title
stringlengths 7
246
| abstract
stringlengths 3
3.31k
|
---|---|
Interactive Robot Learning of Gestures, Language and Affordances | A growing field in robotics and Artificial Intelligence (AI) research is human-robot collaboration, whose target is to enable effective teamwork between humans and robots. However, in many situations human teams are still superior to human-robot teams, primarily because human teams can easily agree on a common goal with language, and the individual members observe each other effectively, leveraging their shared motor repertoire and sensorimotor resources. This paper shows that for cognitive robots it is possible, and indeed fruitful, to combine knowledge acquired from interacting with elements of the environment (affordance exploration) with the probabilistic observation of another agent's actions. We propose a model that unites (i) learning robot affordances and word descriptions with (ii) statistical recognition of human gestures with vision sensors. We discuss theoretical motivations, possible implementations, and we show initial results which highlight that, after having acquired knowledge of its surrounding environment, a humanoid robot can generalize this knowledge to the case when it observes another agent (human partner) performing the same motor actions previously executed during training. |
Privacy for Free: Communication-Efficient Learning with Differential Privacy Using Sketches | Communication and privacy are two critical concerns in distributed learning. Many existing works treat these concerns separately. In this work, we argue that a natural connection exists between methods for communication reduction and privacy preservation in the context of distributed machine learning. In particular, we prove that Count Sketch, a simple method for data stream summarization, has inherent differential privacy properties. Using these derived privacy guarantees, we propose a novel sketch-based framework (DiffSketch) for distributed learning, where we compress the transmitted messages via sketches to simultaneously achieve communication efficiency and provable privacy benefits. Our evaluation demonstrates that DiffSketch can provide strong differential privacy guarantees (e.g., $\varepsilon$= 1) and reduce communication by 20-50x with only marginal decreases in accuracy. Compared to baselines that treat privacy and communication separately, DiffSketch improves absolute test accuracy by 5%-50% while offering the same privacy guarantees and communication compression. |
Legendre Decomposition for Tensors | We present a novel nonnegative tensor decomposition method, called Legendre decomposition, which factorizes an input tensor into a multiplicative combination of parameters. Thanks to the well-developed theory of information geometry, the reconstructed tensor is unique and always minimizes the KL divergence from an input tensor. We empirically show that Legendre decomposition can more accurately reconstruct tensors than other nonnegative tensor decomposition methods. |
Neural Variational Inference for Text Processing | Recent advances in neural variational inference have spawned a renaissance in deep latent variable models. In this paper we introduce a generic variational inference framework for generative and conditional models of text. While traditional variational methods derive an analytic approximation for the intractable distributions over latent variables, here we construct an inference network conditioned on the discrete text input to provide the variational distribution. We validate this framework on two very different text modelling applications, generative document modelling and supervised question answering. Our neural variational document model combines a continuous stochastic document representation with a bag-of-words generative model and achieves the lowest reported perplexities on two standard test corpora. The neural answer selection model employs a stochastic representation layer within an attention mechanism to extract the semantics between a question and answer pair. On two question answering benchmarks this model exceeds all previous published benchmarks. |
Audio Classification of Bit-Representation Waveform | This study investigated the waveform representation for audio signal classification. Recently, many studies on audio waveform classification such as acoustic event detection and music genre classification have been published. Most studies on audio waveform classification have proposed the use of a deep learning (neural network) framework. Generally, a frequency analysis method such as Fourier transform is applied to extract the frequency or spectral information from the input audio waveform before inputting the raw audio waveform into the neural network. In contrast to these previous studies, in this paper, we propose a novel waveform representation method, in which audio waveforms are represented as a bit sequence, for audio classification. In our experiment, we compare the proposed bit representation waveform, which is directly given to a neural network, to other representations of audio waveforms such as a raw audio waveform and a power spectrum with two classification tasks: one is an acoustic event classification task and the other is a sound/music classification task. The experimental results showed that the bit representation waveform achieved the best classification performance for both the tasks. |
A Brief Introduction to Machine Learning for Engineers | This monograph aims at providing an introduction to key concepts, algorithms, and theoretical results in machine learning. The treatment concentrates on probabilistic models for supervised and unsupervised learning problems. It introduces fundamental concepts and algorithms by building on first principles, while also exposing the reader to more advanced topics with extensive pointers to the literature, within a unified notation and mathematical framework. The material is organized according to clearly defined categories, such as discriminative and generative models, frequentist and Bayesian approaches, exact and approximate inference, as well as directed and undirected models. This monograph is meant as an entry point for researchers with a background in probability and linear algebra. |
Automatic Microprocessor Performance Bug Detection | Processor design validation and debug is a difficult and complex task, which consumes the lion's share of the design process. Design bugs that affect processor performance rather than its functionality are especially difficult to catch, particularly in new microarchitectures. This is because, unlike functional bugs, the correct processor performance of new microarchitectures on complex, long-running benchmarks is typically not deterministically known. Thus, when performance benchmarking new microarchitectures, performance teams may assume that the design is correct when the performance of the new microarchitecture exceeds that of the previous generation, despite significant performance regressions existing in the design. In this work, we present a two-stage, machine learning-based methodology that is able to detect the existence of performance bugs in microprocessors. Our results show that our best technique detects 91.5% of microprocessor core performance bugs whose average IPC impact across the studied applications is greater than 1% versus a bug-free design with zero false positives. When evaluated on memory system bugs, our technique achieves 100% detection with zero false positives. Moreover, the detection is automatic, requiring very little performance engineer time. |
GCoD: Graph Convolutional Network Acceleration via Dedicated Algorithm and Accelerator Co-Design | Graph Convolutional Networks (GCNs) have emerged as the state-of-the-art graph learning model. However, it can be notoriously challenging to inference GCNs over large graph datasets, limiting their application to large real-world graphs and hindering the exploration of deeper and more sophisticated GCN graphs. This is because real-world graphs can be extremely large and sparse. Furthermore, the node degree of GCNs tends to follow the power-law distribution and therefore have highly irregular adjacency matrices, resulting in prohibitive inefficiencies in both data processing and movement and thus substantially limiting the achievable GCN acceleration efficiency. To this end, this paper proposes a GCN algorithm and accelerator Co-Design framework dubbed GCoD which can largely alleviate the aforementioned GCN irregularity and boost GCNs' inference efficiency. Specifically, on the algorithm level, GCoD integrates a split and conquer GCN training strategy that polarizes the graphs to be either denser or sparser in local neighborhoods without compromising the model accuracy, resulting in graph adjacency matrices that (mostly) have merely two levels of workload and enjoys largely enhanced regularity and thus ease of acceleration. On the hardware level, we further develop a dedicated two-pronged accelerator with a separated engine to process each of the aforementioned denser and sparser workloads, further boosting the overall utilization and acceleration efficiency. Extensive experiments and ablation studies validate that our GCoD consistently reduces the number of off-chip accesses, leading to speedups of 15286x, 294x, 7.8x, and 2.5x as compared to CPUs, GPUs, and prior-art GCN accelerators including HyGCN and AWB-GCN, respectively, while maintaining or even improving the task accuracy. Codes are available at https://github.com/RICE-EIC/GCoD. |
A Variational-Sequential Graph Autoencoder for Neural Architecture Performance Prediction | In computer vision research, the process of automating architecture engineering, Neural Architecture Search (NAS), has gained substantial interest. In the past, NAS was hardly accessible to researchers without access to large-scale compute systems, due to very long compute times for the recurrent search and evaluation of new candidate architectures. The NAS-Bench-101 dataset facilitates a paradigm change towards classical methods such as supervised learning to evaluate neural architectures. In this paper, we propose a graph encoder built upon Graph Neural Networks (GNN). We demonstrate the effectiveness of the proposed encoder on NAS performance prediction for seen architecture types as well an unseen ones (i.e., zero shot prediction). We also provide a new variational-sequential graph autoencoder (VS-GAE) based on the proposed graph encoder. The VS-GAE is specialized on encoding and decoding graphs of varying length utilizing GNNs. Experiments on different sampling methods show that the embedding space learned by our VS-GAE increases the stability on the accuracy prediction task. |
Deep Reinforcement Learning for Wireless Resource Allocation Using Buffer State Information | As the number of user equipments (UEs) with various data rate and latency requirements increases in wireless networks, the resource allocation problem for orthogonal frequency-division multiple access (OFDMA) becomes challenging. In particular, varying requirements lead to a non-convex optimization problem when maximizing the systems data rate while preserving fairness between UEs. In this paper, we solve the non-convex optimization problem using deep reinforcement learning (DRL). We outline, train and evaluate a DRL agent, which performs the task of media access control scheduling for a downlink OFDMA scenario. To kickstart training of our agent, we introduce mimicking learning. For improvement of scheduling performance, full buffer state information at the base station (e.g. packet age, packet size) is taken into account. Techniques like input feature compression, packet shuffling and age capping further improve the performance of the agent. We train and evaluate our agents using Nokia's wireless suite and evaluate against different benchmark agents. We show that our agents clearly outperform the benchmark agents. |
Faster Kernel Matrix Algebra via Density Estimation | We study fast algorithms for computing fundamental properties of a positive semidefinite kernel matrix $K \in \mathbb{R}^{n \times n}$ corresponding to $n$ points $x_1,\ldots,x_n \in \mathbb{R}^d$. In particular, we consider estimating the sum of kernel matrix entries, along with its top eigenvalue and eigenvector. We show that the sum of matrix entries can be estimated to $1+\epsilon$ relative error in time $sublinear$ in $n$ and linear in $d$ for many popular kernels, including the Gaussian, exponential, and rational quadratic kernels. For these kernels, we also show that the top eigenvalue (and an approximate eigenvector) can be approximated to $1+\epsilon$ relative error in time $subquadratic$ in $n$ and linear in $d$. Our algorithms represent significant advances in the best known runtimes for these problems. They leverage the positive definiteness of the kernel matrix, along with a recent line of work on efficient kernel density estimation. |
Self-supervised Knowledge Distillation Using Singular Value Decomposition | To solve deep neural network (DNN)'s huge training dataset and its high computation issue, so-called teacher-student (T-S) DNN which transfers the knowledge of T-DNN to S-DNN has been proposed. However, the existing T-S-DNN has limited range of use, and the knowledge of T-DNN is insufficiently transferred to S-DNN. To improve the quality of the transferred knowledge from T-DNN, we propose a new knowledge distillation using singular value decomposition (SVD). In addition, we define a knowledge transfer as a self-supervised task and suggest a way to continuously receive information from T-DNN. Simulation results show that a S-DNN with a computational cost of 1/5 of the T-DNN can be up to 1.1\% better than the T-DNN in terms of classification accuracy. Also assuming the same computational cost, our S-DNN outperforms the S-DNN driven by the state-of-the-art distillation with a performance advantage of 1.79\%. code is available on https://github.com/sseung0703/SSKD\_SVD. |
OCTID: Optical Coherence Tomography Image Database | Optical coherence tomography (OCT) is a non-invasive imaging modality which is widely used in clinical ophthalmology. OCT images are capable of visualizing deep retinal layers which is crucial for early diagnosis of retinal diseases. In this paper, we describe a comprehensive open-access database containing more than 500 highresolution images categorized into different pathological conditions. The image classes include Normal (NO), Macular Hole (MH), Age-related Macular Degeneration (AMD), Central Serous Retinopathy (CSR), and Diabetic Retinopathy (DR). The images were obtained from a raster scan protocol with a 2mm scan length and 512x1024 pixel resolution. We have also included 25 normal OCT images with their corresponding ground truth delineations which can be used for an accurate evaluation of OCT image segmentation. In addition, we have provided a user-friendly GUI which can be used by clinicians for manual (and semi-automated) segmentation. |
Privately Publishable Per-instance Privacy | We consider how to privately share the personalized privacy losses incurred by objective perturbation, using per-instance differential privacy (pDP). Standard differential privacy (DP) gives us a worst-case bound that might be orders of magnitude larger than the privacy loss to a particular individual relative to a fixed dataset. The pDP framework provides a more fine-grained analysis of the privacy guarantee to a target individual, but the per-instance privacy loss itself might be a function of sensitive data. In this paper, we analyze the per-instance privacy loss of releasing a private empirical risk minimizer learned via objective perturbation, and propose a group of methods to privately and accurately publish the pDP losses at little to no additional privacy cost. |
