instance_id
stringlengths
13
37
text
stringlengths
2.59k
1.94M
repo
stringclasses
35 values
base_commit
stringlengths
40
40
problem_statement
stringlengths
10
256k
hints_text
stringlengths
0
908k
created_at
stringlengths
20
20
patch
stringlengths
18
101M
test_patch
stringclasses
1 value
version
stringclasses
1 value
FAIL_TO_PASS
stringclasses
1 value
PASS_TO_PASS
stringclasses
1 value
environment_setup_commit
stringclasses
1 value
ipython__ipython-7819
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Inspect requests inside a function call should be smarter about what they inspect. Previously, `func(a, b, <shift-tab>` would give information on `func`, now it gives information on `b`, which is not especially helpful. This is because we removed logic from the frontend to make it more language agnostic, and we have not yet reimplemented that on the frontend. For 3.1, we should make it at least as smart as 2.x was. The quicky and dirty approach would be a regex; the proper way is tokenising the code. Ping @mwaskom who brought this up on the mailing list. </issue> <code> [start of README.rst] 1 .. image:: https://img.shields.io/coveralls/ipython/ipython.svg 2 :target: https://coveralls.io/r/ipython/ipython?branch=master 3 4 .. image:: https://img.shields.io/pypi/dm/IPython.svg 5 :target: https://pypi.python.org/pypi/ipython 6 7 .. image:: https://img.shields.io/pypi/v/IPython.svg 8 :target: https://pypi.python.org/pypi/ipython 9 10 .. image:: https://img.shields.io/travis/ipython/ipython.svg 11 :target: https://travis-ci.org/ipython/ipython 12 13 14 =========================================== 15 IPython: Productive Interactive Computing 16 =========================================== 17 18 Overview 19 ======== 20 21 Welcome to IPython. Our full documentation is available on `our website 22 <http://ipython.org/documentation.html>`_; if you downloaded a built source 23 distribution the ``docs/source`` directory contains the plaintext version of 24 these manuals. If you have Sphinx installed, you can build them by typing 25 ``cd docs; make html`` for local browsing. 26 27 28 Dependencies and supported Python versions 29 ========================================== 30 31 For full details, see the installation section of the manual. The basic parts 32 of IPython only need the Python standard library, but much of its more advanced 33 functionality requires extra packages. 34 35 Officially, IPython requires Python version 2.7, or 3.3 and above. 36 IPython 1.x is the last IPython version to support Python 2.6 and 3.2. 37 38 39 Instant running 40 =============== 41 42 You can run IPython from this directory without even installing it system-wide 43 by typing at the terminal:: 44 45 $ python -m IPython 46 47 48 Development installation 49 ======================== 50 51 If you want to hack on certain parts, e.g. the IPython notebook, in a clean 52 environment (such as a virtualenv) you can use ``pip`` to grab the necessary 53 dependencies quickly:: 54 55 $ git clone --recursive https://github.com/ipython/ipython.git 56 $ cd ipython 57 $ pip install -e ".[notebook]" --user 58 59 This installs the necessary packages and symlinks IPython into your current 60 environment so that you can work on your local repo copy and run it from anywhere:: 61 62 $ ipython notebook 63 64 The same process applies for other parts, such as the qtconsole (the 65 ``extras_require`` attribute in the setup.py file lists all the possibilities). 66 67 Git Hooks and Submodules 68 ************************ 69 70 IPython now uses git submodules to ship its javascript dependencies. 71 If you run IPython from git master, you may need to update submodules once in a while with:: 72 73 $ git submodule update 74 75 or:: 76 77 $ python setup.py submodule 78 79 We have some git hooks for helping keep your submodules always in sync, 80 see our ``git-hooks`` directory for more info. 81 [end of README.rst] [start of IPython/utils/tokenutil.py] 1 """Token-related utilities""" 2 3 # Copyright (c) IPython Development Team. 4 # Distributed under the terms of the Modified BSD License. 5 6 from __future__ import absolute_import, print_function 7 8 from collections import namedtuple 9 from io import StringIO 10 from keyword import iskeyword 11 12 from . import tokenize2 13 from .py3compat import cast_unicode_py2 14 15 Token = namedtuple('Token', ['token', 'text', 'start', 'end', 'line']) 16 17 def generate_tokens(readline): 18 """wrap generate_tokens to catch EOF errors""" 19 try: 20 for token in tokenize2.generate_tokens(readline): 21 yield token 22 except tokenize2.TokenError: 23 # catch EOF error 24 return 25 26 def line_at_cursor(cell, cursor_pos=0): 27 """Return the line in a cell at a given cursor position 28 29 Used for calling line-based APIs that don't support multi-line input, yet. 30 31 Parameters 32 ---------- 33 34 cell: text 35 multiline block of text 36 cursor_pos: integer 37 the cursor position 38 39 Returns 40 ------- 41 42 (line, offset): (text, integer) 43 The line with the current cursor, and the character offset of the start of the line. 44 """ 45 offset = 0 46 lines = cell.splitlines(True) 47 for line in lines: 48 next_offset = offset + len(line) 49 if next_offset >= cursor_pos: 50 break 51 offset = next_offset 52 else: 53 line = "" 54 return (line, offset) 55 56 def token_at_cursor(cell, cursor_pos=0): 57 """Get the token at a given cursor 58 59 Used for introspection. 60 61 Parameters 62 ---------- 63 64 cell : unicode 65 A block of Python code 66 cursor_pos : int 67 The location of the cursor in the block where the token should be found 68 """ 69 cell = cast_unicode_py2(cell) 70 names = [] 71 tokens = [] 72 offset = 0 73 for tup in generate_tokens(StringIO(cell).readline): 74 75 tok = Token(*tup) 76 77 # token, text, start, end, line = tup 78 start_col = tok.start[1] 79 end_col = tok.end[1] 80 # allow '|foo' to find 'foo' at the beginning of a line 81 boundary = cursor_pos + 1 if start_col == 0 else cursor_pos 82 if offset + start_col >= boundary: 83 # current token starts after the cursor, 84 # don't consume it 85 break 86 87 if tok.token == tokenize2.NAME and not iskeyword(tok.text): 88 if names and tokens and tokens[-1].token == tokenize2.OP and tokens[-1].text == '.': 89 names[-1] = "%s.%s" % (names[-1], tok.text) 90 else: 91 names.append(tok.text) 92 elif tok.token == tokenize2.OP: 93 if tok.text == '=' and names: 94 # don't inspect the lhs of an assignment 95 names.pop(-1) 96 97 if offset + end_col > cursor_pos: 98 # we found the cursor, stop reading 99 break 100 101 tokens.append(tok) 102 if tok.token == tokenize2.NEWLINE: 103 offset += len(tok.line) 104 105 if names: 106 return names[-1] 107 else: 108 return '' 109 110 111 [end of IPython/utils/tokenutil.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
ipython/ipython
92333e1084ea0d6ff91b55434555e741d2274dc7
Inspect requests inside a function call should be smarter about what they inspect. Previously, `func(a, b, <shift-tab>` would give information on `func`, now it gives information on `b`, which is not especially helpful. This is because we removed logic from the frontend to make it more language agnostic, and we have not yet reimplemented that on the frontend. For 3.1, we should make it at least as smart as 2.x was. The quicky and dirty approach would be a regex; the proper way is tokenising the code. Ping @mwaskom who brought this up on the mailing list.
Thanks! I don't actually know how to _use_ any of these packages, so I rely on what IPython tells me they'll do :) Should note here too that the help also seems to be displaying the `__repr__` for, at least, pandas DataFrames slightly differently in 3.0.rc1, which yields a help popup that is garbled and hides the important bits. The dataframe reprs sounds like a separate thing - can you file an issue for it? Preferably with screenshots? Thanks. Done: #7817 More related to this issue: While implementing a smarter inspector, it would be _great_ if it would work across line breaks. I'm constantly getting bitten by trying to do ``` python complex_function(some_arg, another_arg, data_frame.some_transformation(), a_kwarg=a_value, <shift-TAB> ``` And having it not work. This did not work on the 2.x series either, AFAICT, but if the inspector is going to be reimplemented it would be awesome if it could be added. If there's smart, tokenising logic to determine what you're inspecting, there's no reason it shouldn't handle multiple lines. Making it smart enough for that might not be a 3.1 thing, though.
2015-02-19T20:14:23Z
<patch> diff --git a/IPython/utils/tokenutil.py b/IPython/utils/tokenutil.py --- a/IPython/utils/tokenutil.py +++ b/IPython/utils/tokenutil.py @@ -58,6 +58,9 @@ def token_at_cursor(cell, cursor_pos=0): Used for introspection. + Function calls are prioritized, so the token for the callable will be returned + if the cursor is anywhere inside the call. + Parameters ---------- @@ -70,6 +73,7 @@ def token_at_cursor(cell, cursor_pos=0): names = [] tokens = [] offset = 0 + call_names = [] for tup in generate_tokens(StringIO(cell).readline): tok = Token(*tup) @@ -93,6 +97,11 @@ def token_at_cursor(cell, cursor_pos=0): if tok.text == '=' and names: # don't inspect the lhs of an assignment names.pop(-1) + if tok.text == '(' and names: + # if we are inside a function call, inspect the function + call_names.append(names[-1]) + elif tok.text == ')' and call_names: + call_names.pop(-1) if offset + end_col > cursor_pos: # we found the cursor, stop reading @@ -102,7 +111,9 @@ def token_at_cursor(cell, cursor_pos=0): if tok.token == tokenize2.NEWLINE: offset += len(tok.line) - if names: + if call_names: + return call_names[-1] + elif names: return names[-1] else: return '' </patch>
[]
[]
docker__compose-2878
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Merge build args when using multiple compose files (or when extending services) Based on the behavior of `environment` and `labels`, as well as `build.image`, `build.context` etc, I would also expect `build.args` to be merged, instead of being replaced. To give an example: ## Input **docker-compose.yml:** ``` yaml version: "2" services: my_service: build: context: my-app args: SOME_VARIABLE: "42" ``` **docker-compose.override.yml:** ``` yaml version: "2" services: my_service: build: args: HTTP_PROXY: http://proxy.somewhere:80 HTTPS_PROXY: http://proxy.somewhere:80 NO_PROXY: somewhere,localhost ``` **my-app/Dockerfile** ``` Dockerfile # Just needed to be able to use `build:` FROM busybox:latest ARG SOME_VARIABLE=xyz RUN echo "$SOME_VARIABLE" > /etc/example ``` ## Current Output ``` bash $ docker-compose config networks: {} services: my_service: build: args: HTTPS_PROXY: http://proxy.somewhere:80 HTTP_PROXY: http://proxy.somewhere:80 NO_PROXY: somewhere,localhost context: <project-dir>\my-app version: '2.0' volumes: {} ``` ## Expected Output ``` bash $ docker-compose config networks: {} services: my_service: build: args: SOME_VARIABLE: 42 # Note the merged variable here HTTPS_PROXY: http://proxy.somewhere:80 HTTP_PROXY: http://proxy.somewhere:80 NO_PROXY: somewhere,localhost context: <project-dir>\my-app version: '2.0' volumes: {} ``` ## Version Information ``` bash $ docker-compose version docker-compose version 1.6.0, build cdb920a docker-py version: 1.7.0 CPython version: 2.7.11 OpenSSL version: OpenSSL 1.0.2d 9 Jul 2015 ``` # Implementation proposal I mainly want to get clarification on what the desired behavior is, so that I can possibly help implementing it, maybe even for `1.6.1`. Personally, I'd like the behavior to be to merge the `build.args` key (as outlined above), for a couple of reasons: - Principle of least surprise/consistency with `environment`, `labels`, `ports` and so on. - It enables scenarios like the one outlined above, where the images require some transient configuration to build, in addition to other build variables which actually have an influence on the final image. The scenario that one wants to replace all build args at once is not very likely IMO; why would you define base build variables in the first place if you're going to replace them anyway? # Alternative behavior: Output a warning If the behavior should stay the same as it is now, i.e. to fully replaced the `build.args` keys, then `docker-compose` should at least output a warning IMO. It took me some time to figure out that `docker-compose` was ignoring the build args in the base `docker-compose.yml` file. </issue> <code> [start of README.md] 1 Docker Compose 2 ============== 3 ![Docker Compose](logo.png?raw=true "Docker Compose Logo") 4 5 Compose is a tool for defining and running multi-container Docker applications. 6 With Compose, you use a Compose file to configure your application's services. 7 Then, using a single command, you create and start all the services 8 from your configuration. To learn more about all the features of Compose 9 see [the list of features](https://github.com/docker/compose/blob/release/docs/overview.md#features). 10 11 Compose is great for development, testing, and staging environments, as well as 12 CI workflows. You can learn more about each case in 13 [Common Use Cases](https://github.com/docker/compose/blob/release/docs/overview.md#common-use-cases). 14 15 Using Compose is basically a three-step process. 16 17 1. Define your app's environment with a `Dockerfile` so it can be 18 reproduced anywhere. 19 2. Define the services that make up your app in `docker-compose.yml` so 20 they can be run together in an isolated environment: 21 3. Lastly, run `docker-compose up` and Compose will start and run your entire app. 22 23 A `docker-compose.yml` looks like this: 24 25 web: 26 build: . 27 ports: 28 - "5000:5000" 29 volumes: 30 - .:/code 31 links: 32 - redis 33 redis: 34 image: redis 35 36 For more information about the Compose file, see the 37 [Compose file reference](https://github.com/docker/compose/blob/release/docs/compose-file.md) 38 39 Compose has commands for managing the whole lifecycle of your application: 40 41 * Start, stop and rebuild services 42 * View the status of running services 43 * Stream the log output of running services 44 * Run a one-off command on a service 45 46 Installation and documentation 47 ------------------------------ 48 49 - Full documentation is available on [Docker's website](https://docs.docker.com/compose/). 