50,3,32,32],dtype='uint8') y_test = np.zeros([num_classes*50], dtype='uint8') print('loading test images...') i = 0 valPath=path+ '/val/images' for sChild in os.listdir(valPath): if val_annotations_map[sChild] in annotations.keys(): sChildPath = os.path.join(valPath, sChild) X=np.array(Image.open(sChildPath)) if len(np.shape(X))==2: X_test[i]=np.array([X,X,X]) else: X_test[i]=np.transpose(X,(2,0,1)) y_test[i]=annotations[val_annotations_map[sChild]] i+=1 else: pass print('finished loading test images')#+str(i) return X_train,y_train,X_test,y_test path=r'tiny-imagenet-200/' X_train,y_train,X_test,y_test=load_images(path,200)#input data path & numbers of classes ###Output Loading 200 classes loading training images... finished loading training images loading test images... finished loading test images ###Markdown Data Normalization ###Code X_train = X_train.astype('float32') X_test = X_test.astype('float32') X_train = X_train / 255.0 X_test = X_test / 255.0 # one hot encode outputs y_train = np_utils.to_categorical(y_train) y_test = np_utils.to_categorical(y_test) num_classes = y_test.shape[1] ###Output _____no_output_____ ###Markdown Designing the AlexNet for images of size 32x32 ###Code alexnet = Sequential() l2_reg = 0. # Layer 1 alexnet.add(Conv2D(96, (11, 11), input_shape=(3,32,32), padding='same', kernel_regularizer=l2(l2_reg))) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) #alexnet.add(MaxPooling2D(pool_size=(2, 2))) # Layer 2 alexnet.add(Conv2D(256, (5, 5), padding='same')) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) alexnet.add(MaxPooling2D(pool_size=(2, 2))) alexnet.add(Dropout(0.3)) # Layer 3 alexnet.add(ZeroPadding2D((1, 1))) alexnet.add(Conv2D(512, (3, 3), padding='same')) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) alexnet.add(MaxPooling2D(pool_size=(2, 2))) alexnet.add(Dropout(0.3)) # Layer 4 alexnet.add(ZeroPadding2D((1, 1))) alexnet.add(Conv2D(1024, (3, 3), padding='same')) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) alexnet.add(Dropout(0.5)) # Layer 5 alexnet.add(ZeroPadding2D((1, 1))) alexnet.add(Conv2D(1024, (3, 3), padding='same')) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) alexnet.add(MaxPooling2D(pool_size=(2, 2))) # Layer 6 alexnet.add(Flatten()) alexnet.add(Dense(3072)) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) alexnet.add(Dropout(0.5)) # Layer 7 alexnet.add(Dense(4096)) alexnet.add(BatchNormalization()) alexnet.add(Activation('relu')) alexnet.add(Dropout(0.5)) # Layer 8 alexnet.add(Dense(200)) alexnet.add(BatchNormalization()) alexnet.add(Activation('softmax')) alexnet.summary() epoch = 50 learn_rate = 0.0001 dec = learn_rate /epoch adam=keras.optimizers.Adam(learn_rate) # Compile the model alexnet.compile(loss=keras.losses.categorical_crossentropy,optimizer=adam, metrics=['accuracy']) history = alexnet.fit(X_train,y_train,epochs=epoch, validation_data=(X_test, y_test),batch_size=256) # Final evaluation of the model scores = alexnet.evaluate(X_test, y_test, verbose=2) print("Accuracy: %.2f%%" % (scores[1]*100)) def plotter(trained_record): # Loss Curves plt.figure(figsize=[8,6]) plt.plot(trained_record.history['loss'],'r',linewidth=3.0) plt.plot(trained_record.history['val_loss'],'b',linewidth=3.0) plt.legend(['Training loss', 'Validation Loss'],fontsize=18) plt.xlabel('Epochs ',fontsize=16) plt.ylabel('Loss',fontsize=16) plt.title('Loss Curves',fontsize=16) plt.savefig('try1.png') # Accuracy Curves plt.figure(figsize=[8,6]) plt.plot(trained_record.history['acc'],'r',linewidth=3.0) plt.plot(trained_record.history['val_acc'],'b',linewidth=3.0) plt.legend(['Training Accuracy', 'Validation Accuracy'],fontsize=18) plt.xlabel('Epochs ',fontsize=16) plt.ylabel('Accuracy',fontsize=16) plt.title('Accuracy Curves',fontsize=16) plt.savefig('try2.png') plotter(history) ###Output _____no_output_____ ###Markdown ConclusionReducing the number of neurons did not improve the performance of CNN classification model. So we can reject thethe hypothesis that the model would perform better after reducing the number of neurons because the model is giving similar performace as that of actual neural network. Model started overfitting after 20th epoch ###Code ###Output _____no_output_____
ECON 425 - Machine Learning/KNN.ipynb
###Markdown Effect of Increasing K in KNN Learning To test the effect of increasing K, I wrote a for loop to train the model with every K between 1 and 113, the size of the data set. Naturally, I think that as K increases, the model will become less accurate. This is because as it starts to reach to to many neighbors for information on the iris type, it will start to move too far into the wrong category, and then wrong predictions will be more common. ###Code from sklearn.datasets import load_iris from sklearn.model_selection import train_test_split from matplotlib import pyplot as plt X_train, X_test, y_train, y_test = train_test_split( iris_dataset['data'], iris_dataset['target'], random_state=0) knn = KNeighborsClassifier(n_neighbors=40) knn.fit(X_train, y_train) print("Test set score: {:.2f}".format(knn.score(X_test, y_test))) empty = [] for i in range (1,113): knn = KNeighborsClassifier(n_neighbors=i) knn.fit(X_train, y_train) empty.append(knn.score(X_test, y_test)) plt.plot(empty) ###Output Test set score: 0.87
InvestigationAnscombesQuartet.ipynb
###Markdown Analysis of Anscombes Quartet In this Jupyter Notebook I will analyse Anscombe’s Quartet Dataset. I will carry out following four tasks:1. I will explain the background to the dataset. 2. I will calculate the descriptive statistics of the variables in the dataset. 3. I will plot interesting aspects of the dataset. 4. I will explain why the dataset is interesting by referring to the plots and statistics. 1. Background information of the dataset.Anscombe’s Quartet dataset was created by Francis Anscombe in 1973 for his classic paper "Graphs in Statistical Analysis". The dataset compromises of four datasets that have almost identical linear regression coefficients, each of the datasets in the quartet consists of 11 (x,y) points. All datasets appear similar when examined using simple summary statistics, but vary considerably when graphed.Anscombe created the dataset to demonstrate the effect that outliers can have on a statistical findings of a dataset and the importance of visualizing data before analyzing it. Man behind the Dataset:Francis John "Frank" Anscombe was born in 1981 and died in 2001. He was an English statistician, who served in Worl War II and later became a profesor. Anscombe was the first perosn to proof that graphs and visualization should be included as a crutial step in any standard data analysis. Libraries ###Code import sklearn.neighbors as nel import pandas as pd #import pandas import seaborn as sns import matplotlib.pyplot as plt import numpy as np from scipy.interpolate import * %matplotlib inline ###Output _____no_output_____ ###Markdown Graphs and Dataset Data I will work with. ###Code #Im defining the anscombes libraray: dfx = sns.load_dataset("anscombe") #I want to demonstrate that straight away when I pull the dataset data and graphs, #I can see what I will investigate. #Graphs of each Dataset are different even though their statistical properties are almost identical. #Let’s begin the investigation. sns.lmplot(x="x", y="y", col="dataset", hue="dataset", data=dfx, col_wrap=2, ci=None, palette="muted", height=4, scatter_kws={"s": 50, "alpha": 1}) #Im uploading the Dataset using URL #Datasets are split inot four x-axis and four y-axis. df = pd.read_csv("https://raw.githubusercontent.com/MartynaMisk/AnscombesQuartet/master/data.csv") df ###Output _____no_output_____ ###Markdown 2. Calculating the descriptive statistics of the variables in the dataset. I will investigate following statistical properties: 1. The mean x value is 9 and 7.50 for y in each dataset. 2. The variance for x is 11 and for y is 4.12 in each dataset.5. The correlation between x and y is 0.816 for each dataset.6. A linear regression (line of best fit) for each dataset follows the equation y = 0.5x + 3The purpose of demonstarting this statistical data is to showcase that Ansconmbe's four datasets have the same statistical properties. ###Code df[['x1' , 'y1']] #interesting feature with which it is easier to target a specific column to have a closer look. #We can see values for Dataset 1 x and y axis. ###Output _____no_output_____ ###Markdown 2.1 Mean of Dataset 1, Dataset 2, Dataset 3 and Dataset 4. Daatset 1 (x1 and y1) ###Code #To begin I want to try to calculate the mean of Dataset 1 x-axis(x1): df['x1'].mean() #To get mean of Dataset 1 y-axis(y1): df['y1'].mean() #This will show more clearly the mean of Dataset 1 (x and y) and the identical result of the above finding. df.loc[:,['x1', 'y1']].mean() #Dataset 1 has x-axis mean of 9 and y-axis mean on 7.5 ###Output _____no_output_____ ###Markdown Dataset 2 (x2 and y2) ###Code #To calculate the mean of Dataset 2 (x2 and y2) I will use the same code as above but use Dataset 2 varibales. #The output should be 9 for x. #The output should be 7.5 for y. df.loc[:,['x2', 'y2']].mean() #The result of the mean of Dataset 2 matches Dataset 1. ###Output _____no_output_____ ###Markdown Dataset 3 (x3 and y3) ###Code df.loc[:,['x3', 'y3']].mean() #The results match the mean of the previous two Datasets: ###Output _____no_output_____ ###Markdown Dataset 4 (x4 and y4) ###Code df.loc[:,['x4', 'y4']].mean() #The results match the mean of the previous Datasets: ###Output _____no_output_____ ###Markdown The identical mean for each Dataset is one evidence that statistical properties are the same for each dataset. 2.2 Calculating variance of x and y in each Dataset. Variance is the expected deviation of random variables from its mean. This statistical property equals 11 for x variance and 4.12 for y in each Dataset. Dataset 1 (x1 and y1) ###Code df.loc[:,['x1', 'y1']].var() #Dataset 1 variance: ###Output _____no_output_____ ###Markdown Dataset 2 (x2 and y2) ###Code df.loc[:,['x2', 'y2']].var() #Dataset 2 variance equals to Dataset 1: ###Output _____no_output_____ ###Markdown Dataset 3 (x3 and y3) ###Code df.loc[:,['x3', 'y3']].var() #Dataset 3 variance is identical to previous Datasets: ###Output _____no_output_____ ###Markdown Dataset 4 (x4 and y4) ###Code df.loc[:,['x4', 'y4']].var() #All four Datasets have the same variance statistical measurement: ###Output _____no_output_____ ###Markdown We can conclude that the variance for each Dataset is equal. This is a second proof that statistical measurement is almost equal. 2.3 The correlation between x and y Correlation calculates how close variables are to having a linear relationship. Dataset 1 (x1 and y1) ###Code df.loc[:,["x1", "y1"]].corr() #Dataset 1 results: ###Output _____no_output_____ ###Markdown Dataset 2 (x2 and y2) ###Code df.loc[:,["x2", "y2"]].corr() #Dataset 2 correlation results match previous results. ###Output _____no_output_____ ###Markdown Dataset 3 (x3 adn y3) ###Code df.loc[:,["x3", "y3"]].corr() #Results match previous results. ###Output _____no_output_____ ###Markdown Dataset 4 (x4 and y4) ###Code df.loc[:,["x4", "y4"]].corr() #Correlation between all Datasets is almost identical. #The correlation between x and y is 0.816 for each dataset ###Output _____no_output_____ ###Markdown At this stage it is evident that mean, variance and now correlation for each Dataset is almost identical. With just this statistical information one could conclude that all Datasets are identical. 2.4 Linear regression (line of best fit) for each dataset. Linear regrssion demonstrates us the relationship between two variables. Mathematically it is represented as Y ≈ ɒ + ß X + ℇ. For all 4 Datasets, the slope of the regression line is 0.500(x) and the intercept is 3.00(y). ###Code #Dataset 1 values: x1 = np.array([10,8,13,9,11,14,6,4,12,7,5]) y1 = np.array([8.04,6.95,7.58,8.81,8.33,9.96,7.24,4.26,10.84,4.82,5.68]) p1 = np.polyfit(x1,y1,1) print(p1) #This will show me the slope of the regression and intercept of Dataset 1. #Dataset 2 #This time instead of writing out the array I have used df to pull it from the Dataset defined at the beginig. x2 = np.array(df['x2']) y2 = np.array(df['y2']) p2 = np.polyfit(x2,y2,1) print(p2) #The linear regression will be the same as in Dataset 1. #Dataset 3 x3 = np.array(df['x3']) y3 = np.array(df['y3']) p3 = np.polyfit(x2,y2,1) print(p3) #Results for Dataset 3 are almost equal to previous linear regressions. #Dataset 4 x4 = np.array(df['x4']) y4 = np.array(df['y4']) p4 = np.polyfit(x2,y2,1) print(p3) #I wanted to see if I fit everyhting into one cell will it work. #The result is as expected; slope 5 ###Output [0.5 3.00090909] ###Markdown This final statistical equation has demonstrate that all data when calculated (mean, variance, correlation and linear reggresion) are almost identical. Lets plot the graphs and see the visual results. 3. Plotting interesting aspects of the dataset. This section will demonstrate Anscombes Quartet four Dataset plotted in graphs: Dataset 1 (x1 and y2) ###Code plt.plot(x1,y1,'o') #This will plot x and y variables on the graph as dots: plt.plot(x1,np.polyval(p1,x1),'r-') #This shows me the line of best fit for the Dataset1. #p1 is represents the slope and intercept calculated above. yfit = p1[0] * x1 + p1[1] #I want to calculate the fit value print(yfit) #predicted values print(y2) #actual values plt.plot(x1,yfit,'m:') #plotted #When I put the first and secodn graph together I will see the line of best fit with the varibles: plt.plot(x1,y1,'o') plt.plot(x1,np.polyval(p1,x1),'r-') #The line of regression is defined as red line. #Dataset 2 graph. plt.plot(x2,y2,'o') plt.plot(x2,np.polyval(p2,x2),'r-') #Dataset 2 #In this graph I want to play around with visualization. #Linear Regression will be plotted by blue dotted line. plt.plot(x2,y2,'o') plt.plot(x2,np.polyval(p2,x2),'b--') #b-- blue dotted line. I think I will stick to the red line. #Dataset 3 graph. plt.plot(x3,y3,'o') plt.plot(x3,np.polyval(p3,x3),'r-') #Dataset 4 graph. plt.plot(x4,y4,'o') plt.plot(x4,np.polyval(p4,x4),'r-') ###Output _____no_output_____
ml/polynorminal/leaning-curve.ipynb
###Markdown 学习曲线 ###Code from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=10) X_train.shape from sklearn.linear_model import LinearRegression from sklearn.metrics import mean_squared_error train_score = [] test_score = [] # 一共有75个 for i in range(1, 76): lin_reg = LinearRegression() lin_reg.fit(X_train[:i], y_train[:i]) y_train_predict = lin_reg.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = lin_reg.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, 76)], np.sqrt(train_score), label='train') plt.plot([i for i in range(1, 76)], np.sqrt(test_score), label='test') plt.legend() plt.show() def plot_learning_curve(algo, X_train, X_test, y_train, y_test): train_score = [] test_score = [] num = len(X_train) + 1 for i in range(1, num): algo.fit(X_train[:i], y_train[:i]) y_train_predict = lin_reg.predict(X_train[:i]) train_score.append(mean_squared_error(y_train[:i], y_train_predict)) y_test_predict = algo.predict(X_test) test_score.append(mean_squared_error(y_test, y_test_predict)) plt.plot([i for i in range(1, num)], np.sqrt(train_score), label='train') plt.plot([i for i in range(1, num)], np.sqrt(test_score), label='test') plt.legend() # 0<=x<=num, 0<=y<=4 plt.axis([0, num, 0, 4]) plt.show() plot_learning_curve(LinearRegression(), X_train, X_test, y_train, y_test) from sklearn.pipeline import Pipeline from sklearn.preprocessing import StandardScaler, PolynomialFeatures from sklearn.linear_model import LinearRegression def PolynomialRegression(degree): return Pipeline([ ('poly', PolynomialFeatures(degree=degree)), ('std_scaler', StandardScaler()), ('line_reg', LinearRegression()) ]) pol2_reg = PolynomialRegression(2) plot_learning_curve(pol2_reg, X_train, X_test, y_train, y_test) ###Output _____no_output_____ ###Markdown 数据集的划分 - 训练数据集: 用于训练模型- 验证数据集: 用于调整超参- 测试数据集: 用于验证泛化 交叉验证 (西瓜书有说明) ###Code import numpy as np from sklearn import datasets digits = datasets.load_digits() X = digits.data y = digits.target from sklearn.model_selection import train_test_split X_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666) from sklearn.neighbors import KNeighborsClassifier best_score, best_p, best_k = 0, 0, 0 for k in range(2, 11): for p in range(1, 5): knn = KNeighborsClassifier(weights="distance", n_neighbors=k, p=p, n_jobs=-1) knn.fit(X_train, y_train) score = knn.score(X_test, y_test) if score > best_score: best_score, best_p, best_k = score, p, k print("Best K = %d" % best_k) print("Best p = %d" % best_p) print("Best score = %s" % best_score) ###Output Best K = 5 Best p = 2 Best score = 0.9866666666666667 ###Markdown 使用交叉验证 ###Code from sklearn.model_selection import cross_val_score knn = KNeighborsClassifier() cross_val_score(knn, X_train, y_train) from sklearn.neighbors import KNeighborsClassifier best_score, best_p, best_k = 0, 0, 0 for k in range(2, 11): for p in range(1, 5): knn = KNeighborsClassifier(weights="distance", n_neighbors=k, p=p, n_jobs=-1) knn.fit(X_train, y_train) # cv=3 分成3分 scores = cross_val_score(knn, X_train, y_train, cv=3) score = np.mean(scores) if score > best_score: best_score, best_p, best_k = score, p, k print("Best K = %d" % best_k) print("Best p = %d" % best_p) print("Best score = %s" % best_score) ###Output Best K = 5 Best p = 3 Best score = 0.9866166891368011 ###Markdown 交叉验证是为了获取最佳的参数 ###Code best_knn = KNeighborsClassifier(weights="distance", n_neighbors=5, p=3, n_jobs=-1) best_knn.fit(X_train, y_train) best_knn.score(X_test, y_test) ###Output _____no_output_____
chapter05/chapter05.ipynb
###Markdown More Capable Functions N-arity and variadic functions ###Code ;; A simple function that takes a variable number of args ;; (a multi-arity function) (defn greet ([to-whom] (println "Welcome to Blotts Books" to-whom)) ([message to-whom] (println message to-whom))) (greet "Dolly") (greet "Howdy" "Stranger") ;; One of the arities of the function can be expressed in terms of the other (defn greet ([to-whom] (greet "Welcome to Blotts Books" to-whom)) ; Expressed in terms of the other arity ([message to-whom] (println message to-whom))) ;; A function that takes an arbitrary number of args ;; (a variadic function) (defn print-any-args [& args] ; The '&' symbol means a variable number of args (println "My arguments are:" args)) (print-any-args 7 true nil) ; The args are printed as a collection ;; Functions can have ordinary args before '&', as follows (defn first-argument [& args] (first args)) (defn new-first-argument [x & args] x) (first-argument 1 2 3) (new-first-argument 1 2 3) ###Output _____no_output_____ ###Markdown Multimethods ###Code ;; Given the following formats of book data {:title "War and Peace" :author "Tolstoy"} {:book "Emma" :by "Austen"} ["1984" "Orwell"] ;; A function that normalizes the format of book ;; can be written as follows ;; (It works, but with a growing number of book formats it will get ugly fast) (defn normalize-book [book] (if (vector? book) {:title (first book) :author (second book)} (if (contains? book :title) book {:title (:book book) :author (:by book)}))) (normalize-book {:title "War and Peace" :author "Tolstoy"}) (normalize-book {:book "Emma" :by "Austen"}) (normalize-book ["1984" "Orwell"]) ;; A function that returns keywords based on the book's format ;; to be used later to define a multimethod (defn dispatch-book-format [book] (cond (vector? book) :vector-book (contains? book :title) :standard-map (contains? book :book) :alternative-map)) (dispatch-book-format ["1984" "Orwell"]) ;; Defining a multimethod from the last dispatcher function (defmulti normalize-book dispatch-book-format) ;; Implementing the last multimethod for the possible values ;; returned from the dispatch function (defmethod normalize-book :vector-book [book] {:title (first book) :author (second book)}) (normalize-book ["1984" "Orwell"]) (defmethod normalize-book :standard-map [book] book) (normalize-book {:title "War and Peace" :author "Tolstoy"}) (defmethod normalize-book :alternative-map [book] {:title (:book book) :author (:by book)}) (normalize-book {:book "Emma" :by "Austen"}) ;; A new colection of books with a new keyword :genre, ;; which should be processed somehow by the last multimethod (def books [{:title "Pride and Prejudice" :author "Austen" :genre :romance} {:title "World War Z" :author "Brooks" :genre :zombie}]) ;; In case another keyword is present (:genre in this case), ;; a separate multimethod can be created independently, as follows (defmulti book-description :genre) (defmethod book-description :romance [book] (str "The heart warming new romance by " (:author book))) (defmethod book-description :zombie [book] (str "The heart consuming new zombie adventure by " (:author book))) (book-description (first books)) (book-description (last books)) ;; If there are new genres, a new method can be implemented ;; to handle it, as follows (def ppz {:title "Pride and Prejudice and Zombies" :author "Grahame-Smith" :genre :zombie-romance}) (defmethod book-description :zombie-romance [book] (str "The heart warming and consuming new romance by " (:author book))) (book-description ppz) ###Output _____no_output_____ ###Markdown Recursive functions ###Code ;; Given the following books map (def books [{:title "Jaws" :copies-sold 2000000} {:title "Emma" :copies-sold 3000000} {:title "2001" :copies-sold 4000000}]) ;; To get the sum of the copies sold, ;; a recursive function can be defined as follows (defn sum-copies ([books] (sum-copies books 0)) ([books total] (if (empty? books) total (sum-copies ; Note the recursion here (rest books) (+ total (:copies-sold (first books))))))) (sum-copies books) ;; The last function will blow the stack with a large collection. ;; To avoid that, the 'recur' function can be used as follows (defn sum-copies ([books] (sum-copies books 0)) ([books total] (if (empty? books) total (recur (rest books) (+ total (:copies-sold (first books))))))) (sum-copies books) ;; The last function can be made even shorter ;; with the 'loop' function, as follows (defn sum-copies [books] (loop [books books total 0] (if (empty? books) total (recur (rest books) (+ total (:copies-sold (first books))))))) (sum-copies books) ###Output _____no_output_____ ###Markdown Docstrings ###Code """ To describe a function's purpose, it's ok to describe it with standard comments """ ;; Return the average of the two parameters. (defn average [a b] (/ (+ a b) 2.0)) (average 4 3) ;; But a more idiomatic way is to use docstrings, as follows (defn average-2 "Return the average of a and b." [a b] (/ (+ a b) 2.0)) (average-2 4 3) ###Output _____no_output_____ ###Markdown Pre and Post-conditions ###Code ;; In case you want to check some property of the args (a map, in this case) ;; a conditional checking can be written at the start of the function, as follows (defn publish-book [book] (when-not (contains? book :title) (throw (ex-info "Books must contain :title" {:book book}))) (println book)) (publish-book {:title "War and Peace" :author "Tolstoy"}) ; Pass the checking (publish-book {:author "Tolstoy"}) ; Doesn't pass the checking ;; But Clojure provides a keyword for the last functionality, ;; the :pre (for pre-conditional) keyword (defn publish-book-2 [book] {:pre [(:title book)]} ; The pre-conditional should be a vector of expressions (println book)) (publish-book-2 {:title "War and Peace" :author "Tolstoy"}) ; Pass the pre-condition (publish-book-2 {:author "Tolstoy"}) ; Doesn't pass the pre-condition ;; A similar functionality but for return values is present ;; in the :post (for post-conditional) keyword (defn publish-book-3 [book] {:pre [(:title book) (:author book)] :post [(boolean? %)]} ; The post-conditional should be a vector of expressions (map? book)) (publish-book-3 {:title "War and Peace" :author "Tolstoy"}) ###Output _____no_output_____ ###Markdown Issues with functions ###Code ;; Trying to define a n-ary function with overlapping args throws an exception (defn one-two-or-more ([a] (println "One arg:" a)) ; It's not clear which of the 2 below should be called when there are 2 args ([a b] (println "Two args:" a b)) ([& more] (println "More than two:" more))) ;; To avoid ambiguities, the last function should be modified as follows (defn one-two-or-more ([a] (println "One arg:" a)) ([a b] (println "Two args:" a b)) ([a b & more] (println "More than two:" a b more))) ;; Functions with multiple body expressions should not be confused ;; with multi-arity functions (defn chatty-average ([a b] (println "chatty-average function called with 2 arguments") (println "** first argument:" a) (println "** second argument:" b) (/ (+ a b) 2.0))) (defn chatty-multi-average ([a b] (println "chatty-average function called with 2 arguments") (/ (+ a b) 2.0)) ([a b c] (println "chatty-average function called with 3 arguments") (/ (+ a b c) 3.0))) (chatty-average 2 3) (chatty-multi-average 2 3) ###Output chatty-average function called with 2 arguments ###Markdown Exploring Clojure and Java interop Calling Java from Clojure Importing Java classes into Clojure ###Code ; The general form of import statements is as follows """ (import & import-symbols-or-lists) """ ; Importing 2 java classes individually ;The quote (') reader macro instructs the runtime not to evaluuate the symbol (import 'java.util.Date 'java.text.SimpleDateFormat) ; Importing 2 java classes as a sequence (import '[java.util Date Set]) ; Using the :import keyword to import classes in a namespace (ns com.clojureinaction.book (:import (java.util Set Date))) (ns user) ###Output _____no_output_____ ###Markdown Creating instances ###Code ; Using the new keyword to instantiate a class (like in Java) (import '(java.text SimpleDateFormat)) (def sdf (new SimpleDateFormat "yyyy-MM-dd")) ; Using a trailing dot to instantiate a class (def sdf (SimpleDateFormat. "yyyy-MM-dd")) ###Output _____no_output_____ ###Markdown Accessing methods and fields ###Code ; Using a leading dot to access an instance method (defn date-from-date-string [date-string] (let [sdf (SimpleDateFormat. "yyyy-MM-dd")] (.parse sdf date-string))) ; Using a slash to access a static method (Long/parseLong "12321") ; The syntax is (Classname/staticMethod args*) ; Using a slash to access a static field (import '(java.util Calendar)) (Calendar/JANUARY) ###Output _____no_output_____ ###Markdown Macros and the dot special form ###Code ; General form of calling static methods """ (. ClassnameSymbol methodSymbol args*) """ ; Example (. System getenv "PATH") ; General form of calling instance methods """ (. instanceExpr methodSymbol args*) """ ; Example (import '(java.util Random)) (def rnd (Random.)) (. rnd nextInt 10) ; General form of calling static and instance fields """ (. ClassnameSymbol memberSymbol) (. instanceExpr memberSymbol) """ ; Example (. Calendar DECEMBER) ###Output _____no_output_____ ###Markdown The Dot-Dot macro Using the '.' macro to chain Java method calls (hard to read) ###Code (import '(java.util Calendar TimeZone)) (. (. (Calendar/getInstance) (getTimeZone)) (getDisplayName)) ###Output _____no_output_____ ###Markdown Using the '..' macro to chain method calls (easier to read) ###Code (.. (Calendar/getInstance) (getTimeZone) (getDisplayName)) ###Output _____no_output_____ ###Markdown The Doto macro ###Code ; Applying a method repeteadly to a single Java object (note the code duplication) (import '(java.util Calendar)) (defn the-past-midnight-1 [] (let [calendar-obj (Calendar/getInstance)] (.set calendar-obj Calendar/AM_PM Calendar/AM) (.set calendar-obj Calendar/HOUR 0) (.set calendar-obj Calendar/MINUTE 0) (.set calendar-obj Calendar/SECOND 0) (.set calendar-obj Calendar/MILLISECOND 0) (.getTime calendar-obj))) ; Using the doto macro to apply a method repeteadly to a single Java object ; (the code duplication was removed) (defn the-past-midnight-2 [] (let [calendar-obj (Calendar/getInstance)] (doto calendar-obj (.set Calendar/AM_PM Calendar/AM) (.set Calendar/HOUR 0) (.set Calendar/MINUTE 0) (.set Calendar/SECOND 0) (.set Calendar/MILLISECOND 0)) (.getTime calendar-obj))) ###Output _____no_output_____ ###Markdown The memfn macro ###Code ; Using a Java method as a normal function (map (fn [x] (.getBytes x)) ["amit" "rob" "kyle"]) ; Using a Java method as an anonymous function (map #(.getBytes %) ["amit" "rob" "kyle"]) ; Using the memfn macro instead of the anonymous function (map (memfn getBytes) ["amit" "rob" "kyle"]) ; Calling a Java method without type hints (.subSequence "Clojure" 2 5) ; Calling a Java method with type hints ((memfn ^String subSequence ^Long start ^Long end) "Clojure" 2 5) ###Output _____no_output_____ ###Markdown The bean macro ###Code ; Converting Java bean objects to immutable Clojure maps (import '[java.util Calendar]) (bean (Calendar/getInstance)) ###Output _____no_output_____ ###Markdown Working with Java arrays ###Code (def tokens (.split "clojure.in.action" "\\.")) ###Output _____no_output_____ ###Markdown Implementing interfaces and extending classes The proxy macro ###Code ; Implementing the MouseAdapter class with proxy (import 'java.awt.event.MouseAdapter) (proxy [MouseAdapter] [] (mousePressed [event] (println "Hey!"))) ; The general form of the proxy macro is as follows """ (proxy [class-and-interfaces] [args] fs+) """ ###Output _____no_output_____ ###Markdown The reify macro ###Code ; Creating an instance of Java’s FileFilter interface (reify java.io.FileFilter (accept [this f] (.isDirectory f))) ###Output _____no_output_____ ###Markdown Compiling Clojure code to Java bytecode The first dierctory structure of the project```root classes src com curry utils calculators.clj``` ###Code ; Contents of the calculators.clj file """ (ns com.curry.utils.calculators (:gen-class)) (defn present-value [data] (println \"calculating present value...