Online Learning Sensing Matrix and Sparsifying Dictionary Simultaneously for Compressive Sensing | This paper considers the problem of simultaneously learning the Sensing Matrix and Sparsifying Dictionary (SMSD) on a large training dataset. To address the formulated joint learning problem, we propose an online algorithm that consists of a closed-form solution for optimizing the sensing matrix with a fixed sparsifying dictionary and a stochastic method for learning the sparsifying dictionary on a large dataset when the sensing matrix is given. Benefiting from training on a large dataset, the obtained compressive sensing (CS) system by the proposed algorithm yields a much better performance in terms of signal recovery accuracy than the existing ones. The simulation results on natural images demonstrate the effectiveness of the suggested online algorithm compared with the existing methods. |
The spiked matrix model with generative priors | Using a low-dimensional parametrization of signals is a generic and powerful way to enhance performance in signal processing and statistical inference. A very popular and widely explored type of dimensionality reduction is sparsity; another type is generative modelling of signal distributions. Generative models based on neural networks, such as GANs or variational auto-encoders, are particularly performant and are gaining on applicability. In this paper we study spiked matrix models, where a low-rank matrix is observed through a noisy channel. This problem with sparse structure of the spikes has attracted broad attention in the past literature. Here, we replace the sparsity assumption by generative modelling, and investigate the consequences on statistical and algorithmic properties. We analyze the Bayes-optimal performance under specific generative models for the spike. In contrast with the sparsity assumption, we do not observe regions of parameters where statistical performance is superior to the best known algorithmic performance. We show that in the analyzed cases the approximate message passing algorithm is able to reach optimal performance. We also design enhanced spectral algorithms and analyze their performance and thresholds using random matrix theory, showing their superiority to the classical principal component analysis. We complement our theoretical results by illustrating the performance of the spectral algorithms when the spikes come from real datasets. |
Relevant-features based Auxiliary Cells for Energy Efficient Detection of Natural Errors | Deep neural networks have demonstrated state-of-the-art performance on many classification tasks. However, they have no inherent capability to recognize when their predictions are wrong. There have been several efforts in the recent past to detect natural errors but the suggested mechanisms pose additional energy requirements. To address this issue, we propose an ensemble of classifiers at hidden layers to enable energy efficient detection of natural errors. In particular, we append Relevant-features based Auxiliary Cells (RACs) which are class specific binary linear classifiers trained on relevant features. The consensus of RACs is used to detect natural errors. Based on combined confidence of RACs, classification can be terminated early, thereby resulting in energy efficient detection. We demonstrate the effectiveness of our technique on various image classification datasets such as CIFAR-10, CIFAR-100 and Tiny-ImageNet. |
Epicasting: An Ensemble Wavelet Neural Network (EWNet) for Forecasting Epidemics | Infectious diseases remain among the top contributors to human illness and death worldwide, among which many diseases produce epidemic waves of infection. The unavailability of specific drugs and ready-to-use vaccines to prevent most of these epidemics makes the situation worse. These force public health officials, health care providers, and policymakers to rely on early warning systems generated by reliable and accurate forecasts of epidemics. Accurate forecasts of epidemics can assist stakeholders in tailoring countermeasures, such as vaccination campaigns, staff scheduling, and resource allocation, to the situation at hand, which could translate to reductions in the impact of a disease. Unfortunately, most of these past epidemics (e.g., dengue, malaria, hepatitis, influenza, and most recent, Covid-19) exhibit nonlinear and non-stationary characteristics due to their spreading fluctuations based on seasonal-dependent variability and the nature of these epidemics. We analyze a wide variety of epidemic time series datasets using a maximal overlap discrete wavelet transform (MODWT) based autoregressive neural network and call it EWNet. MODWT techniques effectively characterize non-stationary behavior and seasonal dependencies in the epidemic time series and improve the forecasting scheme of the autoregressive neural network in the proposed ensemble wavelet network framework. From a nonlinear time series viewpoint, we explore the asymptotic stationarity of the proposed EWNet model to show the asymptotic behavior of the associated Markov Chain. We also theoretically investigate the effect of learning stability and the choice of hidden neurons in the proposed EWNet model. From a practical perspective, we compare our proposed EWNet framework with several statistical, machine learning, and deep learning models that have been previously used for epidemic forecasting. |
ReachNN: Reachability Analysis of Neural-Network Controlled Systems | Applying neural networks as controllers in dynamical systems has shown great promises. However, it is critical yet challenging to verify the safety of such control systems with neural-network controllers in the loop. Previous methods for verifying neural network controlled systems are limited to a few specific activation functions. In this work, we propose a new reachability analysis approach based on Bernstein polynomials that can verify neural-network controlled systems with a more general form of activation functions, i.e., as long as they ensure that the neural networks are Lipschitz continuous. Specifically, we consider abstracting feedforward neural networks with Bernstein polynomials for a small subset of inputs. To quantify the error introduced by abstraction, we provide both theoretical error bound estimation based on the theory of Bernstein polynomials and more practical sampling based error bound estimation, following a tight Lipschitz constant estimation approach based on forward reachability analysis. Compared with previous methods, our approach addresses a much broader set of neural networks, including heterogeneous neural networks that contain multiple types of activation functions. Experiment results on a variety of benchmarks show the effectiveness of our approach. |
Block CUR: Decomposing Matrices using Groups of Columns | A common problem in large-scale data analysis is to approximate a matrix using a combination of specifically sampled rows and columns, known as CUR decomposition. Unfortunately, in many real-world environments, the ability to sample specific individual rows or columns of the matrix is limited by either system constraints or cost. In this paper, we consider matrix approximation by sampling predefined \emph{blocks} of columns (or rows) from the matrix. We present an algorithm for sampling useful column blocks and provide novel guarantees for the quality of the approximation. This algorithm has application in problems as diverse as biometric data analysis to distributed computing. We demonstrate the effectiveness of the proposed algorithms for computing the Block CUR decomposition of large matrices in a distributed setting with multiple nodes in a compute cluster, where such blocks correspond to columns (or rows) of the matrix stored on the same node, which can be retrieved with much less overhead than retrieving individual columns stored across different nodes. In the biometric setting, the rows correspond to different users and columns correspond to users' biometric reaction to external stimuli, {\em e.g.,}~watching video content, at a particular time instant. There is significant cost in acquiring each user's reaction to lengthy content so we sample a few important scenes to approximate the biometric response. An individual time sample in this use case cannot be queried in isolation due to the lack of context that caused that biometric reaction. Instead, collections of time segments ({\em i.e.,} blocks) must be presented to the user. The practical application of these algorithms is shown via experimental results using real-world user biometric data from a content testing environment. |
Reprogramming Language Models for Molecular Representation Learning | Recent advancements in transfer learning have made it a promising approach for domain adaptation via transfer of learned representations. This is especially when relevant when alternate tasks have limited samples of well-defined and labeled data, which is common in the molecule data domain. This makes transfer learning an ideal approach to solve molecular learning tasks. While Adversarial reprogramming has proven to be a successful method to repurpose neural networks for alternate tasks, most works consider source and alternate tasks within the same domain. In this work, we propose a new algorithm, Representation Reprogramming via Dictionary Learning (R2DL), for adversarially reprogramming pretrained language models for molecular learning tasks, motivated by leveraging learned representations in massive state of the art language models. The adversarial program learns a linear transformation between a dense source model input space (language data) and a sparse target model input space (e.g., chemical and biological molecule data) using a k-SVD solver to approximate a sparse representation of the encoded data, via dictionary learning. R2DL achieves the baseline established by state of the art toxicity prediction models trained on domain-specific data and outperforms the baseline in a limited training-data setting, thereby establishing avenues for domain-agnostic transfer learning for tasks with molecule data. |
Optimization of Smooth Functions with Noisy Observations: Local Minimax Rates | We consider the problem of global optimization of an unknown non-convex smooth function with zeroth-order feedback. In this setup, an algorithm is allowed to adaptively query the underlying function at different locations and receives noisy evaluations of function values at the queried points (i.e. the algorithm has access to zeroth-order information). Optimization performance is evaluated by the expected difference of function values at the estimated optimum and the true optimum. In contrast to the classical optimization setup, first-order information like gradients are not directly accessible to the optimization algorithm. We show that the classical minimax framework of analysis, which roughly characterizes the worst-case query complexity of an optimization algorithm in this setting, leads to excessively pessimistic results. We propose a local minimax framework to study the fundamental difficulty of optimizing smooth functions with adaptive function evaluations, which provides a refined picture of the intrinsic difficulty of zeroth-order optimization. We show that for functions with fast level set growth around the global minimum, carefully designed optimization algorithms can identify a near global minimizer with many fewer queries. For the special case of strongly convex and smooth functions, our implied convergence rates match the ones developed for zeroth-order convex optimization problems. At the other end of the spectrum, for worst-case smooth functions no algorithm can converge faster than the minimax rate of estimating the entire unknown function in the $\ell_\infty$-norm. We provide an intuitive and efficient algorithm that attains the derived upper error bounds. |
Zero-Shot Cross-Lingual Opinion Target Extraction | Aspect-based sentiment analysis involves the recognition of so called opinion target expressions (OTEs). To automatically extract OTEs, supervised learning algorithms are usually employed which are trained on manually annotated corpora. The creation of these corpora is labor-intensive and sufficiently large datasets are therefore usually only available for a very narrow selection of languages and domains. In this work, we address the lack of available annotated data for specific languages by proposing a zero-shot cross-lingual approach for the extraction of opinion target expressions. We leverage multilingual word embeddings that share a common vector space across various languages and incorporate these into a convolutional neural network architecture for OTE extraction. Our experiments with 5 languages give promising results: We can successfully train a model on annotated data of a source language and perform accurate prediction on a target language without ever using any annotated samples in that target language. Depending on the source and target language pairs, we reach performances in a zero-shot regime of up to 77% of a model trained on target language data. Furthermore, we can increase this performance up to 87% of a baseline model trained on target language data by performing cross-lingual learning from multiple source languages. |
Limited-Memory Matrix Adaptation for Large Scale Black-box Optimization | The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) is a popular method to deal with nonconvex and/or stochastic optimization problems when the gradient information is not available. Being based on the CMA-ES, the recently proposed Matrix Adaptation Evolution Strategy (MA-ES) provides a rather surprising result that the covariance matrix and all associated operations (e.g., potentially unstable eigendecomposition) can be replaced in the CMA-ES by a updated transformation matrix without any loss of performance. In order to further simplify MA-ES and reduce its $\mathcal{O}\big(n^2\big)$ time and storage complexity to $\mathcal{O}\big(n\log(n)\big)$, we present the Limited-Memory Matrix Adaptation Evolution Strategy (LM-MA-ES) for efficient zeroth order large-scale optimization. The algorithm demonstrates state-of-the-art performance on a set of established large-scale benchmarks. We explore the algorithm on the problem of generating adversarial inputs for a (non-smooth) random forest classifier, demonstrating a surprising vulnerability of the classifier. |