50 - If you have any questions, you can talk in real-time with other developers in the #docker-compose IRC channel on Freenode. [Click here to join using IRCCloud.](https://www.irccloud.com/invite?hostname=irc.freenode.net&channel=%23docker-compose) 51 - Code repository for Compose is on [Github](https://github.com/docker/compose) 52 - If you find any problems please fill out an [issue](https://github.com/docker/compose/issues/new) 53 54 Contributing 55 ------------ 56 57 [![Build Status](http://jenkins.dockerproject.org/buildStatus/icon?job=Compose%20Master)](http://jenkins.dockerproject.org/job/Compose%20Master/) 58 59 Want to help build Compose? Check out our [contributing documentation](https://github.com/docker/compose/blob/master/CONTRIBUTING.md). 60 61 Releasing 62 --------- 63 64 Releases are built by maintainers, following an outline of the [release process](https://github.com/docker/compose/blob/master/project/RELEASE-PROCESS.md). 65 [end of README.md] [start of compose/config/config.py] 1 from __future__ import absolute_import 2 from __future__ import unicode_literals 3 4 import codecs 5 import functools 6 import logging 7 import operator 8 import os 9 import string 10 import sys 11 from collections import namedtuple 12 13 import six 14 import yaml 15 from cached_property import cached_property 16 17 from ..const import COMPOSEFILE_V1 as V1 18 from ..const import COMPOSEFILE_V2_0 as V2_0 19 from .errors import CircularReference 20 from .errors import ComposeFileNotFound 21 from .errors import ConfigurationError 22 from .errors import VERSION_EXPLANATION 23 from .interpolation import interpolate_environment_variables 24 from .sort_services import get_container_name_from_network_mode 25 from .sort_services import get_service_name_from_network_mode 26 from .sort_services import sort_service_dicts 27 from .types import parse_extra_hosts 28 from .types import parse_restart_spec 29 from .types import ServiceLink 30 from .types import VolumeFromSpec 31 from .types import VolumeSpec 32 from .validation import match_named_volumes 33 from .validation import validate_against_fields_schema 34 from .validation import validate_against_service_schema 35 from .validation import validate_depends_on 36 from .validation import validate_extends_file_path 37 from .validation import validate_network_mode 38 from .validation import validate_top_level_object 39 from .validation import validate_top_level_service_objects 40 from .validation import validate_ulimits 41 42 43 DOCKER_CONFIG_KEYS = [ 44 'cap_add', 45 'cap_drop', 46 'cgroup_parent', 47 'command', 48 'cpu_quota', 49 'cpu_shares', 50 'cpuset', 51 'detach', 52 'devices', 53 'dns', 54 'dns_search', 55 'domainname', 56 'entrypoint', 57 'env_file', 58 'environment', 59 'extra_hosts', 60 'hostname', 61 'image', 62 'ipc', 63 'labels', 64 'links', 65 'mac_address', 66 'mem_limit', 67 'memswap_limit', 68 'net', 69 'pid', 70 'ports', 71 'privileged', 72 'read_only', 73 'restart', 74 'security_opt', 75 'stdin_open', 76 'stop_signal', 77 'tty', 78 'user', 79 'volume_driver', 80 'volumes', 81 'volumes_from', 82 'working_dir', 83 ] 84 85 ALLOWED_KEYS = DOCKER_CONFIG_KEYS + [ 86 'build', 87 'container_name', 88 'dockerfile', 89 'logging', 90 'network_mode', 91 ] 92 93 DOCKER_VALID_URL_PREFIXES = ( 94 'http://', 95 'https://', 96 'git://', 97 'github.com/', 98 'git@', 99 ) 100 101 SUPPORTED_FILENAMES = [ 102 'docker-compose.yml', 103 'docker-compose.yaml', 104 ] 105 106 DEFAULT_OVERRIDE_FILENAME = 'docker-compose.override.yml' 107 108 109 log = logging.getLogger(__name__) 110 111 112 class ConfigDetails(namedtuple('_ConfigDetails', 'working_dir config_files')): 113 """ 114 :param working_dir: the directory to use for relative paths in the config 115 :type working_dir: string 116 :param config_files: list of configuration files to load 117 :type config_files: list of :class:`ConfigFile` 118 """ 119 120 121 class ConfigFile(namedtuple('_ConfigFile', 'filename config')): 122 """ 123 :param filename: filename of the config file 124 :type filename: string 125 :param config: contents of the config file 126 :type config: :class:`dict` 127 """ 128 129 @classmethod 130 def from_filename(cls, filename): 131 return cls(filename, load_yaml(filename)) 132 133 @cached_property 134 def version(self): 135 if 'version' not in self.config: 136 return V1 137 138 version = self.config['version'] 139 140 if isinstance(version, dict): 141 log.warn('Unexpected type for "version" key in "{}". Assuming ' 142 '"version" is the name of a service, and defaulting to ' 143 'Compose file version 1.'.format(self.filename)) 144 return V1 145 146 if not isinstance(version, six.string_types): 147 raise ConfigurationError( 148 'Version in "{}" is invalid - it should be a string.' 149 .format(self.filename)) 150 151 if version == '1': 152 raise ConfigurationError( 153 'Version in "{}" is invalid. {}' 154 .format(self.filename, VERSION_EXPLANATION)) 155 156 if version == '2': 157 version = V2_0 158 159 if version != V2_0: 160 raise ConfigurationError( 161 'Version in "{}" is unsupported. {}' 162 .format(self.filename, VERSION_EXPLANATION)) 163 164 return version 165 166 def get_service(self, name): 167 return self.get_service_dicts()[name] 168 169 def get_service_dicts(self): 170 return self.config if self.version == V1 else self.config.get('services', {}) 171 172 def get_volumes(self): 173 return {} if self.version == V1 else self.config.get('volumes', {}) 174 175 def get_networks(self): 176 return {} if self.version == V1 else self.config.get('networks', {}) 177 178 179 class Config(namedtuple('_Config', 'version services volumes networks')): 180 """ 181 :param version: configuration version 182 :type version: int 183 :param services: List of service description dictionaries 184 :type services: :class:`list` 185 :param volumes: Dictionary mapping volume names to description dictionaries 186 :type volumes: :class:`dict` 187 :param networks: Dictionary mapping network names to description dictionaries 188 :type networks: :class:`dict` 189 """ 190 191 192 class ServiceConfig(namedtuple('_ServiceConfig', 'working_dir filename name config')): 193 194 @classmethod 195 def with_abs_paths(cls, working_dir, filename, name, config): 196 if not working_dir: 197 raise ValueError("No working_dir for ServiceConfig.") 198 199 return cls( 200 os.path.abspath(working_dir), 201 os.path.abspath(filename) if filename else filename, 202 name, 203 config) 204 205 206 def find(base_dir, filenames): 207 if filenames == ['-']: 208 return ConfigDetails( 209 os.getcwd(), 210 [ConfigFile(None, yaml.safe_load(sys.stdin))]) 211 212 if filenames: 213 filenames = [os.path.join(base_dir, f) for f in filenames] 214 else: 215 filenames = get_default_config_files(base_dir) 216 217 log.debug("Using configuration files: {}".format(",".join(filenames))) 218 return ConfigDetails( 219 os.path.dirname(filenames[0]), 220 [ConfigFile.from_filename(f) for f in filenames]) 221 222 223 def validate_config_version(config_files): 224 main_file = config_files[0] 225 validate_top_level_object(main_file) 226 for next_file in config_files[1:]: 227 validate_top_level_object(next_file) 228 229 if main_file.version != next_file.version: 230 raise ConfigurationError( 231 "Version mismatch: file {0} specifies version {1} but " 232 "extension file {2} uses version {3}".format( 233 main_file.filename, 234 main_file.version, 235 next_file.filename, 236 next_file.version)) 237 238 239 def get_default_config_files(base_dir): 240 (candidates, path) = find_candidates_in_parent_dirs(SUPPORTED_FILENAMES, base_dir) 241 242 if not candidates: 243 raise ComposeFileNotFound(SUPPORTED_FILENAMES) 244 245 winner = candidates[0] 246 247 if len(candidates) > 1: 248 log.warn("Found multiple config files with supported names: %s", ", ".join(candidates)) 249 log.warn("Using %s\n", winner) 250 251 return [os.path.join(path, winner)] + get_default_override_file(path) 252 253 254 def get_default_override_file(path): 255 override_filename = os.path.join(path, DEFAULT_OVERRIDE_FILENAME) 256 return [override_filename] if os.path.exists(override_filename) else [] 257 258 259 def find_candidates_in_parent_dirs(filenames, path): 260 """ 261 Given a directory path to start, looks for filenames in the 262 directory, and then each parent directory successively, 263 until found. 264 265 Returns tuple (candidates, path). 266 """ 267 candidates = [filename for filename in filenames 268 if os.path.exists(os.path.join(path, filename))] 269 270 if not candidates: 271 parent_dir = os.path.join(path, '..') 272 if os.path.abspath(parent_dir) != os.path.abspath(path): 273 return find_candidates_in_parent_dirs(filenames, parent_dir) 274 275 return (candidates, path) 276 277 278 def load(config_details): 279 """Load the configuration from a working directory and a list of 280 configuration files. Files are loaded in order, and merged on top 281 of each other to create the final configuration. 282 283 Return a fully interpolated, extended and validated configuration. 284 """ 285 validate_config_version(config_details.config_files) 286 287 processed_files = [ 288 process_config_file(config_file) 289 for config_file in config_details.config_files 290 ] 291 config_details = config_details._replace(config_files=processed_files) 292 293 main_file = config_details.config_files[0] 294 volumes = load_mapping(config_details.config_files, 'get_volumes', 'Volume') 295 networks = load_mapping(config_details.config_files, 'get_networks', 'Network') 296 service_dicts = load_services( 297 config_details.working_dir, 298 main_file, 299 [file.get_service_dicts() for file in config_details.config_files]) 300 301 if main_file.version != V1: 302 for service_dict in service_dicts: 303 match_named_volumes(service_dict, volumes) 304 305 return Config(main_file.version, service_dicts, volumes, networks) 306 307 308 def load_mapping(config_files, get_func, entity_type): 309 mapping = {} 310 311 for config_file in config_files: 312 for name, config in getattr(config_file, get_func)().items(): 313 mapping[name] = config or {} 314 if not config: 315 continue 316 317 external = config.get('external') 318 if external: 319 if len(config.keys()) > 1: 320 raise ConfigurationError( 321 '{} {} declared as external but specifies' 322 ' additional attributes ({}). '.format( 323 entity_type, 324 name, 325 ', '.join([k for k in config.keys() if k != 'external']) 326 ) 327 ) 328 if isinstance(external, dict): 329 config['external_name'] = external.get('name') 330 else: 331 config['external_name'] = name 332 333 mapping[name] = config 334 335 return mapping 336 337 338 def load_services(working_dir, config_file, service_configs): 339 def build_service(service_name, service_dict, service_names): 340 service_config = ServiceConfig.with_abs_paths( 341 working_dir, 342 config_file.filename, 343 service_name, 344 service_dict) 345 resolver = ServiceExtendsResolver(service_config, config_file) 346 service_dict = process_service(resolver.run()) 347 348 service_config = service_config._replace(config=service_dict) 349 validate_service(service_config, service_names, config_file.version) 350 service_dict = finalize_service( 351 service_config, 352 service_names, 353 config_file.version) 354 return service_dict 355 356 def build_services(service_config): 357 service_names = service_config.keys() 358 return sort_service_dicts([ 359 build_service(name, service_dict, service_names) 360 for name, service_dict in service_config.items() 361 ]) 362 363 def merge_services(base, override): 364 all_service_names = set(base) | set(override) 365 return { 366 name: merge_service_dicts_from_files( 367 base.get(name, {}), 368 override.get(name, {}), 369 config_file.version) 370 for name in all_service_names 371 } 372 373 service_config = service_configs[0] 374 for next_config in service_configs[1:]: 375 service_config = merge_services(service_config, next_config) 376 377 return build_services(service_config) 378 379 380 def process_config_file(config_file, service_name=None): 381 service_dicts = config_file.get_service_dicts() 382 validate_top_level_service_objects(config_file.filename, service_dicts) 383 384 interpolated_config = interpolate_environment_variables(service_dicts, 'service') 385 386 if config_file.version == V2_0: 387 processed_config = dict(config_file.config) 388 processed_config['services'] = services = interpolated_config 389 processed_config['volumes'] = interpolate_environment_variables( 390 config_file.get_volumes(), 'volume') 391 processed_config['networks'] = interpolate_environment_variables( 392 config_file.get_networks(), 'network') 393 394 if config_file.version == V1: 395 processed_config = services = interpolated_config 396 397 config_file = config_file._replace(config=processed_config) 398 validate_against_fields_schema(config_file) 399 400 if service_name and service_name not in services: 401 raise ConfigurationError( 402 "Cannot extend service '{}' in {}: Service not found".format( 403 service_name, config_file.filename)) 404 405 return config_file 406 407 408 class ServiceExtendsResolver(object): 409 def __init__(self, service_config, config_file, already_seen=None): 410 self.service_config = service_config 411 self.working_dir = service_config.working_dir 412 self.already_seen = already_seen or [] 413 self.config_file = config_file 414 415 @property 416 def signature(self): 417 return self.service_config.filename, self.service_config.name 418 419 def detect_cycle(self): 420 if self.signature in self.already_seen: 421 raise CircularReference(self.already_seen + [self.signature]) 422 423 def run(self): 424 self.detect_cycle() 425 426 if 'extends' in self.service_config.config: 427 service_dict = self.resolve_extends(*self.validate_and_construct_extends()) 