\") """ ; Compiling the defined namespace (compile 'com.curry.utils.calculators) ###Output _____no_output_____ ###Markdown The new directory structure of the project```root classes src com curry utils calculators.clj calc dcf.clj fcf.clj``` ###Code ; Contents of dcf.clj """ (in-ns 'com.curry.utils.calculators) (defn discounted-cash-flow [data] (println \"calculating discounted cash flow...\")) """ ; Contents of fcf.clj """ (in-ns 'com.curry.utils.calculators) (defn free-cash-flow [data] (println \"calculating free cash flow...\")) """ ; The new contents of calculators.clj """ (ns com.curry.utils.calculators (:gen-class)) (load \"calc/fcf\") (load \"calc/dcf\") (defn present-value [data] (println \"calculating present value...\")) """ ###Output _____no_output_____ ###Markdown Creating Java classes and interfaces using gen-class and gen-interface ###Code ; An abstract Java class that will be used to illustrate ; how gen-class works """ package com.gentest; public abstract class AbstractJavaClass { public AbstractJavaClass(String a, String b) { System.out.println(\"Constructor: a, b\"); } public AbstractJavaClass(String a) { System.out.println(\"Constructor: a\"); } public abstract String getCurrentStatus(); public String getSecret() { return \"The Secret\"; } } """ ; Using the last java AbstractJavaClass inside clojure code """ (ns com.gentest.gen-clojure (:import (com.gentest AbstractJavaClass)) (:gen-class :name com.gentest.ConcreteClojureClass :extends com.gentest.AbstractJavaClass :constructors {[String] [String] [String String] [String String]} :implements [Runnable] :init initialize :state localState :methods [[stateValue [] String]])) (defn -initialize ([s1] (println \"Init value:\" s1) [[s1 \"default\"] (ref s1)]) ([s1 s2] (println \"Init values:\" s1 \",\" s2) [[s1 s2] (ref s2)])) (defn -getCurrentStatus [this] \"getCurrentStatus from - com.gentest.ConcreteClojureClass\") (defn -stateValue [this] @(.localState this)) (defn -run [this] (println \"In run!\") (println \"I'm a\" (class this)) (dosync (ref-set (.localState this) \"GO\"))) (defn -main [] (let [g (new com.gentest.ConcreteClojureClass \"READY\")] (println (.getCurrentStatus g)) (println (.getSecret g)) (println (.stateValue g))) (let [g (new com.gentest.ConcreteClojureClass \"READY\" \"SET\")] (println (.stateValue g)) (.start (Thread. g)) (Thread/sleep 1000) (println (.stateValue g)))) """ ; To compile and test the last code, execute the following commands in the REPL !compile 'com.gentest.gen-clojure !java com.gentest.ConcreteClojureClass ###Output _____no_output_____ ###Markdown Leiningen project file for ConcreteClojureClass ###Code """ (defproject gentest \"0.1.0\" :dependencies [[org.clojure/clojure \"1.6.0\"]] ; Place our \"AbstractJavaClass.java\" and \"gen-clojure.clj\" files under ; the src/com/gentest directory. :source-paths [\"src\"] :java-source-paths [\"src\"] ; :aot is a list of clojure namespaces to compile. :aot [com.gentest.gen-clojure] ; This is the java class \"lein run\" should execute. :main com.gentest.ConcreteClojureClass) """ ###Output _____no_output_____ ###Markdown Calling Clojure from Java ###Code ; Clojure function, defined in the clj.script.examples namespace (ns clj.script.examples) (defn print-report [user-name] (println "Report for:" user-name) 10) ; Using the last function in a Java code """ import clojure.lang.RT; import clojure.lang.Var; public class Driver { public static void main(String[] args) throws Exception { RT.loadResourceScript(\"clojure_script.clj\"); Var report = RT.var(\"clj.script.examples\", \"print-report\"); Integer result = (Integer) report.invoke(\"Siva\"); System.out.println(\"Result: \" + result); } } """ ###Output _____no_output_____
module4/s1_classification.ipynb
###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) list(news) ###Output _____no_output_____ ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui expliquer le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output _____no_output_____ ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output _____no_output_____ ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator import nltk nltk.download('stopwords') ###Output [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] X_train, X_test, y_train, y_test = train_test_split(texts, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? ###Code # Le TFIDF a calculé l'IDF de chaque mot du corpus feature_names = classifier.named_steps['vectorizer'].get_feature_names() idf_ = classifier.named_steps['vectorizer'].idf_ len(feature_names) for i in range(1000, 1042): print(feature_names[i], ':', round(idf_[i], 2)) # Et ensuite il transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names()) # Et le naïf bayésien apprends la corrélation entre chaque mot et chaque catégorie pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T.sort_values(by='alt.atheism', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output Number of categories: 20 ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'))), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(news.data, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.92 0.83 0.87 172 comp.graphics 0.90 0.85 0.87 184 comp.os.ms-windows.misc 0.89 0.81 0.85 204 comp.sys.ibm.pc.hardware 0.75 0.83 0.79 195 comp.sys.mac.hardware 0.94 0.88 0.91 195 comp.windows.x 0.94 0.91 0.92 204 misc.forsale 0.84 0.79 0.82 164 rec.autos 0.88 0.93 0.90 180 rec.motorcycles 0.92 0.98 0.95 173 rec.sport.baseball 0.96 0.94 0.95 217 rec.sport.hockey 0.87 0.98 0.92 178 sci.crypt 0.84 0.99 0.91 197 sci.electronics 0.93 0.87 0.90 199 sci.med 0.95 0.98 0.96 183 sci.space 0.91 0.98 0.94 207 soc.religion.christian 0.71 0.96 0.82 211 talk.politics.guns 0.81 0.97 0.88 208 talk.politics.mideast 0.95 0.96 0.96 200 talk.politics.misc 0.96 0.62 0.76 175 talk.religion.misc 1.00 0.30 0.46 124 accuracy 0.88 3770 macro avg 0.89 0.87 0.87 3770 weighted avg 0.89 0.88 0.87 3770 ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output _____no_output_____ ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output _____no_output_____ ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'))), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(news.data, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output _____no_output_____ ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output _____no_output_____ ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui expliquer le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] X_train, X_test, y_train, y_test = train_test_split(texts, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? ###Code # Le TFIDF a calculé l'IDF de chaque mot du corpus feature_names = classifier.named_steps['vectorizer'].get_feature_names() idf_ = classifier.named_steps['vectorizer'].idf_ len(feature_names) for i in range(1000, 1042): print(feature_names[i], ':', round(idf_[i], 2)) # Et ensuite il transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names()) # Et le naïf bayésien apprends la corrélation entre chaque mot et chaque catégorie pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T.sort_values(by='alt.atheism', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output _____no_output_____ ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output Number of categories: 20 ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.html ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'))), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(news.data, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.92 0.83 0.87 172 comp.graphics 0.90 0.85 0.87 184 comp.os.ms-windows.misc 0.89 0.81 0.85 204 comp.sys.ibm.pc.hardware 0.75 0.83 0.79 195 comp.sys.mac.hardware 0.94 0.88 0.91 195 comp.windows.x 0.94 0.91 0.92 204 misc.forsale 0.84 0.79 0.82 164 rec.autos 0.88 0.93 0.90 180 rec.motorcycles 0.92 0.98 0.95 173 rec.sport.baseball 0.96 0.94 0.95 217 rec.sport.hockey 0.87 0.98 0.92 178 sci.crypt 0.84 0.99 0.91 197 sci.electronics 0.93 0.87 0.90 199 sci.med 0.95 0.98 0.96 183 sci.space 0.91 0.98 0.94 207 soc.religion.christian 0.71 0.96 0.82 211 talk.politics.guns 0.81 0.97 0.88 208 talk.politics.mideast 0.95 0.96 0.96 200 talk.politics.misc 0.96 0.62 0.76 175 talk.religion.misc 1.00 0.30 0.46 124 accuracy 0.88 3770 macro avg 0.89 0.87 0.87 3770 weighted avg 0.89 0.88 0.87 3770 ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output _____no_output_____ ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output _____no_output_____ ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output _____no_output_____ ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output _____no_output_____ ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output _____no_output_____ ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt import nltk nltk.download('stopwords') from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator import nltk nltk.download('stopwords') ###Output [nltk_data] Downloading package stopwords to [nltk_data] /Users/julienvanbelle/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output Number of categories: 20 ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui expliquer le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] X_train, X_test, y_train, y_test = train_test_split(texts, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? ###Code # Le TFIDF a calculé l'IDF de chaque mot du corpus feature_names = classifier.named_steps['vectorizer'].get_feature_names() idf_ = classifier.named_steps['vectorizer'].idf_ len(feature_names) for i in range(1000, 1042): print(feature_names[i], ':', round(idf_[i], 2)) # Et ensuite il transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names()) # Et le naïf bayésien apprends la corrélation entre chaque mot et chaque catégorie pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T.sort_values(by='alt.atheism', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.92 0.83 0.87 172 comp.graphics 0.90 0.85 0.87 184 comp.os.ms-windows.misc 0.89 0.81 0.85 204 comp.sys.ibm.pc.hardware 0.75 0.83 0.79 195 comp.sys.mac.hardware 0.94 0.88 0.91 195 comp.windows.x 0.94 0.91 0.92 204 misc.forsale 0.84 0.79 0.82 164 rec.autos 0.88 0.93 0.90 180 rec.motorcycles 0.92 0.98 0.95 173 rec.sport.baseball 0.96 0.94 0.95 217 rec.sport.hockey 0.87 0.98 0.92 178 sci.crypt 0.84 0.99 0.91 197 sci.electronics 0.93 0.87 0.90 199 sci.med 0.95 0.98 0.96 183 sci.space 0.91 0.98 0.94 207 soc.religion.christian 0.71 0.96 0.82 211 talk.politics.guns 0.81 0.97 0.88 208 talk.politics.mideast 0.95 0.96 0.96 200 talk.politics.misc 0.96 0.62 0.76 175 talk.religion.misc 1.00 0.30 0.46 124 accuracy 0.88 3770 macro avg 0.89 0.87 0.87 3770 weighted avg 0.89 0.88 0.87 3770 ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator import nltk nltk.download('stopwords') ###Output [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output Number of categories: 20 ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.htmlTfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.htmlMultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui expliquer le TFIDF:https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) classifier.named_steps ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) labelled_target texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] texts[0] X_train, X_test, y_train, y_test = train_test_split(texts, labelled_target, test_size=0.2, random_state=11) len(X_train) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? ###Code # Le TFIDF a calculé l'IDF de chaque mot du corpus feature_names = classifier.named_steps['vectorizer'].get_feature_names() idf_ = classifier.named_steps['vectorizer'].idf_ len(feature_names) # C'était donc une liste de 5143 dimensions. Si on doit les représenter dans un espace vertocirel, on serait dans un espace à 5143 dimensions. for i in range(1000, 1042): print(feature_names[i], ':', round(idf_[i], 2)) # Et ensuite il transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names()) # C'est le résultat du corpus. Le code ne sert à rien dans le cadre de cet exercice, juste de voir ce que cela donne. # Et le naïf bayésien apprends la corrélation entre chaque mot et chaque catégorie pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T ## coef_ c'est la probabilité d'appartenance à une classe étant donné un mot. pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T.sort_values(by='alt.atheism', ascending=False).head(20) ## Devant un nouveau texte, il va regarder la probabilité de chacune des classes en fonction du vecteur que l'on aura pour chaque mot. ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code len(X_test) y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) # Rapport qui sont les mesures typiques d'évaluation d'un modèle ###Output _____no_output_____ ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) # On retrouve, ici, les catégories réelles et les catégories prédites. # On peut voir où le modèle se trompe et on peut facilement l'expliquer. On comprend pourquoi le modèle confond christianisme et athéisme. # C'est donc une manière d'analyser la qualité d'un modèle, d'évaluer sa performance en observant sa matrice de confusion (y a-t-il un pattern de confusion qui apparaît?) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np import nltk nltk.download('stopwords') from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output [nltk_data] Downloading package stopwords to /root/nltk_data... [nltk_data] Package stopwords is already up-to-date! ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire (nombre total de mots différents) len(feature_names) # Score IDF de chaque terme du vocabulaire (score haut, mot raire) for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output accomplished 6.69 accord 6.69 acknowledge 6.69 alabama 6.69 approval 6.69 atmospheric 6.69 bach 6.69 bills 6.69 boring 6.69 brunswick 6.69 click 6.69 cloud 6.69 communicate 6.69 compatibility 6.69 confuse 6.69 connectors 6.69 copying 6.69 counted 6.69 damned 6.69 definite 6.69 ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='alt.atheism', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator ###Output _____no_output_____ ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output Training set size: 15076 Test set size: 3770 ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output _____no_output_____ ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Chargement du dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) ###Output Number of categories: 20 ###Markdown Exploration du dataset ###Code labels = news.target_names pprint(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output ===== rec.sport.hockey ===== From: Mamatha Devineni Ratnam <[email protected]> Subject: Pens fans reactions Organization: Post Office, Carnegie Mellon, Pittsburgh, PA Lines: 12 NNTP-Posting-Host: po4.andrew.cmu.edu I am sure some bashers of Pens fans are pretty confused about the lack of any kind of posts about the recent Pens massacre of the Devils. Actually, I am bit puzzled too and a bit relieved. However, I am going to put an end to non-PIttsburghers' relief with a bit of praise for the Pens. Man, they are killing those Devils worse than I thought. Jagr just showed you why he is much better than his regular season stats. He is also a lot fo fun to watch in the playoffs. Bowman should let JAgr have a lot of fun in the next couple of games since the Pens are going to beat the pulp out of Jersey anyway. I was very disappointed not to see the Islanders lose the final regular season game. PENS RULE!!! ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Matthew B Lawson) Subject: Which high-performance VLB video card? Summary: Seek recommendations for VLB video card Nntp-Posting-Host: midway.ecn.uoknor.edu Organization: Engineering Computer Network, University of Oklahoma, Norman, OK, USA Keywords: orchid, stealth, vlb Lines: 21 My brother is in the market for a high-performance video card that supports VESA local bus with 1-2MB RAM. Does anyone have suggestions/ideas on: - Diamond Stealth Pro Local Bus - Orchid Farenheit 1280 - ATI Graphics Ultra Pro - Any other high-performance VLB card Please post or email. Thank you! - Matt -- | Matthew B. Lawson <------------> ([email protected]) | --+-- "Now I, Nebuchadnezzar, praise and exalt and glorify the King --+-- | of heaven, because everything he does is right and all his ways | | are just." - Nebuchadnezzar, king of Babylon, 562 B.C. | ===== talk.politics.mideast ===== From: [email protected] (Hilmi Eren) Subject: Re: ARMENIA SAYS IT COULD SHOOT DOWN TURKISH PLANES (Henrik) Lines: 95 Nntp-Posting-Host: viktoria.dsv.su.se Reply-To: [email protected] (Hilmi Eren) Organization: Dept. of Computer and Systems Sciences, Stockholm University |>The student of "regional killings" alias Davidian (not the Davidian religios sect) writes: |>Greater Armenia would stretch from Karabakh, to the Black Sea, to the |>Mediterranean, so if you use the term "Greater Armenia" use it with care. Finally you said what you dream about. Mediterranean???? That was new.... The area will be "greater" after some years, like your "holocaust" numbers...... |>It has always been up to the Azeris to end their announced winning of Karabakh |>by removing the Armenians! When the president of Azerbaijan, Elchibey, came to |>power last year, he announced he would be be "swimming in Lake Sevan [in |>Armeniaxn] by July". ***** Is't July in USA now????? Here in Sweden it's April and still cold. Or have you changed your calendar??? |>Well, he was wrong! If Elchibey is going to shell the |>Armenians of Karabakh from Aghdam, his people will pay the price! If Elchibey **************** |>is going to shell Karabakh from Fizuli his people will pay the price! If ****************** |>Elchibey thinks he can get away with bombing Armenia from the hills of |>Kelbajar, his people will pay the price. *************** NOTHING OF THE MENTIONED IS TRUE, BUT LET SAY IT's TRUE. SHALL THE AZERI WOMEN AND CHILDREN GOING TO PAY THE PRICE WITH ************** BEING RAPED, KILLED AND TORTURED BY THE ARMENIANS?????????? HAVE YOU HEARDED SOMETHING CALLED: "GENEVA CONVENTION"??????? YOU FACIST!!!!! Ohhh i forgot, this is how Armenians fight, nobody has forgot you killings, rapings and torture against the Kurds and Turks once upon a time! |>And anyway, this "60 |>Kurd refugee" story, as have other stories, are simple fabrications sourced in |>Baku, modified in Ankara. Other examples of this are Armenia has no border |>with Iran, and the ridiculous story of the "intercepting" of Armenian military |>conversations as appeared in the New York Times supposedly translated by |>somebody unknown, from Armenian into Azeri Turkish, submitted by an unnamed |>"special correspondent" to the NY Times from Baku. Real accurate! Ohhhh so swedish RedCross workers do lie they too? What ever you say "regional killer", if you don't like the person then shoot him that's your policy.....l |>[HE] Search Turkish planes? You don't know what you are talking about.<------- |>[HE] since it's content is announced to be weapons? i i |>Well, big mouth Ozal said military weapons are being provided to Azerbaijan i |>from Turkey, yet Demirel and others say no. No wonder you are so confused! i i i Confused????? i You facist when you delete text don't change it, i wrote: i i Search Turkish planes? You don't know what you are talking about. i Turkey's government has announced that it's giving weapons <-----------i to Azerbadjan since Armenia started to attack Azerbadjan it self, not the Karabag province. So why search a plane for weapons since it's content is announced to be weapons? If there is one that's confused then that's you! We have the right (and we do) to give weapons to the Azeris, since Armenians started the fight in Azerbadjan! |>You are correct, all Turkish planes should be simply shot down! Nice, slow |>moving air transports! Shoot down with what? Armenian bread and butter? Or the arms and personel of the Russian army? Hilmi Eren Stockholm University ===== comp.sys.ibm.pc.hardware ===== From: [email protected] (Guy Dawson) Subject: Re: IDE vs SCSI, DMA and detach Originator: [email protected] Organization: IBM Austin Lines: 60 In article <[email protected]>, [email protected] (Wayne Smith) writes: > In article <[email protected]> [email protected] (Richard Krehbiel) writes: > >> Can anyone explain in fairly simple terms why, if I get OS/2, I might > >> need an SCSI controler rather than an IDE. Will performance suffer that > >> much? For a 200MB or so drive? If I don't have a tape drive or CD-ROM? > >> Any help would be appreciated. > > >So, when you've got multi-tasking, you want to increase performance by > >increasing the amount of overlapping you do. > > > >One way is with DMA or bus mastering. Either of these make it > >possible for I/O devices to move their data into and out of memory > >without interrupting the CPU. The alternative is for the CPU to move > >the data. There are several SCSI interface cards that allow DMA and > >bus mastering. > ^^^^^^^^^^^^ > How do you do bus-mastering on the ISA bus? > > >IDE, however, is defined by the standard AT interface > >created for the IBM PC AT, which requires the CPU to move all the data > >bytes, with no DMA. > > If we're talking ISA (AT) bus here, then you can only have 1 DMA channel > active at any one time, presumably transferring data from a single device. > So even though you can have at least 7 devices on a SCSI bus, explain how > all 7 of those devices can to DMA transfers through a single SCSI card > to the ISA-AT bus at the same time. Think! It's the SCSI card doing the DMA transfers NOT the disks... The SCSI card can do DMA transfers containing data from any of the SCSI devices it is attached when it wants to. An important feature of SCSI is the ability to detach a device. This frees the SCSI bus for other devices. This is typically used in a multi-tasking OS to start transfers on several devices. While each device is seeking the data the bus is free for other commands and data transfers. When the devices are ready to transfer the data they can aquire the bus and send the data. On an IDE bus when you start a transfer the bus is busy until the disk has seeked the data and transfered it. This is typically a 10-20ms second lock out for other processes wanting the bus irrespective of transfer time. > > Also, I'm still trying to track down a copy of IBM's AT reference book, > but from their PC technical manual (page 2-93): > > "The (FDD) adapter is buffered on the I.O bus and uses the System Board > direct memory access (DMA) for record data transfers." > I expect to see something similar for the PC-AT HDD adapter. > So the lowly low-density original PC FDD card used DMA and the PC-AT > HDD controller doesn't!?!? That makes real sense. -- -- ----------------------------------------------------------------------------- Guy Dawson - Hoskyns Group Plc. [email protected] Tel Hoskyns UK - 71 251 2128 [email protected] Tel IBM Austin USA - 512 838 3377 ===== comp.sys.mac.hardware ===== From: Alexander Samuel McDiarmid <[email protected]> Subject: driver ?? Organization: Sophomore, Mechanical Engineering, Carnegie Mellon, Pittsburgh, PA Lines: 15 NNTP-Posting-Host: po4.andrew.cmu.edu 1) I have an old Jasmine drive which I cannot use with my new system. My understanding is that I have to upsate the driver with a more modern one in order to gain compatability with system 7.0.1. does anyone know of an inexpensive program to do this? ( I have seen formatters for <$20 buit have no idea if they will work) 2) I have another ancient device, this one a tape drive for which the back utility freezes the system if I try to use it. THe drive is a jasmine direct tape (bought used for $150 w/ 6 tapes, techmar mechanism). Essentially I have the same question as above, anyone know of an inexpensive beckup utility I can use with system 7.0.1 all help and advice appriciated. ===== sci.electronics ===== From: [email protected] (Stephen Tell) Subject: Re: subliminal message flashing on TV Organization: The University of North Carolina at Chapel Hill Lines: 25 NNTP-Posting-Host: rukbat.cs.unc.edu In article <[email protected]> [email protected] (Bob Myers) writes: >> Hi. I was doing research on subliminal suggestion for a psychology >> paper, and I read that one researcher flashed hidden messages on the >> TV screen at 1/200ths of a second. Is that possible? > Might >even be a vector ("strokewriter") display, in which case the lower limit >on image time is anyone's guess (and is probably phosphor-persistence limited). Back in high school I worked as a lab assistant for a bunch of experimental psychologists at Bell Labs. When they were doing visual perception and memory experiments, they used vector-type displays, with 1-millisecond refresh rates common. So your case of 1/200th sec is quite practical, and the experimenters were probably sure that it was 5 milliseconds, not 4 or 6 either. >Bob Myers KC0EW >[email protected] Steve -- Steve Tell [email protected] H: 919 968 1792 | #5L Estes Park apts UNC Chapel Hill Computer Science W: 919 962 1845 | Carrboro NC 27510 Engineering is a _lot_ like art: Some circuits are like lyric poems, some are like army manuals, and some are like The Hitchhiker's Guide to the Galaxy.. ===== comp.sys.mac.hardware ===== From: [email protected] (Louis Paul Adams) Subject: Re: Number for Applied Engineering Organization: Texas A&M University, College Station Lines: 9 NNTP-Posting-Host: tamuts.tamu.edu >Anyone have a phone number for Applied Engineering so I can give them >a call? AE is in Dallas...try 214/241-6060 or 214/241-0055. Tech support may be on their own line, but one of these should get you started. Good luck! ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Atlanta Hockey Hell!! Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 24 In article <[email protected]> Mamatha Devineni Ratnam <[email protected]> writes: > >Well, it's not that bad. But I am still pretty pissed of at the >local ABC coverage. They cut off the first half hour of coverage by playing [stuff deleted] Ok, here's the solution to your problem. Move to Canada. Yesterday I was able to watch FOUR games...the NJ-PITT at 1:00 on ABC, LA-CAL at 3:00 (CBC), BUFF-BOS at 7:00 (TSN and FOX), and MON-QUE at 7:30 (CBC). I think that if each series goes its max I could be watching hockey playoffs for 40-some odd consecutive nights (I haven't counted so that's a pure guess). I have two tv's in my house, and I set them up side-by-side to watch MON-QUE and keep an eye on BOS-BUFF at the same time. I did the same for the two afternoon games. Btw, those ABC commentaters were great! I was quite impressed; they seemed to know that their audience wasn't likely to be well-schooled in hockey lore and they did an excellent job. They were quite impartial also, IMO. [email protected] (not suffering from a shortage of hockey here) ===== rec.sport.hockey ===== From: [email protected] (Deepak Chhabra) Subject: Re: Goalie masks Nntp-Posting-Host: stpl.ists.ca Organization: Solar Terresterial Physics Laboratory, ISTS Lines: 15 In article <[email protected]> [email protected] (Valerie S. Hammerl) writes: >>[...] and I'll give Fuhr's new one an honourable mention, although I haven't >>seen it closely yet (it looked good from a distance!). >This is the new Buffalo one, the second since he's been with the >Sabres? I recall a price tag of over $700 just for the paint job on >that mask, and a total price of almost $1500. Ouch. Yeah, it's the second one. And I believe that price too. I've been trying to get a good look at it on the Bruin-Sabre telecasts, and wow! does it ever look good. Whoever did that paint job knew what they were doing. And given Fuhr's play since he got it, I bet the Bruins are wishing he didn't have it:) -- ===== talk.religion.misc ===== From: [email protected] (Ken Arromdee) Subject: Re: Christians above the Law? was Clarification of pe Organization: Johns Hopkins University CS Dept. Lines: 13 In article <[email protected]> [email protected] (Darius_Lecointe) writes: >>Jesus was a JEW, not a Christian. If a Christian means someone who believes in the divinity of Jesus, it is safe to say that Jesus was a Christian. -- "On the first day after Christmas my truelove served to me... Leftover Turkey! On the second day after Christmas my truelove served to me... Turkey Casserole that she made from Leftover Turkey. [days 3-4 deleted] ... Flaming Turkey Wings! ... -- Pizza Hut commercial (and M*tlu/A*gic bait) Ken Arromdee ([email protected]) ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui expliquer le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 ###Code classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) ###Output _____no_output_____ ###Markdown Séparation du dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code labelled_target = np.array([labels[t] for t in news.target]) texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] X_train, X_test, y_train, y_test = train_test_split(texts, labelled_target, test_size=0.2, random_state=11) ###Output _____no_output_____ ###Markdown Entraînement du modèle de machine learning sur les données d'entrainement ###Code classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? ###Code # Le TFIDF a calculé l'IDF de chaque mot du corpus feature_names = classifier.named_steps['vectorizer'].get_feature_names() idf_ = classifier.named_steps['vectorizer'].idf_ len(feature_names) for i in range(1000, 1042): print(feature_names[i], ':', round(idf_[i], 2)) # Et ensuite il transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names()) # Et le naïf bayésien apprends la corrélation entre chaque mot et chaque catégorie pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T pd.DataFrame(classifier.named_steps['classifier'].coef_, index=labels, columns=feature_names).T.sort_values(by='alt.atheism', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédiction des targets des données de test ###Code y_pred = classifier.predict(X_test) # Aperçu des targets prédites y_pred # Aperçu des targets réelles y_test ###Output _____no_output_____ ###Markdown Construction du rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output precision recall f1-score support alt.atheism 0.90 0.80 0.84 172 comp.graphics 0.72 0.77 0.75 184 comp.os.ms-windows.misc 0.81 0.79 0.80 204 comp.sys.ibm.pc.hardware 0.71 0.76 0.74 195 comp.sys.mac.hardware 0.87 0.82 0.84 195 comp.windows.x 0.84 0.87 0.86 204 misc.forsale 0.77 0.79 0.78 164 rec.autos 0.84 0.94 0.89 180 rec.motorcycles 0.88 0.94 0.91 173 rec.sport.baseball 0.94 0.90 0.92 217 rec.sport.hockey 0.86 0.98 0.91 178 sci.crypt 0.93 0.95 0.94 197 sci.electronics 0.83 0.78 0.81 199 sci.med 0.92 0.92 0.92 183 sci.space 0.91 0.93 0.92 207 soc.religion.christian 0.77 0.94 0.85 211 talk.politics.guns 0.81 0.91 0.86 208 talk.politics.mideast 0.93 0.93 0.93 200 talk.politics.misc 0.89 0.66 0.76 175 talk.religion.misc 0.88 0.34 0.49 124 accuracy 0.85 3770 macro avg 0.85 0.84 0.84 3770 weighted avg 0.85 0.85 0.84 3770 ###Markdown Création d'une matrice de confusion ###Code from scikitplot.metrics import plot_confusion_matrix plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____ ###Markdown Classification de documents Imports ###Code import matplotlib.pyplot as plt from nltk.corpus import stopwords import seaborn as sn from pprint import pprint import numpy as np from sklearn.datasets import fetch_20newsgroups from sklearn.model_selection import train_test_split from sklearn.naive_bayes import MultinomialNB from sklearn.pipeline import Pipeline from sklearn.feature_extraction.text import TfidfVectorizer from sklearn.metrics import confusion_matrix, classification_report from scikitplot.metrics import plot_confusion_matrix import pandas as pd import re import operator import nltk nltk.download('stopwords') ###Output _____no_output_____ ###Markdown Charger le dataset 20 newsgroupsPour plus d'information : https://scikit-learn.org/0.19/datasets/twenty_newsgroups.html ###Code news = fetch_20newsgroups(subset='all') print("Number of articles: " + str(len(news.data))) print("Number of categories: " + str(len(news.target_names))) labels = news.target_names print(labels) # Exemples d'articles et de labels for i, article in enumerate(news.data[:10]): print(f'===== {labels[news.target[i]]} =====') print(article.replace('\n', ' '), '\n') ###Output _____no_output_____ ###Markdown Création d'un modèle de machine learning avec Scikit-LearnPour plus d'information :- Pipeline : https://scikit-learn.org/stable/modules/generated/sklearn.pipeline.Pipeline.html- TfidfVectorizer : https://scikit-learn.org/stable/modules/generated/sklearn.feature_extraction.text.TfidfVectorizer.html- MultinomialNB : https://scikit-learn.org/stable/modules/generated/sklearn.naive_bayes.MultinomialNB.htmlUn article de blog qui explique le TFIDF:- https://medium.com/analytics-vidhya/tf-idf-term-frequency-technique-easiest-explanation-for-text-classification-in-nlp-with-code-8ca3912e58c3Un article de blog qui explique les naive bayes:- https://towardsdatascience.com/naive-bayes-classifier-explained-54593abe6e18 Séparer le dataset en features et target (X, y) et en train et testPlus d'information : https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html ###Code # Nettoyage des textes texts = [re.sub('[^a-z]+', ' ', t.lower()).strip() for t in news.data] # Mapping des targets targets = np.array([labels[t] for t in news.target]) X_train, X_test, y_train, y_test = train_test_split(texts, targets, test_size=0.2, random_state=11) print("Training set size:", len(X_train)) print("Test set size:", len(X_test)) ###Output _____no_output_____ ###Markdown Entrainer un modèle de machine learning sur les données d'entrainement ###Code # Définition du type de modèle classifier = Pipeline([ ('vectorizer', TfidfVectorizer(stop_words=stopwords.words('english'), min_df=50, max_df=0.5)), ('classifier', MultinomialNB()), ]) # Entrainement du modèle classifier.fit(X_train, y_train) ###Output _____no_output_____ ###Markdown Qu'est ce qu'il s'est passé ? Le TFIDF calcule le score IDF de chaque mot du corpus ###Code feature_names = classifier.named_steps['vectorizer'].get_feature_names_out() idf_scores = classifier.named_steps['vectorizer'].idf_ # Taille du vocabulaire len(feature_names) # Score IDF de chaque terme du vocabulaire for i in range(0, 10): print(feature_names[i], ':', round(idf_scores[i], 2)) # Les 10 mots avec le score IDF le plus haut for word, score in sorted(zip(feature_names, idf_scores), key=operator.itemgetter(1), reverse=True)[:20]: print(word, round(score, 2)) ###Output _____no_output_____ ###Markdown Le TF-IDF transforme chaque document en vecteur de la taille du vocabulaire et donc le score est le TFIDF (fréquence du terme dans le document * idf) ###Code tmp = classifier.named_steps['vectorizer'].transform(X_train[:10]) pd.DataFrame(tmp.toarray(), columns=classifier.named_steps['vectorizer'].get_feature_names_out()) ###Output _____no_output_____ ###Markdown Le modèle naïf bayésien apprend la corrélation entre chaque mot et chaque catégorie ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T ###Output _____no_output_____ ###Markdown On peut ainsi découvrir les termes les plus contributifs pour un label donné ###Code pd.DataFrame(classifier.named_steps['classifier'].feature_log_prob_, index=labels, columns=feature_names).T.sort_values(by='comp.graphics', ascending=False).head(20) ###Output _____no_output_____ ###Markdown Prédire les targets des données de test à l'aide du modèle entrainé ###Code y_pred = classifier.predict(X_test) ###Output _____no_output_____ ###Markdown Aperçu des targets prédites ###Code y_pred[:20] ###Output _____no_output_____ ###Markdown Aperçu des targets réelles ###Code y_test[:20] ###Output _____no_output_____ ###Markdown Evaluer le modèle Générer un rapport de classificationPour plus d'information sur la précision, le recall et le f1-score : https://fr.wikipedia.org/wiki/Pr%C3%A9cision_et_rappel ###Code print(classification_report(y_test, y_pred)) ###Output _____no_output_____ ###Markdown Générer une matrice de confusion ###Code plot_confusion_matrix(y_test, y_pred, figsize=(10, 10), labels=labels, x_tick_rotation=90) ###Output _____no_output_____
misc/crop_and_save_all_data.ipynb
###Markdown Purpose:Run this notebook to crop data and save to:~/MICCAI_BraTS_2019_Data_Training/MICCAI_BraTS_2019_Data_Training/cropped_hgg ###Code import utils.hgg_utils as hu import nibabel as nib from tqdm.notebook import tqdm """ LAYERS_TO_CROP refers to the number of outer layers of pixels to be cropped from the image. For example if layers_to_crop is set to 2: Input (6x6): Output (2x2, - denotes cropped pixel): 123456 ------ 123456 ------ 123456 --34-- 123456 --34-- 123456 ------ 123456 ------ """ LAYERS_TO_CROP = 16 ###Output _____no_output_____ ###Markdown Function to save the cropped data:*** Code adapted from Lucas' code ###Code def save_cropped_data(tensor, affines_list, mod_paths, destination): patient_paths = [x.parent.stem for x in mod_paths] mods = [x.name for x in mod_paths] for modality in range(tensor.shape[-1]): new_file_name = "cropped_" + str(mods[modality]) new_patient_folder = destination.joinpath(patient_paths[modality]) if not new_patient_folder.exists(): new_patient_folder.mkdir() new_dest = new_patient_folder.joinpath(new_file_name) a = nib.Nifti1Image(tensor[:, :, :, modality], affine=affines_list[modality]) nib.save(a, new_dest) ###Output _____no_output_____ ###Markdown Function to crop the patient tensor ###Code def crop_patient_tensor(tensor): return tensor[LAYERS_TO_CROP : -LAYERS_TO_CROP, LAYERS_TO_CROP : -LAYERS_TO_CROP, :, :] ###Output _____no_output_____ ###Markdown Crop and save the patient data ###Code # Define name of folder to save data to cropped_hgg_directory = hu.get_hgg_paths().parent.joinpath('cropped_hgg') # Get paths to all patient folders all_patient_paths = hu.get_each_hgg_folder() # Print path to directory where data will be saved print("Cropped slices will be saved in directory: ") print(cropped_hgg_directory) # Check to see if directory folder already exists # before creating one. if not cropped_hgg_directory.exists(): cropped_hgg_directory.mkdir() # Iterate through each patient # Load patient tensor # Crop tensor # Save tensor for patient in tqdm(all_patient_paths): X, affines, paths = hu.get_a_multimodal_tensor(patient) cropped_tensor = crop_patient_tensor(X) save_cropped_data(cropped_tensor, affines, paths, cropped_hgg_directory) ###Output _____no_output_____
titanic_data_operation/05_accuracy_logistic_regression.ipynb
###Markdown Titanic survival - logistic regression model ###Code #Load modules import numpy as np import pandas as pd # Import machine learning methods from sklearn.linear_model import LogisticRegression from sklearn.model_selection import train_test_split from sklearn.preprocessing import StandardScaler data = pd.read_csv('C:/t_data/processed_data.csv') # Make all data 'float' type data = data.astype(float) #Divide into X (features) and y (labels) X = data.drop('Survived',axis=1) # X = all 'data' except the 'survived' column y = data['Survived'] # y = 'survived' column from 'data' #Divide into training and tets sets X_train, X_test, y_train, y_test = train_test_split(X, y, test_size = 0.25) ###Output _____no_output_____ ###Markdown Standardise data ###Code def standardise_data(X_train, X_test): # Initialise a new scaling object for normalising input data sc = StandardScaler() # Set up the scaler just on the training set sc.fit(X_train) # Apply the scaler to the training and test sets train_std=sc.transform(X_train) test_std=sc.transform(X_test) return train_std, test_std X_train_std, X_test_std = standardise_data(X_train, X_test) #Fit logistic regression model model = LogisticRegression(solver='lbfgs') model.fit(X_train_std,y_train) # Predict training and test set labels y_pred_train = model.predict(X_train_std) y_pred_test = model.predict(X_test_std) #Calculate accuracy def calculate_accuracy(observed, predicted): """ Calculates a range of accuracy scores from observed and predicted classes. Takes two list or NumPy arrays (observed class values, and predicted class values), and returns a dictionary of results. 1) observed positive rate: proportion of observed cases that are +ve 2) Predicted positive rate: proportion of predicted cases that are +ve 3) observed negative rate: proportion of observed cases that are -ve 4) Predicted negative rate: proportion of predicted cases that are -ve 5) accuracy: proportion of predicted results that are correct 6) precision: proportion of predicted +ve that are correct 7) recall: proportion of true +ve correctly identified 8) f1: harmonic mean of precision and recall 9) sensitivity: Same as recall 10) specificity: Proportion of true -ve identified: 11) positive likelihood: increased probability of true +ve if test +ve 12) negative likelihood: reduced probability of true +ve if test -ve 13) false positive rate: proportion of false +ves in true -ve patients 14) false negative rate: proportion of false -ves in true +ve patients 15) true positive rate: Same as recall 16) true negative rate 17) positive predictive value: chance of true +ve if test +ve 18) negative predictive value: chance of true -ve if test -ve """ # Converts list to NumPy arrays if type(observed) == list: observed = np.array(observed) if type(predicted) == list: predicted = np.array(predicted) # Calculate accuracy scores observed_positives = observed == 1 observed_negatives = observed == 0 predicted_positives = predicted == 1 predicted_negatives = predicted == 0 true_positives = (predicted_positives == 1) & (observed_positives == 1) false_positives = (predicted_positives == 1) & (observed_positives == 0) true_negatives = (predicted_negatives == 1) & (observed_negatives == 1) accuracy = np.mean(predicted == observed) precision = (np.sum(true_positives) / (np.sum(true_positives) + np.sum(false_positives))) recall = np.sum(true_positives) / np.sum(observed_positives) sensitivity = recall f1 = 2 * ((precision * recall) / (precision + recall)) specificity = np.sum(true_negatives) / np.sum(observed_negatives) positive_likelihood = sensitivity / (1 - specificity) negative_likelihood = (1 - sensitivity) / specificity false_positive_rate = 1 - specificity false_negative_rate = 1 - sensitivity true_positive_rate = sensitivity true_negative_rate = specificity positive_predictive_value = (np.sum(true_positives) / np.sum(observed_positives)) negative_predictive_value = (np.sum(true_negatives) / np.sum(observed_positives)) # Create dictionary for results, and add results results = dict() results['observed_positive_rate'] = np.mean(observed_positives) results['observed_negative_rate'] = np.mean(observed_negatives) results['predicted_positive_rate'] = np.mean(predicted_positives) results['predicted_negative_rate'] = np.mean(predicted_negatives) results['accuracy'] = accuracy results['precision'] = precision results['recall'] = recall results['f1'] = f1 results['sensitivity'] = sensitivity results['specificity'] = specificity results['positive_likelihood'] = positive_likelihood results['negative_likelihood'] = negative_likelihood results['false_positive_rate'] = false_positive_rate results['false_negative_rate'] = false_negative_rate results['true_positive_rate'] = true_positive_rate results['true_negative_rate'] = true_negative_rate results['positive_predictive_value'] = positive_predictive_value results['negative_predictive_value'] = negative_predictive_value return results # Call calculate_accuracy function accuracy = calculate_accuracy(y_test, y_pred_test) # Print results up to three decimal places for key, value in accuracy.items(): print (key, "{0:0.3}".format(value)) ###Output observed_positive_rate 0.404 observed_negative_rate 0.596 predicted_positive_rate 0.386 predicted_negative_rate 0.614 accuracy 0.776 precision 0.733 recall 0.7 f1 0.716 sensitivity 0.7 specificity 0.827 positive_likelihood 4.05 negative_likelihood 0.363 false_positive_rate 0.173 false_negative_rate 0.3 true_positive_rate 0.7 true_negative_rate 0.827 positive_predictive_value 0.7 negative_predictive_value 1.22
06_Building Multilayer Perceptron Models with Keras/Multilayer_Perceptron_Model_with_Keras.ipynb
###Markdown Multilayer Perceptron Models with Keras Task 1: Project Overview and Import Modules ###Code %matplotlib inline import matplotlib.pyplot as plt import numpy as np np.random.seed(0) import tensorflow as tf from tensorflow.keras.datasets import reuters from tensorflow.keras.models import Sequential from tensorflow.keras.layers import Dense, Dropout, Activation from tensorflow.keras.preprocessing.text import Tokenizer print('Tensorflow version:', tf.__version__) ###Output Tensorflow version: 2.2.0 ###Markdown Task 2: Load the Reuters Dataset ###Code (X_train, y_train), (X_test, y_test) = reuters.load_data(num_words=10000, test_split=0.2) print(len(X_train), 'training examples') print(len(X_test), 'test examples') num_classes = np.max(y_train) + 1 print(num_classes, 'classes') ###Output 46 classes ###Markdown Task 3: Vectorize Sequence Data and One-hot Encode Class Labels ###Code tokenizer = Tokenizer(num_words=10000) X_train = tokenizer.sequences_to_matrix(X_train, mode='binary') X_test = tokenizer.sequences_to_matrix(X_test, mode='binary') X_train.shape, X_test.shape y_train = tf.keras.utils.to_categorical(y_train, num_classes) y_test = tf.keras.utils.to_categorical(y_test, num_classes) y_train.shape, y_test.shape ###Output _____no_output_____ ###Markdown Task 4: Build Multilayer Perceptron Model ###Code model = Sequential([ Dense(512, input_shape=(10000,)), Activation('relu'), Dropout(0.5), Dense(num_classes), Activation('softmax') ]) model.summary() ###Output Model: "sequential" _________________________________________________________________ Layer (type) Output Shape Param # ================================================================= dense (Dense) (None, 512) 5120512 _________________________________________________________________ activation (Activation) (None, 512) 0 _________________________________________________________________ dropout (Dropout) (None, 512) 0 _________________________________________________________________ dense_1 (Dense) (None, 46) 23598 _________________________________________________________________ activation_1 (Activation) (None, 46) 0 ================================================================= Total params: 5,144,110 Trainable params: 5,144,110 Non-trainable params: 0 _________________________________________________________________ ###Markdown Task 5: Train Model ###Code from tensorflow.keras.callbacks import EarlyStopping es = EarlyStopping(monitor='val_loss', patience=3, verbose=1, mode='min') model.compile(optimizer='adam', loss='categorical_crossentropy', metrics=['accuracy']) history = model.fit(X_train, y_train, epochs=100, batch_size=32, validation_split=0.1, callbacks=[es]) ###Output Epoch 1/100 253/253 [==============================] - 8s 32ms/step - loss: 1.2987 - accuracy: 0.7192 - val_loss: 0.9635 - val_accuracy: 0.7842 Epoch 2/100 253/253 [==============================] - 8s 31ms/step - loss: 0.5016 - accuracy: 0.8852 - val_loss: 0.8634 - val_accuracy: 0.8098 Epoch 3/100 253/253 [==============================] - 8s 31ms/step - loss: 0.2902 - accuracy: 0.9342 - val_loss: 0.9078 - val_accuracy: 0.8098 Epoch 4/100 253/253 [==============================] - 8s 31ms/step - loss: 0.2176 - accuracy: 0.9487 - val_loss: 0.9675 - val_accuracy: 0.7920 Epoch 5/100 253/253 [==============================] - 8s 31ms/step - loss: 0.1963 - accuracy: 0.9540 - val_loss: 0.9559 - val_accuracy: 0.8131 Epoch 00005: early stopping ###Markdown Task 6: Evaluate Model on Test Data ###Code model.evaluate(X_test, y_test, batch_size=32, verbose=1) # returns loss and accuracy plt.plot(history.history['loss'], label='Training Loss') plt.plot(history.history['val_loss'], label='Validation Loss') plt.title('Training and Validation Loss') plt.xlabel('Epochs') plt.ylabel('Loss') plt.legend() plt.show() plt.plot(history.history['accuracy'], label='Training Accuracy') plt.plot(history.history['val_accuracy'], label='Validation Accuracy') plt.title('Training and Validation Accuracy') plt.xlabel('Epochs') plt.ylabel('Accuracy') plt.legend() plt.show() ###Output _____no_output_____
4.Stacking.ipynb
###Markdown ProbSpace: YouTube動画視聴回数予測 ###Code out_dir = "out_tmp" import pandas as pd import numpy as np import scipy import itertools import os, datetime, gc, glob, re, random import time, datetime import pickle from tqdm.notebook import tqdm from imblearn.over_sampling import SMOTE import optuna import bhtsne, umap from janome.tokenizer import Tokenizer from janome.analyzer import Analyzer from janome.tokenfilter import * from janome.charfilter import UnicodeNormalizeCharFilter, RegexReplaceCharFilter import unicodedata import lightgbm as lgb import xgboost as xgb from catboost import Pool, CatBoostRegressor, CatBoostClassifier from sklearn.base import BaseEstimator, TransformerMixin from sklearn.decomposition import PCA, TruncatedSVD from sklearn.linear_model import LinearRegression, BayesianRidge, ElasticNet, Lasso, LogisticRegression, Ridge, SGDRegressor from sklearn.ensemble import AdaBoostRegressor, BaggingRegressor from sklearn.ensemble import StackingRegressor, VotingRegressor from sklearn.ensemble import ExtraTreesRegressor, GradientBoostingRegressor, RandomForestRegressor from sklearn.svm import LinearSVR from ngboost import NGBRegressor from ngboost.ngboost import NGBoost from ngboost.learners import default_tree_learner from ngboost.scores import MLE, CRPS, LogScore from ngboost.distns import Normal, LogNormal from sklearn.linear_model import BayesianRidge, ElasticNet, Lasso, LogisticRegression, Ridge, SGDRegressor from sklearn.neighbors import KNeighborsRegressor from sklearn.ensemble import RandomForestRegressor, ExtraTreesRegressor from sklearn.tree import DecisionTreeRegressor from sklearn.cluster import KMeans, MiniBatchKMeans, DBSCAN from sklearn.model_selection import KFold, RepeatedKFold, StratifiedKFold, cross_validate, cross_val_predict, train_test_split from sklearn.metrics import mean_squared_error, roc_auc_score, log_loss from sklearn.preprocessing import LabelEncoder from sklearn.preprocessing import StandardScaler, MinMaxScaler, MaxAbsScaler, Normalizer, RobustScaler, QuantileTransformer, PowerTransformer from sklearn.feature_selection import SelectFromModel, RFE, SelectPercentile, SelectKBest import tensorflow as tf import tensorflow_addons as tfa from tensorflow.keras import layers from tensorflow.keras import optimizers from tensorflow.keras.models import Model, Sequential from tensorflow.keras import backend as K from tensorflow.keras import utils from tensorflow.keras.initializers import he_normal, he_uniform, GlorotNormal, GlorotUniform from tensorflow.keras.optimizers import Adadelta, Adagrad, Adam, Adamax, Ftrl, Nadam, RMSprop, SGD from tensorflow.keras.callbacks import LearningRateScheduler, EarlyStopping, TensorBoard, LambdaCallback, ReduceLROnPlateau from tensorflow.keras.metrics import MeanSquaredError, RootMeanSquaredError from tensorflow.keras import layers from tensorflow.keras.layers import Concatenate, Lambda from tensorflow.keras.layers import Activation, Average, Dense, Dropout, Flatten, BatchNormalization, LeakyReLU, Input from tensorflow.keras.layers import GaussianDropout, GaussianNoise from tensorflow.keras.layers import Conv2D, SeparableConv2D, MaxPooling2D, AveragePooling2D, GlobalAveragePooling2D import matplotlib.pyplot as plt import seaborn as sns import missingno as msno import warnings warnings.filterwarnings('ignore') pd.set_option('display.max_rows', 200) pd.set_option('display.max_columns', 100) start = datetime.datetime.now() # Function for variable description def description(df): summary = pd.DataFrame(df.dtypes, columns=['dtypes']) summary = summary.reset_index() summary["Name"] = summary['index'] summary = summary[["Name",'dtypes']] summary["Missing"] = df.isnull().sum().values summary["Uniques"] = df.nunique().values summary["Mean"] = np.nanmean(df, axis=0).astype(df.dtypes) summary["Std"] = np.nanstd(df, axis=0).astype(df.dtypes) summary["Minimum"] = np.nanmin(df, axis=0).astype(df.dtypes) summary["Maximum"] = np.nanmax(df, axis=0).astype(df.dtypes) summary["First Value"] = df.iloc[0].values summary["Second Value"] = df.iloc[1].values summary["Third Value"] = df.iloc[2].values summary["dimension"] = str(df.shape) return summary def get_hist(target): plt.hist(target, bins=100) print("max: {:>10,.6f}".format(target.max())) print("min: {:>10,.6f}".format(target.min())) print("mean: {:>10,.6f}".format(target.mean())) print("std: {:>10,.6f}".format(target.std())) return def get_hist4(target1, title1, target2, title2, target3, title3, target4, title4): fig = plt.figure(figsize=(18, 18)) ax1 = fig.add_subplot(5,1,1) ax2 = fig.add_subplot(5,1,2) ax3 = fig.add_subplot(5,1,3) ax4 = fig.add_subplot(5,1,4) ax5 = fig.add_subplot(5,1,5) ax1.set_title(title1) ax2.set_title(title2) ax3.set_title(title3) ax4.set_title(title4) ax5.set_title("OVERALL") ax1.hist(target1, bins=100) ax2.hist(target2, bins=100) ax3.hist(target3, bins=100) ax4.hist(target4, bins=100) ax5.hist(target1, bins=100, alpha=0.2, color='red') ax5.hist(target2, bins=100, alpha=0.2, color='green') ax5.hist(target3, bins=100, alpha=0.2, color='blue') #ax5.hist(target4, bins=100, alpha=0.2, color='grey') fig.show() return ###Output _____no_output_____ ###Markdown Load Data ###Code %%time # for train/test data train_data = pd.read_csv("./input/train_data.csv") test_data = pd.read_csv("./input/test_data.csv") y = np.log1p(train_data['y']).copy() y_bin = pd.cut(train_data['y'], [0, 10, 100,1000,10000,100000,1000000,10000000000], labels=[1,2,3,4,5,6,7]) y_bin = y_bin.astype(int) test_id = test_data.id train = train_data.drop(['id', 'y'], axis=1).copy() test = test_data.drop(['id'], axis=1).copy() ###Output _____no_output_____ ###Markdown 目的変数の分布 ###Code get_hist(y) ###Output _____no_output_____ ###Markdown seedの固定化 ###Code def seed_everything(seed=1234): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) tf.random.set_seed(seed) DIFF_THRESHOLD = 5 ################################################################################ # RESULTS ################################################################################ def output_results(target, results, test_id, MODEL): RMSLE = mean_squared_error(target.values, results['train'], squared=False) print(f"Overall RMSLE={RMSLE}") # Make submission print("Saving submission file") submission = pd.DataFrame({'id': test_id, 'y': np.expm1(results['test'])}) submission.to_csv(f"./{out_dir}/submission_{MODEL}_CV{RMSLE:.6f}.csv", index=False) return submission def check_results(y, results): y_diff = np.abs(np.expm1(y) - np.expm1(results["train"])) y_log1p_diff = np.abs(y - results["train"]) display(y_diff[y_log1p_diff>DIFF_THRESHOLD].index.values) display(train_data[y_log1p_diff>DIFF_THRESHOLD]) display(pd.concat([pd.DataFrame(y[y_log1p_diff>DIFF_THRESHOLD], columns=['y']), \ pd.DataFrame(results["train"][y_log1p_diff>DIFF_THRESHOLD], \ index=y_diff[y_log1p_diff>DIFF_THRESHOLD].index.values, columns=["pred_train"])], axis=1)) get_hist4(results["train"], "pred_train", \ y, "y", \ results["test"], "pred_test", \ y_log1p_diff, "diff") display(pd.concat([pd.DataFrame(results["train"], columns=["pred_train"]), \ pd.DataFrame(y, columns=["y"]), \ y_log1p_diff.rename("y_log1p_diff")], \ axis=1).describe()) display(pd.DataFrame(results["test"], columns=["pred_test"]).describe()) RMSLE = mean_squared_error(y, results["train"], squared=False) display(f"Overall RMSLE={RMSLE:.6f}") DIFF_THRESHOLD = 5 ################################################################################ # METRICS ################################################################################ def rmsle(y, pred_y): return mean_squared_error(y, pred_y, squared=False) ################################################################################ # CROSS-VALIDATION ################################################################################ def print_cv_scores(label, cv_scores): print("*"*40) print(f"type(cv_scores): {type(cv_scores)}") print(f"{label} cv scores : {cv_scores}") print(f"{label} cv mean score : {np.mean(cv_scores)}") print(f"{label} cv std score : {np.std(cv_scores)}") def run_cv_model(train, test, target, target_skf, encoding, model_fn, params={}, eval_fn=None, label='model', cv=5, repeats=5, seed=43): if repeats==1: if target_skf is None: kf = KFold(n_splits=cv, shuffle=True, random_state=seed) target_y = target else: kf = StratifiedKFold(n_splits=cv, shuffle=True, random_state=seed) target_y = target_skf divide_counts = cv else: if target_skf is None: kf = RepeatedKFold(n_splits=cv,n_repeats=repeats, random_state=seed) target_y = target else: kf = RepeatedStratifiedKFold(n_splits=cv, n_repeats=repeats, random_state=seed) target_y = target_skf divide_counts = kf.get_n_splits() cv_scores = [] pred_full_test = 0 pred_train = np.zeros((train.shape[0])) for fold_id, (train_idx, val_idx) in enumerate(kf.split(train, target_y)): print("*"*40) print(f"Started {label} fold:{fold_id+1} / {divide_counts}") tr_X, val_X = train.iloc[train_idx].copy(), train.iloc[val_idx].copy() tr_y, val_y = target.iloc[train_idx], target.iloc[val_idx] # TARGET ENCODING if encoding: for c in encoding: # 学習データ全体で各カテゴリにおけるtargetの平均を計算 data_tmp = pd.DataFrame({c: tr_X[c], 'target': tr_y}) target_mean = data_tmp.groupby(c)['target'].mean() # バリデーションデータのカテゴリを置換 val_X.loc[:, c] = val_X[c].map(target_mean) # 学習データの変換後の値を格納する配列を準備 tmp = np.repeat(np.nan, tr_X.shape[0]) kf_encoding = KFold(n_splits=4, shuffle=True, random_state=seed) for idx_1, idx_2 in kf_encoding.split(tr_X): # out-of-foldで各カテゴリにおける目的変数の平均を計算 target_mean = data_tmp.iloc[idx_1].groupby(c)['target'].mean() # 変換後の値を一次配列に格納 tmp[idx_2] = tr_X[c].iloc[idx_2].map(target_mean) tr_X.loc[:, c] = tmp # TARGET ENCODING params2 = params.copy() model, pred_val_y, pred_test_y = model_fn( tr_X, tr_y, val_X, val_y, test, params2) pred_full_test = pred_full_test + pred_test_y pred_train[val_idx] = pred_val_y if eval_fn is not None: cv_score = eval_fn(val_y, pred_val_y) cv_scores.append(cv_score) print(f"{label} cv score {fold_id+1}: {cv_score}") print_cv_scores(label, cv_scores) pred_full_test = pred_full_test / divide_counts results = {"label": label, "train": pred_train, "test": pred_full_test, "cv": cv_scores} RMSLE = mean_squared_error(target.values, results["train"], squared=False) print(f"Overall RMSLE={RMSLE}") return results ################################################################################ # RESULTS ################################################################################ def output_results(target, results, test_id, MODEL): RMSLE = mean_squared_error(target.values, results["train"], squared=False) print(f"Overall RMSLE={RMSLE}") # Make submission print("Saving submission file") submission = pd.DataFrame({'id': test_id, 'y': np.expm1(results["test"])}) submission.to_csv(f"./{out_dir}/submission_{MODEL}_CV{RMSLE:.6f}.csv", index=False) return submission def check_results(y, results): y_diff = np.abs(np.expm1(y) - np.expm1(results["train"])) y_log1p_diff = np.abs(y - results["train"]) display(y_diff[y_log1p_diff>DIFF_THRESHOLD].index.values) display(train_data[y_log1p_diff>DIFF_THRESHOLD]) display(pd.concat([pd.DataFrame(y[y_log1p_diff>DIFF_THRESHOLD], columns=['y']), \ pd.DataFrame(results["train"][y_log1p_diff>DIFF_THRESHOLD], \ index=y_diff[y_log1p_diff>DIFF_THRESHOLD].index.values, columns=["pred_train"])], axis=1)) get_hist4(results["train"], "pred_train", \ y, "y", \ results["test"], "pred_test", \ y_log1p_diff, "diff") display(pd.concat([pd.DataFrame(results["train"], columns=["pred_train"]), \ pd.DataFrame(y, columns=["y"]), \ y_log1p_diff.rename("y_log1p_diff")], \ axis=1).describe()) display(pd.DataFrame(results["test"], columns=["pred_test"]).describe()) RMSLE = mean_squared_error(y, results["train"], squared=False) display(f"Overall RMSLE={RMSLE:.6f}") ################################################################################ # MODEL ################################################################################ def runLGB(train_X, train_y, val_X, val_y, test_X, params): model = lgb.LGBMRegressor(**params) model.fit(train_X, train_y, eval_set=(val_X, val_y), early_stopping_rounds=100, eval_metric='rmse', verbose=100) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runXGB(train_X, train_y, val_X, val_y, test_X, params): model = xgb.XGBRegressor(**params) model.fit(train_X, train_y, eval_set=[[val_X, val_y]], early_stopping_rounds=100, eval_metric='rmse', verbose=100) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runCAT(train_X, train_y, val_X, val_y, test_X, params): model = CatBoostRegressor(**params) model.fit(train_X, train_y, eval_set=(val_X, val_y), # cat_features=cat_features, early_stopping_rounds=100, use_best_model=True, verbose=100) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runNGB(train_X, train_y, val_X, val_y, test_X, params): model = NGBRegressor(**ngb_params) model.fit(train_X, train_y, X_val=val_X, Y_val=val_y) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runLR(train_X, train_y, val_X, val_y, test_X, params): model = LogisticRegression(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict_proba(val_X)[:, 1] pred_test_y = model.predict_proba(test_X)[:, 1] return model, pred_val_y, pred_test_y def runLINR(train_X, train_y, val_X, val_y, test_X, params): model = LinearRegression(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runBAYRIDGE(train_X, train_y, val_X, val_y, test_X, params): model = BayesianRidge(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runRDG(train_X, train_y, val_X, val_y, test_X, params): model = Ridge(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runELASTIC(train_X, train_y, val_X, val_y, test_X, params): model = ElasticNet(**params) model.fit(train_X, train_y, check_input=True) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runLASSO(train_X, train_y, val_X, val_y, test_X, params): model = Lasso(**params) model.fit(train_X, train_y, check_input=True) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runKN(train_X, train_y, val_X, val_y, test_X, params): model = KNeighborsRegressor(**params) model.fit(train_X, train_y) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runRFR(train_X, train_y, val_X, val_y, test_X, params): model = RandomForestRegressor(**params) model.fit(train_X, train_y) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runSGD(train_X, train_y, val_X, val_y, test_X, params): model = SGDRegressor(**params) model.fit(train_X, train_y, coef_init=None, intercept_init=None, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runETR(train_X, train_y, val_X, val_y, test_X, params): model = ExtraTreesRegressor(**params) model.fit(train_X, train_y) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runGBR(train_X, train_y, val_X, val_y, test_X, params): model = GradientBoostingRegressor(**params) model.fit(train_X, train_y) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runBAG(train_X, train_y, val_X, val_y, test_X, params): model = BaggingRegressor(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runABR(train_X, train_y, val_X, val_y, test_X, params): model = AdaBoostRegressor(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y def runLINSVR(train_X, train_y, val_X, val_y, test_X, params): model = LinearSVR(**params) model.fit(train_X, train_y, sample_weight=None) pred_val_y = model.predict(val_X) pred_test_y = model.predict(test_X) return model, pred_val_y, pred_test_y ################################################################################ # MODEL PARAMETERS ################################################################################ lgb_params = {'boosting_type': 'gbdt', 'tree_learner': 'feature', #''serial' or feature' or 'data' or 'voting' 'num_leaves': 31, 'max_depth': -1, 'learning_rate': 5e-2, 'n_estimators': 10000, 'importance_type': 'gain', 'subsample_for_bin': 200000, 'objective': 'regression', 'min_split_gain': 0.0, 'min_child_weight': 1e-3, 'min_child_samples': 20, 'bagging_freq': 0, 'bagging_fraction': 1.0, 'feature_fraction': 1.0, 'reg_alpha': 0.2, 'reg_lambda': 0.2, 'random_state': 43, 'data_random_seed': 1, 'n_jobs': -1, 'silent': False} xgb_params = {'base_score': 0.5, 'booster': 'gbtree', 'colsample_bylevel': 1, 'colsample_bynode': 1, 'colsample_bytree': 1, 'gamma': 0, 'learning_rate': 5e-2, 'n_estimators': 20000, 'importance_type': 'gain', 'max_delta_step': 0, 'max_depth': 6, 'min_child_weight': 0, 'objective': 'reg:squarederror', 'reg_alpha': 0.2, 'reg_lambda': 0.2, 'scale_pos_weight': 1, 'subsample': 0.9, 'silent': None, 'verbosity': 0, 'random_state': 43, 'seed': 43, 'tree_method': 'gpu_hist', 'gpu_id': 0} cat_params = {'iterations':10000, 'depth': 8, 'boosting_type': 'Ordered', #'Ordered', #'Plain', 'loss_function': 'RMSE', 'eval_metric': 'RMSE', 'learning_rate': 5e-2, 'leaf_estimation_method': 'Gradient', #'Newton', 'Exact' 'l2_leaf_reg': 1.0, 'random_strength': 1.0, 'bagging_temperature': 1.0, 'has_time': False, 'grow_policy': 'SymmetricTree', #'Depthwise', 'Lossguide' 'min_data_in_leaf': 1, 'max_leaves': 31, 'random_seed': 43, # 'one_hot_max_size': len(cat_features), 'task_type': 'GPU'} ngb_params = {'Base': default_tree_learner, #決定木。Ridge回帰の場合は、default_linear_learner 'Dist': Normal, 'Score': LogScore, #CRPS, MLEも可 'learning_rate': 1e-2, 'natural_gradient': True, 'verbose': True, 'verbose_eval': 100, 'tol': 1e-4, 'random_state': 43, 'n_estimators': 100, 'minibatch_frac': 0.5} logr_params = {'penalty':'l2', 'solver': 'newton-cg', #'newton-cg', 'lbfgs', 'sag' , 'saga' 'C': 0.05, # 'class_weight':'balanced', 'max_iter': 500, 'random_state': 43, 'n_jobs': -1} linr_params = {'fit_intercept': True, 'normalize': False, 'copy_X': True, 'n_jobs': -1} bayridge_params = {'alpha_1': 1e-06, 'alpha_2': 1e-06, 'alpha_init': None, 'compute_score': False, 'copy_X': True, 'fit_intercept': True, 'lambda_1': 1e-06, 'lambda_2': 1e-06, 'lambda_init': None, 'n_iter': 200, 'normalize': False, 'tol': 1e-3, 'verbose': True} rdg_params = {'alpha': 0.01, 'copy_X': True, 'fit_intercept': True, 'max_iter': 100, 'normalize': False, 'random_state': 43, 'solver': 'auto', 'tol': 1e-3} elastic_params = {'alpha': 0.0001, 'copy_X': True, 'fit_intercept': True, 'l1_ratio': 0.5, 'max_iter': 200, 'normalize': False, 'positive': False, 'precompute': False, 'random_state': 43, 'selection': 'cyclic', 'tol': 1e-4, 'warm_start': False} lasso_params = {'alpha': 0.0001, 'copy_X': True, 'fit_intercept': True, 'max_iter': 200, 'normalize': False, 'positive': False, 'precompute': False, 'random_state': 43, 'selection': 'random', 'tol': 1e-4, 'warm_start': False} sgd_params = {'alpha': 1e-4, 'average': False, 'early_stopping': True, 'epsilon': 1e-1, 'eta0': 1e-4, 'fit_intercept': True, 'l1_ratio': 0.15, 'learning_rate': 'invscaling', 'loss': 'squared_loss', 'penalty': 'l2', 'power_t': 0.25, 'max_iter': 3000, 'n_iter_no_change': 10, 'validation_fraction': 0.5, 'random_state': 43, 'shuffle': True, 'tol': 1e-3, 'verbose': False, 'warm_start': False} kn_params = {'n_neighbors': 5, 'weights': 'uniform', 'algorithm': 'auto', 'leaf_size': 30, 'p': 2, 'metric': 'minkowski', 'metric_params': None, 'n_jobs': -1} rfr_params = {'bootstrap': True, 'ccp_alpha': 0.0, 'criterion': 'mse', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': 1e-7, 'max_samples': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 1000, 'n_jobs': -1, 'oob_score': False, 'random_state': 43, 'verbose': 1, 'warm_start': False} etr_params = {'bootstrap': False, 'ccp_alpha': 0.0, 'criterion': 'mse', 'max_depth': None, 'max_features': 'auto', 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'max_samples': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'n_estimators': 100, 'n_jobs': -1, 'oob_score': False, 'random_state': 43, 'verbose': 1, 'warm_start': False} gbr_params = {'alpha': 0.9, 'ccp_alpha': 0.0, 'criterion': 'friedman_mse', 'init': None, 'learning_rate': 5e-2, 'n_estimators': 200, 'loss': 'ls', 'max_depth': 6, 'max_features': None, 'max_leaf_nodes': None, 'min_impurity_decrease': 0.0, 'min_impurity_split': None, 'min_samples_leaf': 1, 'min_samples_split': 2, 'min_weight_fraction_leaf': 0.0, 'subsample': 1.0, 'validation_fraction': 0.2, 'n_iter_no_change': None, 'presort': 'deprecated', 'random_state': 43, 'tol': 1e-4, 'verbose': 1, 'warm_start': False} bag_params = {'base_estimator': None, 'bootstrap': True, 'bootstrap_features': False, 'max_features': 1.0, 'max_samples': 1.0, 'n_estimators': 5, 'n_jobs': None, 'oob_score': False, 'random_state': 43, 'verbose': 1, 'warm_start': False} abr_params = {'base_estimator': None, 'learning_rate': 1.0, 'loss': 'linear', 'n_estimators': 5, 'random_state': 43} linsvr_params = {'epsilon': 0.0, 'tol': 0.0001, 'C': 1.0, 'loss': 'epsilon_insensitive', 'fit_intercept': True, 'intercept_scaling': 1.0, 'dual': True, 'verbose': 1, 'random_state': 43, 'max_iter': 1000} def lgb_regressor(train, test, target, target_skf, seed, n_folds, encoding): lgb_params = {'boosting_type': 'gbdt', 'objective' : 'regression', 'metric' : 'rmse', 'tree_learner': 'feature', #''serial' or feature' or 'data' or 'voting' 'max_depth': -1, 'min_child_samples': 10, 'min_split_gain': 0.01, 'min_child_weight': 1e-2, 'reg_alpha': 0.1, 'reg_lambda': 1, 'num_leaves': 35, 'max_bin': 300, 'learning_rate': 2e-2, 'bagging_fraction': 0.9, 'bagging_freq': 1, 'bagging_seed': 4590, 'feature_fraction': 0.85, 'n_estimators': 50000, 'importance_type': 'gain', 'subsample_for_bin': 200000, 'random_state': seed, 'data_random_seed': seed, 'n_jobs': -1, 'silent': False} lgb_results = run_cv_model(train, test, target, target_skf, encoding, runLGB, lgb_params, rmsle, 'LGBMRegressor', cv=n_folds, repeats=1, seed=seed) return lgb_results def xgb_regressor(train, test, target, target_skf, seed, n_folds, encoding): xgb_params = {'base_score': 0.5, 'booster': 'gbtree', 'objective': 'reg:squarederror', 'colsample_bylevel': 0.6, 'colsample_bynode': 0.6, 'colsample_bytree': 0.6, 'gamma': 0, 'learning_rate': 1e-2, 'n_estimators': 50000, 'importance_type': 'gain', 'max_delta_step': 0, 'max_depth': 8, 'min_child_weight': 0, 'reg_alpha': 0.1, 'reg_lambda': 1, 'scale_pos_weight': 1, 'subsample': 0.8, 'silent': None, 'verbosity': 0, 'random_state': seed, 'seed': seed, 'tree_method': 'gpu_hist', 'gpu_id': 0} xgb_results = run_cv_model(train, test, target, target_skf, encoding, runXGB, xgb_params, rmsle, 'XGBRegressor', cv=n_folds, repeats=1, seed=seed) return xgb_results def catboost_regressor(train, test, target, target_skf, seed, n_folds, encoding): cat_params = {'bootstrap_type': 'Bayesian', 'boosting_type': 'Plain', #'Ordered', #'Plain', 'iterations':50000, 'depth': 8, 'loss_function': 'RMSE', 'eval_metric': 'RMSE', 'learning_rate': 1e-2, 'leaf_estimation_method': 'Gradient', #'Newton', 'Exact' 'l2_leaf_reg': 1.0, 'random_strength': 0.8, 'bagging_temperature': 0.9, 'has_time': False, 'grow_policy': 'SymmetricTree', #'Depthwise', 'Lossguide' 'min_data_in_leaf': 1, 'max_leaves': 31, 'random_seed': seed, #'one_hot_max_size': len(cat_features), 'task_type': 'GPU'} cat_results = run_cv_model(train, test, target, target_skf, encoding, runCAT, cat_params, rmsle, 'CatBoostRegressor', cv=n_folds, repeats=1, seed=seed) return cat_results def ngboost_regressor(train, test, target, target_skf, seed, n_folds, encoding): ngb_params['learning_rate'] = 5e-2 ngb_params['n_estimators'] = 500 ngb_params['minibatch_frac'] = 1.0 ngb_params['random_state'] = seed ngb_results = run_cv_model(train, test, target, target_skf, encoding, runNGB, ngb_params, rmsle, 'NGBoost', cv=n_folds, repeats=1, seed=seed) return ngb_results def logistic_regression(train, test, target, target_skf, seed, n_folds, encoding): logr_params['max_iter'] = 500 logr_params['random_state'] = seed logr_results = run_cv_model(train, test, target, target_skf, encoding, runLR, logr_params, rmsle, 'LogisticRegression', cv=n_folds, repeats=1, seed=seed) return logr_results def lin_regression(train, test, target, target_skf, seed, n_folds, encoding): linr_params['n_jobs'] = -1 linr_results = run_cv_model(train, test, target, target_skf, encoding, runLINR, linr_params, rmsle, 'LinearRegression', cv=n_folds, repeats=1, seed=seed) return linr_results def bayesianridge(train, test, target, target_skf, seed, n_folds, encoding): bayridge_params['alpha_1'] = 1e-06 bayridge_params['alpha_2'] = 1e-06 bayridge_params['lambda_1'] = 1.0 bayridge_params['lambda_2'] = 1e-07 bayridge_params['n_iter'] = 1000 bay_results = run_cv_model(train, test, target, target_skf, encoding, runBAYRIDGE, bayridge_params, rmsle, 'BayesianRidge', cv=n_folds, repeats=1, seed=seed) return bay_results def ridge(train, test, target, target_skf, seed, n_folds, encoding): rdg_params['alpha'] = 1.0 rdg_params['random_state'] = seed rdg_params['max_iter'] = 1000 rdg_results = run_cv_model(train, test, target, target_skf, encoding, runRDG, rdg_params, rmsle, 'Ridge', cv=n_folds, repeats=1, seed=seed) return rdg_results def elastic(train, test, target, target_skf, seed, n_folds, encoding): elastic_params['alpha'] = 1e-04 elastic_params['l1_ratio'] = 0.5 elastic_params['random_state'] = seed elastic_params['max_iter'] = 1000 elastic_results = run_cv_model(train, test, target, target_skf, encoding, runELASTIC, elastic_params, rmsle, 'ELasticNet', cv=n_folds, repeats=1, seed=seed) return elastic_results def lasso(train, test, target, target_skf, seed, n_folds, encoding): lasso_params['alpha'] = 1e-04 lasso_params['random_state'] = seed lasso_params['max_iter'] = 1000 lasso_results = run_cv_model(train, test, target, target_skf, encoding, runLASSO, lasso_params, rmsle, 'Lasso', cv=n_folds, repeats=1, seed=seed) return lasso_results def sgd(train, test, target, target_skf, seed, n_folds, encoding): sgd_params['alpha'] = 1e-04 sgd_params['early_stopping'] = True sgd_params['epsilon'] = 1e-1 sgd_params['eta0'] = 1e-4 sgd_params['l1_ratio'] = 0.15 sgd_params['learning_rate'] = 'invscaling' sgd_params['loss'] = 'squared_loss' sgd_params['validation_fraction'] = 0.2 sgd_params['random_state'] = seed sgd_results = run_cv_model(train, test, target, target_skf, encoding, runSGD, sgd_params, rmsle, 'SGD', cv=n_folds, repeats=1, seed=seed) return sgd_results def kn_regressor(train, test, target, target_skf, seed, n_folds, encoding): kn_params['n_neighbors'] = 5 kn_params['weights'] = 'distance' kn_params['algorithm'] = 'auto' #auto, ball_tree, kd_tree, brute kn_params['leaf_size'] = 60 kn_results = run_cv_model(train, test, target, target_skf, encoding, runKN, kn_params, rmsle, 'KNeighbors', cv=n_folds, repeats=1, seed=seed) return kn_results def rf_regressor(train, test, target, target_skf, seed, n_folds, encoding): rfr_params['ccp_alpha'] = 0 rfr_params['criterion'] = 'mse' rfr_params['max_depth'] = 63 rfr_params['min_samples_leaf'] = 20 rfr_params['min_samples_split'] = 50 rfr_params['random_state'] = seed rfr_results = run_cv_model(train, test, target, target_skf, encoding, runRFR, rfr_params, rmsle, 'RandomForestRegressor', cv=n_folds, repeats=1, seed=seed) return rfr_results def et_regressor(train, test, target, target_skf, seed, n_folds, encoding): etr_params['ccp_alpha'] = 0 etr_params['criterion'] = 'mse' etr_params['max_depth'] = 63 etr_params['min_samples_leaf'] = 20 etr_params['min_samples_split'] = 50 etr_params['min_weight_fraction_leaf'] = 0.0 etr_params['n_estimators'] = 1000 etr_params['random_state'] = seed etr_results = run_cv_model(train, test, target, target_skf, encoding, runETR, etr_params, rmsle, 'ExtraTreesRegressor', cv=n_folds, repeats=1, seed=seed) return etr_results def gb_regressor(train, test, target, target_skf, seed, n_folds, encoding): gbr_params['alpha'] = 0.9 gbr_params['ccp_alpha'] = 0 gbr_params['criterion'] = 'friedman_mse' gbr_params['learning_rate'] = 5e-2 gbr_params['n_estimators'] = 100 gbr_params['max_depth'] = 31 gbr_params['min_samples_leaf'] = 1 gbr_params['min_samples_split'] = 2 gbr_params['min_weight_fraction_leaf'] = 0.0 gbr_params['subsample'] = 1.0 gbr_params['validation_fraction'] = 0.2 gbr_params['random_state'] = seed gbr_results = run_cv_model(train, test, target, target_skf, encoding, runGBR, gbr_params, rmsle, 'GradientBoostingRegressor', cv=n_folds, repeats=1, seed=seed) return gbr_results def bag_regressor(train, test, target, target_skf, seed, n_folds, encoding): bag_params['base_estimator'] = BayesianRidge(n_iter=1000, lambda_1=1.0, lambda_2=1e-7) bag_params['bootstrap'] = True bag_params['bootstrap_features'] = True, bag_params['max_features'] = 1.0 bag_params['max_samples'] = 1.0 bag_params['n_estimators'] = 96 bag_params['n_jobs'] = -1 bag_params['random_state'] = seed bag_results = run_cv_model(train, test, target, target_skf, encoding, runBAG, bag_params, rmsle, 'BaggingRegressor', cv=n_folds, repeats=1, seed=seed) return bag_results def ada_regressor(train, test, target, target_skf, seed, n_folds, encoding): abr_params['base_estimator'] = BayesianRidge(n_iter=1000, lambda_1=1.0, lambda_2=1e-7) abr_params['learning_rate'] = 2.0 abr_params['loss'] = 'linear' abr_params['n_estimators'] = 100 abr_params['random_state'] = seed abr_results = run_cv_model(train, test, target, target_skf, encoding, runABR, abr_params, rmsle, 'AdaBoostRegressor', cv=n_folds, repeats=1, seed=seed) return abr_results def lin_svr(train, test, target, target_skf, seed, n_folds, encoding): linsvr_params['loss'] = 'squared_epsilon_insensitive' linsvr_params['max_iter'] = 1000 linsvr_params['random_state'] = seed linsvr_results = run_cv_model(train, test, target, target_skf, encoding, runLINSVR, linsvr_params, rmsle, 'LinearSVR', cv=n_folds, repeats=1, seed=seed) return linsvr_results ###Output _____no_output_____ ###Markdown Ensemble & Stacking--- ###Code %%time NUM_DATASETS = 1 stacking_train_lists = [] stacking_test_lists = [] for j in range(NUM_DATASETS): stacking_train_lists.append(["XGBRegressor_train_SEED47_FOLDS8_0623", "XGBRegressor2_train_SEED47_FOLDS8_0623", "LGBMRegressor_train_SEED47_FOLDS8_0623", "LGBMRegressor2_train_SEED47_FOLDS8_0623", "CatBoostRegressor_train_SEED47_FOLDS8_0623", "CatBoostRegressor2_train_SEED47_FOLDS8_0623", "XGBRegressor_train_SEED47_FOLDS8_0624", "XGBRegressor2_train_SEED47_FOLDS8_0624", "LGBMRegressor_train_SEED47_FOLDS8_0624", "LGBMRegressor2_train_SEED47_FOLDS8_0624", "CatBoostRegressor_train_SEED47_FOLDS8_0624", "CatBoostRegressor2_train_SEED47_FOLDS8_0624", "XGBRegressor_train_SEED47_FOLDS8_addon_0622", "LGBMRegressor_train_SEED47_FOLDS8_addon_0622", "CatBoostRegressor_train_SEED47_FOLDS8_addon_0622", "XGBRegressor_train_SEED47_FOLDS8_addon_0623", "LGBMRegressor_train_SEED47_FOLDS8_addon_0623", "CatBoostRegressor_train_SEED47_FOLDS8_addon_0623", "Ridge_train_SEED51_FOLDS10", "Ridge_train_SEED51_FOLDS10_0627", "RandomForestRegressor_train_SEED47_FOLDS8", "RandomForestRegressor_train_SEED47_FOLDS8_0627", "ExtraTreesRegressor_train_SEED47_FOLDS8", "ExtraTreesRegressor_train_SEED47_FOLDS8_0627", "NN_train_SEED47_FOLDS10", "NN2_train_SEED47_FOLDS10", "NN_train_SEED47_FOLDS10_0626", "NN2_train_SEED47_FOLDS10_0626", "NN_train_SEED47_FOLDS10_0627", "NN2_train_SEED47_FOLDS10_0627" ]) stacking_test_lists.append(["XGBRegressor_test_SEED47_FOLDS8_0623", "XGBRegressor2_test_SEED47_FOLDS8_0623", "LGBMRegressor_test_SEED47_FOLDS8_0623", "LGBMRegressor2_test_SEED47_FOLDS8_0623", "CatBoostRegressor_test_SEED47_FOLDS8_0623", "CatBoostRegressor2_test_SEED47_FOLDS8_0623", "XGBRegressor_test_SEED47_FOLDS8_0624", "XGBRegressor2_test_SEED47_FOLDS8_0624", "LGBMRegressor_test_SEED47_FOLDS8_0624", "LGBMRegressor2_test_SEED47_FOLDS8_0624", "CatBoostRegressor_test_SEED47_FOLDS8_0624", "CatBoostRegressor2_test_SEED47_FOLDS8_0624", "XGBRegressor_test_SEED47_FOLDS8_addon_0622", "LGBMRegressor_test_SEED47_FOLDS8_addon_0622", "CatBoostRegressor_test_SEED47_FOLDS8_addon_0622", "XGBRegressor_test_SEED47_FOLDS8_addon_0623", "LGBMRegressor_test_SEED47_FOLDS8_addon_0623", "CatBoostRegressor_test_SEED47_FOLDS8_addon_0623", "Ridge_test_SEED51_FOLDS10", "Ridge_test_SEED51_FOLDS10_0627", "RandomForestRegressor_test_SEED47_FOLDS8", "RandomForestRegressor_test_SEED47_FOLDS8_0627", "ExtraTreesRegressor_test_SEED47_FOLDS8", "ExtraTreesRegressor_test_SEED47_FOLDS8_0627", "NN_test_SEED47_FOLDS10", "NN2_test_SEED47_FOLDS10", "NN_test_SEED47_FOLDS10_0626", "NN2_test_SEED47_FOLDS10_0626", "NN_test_SEED47_FOLDS10_0627", "NN2_test_SEED47_FOLDS10_0627" ]) ###Output _____no_output_____ ###Markdown Stacking 2層目--- ###Code %%time stacking_train_df_l = [] stacking_test_df_l = [] pickle_l = glob.glob(f"./{out_dir}/*.pickle") for stacking_train_l in stacking_train_lists: stacking_train_df = pd.DataFrame() for j, stacking_train_f in enumerate(stacking_train_l): stacking_train = [f for f in pickle_l if stacking_train_f in f][0] with open(stacking_train, 'rb') as f: stacking_train_df[f'stacking_{j}'] = pickle.load(f) stacking_train_df['stacking_addon1'] = pd.read_csv(f"./{out_dir}/train_lgb_817.csv").lgb_y