Automatic Expert Selection for Multi-Scenario and Multi-Task Search | Multi-scenario learning (MSL) enables a service provider to cater for users' fine-grained demands by separating services for different user sectors, e.g., by user's geographical region. Under each scenario there is a need to optimize multiple task-specific targets e.g., click through rate and conversion rate, known as multi-task learning (MTL). Recent solutions for MSL and MTL are mostly based on the multi-gate mixture-of-experts (MMoE) architecture. MMoE structure is typically static and its design requires domain-specific knowledge, making it less effective in handling both MSL and MTL. In this paper, we propose a novel Automatic Expert Selection framework for Multi-scenario and Multi-task search, named AESM^{2}. AESM^{2} integrates both MSL and MTL into a unified framework with an automatic structure learning. Specifically, AESM^{2} stacks multi-task layers over multi-scenario layers. This hierarchical design enables us to flexibly establish intrinsic connections between different scenarios, and at the same time also supports high-level feature extraction for different tasks. At each multi-scenario/multi-task layer, a novel expert selection algorithm is proposed to automatically identify scenario-/task-specific and shared experts for each input. Experiments over two real-world large-scale datasets demonstrate the effectiveness of AESM^{2} over a battery of strong baselines. Online A/B test also shows substantial performance gain on multiple metrics. Currently, AESM^{2} has been deployed online for serving major traffic. |
Opportunities and Challenges in Deep Learning Adversarial Robustness: A Survey | As we seek to deploy machine learning models beyond virtual and controlled domains, it is critical to analyze not only the accuracy or the fact that it works most of the time, but if such a model is truly robust and reliable. This paper studies strategies to implement adversary robustly trained algorithms towards guaranteeing safety in machine learning algorithms. We provide a taxonomy to classify adversarial attacks and defenses, formulate the Robust Optimization problem in a min-max setting and divide it into 3 subcategories, namely: Adversarial (re)Training, Regularization Approach, and Certified Defenses. We survey the most recent and important results in adversarial example generation, defense mechanisms with adversarial (re)Training as their main defense against perturbations. We also survey mothods that add regularization terms that change the behavior of the gradient, making it harder for attackers to achieve their objective. Alternatively, we've surveyed methods which formally derive certificates of robustness by exactly solving the optimization problem or by approximations using upper or lower bounds. In addition, we discuss the challenges faced by most of the recent algorithms presenting future research perspectives. |
Copula-like Variational Inference | This paper considers a new family of variational distributions motivated by Sklar's theorem. This family is based on new copula-like densities on the hypercube with non-uniform marginals which can be sampled efficiently, i.e. with a complexity linear in the dimension of state space. Then, the proposed variational densities that we suggest can be seen as arising from these copula-like densities used as base distributions on the hypercube with Gaussian quantile functions and sparse rotation matrices as normalizing flows. The latter correspond to a rotation of the marginals with complexity $\mathcal{O}(d \log d)$. We provide some empirical evidence that such a variational family can also approximate non-Gaussian posteriors and can be beneficial compared to Gaussian approximations. Our method performs largely comparably to state-of-the-art variational approximations on standard regression and classification benchmarks for Bayesian Neural Networks. |
Affine Transport for Sim-to-Real Domain Adaptation | Sample-efficient domain adaptation is an open problem in robotics. In this paper, we present affine transport -- a variant of optimal transport, which models the mapping between state transition distributions between the source and target domains with an affine transformation. First, we derive the affine transport framework; then, we extend the basic framework with Procrustes alignment to model arbitrary affine transformations. We evaluate the method in a number of OpenAI Gym sim-to-sim experiments with simulation environments, as well as on a sim-to-real domain adaptation task of a robot hitting a hockeypuck such that it slides and stops at a target position. In each experiment, we evaluate the results when transferring between each pair of dynamics domains. The results show that affine transport can significantly reduce the model adaptation error in comparison to using the original, non-adapted dynamics model. |
Fine-tuning deep CNN models on specific MS COCO categories | Fine-tuning of a deep convolutional neural network (CNN) is often desired. This paper provides an overview of our publicly available py-faster-rcnn-ft software library that can be used to fine-tune the VGG_CNN_M_1024 model on custom subsets of the Microsoft Common Objects in Context (MS COCO) dataset. For example, we improved the procedure so that the user does not have to look for suitable image files in the dataset by hand which can then be used in the demo program. Our implementation randomly selects images that contain at least one object of the categories on which the model is fine-tuned. |
Extending Label Smoothing Regularization with Self-Knowledge Distillation | Inspired by the strong correlation between the Label Smoothing Regularization(LSR) and Knowledge distillation(KD), we propose an algorithm LsrKD for training boost by extending the LSR method to the KD regime and applying a softer temperature. Then we improve the LsrKD by a Teacher Correction(TC) method, which manually sets a constant larger proportion for the right class in the uniform distribution teacher. To further improve the performance of LsrKD, we develop a self-distillation method named Memory-replay Knowledge Distillation (MrKD) that provides a knowledgeable teacher to replace the uniform distribution one in LsrKD. The MrKD method penalizes the KD loss between the current model's output distributions and its copies' on the training trajectory. By preventing the model learning so far from its historical output distribution space, MrKD can stabilize the learning and find a more robust minimum. Our experiments show that LsrKD can improve LSR performance consistently at no cost, especially on several deep neural networks where LSR is ineffectual. Also, MrKD can significantly improve single model training. The experiment results confirm that the TC can help LsrKD and MrKD to boost training, especially on the networks they are failed. Overall, LsrKD, MrKD, and their TC variants are comparable to or outperform the LSR method, suggesting the broad applicability of these KD methods. |
Generalized Learning Vector Quantization for Classification in Randomized Neural Networks and Hyperdimensional Computing | Machine learning algorithms deployed on edge devices must meet certain resource constraints and efficiency requirements. Random Vector Functional Link (RVFL) networks are favored for such applications due to their simple design and training efficiency. We propose a modified RVFL network that avoids computationally expensive matrix operations during training, thus expanding the network's range of potential applications. Our modification replaces the least-squares classifier with the Generalized Learning Vector Quantization (GLVQ) classifier, which only employs simple vector and distance calculations. The GLVQ classifier can also be considered an improvement upon certain classification algorithms popularly used in the area of Hyperdimensional Computing. The proposed approach achieved state-of-the-art accuracy on a collection of datasets from the UCI Machine Learning Repository - higher than previously proposed RVFL networks. We further demonstrate that our approach still achieves high accuracy while severely limited in training iterations (using on average only 21% of the least-squares classifier computational costs). |
On the Convergence of AdaBound and its Connection to SGD | Adaptive gradient methods such as Adam have gained extreme popularity due to their success in training complex neural networks and less sensitivity to hyperparameter tuning compared to SGD. However, it has been recently shown that Adam can fail to converge and might cause poor generalization -- this lead to the design of new, sophisticated adaptive methods which attempt to generalize well while being theoretically reliable. In this technical report we focus on AdaBound, a promising, recently proposed optimizer. We present a stochastic convex problem for which AdaBound can provably take arbitrarily long to converge in terms of a factor which is not accounted for in the convergence rate guarantee of Luo et al. (2019). We present a new $O(\sqrt T)$ regret guarantee under different assumptions on the bound functions, and provide empirical results on CIFAR suggesting that a specific form of momentum SGD can match AdaBound's performance while having less hyperparameters and lower computational costs. |
Variational Quantum Eigensolver for Frustrated Quantum Systems | Hybrid quantum-classical algorithms have been proposed as a potentially viable application of quantum computers. A particular example - the variational quantum eigensolver, or VQE - is designed to determine a global minimum in an energy landscape specified by a quantum Hamiltonian, which makes it appealing for the needs of quantum chemistry. Experimental realizations have been reported in recent years and theoretical estimates of its efficiency are a subject of intense effort. Here we consider the performance of the VQE technique for a Hubbard-like model describing a one-dimensional chain of fermions with competing nearest- and next-nearest-neighbor interactions. We find that recovering the VQE solution allows one to obtain the correlation function of the ground state consistent with the exact result. We also study the barren plateau phenomenon for the Hamiltonian in question and find that the severity of this effect depends on the encoding of fermions to qubits. Our results are consistent with the current knowledge about the barren plateaus in quantum optimization. |
Studying the Interplay between Information Loss and Operation Loss in Representations for Classification | Information-theoretic measures have been widely adopted in the design of features for learning and decision problems. Inspired by this, we look at the relationship between i) a weak form of information loss in the Shannon sense and ii) the operation loss in the minimum probability of error (MPE) sense when considering a family of lossy continuous representations (features) of a continuous observation. We present several results that shed light on this interplay. Our first result offers a lower bound on a weak form of information loss as a function of its respective operation loss when adopting a discrete lossy representation (quantization) instead of the original raw observation. From this, our main result shows that a specific form of vanishing information loss (a weak notion of asymptotic informational sufficiency) implies a vanishing MPE loss (or asymptotic operational sufficiency) when considering a general family of lossy continuous representations. Our theoretical findings support the observation that the selection of feature representations that attempt to capture informational sufficiency is appropriate for learning, but this selection is a rather conservative design principle if the intended goal is achieving MPE in classification. Supporting this last point, and under some structural conditions, we show that it is possible to adopt an alternative notion of informational sufficiency (strictly weaker than pure sufficiency in the mutual information sense) to achieve operational sufficiency in learning. |
MMA Regularization: Decorrelating Weights of Neural Networks by Maximizing the Minimal Angles | The strong correlation between neurons or filters can significantly weaken the generalization ability of neural networks. Inspired by the well-known Tammes problem, we propose a novel diversity regularization method to address this issue, which makes the normalized weight vectors of neurons or filters distributed on a hypersphere as uniformly as possible, through maximizing the minimal pairwise angles (MMA). This method can easily exert its effect by plugging the MMA regularization term into the loss function with negligible computational overhead. The MMA regularization is simple, efficient, and effective. Therefore, it can be used as a basic regularization method in neural network training. Extensive experiments demonstrate that MMA regularization is able to enhance the generalization ability of various modern models and achieves considerable performance improvements on CIFAR100 and TinyImageNet datasets. In addition, experiments on face verification show that MMA regularization is also effective for feature learning. Code is available at: https://github.com/wznpub/MMA_Regularization. |
Hierarchical Deep Learning of Multiscale Differential Equation Time-Steppers | Nonlinear differential equations rarely admit closed-form solutions, thus requiring numerical time-stepping algorithms to approximate solutions. Further, many systems characterized by multiscale physics exhibit dynamics over a vast range of timescales, making numerical integration computationally expensive due to numerical stiffness. In this work, we develop a hierarchy of deep neural network time-steppers to approximate the flow map of the dynamical system over a disparate range of time-scales. The resulting model is purely data-driven and leverages features of the multiscale dynamics, enabling numerical integration and forecasting that is both accurate and highly efficient. Moreover, similar ideas can be used to couple neural network-based models with classical numerical time-steppers. Our multiscale hierarchical time-stepping scheme provides important advantages over current time-stepping algorithms, including (i) circumventing numerical stiffness due to disparate time-scales, (ii) improved accuracy in comparison with leading neural-network architectures, (iii) efficiency in long-time simulation/forecasting due to explicit training of slow time-scale dynamics, and (iv) a flexible framework that is parallelizable and may be integrated with standard numerical time-stepping algorithms. The method is demonstrated on a wide range of nonlinear dynamical systems, including the Van der Pol oscillator, the Lorenz system, the Kuramoto-Sivashinsky equation, and fluid flow pass a cylinder; audio and video signals are also explored. On the sequence generation examples, we benchmark our algorithm against state-of-the-art methods, such as LSTM, reservoir computing, and clockwork RNN. Despite the structural simplicity of our method, it outperforms competing methods on numerical integration. |
Predicting Time-to-Failure of Plasma Etching Equipment using Machine Learning | Predicting unscheduled breakdowns of plasma etching equipment can reduce maintenance costs and production losses in the semiconductor industry. However, plasma etching is a complex procedure and it is hard to capture all relevant equipment properties and behaviors in a single physical model. Machine learning offers an alternative for predicting upcoming machine failures based on relevant data points. In this paper, we describe three different machine learning tasks that can be used for that purpose: (i) predicting Time-To-Failure (TTF), (ii) predicting health state, and (iii) predicting TTF intervals of an equipment. Our results show that trained machine learning models can outperform benchmarks resembling human judgments in all three tasks. This suggests that machine learning offers a viable alternative to currently deployed plasma etching equipment maintenance strategies and decision making processes. |