428 return self.service_config._replace(config=service_dict) 429 430 return self.service_config 431 432 def validate_and_construct_extends(self): 433 extends = self.service_config.config['extends'] 434 if not isinstance(extends, dict): 435 extends = {'service': extends} 436 437 config_path = self.get_extended_config_path(extends) 438 service_name = extends['service'] 439 440 extends_file = ConfigFile.from_filename(config_path) 441 validate_config_version([self.config_file, extends_file]) 442 extended_file = process_config_file( 443 extends_file, 444 service_name=service_name) 445 service_config = extended_file.get_service(service_name) 446 447 return config_path, service_config, service_name 448 449 def resolve_extends(self, extended_config_path, service_dict, service_name): 450 resolver = ServiceExtendsResolver( 451 ServiceConfig.with_abs_paths( 452 os.path.dirname(extended_config_path), 453 extended_config_path, 454 service_name, 455 service_dict), 456 self.config_file, 457 already_seen=self.already_seen + [self.signature]) 458 459 service_config = resolver.run() 460 other_service_dict = process_service(service_config) 461 validate_extended_service_dict( 462 other_service_dict, 463 extended_config_path, 464 service_name) 465 466 return merge_service_dicts( 467 other_service_dict, 468 self.service_config.config, 469 self.config_file.version) 470 471 def get_extended_config_path(self, extends_options): 472 """Service we are extending either has a value for 'file' set, which we 473 need to obtain a full path too or we are extending from a service 474 defined in our own file. 475 """ 476 filename = self.service_config.filename 477 validate_extends_file_path( 478 self.service_config.name, 479 extends_options, 480 filename) 481 if 'file' in extends_options: 482 return expand_path(self.working_dir, extends_options['file']) 483 return filename 484 485 486 def resolve_environment(service_dict): 487 """Unpack any environment variables from an env_file, if set. 488 Interpolate environment values if set. 489 """ 490 env = {} 491 for env_file in service_dict.get('env_file', []): 492 env.update(env_vars_from_file(env_file)) 493 494 env.update(parse_environment(service_dict.get('environment'))) 495 return dict(filter(None, (resolve_env_var(k, v) for k, v in six.iteritems(env)))) 496 497 498 def resolve_build_args(build): 499 args = parse_build_arguments(build.get('args')) 500 return dict(filter(None, (resolve_env_var(k, v) for k, v in six.iteritems(args)))) 501 502 503 def validate_extended_service_dict(service_dict, filename, service): 504 error_prefix = "Cannot extend service '%s' in %s:" % (service, filename) 505 506 if 'links' in service_dict: 507 raise ConfigurationError( 508 "%s services with 'links' cannot be extended" % error_prefix) 509 510 if 'volumes_from' in service_dict: 511 raise ConfigurationError( 512 "%s services with 'volumes_from' cannot be extended" % error_prefix) 513 514 if 'net' in service_dict: 515 if get_container_name_from_network_mode(service_dict['net']): 516 raise ConfigurationError( 517 "%s services with 'net: container' cannot be extended" % error_prefix) 518 519 if 'network_mode' in service_dict: 520 if get_service_name_from_network_mode(service_dict['network_mode']): 521 raise ConfigurationError( 522 "%s services with 'network_mode: service' cannot be extended" % error_prefix) 523 524 if 'depends_on' in service_dict: 525 raise ConfigurationError( 526 "%s services with 'depends_on' cannot be extended" % error_prefix) 527 528 529 def validate_service(service_config, service_names, version): 530 service_dict, service_name = service_config.config, service_config.name 531 validate_against_service_schema(service_dict, service_name, version) 532 validate_paths(service_dict) 533 534 validate_ulimits(service_config) 535 validate_network_mode(service_config, service_names) 536 validate_depends_on(service_config, service_names) 537 538 if not service_dict.get('image') and has_uppercase(service_name): 539 raise ConfigurationError( 540 "Service '{name}' contains uppercase characters which are not valid " 541 "as part of an image name. Either use a lowercase service name or " 542 "use the `image` field to set a custom name for the service image." 543 .format(name=service_name)) 544 545 546 def process_service(service_config): 547 working_dir = service_config.working_dir 548 service_dict = dict(service_config.config) 549 550 if 'env_file' in service_dict: 551 service_dict['env_file'] = [ 552 expand_path(working_dir, path) 553 for path in to_list(service_dict['env_file']) 554 ] 555 556 if 'build' in service_dict: 557 if isinstance(service_dict['build'], six.string_types): 558 service_dict['build'] = resolve_build_path(working_dir, service_dict['build']) 559 elif isinstance(service_dict['build'], dict) and 'context' in service_dict['build']: 560 path = service_dict['build']['context'] 561 service_dict['build']['context'] = resolve_build_path(working_dir, path) 562 563 if 'volumes' in service_dict and service_dict.get('volume_driver') is None: 564 service_dict['volumes'] = resolve_volume_paths(working_dir, service_dict) 565 566 if 'labels' in service_dict: 567 service_dict['labels'] = parse_labels(service_dict['labels']) 568 569 if 'extra_hosts' in service_dict: 570 service_dict['extra_hosts'] = parse_extra_hosts(service_dict['extra_hosts']) 571 572 for field in ['dns', 'dns_search']: 573 if field in service_dict: 574 service_dict[field] = to_list(service_dict[field]) 575 576 return service_dict 577 578 579 def finalize_service(service_config, service_names, version): 580 service_dict = dict(service_config.config) 581 582 if 'environment' in service_dict or 'env_file' in service_dict: 583 service_dict['environment'] = resolve_environment(service_dict) 584 service_dict.pop('env_file', None) 585 586 if 'volumes_from' in service_dict: 587 service_dict['volumes_from'] = [ 588 VolumeFromSpec.parse(vf, service_names, version) 589 for vf in service_dict['volumes_from'] 590 ] 591 592 if 'volumes' in service_dict: 593 service_dict['volumes'] = [ 594 VolumeSpec.parse(v) for v in service_dict['volumes']] 595 596 if 'net' in service_dict: 597 network_mode = service_dict.pop('net') 598 container_name = get_container_name_from_network_mode(network_mode) 599 if container_name and container_name in service_names: 600 service_dict['network_mode'] = 'service:{}'.format(container_name) 601 else: 602 service_dict['network_mode'] = network_mode 603 604 if 'restart' in service_dict: 605 service_dict['restart'] = parse_restart_spec(service_dict['restart']) 606 607 normalize_build(service_dict, service_config.working_dir) 608 609 service_dict['name'] = service_config.name 610 return normalize_v1_service_format(service_dict) 611 612 613 def normalize_v1_service_format(service_dict): 614 if 'log_driver' in service_dict or 'log_opt' in service_dict: 615 if 'logging' not in service_dict: 616 service_dict['logging'] = {} 617 if 'log_driver' in service_dict: 618 service_dict['logging']['driver'] = service_dict['log_driver'] 619 del service_dict['log_driver'] 620 if 'log_opt' in service_dict: 621 service_dict['logging']['options'] = service_dict['log_opt'] 622 del service_dict['log_opt'] 623 624 if 'dockerfile' in service_dict: 625 service_dict['build'] = service_dict.get('build', {}) 626 service_dict['build'].update({ 627 'dockerfile': service_dict.pop('dockerfile') 628 }) 629 630 return service_dict 631 632 633 def merge_service_dicts_from_files(base, override, version): 634 """When merging services from multiple files we need to merge the `extends` 635 field. This is not handled by `merge_service_dicts()` which is used to 636 perform the `extends`. 637 """ 638 new_service = merge_service_dicts(base, override, version) 639 if 'extends' in override: 640 new_service['extends'] = override['extends'] 641 elif 'extends' in base: 642 new_service['extends'] = base['extends'] 643 return new_service 644 645 646 class MergeDict(dict): 647 """A dict-like object responsible for merging two dicts into one.""" 648 649 def __init__(self, base, override): 650 self.base = base 651 self.override = override 652 653 def needs_merge(self, field): 654 return field in self.base or field in self.override 655 656 def merge_field(self, field, merge_func, default=None): 657 if not self.needs_merge(field): 658 return 659 660 self[field] = merge_func( 661 self.base.get(field, default), 662 self.override.get(field, default)) 663 664 def merge_mapping(self, field, parse_func): 665 if not self.needs_merge(field): 666 return 667 668 self[field] = parse_func(self.base.get(field)) 669 self[field].update(parse_func(self.override.get(field))) 670 671 def merge_sequence(self, field, parse_func): 672 def parse_sequence_func(seq): 673 return to_mapping((parse_func(item) for item in seq), 'merge_field') 674 675 if not self.needs_merge(field): 676 return 677 678 merged = parse_sequence_func(self.base.get(field, [])) 679 merged.update(parse_sequence_func(self.override.get(field, []))) 680 self[field] = [item.repr() for item in merged.values()] 681 682 def merge_scalar(self, field): 683 if self.needs_merge(field): 684 self[field] = self.override.get(field, self.base.get(field)) 685 686 687 def merge_service_dicts(base, override, version): 688 md = MergeDict(base, override) 689 690 md.merge_mapping('environment', parse_environment) 691 md.merge_mapping('labels', parse_labels) 692 md.merge_mapping('ulimits', parse_ulimits) 693 md.merge_sequence('links', ServiceLink.parse) 694 695 for field in ['volumes', 'devices']: 696 md.merge_field(field, merge_path_mappings) 697 698 for field in [ 699 'depends_on', 700 'expose', 701 'external_links', 702 'networks', 703 'ports', 704 'volumes_from', 705 ]: 706 md.merge_field(field, operator.add, default=[]) 707 708 for field in ['dns', 'dns_search', 'env_file']: 709 md.merge_field(field, merge_list_or_string) 710 711 for field in set(ALLOWED_KEYS) - set(md): 712 md.merge_scalar(field) 713 714 if version == V1: 715 legacy_v1_merge_image_or_build(md, base, override) 716 else: 717 merge_build(md, base, override) 718 719 return dict(md) 720 721 722 def merge_build(output, base, override): 723 build = {} 724 725 if 'build' in base: 726 if isinstance(base['build'], six.string_types): 727 build['context'] = base['build'] 728 else: 729 build.update(base['build']) 730 731 if 'build' in override: 732 if isinstance(override['build'], six.string_types): 733 build['context'] = override['build'] 734 else: 735 build.update(override['build']) 736 737 if build: 738 output['build'] = build 739 740 741 def legacy_v1_merge_image_or_build(output, base, override): 742 output.pop('image', None) 743 output.pop('build', None) 744 if 'image' in override: 745 output['image'] = override['image'] 746 elif 'build' in override: 747 output['build'] = override['build'] 748 elif 'image' in base: 749 output['image'] = base['image'] 750 elif 'build' in base: 751 output['build'] = base['build'] 752 753 754 def merge_environment(base, override): 755 env = parse_environment(base) 756 env.update(parse_environment(override)) 757 return env 758 759 760 def split_env(env): 761 if isinstance(env, six.binary_type): 762 env = env.decode('utf-8', 'replace') 763 if '=' in env: 764 return env.split('=', 1) 765 else: 766 return env, None 767 768 769 def split_label(label): 770 if '=' in label: 771 return label.split('=', 1) 772 else: 773 return label, '' 774 775 776 def parse_dict_or_list(split_func, type_name, arguments): 777 if not arguments: 778 return {} 779 780 if isinstance(arguments, list): 781 return dict(split_func(e) for e in arguments) 782 783 if isinstance(arguments, dict): 784 return dict(arguments) 785 786 raise ConfigurationError( 787 "%s \"%s\" must be a list or mapping," % 788 (type_name, arguments) 789 ) 790 791 792 parse_build_arguments = functools.partial(parse_dict_or_list, split_env, 'build arguments') 793 parse_environment = functools.partial(parse_dict_or_list, split_env, 'environment') 794 parse_labels = functools.partial(parse_dict_or_list, split_label, 'labels') 795 796 797 def parse_ulimits(ulimits): 798 if not ulimits: 799 return {} 800 801 if isinstance(ulimits, dict): 802 return dict(ulimits) 803 804 805 def resolve_env_var(key, val): 806 if val is not None: 807 return key, val 808 elif key in os.environ: 809 return key, os.environ[key] 810 else: 811 return () 812 813 814 def env_vars_from_file(filename): 815 """ 816 Read in a line delimited file of environment variables. 817 """ 818 if not os.path.exists(filename): 819 raise ConfigurationError("Couldn't find env file: %s" % filename) 820 env = {} 821 for line in codecs.open(filename, 'r', 'utf-8'): 822 line = line.strip() 823 if line and not line.startswith('#'): 824 k, v = split_env(line) 825 env[k] = v 826 return env 827 828 829 def resolve_volume_paths(working_dir, service_dict): 830 return [ 831 resolve_volume_path(working_dir, volume) 832 for volume in service_dict['volumes'] 833 ] 834 835 836 def resolve_volume_path(working_dir, volume): 837 container_path, host_path = split_path_mapping(volume) 838 839 if host_path is not None: 840 if host_path.startswith('.'): 841 host_path = expand_path(working_dir, host_path) 842 host_path = os.path.expanduser(host_path) 843 return u"{}:{}".format(host_path, container_path) 844 else: 845 return container_path 846 847 848 def normalize_build(service_dict, working_dir): 849 850 if 'build' in service_dict: 851 build = {} 852 # Shortcut where specifying a string is treated as the build context 853 if isinstance(service_dict['build'], six.string_types): 854 build['context'] = service_dict.pop('build') 855 else: 856 build.update(service_dict['build']) 857 if 'args' in build: 858 build['args'] = resolve_build_args(build) 859 860 service_dict['build'] = build 861 862 863 def resolve_build_path(working_dir, build_path): 864 if is_url(build_path): 865 return build_path 866 return expand_path(working_dir, build_path) 867 868 869 def is_url(build_path): 870 return build_path.startswith(DOCKER_VALID_URL_PREFIXES) 871 872 873 def validate_paths(service_dict): 874 if 'build' in service_dict: 875 build = service_dict.get('build', {}) 876 877 if isinstance(build, six.string_types): 878 build_path = build 879 elif isinstance(build, dict) and 'context' in build: 880 build_path = build['context'] 881 882 if ( 883 not is_url(build_path) and 884 (not os.path.exists(build_path) or not os.access(build_path, os.R_OK)) 885 ): 886 raise ConfigurationError( 887 "build path %s either does not exist, is not accessible, " 888 "or is not a valid URL." % build_path) 889 890 891 def merge_path_mappings(base, override): 892 d = dict_from_path_mappings(base) 893 d.update(dict_from_path_mappings(override)) 894 return path_mappings_from_dict(d) 895 896 897 def dict_from_path_mappings(path_mappings): 898 if path_mappings: 899 return dict(split_path_mapping(v) for v in path_mappings) 900 else: 901 return {} 902 903 904 def path_mappings_from_dict(d): 905 return [join_path_mapping(v) for v in d.items()] 906 907 908 def split_path_mapping(volume_path): 909 """ 910 Ascertain if the volume_path contains a host path as well as a container 911 path. Using splitdrive so windows absolute paths won't cause issues with 912 splitting on ':'. 