stacking_train_df['stacking_addon2'] = pd.read_csv(f"./{out_dir}/train_lgb_0623.csv").lgb_y stacking_train_df['stacking_addon3'] = pd.read_csv(f"./{out_dir}/train_lgb_0624.csv").lgb_y stacking_train_df['stacking_addon4'] = pd.read_csv(f"./{out_dir}/train_lgb_0624_2.csv").lgb_y stacking_train_df_l.append(stacking_train_df) for stacking_test_l in stacking_test_lists: stacking_test_df = pd.DataFrame() for j, stacking_test_f in enumerate(stacking_test_l): stacking_test = [f for f in pickle_l if stacking_test_f in f][0] with open(stacking_test, 'rb') as f: stacking_test_df[f'stacking_{j}'] = pickle.load(f) stacking_test_df['stacking_addon1'] = pd.read_csv(f"./{out_dir}/test_lgb_817.csv").lgb_y stacking_test_df['stacking_addon2'] = pd.read_csv(f"./{out_dir}/test_lgb_0623.csv").lgb_y stacking_test_df['stacking_addon3'] = pd.read_csv(f"./{out_dir}/test_lgb_0624.csv").lgb_y stacking_test_df['stacking_addon4'] = pd.read_csv(f"./{out_dir}/test_lgb_0624_2.csv").lgb_y stacking_test_df_l.append(stacking_test_df) fnc_l = {'LGBMRegressor': lgb_regressor, 'XGBRegressor': xgb_regressor, 'CatBoostRegressor': catboost_regressor, 'NGBRegressor': ngboost_regressor, 'LogisticRegression': logistic_regression, 'LinearRegression': lin_regression, 'BayesianRidge': bayesianridge, 'Ridge': ridge, 'ElasticNet': elastic, 'Lasso': lasso, 'SGDRegressor': sgd, 'KNeighborsRegressor': kn_regressor, 'RandomForestRegressor': rf_regressor, 'ExtraTreesRegressor': et_regressor, 'GradientBoostingRegressor': gb_regressor, 'BaggingRegressor': bag_regressor, 'AdaBoostRegressor': ada_regressor, 'LinearSVR': lin_svr} %%time stacking_train2 = pd.DataFrame() stacking_test2 = pd.DataFrame() fnc_list = [fnc_l['LGBMRegressor'], fnc_l['XGBRegressor'], fnc_l['CatBoostRegressor'], #fnc_l['BayesianRidge'], fnc_l['SGDRegressor'], fnc_l['KNeighborsRegressor'], fnc_l['BayesianRidge'], fnc_l['SGDRegressor'], fnc_l['RandomForestRegressor'], fnc_l['ExtraTreesRegressor']] for j, target_fn in enumerate(fnc_list): keys = [k for k, v in fnc_l.items() if v == target_fn] stacking_train_tmp = 0 stacking_test_tmp = 0 for k, (stacking_train, stacking_test) in enumerate(zip(stacking_train_df_l, stacking_test_df_l)): stacking_SEED = 47 stacking_N_FOLDS = 8 encoding = [] stacking_train['mean'] = stacking_train.mean(axis=1) stacking_test['mean'] = stacking_test.mean(axis=1) results_stacking = target_fn(train=stacking_train, test=stacking_test, target=y, target_skf=None, \ seed=stacking_SEED, n_folds=stacking_N_FOLDS, encoding=encoding) submission_stacking = output_results(y, results_stacking, test_id, f"STACKING_{keys[0]}_MODELSEL{k}") oof_train = pd.DataFrame() oof_test = pd.DataFrame() oof_train['id']=train_data['id'] oof_train['pred_y']=results_stacking['train'] oof_train['y'] = np.log1p(train_data['y']) oof_test['id']=test_data['id'] oof_test['pred_y']=results_stacking['test'] oof_train.to_csv(f"./{out_dir}/train_stacking_{keys[0]}_MODELSEL{k}.csv",index=False) oof_test.to_csv(f"./{out_dir}/test_stacking_{keys[0]}_MODELSEL{k}.csv",index=False) stacking_train_tmp += results_stacking['train'] stacking_test_tmp += results_stacking['test'] stacking_train2[f'stacking2_{j}'] = stacking_train_tmp/len(stacking_train_df_l) stacking_test2[f'stacking2_{j}'] = stacking_test_tmp/len(stacking_test_df_l) N_SPLITS = 10 SEED = 47 LEARNING_RATE = 1e-3 BATCH_SIZE = 32 EPOCHS = 200 PATIENCE = 20 def create_callbacks(): callbacks = [] callbacks.append(EarlyStopping(monitor='val_root_mean_squared_error', min_delta=0, patience=PATIENCE, verbose=1, mode='auto', baseline=None, restore_best_weights=True)) # Update the learning rate every epoch callbacks.append(ReduceLROnPlateau(monitor='val_root_mean_squared_error', factor=0.95, patience=1, verbose=0, mode='auto', min_delta=1e-4, cooldown=0, min_lr=1e-6)) return callbacks def nn(lr, seed, input_shape): model = Sequential([ Dense(2 ** 8, activation='relu', input_dim=input_shape, kernel_initializer=he_normal(seed=seed)), Dense(2 ** 7, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 6, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 5, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 4, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 3, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 3, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(1) ]) # COMPILE WITH ADAM OPTIMIZER AND CROSS ENTROPY COST adam_opt = Adam(learning_rate=lr, beta_1=0.9, beta_2=0.999, amsgrad=True) nadam_opt = Nadam(learning_rate=lr, beta_1=0.9, beta_2=0.999) ladam_opt = tfa.optimizers.LazyAdam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False) adamw_opt = tfa.optimizers.AdamW(learning_rate=LEARNING_RATE, weight_decay=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True) rmsprop_opt = RMSprop(learning_rate=lr, rho=0.9) sgd_opt = SGD(learning_rate=lr, momentum=0.0, nesterov=False) sgd_opt = SGD(learning_rate=lr, decay=1e-4, momentum=0.9, nesterov=True) model.compile(optimizer=nadam_opt, loss='mean_squared_error', metrics=tf.keras.metrics.RootMeanSquaredError()) return model def nn2(lr, seed, input_shape): model = Sequential([ Dense(2 ** 8, activation='relu', input_dim=input_shape, kernel_initializer=he_normal(seed=seed)), Dense(2 ** 7, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 6, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 5, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(2 ** 3, activation='relu', kernel_initializer=he_normal(seed=seed)), Dense(1) ]) # COMPILE WITH ADAM OPTIMIZER AND CROSS ENTROPY COST adam_opt = Adam(learning_rate=lr, beta_1=0.9, beta_2=0.999, amsgrad=True) nadam_opt = Nadam(learning_rate=lr, beta_1=0.9, beta_2=0.999) ladam_opt = tfa.optimizers.LazyAdam(learning_rate=LEARNING_RATE, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=False) adamw_opt = tfa.optimizers.AdamW(learning_rate=LEARNING_RATE, weight_decay=1e-4, beta_1=0.9, beta_2=0.999, epsilon=1e-07, amsgrad=True) rmsprop_opt = RMSprop(learning_rate=lr, rho=0.9) sgd_opt = SGD(learning_rate=lr, momentum=0.0, nesterov=False) sgd_opt = SGD(learning_rate=lr, decay=1e-4, momentum=0.9, nesterov=True) model.compile(optimizer=nadam_opt, loss='mean_squared_error', metrics=tf.keras.metrics.RootMeanSquaredError()) return model %%time history, history_false = [], [] score, score_false = [], [] pred_train = np.zeros((stacking_train.shape[0])) pred_full_test = 0 skf = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=SEED) for fold_id, (train_idx, val_idx) in enumerate(tqdm(skf.split(stacking_train, y_bin))): print("*"*80) print(f"Started TF learning(1) fold:{fold_id+1} / {N_SPLITS}") # 全データで学習、予測 model = nn(lr=LEARNING_RATE, seed=SEED, input_shape=stacking_train.shape[1]) callbacks = create_callbacks() tr_X, val_X = stacking_train.iloc[train_idx].copy(), stacking_train.iloc[val_idx].copy() tr_y, val_y = y.iloc[train_idx], y.iloc[val_idx] history.append(model.fit(tr_X, tr_y, batch_size=BATCH_SIZE, epochs=EPOCHS, verbose=2, validation_data=(val_X, val_y), callbacks=callbacks)) pred_train[val_idx] = model.predict(val_X).reshape(-1) score.append(model.evaluate(val_X, val_y, batch_size=BATCH_SIZE, verbose=0, return_dict=True)) pred_full_test = pred_full_test + model.predict(stacking_test) RMSLE = mean_squared_error(y[val_idx], pred_train[val_idx], squared=False) print(f"RMSLE={RMSLE}") RMSLE_overall = mean_squared_error(y, pred_train, squared=False) print(f"Overall RMSLE={RMSLE_overall}") # Make submission print("Saving submission file") submission = pd.DataFrame({'id': test_id, 'y': np.expm1((pred_full_test/N_SPLITS).reshape(-1))}) submission.to_csv(f"./{out_dir}/submission_STACKING_NN1_CV{RMSLE_overall:.6f}.csv", index=False) oof_train = pd.DataFrame() oof_test = pd.DataFrame() oof_train['id']=train_data['id'] oof_train['pred_y']=pred_train oof_train['y'] = np.log1p(train_data['y']) oof_test['id']=test_data['id'] oof_test['pred_y']=(pred_full_test/N_SPLITS).reshape(-1) oof_train.to_csv(f"./{out_dir}/train_stacking_NN1.csv",index=False) oof_test.to_csv(f"./{out_dir}/test_stacking_NN1.csv",index=False) stacking_train2[f'stacking2_{len(fnc_list)}'] = pred_train stacking_test2[f'stacking2_{len(fnc_list)}'] = pred_full_test/N_SPLITS %%time history, history_false = [], [] score, score_false = [], [] pred_train = np.zeros((stacking_train.shape[0])) pred_full_test = 0 skf = StratifiedKFold(n_splits=N_SPLITS, shuffle=True, random_state=SEED) kf = KFold(n_splits=N_SPLITS, shuffle=True, random_state=SEED) for fold_id, (train_idx, val_idx) in enumerate(tqdm(skf.split(stacking_train, y_bin))): print("*"*80) print(f"Started TF learning(2) fold:{fold_id+1} / {N_SPLITS}") # 全データで学習、予測 model = nn2(lr=LEARNING_RATE, seed=SEED, input_shape=stacking_train.shape[1]) callbacks = create_callbacks() tr_X, val_X = stacking_train.iloc[train_idx].copy(), stacking_train.iloc[val_idx].copy() tr_y, val_y = y.iloc[train_idx], y.iloc[val_idx] history.append(model.fit(tr_X, tr_y, batch_size=BATCH_SIZE, epochs=EPOCHS, verbose=2, validation_data=(val_X, val_y), callbacks=callbacks)) pred_train[val_idx] = model.predict(val_X).reshape(-1) score.append(model.evaluate(val_X, val_y, batch_size=BATCH_SIZE, verbose=0, return_dict=True)) pred_full_test = pred_full_test + model.predict(stacking_test) RMSLE = mean_squared_error(y[val_idx], pred_train[val_idx], squared=False) print(f"RMSLE={RMSLE}") RMSLE_overall = mean_squared_error(y, pred_train, squared=False) print(f"Overall RMSLE={RMSLE_overall}") # Make submission print("Saving submission file") submission = pd.DataFrame({'id': test_id, 'y': np.expm1((pred_full_test/N_SPLITS).reshape(-1))}) submission.to_csv(f"./{out_dir}/submission_STACKING_NN2_CV{RMSLE_overall:.6f}.csv", index=False) oof_train = pd.DataFrame() oof_test = pd.DataFrame() oof_train['id']=train_data['id'] oof_train['pred_y']=pred_train oof_train['y'] = np.log1p(train_data['y']) oof_test['id']=test_data['id'] oof_test['pred_y']=(pred_full_test/N_SPLITS).reshape(-1) oof_train.to_csv(f"./{out_dir}/train_stacking_NN2.csv",index=False) oof_test.to_csv(f"./{out_dir}/test_stacking_NN2.csv",index=False) stacking_train2[f'stacking2_{len(fnc_list)+1}'] = pred_train stacking_test2[f'stacking2_{len(fnc_list)+1}'] = pred_full_test/N_SPLITS ###Output _____no_output_____ ###Markdown Stacking 3層目 ###Code %%time stacking_train2.to_csv(f"./{out_dir}/train_stacking2_AllModel.csv",index=False) stacking_test2.to_csv(f"./{out_dir}/test_stacking2_AllModel.csv",index=False) %%time fnc_list2 = [fnc_l['LinearRegression'], fnc_l['BaggingRegressor']] cols_to_stack = [c for c in stacking_train2.columns] for target_fn in fnc_list2: keys = [k for k, v in fnc_l.items() if v == target_fn] stacking_SEED = 51 stacking_N_FOLDS = 10 encoding = [] results_stacking2 = target_fn(train=stacking_train2[cols_to_stack], test=stacking_test2[cols_to_stack], target=y, target_skf=y_bin, \ seed=stacking_SEED, n_folds=stacking_N_FOLDS, encoding=encoding) submission_stacking2 = output_results(y, results_stacking2, test_id, f"STACKING2_full_{keys[0]}") oof_train = pd.DataFrame() oof_test = pd.DataFrame() oof_train['id']=train_data['id'] oof_train['pred_y']=results_stacking2['train'] oof_train['y'] = np.log1p(train_data['y']) oof_test['id']=test_data['id'] oof_test['pred_y']=results_stacking2['test'] oof_train.to_csv(f"./{out_dir}/train_stacking2_full_{keys[0]}.csv",index=False) oof_test.to_csv(f"./{out_dir}/test_stacking2_full_{keys[0]}.csv",index=False) ###Output _____no_output_____ ###Markdown Ensemble 3層目 ###Code %%time # LGB XGB CAT BAY SGD RFR ETR NN1 NN2 coef_l = [0.05, 0.00, 0.00, 0.65, 0.00, 0.05, 0.00, 0.15, 0.10] results_train = 0 results_test = 0 for j, coef in zip(range(stacking_train2.shape[1]), coef_l): results_train += stacking_train2[f'stacking2_{j}'] * coef results_test += stacking_test2[f'stacking2_{j}'] * coef results = {'train': results_train, 'test': results_test} submission_ensemble = output_results(y, results, test_id, f"ENSEMBLE2") print(datetime.datetime.now()-start) ###Output _____no_output_____
Model backlog/EfficientNet/EfficientNetB5/177 - EfficientNetB5 - Reg - No crop.ipynb
###Markdown Dependencies ###Code import os import sys import cv2 import shutil import random import warnings import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from tensorflow import set_random_seed from sklearn.utils import class_weight from sklearn.model_selection import train_test_split from sklearn.metrics import confusion_matrix, cohen_kappa_score from keras import backend as K from keras.models import Model from keras.utils import to_categorical from keras import optimizers, applications from keras.preprocessing.image import ImageDataGenerator from keras.layers import Dense, Dropout, GlobalAveragePooling2D, Input from keras.callbacks import EarlyStopping, ReduceLROnPlateau, Callback, LearningRateScheduler def seed_everything(seed=0): random.seed(seed) os.environ['PYTHONHASHSEED'] = str(seed) np.random.seed(seed) set_random_seed(0) seed = 0 seed_everything(seed) %matplotlib inline sns.set(style="whitegrid") warnings.filterwarnings("ignore") sys.path.append(os.path.abspath('../input/efficientnet/efficientnet-master/efficientnet-master/')) from efficientnet import * ###Output /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:516: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:517: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:518: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:519: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:520: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /opt/conda/lib/python3.6/site-packages/tensorflow/python/framework/dtypes.py:525: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:541: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint8 = np.dtype([("qint8", np.int8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:542: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint8 = np.dtype([("quint8", np.uint8, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:543: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint16 = np.dtype([("qint16", np.int16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:544: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_quint16 = np.dtype([("quint16", np.uint16, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:545: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. _np_qint32 = np.dtype([("qint32", np.int32, 1)]) /opt/conda/lib/python3.6/site-packages/tensorboard/compat/tensorflow_stub/dtypes.py:550: FutureWarning: Passing (type, 1) or '1type' as a synonym of type is deprecated; in a future version of numpy, it will be understood as (type, (1,)) / '(1,)type'. np_resource = np.dtype([("resource", np.ubyte, 1)]) Using TensorFlow backend. ###Markdown Load data ###Code hold_out_set = pd.read_csv('../input/aptos-data-split/hold-out.csv') X_train = hold_out_set[hold_out_set['set'] == 'train'] X_val = hold_out_set[hold_out_set['set'] == 'validation'] test = pd.read_csv('../input/aptos2019-blindness-detection/test.csv') print('Number of train samples: ', X_train.shape[0]) print('Number of validation samples: ', X_val.shape[0]) print('Number of test samples: ', test.shape[0]) # Preprocecss data X_train["id_code"] = X_train["id_code"].apply(lambda x: x + ".png") X_val["id_code"] = X_val["id_code"].apply(lambda x: x + ".png") test["id_code"] = test["id_code"].apply(lambda x: x + ".png") display(X_train.head()) ###Output Number of train samples: 2929 Number of validation samples: 733 Number of test samples: 1928 ###Markdown Model parameters ###Code # Model parameters FACTOR = 4 BATCH_SIZE = 8 * FACTOR EPOCHS = 20 WARMUP_EPOCHS = 5 LEARNING_RATE = 1e-4 * FACTOR WARMUP_LEARNING_RATE = 1e-3 * FACTOR HEIGHT = 224 WIDTH = 224 CHANNELS = 3 ES_PATIENCE = 5 RLROP_PATIENCE = 3 DECAY_DROP = 0.5 LR_WARMUP_EPOCHS_1st = 2 LR_WARMUP_EPOCHS_2nd = 5 STEP_SIZE = len(X_train) // BATCH_SIZE TOTAL_STEPS_1st = WARMUP_EPOCHS * STEP_SIZE TOTAL_STEPS_2nd = EPOCHS * STEP_SIZE WARMUP_STEPS_1st = LR_WARMUP_EPOCHS_1st * STEP_SIZE WARMUP_STEPS_2nd = LR_WARMUP_EPOCHS_2nd * STEP_SIZE ###Output _____no_output_____ ###Markdown Pre-procecess images ###Code train_base_path = '../input/aptos2019-blindness-detection/train_images/' test_base_path = '../input/aptos2019-blindness-detection/test_images/' train_dest_path = 'base_dir/train_images/' validation_dest_path = 'base_dir/validation_images/' test_dest_path = 'base_dir/test_images/' # Making sure directories don't exist if os.path.exists(train_dest_path): shutil.rmtree(train_dest_path) if os.path.exists(validation_dest_path): shutil.rmtree(validation_dest_path) if os.path.exists(test_dest_path): shutil.rmtree(test_dest_path) # Creating train, validation and test directories os.makedirs(train_dest_path) os.makedirs(validation_dest_path) os.makedirs(test_dest_path) def crop_image(img, tol=7): if img.ndim ==2: mask = img>tol return img[np.ix_(mask.any(1),mask.any(0))] elif img.ndim==3: gray_img = cv2.cvtColor(img, cv2.COLOR_RGB2GRAY) mask = gray_img>tol check_shape = img[:,:,0][np.ix_(mask.any(1),mask.any(0))].shape[0] if (check_shape == 0): # image is too dark so that we crop out everything, return img # return original image else: img1=img[:,:,0][np.ix_(mask.any(1),mask.any(0))] img2=img[:,:,1][np.ix_(mask.any(1),mask.any(0))] img3=img[:,:,2][np.ix_(mask.any(1),mask.any(0))] img = np.stack([img1,img2,img3],axis=-1) return img def circle_crop(img): img = crop_image(img) height, width, depth = img.shape largest_side = np.max((height, width)) img = cv2.resize(img, (largest_side, largest_side)) height, width, depth = img.shape x = width//2 y = height//2 r = np.amin((x, y)) circle_img = np.zeros((height, width), np.uint8) cv2.circle(circle_img, (x, y), int(r), 1, thickness=-1) img = cv2.bitwise_and(img, img, mask=circle_img) img = crop_image(img) return img def preprocess_image(base_path, save_path, image_id, HEIGHT, WIDTH, sigmaX=10): image = cv2.imread(base_path + image_id) image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) # image = circle_crop(image) image = cv2.resize(image, (HEIGHT, WIDTH)) image = cv2.addWeighted(image, 4, cv2.GaussianBlur(image, (0,0), sigmaX), -4 , 128) cv2.imwrite(save_path + image_id, image) # Pre-procecss train set for i, image_id in enumerate(X_train['id_code']): preprocess_image(train_base_path, train_dest_path, image_id, HEIGHT, WIDTH) # Pre-procecss validation set for i, image_id in enumerate(X_val['id_code']): preprocess_image(train_base_path, validation_dest_path, image_id, HEIGHT, WIDTH) # Pre-procecss test set for i, image_id in enumerate(test['id_code']): preprocess_image(test_base_path, test_dest_path, image_id, HEIGHT, WIDTH) ###Output _____no_output_____ ###Markdown Data generator ###Code datagen=ImageDataGenerator(rescale=1./255, rotation_range=360, horizontal_flip=True, vertical_flip=True) train_generator=datagen.flow_from_dataframe( dataframe=X_train, directory=train_dest_path, x_col="id_code", y_col="diagnosis", class_mode="raw", batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), seed=seed) valid_generator=datagen.flow_from_dataframe( dataframe=X_val, directory=validation_dest_path, x_col="id_code", y_col="diagnosis", class_mode="raw", batch_size=BATCH_SIZE, target_size=(HEIGHT, WIDTH), seed=seed) test_generator=datagen.flow_from_dataframe( dataframe=test, directory=test_dest_path, x_col="id_code", batch_size=1, class_mode=None, shuffle=False, target_size=(HEIGHT, WIDTH), seed=seed) def cosine_decay_with_warmup(global_step, learning_rate_base, total_steps, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0): """ Cosine decay schedule with warm up period. In this schedule, the learning rate grows linearly from warmup_learning_rate to learning_rate_base for warmup_steps, then transitions to a cosine decay schedule. :param global_step {int}: global step. :param learning_rate_base {float}: base learning rate. :param total_steps {int}: total number of training steps. :param warmup_learning_rate {float}: initial learning rate for warm up. (default: {0.0}). :param warmup_steps {int}: number of warmup steps. (default: {0}). :param hold_base_rate_steps {int}: Optional number of steps to hold base learning rate before decaying. (default: {0}). :param global_step {int}: global step. :Returns : a float representing learning rate. :Raises ValueError: if warmup_learning_rate is larger than learning_rate_base, or if warmup_steps is larger than total_steps. """ if total_steps < warmup_steps: raise ValueError('total_steps must be larger or equal to warmup_steps.') learning_rate = 0.5 * learning_rate_base * (1 + np.cos( np.pi * (global_step - warmup_steps - hold_base_rate_steps ) / float(total_steps - warmup_steps - hold_base_rate_steps))) if hold_base_rate_steps > 0: learning_rate = np.where(global_step > warmup_steps + hold_base_rate_steps, learning_rate, learning_rate_base) if warmup_steps > 0: if learning_rate_base < warmup_learning_rate: raise ValueError('learning_rate_base must be larger or equal to warmup_learning_rate.') slope = (learning_rate_base - warmup_learning_rate) / warmup_steps warmup_rate = slope * global_step + warmup_learning_rate learning_rate = np.where(global_step < warmup_steps, warmup_rate, learning_rate) return np.where(global_step > total_steps, 0.0, learning_rate) class WarmUpCosineDecayScheduler(Callback): """Cosine decay with warmup learning rate scheduler""" def __init__(self, learning_rate_base, total_steps, global_step_init=0, warmup_learning_rate=0.0, warmup_steps=0, hold_base_rate_steps=0, verbose=0): """ Constructor for cosine decay with warmup learning rate scheduler. :param learning_rate_base {float}: base learning rate. :param total_steps {int}: total number of training steps. :param global_step_init {int}: initial global step, e.g. from previous checkpoint. :param warmup_learning_rate {float}: initial learning rate for warm up. (default: {0.0}). :param warmup_steps {int}: number of warmup steps. (default: {0}). :param hold_base_rate_steps {int}: Optional number of steps to hold base learning rate before decaying. (default: {0}). :param verbose {int}: quiet, 1: update messages. (default: {0}). """ super(WarmUpCosineDecayScheduler, self).__init__() self.learning_rate_base = learning_rate_base self.total_steps = total_steps self.global_step = global_step_init self.warmup_learning_rate = warmup_learning_rate self.warmup_steps = warmup_steps self.hold_base_rate_steps = hold_base_rate_steps self.verbose = verbose self.learning_rates = [] def on_batch_end(self, batch, logs=None): self.global_step = self.global_step + 1 lr = K.get_value(self.model.optimizer.lr) self.learning_rates.append(lr) def on_batch_begin(self, batch, logs=None): lr = cosine_decay_with_warmup(global_step=self.global_step, learning_rate_base=self.learning_rate_base, total_steps=self.total_steps, warmup_learning_rate=self.warmup_learning_rate, warmup_steps=self.warmup_steps, hold_base_rate_steps=self.hold_base_rate_steps) K.set_value(self.model.optimizer.lr, lr) if self.verbose > 0: print('\nBatch %02d: setting learning rate to %s.' % (self.global_step + 1, lr)) ###Output _____no_output_____ ###Markdown Model ###Code def create_model(input_shape): input_tensor = Input(shape=input_shape) base_model = EfficientNetB5(weights=None, include_top=False, input_tensor=input_tensor) base_model.load_weights('../input/efficientnet-keras-weights-b0b5/efficientnet-b5_imagenet_1000_notop.h5') x = GlobalAveragePooling2D()(base_model.output) final_output = Dense(1, activation='linear', name='final_output')(x) model = Model(input_tensor, final_output) return model ###Output _____no_output_____ ###Markdown Train top layers ###Code model = create_model(input_shape=(HEIGHT, WIDTH, CHANNELS)) for layer in model.layers: layer.trainable = False for i in range(-2, 0): model.layers[i].trainable = True cosine_lr_1st = WarmUpCosineDecayScheduler(learning_rate_base=WARMUP_LEARNING_RATE, total_steps=TOTAL_STEPS_1st, warmup_learning_rate=0.0, warmup_steps=WARMUP_STEPS_1st, hold_base_rate_steps=(2 * STEP_SIZE)) metric_list = ["accuracy"] callback_list = [cosine_lr_1st] optimizer = optimizers.Adam(lr=WARMUP_LEARNING_RATE) model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=metric_list) model.summary() STEP_SIZE_TRAIN = train_generator.n//train_generator.batch_size STEP_SIZE_VALID = valid_generator.n//valid_generator.batch_size history_warmup = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=WARMUP_EPOCHS, callbacks=callback_list, verbose=2).history ###Output Epoch 1/5 - 53s - loss: 2.0506 - acc: 0.4155 - val_loss: 1.6326 - val_acc: 0.4318 Epoch 2/5 - 42s - loss: 1.1494 - acc: 0.4394 - val_loss: 2.4500 - val_acc: 0.3024 Epoch 3/5 - 41s - loss: 0.9345 - acc: 0.4616 - val_loss: 1.9941 - val_acc: 0.3110 Epoch 4/5 - 42s - loss: 0.8174 - acc: 0.4895 - val_loss: 2.9449 - val_acc: 0.2782 Epoch 5/5 - 41s - loss: 0.7761 - acc: 0.4892 - val_loss: 2.8009 - val_acc: 0.2853 ###Markdown Fine-tune the complete model ###Code for layer in model.layers: layer.trainable = True es = EarlyStopping(monitor='val_loss', mode='min', patience=ES_PATIENCE, restore_best_weights=True, verbose=1) cosine_lr_2nd = WarmUpCosineDecayScheduler(learning_rate_base=LEARNING_RATE, total_steps=TOTAL_STEPS_2nd, warmup_learning_rate=0.0, warmup_steps=WARMUP_STEPS_2nd, hold_base_rate_steps=(3 * STEP_SIZE)) callback_list = [es, cosine_lr_2nd] optimizer = optimizers.Adam(lr=LEARNING_RATE) model.compile(optimizer=optimizer, loss='mean_squared_error', metrics=metric_list) model.summary() history = model.fit_generator(generator=train_generator, steps_per_epoch=STEP_SIZE_TRAIN, validation_data=valid_generator, validation_steps=STEP_SIZE_VALID, epochs=EPOCHS, callbacks=callback_list, verbose=2).history fig, (ax1, ax2) = plt.subplots(2, 1, sharex='col', figsize=(20, 6)) ax1.plot(cosine_lr_1st.learning_rates) ax1.set_title('Warm up learning rates') ax2.plot(cosine_lr_2nd.learning_rates) ax2.set_title('Fine-tune learning rates') plt.xlabel('Steps') plt.ylabel('Learning rate') sns.despine() plt.show() ###Output _____no_output_____ ###Markdown Model loss graph ###Code fig, (ax1, ax2) = plt.subplots(2, 1, sharex='col', figsize=(20, 14)) ax1.plot(history['loss'], label='Train loss') ax1.plot(history['val_loss'], label='Validation loss') ax1.legend(loc='best') ax1.set_title('Loss') ax2.plot(history['acc'], label='Train accuracy') ax2.plot(history['val_acc'], label='Validation accuracy') ax2.legend(loc='best') ax2.set_title('Accuracy') plt.xlabel('Epochs') sns.despine() plt.show() # Create empty arays to keep the predictions and labels df_preds = pd.DataFrame(columns=['label', 'pred', 'set']) train_generator.reset() valid_generator.reset() # Add train predictions and labels for i in range(STEP_SIZE_TRAIN + 1): im, lbl = next(train_generator) preds = model.predict(im, batch_size=train_generator.batch_size) for index in range(len(preds)): df_preds.loc[len(df_preds)] = [lbl[index], preds[index][0], 'train'] # Add validation predictions and labels for i in range(STEP_SIZE_VALID + 1): im, lbl = next(valid_generator) preds = model.predict(im, batch_size=valid_generator.batch_size) for index in range(len(preds)): df_preds.loc[len(df_preds)] = [lbl[index], preds[index][0], 'validation'] df_preds['label'] = df_preds['label'].astype('int') def classify(x): if x < 0.5: return 0 elif x < 1.5: return 1 elif x < 2.5: return 2 elif x < 3.5: return 3 return 4 # Classify predictions df_preds['predictions'] = df_preds['pred'].apply(lambda x: classify(x)) train_preds = df_preds[df_preds['set'] == 'train'] validation_preds = df_preds[df_preds['set'] == 'validation'] ###Output _____no_output_____ ###Markdown Model Evaluation Confusion Matrix Original thresholds ###Code labels = ['0 - No DR', '1 - Mild', '2 - Moderate', '3 - Severe', '4 - Proliferative DR'] def plot_confusion_matrix(train, validation, labels=labels): train_labels, train_preds = train validation_labels, validation_preds = validation fig, (ax1, ax2) = plt.subplots(1, 2, sharex='col', figsize=(24, 7)) train_cnf_matrix = confusion_matrix(train_labels, train_preds) validation_cnf_matrix = confusion_matrix(validation_labels, validation_preds) train_cnf_matrix_norm = train_cnf_matrix.astype('float') / train_cnf_matrix.sum(axis=1)[:, np.newaxis] validation_cnf_matrix_norm = validation_cnf_matrix.astype('float') / validation_cnf_matrix.sum(axis=1)[:, np.newaxis] train_df_cm = pd.DataFrame(train_cnf_matrix_norm, index=labels, columns=labels) validation_df_cm = pd.DataFrame(validation_cnf_matrix_norm, index=labels, columns=labels) sns.heatmap(train_df_cm, annot=True, fmt='.2f', cmap="Blues",ax=ax1).set_title('Train') sns.heatmap(validation_df_cm, annot=True, fmt='.2f', cmap=sns.cubehelix_palette(8),ax=ax2).set_title('Validation') plt.show() plot_confusion_matrix((train_preds['label'], train_preds['predictions']), (validation_preds['label'], validation_preds['predictions'])) ###Output _____no_output_____ ###Markdown Quadratic Weighted Kappa ###Code def evaluate_model(train, validation): train_labels, train_preds = train validation_labels, validation_preds = validation print("Train Cohen Kappa score: %.3f" % cohen_kappa_score(train_preds, train_labels, weights='quadratic')) print("Validation Cohen Kappa score: %.3f" % cohen_kappa_score(validation_preds, validation_labels, weights='quadratic')) print("Complete set Cohen Kappa score: %.3f" % cohen_kappa_score(np.append(train_preds, validation_preds), np.append(train_labels, validation_labels), weights='quadratic')) evaluate_model((train_preds['label'], train_preds['predictions']), (validation_preds['label'], validation_preds['predictions'])) ###Output Train Cohen Kappa score: 0.977 Validation Cohen Kappa score: 0.912 Complete set Cohen Kappa score: 0.964 ###Markdown Apply model to test set and output predictions ###Code def apply_tta(model, generator, steps=10): step_size = generator.n//generator.batch_size preds_tta = [] for i in range(steps): generator.reset() preds = model.predict_generator(generator, steps=step_size) preds_tta.append(preds) return np.mean(preds_tta, axis=0) preds = apply_tta(model, test_generator) predictions = [classify(x) for x in preds] results = pd.DataFrame({'id_code':test['id_code'], 'diagnosis':predictions}) results['id_code'] = results['id_code'].map(lambda x: str(x)[:-4]) # Cleaning created directories if os.path.exists(train_dest_path): shutil.rmtree(train_dest_path) if os.path.exists(validation_dest_path): shutil.rmtree(validation_dest_path) if os.path.exists(test_dest_path): shutil.rmtree(test_dest_path) ###Output _____no_output_____ ###Markdown Predictions class distribution ###Code fig = plt.subplots(sharex='col', figsize=(24, 8.7)) sns.countplot(x="diagnosis", data=results, palette="GnBu_d").set_title('Test') sns.despine() plt.show() results.to_csv('submission.csv', index=False) display(results.head()) ###Output _____no_output_____