Neural Fixed-Point Acceleration for Convex Optimization | Fixed-point iterations are at the heart of numerical computing and are often a computational bottleneck in real-time applications that typically need a fast solution of moderate accuracy. We present neural fixed-point acceleration which combines ideas from meta-learning and classical acceleration methods to automatically learn to accelerate fixed-point problems that are drawn from a distribution. We apply our framework to SCS, the state-of-the-art solver for convex cone programming, and design models and loss functions to overcome the challenges of learning over unrolled optimization and acceleration instabilities. Our work brings neural acceleration into any optimization problem expressible with CVXPY. The source code behind this paper is available at https://github.com/facebookresearch/neural-scs |
How Developers Iterate on Machine Learning Workflows -- A Survey of the Applied Machine Learning Literature | Machine learning workflow development is anecdotally regarded to be an iterative process of trial-and-error with humans-in-the-loop. However, we are not aware of quantitative evidence corroborating this popular belief. A quantitative characterization of iteration can serve as a benchmark for machine learning workflow development in practice, and can aid the development of human-in-the-loop machine learning systems. To this end, we conduct a small-scale survey of the applied machine learning literature from five distinct application domains. We collect and distill statistics on the role of iteration within machine learning workflow development, and report preliminary trends and insights from our investigation, as a starting point towards this benchmark. Based on our findings, we finally describe desiderata for effective and versatile human-in-the-loop machine learning systems that can cater to users in diverse domains. |
Xi-Learning: Successor Feature Transfer Learning for General Reward Functions | Transfer in Reinforcement Learning aims to improve learning performance on target tasks using knowledge from experienced source tasks. Successor features (SF) are a prominent transfer mechanism in domains where the reward function changes between tasks. They reevaluate the expected return of previously learned policies in a new target task and to transfer their knowledge. A limiting factor of the SF framework is its assumption that rewards linearly decompose into successor features and a reward weight vector. We propose a novel SF mechanism, $\xi$-learning, based on learning the cumulative discounted probability of successor features. Crucially, $\xi$-learning allows to reevaluate the expected return of policies for general reward functions. We introduce two $\xi$-learning variations, prove its convergence, and provide a guarantee on its transfer performance. Experimental evaluations based on $\xi$-learning with function approximation demonstrate the prominent advantage of $\xi$-learning over available mechanisms not only for general reward functions, but also in the case of linearly decomposable reward functions. |
Collaborating with Humans without Human Data | Collaborating with humans requires rapidly adapting to their individual strengths, weaknesses, and preferences. Unfortunately, most standard multi-agent reinforcement learning techniques, such as self-play (SP) or population play (PP), produce agents that overfit to their training partners and do not generalize well to humans. Alternatively, researchers can collect human data, train a human model using behavioral cloning, and then use that model to train "human-aware" agents ("behavioral cloning play", or BCP). While such an approach can improve the generalization of agents to new human co-players, it involves the onerous and expensive step of collecting large amounts of human data first. Here, we study the problem of how to train agents that collaborate well with human partners without using human data. We argue that the crux of the problem is to produce a diverse set of training partners. Drawing inspiration from successful multi-agent approaches in competitive domains, we find that a surprisingly simple approach is highly effective. We train our agent partner as the best response to a population of self-play agents and their past checkpoints taken throughout training, a method we call Fictitious Co-Play (FCP). Our experiments focus on a two-player collaborative cooking simulator that has recently been proposed as a challenge problem for coordination with humans. We find that FCP agents score significantly higher than SP, PP, and BCP when paired with novel agent and human partners. Furthermore, humans also report a strong subjective preference to partnering with FCP agents over all baselines. |
To Charge or To Sell? EV Pack Useful Life Estimation via LSTMs and Autoencoders | Electric Vehicles (EVs) are spreading fast as they promise to provide better performances and comfort, but above all, to help facing climate change. Despite their success, their cost is still a challenge. One of the most expensive components of EVs is lithium-ion batteries, which became the standard for energy storage in a wide range of applications. Precisely estimating the Remaining Useful Life (RUL) of battery packs can open to their reuse and thus help to reduce the cost of EVs and improve sustainability. A correct RUL estimation can be used to quantify the residual market value of the battery pack. The customer can then decide to sell the battery when it still has a value, i.e., before it exceeds its end of life of the target application and can still be reused in a second domain without compromising safety and reliability. In this paper, we propose to use a Deep Learning approach based on LSTMs and Autoencoders to estimate the RUL of li-ion batteries. Compared to what has been proposed so far in the literature, we employ measures to ensure the applicability of the method also in the real deployed application. Such measures include (1) avoid using non-measurable variables as input, (2) employ appropriate datasets with wide variability and different conditions, (3) do not use cycles to define the RUL. |
Automatic Grading of Knee Osteoarthritis on the Kellgren-Lawrence Scale from Radiographs Using Convolutional Neural Networks | The severity of knee osteoarthritis is graded using the 5-point Kellgren-Lawrence (KL) scale where healthy knees are assigned grade 0, and the subsequent grades 1-4 represent increasing severity of the affliction. Although several methods have been proposed in recent years to develop models that can automatically predict the KL grade from a given radiograph, most models have been developed and evaluated on datasets not sourced from India. These models fail to perform well on the radiographs of Indian patients. In this paper, we propose a novel method using convolutional neural networks to automatically grade knee radiographs on the KL scale. Our method works in two connected stages: in the first stage, an object detection model segments individual knees from the rest of the image; in the second stage, a regression model automatically grades each knee separately on the KL scale. We train our model using the publicly available Osteoarthritis Initiative (OAI) dataset and demonstrate that fine-tuning the model before evaluating it on a dataset from a private hospital significantly improves the mean absolute error from 1.09 (95% CI: 1.03-1.15) to 0.28 (95% CI: 0.25-0.32). Additionally, we compare classification and regression models built for the same task and demonstrate that regression outperforms classification. |
Analysis and classification of main risk factors causing stroke in Shanxi Province | In China, stroke is the first leading cause of death in recent years. It is a major cause of long-term physical and cognitive impairment, which bring great pressure on the National Public Health System. Evaluation of the risk of getting stroke is important for the prevention and treatment of stroke in China. A data set with 2000 hospitalized stroke patients in 2018 and 27583 residents during the year 2017 to 2020 is analyzed in this study. Due to data incompleteness, inconsistency, and non-structured formats, missing values in the raw data are filled with -1 as an abnormal class. With the cleaned features, three models on risk levels of getting stroke are built by using machine learning methods. The importance of "8+2" factors from China National Stroke Prevention Project (CSPP) is evaluated via decision tree and random forest models. Except for "8+2" factors the importance of features and SHAP1 values for lifestyle information, demographic information, and medical measurement are evaluated and ranked via a random forest model. Furthermore, a logistic regression model is applied to evaluate the probability of getting stroke for different risk levels. Based on the census data in both communities and hospitals from Shanxi Province, we investigate different risk factors of getting stroke and their ranking with interpretable machine learning models. The results show that Hypertension (Systolic blood pressure, Diastolic blood pressure), Physical Inactivity (Lack of sports), and Overweight (BMI) are ranked as the top three high-risk factors of getting stroke in Shanxi province. The probability of getting stroke for a person can also be predicted via our machine learning model. |
Deep Unfolded Recovery of Sub-Nyquist Sampled Ultrasound Image | The most common technique for generating B-mode ultrasound (US) images is delay and sum (DAS) beamforming, where the signals received at the transducer array are sampled before an appropriate delay is applied. This necessitates sampling rates exceeding the Nyquist rate and the use of a large number of antenna elements to ensure sufficient image quality. Recently we proposed methods to reduce the sampling rate and the array size relying on image recovery using iterative algorithms, based on compressed sensing (CS) and the finite rate of innovation (FRI) frameworks. Iterative algorithms typically require a large number of iterations, making them difficult to use in real-time. Here, we propose a reconstruction method from sub-Nyquist samples in the time and spatial domain, that is based on unfolding the ISTA algorithm, resulting in an efficient and interpretable deep network. The inputs to our network are the subsampled beamformed signals after summation and delay in the frequency domain, requiring only a subset of the US signal to be stored for recovery. Our method allows reducing the number of array elements, sampling rate, and computational time while ensuring high quality imaging performance. Using \emph{in vivo} data we demonstrate that the proposed method yields high-quality images while reducing the data volume traditionally used up to 36 times. In terms of image resolution and contrast, our technique outperforms previously suggested methods as well as DAS and minimum-variance (MV) beamforming, paving the way to real-time applicable recovery methods. |
Learning Distributed Representations from Reviews for Collaborative Filtering | Recent work has shown that collaborative filter-based recommender systems can be improved by incorporating side information, such as natural language reviews, as a way of regularizing the derived product representations. Motivated by the success of this approach, we introduce two different models of reviews and study their effect on collaborative filtering performance. While the previous state-of-the-art approach is based on a latent Dirichlet allocation (LDA) model of reviews, the models we explore are neural network based: a bag-of-words product-of-experts model and a recurrent neural network. We demonstrate that the increased flexibility offered by the product-of-experts model allowed it to achieve state-of-the-art performance on the Amazon review dataset, outperforming the LDA-based approach. However, interestingly, the greater modeling power offered by the recurrent neural network appears to undermine the model's ability to act as a regularizer of the product representations. |
A Comprehensive Study on Deep Learning Bug Characteristics | Deep learning has gained substantial popularity in recent years. Developers mainly rely on libraries and tools to add deep learning capabilities to their software. What kinds of bugs are frequently found in such software? What are the root causes of such bugs? What impacts do such bugs have? Which stages of deep learning pipeline are more bug prone? Are there any antipatterns? Understanding such characteristics of bugs in deep learning software has the potential to foster the development of better deep learning platforms, debugging mechanisms, development practices, and encourage the development of analysis and verification frameworks. Therefore, we study 2716 high-quality posts from Stack Overflow and 500 bug fix commits from Github about five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand the types of bugs, root causes of bugs, impacts of bugs, bug-prone stage of deep learning pipeline as well as whether there are some common antipatterns found in this buggy software. The key findings of our study include: data bug and logic bug are the most severe bug types in deep learning software appearing more than 48% of the times, major root causes of these bugs are Incorrect Model Parameter (IPS) and Structural Inefficiency (SI) showing up more than 43% of the times. We have also found that the bugs in the usage of deep learning libraries have some common antipatterns that lead to a strong correlation of bug types among the libraries. |
Investigating underdiagnosis of AI algorithms in the presence of multiple sources of dataset bias | Deep learning models have shown great potential for image-based diagnosis assisting clinical decision making. At the same time, an increasing number of reports raise concerns about the potential risk that machine learning could amplify existing health disparities due to human biases that are embedded in the training data. It is of great importance to carefully investigate the extent to which biases may be reproduced or even amplified if we wish to build fair artificial intelligence systems. Seyyed-Kalantari et al. advance this conversation by analysing the performance of a disease classifier across population subgroups. They raise performance disparities related to underdiagnosis as a point of concern; we identify areas from this analysis which we believe deserve additional attention. Specifically, we wish to highlight some theoretical and practical difficulties associated with assessing model fairness through testing on data drawn from the same biased distribution as the training data, especially when the sources and amount of biases are unknown. |
Learning to Persuade on the Fly: Robustness Against Ignorance | We study a repeated persuasion setting between a sender and a receiver, where at each time $t$, the sender observes a payoff-relevant state drawn independently and identically from an unknown prior distribution, and shares state information with the receiver, who then myopically chooses an action. As in the standard setting, the sender seeks to persuade the receiver into choosing actions that are aligned with the sender's preference by selectively sharing information about the state. However, in contrast to the standard models, the sender does not know the prior, and has to persuade while gradually learning the prior on the fly. We study the sender's learning problem of making persuasive action recommendations to achieve low regret against the optimal persuasion mechanism with the knowledge of the prior distribution. Our main positive result is an algorithm that, with high probability, is persuasive across all rounds and achieves $O(\sqrt{T\log T})$ regret, where $T$ is the horizon length. The core philosophy behind the design of our algorithm is to leverage robustness against the sender's ignorance of the prior. Intuitively, at each time our algorithm maintains a set of candidate priors, and chooses a persuasion scheme that is simultaneously persuasive for all of them. To demonstrate the effectiveness of our algorithm, we further prove that no algorithm can achieve regret better than $\Omega(\sqrt{T})$, even if the persuasiveness requirements were significantly relaxed. Therefore, our algorithm achieves optimal regret for the sender's learning problem up to terms logarithmic in $T$. |