913 """ 914 # splitdrive has limitations when it comes to relative paths, so when it's 915 # relative, handle special case to set the drive to '' 916 if volume_path.startswith('.') or volume_path.startswith('~'): 917 drive, volume_config = '', volume_path 918 else: 919 drive, volume_config = os.path.splitdrive(volume_path) 920 921 if ':' in volume_config: 922 (host, container) = volume_config.split(':', 1) 923 return (container, drive + host) 924 else: 925 return (volume_path, None) 926 927 928 def join_path_mapping(pair): 929 (container, host) = pair 930 if host is None: 931 return container 932 else: 933 return ":".join((host, container)) 934 935 936 def expand_path(working_dir, path): 937 return os.path.abspath(os.path.join(working_dir, os.path.expanduser(path))) 938 939 940 def merge_list_or_string(base, override): 941 return to_list(base) + to_list(override) 942 943 944 def to_list(value): 945 if value is None: 946 return [] 947 elif isinstance(value, six.string_types): 948 return [value] 949 else: 950 return value 951 952 953 def to_mapping(sequence, key_field): 954 return {getattr(item, key_field): item for item in sequence} 955 956 957 def has_uppercase(name): 958 return any(char in string.ascii_uppercase for char in name) 959 960 961 def load_yaml(filename): 962 try: 963 with open(filename, 'r') as fh: 964 return yaml.safe_load(fh) 965 except (IOError, yaml.YAMLError) as e: 966 error_name = getattr(e, '__module__', '') + '.' + e.__class__.__name__ 967 raise ConfigurationError(u"{}: {}".format(error_name, e)) 968 [end of compose/config/config.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
docker/compose
7b5bad6050e337ca41d8f1a0e80b44787534e92f
Merge build args when using multiple compose files (or when extending services) Based on the behavior of `environment` and `labels`, as well as `build.image`, `build.context` etc, I would also expect `build.args` to be merged, instead of being replaced. To give an example: ## Input **docker-compose.yml:** ``` yaml version: "2" services: my_service: build: context: my-app args: SOME_VARIABLE: "42" ``` **docker-compose.override.yml:** ``` yaml version: "2" services: my_service: build: args: HTTP_PROXY: http://proxy.somewhere:80 HTTPS_PROXY: http://proxy.somewhere:80 NO_PROXY: somewhere,localhost ``` **my-app/Dockerfile** ``` Dockerfile # Just needed to be able to use `build:` FROM busybox:latest ARG SOME_VARIABLE=xyz RUN echo "$SOME_VARIABLE" > /etc/example ``` ## Current Output ``` bash $ docker-compose config networks: {} services: my_service: build: args: HTTPS_PROXY: http://proxy.somewhere:80 HTTP_PROXY: http://proxy.somewhere:80 NO_PROXY: somewhere,localhost context: <project-dir>\my-app version: '2.0' volumes: {} ``` ## Expected Output ``` bash $ docker-compose config networks: {} services: my_service: build: args: SOME_VARIABLE: 42 # Note the merged variable here HTTPS_PROXY: http://proxy.somewhere:80 HTTP_PROXY: http://proxy.somewhere:80 NO_PROXY: somewhere,localhost context: <project-dir>\my-app version: '2.0' volumes: {} ``` ## Version Information ``` bash $ docker-compose version docker-compose version 1.6.0, build cdb920a docker-py version: 1.7.0 CPython version: 2.7.11 OpenSSL version: OpenSSL 1.0.2d 9 Jul 2015 ``` # Implementation proposal I mainly want to get clarification on what the desired behavior is, so that I can possibly help implementing it, maybe even for `1.6.1`. Personally, I'd like the behavior to be to merge the `build.args` key (as outlined above), for a couple of reasons: - Principle of least surprise/consistency with `environment`, `labels`, `ports` and so on. - It enables scenarios like the one outlined above, where the images require some transient configuration to build, in addition to other build variables which actually have an influence on the final image. The scenario that one wants to replace all build args at once is not very likely IMO; why would you define base build variables in the first place if you're going to replace them anyway? # Alternative behavior: Output a warning If the behavior should stay the same as it is now, i.e. to fully replaced the `build.args` keys, then `docker-compose` should at least output a warning IMO. It took me some time to figure out that `docker-compose` was ignoring the build args in the base `docker-compose.yml` file.
I think we should merge build args. It was probably just overlooked since this is the first time we have nested configuration that we actually want to merge (other nested config like `logging` is not merged by design, because changing one option likely invalidates the rest). I think the implementation would be to use the new `MergeDict()` object in `merge_build()`. Currently we just use `update()`. A PR for this would be great! I'm going to pick this up since it can be fixed at the same time as #2874
2016-02-10T18:55:23Z
<patch> diff --git a/compose/config/config.py b/compose/config/config.py --- a/compose/config/config.py +++ b/compose/config/config.py @@ -713,29 +713,24 @@ def merge_service_dicts(base, override, version): if version == V1: legacy_v1_merge_image_or_build(md, base, override) - else: - merge_build(md, base, override) + elif md.needs_merge('build'): + md['build'] = merge_build(md, base, override) return dict(md) def merge_build(output, base, override): - build = {} - - if 'build' in base: - if isinstance(base['build'], six.string_types): - build['context'] = base['build'] - else: - build.update(base['build']) - - if 'build' in override: - if isinstance(override['build'], six.string_types): - build['context'] = override['build'] - else: - build.update(override['build']) - - if build: - output['build'] = build + def to_dict(service): + build_config = service.get('build', {}) + if isinstance(build_config, six.string_types): + return {'context': build_config} + return build_config + + md = MergeDict(to_dict(base), to_dict(override)) + md.merge_scalar('context') + md.merge_scalar('dockerfile') + md.merge_mapping('args', parse_build_arguments) + return dict(md) def legacy_v1_merge_image_or_build(output, base, override): </patch>
[]
[]
ipython__ipython-13417
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Add line number to error messages As suggested in #13169, it adds line number to error messages, in order to make them more friendly. ![image](https://user-images.githubusercontent.com/20190646/139513782-ea8d42ab-9c73-4452-b607-5c54ca50a125.png) That was the file used in the test ![image](https://user-images.githubusercontent.com/20190646/139513827-0aa4bed3-682f-40ee-a8ea-4f0e6e3fbc34.png) </issue> <code> [start of README.rst] 1 .. image:: https://codecov.io/github/ipython/ipython/coverage.svg?branch=master 2 :target: https://codecov.io/github/ipython/ipython?branch=master 3 4 .. image:: https://img.shields.io/pypi/v/IPython.svg 5 :target: https://pypi.python.org/pypi/ipython 6 7 .. image:: https://github.com/ipython/ipython/actions/workflows/test.yml/badge.svg 8 :target: https://github.com/ipython/ipython/actions/workflows/test.yml) 9 10 .. image:: https://www.codetriage.com/ipython/ipython/badges/users.svg 11 :target: https://www.codetriage.com/ipython/ipython/ 12 13 .. image:: https://raster.shields.io/badge/Follows-NEP29-brightgreen.png 14 :target: https://numpy.org/neps/nep-0029-deprecation_policy.html 15 16 17 =========================================== 18 IPython: Productive Interactive Computing 19 =========================================== 20 21 Overview 22 ======== 23 24 Welcome to IPython. Our full documentation is available on `ipython.readthedocs.io 25 <https://ipython.readthedocs.io/en/stable/>`_ and contains information on how to install, use, and 26 contribute to the project. 27 IPython (Interactive Python) is a command shell for interactive computing in multiple programming languages, originally developed for the Python programming language, that offers introspection, rich media, shell syntax, tab completion, and history. 28 29 **IPython versions and Python Support** 30 31 Starting with IPython 7.10, IPython follows `NEP 29 <https://numpy.org/neps/nep-0029-deprecation_policy.html>`_ 32 33 **IPython 7.17+** requires Python version 3.7 and above. 34 35 **IPython 7.10+** requires Python version 3.6 and above. 36 37 **IPython 7.0** requires Python version 3.5 and above. 38 39 **IPython 6.x** requires Python version 3.3 and above. 40 41 **IPython 5.x LTS** is the compatible release for Python 2.7. 42 If you require Python 2 support, you **must** use IPython 5.x LTS. Please 43 update your project configurations and requirements as necessary. 44 45 46 The Notebook, Qt console and a number of other pieces are now parts of *Jupyter*. 47 See the `Jupyter installation docs <https://jupyter.readthedocs.io/en/latest/install.html>`__ 48 if you want to use these. 49 50 Main features of IPython 51 ======================== 52 Comprehensive object introspection. 53 54 Input history, persistent across sessions. 55 56 Caching of output results during a session with automatically generated references. 57 58 Extensible tab completion, with support by default for completion of python variables and keywords, filenames and function keywords. 59 60 Extensible system of ‘magic’ commands for controlling the environment and performing many tasks related to IPython or the operating system. 61 62 A rich configuration system with easy switching between different setups (simpler than changing $PYTHONSTARTUP environment variables every time). 63 64 Session logging and reloading. 65 66 Extensible syntax processing for special purpose situations. 67 68 Access to the system shell with user-extensible alias system. 69 70 Easily embeddable in other Python programs and GUIs. 71 72 Integrated access to the pdb debugger and the Python profiler. 73 74 75 Development and Instant running 76 =============================== 77 78 You can find the latest version of the development documentation on `readthedocs 79 <https://ipython.readthedocs.io/en/latest/>`_. 80 81 You can run IPython from this directory without even installing it system-wide 82 by typing at the terminal:: 83 84 $ python -m IPython 85 86 Or see the `development installation docs 87 <https://ipython.readthedocs.io/en/latest/install/install.html#installing-the-development-version>`_ 88 for the latest revision on read the docs. 89 90 Documentation and installation instructions for older version of IPython can be 91 found on the `IPython website <https://ipython.org/documentation.html>`_ 92 93 94 95 IPython requires Python version 3 or above 96 ========================================== 97 98 Starting with version 6.0, IPython does not support Python 2.7, 3.0, 3.1, or 99 3.2. 100 101 For a version compatible with Python 2.7, please install the 5.x LTS Long Term 102 Support version. 103 104 If you are encountering this error message you are likely trying to install or 105 use IPython from source. You need to checkout the remote 5.x branch. If you are 106 using git the following should work:: 107 108 $ git fetch origin 109 $ git checkout 5.x 110 111 If you encounter this error message with a regular install of IPython, then you 112 likely need to update your package manager, for example if you are using `pip` 113 check the version of pip with:: 114 115 $ pip --version 116 117 You will need to update pip to the version 9.0.1 or greater. If you are not using 118 pip, please inquiry with the maintainers of the package for your package 119 manager. 120 121 For more information see one of our blog posts: 122 123 https://blog.jupyter.org/release-of-ipython-5-0-8ce60b8d2e8e 124 125 As well as the following Pull-Request for discussion: 126 127 https://github.com/ipython/ipython/pull/9900 128 129 This error does also occur if you are invoking ``setup.py`` directly – which you 130 should not – or are using ``easy_install`` If this is the case, use ``pip 131 install .`` instead of ``setup.py install`` , and ``pip install -e .`` instead 132 of ``setup.py develop`` If you are depending on IPython as a dependency you may 133 also want to have a conditional dependency on IPython depending on the Python 134 version:: 135 136 install_req = ['ipython'] 137 if sys.version_info[0] < 3 and 'bdist_wheel' not in sys.argv: 138 install_req.remove('ipython') 139 install_req.append('ipython<6') 140 141 setup( 142 ... 143 install_requires=install_req 144 ) 145 146 Alternatives to IPython 147 ======================= 148 149 IPython may not be to your taste; if that's the case there might be similar 150 project that you might want to use: 151 152 - The classic Python REPL. 153 - `bpython <https://bpython-interpreter.org/>`_ 154 - `mypython <https://www.asmeurer.com/mypython/>`_ 155 - `ptpython and ptipython <https://pypi.org/project/ptpython/>`_ 156 - `Xonsh <https://xon.sh/>`_ 157 158 Ignoring commits with git blame.ignoreRevsFile 159 ============================================== 160 161 As of git 2.23, it is possible to make formatting changes without breaking 162 ``git blame``. See the `git documentation 163 <https://git-scm.com/docs/git-config#Documentation/git-config.txt-blameignoreRevsFile>`_ 164 for more details. 