Iceberg-notebook.ipynb
###Markdown Imports ###Code import numpy as np import pandas as pd import time import matplotlib.pyplot as plt import os import math import pickle import datetime import heapq import xgboost as xgb import h5py from tqdm import tqdm_notebook as tqdm from keras import backend as K from keras.models import Model, load_model from keras.layers import Dense, Activation, Conv2D, MaxPooling2D, Reshape, Lambda, ZeroPadding2D, GaussianNoise, AlphaDropout, Input, Concatenate from keras.layers.core import Flatten, Dropout from keras.optimizers import Adam, SGD from keras.layers.normalization import BatchNormalization from keras.preprocessing.image import ImageDataGenerator from keras.callbacks import ModelCheckpoint, Callback, EarlyStopping, ReduceLROnPlateau, LearningRateScheduler from keras.utils import to_categorical, normalize from keras.models import model_from_json from keras_tqdm import TQDMNotebookCallback from sklearn.model_selection import train_test_split, GridSearchCV from sklearn import metrics import tensorflow as tf from scipy import ndimage from skimage.morphology import reconstruction from skimage.restoration import denoise_wavelet, denoise_tv_chambolle, denoise_nl_means from cyclicLR_callback import CyclicLR random_seed = 54321 np.random.seed(random_seed) cwd = os.getcwd() #for windows model_path = cwd + '\\models\\' import keras keras.__version__ ###Output _____no_output_____ ###Markdown Manually create tensorflow session to avoid potential OEM errors on laptop's GPU. ###Code tf.set_random_seed(random_seed) config = tf.ConfigProto() config.gpu_options.allow_growth = True session = tf.Session(config=config) K.set_session(session) K.set_image_dim_ordering('tf') !nvidia-smi ###Output 'nvidia-smi' is not recognized as an internal or external command, operable program or batch file. ###Markdown Load Data ###Code data = pd.read_json("Data/train/train.json", orient='records') data.head() train_df = data data.info() ###Output <class 'pandas.core.frame.DataFrame'> RangeIndex: 1604 entries, 0 to 1603 Data columns (total 5 columns): band_1 1604 non-null object band_2 1604 non-null object id 1604 non-null object inc_angle 1604 non-null object is_iceberg 1604 non-null int64 dtypes: int64(1), object(4) memory usage: 62.7+ KB ###Markdown Missing values ###Code train_df['inc_angle_f'] = pd.to_numeric(train_df['inc_angle'], errors='coerce') print("missing values in inc_angle: ", train_df['inc_angle_f'].isnull().sum()) #train_df['inc_angle_f'].replace(np.nan,train_df['inc_angle_f'].mean(), inplace=True) train_df['inc_angle_f'].replace(np.nan,0, inplace=True) train_df.tail() ###Output missing values in inc_angle: 133 ###Markdown Transform for NN ###Code def get_bands(train_df): max_col = np.array(train_df.apply(lambda x: max((max(train_df.loc[x.name,'band_1']),max(train_df.loc[x.name,'band_2']))),axis=1)) - 10 max_col2 = max_col.reshape(-1,1) * np.ones(75*75).reshape(1,75*75) max_col2 = max_col2.reshape(-1,75,75) band_1 = np.array(train_df['band_1'].tolist()).reshape(-1,75,75) - max_col2 band_2 = np.array(train_df['band_2'].tolist()).reshape(-1,75,75) - max_col2 band_1_t = 10**(band_1/10) band_2_t = 10**(band_2/10) band_1_t = np.where(band_1_t > 0.01, band_1_t, 0) band_2_t = np.where(band_2_t > 0.01, band_2_t, 0) band_3 = band_1_t - band_2_t X = np.stack((band_1,band_2,band_1_t,band_2_t),axis=3) return band_1, band_2, band_1_t, band_2_t, band_3, X band_1, band_2, band_1_t, band_2_t, band_3, X = get_bands(train_df) plt.hist(band_1.flatten(), bins=200, color="red", alpha=0.4) plt.hist(band_2.flatten(), bins=200, color="blue", alpha=0.4) plt.show() plt.hist(band_1[train_df[train_df['is_iceberg']==0].index[:3]].flatten(), bins=50, color="orange", alpha=0.4) plt.hist(band_1[train_df[train_df['is_iceberg']==1].index[:3]].flatten(), bins=50, color="green", alpha=0.4) plt.show() plt.hist(band_1_t.flatten(),bins=200, color="red", alpha=0.4) plt.hist(band_2_t.flatten(),bins=200, color="blue", alpha=0.4) plt.yscale('log') plt.xscale('log') plt.show() plt.hist(band_3[train_df[train_df['is_iceberg']==0].index].flatten(), bins=50, color="orange", alpha=0.4) plt.hist(band_3[train_df[train_df['is_iceberg']==1].index].flatten(), bins=50, color="green", alpha=0.4) plt.yscale('log') plt.xscale('log') plt.show() def plot_bands(index, cmap="gray"): fig = plt.figure(figsize=(12,6)) fig.suptitle("Is Iceberg: %x" % (train_df.loc[index,'is_iceberg']), fontsize=16) ax1 = fig.add_subplot(251) ax1.set_title("Band 1") ax1.imshow(band_1[index], cmap=cmap) ax2 = fig.add_subplot(252) ax2.set_title("Band 2") ax2.imshow(band_2[index], cmap=cmap) ax3 = fig.add_subplot(253) ax3.set_title("Band 1 t") ax3.imshow(band_1_t[index], cmap=cmap) ax3 = fig.add_subplot(254) ax3.set_title("Band 2 t") ax3.imshow(band_2_t[index], cmap=cmap) ax3 = fig.add_subplot(255) ax3.set_title("Band 3") ax3.imshow(band_3[index], cmap=cmap) fig.tight_layout(rect=[0, 0.03, 1, 0.95]) plt.show() plot_bands(0,cmap="inferno") plot_bands(2,cmap="inferno") y = train_df.loc[:,'is_iceberg'] y_angle = train_df.loc[:,['is_iceberg','inc_angle_f']] y_angle['index'] = y_angle.index y_angle.head() ###Output _____no_output_____ ###Markdown Split into train test and validation sets ###Code X_train, X_val, y_train, y_val = train_test_split(X, y_angle, test_size=0.35, random_state=random_seed) print(X_train.shape) print(X_val.shape) X_val_tune, X_val_test, y_val_tune, y_val_test = train_test_split(X_val, y_val, test_size=0.3, random_state=random_seed) print(X_val_tune.shape) print(X_val_test.shape) ###Output (393, 75, 75, 4) (169, 75, 75, 4) ###Markdown Data augmentation ###Code X_train_sample = X_train[:] y_train_sample = y_train[:] print(X_train_sample.shape) datagen = ImageDataGenerator( samplewise_center=False, samplewise_std_normalization=False, rotation_range=20, horizontal_flip=True, vertical_flip=True, fill_mode='nearest') datagen_val = ImageDataGenerator( samplewise_center=False, samplewise_std_normalization=False, rotation_range=0, horizontal_flip=False, vertical_flip=False, fill_mode='nearest') #custom generator for fit_generator from collections import Generator class Datagen_angle(Generator): def __init__(self, imagegen=ImageDataGenerator): self.imagegen = imagegen def flow(self, x, y, batch_size=8, shuffle=True): self.generator = self.imagegen.flow(x, y, batch_size=batch_size, shuffle=shuffle) return self def send(self, ignored): temp_data = next(self.generator) temp_band_3 = temp_data[0][:,:,:,2] - temp_data[0][:,:,:,3] #band_1_t - band_2_t temp_stacked1 = np.stack((temp_data[0][:,:,:,0],temp_data[0][:,:,:,1]),axis=3) temp_stacked2 = np.stack((temp_data[0][:,:,:,2],temp_data[0][:,:,:,3],temp_band_3),axis=3) nn_denoised_temp = temp_data[0] #pass 4 bands for nn denoising input return [temp_stacked1, temp_stacked2, nn_denoised_temp, temp_data[1][:,1]], temp_data[1][:,0] def throw(self, type=None, value=None, traceback=None): raise StopIteration datagen.fit(X_train_sample) datagen_val.fit(X_val) datagen_angle = Datagen_angle(imagegen=datagen) datagen_angle_val = Datagen_angle(imagegen=datagen_val) ###Output (1042, 75, 75, 4) ###Markdown Learning rate scheduler and callback definition ###Code # learning rate schedule class LScheduler: def __init__(self, initial_lrate=0.001, drop=0.66, patience=5): self.initial_lrate=initial_lrate self.drop = drop self.patience = patience def step_decay(self,epoch): initial_lrate = self.initial_lrate drop = self.drop patience = self.patience lrate = initial_lrate * math.pow(drop, math.floor((1+epoch)/patience)) if math.fmod(epoch, patience) == 0: print("Setting learning rate: ",lrate) return lrate ###Output _____no_output_____ ###Markdown Denoising ###Code def denoising(img): img_list = [] for i in range(4): image = normalize(img[:,:,i]) img_list.append(ndimage.median_filter(image, 3)) return np.stack(img_list,axis=2) def apply_over_axis(func, data, mask=None, axis=0, *args, **kwargs): f_list = [] for i in range(data.shape[axis]): if mask is None: f_list.append(func(data[i], *args, **kwargs)) else: f_list.append(func(data[i], mask=mask[i], *args, **kwargs)) return np.stack(f_list,axis=0) #X_denoised = apply_over_axis(denoising, X) #index=8 #original_index = y_train_sample.iloc[index].name #cmap="inferno" #fig = plt.figure(figsize=(12,6)) #fig.suptitle("Denoising: is iceberg: %x" % (y_train_sample.iloc[index,0]), fontsize=16) #ax1 = fig.add_subplot(251) #ax1.set_title("Before") #ax1.imshow(X_train_sample[index][:,:,0], cmap=cmap) #ax2 = fig.add_subplot(252) #ax2.set_title("Denoised") #ax2.imshow(X_denoised[original_index][:,:,0], cmap=cmap) #ax1 = fig.add_subplot(253) #ax1.set_title("Before - band 2") #ax1.imshow(X_train_sample[index][:,:,1], cmap=cmap) #ax2 = fig.add_subplot(254) #ax2.set_title("Denoised - band 2") #ax2.imshow(X_denoised[original_index][:,:,1], cmap=cmap) #plt.show() ###Output _____no_output_____ ###Markdown NN denoising ###Code #custom generator for denoising from collections import Generator class Datagen_denoising(Generator): def __init__(self, imagegen=ImageDataGenerator): self.imagegen = imagegen def flow(self, x, y, batch_size=8, shuffle=True): self.generator = self.imagegen.flow(x, y, batch_size=batch_size, shuffle=shuffle) return self def send(self, ignored): temp_data = next(self.generator) temp_stacked1 = np.stack((temp_data[0][:,:,:,0],temp_data[0][:,:,:,1]),axis=3) temp_stacked = np.stack((temp_data[0][:,:,:,0],temp_data[0][:,:,:,1],temp_data[0][:,:,:,2], temp_data[0][:,:,:,3]),axis=3) return temp_stacked, temp_stacked def throw(self, type=None, value=None, traceback=None): raise StopIteration datagen_denoising = Datagen_denoising(imagegen=datagen) datagen_denoising_val = Datagen_denoising(imagegen=datagen_val) m_input = Input(shape=(75,75,4), name='m_input') #conv layers for main_input x1 = BatchNormalization()(m_input) x1 = ZeroPadding2D()(x1) x1 = Conv2D(8, (3,3), activation='relu')(x1) x1 = BatchNormalization()(x1) x1 = Dropout(0.2)(x1) x1 = ZeroPadding2D()(x1) x1 = Conv2D(8, (3,3), activation='relu')(x1) x1 = BatchNormalization()(x1) x1 = Dropout(0.2)(x1) x1 = ZeroPadding2D()(x1) m_output = Conv2D(4, (3,3), activation='linear', name='m_output')(x1) model_denoise = Model(inputs=[m_input,], outputs=[m_output], name='Model_nn_denoising') model_denoise.compile(optimizer=Adam(lr=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0), loss='mean_squared_error', metrics=['mae']) model_denoise.summary() #model training #lScheduler_denoising = LScheduler(initial_lrate=0.1, drop=0.66, patience=3) #lrScheduler_denoising = LearningRateScheduler(lScheduler_denoising.step_decay) lrScheduler_denoising = CyclicLR(base_lr=1e-8, max_lr=0.006, step_size=400, mode='triangular2', gamma=0.99994) start_time = time.monotonic() H = model_denoise.fit_generator(datagen_denoising.flow(X, y_angle, batch_size=8), steps_per_epoch=len(X)/8, validation_data=datagen_denoising_val.flow(X, y_angle, batch_size=8, shuffle=False), validation_steps=len(X)/8, #validation_data=[X_val,y_val], epochs=12, callbacks = [lrScheduler_denoising, TQDMNotebookCallback(leave_inner=True, leave_outer=True)], verbose=0) model_time = time.monotonic() - start_time print("Model training time: " + '{:d}'.format(int(model_time // 60)) + " minutes " + '{:.1f}'.format(model_time % 60) + " seconds") h = lrScheduler_denoising.history plt.plot(h['lr'], color="b", label='lr') plt.legend() plt.xlabel('# iterations') plt.show() # serialize model to JSON model_json = model_denoise.to_json() with open("models/model_denoise.json", "w") as json_file: json_file.write(model_json) # serialize weights to HDF5 model_weights = model_denoise.get_weights() with open('models/model_denoise_weights.pickle', 'wb') as handle: pickle.dump(model_weights, handle, protocol=pickle.HIGHEST_PROTOCOL) # load json and create model with open("models/model_denoise.json", "r") as json_file: loaded_model_json = json_file.read() model_denoise = model_from_json(loaded_model_json) # load weights into new model with open('models/model_denoise_weights.pickle', 'rb') as handle: model_weights = pickle.load(handle) model_denoise.set_weights(model_weights) print("Loaded model from disk") X_nn_denoised = model_denoise.predict(X, verbose=1) index=8 original_index = y_train_sample.iloc[index].name cmap="inferno" fig = plt.figure(figsize=(12,6)) fig.suptitle("Image denoising nn: %x" % (train_df.loc[original_index,'is_iceberg']), fontsize=16) ax1 = fig.add_subplot(251) ax1.set_title("Before band_1") ax1.imshow(X_train_sample[index][:,:,0], cmap=cmap) ax2 = fig.add_subplot(252) ax2.set_title("NN Denoising band 1") ax2.imshow(X_nn_denoised[original_index][:,:,0], cmap=cmap) ax3 = fig.add_subplot(253) ax3.set_title("Before band 2") ax3.imshow(X_train_sample[index][:,:,1], cmap=cmap) ax4 = fig.add_subplot(254) ax4.set_title("NN Denoising band 2") ax4.imshow(X_nn_denoised[original_index][:,:,1], cmap=cmap) plt.show() ###Output _____no_output_____ ###Markdown Keras model ###Code model_code="CNN_2018_01_21_v01" model_comment="2 CNN inputs 3,3 conv filters - 3rd input nn denoising, na=0" %%writefile current_model.py def InputBlock(x, dropout=0.25, prefix=''): #conv layers for input x = BatchNormalization()(x) x = Conv2D(64, (3,3), activation='relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2))(x) x = BatchNormalization()(x) x = Dropout(dropout)(x) x = Conv2D(64, (3,3), activation='relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2))(x) x = BatchNormalization()(x) x = Dropout(dropout)(x) return(x) main_input = Input(shape=(75,75,2), name='main_input') aux_input = Input(shape=(75,75,3), name='aux_input') aux_input_nn = Input(shape=(75,75,4), name='aux_input_nn') x1 = InputBlock(main_input, prefix='m_input') x2 = InputBlock(aux_input, prefix='a_input') x3 = model_denoise(aux_input_nn) x3 = InputBlock(x3,dropout=0.25, prefix='a_input_nn') x = Concatenate(axis=3)([x1,x2,x3]) #x = BatchNormalization()(x) #x = Dropout(0.2)(x) #conv-block x = Conv2D(128, (3, 3), activation='relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2))(x) x = BatchNormalization()(x) x = Dropout(0.25)(x) #conv-block x = Conv2D(256, (3, 3), activation='relu')(x) x = MaxPooling2D((2, 2), strides=(2, 2))(x) x = BatchNormalization()(x) x = Dropout(0.25)(x) #flatten x = Flatten()(x) angle_input = Input(shape=[1], name='angle_input') #x1 = BatchNormalization()(angle_input) merged = Concatenate()([x, angle_input]) #dense-block x = Dense(513, activation='relu')(merged) x = BatchNormalization()(x) x = Dropout(0.25)(x) #dense-block x = Dense(256, activation='relu')(x) x = BatchNormalization()(x) x = Dropout(0.25)(x) main_output = Dense(1, activation='sigmoid', name='main_output')(x) model_f = Model(inputs=[main_input,aux_input, aux_input_nn, angle_input], outputs=[main_output]) model_f.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0), loss='binary_crossentropy', metrics=['accuracy']) %run -i current_model.py class ModelHistory(Callback): def __init__(self, listSize=10): self.listSize = listSize self.models = [] def on_epoch_end(self, epoch, logs={}): lastLoss = logs.get('val_loss') rank = 1 - lastLoss if len(self.models) > 0: if rank > self.models[0][0]: # new model is better than the worst in the heap if len(self.models) >= self.listSize: #if the model heap is already full heapq.heappushpop(self.models, (rank, lastLoss, self.model.get_weights())) else: heapq.heappush(self.models, (rank, lastLoss, self.model.get_weights())) else: heapq.heappush(self.models, (rank, lastLoss, self.model.get_weights())) def get_callbacks(filepath, save_to_disc = True, lScheduler = None, patience=10, step_decay=LScheduler().step_decay, modelHistoryCallback=None): #es = EarlyStopping('val_loss', patience=patience, mode="min") msave = ModelCheckpoint(filepath, save_best_only=True) #reduceLr = ReduceLROnPlateau(monitor='val_loss', factor=0.5, # patience=5, min_lr=0.000001, verbose=1) if lScheduler is None: lrScheduler = LearningRateScheduler(step_decay) else: lrScheduler = lScheduler tqdmCallback = TQDMNotebookCallback(leave_inner=True, leave_outer=True) if (save_to_disc): return [msave, lrScheduler, modelHistoryCallback, tqdmCallback] else: return [lrScheduler, modelHistoryCallback, tqdmCallback] model_f.summary() from IPython.display import SVG from keras.utils.vis_utils import model_to_dot #import os #os.environ["PATH"] += os.pathsep + 'd:/Anaconda3/Library/bin/graphviz/' SVG(model_to_dot(model_f).create(prog='dot', format='svg')) ###Output _____no_output_____ ###Markdown Model Training ###Code #name init model_timestamp = str(datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S")) model_best_weights_path = model_path + "weights." + model_code + "_" + model_timestamp + ".hdf5" #lScheduler = LScheduler(initial_lrate=0.001, drop=0.66, patience=7) modelEnsemble = ModelHistory(listSize=21) lScheduler = CyclicLR(base_lr=0.0003, max_lr=0.002, step_size=250, mode='triangular3', beta=0.33, theta=0.11) callbacks = get_callbacks(filepath=model_best_weights_path, save_to_disc=False, lScheduler=lScheduler, modelHistoryCallback=modelEnsemble) #model training start_time = time.monotonic() H = model_f.fit_generator(datagen_angle.flow(X_train_sample, y_train_sample, batch_size=16), steps_per_epoch=len(X_train_sample)/16, validation_data=datagen_angle_val.flow(X_val_tune, y_val_tune, batch_size=24, shuffle=False), validation_steps=len(X_val)/24, #validation_data=[X_val,y_val], epochs=150, callbacks=callbacks, verbose=0) model_time = time.monotonic() - start_time print("Model training time: " + '{:d}'.format(int(model_time // 60)) + " minutes " + '{:.1f}'.format(model_time % 60) + " seconds") h = lScheduler.history plt.plot(h['lr'], color="b", label='lr') plt.legend() plt.xlabel('# iterations') plt.show() plt.plot(H.history['loss'], color="b", label='Training loss') plt.plot(H.history['val_loss'], color="r", label='Validation loss') plt.legend() plt.xlabel('# epochs') plt.show() model_f.set_weights(heapq.nlargest(1,modelEnsemble.models)[0][2]) ###Output _____no_output_____ ###Markdown Additional training epochs with SGD - warm start ###Code #addtional training epochs - warm start #lScheduler = LScheduler(initial_lrate=0.000001, drop=0.66, patience=3) modelEnsemble2 = ModelHistory(listSize=5) lScheduler = CyclicLR(base_lr=1e-8, max_lr=1e-6, step_size=80, mode='triangular3', beta=0.33, theta=0.11) callbacks = get_callbacks(filepath=model_best_weights_path, save_to_disc=False, lScheduler=lScheduler, modelHistoryCallback=modelEnsemble2) model_f.compile(optimizer=SGD(lr=0.0001),loss='binary_crossentropy',metrics=['accuracy']) start_time = time.monotonic() H2 = model_f.fit_generator(datagen_angle.flow(X_train_sample, y_train_sample, batch_size=24, shuffle=False), steps_per_epoch=len(X_train_sample)/24, validation_data=datagen_angle_val.flow(X_val_tune, y_val_tune, batch_size=24, shuffle=False), validation_steps=len(X_val)/24, #validation_data=[X_val,y_val], epochs=15, callbacks=callbacks, verbose=0) model_time = time.monotonic() - start_time print("Model training time: " + '{:d}'.format(int(model_time // 60)) + " minutes " + '{:.1f}'.format(model_time % 60) + " seconds") h = lScheduler.history plt.plot(h['lr'], color="b", label='lr') plt.legend() plt.xlabel('# iterations') plt.show() for key in H.history: H.history[key].extend(H2.history[key]) plt.plot(H2.history['loss'], color="b", label='Training loss') plt.plot(H2.history['val_loss'], color="r", label='Validation loss') plt.legend() plt.xlabel('# epochs') plt.show() plt.plot(H.history['loss'], color="b", label='Training loss') plt.plot(H.history['val_loss'], color="r", label='Validation loss') plt.legend() plt.xlabel('# epochs') plt.show() # serialize model to JSON model_json = model_f.to_json() with open("models/model.json", "w") as json_file: json_file.write(model_json) # load model from JSON - don't care about the weights rith now, they are saved separately with open("models/model.json", "r") as json_file: loaded_model_json = json_file.read() model_f = model_from_json(loaded_model_json) #model_object_path = model_path + "model." + model_code + "_" + model_timestamp + '.hdf5' #model_f.save('models/last_model.hdf5') //crashes python kernel with Keras version 2.1.2 #model_f = load_model(model_object_path) ###Output _____no_output_____ ###Markdown Saving model history ###Code argmin = np.array(H.history["loss"]).argmin() argmin argmin = np.array(H.history["val_loss"]).argmin() argmax_acc = np.array(H.history["val_acc"]).argmax() #with open('current_model.py','r') as model_python_code_file: # models_history = pd.DataFrame({"timestamp":[model_timestamp], # "val_loss [min]":[H.history['val_loss'][argmin]], # "epoch [val_loss [min]]":argmin, # "training_loss [val_loss [min]]":[H.history['loss'][argmin]], # "val_acc [val_loss [min]]":[H.history['val_acc'][argmin]], # "training_acc [val_loss [min]]":[H.history['acc'][argmin]], # # "val_acc [max]":[H.history['val_acc'][argmax_acc]], # "epoch [val_acc [max]]":argmax_acc, # "training_loss [val_acc [max]]":[H.history['loss'][argmax_acc]], # "val_loss [val_acc [max]]":[H.history['val_loss'][argmax_acc]], # "training_acc [val_acc [max]]":[H.history['acc'][argmax_acc]], # # "model_path":[model_object_path], # "model_weights_path":[model_best_weights_path], # "model_python_code":[model_python_code_file.read().replace('\r\n','\n')], # "model_comment":[model_comment] # }) # #models_history = models_history[["timestamp", # "epoch [val_loss [min]]", "val_loss [min]", "training_loss [val_loss [min]]", # "val_acc [val_loss [min]]", "training_acc [val_loss [min]]", # "epoch [val_acc [max]]", "val_acc [max]", "training_loss [val_acc [max]]", # "val_loss [val_acc [max]]", "training_acc [val_acc [max]]", # "model_path","model_weights_path","model_python_code","model_comment"]] #models_history.head() #print("Min validation loss epoch:") #print("epoch: %d" %(argmin), # "; val loss [min] %.4f: " % (models_history["val_loss [min]"][0]), # "; training loss: %.4f" % (models_history["training_loss [val_loss [min]]"][0]), # "; val acc: %.4f" % (models_history["val_acc [val_loss [min]]"][0]), # "; training acc: %.4f " % (models_history["training_acc [val_loss [min]]"][0]) # ) #print("Max validation accuracy epoch:") #print("epoch: %d" %(argmax_acc), # "; val loss %.4f: " % (models_history["val_loss [val_acc [max]]"][0]), # "; training loss: %.4f" % (models_history["training_loss [val_acc [max]]"][0]), # "; val acc [max]: %.4f" % (models_history["val_acc [max]"][0]), # "; training acc: %.4f " % (models_history["training_acc [val_acc [max]]"][0]), # ) #print("model comment:", model_comment) # #with open('models_history.csv', 'a') as f: # models_history.to_csv(f, header=False,index=False) # #models_history.to_csv(f, index=False) #df = pd.read_csv('models_history.csv') #df.tail() ###Output _____no_output_____ ###Markdown Model Ensemble ###Code heapq.heappush(modelEnsemble.models, heapq.nlargest(1,modelEnsemble2.models)[0]) modelEnsemble = ModelHistory(listSize=26) with open('models/modelEnsemble.pickle', 'rb') as handle: modelEnsemble.models = pickle.load(handle) #model_f.set_weights(heapq.nlargest(1,modelEnsemble.models)[0][2]) model_f.set_weights(heapq.nsmallest(1,modelEnsemble.models)[0][2]) model_f.compile(optimizer=Adam(lr=0.001, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0), loss='binary_crossentropy', metrics=['accuracy']) model_f.evaluate_generator(datagen_angle_val.flow(X_val_test, y_val_test, batch_size=16, shuffle=True), steps = len(X)/6) with open('models/modelEnsemble.pickle', 'wb') as handle: pickle.dump(modelEnsemble.models, handle, protocol=pickle.HIGHEST_PROTOCOL) with open('models/modelEnsemble.pickle', 'rb') as handle: modelEnsemble.models = pickle.load(handle) def get_prediction(model,weights, X, y): model.set_weights(weights) return model.predict_generator(datagen_angle_val.flow(X, y, batch_size=32, shuffle=False), steps = len(X)/31, verbose=1) def get_ensemble_predictions(X, y, modelEnsemble): predictions = [get_prediction(model_f, model[2], X, y)[:X.shape[0]] for model in tqdm(modelEnsemble.models)] temp_array = np.array(predictions) del(predictions) temp_array = np.swapaxes(temp_array,0,1) temp_array = temp_array.reshape(temp_array.shape[0],temp_array.shape[1]) return temp_array #with h5py.File('tmp_data/ensemble_data.h5', 'r') as hf: # ensemble_train = hf['ensemble_train'][:] modelEnsemble.models[0][0] ensemble_val = get_ensemble_predictions(X_val, y_val, modelEnsemble) with h5py.File('tmp_data/ensemble_data.h5', 'w') as hf: hf.create_dataset("ensemble_val", data=ensemble_val) ensemble_val.shape ensemble_val_tune = get_ensemble_predictions(X_val_tune, y_val_tune, modelEnsemble) with h5py.File('tmp_data/ensemble_data.h5', 'a') as hf: hf.create_dataset("ensemble_val_tune", data=ensemble_val_tune) ensemble_val.shape ensemble_val_test = get_ensemble_predictions(X_val_test, y_val_test, modelEnsemble) with h5py.File('tmp_data/ensemble_data.h5', 'a') as hf: hf.create_dataset("ensemble_val_test", data=ensemble_val_test) ensemble_val.shape #with h5py.File('tmp_data/ensemble_data.h5', 'r') as hf: # ensemble_val = hf['ensemble_val'][:] ensemble_val[1] def modelfit(alg, X, y , X_test, y_test, useTrainCV=True, cv_folds=5, early_stopping_rounds=50): if useTrainCV: xgb_param = alg.get_xgb_params() xgtrain = xgb.DMatrix(X, label=y) cvresult = xgb.cv(xgb_param, xgtrain, num_boost_round=alg.get_params()['n_estimators'], nfold=cv_folds, metrics='logloss', early_stopping_rounds=early_stopping_rounds) alg.set_params(n_estimators=cvresult.shape[0]) #Fit the algorithm on the data alg.fit(X, y,eval_metric='logloss') #Predict training set: dtrain_predictions = alg.predict(X) dtrain_predprob = alg.predict_proba(X)[:,1] dtest_predprob = alg.predict_proba(X_test)[:,1] #Print model report: print("\nModel Report") print("n_estimators: %d" % cvresult.shape[0]) print("Accuracy : %.4g" % metrics.accuracy_score(y, dtrain_predictions)) print("Log loss (Train): %f" % metrics.log_loss(y, dtrain_predprob)) print("Log loss (Test): %f" % metrics.log_loss(y_test, dtest_predprob)) feat_imp = pd.Series(alg.booster().get_fscore()).sort_values(ascending=False) feat_imp.plot(kind='bar', title='Feature Importances') plt.ylabel('Feature Importance Score') plt.show() #ensemble_train = get_ensemble_predictions(X_train, y_train, modelEnsemble) #with h5py.File('tmp_data/ensemble_data.h5', 'a') as hf: # hf.create_dataset("ensemble_train", data=ensemble_train) #with h5py.File('tmp_data/ensemble_data.h5', 'r') as hf: # ensemble_train = hf['ensemble_train'][:] #ensemble_train[0] #ensemble_all = get_ensemble_predictions(X, y_angle, modelEnsemble) ###Output _____no_output_____ ###Markdown Fine tuning ensemble with xgboost ###Code xgb1 = xgb.XGBClassifier( learning_rate =0.1, n_estimators=1000, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=27) modelfit(xgb1, ensemble_val_tune, y_val_tune['is_iceberg'], ensemble_val_test, y_val_test['is_iceberg']) #ensemble_all = get_ensemble_predictions(X, y_angle, modelEnsemble) param_test1 = { 'max_depth':list(range(3,13,2)), 'min_child_weight':list(range(1,10,2)) } gsearch1 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=82, max_depth=5, min_child_weight=1, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test1, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch1.