Causal Markov Decision Processes: Learning Good Interventions Efficiently | We introduce causal Markov Decision Processes (C-MDPs), a new formalism for sequential decision making which combines the standard MDP formulation with causal structures over state transition and reward functions. Many contemporary and emerging application areas such as digital healthcare and digital marketing can benefit from modeling with C-MDPs due to the causal mechanisms underlying the relationship between interventions and states/rewards. We propose the causal upper confidence bound value iteration (C-UCBVI) algorithm that exploits the causal structure in C-MDPs and improves the performance of standard reinforcement learning algorithms that do not take causal knowledge into account. We prove that C-UCBVI satisfies an $\tilde{O}(HS\sqrt{ZT})$ regret bound, where $T$ is the the total time steps, $H$ is the episodic horizon, and $S$ is the cardinality of the state space. Notably, our regret bound does not scale with the size of actions/interventions ($A$), but only scales with a causal graph dependent quantity $Z$ which can be exponentially smaller than $A$. By extending C-UCBVI to the factored MDP setting, we propose the causal factored UCBVI (CF-UCBVI) algorithm, which further reduces the regret exponentially in terms of $S$. Furthermore, we show that RL algorithms for linear MDP problems can also be incorporated in C-MDPs. We empirically show the benefit of our causal approaches in various settings to validate our algorithms and theoretical results. |
Unmanned Aerial Vehicle Visual Detection and Tracking using Deep Neural Networks: A Performance Benchmark | Unmanned Aerial Vehicles (UAV) can pose a major risk for aviation safety, due to both negligent and malicious use. For this reason, the automated detection and tracking of UAV is a fundamental task in aerial security systems. Common technologies for UAV detection include visible-band and thermal infrared imaging, radio frequency and radar. Recent advances in deep neural networks (DNNs) for image-based object detection open the possibility to use visual information for this detection and tracking task. Furthermore, these detection architectures can be implemented as backbones for visual tracking systems, thereby enabling persistent tracking of UAV incursions. To date, no comprehensive performance benchmark exists that applies DNNs to visible-band imagery for UAV detection and tracking. To this end, three datasets with varied environmental conditions for UAV detection and tracking, comprising a total of 241 videos (331,486 images), are assessed using four detection architectures and three tracking frameworks. The best performing detector architecture obtains an mAP of 98.6% and the best performing tracking framework obtains a MOTA of 96.3%. Cross-modality evaluation is carried out between visible and infrared spectrums, achieving a maximal 82.8% mAP on visible images when training in the infrared modality. These results provide the first public multi-approach benchmark for state-of-the-art deep learning-based methods and give insight into which detection and tracking architectures are effective in the UAV domain. |
Inertial Newton Algorithms Avoiding Strict Saddle Points | We study the asymptotic behavior of second-order algorithms mixing Newton's method and inertial gradient descent in non-convex landscapes. We show that, despite the Newtonian behavior of these methods, they almost always escape strict saddle points. We also evidence the role played by the hyper-parameters of these methods in their qualitative behavior near critical points. The theoretical results are supported by numerical illustrations. |
PIDForest: Anomaly Detection via Partial Identification | We consider the problem of detecting anomalies in a large dataset. We propose a framework called Partial Identification which captures the intuition that anomalies are easy to distinguish from the overwhelming majority of points by relatively few attribute values. Formalizing this intuition, we propose a geometric anomaly measure for a point that we call PIDScore, which measures the minimum density of data points over all subcubes containing the point. We present PIDForest: a random forest based algorithm that finds anomalies based on this definition. We show that it performs favorably in comparison to several popular anomaly detection methods, across a broad range of benchmarks. PIDForest also provides a succinct explanation for why a point is labelled anomalous, by providing a set of features and ranges for them which are relatively uncommon in the dataset. |
Traffic4cast-Traffic Map Movie Forecasting -- Team MIE-Lab | The goal of the IARAI competition traffic4cast was to predict the city-wide traffic status within a 15-minute time window, based on information from the previous hour. The traffic status was given as multi-channel images (one pixel roughly corresponds to 100x100 meters), where one channel indicated the traffic volume, another one the average speed of vehicles, and a third one their rough heading. As part of our work on the competition, we evaluated many different network architectures, analyzed the statistical properties of the given data in detail, and thought about how to transform the problem to be able to take additional spatio-temporal context-information into account, such as the street network, the positions of traffic lights, or the weather. This document summarizes our efforts that led to our best submission, and gives some insights about which other approaches we evaluated, and why they did not work as well as imagined. |
Reward Tweaking: Maximizing the Total Reward While Planning for Short Horizons | In reinforcement learning, the discount factor $\gamma$ controls the agent's effective planning horizon. Traditionally, this parameter was considered part of the MDP; however, as deep reinforcement learning algorithms tend to become unstable when the effective planning horizon is long, recent works refer to $\gamma$ as a hyper-parameter -- thus changing the underlying MDP and potentially leading the agent towards sub-optimal behavior on the original task. In this work, we introduce \emph{reward tweaking}. Reward tweaking learns a surrogate reward function $\tilde r$ for the discounted setting that induces optimal behavior on the original finite-horizon total reward task. Theoretically, we show that there exists a surrogate reward that leads to optimality in the original task and discuss the robustness of our approach. Additionally, we perform experiments in high-dimensional continuous control tasks and show that reward tweaking guides the agent towards better long-horizon returns although it plans for short horizons. |
A Benchmark to Select Data Mining Based Classification Algorithms For Business Intelligence And Decision Support Systems | DSS serve the management, operations, and planning levels of an organization and help to make decisions, which may be rapidly changing and not easily specified in advance. Data mining has a vital role to extract important information to help in decision making of a decision support system. Integration of data mining and decision support systems (DSS) can lead to the improved performance and can enable the tackling of new types of problems. Artificial Intelligence methods are improving the quality of decision support, and have become embedded in many applications ranges from ant locking automobile brakes to these days interactive search engines. It provides various machine learning techniques to support data mining. The classification is one of the main and valuable tasks of data mining. Several types of classification algorithms have been suggested, tested and compared to determine the future trends based on unseen data. There has been no single algorithm found to be superior over all others for all data sets. The objective of this paper is to compare various classification algorithms that have been frequently used in data mining for decision support systems. Three decision trees based algorithms, one artificial neural network, one statistical, one support vector machines with and without ada boost and one clustering algorithm are tested and compared on four data sets from different domains in terms of predictive accuracy, error rate, classification index, comprehensibility and training time. Experimental results demonstrate that Genetic Algorithm (GA) and support vector machines based algorithms are better in terms of predictive accuracy. SVM without adaboost shall be the first choice in context of speed and predictive accuracy. Adaboost improves the accuracy of SVM but on the cost of large training time. |
S-Rocket: Selective Random Convolution Kernels for Time Series Classification | Random convolution kernel transform (Rocket) is a fast, efficient, and novel approach for time series feature extraction, using a large number of randomly initialized convolution kernels, and classification of the represented features with a linear classifier, without training the kernels. Since these kernels are generated randomly, a portion of these kernels may not positively contribute in performance of the model. Hence, selection of the most important kernels and pruning the redundant and less important ones is necessary to reduce computational complexity and accelerate inference of Rocket. Selection of these kernels is a combinatorial optimization problem. In this paper, the kernels selection process is modeled as an optimization problem and a population-based approach is proposed for selecting the most important kernels. This approach is evaluated on the standard time series datasets and the results show that on average it can achieve a similar performance to the original models by pruning more than 60% of kernels. In some cases, it can achieve a similar performance using only 1% of the kernels. |
Generative Adversarial Networks for Operational Scenario Planning of Renewable Energy Farms: A Study on Wind and Photovoltaic | For the integration of renewable energy sources, power grid operators need realistic information about the effects of energy production and consumption to assess grid stability. Recently, research in scenario planning benefits from utilizing generative adversarial networks (GANs) as generative models for operational scenario planning. In these scenarios, operators examine temporal as well as spatial influences of different energy sources on the grid. The analysis of how renewable energy resources affect the grid enables the operators to evaluate the stability and to identify potential weak points such as a limiting transformer. However, due to their novelty, there are limited studies on how well GANs model the underlying power distribution. This analysis is essential because, e.g., especially extreme situations with low or high power generation are required to evaluate grid stability. We conduct a comparative study of the Wasserstein distance, binary-cross-entropy loss, and a Gaussian copula as the baseline applied on two wind and two solar datasets with limited data compared to previous studies. Both GANs achieve good results considering the limited amount of data, but the Wasserstein GAN is superior in modeling temporal and spatial relations, and the power distribution. Besides evaluating the generated power distribution over all farms, it is essential to assess terrain specific distributions for wind scenarios. These terrain specific power distributions affect the grid by their differences in their generating power magnitude. Therefore, in a second study, we show that even when simultaneously learning distributions from wind parks with terrain specific patterns, GANs are capable of modeling these individualities also when faced with limited data. |
Collaborative filtering via sparse Markov random fields | Recommender systems play a central role in providing individualized access to information and services. This paper focuses on collaborative filtering, an approach that exploits the shared structure among mind-liked users and similar items. In particular, we focus on a formal probabilistic framework known as Markov random fields (MRF). We address the open problem of structure learning and introduce a sparsity-inducing algorithm to automatically estimate the interaction structures between users and between items. Item-item and user-user correlation networks are obtained as a by-product. Large-scale experiments on movie recommendation and date matching datasets demonstrate the power of the proposed method. |
Embedding-based Silhouette Community Detection | Mining complex data in the form of networks is of increasing interest in many scientific disciplines. Network communities correspond to densely connected subnetworks, and often represent key functional parts of real-world systems. In this work, we propose Silhouette Community Detection (SCD), an approach for detecting communities, based on clustering of network node embeddings, i.e. real valued representations of nodes derived from their neighborhoods. We investigate the performance of the proposed SCD approach on 234 synthetic networks, as well as on a real-life social network. Even though SCD is not based on any form of modularity optimization, it performs comparably or better than state-of-the-art community detection algorithms, such as the InfoMap and Louvain algorithms. Further, we demonstrate how SCD's outputs can be used along with domain ontologies in semantic subgroup discovery, yielding human-understandable explanations of communities detected in a real-life protein interaction network. Being embedding-based, SCD is widely applicable and can be tested out-of-the-box as part of many existing network learning and exploration pipelines. |
Controlling Robot Morphology from Incomplete Measurements | Mobile robots with complex morphology are essential for traversing rough terrains in Urban Search & Rescue missions (USAR). Since teleoperation of the complex morphology causes high cognitive load of the operator, the morphology is controlled autonomously. The autonomous control measures the robot state and surrounding terrain which is usually only partially observable, and thus the data are often incomplete. We marginalize the control over the missing measurements and evaluate an explicit safety condition. If the safety condition is violated, tactile terrain exploration by the body-mounted robotic arm gathers the missing data. |
Machine learning a manifold | We propose a simple method to identify a continuous Lie algebra symmetry in a dataset through regression by an artificial neural network. Our proposal takes advantage of the $ \mathcal{O}(\epsilon^2)$ scaling of the output variable under infinitesimal symmetry transformations on the input variables. As symmetry transformations are generated post-training, the methodology does not rely on sampling of the full representation space or binning of the dataset, and the possibility of false identification is minimised. We demonstrate our method in the SU(3)-symmetric (non-) linear $\Sigma$ model. |