165 166 To use this feature you must: 167 168 - Install git >= 2.23 169 - Configure your local git repo by running: 170 - POSIX: ``tools\configure-git-blame-ignore-revs.sh`` 171 - Windows: ``tools\configure-git-blame-ignore-revs.bat`` 172 [end of README.rst] [start of IPython/core/ultratb.py] 1 # -*- coding: utf-8 -*- 2 """ 3 Verbose and colourful traceback formatting. 4 5 **ColorTB** 6 7 I've always found it a bit hard to visually parse tracebacks in Python. The 8 ColorTB class is a solution to that problem. It colors the different parts of a 9 traceback in a manner similar to what you would expect from a syntax-highlighting 10 text editor. 11 12 Installation instructions for ColorTB:: 13 14 import sys,ultratb 15 sys.excepthook = ultratb.ColorTB() 16 17 **VerboseTB** 18 19 I've also included a port of Ka-Ping Yee's "cgitb.py" that produces all kinds 20 of useful info when a traceback occurs. Ping originally had it spit out HTML 21 and intended it for CGI programmers, but why should they have all the fun? I 22 altered it to spit out colored text to the terminal. It's a bit overwhelming, 23 but kind of neat, and maybe useful for long-running programs that you believe 24 are bug-free. If a crash *does* occur in that type of program you want details. 25 Give it a shot--you'll love it or you'll hate it. 26 27 .. note:: 28 29 The Verbose mode prints the variables currently visible where the exception 30 happened (shortening their strings if too long). This can potentially be 31 very slow, if you happen to have a huge data structure whose string 32 representation is complex to compute. Your computer may appear to freeze for 33 a while with cpu usage at 100%. If this occurs, you can cancel the traceback 34 with Ctrl-C (maybe hitting it more than once). 35 36 If you encounter this kind of situation often, you may want to use the 37 Verbose_novars mode instead of the regular Verbose, which avoids formatting 38 variables (but otherwise includes the information and context given by 39 Verbose). 40 41 .. note:: 42 43 The verbose mode print all variables in the stack, which means it can 44 potentially leak sensitive information like access keys, or unencrypted 45 password. 46 47 Installation instructions for VerboseTB:: 48 49 import sys,ultratb 50 sys.excepthook = ultratb.VerboseTB() 51 52 Note: Much of the code in this module was lifted verbatim from the standard 53 library module 'traceback.py' and Ka-Ping Yee's 'cgitb.py'. 54 55 Color schemes 56 ------------- 57 58 The colors are defined in the class TBTools through the use of the 59 ColorSchemeTable class. Currently the following exist: 60 61 - NoColor: allows all of this module to be used in any terminal (the color 62 escapes are just dummy blank strings). 63 64 - Linux: is meant to look good in a terminal like the Linux console (black 65 or very dark background). 66 67 - LightBG: similar to Linux but swaps dark/light colors to be more readable 68 in light background terminals. 69 70 - Neutral: a neutral color scheme that should be readable on both light and 71 dark background 72 73 You can implement other color schemes easily, the syntax is fairly 74 self-explanatory. Please send back new schemes you develop to the author for 75 possible inclusion in future releases. 76 77 Inheritance diagram: 78 79 .. inheritance-diagram:: IPython.core.ultratb 80 :parts: 3 81 """ 82 83 #***************************************************************************** 84 # Copyright (C) 2001 Nathaniel Gray <[email protected]> 85 # Copyright (C) 2001-2004 Fernando Perez <[email protected]> 86 # 87 # Distributed under the terms of the BSD License. The full license is in 88 # the file COPYING, distributed as part of this software. 89 #***************************************************************************** 90 91 92 import inspect 93 import linecache 94 import pydoc 95 import sys 96 import time 97 import traceback 98 99 import stack_data 100 from pygments.formatters.terminal256 import Terminal256Formatter 101 from pygments.styles import get_style_by_name 102 103 # IPython's own modules 104 from IPython import get_ipython 105 from IPython.core import debugger 106 from IPython.core.display_trap import DisplayTrap 107 from IPython.core.excolors import exception_colors 108 from IPython.utils import path as util_path 109 from IPython.utils import py3compat 110 from IPython.utils.terminal import get_terminal_size 111 112 import IPython.utils.colorable as colorable 113 114 # Globals 115 # amount of space to put line numbers before verbose tracebacks 116 INDENT_SIZE = 8 117 118 # Default color scheme. This is used, for example, by the traceback 119 # formatter. When running in an actual IPython instance, the user's rc.colors 120 # value is used, but having a module global makes this functionality available 121 # to users of ultratb who are NOT running inside ipython. 122 DEFAULT_SCHEME = 'NoColor' 123 124 # --------------------------------------------------------------------------- 125 # Code begins 126 127 # Helper function -- largely belongs to VerboseTB, but we need the same 128 # functionality to produce a pseudo verbose TB for SyntaxErrors, so that they 129 # can be recognized properly by ipython.el's py-traceback-line-re 130 # (SyntaxErrors have to be treated specially because they have no traceback) 131 132 133 def _format_traceback_lines(lines, Colors, has_colors, lvals): 134 """ 135 Format tracebacks lines with pointing arrow, leading numbers... 136 137 Parameters 138 ---------- 139 lines : list[Line] 140 Colors 141 ColorScheme used. 142 lvals : str 143 Values of local variables, already colored, to inject just after the error line. 144 """ 145 numbers_width = INDENT_SIZE - 1 146 res = [] 147 148 for stack_line in lines: 149 if stack_line is stack_data.LINE_GAP: 150 res.append('%s (...)%s\n' % (Colors.linenoEm, Colors.Normal)) 151 continue 152 153 line = stack_line.render(pygmented=has_colors).rstrip('\n') + '\n' 154 lineno = stack_line.lineno 155 if stack_line.is_current: 156 # This is the line with the error 157 pad = numbers_width - len(str(lineno)) 158 num = '%s%s' % (debugger.make_arrow(pad), str(lineno)) 159 start_color = Colors.linenoEm 160 else: 161 num = '%*s' % (numbers_width, lineno) 162 start_color = Colors.lineno 163 164 line = '%s%s%s %s' % (start_color, num, Colors.Normal, line) 165 166 res.append(line) 167 if lvals and stack_line.is_current: 168 res.append(lvals + '\n') 169 return res 170 171 172 def _format_filename(file, ColorFilename, ColorNormal): 173 """ 174 Format filename lines with `In [n]` if it's the nth code cell or `File *.py` if it's a module. 175 176 Parameters 177 ---------- 178 file : str 179 ColorFilename 180 ColorScheme's filename coloring to be used. 181 ColorNormal 182 ColorScheme's normal coloring to be used. 183 """ 184 ipinst = get_ipython() 185 186 if ipinst is not None and file in ipinst.compile._filename_map: 187 file = "[%s]" % ipinst.compile._filename_map[file] 188 tpl_link = "Input %sIn %%s%s" % (ColorFilename, ColorNormal) 189 else: 190 file = util_path.compress_user( 191 py3compat.cast_unicode(file, util_path.fs_encoding) 192 ) 193 tpl_link = "File %s%%s%s" % (ColorFilename, ColorNormal) 194 195 return tpl_link % file 196 197 #--------------------------------------------------------------------------- 198 # Module classes 199 class TBTools(colorable.Colorable): 200 """Basic tools used by all traceback printer classes.""" 201 202 # Number of frames to skip when reporting tracebacks 203 tb_offset = 0 204 205 def __init__(self, color_scheme='NoColor', call_pdb=False, ostream=None, parent=None, config=None): 206 # Whether to call the interactive pdb debugger after printing 207 # tracebacks or not 208 super(TBTools, self).__init__(parent=parent, config=config) 209 self.call_pdb = call_pdb 210 211 # Output stream to write to. Note that we store the original value in 212 # a private attribute and then make the public ostream a property, so 213 # that we can delay accessing sys.stdout until runtime. The way 214 # things are written now, the sys.stdout object is dynamically managed 215 # so a reference to it should NEVER be stored statically. This 216 # property approach confines this detail to a single location, and all 217 # subclasses can simply access self.ostream for writing. 218 self._ostream = ostream 219 220 # Create color table 221 self.color_scheme_table = exception_colors() 222 223 self.set_colors(color_scheme) 224 self.old_scheme = color_scheme # save initial value for toggles 225 226 if call_pdb: 227 self.pdb = debugger.Pdb() 228 else: 229 self.pdb = None 230 231 def _get_ostream(self): 232 """Output stream that exceptions are written to. 233 234 Valid values are: 235 236 - None: the default, which means that IPython will dynamically resolve 237 to sys.stdout. This ensures compatibility with most tools, including 238 Windows (where plain stdout doesn't recognize ANSI escapes). 239 240 - Any object with 'write' and 'flush' attributes. 241 """ 242 return sys.stdout if self._ostream is None else self._ostream 243 244 def _set_ostream(self, val): 245 assert val is None or (hasattr(val, 'write') and hasattr(val, 'flush')) 246 self._ostream = val 247 248 ostream = property(_get_ostream, _set_ostream) 249 250 def get_parts_of_chained_exception(self, evalue): 251 def get_chained_exception(exception_value): 252 cause = getattr(exception_value, '__cause__', None) 253 if cause: 254 return cause 255 if getattr(exception_value, '__suppress_context__', False): 256 return None 257 return getattr(exception_value, '__context__', None) 258 259 chained_evalue = get_chained_exception(evalue) 260 261 if chained_evalue: 262 return chained_evalue.__class__, chained_evalue, chained_evalue.__traceback__ 263 264 def prepare_chained_exception_message(self, cause): 265 direct_cause = "\nThe above exception was the direct cause of the following exception:\n" 266 exception_during_handling = "\nDuring handling of the above exception, another exception occurred:\n" 267 268 if cause: 269 message = [[direct_cause]] 270 else: 271 message = [[exception_during_handling]] 272 return message 273 274 @property 275 def has_colors(self): 276 return self.color_scheme_table.active_scheme_name.lower() != "nocolor" 277 278 def set_colors(self, *args, **kw): 279 """Shorthand access to the color table scheme selector method.""" 280 281 # Set own color table 282 self.color_scheme_table.set_active_scheme(*args, **kw) 283 # for convenience, set Colors to the active scheme 284 self.Colors = self.color_scheme_table.active_colors 285 # Also set colors of debugger 286 if hasattr(self, 'pdb') and self.pdb is not None: 287 self.pdb.set_colors(*args, **kw) 288 289 def color_toggle(self): 290 """Toggle between the currently active color scheme and NoColor.""" 291 292 if self.color_scheme_table.active_scheme_name == 'NoColor': 293 self.color_scheme_table.set_active_scheme(self.old_scheme) 294 self.Colors = self.color_scheme_table.active_colors 295 else: 296 self.old_scheme = self.color_scheme_table.active_scheme_name 297 self.color_scheme_table.set_active_scheme('NoColor') 298 self.Colors = self.color_scheme_table.active_colors 299 300 def stb2text(self, stb): 301 """Convert a structured traceback (a list) to a string.""" 302 return '\n'.join(stb) 303 304 def text(self, etype, value, tb, tb_offset=None, context=5): 305 """Return formatted traceback. 306 307 Subclasses may override this if they add extra arguments. 308 """ 309 tb_list = self.structured_traceback(etype, value, tb, 310 tb_offset, context) 311 return self.stb2text(tb_list) 312 313 def structured_traceback(self, etype, evalue, tb, tb_offset=None, 314 context=5, mode=None): 315 """Return a list of traceback frames. 316 317 Must be implemented by each class. 318 """ 319 raise NotImplementedError() 320 321 322 #--------------------------------------------------------------------------- 323 class ListTB(TBTools): 324 """Print traceback information from a traceback list, with optional color. 325 326 Calling requires 3 arguments: (etype, evalue, elist) 327 as would be obtained by:: 328 329 etype, evalue, tb = sys.exc_info() 330 if tb: 331 elist = traceback.extract_tb(tb) 332 else: 333 elist = None 334 335 It can thus be used by programs which need to process the traceback before 336 printing (such as console replacements based on the code module from the 337 standard library). 338 339 Because they are meant to be called without a full traceback (only a 340 list), instances of this class can't call the interactive pdb debugger.""" 341 342 def __init__(self, color_scheme='NoColor', call_pdb=False, ostream=None, parent=None, config=None): 343 TBTools.__init__(self, color_scheme=color_scheme, call_pdb=call_pdb, 344 ostream=ostream, parent=parent,config=config) 345 346 def __call__(self, etype, value, elist): 347 self.ostream.flush() 348 self.ostream.write(self.text(etype, value, elist)) 349 self.ostream.write('\n') 350 351 def _extract_tb(self, tb): 352 if tb: 353 return traceback.extract_tb(tb) 354 else: 355 return None 356 357 def structured_traceback(self, etype, evalue, etb=None, tb_offset=None, 358 context=5): 359 """Return a color formatted string with the traceback info. 360 361 Parameters 362 ---------- 363 etype : exception type 364 Type of the exception raised. 365 evalue : object 366 Data stored in the exception 367 etb : object 368 If list: List of frames, see class docstring for details. 369 If Traceback: Traceback of the exception. 370 tb_offset : int, optional 371 Number of frames in the traceback to skip. If not given, the 372 instance evalue is used (set in constructor). 373 context : int, optional 374 Number of lines of context information to print. 375 376 Returns 377 ------- 378 String with formatted exception. 