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch1.grid_scores_, gsearch1.best_params_, gsearch1.best_score_ param_test2 = { 'max_depth':[2,3,4], 'min_child_weight':[2.5,3,3.5,6.5,7,7.5] } gsearch2 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=82, max_depth=3, min_child_weight=3, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test2, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch2.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch2.grid_scores_, gsearch2.best_params_, gsearch2.best_score_ param_test3 = { 'gamma':[i/20.0 for i in range(0,30)] } gsearch3 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=82, max_depth=3, min_child_weight=2.5, gamma=0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test3, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch3.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch3.grid_scores_, gsearch3.best_params_, gsearch3.best_score_ xgb2 = xgb.XGBClassifier( learning_rate =0.1, n_estimators=1000, max_depth=3, min_child_weight=2.5, gamma=0.0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=27) modelfit(xgb2, ensemble_val_tune, y_val_tune['is_iceberg'],ensemble_val_test, y_val_test['is_iceberg']) param_test4 = { 'subsample':[i/10.0 for i in range(6,10)], 'colsample_bytree':[i/10.0 for i in range(6,10)] } gsearch4 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=76, max_depth=3, min_child_weight=2.5, gamma=0.0, subsample=0.8, colsample_bytree=0.8, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test4, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch4.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch4.grid_scores_, gsearch4.best_params_, gsearch4.best_score_ param_test5 = { 'subsample':[i/100.0 for i in range(50,80,5)], 'colsample_bytree':[i/100.0 for i in range(40,80,5)] } gsearch5 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=76, max_depth=3, min_child_weight=2.5, gamma=0.0, subsample=0.6, colsample_bytree=0.6, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test5, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch5.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch5.grid_scores_, gsearch5.best_params_, gsearch5.best_score_ param_test6 = { 'reg_alpha':[1e-5, 1e-2, 0.1, 1, 100] } gsearch6 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=76, max_depth=3, min_child_weight=2.5, gamma=0.0, subsample=0.65, colsample_bytree=0.55, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test6, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch6.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch6.grid_scores_, gsearch6.best_params_, gsearch6.best_score_ param_test7 = { 'reg_alpha':[0.0001, 0.0003, 0.001, 0.01, 0.03, 0.1] } gsearch7 = GridSearchCV(estimator = xgb.XGBClassifier( learning_rate =0.1, n_estimators=76, max_depth=3, min_child_weight=2.5, gamma=0.0, subsample=0.65, colsample_bytree=0.55, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=random_seed), param_grid = param_test7, scoring='neg_log_loss',n_jobs=1,iid=False, cv=5, verbose=1) gsearch7.fit(ensemble_val_tune,y_val_tune['is_iceberg'].values) gsearch7.grid_scores_, gsearch7.best_params_, gsearch7.best_score_ xgb3 = xgb.XGBClassifier( learning_rate =0.1, n_estimators=1000, max_depth=3, min_child_weight=2.5, gamma=0.0, subsample=0.65, colsample_bytree=0.55, reg_alpha=0.0001, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=27) modelfit(xgb3, ensemble_val_tune, y_val_tune['is_iceberg'], ensemble_val_test, y_val_test['is_iceberg']) xgb4 = xgb.XGBClassifier( learning_rate =0.008, n_estimators=1000, max_depth=3, min_child_weight=3, gamma=0.0, subsample=0.65, colsample_bytree=0.55, reg_alpha=0.0001, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=27) modelfit(xgb4, ensemble_val_tune, y_val_tune['is_iceberg'], ensemble_val_test, y_val_test['is_iceberg']) with open('models/modelXgb4.pickle', 'wb') as handle: pickle.dump(xgb4, handle, protocol=pickle.HIGHEST_PROTOCOL) #with open('models/modelXgb4.pickle', 'rb') as handle: # xgb4 = pickle.load(handle) ###Output _____no_output_____ ###Markdown Predictions ###Code #use model #model_object_path = "models\\model.CNN_2017_12_19_v15_2017_12_21_15_54_42.hdf5" #model_best_weights_path = "models\\weights.CNN_2017_12_19_v15_2017_12_21_15_54_42.hdf5" #model_f = load_model(model_object_path) #model_f.load_weights(model_best_weights_path) #model_f.evaluate_generator(datagen_angle_val.flow(X_val, y_val, batch_size=32, shuffle=False), # steps = len(X_val)/32) test_df = pd.read_json("Data/test/test.json") test_df.head() test_df['inc_angle_f'] = pd.to_numeric(test_df['inc_angle'], errors='coerce') print("missing values in inc_angle: ", test_df['inc_angle_f'].isnull().sum()) test_df['inc_angle_f'].replace(np.nan,0, inplace=True) test_df.tail() t_band_1, t_band_2, t_band_1_t, t_band_2_t, t_band_3, X_test = get_bands(test_df) y_angle_test = test_df.loc[:,['is_iceberg','inc_angle_f']] y_angle_test['index'] = y_angle_test.index X_test.shape X_train.shape X_tt = np.append(X_test,X_train, axis=0) X_tt.shape y_angle_tt = pd.concat([y_angle_test,y_train]) len(y_angle_tt) del(band_1) del(band_1_t) del(band_2) del(band_2_t) del(band_3) #del(X_train_sample) del(xgb1) del(xgb2) del(xgb3) #del(train_df) del(t_band_1,t_band_2,t_band_1_t, t_band_2_t, t_band_3) del(test_df) ###Output _____no_output_____ ###Markdown Training denoising model on train and test data - warm start ###Code lScheduler_denoising = LScheduler(initial_lrate=0.001, drop=0.66, patience=5) lrScheduler_denosing = LearningRateScheduler(lScheduler_denoising.step_decay) #model training model_denoise.compile(optimizer=Adam(lr=0.1, beta_1=0.9, beta_2=0.999, epsilon=1e-08, decay=0), loss='mean_squared_error', metrics=['mae']) start_time = time.monotonic() H = model_denoise.fit_generator(datagen_denoising.flow(X_tt, y_angle_tt, batch_size=8), steps_per_epoch=len(X_tt)/8, validation_data=datagen_denoising_val.flow(X_tt, y_angle_tt, batch_size=8, shuffle=False), validation_steps=len(X_tt)/8, #validation_data=[X_val,y_val], epochs=10, callbacks = [lrScheduler_denosing, TQDMNotebookCallback(leave_inner=True, leave_outer=True)], verbose=0) model_time = time.monotonic() - start_time print("Model training time: " + '{:d}'.format(int(model_time // 60)) + " minutes " + '{:.1f}'.format(model_time % 60) + " seconds") # serialize weights to HDF5 model_weights = model_denoise.get_weights() with open('models/model_denoise_weights_tt.pickle', 'wb') as handle: pickle.dump(model_weights, handle, protocol=pickle.HIGHEST_PROTOCOL) ###Output _____no_output_____ ###Markdown training on the whole dataset ###Code ensemble_all = get_ensemble_predictions(X, y_angle, modelEnsemble) xgb4 = xgb.XGBClassifier( learning_rate =0.0325, n_estimators=1000, max_depth=3, min_child_weight=6.5, gamma=0.0, subsample=0.8, colsample_bytree=0.85, reg_alpha=3e-03, objective= 'binary:logistic', nthread=8, scale_pos_weight=1, seed=27) modelfit(xgb4, ensemble_all, y_angle['is_iceberg'], ensemble_train, y_train['is_iceberg']) ###Output _____no_output_____ ###Markdown Pseudo labeling ###Code #del(X_train,y_train) #del(data) #del(y_train_sample) #del(X_tt, y_angle_tt) #del(modelEnsemble2) #del(H,H2) #del(X,y,y_angle) #del(ensemble_val, ensemble_train) #idx = 0 #for model in modelEnsemble.models: # pred = get_prediction(model_f, model[2], X_test, y_angle_test)[:X.shape[0]] # pred = np.array(pred) # dataset_name = 'ensemble_data_%02d' % idx # with h5py.File('tmp_data/ensemble_test_data.hd5', 'w') as hf: # hf.create_dataset(dataset_name, data=pred) #ensemble_test = get_ensemble_predictions(X_test, y_angle_test, modelEnsemble) #ensemble_test.shape #pseudo_labels = xgb4.predict(ensemble_test) #test_probs = xgb4.predict_proba(ensemble_test) #predictions = test_probs #y_angle_test.count() #y_angle_test['is_iceberg'] = pseudo_labels #y_angle_tt = y_angle_test.append(y_train) #y_angle_tt.count() ###Output _____no_output_____ ###Markdown Training on pseudo labels ###Code #lScheduler = LScheduler(initial_lrate=0.00001, drop=0.66, patience=5) #callbacks = [LearningRateScheduler(lScheduler.step_decay)] ##model training #start_time = time.monotonic() # #H = model_f.fit_generator(datagen_angle.flow(X_tt, y_angle_tt, batch_size=32), # steps_per_epoch=len(X_test)/32, # validation_data=datagen_angle_val.flow(X_val, y_val, batch_size=32, shuffle=False), # validation_steps=len(X_val)/16, # #validation_data=[X_val,y_val], # epochs=10, callbacks=callbacks) # #model_time = time.monotonic() - start_time #print("Model training time: " + '{:d}'.format(int(model_time // 60)) + " minutes " # + '{:.1f}'.format(model_time % 60) + " seconds") #predictions = model_f.predict_generator(datagen_angle_val.flow(X_test, y_angle_test, batch_size=32, shuffle=False), # steps = len(X_test)/31, verbose=1) #test_df.count() #len(predictions[:8424]) #submission = pd.DataFrame({'id': test_df['id'], 'is_iceberg': predictions[:8424].reshape(-1)}) #submission.head(10) #submission.to_csv("submission.v24.csv", index=False) ###Output _____no_output_____
examples/Quantum Circuit Example.ipynb
###Markdown Example Using Sycamore Quantum CircuitHere we'll run through a more in-depth tensor contraction path finding, including all the different visualization options, by computing some amplitudes for random circuits on Google's Sycamore chip . ###Code import quimb.tensor as qtn import cotengra as ctg # just set up some misc notebook plotting stuff %matplotlib inline import matplotlib as mpl mpl.rcParams['figure.dpi'] = 200 ###Output _____no_output_____ ###Markdown Two Sycamore circuit definitions are included in this repository, the first of which ($m=10$) should fit into memory, and the second of which ($m=12$) will require *slicing*. ###Code def load_circuit( n=53, depth=10, seed=0 , elided=0, sequence='ABCDCDAB', swap_trick=False ): file = f'circuit_n{n}_m{depth}_s{seed}_e{elided}_p{sequence}.qsim' if swap_trick: gate_opts={'contract': 'swap-split-gate', 'max_bond': 2} else: gate_opts={} # instantiate the `Circuit` object that # constructs the initial tensor network: return qtn.Circuit.from_qasm_file(file, gate_opts=gate_opts) ###Output _____no_output_____ ###Markdown Make our target tensor network the overlap of the wavefunction with a bitstring: ###Code circ = load_circuit(depth=20) psi_f = qtn.MPS_computational_state('0' * (circ.N)) tn = circ.psi & psi_f output_inds = [] ###Output _____no_output_____ ###Markdown We can check out what the raw TN looks like: ###Code #tn.graph(iterations=20, color=circ.psi.site_tags, legend=False, figsize=(3, 3)) ###Output _____no_output_____ ###Markdown As well as what it looks like after standard pre-processing: ###Code # inplace full simplify and cast to single precision tn.full_simplify_(output_inds=output_inds) tn.astype_('complex64') ###Output _____no_output_____ ###Markdown The simplification uses some `numba` compiled functions which might slow things done first run. ###Code #tn.graph(initial_layout='kamada_kawai', iterations=10, color=circ.psi.site_tags, legend=False, figsize=(3, 3)) ###Output _____no_output_____ ###Markdown Now we're ready to try and find a contraction path (various initializiation options are illustrated - not necessarily the best): ###Code opt = ctg.HyperOptimizer( methods=['cyc_kahypar-balanced', 'kahypar-balanced', 'cyc_kahypar', 'kahypar'], max_repeats=500, progbar=True, minimize='size',#'flops score_compression=0.5, # deliberately make the optimizer try many methods ) ###Output _____no_output_____ ###Markdown The optimizer is stateful, so this following actual search call can be run repeatedly: ###Code #info = tn.contract(all, optimize=opt, get='path-info') ###Output _____no_output_____ ###Markdown We can visualize the progress of the Bayesian optimizer like so: ###Code opt = ctg.HyperOptimizer( methods=['kahypar'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['kahypar-balanced'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['kahypar-agglom'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['cyc_kahypar'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['cyc_kahypar-balanced'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops')#,subtree_size=12 opt = ctg.HyperOptimizer( methods=['cyc_kahypar-agglom'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, #slicing_reconf_opts={'target_size': 2**27, 'reconf_opts': {}}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['cyc2_kahypar'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['cyc2_kahypar-balanced'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['cyc2_kahypar-agglom'], max_repeats=128, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, #slicing_reconf_opts={'target_size': 2**27, 'reconf_opts': {}}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') tree = ctg.ContractionTree.from_info(info) tree_s = tree.subtree_reconfigure(progbar=True,minimize='size') tree_f = tree.subtree_reconfigure(progbar=True,minimize='flops') opt = ctg.HyperOptimizer( methods=['cyc_kahypar', 'cyc_kahypar-balanced', 'cyc_kahypar-agglom', 'cyc2_kahypar', 'cyc2_kahypar-balanced', 'cyc2_kahypar-agglom', 'kahypar', 'kahypar-balanced', 'kahypar-agglom'], max_repeats=1500, progbar=True, #optlib = 'random', minimize='size',#'flops reconf_opts={'minimize':'flops'}, score_compression=0.5, # deliberately make the optimizer try many methods ) info = tn.contract(all, optimize=opt, get='path-info') opt.plot_trials() ###Output _____no_output_____ ###Markdown Clearly the `kahypar` optimizer seems to be able to find the lowest cost contractions.We can also plot the relationship between contraction flops and size (the `minimize='combo'` score (log2[SIZE] + log2[FLOPS]) effectively ranks how close they are to the origin and can be useful to balance the two aims): ###Code opt.plot_scatter() ###Output _____no_output_____ ###Markdown Where it becomes apparent, that while correlated, the minimum size contraction found is not necessarily the same as the minimum cost contraction found.If we want to visualize what the actual best contraction tree looks like we need to extract the `ContractionTree` object from the optimizer: ###Code tree = opt.get_tree() tree.plot_ring(node_scale= 1 / 3, edge_scale=2 / 3) ###Output _____no_output_____ ###Markdown We can try and plot what this might look like on top of the TN graph arranged properly, though its likely messy... ###Code tree.plot_tent() ###Output _____no_output_____ ###Markdown We can see that the contraction found is imbalanced, with small tensors being steadily absorbed into one big tensor.One more plot function allows one to investigate the actual numbers involved: ###Code tree.plot_contractions() ###Output _____no_output_____ ###Markdown Here, 'peak-size' is the memory required for both inputs and the output of each contraction.Note again that 'flops' defined here assumes real data (as per `opt_einsum` convention), the 'cost' or number of scalar operations, $C$, is generally half this, whereas for quantum circuits with complex tensors, the real FLOPs will be 4x.We can also actually perform the contraction (this is using a GTX 2070): ###Code %%timeit tn.contract(all, optimize=opt.path, backend='jax') %%timeit tn.contract(all, optimize=opt.path, backend='torch') ###Output _____no_output_____ ###Markdown TN construction and simplification is determinstic in `quimb` so at least in this case we can easily evaluate another amplitude with the same contraction tree: ###Code tn = (circ.psi & qtn.MPS_rand_computational_state(circ.N, seed=42)) tn.full_simplify_().astype_('complex64') %%time tn.contract(all, optimize=opt.path, backend='jax') %%time tn.contract(all, optimize=opt.path, backend='jax') ###Output _____no_output_____ ###Markdown Searching for sliced contractions (Sycamore $m=12$) To illustrate slicing we'll setup a (much harder!) depth 12 circuit. We'll perform a swapped rank-2 decomposition on the gates (for a not insignificant drop in total fidelity): ###Code circ = load_circuit(depth=12, swap_trick=True) sampler = qtn.MPS_computational_state('0' * (circ.N)) tn = circ.psi & sampler tn.full_simplify_(output_inds=[]) tn.astype_('complex64') ###Output _____no_output_____ ###Markdown Because of the rank-2 swapped gate decomposition the full simplify function has now found hyperedge introducing diagonal reductions (which is why there are more tensors than indices).Now when we intialize the hyper optimizer we'll tell it slice each contraction before reporting the cost and size. ###Code # we're going to help accelerate the optimizer search by restricting its search space, # since highly balanced contraction trees generally slice best: ctg.hyper._HYPER_SEARCH_SPACE['kahypar']['imbalance']['max'] = 0.1 opt = ctg.HyperOptimizer( methods=['kahypar'], max_time=120, # just search for 2 minutes max_repeats=1000, progbar=True, minimize='flops', slicing_opts={'target_size': 2**28} ) # because of the hyperedges we need to specify no output indices info = tn.contract(all, optimize=opt, get='path-info', output_inds=[]) ###Output _____no_output_____ ###Markdown Sliced contractions can be more difficult to find, if performance is critical its worth running this for longer, maybe with a large parallel pool supplied to the `parallel=` kwarg. We can see that all the contractions are now 'size 28' however: ###Code opt.plot_scatter() ###Output _____no_output_____ ###Markdown We can check what this new contraction tree looks like: ###Code tree = opt.get_tree() tree.plot_ring(node_scale=1 / 3, edge_scale=2 / 3) ###Output _____no_output_____ ###Markdown As enforced, its now somewhat more balanced than the $m=10$ tree.Now we are ready to search properly for the slicing indices, $2^{28}$ should be small enough to fit into no more than 8GB of memory. ###Code sf = ctg.SliceFinder(info, target_size=2**28) ###Output _____no_output_____ ###Markdown We can do quite thorough search with different levels of exploration: ###Code ix_sl, cost_sl = sf.search(temperature=1.0) ix_sl, cost_sl = sf.search(temperature=0.1) ix_sl, cost_sl = sf.search(temperature=0.01) ###Output _____no_output_____ ###Markdown We can also visualise what effect the slicing has had on the total cost (left - starting point, further to the right equals more sliced): ###Code sf.plot_slicings(color_scheme='plasma') ###Output _____no_output_____ ###Markdown Here there seems to have been very little theoretical overhead introduced by the slicing, *for this path*. The real slicing overhead is the increase in FLOPs in comparison to best unsliced path (likely v different). Performing the sliced contractionThe order of `quimb` tensors and their data is guaranteed to match that used by the `opt_einsum` syntax: ###Code arrays = [t.data for t in tn] sc = sf.SlicedContractor(arrays) ###Output _____no_output_____ ###Markdown Or we could translate the opt_einsum symbols back into `quimb` indices to handle the contractions in tensor network form (and use ``.cut_iter``). ###Code [info.quimb_symbol_map[ix] for ix in ix_sl] ###Output _____no_output_____ ###Markdown The first time a contraction is run by `jax` with a particular shape its compiled, which can take a few seconds: ###Code backend = 'jax' %%time c = sc.contract_slice(0, backend=backend) ###Output _____no_output_____ ###Markdown However, the sliced contraction stores the compiled expression and reuses it for each slice: ###Code import tqdm for i in tqdm.tqdm(range(1, sc.nslices)): c = c + sc.contract_slice(i, backend=backend) c ###Output _____no_output_____ ###Markdown Again, the TN manipulations are deterministic so we can re-use everything: ###Code tn = circ.psi & qtn.MPS_rand_computational_state(circ.N, seed=42) tn.full_simplify_(output_inds=[]).astype_('complex64') # update the SlicedContractor's arrays sc.arrays = tuple(t.data for t in tn) # perform the contraction sum(sc.contract_slice(i, backend=backend) for i in tqdm.tqdm(range(sc.nslices))) # update the SlicedContractor's arrays sc.arrays = tuple(t.data for t in tn) # perform the contraction sum(sc.contract_slice(i, backend=backend) for i in tqdm.tqdm(range(sc.nslices))) ###Output _____no_output_____
P8_Data_Engineering_Capstone_Project/P8_capstone_project/P8_Capstone_Project_Data_Preparation_Step_3.1.2_and_4.1.2.ipynb
###Markdown Project 08 - Analysis of U.S. Immigration (I-94) Data Udacity Data Engineer - Capstone Project> by Peter Wissel | 2021-05-05 Project OverviewThis project works with a data set for immigration to the United States. The supplementary datasets will include data onairport codes, U.S. city demographics and temperature data.The following process is divided into different sub-steps to illustrate how to answer the questions set by the businessanalytics team.The project file follows the following steps:* Step 3: Define the Data Model* Step 4: Run ETL to Model the Data 3.1.2. At what airports do foreign persons arrive for immigration to the U.S.? [(Data pipeline)](question2_data_pipeline) **Airport dimension**1. Clean data and create staging table `st_immigration_airports` from file [`I94_SAS_Labels_I94PORT.txt`](../P8_capstone_resource_files/I94_sas_labels_descriptions_extracted_data/I94_SAS_Labels_I94PORT.txt) with the columns `st_ia_airport_code` as referencing column, `st_ia_airport_name` and `st_ia_airport_state_code`. Note that the I-94 airport code is **not** the same as the [IATA](https://en.wikipedia.org/wiki/International_Air_Transport_Association) code and does not correspond to it. Therefore, `SFR` (I94: 'SFR' = 'SAN FRANCISCO, CA') is used for San Francisco Airport in this scenario instead of `SFO`. `SFR` means normally San Fernando, CA, USA. **Project decision:** Data from file [airport-codes.csv](../P8_capstone_resource_files/airport-codes_csv.csv) will **not** be linked to the I-94 airport codes because incorrect assignments should not be made.2. Add the column `st_i94_port_state_code` to staging table `st_i94_immigration` based on staging table `st_immigration_airports`. This information is needed to connect the `us-cities-demographics.json` file later on. `st_ia_airport_state_code --> st_i94_port_state_code`3. Add column `st_i94_port_state_code --> f_i94_port_state_code` to fact table `f_i94_immigrations`4. Creation of a dimension named `d_immigration_airports` based on staging table `st_immigration_airports`.5. Mapping of dimension `d_immigration_airports` to fact table `f_i94_immigration` based on columns (`st_immigration_airports.st_ia_airport_code` --> `d_immigration_airports.d_ia_id`) == (`st_i94_immigration.st_i94_port` --> `f_i94_immigration.d_ia_id`).6. Answer Project Question 2: At what airports do foreign persons arrive for immigration to the U.S.? 4.1.2. At what airports do foreign persons arrive for immigration to the U.S.? [(Description)](question2_description) **Airport dimension**1. Clean data and create staging table `st_immigration_airports` from file [`I94_SAS_Labels_I94PORT.txt`](../P8_capstone_resource_files/I94_sas_labels_descriptions_extracted_data/I94_SAS_Labels_I94PORT.txt) with the columns `st_ia_airport_code` as referencing column, `st_ia_airport_name` and `st_ia_airport_state_code`. Note that the I-94 airport code is **not** the same as the [IATA](https://en.wikipedia.org/wiki/International_Air_Transport_Association) code and does not correspond to it. Therefore, `SFR` (I94: 'SFR' = 'SAN FRANCISCO, CA') is used for San Francisco Airport in this scenario instead of `SFO`. `SFR` means normally San Fernando, CA, USA. **Project decision:** Data from file [airport-codes.csv](../P8_capstone_resource_files/airport-codes_csv.csv) will **not** be linked to the I-94 airport codes because incorrect assignments should not be made. ###Code ###### Imports and Installs section import shutil import pandas as pd import pyspark.sql.functions as F # import spark as spark from pyspark.sql.types import StructType, StructField, DoubleType, StringType, IntegerType, LongType, TimestampType, DateType from datetime import datetime, timedelta from pyspark.sql import SparkSession, DataFrameNaFunctions from pyspark.sql.functions import when, count, col, to_date, datediff, date_format, month import re import json from os import path MAX_MEMORY = "5g" spark = SparkSession\ .builder\ .appName("etl pipeline for project 8 - I94 data") \ .config("spark.jars.packages","saurfang:spark-sas7bdat:3.0.0-s_2.12")\ .config('spark.sql.repl.eagerEval.enabled', True) \ .config("spark.executor.memory", MAX_MEMORY) \ .config("spark.driver.memory", MAX_MEMORY) \ .appName("Foo") \ .enableHiveSupport()\ .getOrCreate() # setting the current LOG-Level spark.sparkContext.setLogLevel('ERROR') """ Next Steps: Carefully clean list of airports 1. read all available information from file 2. filter all elements on different regex conditions and store them into a new data frame called `df_st_immigration_airports` 3. store cleaned data frame `df_st_immigration_airports` to disk """ # path of txt file filepath_immigration_airports = "../P8_capstone_resource_files/I94_sas_labels_descriptions_extracted_data/I94_SAS_Labels_I94PORT.txt" # read txt file into data frame df_txt_immigration_airports_raw = spark.read.text(filepath_immigration_airports) # get regex_cleaned values --> less error prone --> 582 Entries regex_cleaned = r"^\s+'([.\w{2,3} ]*)'\s+=\s+'([\w -.