Topic Sensitive Attention on Generic Corpora Corrects Sense Bias in Pretrained Embeddings | Given a small corpus $\mathcal D_T$ pertaining to a limited set of focused topics, our goal is to train embeddings that accurately capture the sense of words in the topic in spite of the limited size of $\mathcal D_T$. These embeddings may be used in various tasks involving $\mathcal D_T$. A popular strategy in limited data settings is to adapt pre-trained embeddings $\mathcal E$ trained on a large corpus. To correct for sense drift, fine-tuning, regularization, projection, and pivoting have been proposed recently. Among these, regularization informed by a word's corpus frequency performed well, but we improve upon it using a new regularizer based on the stability of its cooccurrence with other words. However, a thorough comparison across ten topics, spanning three tasks, with standardized settings of hyper-parameters, reveals that even the best embedding adaptation strategies provide small gains beyond well-tuned baselines, which many earlier comparisons ignored. In a bold departure from adapting pretrained embeddings, we propose using $\mathcal D_T$ to probe, attend to, and borrow fragments from any large, topic-rich source corpus (such as Wikipedia), which need not be the corpus used to pretrain embeddings. This step is made scalable and practical by suitable indexing. We reach the surprising conclusion that even limited corpus augmentation is more useful than adapting embeddings, which suggests that non-dominant sense information may be irrevocably obliterated from pretrained embeddings and cannot be salvaged by adaptation. |
Prototype-based Neural Network Layers: Incorporating Vector Quantization | Neural networks currently dominate the machine learning community and they do so for good reasons. Their accuracy on complex tasks such as image classification is unrivaled at the moment and with recent improvements they are reasonably easy to train. Nevertheless, neural networks are lacking robustness and interpretability. Prototype-based vector quantization methods on the other hand are known for being robust and interpretable. For this reason, we propose techniques and strategies to merge both approaches. This contribution will particularly highlight the similarities between them and outline how to construct a prototype-based classification layer for multilayer networks. Additionally, we provide an alternative, prototype-based, approach to the classical convolution operation. Numerical results are not part of this report, instead the focus lays on establishing a strong theoretical framework. By publishing our framework and the respective theoretical considerations and justifications before finalizing our numerical experiments we hope to jump-start the incorporation of prototype-based learning in neural networks and vice versa. |
Anomaly Detection in a Digital Video Broadcasting System Using Timed Automata | This paper focuses on detecting anomalies in a digital video broadcasting (DVB) system from providers' perspective. We learn a probabilistic deterministic real timed automaton profiling benign behavior of encryption control in the DVB control access system. This profile is used as a one-class classifier. Anomalous items in a testing sequence are detected when the sequence is not accepted by the learned model. |
Faster Meta Update Strategy for Noise-Robust Deep Learning | It has been shown that deep neural networks are prone to overfitting on biased training data. Towards addressing this issue, meta-learning employs a meta model for correcting the training bias. Despite the promising performances, super slow training is currently the bottleneck in the meta learning approaches. In this paper, we introduce a novel Faster Meta Update Strategy (FaMUS) to replace the most expensive step in the meta gradient computation with a faster layer-wise approximation. We empirically find that FaMUS yields not only a reasonably accurate but also a low-variance approximation of the meta gradient. We conduct extensive experiments to verify the proposed method on two tasks. We show our method is able to save two-thirds of the training time while still maintaining the comparable or achieving even better generalization performance. In particular, our method achieves the state-of-the-art performance on both synthetic and realistic noisy labels, and obtains promising performance on long-tailed recognition on standard benchmarks. |
Machine Learning for Yield Curve Feature Extraction: Application to Illiquid Corporate Bonds (Preliminary Draft) | This paper studies the application of machine learning in extracting the market implied features from historical risk neutral corporate bond yields. We consider the example of a hypothetical illiquid fixed income market. After choosing a surrogate liquid market, we apply the Denoising Autoencoder algorithm from the field of computer vision and pattern recognition to learn the features of the missing yield parameters from the historically implied data of the instruments traded in the chosen liquid market. The results of the trained machine learning algorithm are compared with the outputs of a point in- time 2 dimensional interpolation algorithm known as the Thin Plate Spline. Finally, the performances of the two algorithms are compared. |
Long Timescale Credit Assignment in NeuralNetworks with External Memory | Credit assignment in traditional recurrent neural networks usually involves back-propagating through a long chain of tied weight matrices. The length of this chain scales linearly with the number of time-steps as the same network is run at each time-step. This creates many problems, such as vanishing gradients, that have been well studied. In contrast, a NNEM's architecture recurrent activity doesn't involve a long chain of activity (though some architectures such as the NTM do utilize a traditional recurrent architecture as a controller). Rather, the externally stored embedding vectors are used at each time-step, but no messages are passed from previous time-steps. This means that vanishing gradients aren't a problem, as all of the necessary gradient paths are short. However, these paths are extremely numerous (one per embedding vector in memory) and reused for a very long time (until it leaves the memory). Thus, the forward-pass information of each memory must be stored for the entire duration of the memory. This is problematic as this additional storage far surpasses that of the actual memories, to the extent that large memories on infeasible to back-propagate through in high dimensional settings. One way to get around the need to hold onto forward-pass information is to recalculate the forward-pass whenever gradient information is available. However, if the observations are too large to store in the domain of interest, direct reinstatement of a forward pass cannot occur. Instead, we rely on a learned autoencoder to reinstate the observation, and then use the embedding network to recalculate the forward-pass. Since the recalculated embedding vector is unlikely to perfectly match the one stored in memory, we try out 2 approximations to utilize error gradient w.r.t. the vector in memory. |
Interpretable Subgroup Discovery in Treatment Effect Estimation with Application to Opioid Prescribing Guidelines | The dearth of prescribing guidelines for physicians is one key driver of the current opioid epidemic in the United States. In this work, we analyze medical and pharmaceutical claims data to draw insights on characteristics of patients who are more prone to adverse outcomes after an initial synthetic opioid prescription. Toward this end, we propose a generative model that allows discovery from observational data of subgroups that demonstrate an enhanced or diminished causal effect due to treatment. Our approach models these sub-populations as a mixture distribution, using sparsity to enhance interpretability, while jointly learning nonlinear predictors of the potential outcomes to better adjust for confounding. The approach leads to human-interpretable insights on discovered subgroups, improving the practical utility for decision support |
One Student Knows All Experts Know: From Sparse to Dense | Human education system trains one student by multiple experts. Mixture-of-experts (MoE) is a powerful sparse architecture including multiple experts. However, sparse MoE model is hard to implement, easy to overfit, and not hardware-friendly. In this work, inspired by human education model, we propose a novel task, knowledge integration, to obtain a dense student model (OneS) as knowledgeable as one sparse MoE. We investigate this task by proposing a general training framework including knowledge gathering and knowledge distillation. Specifically, we first propose Singular Value Decomposition Knowledge Gathering (SVD-KG) to gather key knowledge from different pretrained experts. We then refine the dense student model by knowledge distillation to offset the noise from gathering. On ImageNet, our OneS preserves $61.7\%$ benefits from MoE. OneS can achieve $78.4\%$ top-1 accuracy with only $15$M parameters. On four natural language processing datasets, OneS obtains $88.2\%$ MoE benefits and outperforms SoTA by $51.7\%$ using the same architecture and training data. In addition, compared with the MoE counterpart, OneS can achieve $3.7 \times$ inference speedup due to the hardware-friendly architecture. |
RANDGAN: Randomized Generative Adversarial Network for Detection of COVID-19 in Chest X-ray | COVID-19 spread across the globe at an immense rate has left healthcare systems incapacitated to diagnose and test patients at the needed rate. Studies have shown promising results for detection of COVID-19 from viral bacterial pneumonia in chest X-rays. Automation of COVID-19 testing using medical images can speed up the testing process of patients where health care systems lack sufficient numbers of the reverse-transcription polymerase chain reaction (RT-PCR) tests. Supervised deep learning models such as convolutional neural networks (CNN) need enough labeled data for all classes to correctly learn the task of detection. Gathering labeled data is a cumbersome task and requires time and resources which could further strain health care systems and radiologists at the early stages of a pandemic such as COVID-19. In this study, we propose a randomized generative adversarial network (RANDGAN) that detects images of an unknown class (COVID-19) from known and labelled classes (Normal and Viral Pneumonia) without the need for labels and training data from the unknown class of images (COVID-19). We used the largest publicly available COVID-19 chest X-ray dataset, COVIDx, which is comprised of Normal, Pneumonia, and COVID-19 images from multiple public databases. In this work, we use transfer learning to segment the lungs in the COVIDx dataset. Next, we show why segmentation of the region of interest (lungs) is vital to correctly learn the task of classification, specifically in datasets that contain images from different resources as it is the case for the COVIDx dataset. Finally, we show improved results in detection of COVID-19 cases using our generative model (RANDGAN) compared to conventional generative adversarial networks (GANs) for anomaly detection in medical images, improving the area under the ROC curve from 0.71 to 0.77. |
Ontology-based n-ball Concept Embeddings Informing Few-shot Image Classification | We propose a novel framework named ViOCE that integrates ontology-based background knowledge in the form of $n$-ball concept embeddings into a neural network based vision architecture. The approach consists of two components - converting symbolic knowledge of an ontology into continuous space by learning n-ball embeddings that capture properties of subsumption and disjointness, and guiding the training and inference of a vision model using the learnt embeddings. We evaluate ViOCE using the task of few-shot image classification, where it demonstrates superior performance on two standard benchmarks. |
Machine Learning-based Orchestration of Containers: A Taxonomy and Future Directions | Containerization is a lightweight application virtualization technology, providing high environmental consistency, operating system distribution portability, and resource isolation. Existing mainstream cloud service providers have prevalently adopted container technologies in their distributed system infrastructures for automated application management. To handle the automation of deployment, maintenance, autoscaling, and networking of containerized applications, container orchestration is proposed as an essential research problem. However, the highly dynamic and diverse feature of cloud workloads and environments considerably raises the complexity of orchestration mechanisms. Machine learning algorithms are accordingly employed by container orchestration systems for behavior modelling and prediction of multi-dimensional performance metrics. Such insights could further improve the quality of resource provisioning decisions in response to the changing workloads under complex environments. In this paper, we present a comprehensive literature review of existing machine learning-based container orchestration approaches. Detailed taxonomies are proposed to classify the current researches by their common features. Moreover, the evolution of machine learning-based container orchestration technologies from the year 2016 to 2021 has been designed based on objectives and metrics. A comparative analysis of the reviewed techniques is conducted according to the proposed taxonomies, with emphasis on their key characteristics. Finally, various open research challenges and potential future directions are highlighted. |
Machine Learning in Heliophysics and Space Weather Forecasting: A White Paper of Findings and Recommendations | The authors of this white paper met on 16-17 January 2020 at the New Jersey Institute of Technology, Newark, NJ, for a 2-day workshop that brought together a group of heliophysicists, data providers, expert modelers, and computer/data scientists. Their objective was to discuss critical developments and prospects of the application of machine and/or deep learning techniques for data analysis, modeling and forecasting in Heliophysics, and to shape a strategy for further developments in the field. The workshop combined a set of plenary sessions featuring invited introductory talks interleaved with a set of open discussion sessions. The outcome of the discussion is encapsulated in this white paper that also features a top-level list of recommendations agreed by participants. |
Longitudinal Support Vector Machines for High Dimensional Time Series | We consider the problem of learning a classifier from observed functional data. Here, each data-point takes the form of a single time-series and contains numerous features. Assuming that each such series comes with a binary label, the problem of learning to predict the label of a new coming time-series is considered. Hereto, the notion of {\em margin} underlying the classical support vector machine is extended to the continuous version for such data. The longitudinal support vector machine is also a convex optimization problem and its dual form is derived as well. Empirical results for specified cases with significance tests indicate the efficacy of this innovative algorithm for analyzing such long-term multivariate data. |