379 """ 380 # This is a workaround to get chained_exc_ids in recursive calls 381 # etb should not be a tuple if structured_traceback is not recursive 382 if isinstance(etb, tuple): 383 etb, chained_exc_ids = etb 384 else: 385 chained_exc_ids = set() 386 387 if isinstance(etb, list): 388 elist = etb 389 elif etb is not None: 390 elist = self._extract_tb(etb) 391 else: 392 elist = [] 393 tb_offset = self.tb_offset if tb_offset is None else tb_offset 394 Colors = self.Colors 395 out_list = [] 396 if elist: 397 398 if tb_offset and len(elist) > tb_offset: 399 elist = elist[tb_offset:] 400 401 out_list.append('Traceback %s(most recent call last)%s:' % 402 (Colors.normalEm, Colors.Normal) + '\n') 403 out_list.extend(self._format_list(elist)) 404 # The exception info should be a single entry in the list. 405 lines = ''.join(self._format_exception_only(etype, evalue)) 406 out_list.append(lines) 407 408 exception = self.get_parts_of_chained_exception(evalue) 409 410 if exception and not id(exception[1]) in chained_exc_ids: 411 chained_exception_message = self.prepare_chained_exception_message( 412 evalue.__cause__)[0] 413 etype, evalue, etb = exception 414 # Trace exception to avoid infinite 'cause' loop 415 chained_exc_ids.add(id(exception[1])) 416 chained_exceptions_tb_offset = 0 417 out_list = ( 418 self.structured_traceback( 419 etype, evalue, (etb, chained_exc_ids), 420 chained_exceptions_tb_offset, context) 421 + chained_exception_message 422 + out_list) 423 424 return out_list 425 426 def _format_list(self, extracted_list): 427 """Format a list of traceback entry tuples for printing. 428 429 Given a list of tuples as returned by extract_tb() or 430 extract_stack(), return a list of strings ready for printing. 431 Each string in the resulting list corresponds to the item with the 432 same index in the argument list. Each string ends in a newline; 433 the strings may contain internal newlines as well, for those items 434 whose source text line is not None. 435 436 Lifted almost verbatim from traceback.py 437 """ 438 439 Colors = self.Colors 440 list = [] 441 for filename, lineno, name, line in extracted_list[:-1]: 442 item = " %s, line %s%d%s, in %s%s%s\n" % ( 443 _format_filename(filename, Colors.filename, Colors.Normal), 444 Colors.lineno, 445 lineno, 446 Colors.Normal, 447 Colors.name, 448 name, 449 Colors.Normal, 450 ) 451 if line: 452 item += ' %s\n' % line.strip() 453 list.append(item) 454 # Emphasize the last entry 455 filename, lineno, name, line = extracted_list[-1] 456 item = "%s %s, line %s%d%s, in %s%s%s%s\n" % ( 457 Colors.normalEm, 458 _format_filename(filename, Colors.filenameEm, Colors.normalEm), 459 Colors.linenoEm, 460 lineno, 461 Colors.normalEm, 462 Colors.nameEm, 463 name, 464 Colors.normalEm, 465 Colors.Normal, 466 ) 467 if line: 468 item += '%s %s%s\n' % (Colors.line, line.strip(), 469 Colors.Normal) 470 list.append(item) 471 return list 472 473 def _format_exception_only(self, etype, value): 474 """Format the exception part of a traceback. 475 476 The arguments are the exception type and value such as given by 477 sys.exc_info()[:2]. The return value is a list of strings, each ending 478 in a newline. Normally, the list contains a single string; however, 479 for SyntaxError exceptions, it contains several lines that (when 480 printed) display detailed information about where the syntax error 481 occurred. The message indicating which exception occurred is the 482 always last string in the list. 483 484 Also lifted nearly verbatim from traceback.py 485 """ 486 have_filedata = False 487 Colors = self.Colors 488 list = [] 489 stype = py3compat.cast_unicode(Colors.excName + etype.__name__ + Colors.Normal) 490 if value is None: 491 # Not sure if this can still happen in Python 2.6 and above 492 list.append(stype + '\n') 493 else: 494 if issubclass(etype, SyntaxError): 495 have_filedata = True 496 if not value.filename: value.filename = "<string>" 497 if value.lineno: 498 lineno = value.lineno 499 textline = linecache.getline(value.filename, value.lineno) 500 else: 501 lineno = "unknown" 502 textline = "" 503 list.append( 504 "%s %s, line %s%s%s\n" 505 % ( 506 Colors.normalEm, 507 _format_filename( 508 value.filename, Colors.filenameEm, Colors.normalEm 509 ), 510 Colors.linenoEm, 511 lineno, 512 Colors.Normal, 513 ) 514 ) 515 if textline == "": 516 textline = py3compat.cast_unicode(value.text, "utf-8") 517 518 if textline is not None: 519 i = 0 520 while i < len(textline) and textline[i].isspace(): 521 i += 1 522 list.append('%s %s%s\n' % (Colors.line, 523 textline.strip(), 524 Colors.Normal)) 525 if value.offset is not None: 526 s = ' ' 527 for c in textline[i:value.offset - 1]: 528 if c.isspace(): 529 s += c 530 else: 531 s += ' ' 532 list.append('%s%s^%s\n' % (Colors.caret, s, 533 Colors.Normal)) 534 535 try: 536 s = value.msg 537 except Exception: 538 s = self._some_str(value) 539 if s: 540 list.append('%s%s:%s %s\n' % (stype, Colors.excName, 541 Colors.Normal, s)) 542 else: 543 list.append('%s\n' % stype) 544 545 # sync with user hooks 546 if have_filedata: 547 ipinst = get_ipython() 548 if ipinst is not None: 549 ipinst.hooks.synchronize_with_editor(value.filename, value.lineno, 0) 550 551 return list 552 553 def get_exception_only(self, etype, value): 554 """Only print the exception type and message, without a traceback. 555 556 Parameters 557 ---------- 558 etype : exception type 559 value : exception value 560 """ 561 return ListTB.structured_traceback(self, etype, value) 562 563 def show_exception_only(self, etype, evalue): 564 """Only print the exception type and message, without a traceback. 565 566 Parameters 567 ---------- 568 etype : exception type 569 evalue : exception value 570 """ 571 # This method needs to use __call__ from *this* class, not the one from 572 # a subclass whose signature or behavior may be different 573 ostream = self.ostream 574 ostream.flush() 575 ostream.write('\n'.join(self.get_exception_only(etype, evalue))) 576 ostream.flush() 577 578 def _some_str(self, value): 579 # Lifted from traceback.py 580 try: 581 return py3compat.cast_unicode(str(value)) 582 except: 583 return u'<unprintable %s object>' % type(value).__name__ 584 585 586 #---------------------------------------------------------------------------- 587 class VerboseTB(TBTools): 588 """A port of Ka-Ping Yee's cgitb.py module that outputs color text instead 589 of HTML. Requires inspect and pydoc. Crazy, man. 590 591 Modified version which optionally strips the topmost entries from the 592 traceback, to be used with alternate interpreters (because their own code 593 would appear in the traceback).""" 594 595 def __init__(self, color_scheme='Linux', call_pdb=False, ostream=None, 596 tb_offset=0, long_header=False, include_vars=True, 597 check_cache=None, debugger_cls = None, 598 parent=None, config=None): 599 """Specify traceback offset, headers and color scheme. 600 601 Define how many frames to drop from the tracebacks. Calling it with 602 tb_offset=1 allows use of this handler in interpreters which will have 603 their own code at the top of the traceback (VerboseTB will first 604 remove that frame before printing the traceback info).""" 605 TBTools.__init__(self, color_scheme=color_scheme, call_pdb=call_pdb, 606 ostream=ostream, parent=parent, config=config) 607 self.tb_offset = tb_offset 608 self.long_header = long_header 609 self.include_vars = include_vars 610 # By default we use linecache.checkcache, but the user can provide a 611 # different check_cache implementation. This is used by the IPython 612 # kernel to provide tracebacks for interactive code that is cached, 613 # by a compiler instance that flushes the linecache but preserves its 614 # own code cache. 615 if check_cache is None: 616 check_cache = linecache.checkcache 617 self.check_cache = check_cache 618 619 self.debugger_cls = debugger_cls or debugger.Pdb 620 self.skip_hidden = True 621 622 def format_record(self, frame_info): 623 """Format a single stack frame""" 624 Colors = self.Colors # just a shorthand + quicker name lookup 625 ColorsNormal = Colors.Normal # used a lot 626 627 if isinstance(frame_info, stack_data.RepeatedFrames): 628 return ' %s[... skipping similar frames: %s]%s\n' % ( 629 Colors.excName, frame_info.description, ColorsNormal) 630 631 indent = ' ' * INDENT_SIZE 632 em_normal = '%s\n%s%s' % (Colors.valEm, indent, ColorsNormal) 633 tpl_call = 'in %s%%s%s%%s%s' % (Colors.vName, Colors.valEm, 634 ColorsNormal) 635 tpl_call_fail = 'in %s%%s%s(***failed resolving arguments***)%s' % \ 636 (Colors.vName, Colors.valEm, ColorsNormal) 637 tpl_name_val = '%%s %s= %%s%s' % (Colors.valEm, ColorsNormal) 638 639 link = _format_filename(frame_info.filename, Colors.filenameEm, ColorsNormal) 640 args, varargs, varkw, locals_ = inspect.getargvalues(frame_info.frame) 641 642 func = frame_info.executing.code_qualname() 643 if func == '<module>': 644 call = tpl_call % (func, '') 645 else: 646 # Decide whether to include variable details or not 647 var_repr = eqrepr if self.include_vars else nullrepr 648 try: 649 call = tpl_call % (func, inspect.formatargvalues(args, 650 varargs, varkw, 651 locals_, formatvalue=var_repr)) 652 except KeyError: 653 # This happens in situations like errors inside generator 654 # expressions, where local variables are listed in the 655 # line, but can't be extracted from the frame. I'm not 656 # 100% sure this isn't actually a bug in inspect itself, 657 # but since there's no info for us to compute with, the 658 # best we can do is report the failure and move on. Here 659 # we must *not* call any traceback construction again, 660 # because that would mess up use of %debug later on. So we 661 # simply report the failure and move on. The only 662 # limitation will be that this frame won't have locals 663 # listed in the call signature. Quite subtle problem... 664 # I can't think of a good way to validate this in a unit 665 # test, but running a script consisting of: 666 # dict( (k,v.strip()) for (k,v) in range(10) ) 667 # will illustrate the error, if this exception catch is 668 # disabled. 669 call = tpl_call_fail % func 670 671 lvals = '' 672 lvals_list = [] 673 if self.include_vars: 674 try: 675 # we likely want to fix stackdata at some point, but 676 # still need a workaround. 677 fibp = frame_info.variables_in_executing_piece 678 for var in fibp: 679 lvals_list.append(tpl_name_val % (var.name, repr(var.value))) 680 except Exception: 681 lvals_list.append( 682 "Exception trying to inspect frame. No more locals available." 683 ) 684 if lvals_list: 685 lvals = '%s%s' % (indent, em_normal.join(lvals_list)) 686 687 result = "%s, %s\n" % (link, call) 688 689 result += ''.join(_format_traceback_lines(frame_info.lines, Colors, self.has_colors, lvals)) 690 return result 691 692 def prepare_header(self, etype, long_version=False): 693 colors = self.Colors # just a shorthand + quicker name lookup 694 colorsnormal = colors.Normal # used a lot 695 exc = '%s%s%s' % (colors.excName, etype, colorsnormal) 696 width = min(75, get_terminal_size()[0]) 697 if long_version: 698 # Header with the exception type, python version, and date 699 pyver = 'Python ' + sys.version.split()[0] + ': ' + sys.executable 700 date = time.ctime(time.time()) 701 702 head = '%s%s%s\n%s%s%s\n%s' % (colors.topline, '-' * width, colorsnormal, 703 exc, ' ' * (width - len(str(etype)) - len(pyver)), 704 pyver, date.rjust(width) ) 705 head += "\nA problem occurred executing Python code. Here is the sequence of function" \ 706 "\ncalls leading up to the error, with the most recent (innermost) call last." 707 else: 708 # Simplified header 709 head = '%s%s' % (exc, 'Traceback (most recent call last)'. \ 710 rjust(width - len(str(etype))) ) 711 712 return head 713 714 def format_exception(self, etype, evalue): 715 colors = self.Colors # just a shorthand + quicker name lookup 716 colorsnormal = colors.Normal # used a lot 717 # Get (safely) a string form of the exception info 718 try: 719 etype_str, evalue_str = map(str, (etype, evalue)) 720 except: 721 # User exception is improperly defined. 722 etype, evalue = str, sys.exc_info()[:2] 723 etype_str, evalue_str = map(str, (etype, evalue)) 724 # ... and format it 725 return ['%s%s%s: %s' % (colors.excName, etype_str, 726 colorsnormal, py3compat.cast_unicode(evalue_str))] 727 728 def format_exception_as_a_whole(self, etype, evalue, etb, number_of_lines_of_context, tb_offset): 729 """Formats the header, traceback and exception message for a single exception. 730 731 This may be called multiple times by Python 3 exception chaining 732 (PEP 3134). 733 """ 734 # some locals 735 orig_etype = etype 736 try: 737 etype = etype.__name__ 738 except AttributeError: 739 pass 740 741 tb_offset = self.tb_offset if tb_offset is None else tb_offset 742 head = self.prepare_header(etype, self.long_header) 743 records = self.get_records(etb, number_of_lines_of_context, tb_offset) 744 745 frames = [] 746 skipped = 0 747 lastrecord = len(records) - 1 748 for i, r in enumerate(records): 749 if not isinstance(r, stack_data.RepeatedFrames) and self.skip_hidden: 750 if r.frame.f_locals.get("__tracebackhide__", 0) and i != lastrecord: 751 skipped += 1 752 continue 753 if skipped: 754 Colors = self.Colors # just a shorthand + quicker name lookup 755 ColorsNormal = Colors.Normal # used a lot 756 frames.append( 757 " %s[... skipping hidden %s frame]%s\n" 758 % (Colors.excName, skipped, ColorsNormal) 759 ) 760 skipped = 0 761 frames.append(self.format_record(r)) 762 if skipped: 763 Colors = self.Colors # just a shorthand + quicker name lookup 764 ColorsNormal = Colors.Normal # used a lot 765 frames.append( 766 " %s[... skipping hidden %s frame]%s\n" 767 % (Colors.excName, skipped, ColorsNormal) 768 ) 769 770 formatted_exception = self.format_exception(etype, evalue) 771 if records: 772 frame_info = records[-1] 773 ipinst = get_ipython() 774 if ipinst is not None: 775 ipinst.hooks.synchronize_with_editor(frame_info.filename, frame_info.lineno, 0) 776 777 return [[head] + frames + [''.join(formatted_exception[0])]] 778 779 def get_records(self, etb, number_of_lines_of_context, tb_offset): 780 context = number_of_lines_of_context - 1 781 after = context // 2 782 before = context - after 783 if self.has_colors: 784 style = get_style_by_name('default') 785 style = stack_data.style_with_executing_node(style, 'bg:#00005f') 786 formatter = Terminal256Formatter(style=style) 787 else: 788 formatter = None 789 options = stack_data.Options( 790 before=before, 791 after=after, 792 pygments_formatter=formatter, 793 ) 794 return list(stack_data.FrameInfo.stack_data(etb, options=options))[tb_offset:] 795 796 def structured_traceback(self, etype, evalue, etb, tb_offset=None, 797 number_of_lines_of_context=5): 798 """Return a nice text document describing the traceback.""" 