\/]*),\s* ([\w\/]+)" df_st_immigration_airports_regex_cleaned = df_txt_immigration_airports_raw\ .select( F.regexp_extract('value',regex_cleaned, 1).alias('st_ia_airport_code'), F.regexp_extract('value',regex_cleaned, 2).alias('st_ia_airport_name'), F.regexp_extract('value',regex_cleaned, 3).alias('st_ia_airport_state_code')) \ .drop_duplicates() \ .filter("st_ia_airport_code != ''") \ .sort("st_ia_airport_state_code", "st_ia_airport_code") \ .select("st_ia_airport_code", "st_ia_airport_name", "st_ia_airport_state_code") print(df_st_immigration_airports_regex_cleaned.count()) df_st_immigration_airports_regex_cleaned.show(10, False) # get regex_all values --> with errors like `Collapsed (BUF)` --> 660 Entries regex = r"^\s+'([.\w{2,3} ]*)'\s+=\s+'([\w -.\/]*)\s*,*\s* ([\w\/]+)" df_st_immigration_airports = df_txt_immigration_airports_raw\ .select( F.regexp_extract('value',regex, 1).alias('st_ia_airport_code'), F.regexp_extract('value',regex, 2).alias('st_ia_airport_name'), F.regexp_extract('value',regex, 3).alias('st_ia_airport_state_code')) \ .drop_duplicates() \ .filter("st_ia_airport_code != ''") \ .sort("st_ia_airport_state_code", "st_ia_airport_code") print(df_st_immigration_airports.count()) df_st_immigration_airports.show(1000, False) # Difference of the remaining entries ==> 660 - 582 = 78 df_st_immigration_airports \ .join(df_st_immigration_airports_regex_cleaned, df_st_immigration_airports.st_ia_airport_code == df_st_immigration_airports_regex_cleaned.st_ia_airport_code, 'left_anti') \ .show(10000, False) # correct all entries that are not error-free as expected df_st_immigration_airports = df_st_immigration_airports \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r'Collapsed \(\w+\)|No PORT|UNKNOWN', 'Invalid Airport Entry').alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r'06/15|Code|POE', 'Invalid State Code').alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"^DERBY LINE,.*", "DERBY LINE, VT (RT. 5)").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"5", "VT").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"^LOUIS BOTHA, SOUTH", "LOUIS BOTHA").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"AFRICA", "SOUTH AFRICA").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r",", "").alias("st_ia_airport_name"), "st_ia_airport_state_code") \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"^PASO DEL", "PASO DEL NORTE").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"NORTE", "TX").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"^UNIDENTIFED AIR /?", "Invalid Airport Entry").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"^SEAPORT?", "Invalid State Code").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"Abu", "Abu Dhabi").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"Dhabi", "Invalid State Code").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"DOVER-AFB", "Invalid Airport Entry").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"DE", "Invalid State Code").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"NOT REPORTED/UNKNOWNGALES", "NOGALES").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"AZ", "AZ").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"^NOT", "Invalid Airport Entry").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"REPORTED/UNKNOWN", "Invalid State Code").alias("st_ia_airport_state_code")) \ .select("st_ia_airport_code", F.regexp_replace('st_ia_airport_name', r"INVALID - IWAKUNI", "IWAKUNI").alias("st_ia_airport_name"), F.regexp_replace("st_ia_airport_state_code", r"JAPAN", "JAPAN").alias("st_ia_airport_state_code")) \ .sort("st_ia_airport_name", "st_ia_airport_code") print(df_st_immigration_airports.count()) df_st_immigration_airports.show(1000, False) # check if former invalid entries are cleaned correctly # Difference of the remaining entries ==> 660 - 582 = 78 df_st_immigration_airports \ .join(df_st_immigration_airports_regex_cleaned, df_st_immigration_airports.st_ia_airport_code == df_st_immigration_airports_regex_cleaned.st_ia_airport_code, 'left_anti') \ .show(10000, False) # Write data as new CSV file to disk location_to_write = '../P8_capstone_resource_files/I94_sas_labels_descriptions_extracted_data/st_immigration_airports.csv' # delete folder if already exists if path.exists(location_to_write): shutil.rmtree(location_to_write) df_st_immigration_airports \ .coalesce(1)\ .write\ .mode("overwrite") \ .csv(location_to_write, header = 'true') # write df_st_immigration_airports back to stage area on file system location_to_write = "../P8_capstone_resource_files/parquet_stage/PQ2/st_immigration_airports" # delete folder if already exists if path.exists(location_to_write): shutil.rmtree(location_to_write) df_st_immigration_airports \ .repartition(int(1)) \ .write \ .format("parquet")\ .mode(saveMode='overwrite') \ .parquet(location_to_write, compression="gzip") # Read written data frame back into memory # st_immigration_airports: location_st_immigration_airports = "../P8_capstone_resource_files/parquet_stage/PQ2/st_immigration_airports" df_st_immigration_airports = spark.read.parquet(location_st_immigration_airports) # current Schema of staging table st_immigration_airports print(df_st_immigration_airports.count()) df_st_immigration_airports.printSchema() df_st_immigration_airports.show(10, False) ###Output 660 root |-- st_ia_airport_code: string (nullable = true) |-- st_ia_airport_name: string (nullable = true) |-- st_ia_airport_state_code: string (nullable = true) +------------------+---------------------------+------------------------+ |st_ia_airport_code|st_ia_airport_name |st_ia_airport_state_code| +------------------+---------------------------+------------------------+ |ABE |ABERDEEN |WA | |ADS |ADDISON AIRPORT- ADDISON |TX | |AGA |AGANA |GU | |AGU |AGUADILLA |PR | |BOI |AIR TERM. (GOWEN FLD) BOISE|ID | |AKR |AKRON |OH | |CAK |AKRON |OH | |ALA |ALAMAGORDO |NM | |ALB |ALBANY |NY | |CHO |ALBEMARLE CHARLOTTESVILLE |VA | +------------------+---------------------------+------------------------+ only showing top 10 rows ###Markdown 2. Add the column `st_ia_airport_state_code --> st_i94_port_state_code` to staging table `st_i94_immigration` based on staging table `st_immigration_airports`. This information is needed to connect the `us-cities-demographics.json` file later on. ###Code # read df_st_i94_immigrations staging table and add column `st_i94_port_state_code` to it. Write data frame back to disk. # Read written data frame back into memory # st_i94_immigrations: location_st_i94_immigrations = "../P8_capstone_resource_files/parquet_stage/PQ1/st_i94_immigrations" df_st_i94_immigrations = spark.read.parquet(location_st_i94_immigrations) # st_immigration_airports: location_st_immigration_airports = "../P8_capstone_resource_files/parquet_stage/PQ2/st_immigration_airports" df_st_immigration_airports = spark.read.parquet(location_st_immigration_airports) print(df_st_i94_immigrations.count()) df_st_i94_immigrations.printSchema() df_st_i94_immigrations.show(5, False) print(df_st_immigration_airports.count()) df_st_immigration_airports.printSchema() df_st_immigration_airports.show(5, False) ######################################################################################################################## # check if st_i94_dept_date_iso is 1900-01-01 (default value - No onward travel is planned) df_st_i94_immigrations \ .filter(df_st_i94_immigrations.st_i94_depdate == 0)\ .show(5, False) # add column `st_i94_port_state_code` to data frame st_i94_immigrations df_st_i94_immigrations = df_st_i94_immigrations \ .join(df_st_immigration_airports, [df_st_i94_immigrations.st_i94_port == df_st_immigration_airports.st_ia_airport_code], 'left_outer') \ .drop("st_ia_airport_code", "st_ia_airport_name") \ .withColumnRenamed("st_ia_airport_state_code", "st_i94_port_state_code") # rename # check if `st_i94_port_state_code` has null values df_st_i94_immigrations\ .fillna(value='NA', subset=['st_i94_port_state_code'])\ .groupBy("st_i94_port_state_code")\ .count() \ .sort("st_i94_port_state_code")\ .orderBy("count")\ .show(500) # get entry with null value df_st_i94_immigrations \ .filter(col("st_i94_port_state_code").isNull()).show() # get status print(df_st_i94_immigrations.count()) df_st_i94_immigrations.printSchema() df_st_i94_immigrations.show(5, False) # write st_i94_immigrations back to file system location_to_write = "../P8_capstone_resource_files/parquet_stage/PQ2/st_i94_immigrations" # delete folder if already exists if path.exists(location_to_write): shutil.rmtree(location_to_write) df_st_i94_immigrations \ .repartition(int(1)) \ .write \ .format("parquet")\ .mode(saveMode='overwrite') \ .partitionBy('st_i94_year', 'st_i94_month') \ .parquet(location_to_write, compression="gzip") ###Output _____no_output_____ ###Markdown 3. Add new column `st_i94_port_state_code --> f_i94_port_state_code` to existing fact table `f_i94_immigrations`. ###Code # Read data frames back into memory # st_i94_immigrations with column `st_i94_port_state_code`: location_st_i94_immigrations = "../P8_capstone_resource_files/parquet_stage/PQ2/st_i94_immigrations" df_st_i94_immigrations = spark.read.parquet(location_st_i94_immigrations) # f_i94_immigrations: location_f_i94_immigrations = "../P8_capstone_resource_files/parquet_star/PQ1/f_i94_immigrations" df_f_i94_immigrations = spark.read.parquet(location_f_i94_immigrations) # show current schemas print(df_st_i94_immigrations.count()) df_st_i94_immigrations.printSchema() print(df_f_i94_immigrations.count()) df_f_i94_immigrations.printSchema() # get only the needed columns to join df_st_i94_immigrations_2_join = df_st_i94_immigrations \ .select("st_i94_id", "st_i94_port_state_code") # add new columns to fact table `df_f_i94_immigrations` df_f_i94_immigrations = df_f_i94_immigrations \ .join(df_st_i94_immigrations_2_join, df_f_i94_immigrations.f_i94_id == df_st_i94_immigrations_2_join.st_i94_id, 'inner') \ .drop("st_i94_id") \ .withColumnRenamed("st_i94_port_state_code", "f_i94_port_state_code") \ .withColumn("d_sd_id", col("f_i94_addr")) df_f_i94_immigrations.printSchema() df_f_i94_immigrations.show(5, False) # write fact table f_i94_immigration (~ 109,7 MB) location_to_write = "../P8_capstone_resource_files/parquet_star/PQ2/f_i94_immigrations" if path.exists(location_to_write): shutil.rmtree(location_to_write) df_f_i94_immigrations \ .repartition(int(1)) \ .write \ .format("parquet")\ .mode(saveMode='overwrite') \ .partitionBy("f_i94_year", "f_i94_month")\ .parquet(location_to_write, compression="gzip") ###Output _____no_output_____ ###Markdown 4. Creation of a dimension named `d_immigration_airports` based on staging table `st_immigration_airports`. ###Code # st_immigration_airports: location_st_immigration_airports = "../P8_capstone_resource_files/parquet_stage/PQ2/st_immigration_airports" df_d_immigration_airports = spark.read.parquet(location_st_immigration_airports) print(df_d_immigration_airports.count()) df_d_immigration_airports.printSchema() df_d_immigration_airports.show(5, False) df_d_immigration_airports = df_d_immigration_airports \ .withColumn("d_ia_id", df_d_immigration_airports.st_ia_airport_code) \ .withColumnRenamed("st_ia_airport_code", "d_ia_airport_code") \ .withColumnRenamed("st_ia_airport_name", "d_ia_airport_name") \ .withColumnRenamed("st_ia_airport_state_code", "d_ia_airport_state_code") df_d_immigration_airports.printSchema() df_d_immigration_airports.show(5, False) # write dimension table d_immigration_airports to disk (~ 10 kB) location_to_write = "../P8_capstone_resource_files/parquet_star/PQ2/d_immigration_airports" # delete folder if already exists if path.exists(location_to_write): shutil.rmtree(location_to_write) df_d_immigration_airports \ .repartition(int(1)) \ .write \ .format("parquet")\ .mode(saveMode='overwrite') \ .parquet(location_to_write, compression="gzip") ###Output _____no_output_____ ###Markdown 5. Mapping of dimension `d_immigration_airports` to fact table `f_i94_immigration` based on columns (`st_immigration_airports.st_ia_airport_code` --> `d_immigration_airports.d_ia_id`) == (`st_i94_immigration.st_i94_port` --> `f_i94_immigration.d_ia_id`). 6. Answer Project Question 2: At what airports do foreign persons arrive for immigration to the U.S.? ###Code # Read written data frame back into memory df_f_i94_immigrations = spark.read.parquet("../P8_capstone_resource_files/parquet_star/PQ2/f_i94_immigrations") df_d_immigration_airports = spark.read.parquet("../P8_capstone_resource_files/parquet_star/PQ2/d_immigration_airports") # check read data frames print(df_f_i94_immigrations.count()) df_f_i94_immigrations.printSchema() df_f_i94_immigrations.show(5, False) print(df_d_immigration_airports.count()) df_d_immigration_airports.printSchema() df_d_immigration_airports.show(5, False) # Register data frames as Views df_f_i94_immigrations.createOrReplaceTempView("f_i94_immigrations") df_d_immigration_airports.createOrReplaceTempView("d_immigration_airports") # SQL to answer project question 2 (From which country do immigrants come to the U.S. and how many?) df_pq2 = spark.sql(" select d_ia.d_ia_airport_code as airport_code" " ,d_ia.d_ia_airport_name as airport_name" " ,d_ia.d_ia_airport_state_code as airport_state_code" " ,sum(f_i94.f_i94_count) as immigrants" " ,RANK() OVER (ORDER BY count(f_i94.f_i94_count) desc) Immigration_airport_rank" " from f_i94_immigrations f_i94" " join d_immigration_airports d_ia on f_i94.d_ia_id = d_ia.d_ia_id" " group by airport_code" " , airport_name" " , airport_state_code" " order by Immigration_airport_rank asc ") df_pq2.show(5000, False) ###Output +------------+----------------------------+------------------+----------+------------------------+ |airport_code|airport_name |airport_state_code|immigrants|Immigration_airport_rank| +------------+----------------------------+------------------+----------+------------------------+ |NYC |NEW YORK |NY |1669429 |1 | |MIA |MIAMI |FL |1139100 |2 | |LOS |LOS ANGELES |CA |1134611 |3 | |CHI |CHICAGO |IL |792628 |4 | |NEW |NEWARK/TETERBORO |NJ |663630 |5 | |SFR |SAN FRANCISCO |CA |628438 |6 | |HOU |HOUSTON |TX |609343 |7 | |ATL |ATLANTA |GA |605856 |8 | |WAS |WASHINGTON |DC |570668 |9 | |DAL |DALLAS |TX |490050 |10 | |BOS |BOSTON |MA |382112 |11 | |FTL |FORT LAUDERDALE |FL |337598 |12 | |SEA |SEATTLE |WA |272207 |13 | |DET |DETROIT |MI |262744 |14 | |ORL |ORLANDO |FL |257311 |15 | |PHI |PHILADELPHIA |PA |185469 |16 | |LVG |LAS VEGAS |NV |171358 |17 | |HHW |HONOLULU |HI |131980 |18 | |CLT |CHARLOTTE |NC |112025 |19 | |SPM |ST PAUL |MN |101986 |20 | |DEN |DENVER |CO |95133 |21 | |AGA |AGANA |GU |90049 |22 | |BLA |BLAINE |WA |89275 |23 | |PHO |PHOENIX |AZ |72405 |24 | |SAJ |SAN JUAN |PR |67010 |25 | |SAI |SAIPAN |SPN |56091 |26 | |TAM |TAMPA |FL |55731 |27 | |NIA |NIAGARA FALLS |NY |55369 |28 | |PBB |PEACE BRIDGE |NY |54885 |29 | |SDP |SAN DIEGO |CA |54608 |30 | |CHM |CHAMPLAIN |NY |45012 |31 | |SLC |SALT LAKE CITY |UT |43296 |32 | |SNJ |SAN JOSE |CA |42772 |33 | |POO |PORTLAND |OR |42652 |34 | |XXX |Invalid Airport Entry |Invalid State Code|39376 |35 | |NCA |NORTH CAICOS TURK & |CAIMAN |37507 |36 | |SYS |SAN YSIDRO |CA |34341 |37 | |LEW |LEWISTON |NY |31932 |38 | |SNA |SAN ANTONIO |TX |31129 |39 | |BAL |BALTIMORE |MD |28804 |40 | |PHU |PORT HURON |MI |23142 |41 | |WPB |WEST PALM BEACH |FL |22691 |42 | |OAK |OAKLAND |CA |22445 |43 | |X96 |Invalid Airport Entry |Invalid State Code|21870 |44 | |HIG |HIGHGATE SPRINGS |VT |21619 |45 | |VCV |VANCOUVER |CANADA |21200 |46 | |TOR |TORONTO |CANADA |17259 |47 | |STT |ST THOMAS |VI |17152 |48 | |AUS |AUSTIN |TX |16832 |49 | |RDU |RALEIGH/DURHAM |NC |16106 |50 | |FMY |FORT MYERS |FL |15555 |51 | |YHC |HAKAI PASS |CANADA |15211 |52 | |SAC |SACRAMENTO |CA |14540 |53 | |OTM |OTAY MESA |CA |14182 |54 | |MAA |Abu Dhabi |Invalid State Code|14047 |55 | |CIN |CINCINNATI |OH |12657 |56 | |THO |THOUSAND ISLAND BRIDGE |NY |12583 |57 | |DER |DERBY LINE VT (RT. 5) |VT |10390 |58 | |DUB |DUBLIN |IRELAND |9766 |59 | |SFB |SANFORD |FL |9604 |60 | |SUM |SUMAS |WA |9499 |61 | |PEM |PEMBINA |ND |8992 |62 | |LLB |JUAREZ-LINCOLN BRIDGE |TX |8583 |63 | |ANC |ANCHORAGE |AK |8521 |64 | |VIC |VICTORIA |CANADA |8518 |65 | |LYN |LYNDEN |WA |8464 |66 | |OGG |KAHULUI - MAUI |HI |8423 |67 | |BUF |BUFFALO |NY |8296 |68 | |PSP |PALM SPRINGS |CA |7940 |69 | |ANZ |ANZALDUAS |TX |7844 |70 | |OPF |OPA LOCKA |FL |7718 |71 | |NOL |NEW ORLEANS |LA |7649 |72 | |PIT |PITTSBURG |PA |6708 |73 | |CAL |CALEXICO |CA |6697 |74 | |ONT |ONTARIO |CA |6595 |75 | |PEV |PORT EVERGLADES |FL |5986 |76 | |SWE |SWEETGTASS |MT |5431 |77 | |TUC |TUCSON |AZ |5223 |78 | |NAS |NASSAU |BAHAMAS |5049 |79 | |MON |MONTREAL |CANADA |4562 |80 | |BOA |BRIDGE OF AMERICAS |TX |4352 |81 | |YSL |YSLETA |TX |4342 |82 | |BRO |BROWNSVILLE |TX |4263 |83 | |MCA |MCALLEN |TX |4247 |84 | |HID |HIDALGO |TX |4221 |85 | |NOG |NOGALES |AZ |4030 |86 | |LAR |LAREDO |TX |3888 |87 | |CLE |CLEVELAND |OH |3799 |88 | |CLS |CALAIS |ME |3407 |89 | |BGM |BANGOR |ME |3385 |90 | |SHA |SHANNON |IRELAND |3319 |91 | |HAM |HAMILTON |BERMUDA |3084 |92 | |HTM |HOULTON |ME |3072 |93 | |PVD |THEODORE FRANCIS - WARWICK |RI |2925 |94 | |ROO |ROOSVILLE |MT |2819 |95 | |OGD |OGDENSBURG |NY |2805 |96 | |AXB |ALEXANDRIA BAY |NY |2789 |97 | |PDN |PASO DEL NORTE |TX |2745 |98 | |CLM |COLUMBUS |OH |2678 |99 | |PHR |PHARR |TX |2669 |100 | |EPI |EASTPORT |ID |2565 |101 | |RNO |CANNON INTL - RENO/TAHOE |NV |2493 |102 | |PIE |PIEGAN |MT |2453 |103 | |HAR |HARTFORD |CT |2420 |104 | |LNB |LONG BEACH |CA |2366 |105 | |SRQ |BRADENTON - SARASOTA |FL |2362 |106 | |KOA |KEAHOLE-KONA |HI |2308 |107 | |PIR |POINT ROBERTS |WA |2270 |108 | |ORO |OROVILLE |WA |2265 |109 | |ALC |ALCAN |AK |2264 |110 | |NSV |NASHVILLE |TN |2262 |111 | |CLG |CALGARY |CANADA |2149 |112 | |SSM |SAULT STE. MARIE |MI |2084 |113 | |CHR |CHRISTIANSTED |VI |2080 |114 | |ELP |EL PASO |TX |1937 |115 | |SKA |SKAGWAY |AK |1924 |116 | |TEC |TECATE |CA |1891 |117 | |POR |PORTAL |AZ |1802 |118 | |SAA |SANTA ANA |CA |1788 |119 | |INP |INDIANAPOLIS |IN |1720 |120 | |LCB |LAREDO COLUMBIA BRIDGE |TX |1587 |121 | |STR |SANTA TERESA |NM |1581 |122 | |CHF |CHIEF MT |MT |1560 |123 | |STL |ST LOUIS |MO |1552 |124 | |JKM |JACKMAN |ME |1453 |125 | |MAS |MASSENA |NY |1445 |126 | |YGF |Invalid Airport Entry |Invalid State Code|1405 |127 | |LIH |LIHUE |HI |1368 |128 | |LOI |LOS INDIOS |TX |1361 |129 | |JMZ |Invalid Airport Entry |Invalid State Code|1292 |130 | |KAN |KANSAS CITY |MO |1209 |131 | |HPN |WESTCHESTER - WHITE PLAINS |NY |1081 |132 | |VIB |VETERAN INTL BRIDGE |TX |1036 |133 | |ROC |ROCHESTER |NY |979 |134 | |MIL |MILWAUKEE |WI |971 |135 | |CHA |CHARLOTTE AMALIE |VI |964 |136 | |LUK |LUKEVILLE |AZ |960 |137 | |GPM |GRAND PORTAGE |MN |900 |138 | |KEY |KEY WEST |FL |864 |139 | |COB |COBURN GORE |ME |860 |140 | |ROU |ROUSES POINT |NY |840 |141 | |SYR |SYRACUSE |NY |830 |142 | |DOU |DOUGLAS |AZ |736 |143 | |EGP |EAGLE PASS |TX |731 |144 | |OTT |OTTAWA |CANADA |712 |145 | |AND |ANDRADE |CA |709 |146 | |DAC |DALTONS CACHE |AK |705 |147 | |DLR |DEL RIO |TX |606 |148 | |FWA |FRONTIER |WA |576 |149 | |EDA |EDMONTON |CANADA |553 |150 | |INT |INT''L FALLS |MN |549 |151 | |SLU |SAN LUIS |AZ |537 |152 | |PTL |PORTHILL |ID |521 |153 | |CNA |CANAAN |VT |496 |154 | |DNS |DUNSEITH |ND |485 |155 | |DNA |DONNA |TX |484 |156 | |MLB |MELBOURNE |FL |482 |157 | |WBE |WEST BERKSHIRE |VT |467 |158 | |FRB |FAIRBANKS |AK |461 |159 | |POM |PORTLAND |ME |457 |160 | |PGR |PROGRESO |TX |454 |161 | |SPE |ST PETERSBURG |FL |439 |162 | |CHS |CHARLESTON |WV |432 |163 | |MET |METALINE FALLS |WA |426 |164 | |MDT |HARRISBURG |PA |413 |165 | |NRT |NORTH TROY |VT |404 |166 | |RIF |RICHFORT |VT |402 |167 | |RAY |RAYMOND |MT |401 |168 | |W55 |Invalid Airport Entry |Invalid State Code|391 |169 | |ABG |ALBURG |VT |342 |170 | |WIN |WINNIPEG |CANADA |322 |171 | |MRC |MARINE CITY |MI |319 |172 | |BED |HANSCOM FIELD - BEDFORD |MA |307 |173 | |BQN |BORINQUEN - AGUADILLO |PR |303 |174 | |PRE |PRESIDIO |TX |301 |175 | |JAC |JACKSONVILLE |FL |277 |176 | |TRO |TROUT RIVER |NY |276 |177 | |HAL |Halifax NS |Canada |266 |178 | |SAV |SAVANNAH |GA |240 |179 | |ROM |ROMA |TX |238 |180 | |FPR |ST LUCIE COUNTY |FL |237 |181 | |WAL |WALHALLA |ND |233 |182 | |SGR |HULL FIELD SUGAR LAND ARPT |TX |229 |183 | |MOB |MOBILE |AL |226 |184 | |DLB |DEL BONITA |MT |223 |185 | |VNY |VAN NUYS |CA |209 |186 | |LAU |LAURIER |WA |203 |187 | |LAN |LANCASTER |MN |198 |188 | |MOO |MOORES |NY |196 |189 | |NRN |NORTON |VT |192 |190 | |WIL |WILMINGTON |NC |190 |191 | |ABS |ALBURG SPRINGS |VT |189 |192 | |COL |COLUMBUS |NM |185 |193 | |MAF |ODESSA REGIONAL |TX |182 |194 | |ADW |ANDREWS AFB |MD |182 |194 | |MAD |MADAWASKA |ME |179 |196 | |WAR |WARROAD |MN |179 |196 | |NOR |NORFOLK |VA |175 |198 | |FRT |FORTUNA |ND |175 |198 | |CHT |CHATEAUGAY |NY |170 |200 | |ADS |ADDISON AIRPORT- ADDISON |TX |170 |200 | |MOR |MORSES LINE |VT |170 |200 | |CHL |CHARLESTON |SC |163 |203 | |PRO |PROVIDENCE |RI |160 |204 | |ROS |ROSEAU |MN |160 |204 | |FOK |SUFFOLK COUNTY |NY |160 |204 | |KET |KETCHIKAN |AK |158 |207 | |HVR |HAVRE |MT |156 |208 | |X44 |Invalid Airport Entry |Invalid State Code|150 |209 | |GAL |GALVESTON |TX |148 |210 | |FER |FERRY |WA |144 |211 | |5T6 |Invalid Airport Entry |Invalid State Code|137 |212 | |BDL |BRADLEY INTERNATIONAL |CT |135 |213 | |NEC |NECHE |ND |131 |214 | |HNS |HANSBORO |ND |131 |214 | |FTC |FORT COVINGTON |NY |130 |216 | |AGN |ALGONAC |MI |130 |216 | |MEM |MEMPHIS |TN |126 |218 | |PSM |PORTSMOUTH |NH |125 |219 | |BWA |BOUNDARY |WA |125 |219 | |NAC |NACO |AZ |121 |221 | |RST |ROCHESTER |MN |119 |222 | |MMU |MORRISTOWN |NJ |117 |223 | |CRQ |CARAVELAS BA #ARPT |BRAZIL |113 |224 | |BEB |BEEBE PLAIN |VT |111 |225 | |ADT |AMISTAD DAM |TX |107 |226 | |NRG |NORTHGATE |ND |106 |227 | |LUB |LUBEC |ME |106 |227 | |BEE |BEECHER FALLS |VT |104 |229 | |DVL |DANVILLE |WA |99 |230 | |CRP |CORPUS CHRISTI |TX |96 |231 | |TUR |TURNER |MT |93 |232 | |APF |NAPLES |FL |87 |233 | |PTK |OAKLAND COUNTY - PONTIAC |MI |87 |233 | |FTF |FORT FAIRFIELD |ME |85 |235 | |AUH |Invalid Airport Entry |Invalid State Code|84 |236 | |NOO |NOONAN |ND |84 |236 | |ICT |MID-CONTINENT - WITCHITA |KS |82 |238 | |BRG |BURLINGTON |VT |80 |239 | |BWM |BRIDGEWATER |ME |74 |240 | |WHO |WESTHOPE |ND |72 |241 | |PAR |PORT ARTHUR |TX |71 |242 | |VNB |VAN BUREN |ME |69 |243 | |PCF |PORT CANAVERAL |FL |64 |244 | |DAB |DAYTONA BEACH INTERNATIONAL |FL |64 |244 | |GSP |GREENVILLE |SC |63 |246 | |FAL |FALCON HEIGHTS |TX |61 |247 | |FAR |FARGO |ND |60 |248 | |FTK |FORT KENT |ME |58 |249 | |SHR |SHERWOOD |ND |57 |250 | |TST |NEWINGTON DATA CENTER TEST |CT |56 |251 | |REN |RENO |NV |54 |252 | |SWF |STEWART - ORANGE CNTY |NY |54 |252 | |CRY |CARBURY |ND |54 |252 | |FPT |FREEPORT |TX |54 |252 | |SPC |SAN PEDRO |CA |50 |256 | |SJO |ST JOHN |ND |49 |257 | |FAJ |FAJARDO |PR |49 |257 | |FRE |FRESNO |CA |49 |257 | |RIO |RIO GRANDE CITY |TX |49 |257 | |BAU |BAUDETTE |MN |48 |261 | |CXO |Invalid Airport Entry |Invalid State Code|47 |262 | |GAC |Invalid Airport Entry |Invalid State Code|46 |263 | |SGJ |ST AUGUSTINE ARPT |FL |45 |264 | |JFA |Invalid Airport Entry |Invalid State Code|43 |265 | |LEX |BLUE GRASS - LEXINGTON |KY |43 |265 | |VCB |VANCEBORO |ME |41 |267 | |PEN |PENSACOLA |FL |41 |267 | |NIG |NIGHTHAWK |WA |41 |267 | |BLI |BELLINGHAM |WASHINGTON |40 |270 | |ABQ |ALBUQUERQUE |NM |40 |270 | |BZN |GALLATIN FIELD - BOZEMAN |MT |40 |270 | |5KE |KETCHIKAN |AK |38 |273 | |NYL |Invalid Airport Entry |Invalid State Code|38 |273 | |DUL |DULUTH |MN |36 |275 | |HLG |HARLINGEN |TX |36 |275 | |SPO |SPOKANE |WA |36 |275 | |OMA |OMAHA |NE |35 |278 | |BHX |BIRMINGHAM |AL |32 |279 | |ALB |ALBANY |NY |32 |279 | |PNH |PITTSBURG |NH |30 |281 | |FAB |FABENS |TX |29 |282 | |JUN |JUNEAU |AK |26 |283 | |GRB |GREEN BAY |WI |26 |283 | |ERC |EAST RICHFORD |VT |26 |283 | |MHT |MANCHESTER |NH |23 |286 | |GRF |GRAND FORKS |ND |23 |286 | |RCM |RICHMOND |VA |23 |286 | |FPF |FORT PIERCE |FL |23 |286 | |BTN |BATON ROUGE |LA |22 |290 | |MTH |Invalid Airport Entry |Invalid State Code|21 |291 | |DOV |DOVER AFB |Invalid State Code|21 |291 | |LIM |LIMESTONE |ME |20 |293 | |PIN |PINE CREEK |MN |20 |293 | |RYY |Invalid Airport Entry |Invalid State Code|20 |293 | |WRI |MC GUIRE AFB - WRIGHTSOWN |NJ |20 |293 | |MAI |MAIDA |ND |20 |293 | |HEL |HELENA |MT |19 |298 | |YIP |WILLOW RUN - YPSILANTI |MI |19 |298 | |WLL |WILMINGTON |Invalid State Code|19 |298 | |LOU |LOUISVILLE |KY |18 |301 | |PON |PONCE |PR |17 |302 | |ANT |ANTLER |ND |17 |302 | |SDY |SANDUSKY |OH |16 |304 | |MND |MINOT |ND |16 |304 | |DPA |DUPAGE COUNTY |IL |16 |304 | |ERI |ERIE |PA |15 |307 | |SUS |Invalid Airport Entry |Invalid State Code|15 |307 | |OKC |OKLAHOMA CITY |OK |15 |307 | |DSM |DES MOINES |IA |14 |310 | |MWH |MOSES LAKE GRANT COUNTY ARPT|WA |13 |311 | |TKI |TOKEEN |AK |13 |311 | |AGU |AGUADILLA |PR |12 |313 | |HML |HAMIIN |ME |12 |313 | |AFW |FORT WORTH ALLIANCE |TX |12 |313 | |PCW |Invalid Airport Entry |Invalid State Code|12 |313 | |OGS |Invalid Airport Entry |Invalid State Code|12 |313 | |MYR |MYRTLE BEACH |SC |11 |318 | |PAS |PASCAGOULA |MS |11 |318 | |RFD |GREATER ROCKFORD |IL |10 |320 | |FRI |FRIDAY HARBOR |WA |10 |320 | |WRB |WHIRLPOOL BRIDGE |NY |10 |320 | |ATW |Invalid Airport Entry |Invalid State Code|9 |323 | |HEF |MANASSAS |VA |9 |323 | |MGM |MORGAN |MT |9 |323 | |HIO |HILLSBORO |OR |8 |326 | |CNC |CANNON CORNERS |NY |8 |326 | |LSE |LOS EBANOS |TX |8 |326 | |GUL |GULFPORT |MS |8 |326 | |PSE |PONCE-MERCEDITA |PR |8 |326 | |FCA |GLACIER NATIONAL PARK |MT |8 |326 | |BEL |BELLINGHAM |WA |7 |332 | |SNN |SANDERSON |TX |7 |332 | |VQS |VIEQUES-ARPT |PR |7 |332 | |LWT |LEWISTON |MT |7 |332 | |Y62 |Invalid Airport Entry |Invalid State Code|7 |332 | |PKC |POKER CREEK |AK |7 |332 | |UGN |MEMORIAL - WAUKEGAN |IL |7 |332 | |HSV |MADISON COUNTY - HUNTSVILLE |AL |7 |332 | |GRP |GRAND RAPIDS |MI |7 |332 | |CAE |COLUMBIA |SC |7 |332 | |IWA |IWAKUNI |JAPAN |7 |332 | |RME |ROME |NY |6 |343 | |ROG |ROGERS ARPT |AR |6 |343 | |ANP |ANTELOPE WELLS |NM |6 |343 | |FBA |FREEPORT |BAHAMAS |6 |343 | |PNG |PORT ANGELES |WA |5 |347 | |SAS |SASABE |AZ |5 |347 | |LEE |LEESBURG MUNICIPAL AIRPORT |FL |5 |347 | |WCM |WILLOW CREEK |MT |5 |347 | |CTB |CUT BANK MUNICIPAL |MT |5 |347 | |TIW |Invalid Airport Entry |Invalid State Code|4 |352 | |PHF |Invalid Airport Entry |Invalid State Code|4 |352 | |CAK |AKRON |OH |4 |352 | |ACY |POMONA FIELD - ATLANTIC CITY|NJ |4 |352 | |LON |LONGVIEW |WA |4 |352 | |WND |WILLISTON |ND |4 |352 | |SPA |ST PAMPILE |ME |4 |352 | |CPX |Invalid Airport Entry |Invalid State Code|4 |352 | |ARB |ARUBA NETH |ANTILLES |4 |352 | |NC8 |Invalid Airport Entry |Invalid State Code|3 |361 | |COO |COOS BAY |OR |3 |361 | |WHM |WILD HORSE |MT |3 |361 | |MAY |MAYAGUEZ |PR |3 |361 | |48Y |PINECREEK BORDER ARPT |MN |2 |365 | |RIV |RIVERSIDE |CA |2 |365 | |HNN |HANNAH |ND |2 |365 | |GRR |GREER |SC |2 |365 | |AGM |ALGOMA |WI |2 |365 | |ANA |ANACORTES |WA |2 |365 | |APA |ARAPAHOE COUNTY |CO |2 |365 | |ABE |ABERDEEN |WA |2 |365 | |SCO |SCOBEY |MT |2 |365 | |SAG |SAGINAW |MI |2 |365 | |DAY |Invalid Airport Entry |Invalid State Code|1 |375 | |FTH |FORT HANCOCK |TX |1 |375 | |CLA |CLAYTON |NY |1 |375 | |TOL |TOLEDO |OH |1 |375 | |PFN |Invalid Airport Entry |Invalid State Code|1 |375 | |SAR |SARLES |ND |1 |375 | |RGM |RANGELEY |ME |1 |375 | |GMT |Invalid Airport Entry |Invalid State Code|1 |375 | |ASI |Invalid Airport Entry |Invalid State Code|1 |375 | |SAU |ST AUGUSTINE |FL |1 |375 | |BKF |Invalid Airport Entry |Invalid State Code|1 |375 | |SCH |Invalid Airport Entry |Invalid State Code|1 |375 | |PAN |PANAMA CITY |FL |1 |375 | |GPT |BILOXI REGIONAL |MS |1 |375 | |OTS |Invalid Airport Entry |Invalid State Code|1 |375 | |74S |Invalid Airport Entry |Invalid State Code|1 |375 | |BOC |BOCAGRANDE |FL |1 |375 | |YUM |YUMA |AZ |1 |375 | |NWH |NEW HAVEN |CT |1 |375 | |HOM |HOMER |AK |1 |375 | |CRA |CRANE LAKE |MN |1 |375 | |PER |PERTH AMBOY |NJ |1 |375 | +------------+----------------------------+------------------+----------+------------------------+