Unsupervised Transductive Domain Adaptation | Supervised learning with large scale labeled datasets and deep layered models has made a paradigm shift in diverse areas in learning and recognition. However, this approach still suffers generalization issues under the presence of a domain shift between the training and the test data distribution. In this regard, unsupervised domain adaptation algorithms have been proposed to directly address the domain shift problem. In this paper, we approach the problem from a transductive perspective. We incorporate the domain shift and the transductive target inference into our framework by jointly solving for an asymmetric similarity metric and the optimal transductive target label assignment. We also show that our model can easily be extended for deep feature learning in order to learn features which are discriminative in the target domain. Our experiments show that the proposed method significantly outperforms state-of-the-art algorithms in both object recognition and digit classification experiments by a large margin. |
Learning Efficient Representation for Intrinsic Motivation | Mutual Information between agent Actions and environment States (MIAS) quantifies the influence of agent on its environment. Recently, it was found that the maximization of MIAS can be used as an intrinsic motivation for artificial agents. In literature, the term empowerment is used to represent the maximum of MIAS at a certain state. While empowerment has been shown to solve a broad range of reinforcement learning problems, its calculation in arbitrary dynamics is a challenging problem because it relies on the estimation of mutual information. Existing approaches, which rely on sampling, are limited to low dimensional spaces, because high-confidence distribution-free lower bounds for mutual information require exponential number of samples. In this work, we develop a novel approach for the estimation of empowerment in unknown dynamics from visual observation only, without the need to sample for MIAS. The core idea is to represent the relation between action sequences and future states using a stochastic dynamic model in latent space with a specific form. This allows us to efficiently compute empowerment with the "Water-Filling" algorithm from information theory. We construct this embedding with deep neural networks trained on a sophisticated objective function. Our experimental results show that the designed embedding preserves information-theoretic properties of the original dynamics. |
Interactions in information spread: quantification and interpretation using stochastic block models | In most real-world applications, it is seldom the case that a given observable evolves independently of its environment. In social networks, users' behavior results from the people they interact with, news in their feed, or trending topics. In natural language, the meaning of phrases emerges from the combination of words. In general medicine, a diagnosis is established on the basis of the interaction of symptoms. Here, we propose a new model, the Interactive Mixed Membership Stochastic Block Model (IMMSBM), which investigates the role of interactions between entities (hashtags, words, memes, etc.) and quantifies their importance within the aforementioned corpora. We find that interactions play an important role in those corpora. In inference tasks, taking them into account leads to average relative changes with respect to non-interactive models of up to 150\% in the probability of an outcome. Furthermore, their role greatly improves the predictive power of the model. Our findings suggest that neglecting interactions when modeling real-world phenomena might lead to incorrect conclusions being drawn. |
NeuPL: Neural Population Learning | Learning in strategy games (e.g. StarCraft, poker) requires the discovery of diverse policies. This is often achieved by iteratively training new policies against existing ones, growing a policy population that is robust to exploit. This iterative approach suffers from two issues in real-world games: a) under finite budget, approximate best-response operators at each iteration needs truncating, resulting in under-trained good-responses populating the population; b) repeated learning of basic skills at each iteration is wasteful and becomes intractable in the presence of increasingly strong opponents. In this work, we propose Neural Population Learning (NeuPL) as a solution to both issues. NeuPL offers convergence guarantees to a population of best-responses under mild assumptions. By representing a population of policies within a single conditional model, NeuPL enables transfer learning across policies. Empirically, we show the generality, improved performance and efficiency of NeuPL across several test domains. Most interestingly, we show that novel strategies become more accessible, not less, as the neural population expands. |
An FPGA-based Solution for Convolution Operation Acceleration | Hardware-based acceleration is an extensive attempt to facilitate many computationally-intensive mathematics operations. This paper proposes an FPGA-based architecture to accelerate the convolution operation - a complex and expensive computing step that appears in many Convolutional Neural Network models. We target the design to the standard convolution operation, intending to launch the product as an edge-AI solution. The project's purpose is to produce an FPGA IP core that can process a convolutional layer at a time. System developers can deploy the IP core with various FPGA families by using Verilog HDL as the primary design language for the architecture. The experimental results show that our single computing core synthesized on a simple edge computing FPGA board can offer 0.224 GOPS. When the board is fully utilized, 4.48 GOPS can be achieved. |
Error-feedback stochastic modeling strategy for time series forecasting with convolutional neural networks | Despite the superiority of convolutional neural networks demonstrated in time series modeling and forecasting, it has not been fully explored on the design of the neural network architecture and the tuning of the hyper-parameters. Inspired by the incremental construction strategy for building a random multilayer perceptron, we propose a novel Error-feedback Stochastic Modeling (ESM) strategy to construct a random Convolutional Neural Network (ESM-CNN) for time series forecasting task, which builds the network architecture adaptively. The ESM strategy suggests that random filters and neurons of the error-feedback fully connected layer are incrementally added to steadily compensate the prediction error during the construction process, and then a filter selection strategy is introduced to enable ESM-CNN to extract the different size of temporal features, providing helpful information at each iterative process for the prediction. The performance of ESM-CNN is justified on its prediction accuracy of one-step-ahead and multi-step-ahead forecasting tasks respectively. Comprehensive experiments on both the synthetic and real-world datasets show that the proposed ESM-CNN not only outperforms the state-of-art random neural networks, but also exhibits stronger predictive power and less computing overhead in comparison to trained state-of-art deep neural network models. |
Similarity Kernel and Clustering via Random Projection Forests | Similarity plays a fundamental role in many areas, including data mining, machine learning, statistics and various applied domains. Inspired by the success of ensemble methods and the flexibility of trees, we propose to learn a similarity kernel called rpf-kernel through random projection forests (rpForests). Our theoretical analysis reveals a highly desirable property of rpf-kernel: far-away (dissimilar) points have a low similarity value while nearby (similar) points would have a high similarity}, and the similarities have a native interpretation as the probability of points remaining in the same leaf nodes during the growth of rpForests. The learned rpf-kernel leads to an effective clustering algorithm--rpfCluster. On a wide variety of real and benchmark datasets, rpfCluster compares favorably to K-means clustering, spectral clustering and a state-of-the-art clustering ensemble algorithm--Cluster Forests. Our approach is simple to implement and readily adapt to the geometry of the underlying data. Given its desirable theoretical property and competitive empirical performance when applied to clustering, we expect rpf-kernel to be applicable to many problems of an unsupervised nature or as a regularizer in some supervised or weakly supervised settings. |
Mapping the Landscape of Artificial Intelligence Applications against COVID-19 | COVID-19, the disease caused by the SARS-CoV-2 virus, has been declared a pandemic by the World Health Organization, which has reported over 18 million confirmed cases as of August 5, 2020. In this review, we present an overview of recent studies using Machine Learning and, more broadly, Artificial Intelligence, to tackle many aspects of the COVID-19 crisis. We have identified applications that address challenges posed by COVID-19 at different scales, including: molecular, by identifying new or existing drugs for treatment; clinical, by supporting diagnosis and evaluating prognosis based on medical imaging and non-invasive measures; and societal, by tracking both the epidemic and the accompanying infodemic using multiple data sources. We also review datasets, tools, and resources needed to facilitate Artificial Intelligence research, and discuss strategic considerations related to the operational implementation of multidisciplinary partnerships and open science. We highlight the need for international cooperation to maximize the potential of AI in this and future pandemics. |
Rerunning OCR: A Machine Learning Approach to Quality Assessment and Enhancement Prediction | Iterating with new and improved OCR solutions enforces decision making when it comes to targeting the right candidates for reprocessing. This especially applies when the underlying data collection is of considerable size and rather diverse in terms of fonts, languages, periods of publication and consequently OCR quality. This article captures the efforts of the National Library of Luxembourg to support those targeting decisions. They are crucial in order to guarantee low computational overhead and reduced quality degradation risks, combined with a more quantifiable OCR improvement. In particular, this work explains the methodology of the library with respect to text block level quality assessment. Through extension of this technique, a regression model, that is able to take into account the enhancement potential of a new OCR engine, is also presented. They both mark promising approaches, especially for cultural institutions dealing with historical data of lower quality. |
Bayesian estimation from few samples: community detection and related problems | We propose an efficient meta-algorithm for Bayesian estimation problems that is based on low-degree polynomials, semidefinite programming, and tensor decomposition. The algorithm is inspired by recent lower bound constructions for sum-of-squares and related to the method of moments. Our focus is on sample complexity bounds that are as tight as possible (up to additive lower-order terms) and often achieve statistical thresholds or conjectured computational thresholds. Our algorithm recovers the best known bounds for community detection in the sparse stochastic block model, a widely-studied class of estimation problems for community detection in graphs. We obtain the first recovery guarantees for the mixed-membership stochastic block model (Airoldi et el.) in constant average degree graphs---up to what we conjecture to be the computational threshold for this model. We show that our algorithm exhibits a sharp computational threshold for the stochastic block model with multiple communities beyond the Kesten--Stigum bound---giving evidence that this task may require exponential time. The basic strategy of our algorithm is strikingly simple: we compute the best-possible low-degree approximation for the moments of the posterior distribution of the parameters and use a robust tensor decomposition algorithm to recover the parameters from these approximate posterior moments. |
Multiclass Learning with Simplex Coding | In this paper we discuss a novel framework for multiclass learning, defined by a suitable coding/decoding strategy, namely the simplex coding, that allows to generalize to multiple classes a relaxation approach commonly used in binary classification. In this framework, a relaxation error analysis can be developed avoiding constraints on the considered hypotheses class. Moreover, we show that in this setting it is possible to derive the first provably consistent regularized method with training/tuning complexity which is independent to the number of classes. Tools from convex analysis are introduced that can be used beyond the scope of this paper. |
T-Net: Parametrizing Fully Convolutional Nets with a Single High-Order Tensor | Recent findings indicate that over-parametrization, while crucial for successfully training deep neural networks, also introduces large amounts of redundancy. Tensor methods have the potential to efficiently parametrize over-complete representations by leveraging this redundancy. In this paper, we propose to fully parametrize Convolutional Neural Networks (CNNs) with a single high-order, low-rank tensor. Previous works on network tensorization have focused on parametrizing individual layers (convolutional or fully connected) only, and perform the tensorization layer-by-layer separately. In contrast, we propose to jointly capture the full structure of a neural network by parametrizing it with a single high-order tensor, the modes of which represent each of the architectural design parameters of the network (e.g. number of convolutional blocks, depth, number of stacks, input features, etc). This parametrization allows to regularize the whole network and drastically reduce the number of parameters. Our model is end-to-end trainable and the low-rank structure imposed on the weight tensor acts as an implicit regularization. We study the case of networks with rich structure, namely Fully Convolutional Networks (FCNs), which we propose to parametrize with a single 8th-order tensor. We show that our approach can achieve superior performance with small compression rates, and attain high compression rates with negligible drop in accuracy for the challenging task of human pose estimation. |
The Influence of Dropout on Membership Inference in Differentially Private Models | Differentially private models seek to protect the privacy of data the model is trained on, making it an important component of model security and privacy. At the same time, data scientists and machine learning engineers seek to use uncertainty quantification methods to ensure models are as useful and actionable as possible. We explore the tension between uncertainty quantification via dropout and privacy by conducting membership inference attacks against models with and without differential privacy. We find that models with large dropout slightly increases a model's risk to succumbing to membership inference attacks in all cases including in differentially private models. |