799 800 formatted_exception = self.format_exception_as_a_whole(etype, evalue, etb, number_of_lines_of_context, 801 tb_offset) 802 803 colors = self.Colors # just a shorthand + quicker name lookup 804 colorsnormal = colors.Normal # used a lot 805 head = '%s%s%s' % (colors.topline, '-' * min(75, get_terminal_size()[0]), colorsnormal) 806 structured_traceback_parts = [head] 807 chained_exceptions_tb_offset = 0 808 lines_of_context = 3 809 formatted_exceptions = formatted_exception 810 exception = self.get_parts_of_chained_exception(evalue) 811 if exception: 812 formatted_exceptions += self.prepare_chained_exception_message(evalue.__cause__) 813 etype, evalue, etb = exception 814 else: 815 evalue = None 816 chained_exc_ids = set() 817 while evalue: 818 formatted_exceptions += self.format_exception_as_a_whole(etype, evalue, etb, lines_of_context, 819 chained_exceptions_tb_offset) 820 exception = self.get_parts_of_chained_exception(evalue) 821 822 if exception and not id(exception[1]) in chained_exc_ids: 823 chained_exc_ids.add(id(exception[1])) # trace exception to avoid infinite 'cause' loop 824 formatted_exceptions += self.prepare_chained_exception_message(evalue.__cause__) 825 etype, evalue, etb = exception 826 else: 827 evalue = None 828 829 # we want to see exceptions in a reversed order: 830 # the first exception should be on top 831 for formatted_exception in reversed(formatted_exceptions): 832 structured_traceback_parts += formatted_exception 833 834 return structured_traceback_parts 835 836 def debugger(self, force=False): 837 """Call up the pdb debugger if desired, always clean up the tb 838 reference. 839 840 Keywords: 841 842 - force(False): by default, this routine checks the instance call_pdb 843 flag and does not actually invoke the debugger if the flag is false. 844 The 'force' option forces the debugger to activate even if the flag 845 is false. 846 847 If the call_pdb flag is set, the pdb interactive debugger is 848 invoked. In all cases, the self.tb reference to the current traceback 849 is deleted to prevent lingering references which hamper memory 850 management. 851 852 Note that each call to pdb() does an 'import readline', so if your app 853 requires a special setup for the readline completers, you'll have to 854 fix that by hand after invoking the exception handler.""" 855 856 if force or self.call_pdb: 857 if self.pdb is None: 858 self.pdb = self.debugger_cls() 859 # the system displayhook may have changed, restore the original 860 # for pdb 861 display_trap = DisplayTrap(hook=sys.__displayhook__) 862 with display_trap: 863 self.pdb.reset() 864 # Find the right frame so we don't pop up inside ipython itself 865 if hasattr(self, 'tb') and self.tb is not None: 866 etb = self.tb 867 else: 868 etb = self.tb = sys.last_traceback 869 while self.tb is not None and self.tb.tb_next is not None: 870 self.tb = self.tb.tb_next 871 if etb and etb.tb_next: 872 etb = etb.tb_next 873 self.pdb.botframe = etb.tb_frame 874 self.pdb.interaction(None, etb) 875 876 if hasattr(self, 'tb'): 877 del self.tb 878 879 def handler(self, info=None): 880 (etype, evalue, etb) = info or sys.exc_info() 881 self.tb = etb 882 ostream = self.ostream 883 ostream.flush() 884 ostream.write(self.text(etype, evalue, etb)) 885 ostream.write('\n') 886 ostream.flush() 887 888 # Changed so an instance can just be called as VerboseTB_inst() and print 889 # out the right info on its own. 890 def __call__(self, etype=None, evalue=None, etb=None): 891 """This hook can replace sys.excepthook (for Python 2.1 or higher).""" 892 if etb is None: 893 self.handler() 894 else: 895 self.handler((etype, evalue, etb)) 896 try: 897 self.debugger() 898 except KeyboardInterrupt: 899 print("\nKeyboardInterrupt") 900 901 902 #---------------------------------------------------------------------------- 903 class FormattedTB(VerboseTB, ListTB): 904 """Subclass ListTB but allow calling with a traceback. 905 906 It can thus be used as a sys.excepthook for Python > 2.1. 907 908 Also adds 'Context' and 'Verbose' modes, not available in ListTB. 909 910 Allows a tb_offset to be specified. This is useful for situations where 911 one needs to remove a number of topmost frames from the traceback (such as 912 occurs with python programs that themselves execute other python code, 913 like Python shells). """ 914 915 def __init__(self, mode='Plain', color_scheme='Linux', call_pdb=False, 916 ostream=None, 917 tb_offset=0, long_header=False, include_vars=False, 918 check_cache=None, debugger_cls=None, 919 parent=None, config=None): 920 921 # NEVER change the order of this list. Put new modes at the end: 922 self.valid_modes = ['Plain', 'Context', 'Verbose', 'Minimal'] 923 self.verbose_modes = self.valid_modes[1:3] 924 925 VerboseTB.__init__(self, color_scheme=color_scheme, call_pdb=call_pdb, 926 ostream=ostream, tb_offset=tb_offset, 927 long_header=long_header, include_vars=include_vars, 928 check_cache=check_cache, debugger_cls=debugger_cls, 929 parent=parent, config=config) 930 931 # Different types of tracebacks are joined with different separators to 932 # form a single string. They are taken from this dict 933 self._join_chars = dict(Plain='', Context='\n', Verbose='\n', 934 Minimal='') 935 # set_mode also sets the tb_join_char attribute 936 self.set_mode(mode) 937 938 def structured_traceback(self, etype, value, tb, tb_offset=None, number_of_lines_of_context=5): 939 tb_offset = self.tb_offset if tb_offset is None else tb_offset 940 mode = self.mode 941 if mode in self.verbose_modes: 942 # Verbose modes need a full traceback 943 return VerboseTB.structured_traceback( 944 self, etype, value, tb, tb_offset, number_of_lines_of_context 945 ) 946 elif mode == 'Minimal': 947 return ListTB.get_exception_only(self, etype, value) 948 else: 949 # We must check the source cache because otherwise we can print 950 # out-of-date source code. 951 self.check_cache() 952 # Now we can extract and format the exception 953 return ListTB.structured_traceback( 954 self, etype, value, tb, tb_offset, number_of_lines_of_context 955 ) 956 957 def stb2text(self, stb): 958 """Convert a structured traceback (a list) to a string.""" 959 return self.tb_join_char.join(stb) 960 961 962 def set_mode(self, mode=None): 963 """Switch to the desired mode. 964 965 If mode is not specified, cycles through the available modes.""" 966 967 if not mode: 968 new_idx = (self.valid_modes.index(self.mode) + 1 ) % \ 969 len(self.valid_modes) 970 self.mode = self.valid_modes[new_idx] 971 elif mode not in self.valid_modes: 972 raise ValueError('Unrecognized mode in FormattedTB: <' + mode + '>\n' 973 'Valid modes: ' + str(self.valid_modes)) 974 else: 975 self.mode = mode 976 # include variable details only in 'Verbose' mode 977 self.include_vars = (self.mode == self.valid_modes[2]) 978 # Set the join character for generating text tracebacks 979 self.tb_join_char = self._join_chars[self.mode] 980 981 # some convenient shortcuts 982 def plain(self): 983 self.set_mode(self.valid_modes[0]) 984 985 def context(self): 986 self.set_mode(self.valid_modes[1]) 987 988 def verbose(self): 989 self.set_mode(self.valid_modes[2]) 990 991 def minimal(self): 992 self.set_mode(self.valid_modes[3]) 993 994 995 #---------------------------------------------------------------------------- 996 class AutoFormattedTB(FormattedTB): 997 """A traceback printer which can be called on the fly. 998 999 It will find out about exceptions by itself. 1000 1001 A brief example:: 1002 1003 AutoTB = AutoFormattedTB(mode = 'Verbose',color_scheme='Linux') 1004 try: 1005 ... 1006 except: 1007 AutoTB() # or AutoTB(out=logfile) where logfile is an open file object 1008 """ 1009 1010 def __call__(self, etype=None, evalue=None, etb=None, 1011 out=None, tb_offset=None): 1012 """Print out a formatted exception traceback. 1013 1014 Optional arguments: 1015 - out: an open file-like object to direct output to. 1016 1017 - tb_offset: the number of frames to skip over in the stack, on a 1018 per-call basis (this overrides temporarily the instance's tb_offset 1019 given at initialization time.""" 1020 1021 if out is None: 1022 out = self.ostream 1023 out.flush() 1024 out.write(self.text(etype, evalue, etb, tb_offset)) 1025 out.write('\n') 1026 out.flush() 1027 # FIXME: we should remove the auto pdb behavior from here and leave 1028 # that to the clients. 1029 try: 1030 self.debugger() 1031 except KeyboardInterrupt: 1032 print("\nKeyboardInterrupt") 1033 1034 def structured_traceback(self, etype=None, value=None, tb=None, 1035 tb_offset=None, number_of_lines_of_context=5): 1036 if etype is None: 1037 etype, value, tb = sys.exc_info() 1038 if isinstance(tb, tuple): 1039 # tb is a tuple if this is a chained exception. 1040 self.tb = tb[0] 1041 else: 1042 self.tb = tb 1043 return FormattedTB.structured_traceback( 1044 self, etype, value, tb, tb_offset, number_of_lines_of_context) 1045 1046 1047 #--------------------------------------------------------------------------- 1048 1049 # A simple class to preserve Nathan's original functionality. 1050 class ColorTB(FormattedTB): 1051 """Shorthand to initialize a FormattedTB in Linux colors mode.""" 1052 1053 def __init__(self, color_scheme='Linux', call_pdb=0, **kwargs): 1054 FormattedTB.__init__(self, color_scheme=color_scheme, 1055 call_pdb=call_pdb, **kwargs) 1056 1057 1058 class SyntaxTB(ListTB): 1059 """Extension which holds some state: the last exception value""" 1060 1061 def __init__(self, color_scheme='NoColor', parent=None, config=None): 1062 ListTB.__init__(self, color_scheme, parent=parent, config=config) 1063 self.last_syntax_error = None 1064 1065 def __call__(self, etype, value, elist): 1066 self.last_syntax_error = value 1067 1068 ListTB.__call__(self, etype, value, elist) 1069 1070 def structured_traceback(self, etype, value, elist, tb_offset=None, 1071 context=5): 1072 # If the source file has been edited, the line in the syntax error can 1073 # be wrong (retrieved from an outdated cache). This replaces it with 1074 # the current value. 1075 if isinstance(value, SyntaxError) \ 1076 and isinstance(value.filename, str) \ 1077 and isinstance(value.lineno, int): 1078 linecache.checkcache(value.filename) 1079 newtext = linecache.getline(value.filename, value.lineno) 1080 if newtext: 1081 value.text = newtext 1082 self.last_syntax_error = value 1083 return super(SyntaxTB, self).structured_traceback(etype, value, elist, 1084 tb_offset=tb_offset, context=context) 1085 1086 def clear_err_state(self): 1087 """Return the current error state and clear it""" 1088 e = self.last_syntax_error 1089 self.last_syntax_error = None 1090 return e 1091 1092 def stb2text(self, stb): 1093 """Convert a structured traceback (a list) to a string.""" 1094 return ''.join(stb) 1095 1096 1097 # some internal-use functions 1098 def text_repr(value): 1099 """Hopefully pretty robust repr equivalent.""" 1100 # this is pretty horrible but should always return *something* 1101 try: 1102 return pydoc.text.repr(value) 1103 except KeyboardInterrupt: 1104 raise 1105 except: 1106 try: 1107 return repr(value) 1108 except KeyboardInterrupt: 1109 raise 1110 except: 1111 try: 1112 # all still in an except block so we catch 1113 # getattr raising 1114 name = getattr(value, '__name__', None) 1115 if name: 1116 # ick, recursion 1117 return text_repr(name) 1118 klass = getattr(value, '__class__', None) 1119 if klass: 1120 return '%s instance' % text_repr(klass) 1121 except KeyboardInterrupt: 1122 raise 1123 except: 1124 return 'UNRECOVERABLE REPR FAILURE' 1125 1126 1127 def eqrepr(value, repr=text_repr): 1128 return '=%s' % repr(value) 1129 1130 1131 def nullrepr(value, repr=text_repr): 1132 return '' 1133 [end of IPython/core/ultratb.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
ipython/ipython
1d7bb78d04ac5cb8698adb70b2b76528a1b2a0f1
Add line number to error messages As suggested in #13169, it adds line number to error messages, in order to make them more friendly. ![image](https://user-images.githubusercontent.com/20190646/139513782-ea8d42ab-9c73-4452-b607-5c54ca50a125.png) That was the file used in the test ![image](https://user-images.githubusercontent.com/20190646/139513827-0aa4bed3-682f-40ee-a8ea-4f0e6e3fbc34.png)
2021-12-24T12:16:30Z