DANE: Domain Adaptive Network Embedding | Recent works reveal that network embedding techniques enable many machine learning models to handle diverse downstream tasks on graph structured data. However, as previous methods usually focus on learning embeddings for a single network, they can not learn representations transferable on multiple networks. Hence, it is important to design a network embedding algorithm that supports downstream model transferring on different networks, known as domain adaptation. In this paper, we propose a novel Domain Adaptive Network Embedding framework, which applies graph convolutional network to learn transferable embeddings. In DANE, nodes from multiple networks are encoded to vectors via a shared set of learnable parameters so that the vectors share an aligned embedding space. The distribution of embeddings on different networks are further aligned by adversarial learning regularization. In addition, DANE's advantage in learning transferable network embedding can be guaranteed theoretically. Extensive experiments reflect that the proposed framework outperforms other state-of-the-art network embedding baselines in cross-network domain adaptation tasks. |
A brief history on Homomorphic learning: A privacy-focused approach to machine learning | Cryptography and data science research grew exponential with the internet boom. Legacy encryption techniques force users to make a trade-off between usability, convenience, and security. Encryption makes valuable data inaccessible, as it needs to be decrypted each time to perform any operation. Billions of dollars could be saved, and millions of people could benefit from cryptography methods that don't compromise between usability, convenience, and security. Homomorphic encryption is one such paradigm that allows running arbitrary operations on encrypted data. It enables us to run any sophisticated machine learning algorithm without access to the underlying raw data. Thus, homomorphic learning provides the ability to gain insights from sensitive data that has been neglected due to various governmental and organization privacy rules. In this paper, we trace back the ideas of homomorphic learning formally posed by Ronald L. Rivest and Len Alderman as "Can we compute upon encrypted data?" in their 1978 paper. Then we gradually follow the ideas sprouting in the brilliant minds of Shafi Goldwasser, Kristin Lauter, Dan Bonch, Tomas Sander, Donald Beaver, and Craig Gentry to address that vital question. It took more than 30 years of collective effort to finally find the answer "yes" to that important question. |
A Flexible Class of Dependence-aware Multi-Label Loss Functions | Multi-label classification is the task of assigning a subset of labels to a given query instance. For evaluating such predictions, the set of predicted labels needs to be compared to the ground-truth label set associated with that instance, and various loss functions have been proposed for this purpose. In addition to assessing predictive accuracy, a key concern in this regard is to foster and to analyze a learner's ability to capture label dependencies. In this paper, we introduce a new class of loss functions for multi-label classification, which overcome disadvantages of commonly used losses such as Hamming and subset 0/1. To this end, we leverage the mathematical framework of non-additive measures and integrals. Roughly speaking, a non-additive measure allows for modeling the importance of correct predictions of label subsets (instead of single labels), and thereby their impact on the overall evaluation, in a flexible way - by giving full importance to single labels and the entire label set, respectively, Hamming and subset 0/1 are rather extreme in this regard. We present concrete instantiations of this class, which comprise Hamming and subset 0/1 as special cases, and which appear to be especially appealing from a modeling perspective. The assessment of multi-label classifiers in terms of these losses is illustrated in an empirical study. |
Kinematics clustering enables head impact subtyping for better traumatic brain injury prediction | Traumatic brain injury can be caused by various types of head impacts. However, due to different kinematic characteristics, many brain injury risk estimation models are not generalizable across the variety of impacts that humans may sustain. The current definitions of head impact subtypes are based on impact sources (e.g., football, traffic accident), which may not reflect the intrinsic kinematic similarities of impacts across the impact sources. To investigate the potential new definitions of impact subtypes based on kinematics, 3,161 head impacts from various sources including simulation, college football, mixed martial arts, and car racing were collected. We applied the K-means clustering to cluster the impacts on 16 standardized temporal features from head rotation kinematics. Then, we developed subtype-specific ridge regression models for cumulative strain damage (using the threshold of 15%), which significantly improved the estimation accuracy compared with the baseline method which mixed impacts from different sources and developed one model (R^2 from 0.7 to 0.9). To investigate the effect of kinematic features, we presented the top three critical features (maximum resultant angular acceleration, maximum angular acceleration along the z-axis, maximum linear acceleration along the y-axis) based on regression accuracy and used logistic regression to find the critical points for each feature that partitioned the subtypes. This study enables researchers to define head impact subtypes in a data-driven manner, which leads to more generalizable brain injury risk estimation. |
Joint Sensing Matrix and Sparsifying Dictionary Optimization for Tensor Compressive Sensing | Tensor Compressive Sensing (TCS) is a multidimensional framework of Compressive Sensing (CS), and it is advantageous in terms of reducing the amount of storage, easing hardware implementations and preserving multidimensional structures of signals in comparison to a conventional CS system. In a TCS system, instead of using a random sensing matrix and a predefined dictionary, the average-case performance can be further improved by employing an optimized multidimensional sensing matrix and a learned multilinear sparsifying dictionary. In this paper, we propose a joint optimization approach of the sensing matrix and dictionary for a TCS system. For the sensing matrix design in TCS, an extended separable approach with a closed form solution and a novel iterative non-separable method are proposed when the multilinear dictionary is fixed. In addition, a multidimensional dictionary learning method that takes advantages of the multidimensional structure is derived, and the influence of sensing matrices is taken into account in the learning process. A joint optimization is achieved via alternately iterating the optimization of the sensing matrix and dictionary. Numerical experiments using both synthetic data and real images demonstrate the superiority of the proposed approaches. |
AtomNet: A Deep Convolutional Neural Network for Bioactivity Prediction in Structure-based Drug Discovery | Deep convolutional neural networks comprise a subclass of deep neural networks (DNN) with a constrained architecture that leverages the spatial and temporal structure of the domain they model. Convolutional networks achieve the best predictive performance in areas such as speech and image recognition by hierarchically composing simple local features into complex models. Although DNNs have been used in drug discovery for QSAR and ligand-based bioactivity predictions, none of these models have benefited from this powerful convolutional architecture. This paper introduces AtomNet, the first structure-based, deep convolutional neural network designed to predict the bioactivity of small molecules for drug discovery applications. We demonstrate how to apply the convolutional concepts of feature locality and hierarchical composition to the modeling of bioactivity and chemical interactions. In further contrast to existing DNN techniques, we show that AtomNet's application of local convolutional filters to structural target information successfully predicts new active molecules for targets with no previously known modulators. Finally, we show that AtomNet outperforms previous docking approaches on a diverse set of benchmarks by a large margin, achieving an AUC greater than 0.9 on 57.8% of the targets in the DUDE benchmark. |
Efficient Intrusion Detection Using Evidence Theory | Intrusion Detection Systems (IDS) are now an essential element when it comes to securing computers and networks. Despite the huge research efforts done in the field, handling sources' reliability remains an open issue. To address this problem, this paper proposes a novel contextual discounting method based on sources' reliability and their distinguishing ability between normal and abnormal behavior. Dempster-Shafer theory, a general framework for reasoning under uncertainty, is used to construct an evidential classifier. The NSL-KDD dataset, a significantly revised and improved version of the existing KDDCUP'99 dataset, provides the basis for assessing the performance of our new detection approach. While giving comparable results on the KDDTest+ dataset, our approach outperformed some other state-of-the-art methods on the KDDTest-21 dataset which is more challenging. |
Positive blood culture detection in time series data using a BiLSTM network | The presence of bacteria or fungi in the bloodstream of patients is abnormal and can lead to life-threatening conditions. A computational model based on a bidirectional long short-term memory artificial neural network, is explored to assist doctors in the intensive care unit to predict whether examination of blood cultures of patients will return positive. As input it uses nine monitored clinical parameters, presented as time series data, collected from 2177 ICU admissions at the Ghent University Hospital. Our main goal is to determine if general machine learning methods and more specific, temporal models, can be used to create an early detection system. This preliminary research obtains an area of 71.95% under the precision recall curve, proving the potential of temporal neural networks in this context. |
Mind the Nuisance: Gaussian Process Classification using Privileged Noise | The learning with privileged information setting has recently attracted a lot of attention within the machine learning community, as it allows the integration of additional knowledge into the training process of a classifier, even when this comes in the form of a data modality that is not available at test time. Here, we show that privileged information can naturally be treated as noise in the latent function of a Gaussian Process classifier (GPC). That is, in contrast to the standard GPC setting, the latent function is not just a nuisance but a feature: it becomes a natural measure of confidence about the training data by modulating the slope of the GPC sigmoid likelihood function. Extensive experiments on public datasets show that the proposed GPC method using privileged noise, called GPC+, improves over a standard GPC without privileged knowledge, and also over the current state-of-the-art SVM-based method, SVM+. Moreover, we show that advanced neural networks and deep learning methods can be compressed as privileged information. |
Training Logistic Regression and SVM on 200GB Data Using b-Bit Minwise Hashing and Comparisons with Vowpal Wabbit (VW) | We generated a dataset of 200 GB with 10^9 features, to test our recent b-bit minwise hashing algorithms for training very large-scale logistic regression and SVM. The results confirm our prior work that, compared with the VW hashing algorithm (which has the same variance as random projections), b-bit minwise hashing is substantially more accurate at the same storage. For example, with merely 30 hashed values per data point, b-bit minwise hashing can achieve similar accuracies as VW with 2^14 hashed values per data point. We demonstrate that the preprocessing cost of b-bit minwise hashing is roughly on the same order of magnitude as the data loading time. Furthermore, by using a GPU, the preprocessing cost can be reduced to a small fraction of the data loading time. Minwise hashing has been widely used in industry, at least in the context of search. One reason for its popularity is that one can efficiently simulate permutations by (e.g.,) universal hashing. In other words, there is no need to store the permutation matrix. In this paper, we empirically verify this practice, by demonstrating that even using the simplest 2-universal hashing does not degrade the learning performance. |
FINN: A Framework for Fast, Scalable Binarized Neural Network Inference | Research has shown that convolutional neural networks contain significant redundancy, and high classification accuracy can be obtained even when weights and activations are reduced from floating point to binary values. In this paper, we present FINN, a framework for building fast and flexible FPGA accelerators using a flexible heterogeneous streaming architecture. By utilizing a novel set of optimizations that enable efficient mapping of binarized neural networks to hardware, we implement fully connected, convolutional and pooling layers, with per-layer compute resources being tailored to user-provided throughput requirements. On a ZC706 embedded FPGA platform drawing less than 25 W total system power, we demonstrate up to 12.3 million image classifications per second with 0.31 {\mu}s latency on the MNIST dataset with 95.8% accuracy, and 21906 image classifications per second with 283 {\mu}s latency on the CIFAR-10 and SVHN datasets with respectively 80.1% and 94.9% accuracy. To the best of our knowledge, ours are the fastest classification rates reported to date on these benchmarks. |
Assessing the Impact: Does an Improvement to a Revenue Management System Lead to an Improved Revenue? | Airlines and other industries have been making use of sophisticated Revenue Management Systems to maximize revenue for decades. While improving the different components of these systems has been the focus of numerous studies, estimating the impact of such improvements on the revenue has been overlooked in the literature despite its practical importance. Indeed, quantifying the benefit of a change in a system serves as support for investment decisions. This is a challenging problem as it corresponds to the difference between the generated value and the value that would have been generated keeping the system as before. The latter is not observable. Moreover, the expected impact can be small in relative value. In this paper, we cast the problem as counterfactual prediction of unobserved revenue. The impact on revenue is then the difference between the observed and the estimated revenue. The originality of this work lies in the innovative application of econometric methods proposed for macroeconomic applications to a new problem setting. Broadly applicable, the approach benefits from only requiring revenue data observed for origin-destination pairs in the network of the airline at each day, before and after a change in the system is applied. We report results using real large-scale data from Air Canada. We compare a deep neural network counterfactual predictions model with econometric models. They achieve respectively 1% and 1.1% of error on the counterfactual revenue predictions, and allow to accurately estimate small impacts (in the order of 2%). |