<patch> diff --git a/IPython/core/ultratb.py b/IPython/core/ultratb.py --- a/IPython/core/ultratb.py +++ b/IPython/core/ultratb.py @@ -169,7 +169,7 @@ def _format_traceback_lines(lines, Colors, has_colors, lvals): return res -def _format_filename(file, ColorFilename, ColorNormal): +def _format_filename(file, ColorFilename, ColorNormal, *, lineno=None): """ Format filename lines with `In [n]` if it's the nth code cell or `File *.py` if it's a module. @@ -185,14 +185,17 @@ def _format_filename(file, ColorFilename, ColorNormal): if ipinst is not None and file in ipinst.compile._filename_map: file = "[%s]" % ipinst.compile._filename_map[file] - tpl_link = "Input %sIn %%s%s" % (ColorFilename, ColorNormal) + tpl_link = f"Input {ColorFilename}In {{file}}{ColorNormal}" else: file = util_path.compress_user( py3compat.cast_unicode(file, util_path.fs_encoding) ) - tpl_link = "File %s%%s%s" % (ColorFilename, ColorNormal) + if lineno is None: + tpl_link = f"File {ColorFilename}{{file}}{ColorNormal}" + else: + tpl_link = f"File {ColorFilename}{{file}}:{{lineno}}{ColorNormal}" - return tpl_link % file + return tpl_link.format(file=file, lineno=lineno) #--------------------------------------------------------------------------- # Module classes @@ -439,11 +442,10 @@ def _format_list(self, extracted_list): Colors = self.Colors list = [] for filename, lineno, name, line in extracted_list[:-1]: - item = " %s, line %s%d%s, in %s%s%s\n" % ( - _format_filename(filename, Colors.filename, Colors.Normal), - Colors.lineno, - lineno, - Colors.Normal, + item = " %s in %s%s%s\n" % ( + _format_filename( + filename, Colors.filename, Colors.Normal, lineno=lineno + ), Colors.name, name, Colors.Normal, @@ -453,12 +455,11 @@ def _format_list(self, extracted_list): list.append(item) # Emphasize the last entry filename, lineno, name, line = extracted_list[-1] - item = "%s %s, line %s%d%s, in %s%s%s%s\n" % ( - Colors.normalEm, - _format_filename(filename, Colors.filenameEm, Colors.normalEm), - Colors.linenoEm, - lineno, + item = "%s %s in %s%s%s%s\n" % ( Colors.normalEm, + _format_filename( + filename, Colors.filenameEm, Colors.normalEm, lineno=lineno + ), Colors.nameEm, name, Colors.normalEm, @@ -501,14 +502,15 @@ def _format_exception_only(self, etype, value): lineno = "unknown" textline = "" list.append( - "%s %s, line %s%s%s\n" + "%s %s%s\n" % ( Colors.normalEm, _format_filename( - value.filename, Colors.filenameEm, Colors.normalEm + value.filename, + Colors.filenameEm, + Colors.normalEm, + lineno=(None if lineno == "unknown" else lineno), ), - Colors.linenoEm, - lineno, Colors.Normal, ) ) @@ -628,27 +630,35 @@ def format_record(self, frame_info): return ' %s[... skipping similar frames: %s]%s\n' % ( Colors.excName, frame_info.description, ColorsNormal) - indent = ' ' * INDENT_SIZE - em_normal = '%s\n%s%s' % (Colors.valEm, indent, ColorsNormal) - tpl_call = 'in %s%%s%s%%s%s' % (Colors.vName, Colors.valEm, - ColorsNormal) - tpl_call_fail = 'in %s%%s%s(***failed resolving arguments***)%s' % \ - (Colors.vName, Colors.valEm, ColorsNormal) - tpl_name_val = '%%s %s= %%s%s' % (Colors.valEm, ColorsNormal) + indent = " " * INDENT_SIZE + em_normal = "%s\n%s%s" % (Colors.valEm, indent, ColorsNormal) + tpl_call = f"in {Colors.vName}{{file}}{Colors.valEm}{{scope}}{ColorsNormal}" + tpl_call_fail = "in %s%%s%s(***failed resolving arguments***)%s" % ( + Colors.vName, + Colors.valEm, + ColorsNormal, + ) + tpl_name_val = "%%s %s= %%s%s" % (Colors.valEm, ColorsNormal) - link = _format_filename(frame_info.filename, Colors.filenameEm, ColorsNormal) + link = _format_filename( + frame_info.filename, + Colors.filenameEm, + ColorsNormal, + lineno=frame_info.lineno, + ) args, varargs, varkw, locals_ = inspect.getargvalues(frame_info.frame) func = frame_info.executing.code_qualname() - if func == '<module>': - call = tpl_call % (func, '') + if func == "<module>": + call = tpl_call.format(file=func, scope="") else: # Decide whether to include variable details or not var_repr = eqrepr if self.include_vars else nullrepr try: - call = tpl_call % (func, inspect.formatargvalues(args, - varargs, varkw, - locals_, formatvalue=var_repr)) + scope = inspect.formatargvalues( + args, varargs, varkw, locals_, formatvalue=var_repr + ) + call = tpl_call.format(file=func, scope=scope) except KeyError: # This happens in situations like errors inside generator # expressions, where local variables are listed in the </patch>
[]
[]
conda__conda-5359
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> conda should exec to non-conda subcommands, not subprocess </issue> <code> [start of README.rst] 1 .. NOTE: This file serves both as the README on GitHub and the index.html for 2 conda.pydata.org. If you update this file, be sure to cd to the web 3 directory and run ``make html; make live`` 4 5 .. image:: https://s3.amazonaws.com/conda-dev/conda_logo.svg 6 :alt: Conda Logo 7 8 ---------------------------------------- 9 10 .. image:: https://img.shields.io/travis/conda/conda/4.4.x.svg?maxAge=900&label=Linux%20%26%20MacOS 11 :target: https://travis-ci.org/conda/conda 12 :alt: Linux & MacOS tests (Travis) 13 14 .. image:: https://img.shields.io/appveyor/ci/ContinuumAnalyticsFOSS/conda/4.4.x.svg?maxAge=900&label=Windows 15 :target: https://ci.appveyor.com/project/ContinuumAnalyticsFOSS/conda 16 :alt: Windows tests (Appveyor) 17 18 .. image:: https://img.shields.io/codecov/c/github/conda/conda/4.4.x.svg?label=coverage 19 :alt: Codecov Status 20 :target: https://codecov.io/gh/conda/conda/branch/4.4.x 21 22 .. image:: https://img.shields.io/github/release/conda/conda.svg 23 :alt: latest release version 24 :target: https://github.com/conda/conda/releases 25 26 | 27 28 .. image:: https://s3.amazonaws.com/conda-dev/conda-announce-signup-button.svg 29 :alt: Join the Conda Announcment List 30 :target: http://conda.pydata.org/docs/announcements.html 31 32 | 33 34 Conda is a cross-platform, language-agnostic binary package manager. It is the 35 package manager used by `Anaconda 36 <http://docs.continuum.io/anaconda/index.html>`_ installations, but it may be 37 used for other systems as well. Conda makes environments first-class 38 citizens, making it easy to create independent environments even for C 39 libraries. Conda is written entirely in Python, and is BSD licensed open 40 source. 41 42 Conda is enhanced by organizations, tools, and repositories created and managed by 43 the amazing members of the conda community. Some of them can be found 44 `here <https://github.com/conda/conda/wiki/Conda-Community>`_. 45 46 47 Installation 48 ------------ 49 50 Conda is a part of the `Anaconda distribution <https://store.continuum.io/cshop/anaconda/>`_. You can also download a 51 minimal installation that only includes conda and its dependencies, called 52 `Miniconda <http://conda.pydata.org/miniconda.html>`_. 53 54 55 Getting Started 56 --------------- 57 58 If you install Anaconda, you will already have hundreds of packages 59 installed. You can see what packages are installed by running 60 61 .. code-block:: bash 62 63 $ conda list 64 65 to see all the packages that are available, use 66 67 .. code-block:: bash 68 69 $ conda search 70 71 and to install a package, use 72 73 .. code-block:: bash 74 75 $ conda install <package-name> 76 77 78 The real power of conda comes from its ability to manage environments. In 79 conda, an environment can be thought of as a completely separate installation. 80 Conda installs packages into environments efficiently using `hard links 81 <http://en.wikipedia.org/wiki/Hard_links>`_ by default when it is possible, so 82 environments are space efficient, and take seconds to create. 83 84 The default environment, which ``conda`` itself is installed into is called 85 ``root``. To create another environment, use the ``conda create`` 86 command. For instance, to create an environment with the IPython notebook and 87 NumPy 1.6, which is older than the version that comes with Anaconda by 88 default, you would run 89 90 .. code-block:: bash 91 92 $ conda create -n numpy16 ipython-notebook numpy=1.6 93 94 This creates an environment called ``numpy16`` with the latest version of 95 the IPython notebook, NumPy 1.6, and their dependencies. 96 97 We can now activate this environment, use 98 99 .. code-block:: bash 100 101 # On Linux and Mac OS X 102 $ source activate numpy16 103 104 # On Windows 105 > activate numpy16 106 107 This puts the bin directory of the ``numpy16`` environment in the front of the 108 ``PATH``, and sets it as the default environment for all subsequent conda commands. 109 110 To go back to the root environment, use 111 112 .. code-block:: bash 113 114 # On Linux and Mac OS X 115 $ source deactivate 116 117 # On Windows 118 > deactivate 119 120 121 Building Your Own Packages 122 -------------------------- 123 124 You can easily build your own packages for conda, and upload them 125 to `anaconda.org <https://anaconda.org>`_, a free service for hosting 126 packages for conda, as well as other package managers. 127 To build a package, create a recipe. 128 See http://github.com/conda/conda-recipes for many example recipes, and 129 http://docs.continuum.io/conda/build.html for documentation on how to build 130 recipes. 131 132 To upload to anaconda.org, create an account. Then, install the 133 anaconda-client and login 134 135 .. code-block:: bash 136 137 $ conda install anaconda-client 138 $ anaconda login 139 140 Then, after you build your recipe 141 142 .. code-block:: bash 143 144 $ conda build <recipe-dir> 145 146 you will be prompted to upload to anaconda.org. 147 148 To add your anaconda.org channel, or the channel of others to conda so 149 that ``conda install`` will find and install their packages, run 150 151 .. code-block:: bash 152 153 $ conda config --add channels https://conda.anaconda.org/username 154 155 (replacing ``username`` with the user name of the person whose channel you want 156 to add). 157 158 Getting Help 159 ------------ 160 161 The documentation for conda is at http://conda.pydata.org/docs/. You can 162 subscribe to the `conda mailing list 163 <https://groups.google.com/a/continuum.io/forum/#!forum/conda>`_. The source 164 code and issue tracker for conda are on `GitHub <https://github.com/conda/conda>`_. 165 166 Contributing 167 ------------ 168 169 Contributions to conda are welcome. Just fork the GitHub repository and send a 170 pull request. 171 172 To develop on conda, the easiest way is to use a development build. This can be 173 accomplished as follows: 174 175 * clone the conda git repository to a computer with conda already installed 176 * navigate to the root directory of the git clone 177 * run ``$CONDA/bin/python setup.py develop`` where ``$CONDA`` is the path to your 178 miniconda installation 179 180 Note building a development file requires git to be installed. 181 182 To undo this, run ``$CONDA/bin/python setup.py develop -u``. Note that if you 183 used a python other than ``$CONDA/bin/python`` to install, you may have to manually 184 delete the conda executable. For example, on OS X, if you use a homebrew python 185 located at ``/usr/local/bin/python``, then you'll need to ``rm /usr/local/bin/conda`` 186 so that ``which -a conda`` lists first your miniconda installation. 187 188 If you are worried about breaking your conda installation, you can install a 189 separate instance of `Miniconda <http://conda.pydata.org/miniconda.html>`_ and 190 work off it. This is also the only way to test conda in both Python 2 and 191 Python 3, as conda can only be installed into a root environment. 192 193 To run the tests, set up a testing environment by running 194 195 * ``$CONDA/bin/python -m pip install -r utils/requirements-test.txt``. 196 * ``$CONDA/bin/python utils/setup-testing.py develop`` 197 198 and then running ``py.test`` in the conda directory. You can also run tests using the 199 Makefile by running ``make unit``, ``make smoketest`` (a single integration test), or 200 ``make integration``. The tests are also run by various CI systems when you make a 201 pull request. 202 [end of README.rst] [start of conda/cli/conda_argparse.py] 1 # -*- coding: utf-8 -*- 2 from __future__ import absolute_import, division, print_function, unicode_literals 3 4 from argparse import (ArgumentParser as ArgumentParserBase, RawDescriptionHelpFormatter, SUPPRESS, 5 _CountAction, _HelpAction) 6 import os 7 import sys 8 9 from ..base.context import context 10 from ..common.constants import NULL 11 12 13 class ArgumentParser(ArgumentParserBase): 14 def __init__(self, *args, **kwargs): 15 if not kwargs.get('formatter_class'): 16 kwargs['formatter_class'] = RawDescriptionHelpFormatter 17 if 'add_help' not in kwargs: 18 add_custom_help = True 19 kwargs['add_help'] = False 20 else: 21 add_custom_help = False 22 super(ArgumentParser, self).__init__(*args, **kwargs) 23 24 if add_custom_help: 25 add_parser_help(self) 26 27 if self.description: 28 self.description += "\n\nOptions:\n" 29 30 def _get_action_from_name(self, name): 31 """Given a name, get the Action instance registered with this parser. 32 If only it were made available in the ArgumentError object. It is 33 passed as it's first arg... 34 """ 35 container = self._actions 36 if name is None: 37 return None 38 for action in container: 39 if '/'.join(action.option_strings) == name: 40 return action 41 elif action.metavar == name: 42 return action 43 elif action.dest == name: 44 return action 45 46 def error(self, message): 47 import re 48 import subprocess 49 from .find_commands import find_executable 50 51 exc = sys.exc_info()[1] 52 if exc: 53 # this is incredibly lame, but argparse stupidly does not expose 54 # reasonable hooks for customizing error handling 55 if hasattr(exc, 'argument_name'): 56 argument = self._get_action_from_name(exc.argument_name) 57 else: 58 argument = None 59 if argument and argument.dest == "cmd": 60 m = re.compile(r"invalid choice: '([\w\-]+)'").match(exc.message) 61 if m: 62 cmd = m.group(1) 63 executable = find_executable('conda-' + cmd) 64 if not executable: 65 from ..exceptions import CommandNotFoundError 66 raise CommandNotFoundError(cmd) 67 68 args = [find_executable('conda-' + cmd)] 69 args.extend(sys.argv[2:]) 70 p = subprocess.Popen(args) 71 try: 72 p.communicate() 73 except KeyboardInterrupt: 74 p.wait() 75 finally: 76 sys.exit(p.returncode) 77 78 super(ArgumentParser, self).error(message) 79 80 def print_help(self): 81 super(ArgumentParser, self).print_help() 82 83 if self.prog == 'conda' and sys.argv[1:] in ([], ['help'], ['-h'], ['--help']): 84 print(""" 85 other commands, such as "conda build", are avaialble when additional conda 86 packages (e.g. conda-build) are installed 87 """) 88 89 90 class NullCountAction(_CountAction): 91 92 @staticmethod 93 def _ensure_value(namespace, name, value): 94 if getattr(namespace, name, NULL) in (NULL, None): 95 setattr(namespace, name, value) 96 return getattr(namespace, name) 97 98 def __call__(self, parser, namespace, values, option_string=None): 99 new_count = self._ensure_value(namespace, self.dest, 0) + 1 100 setattr(namespace, self.dest, new_count) 101 102 103 def add_parser_create_install_update(p): 104 add_parser_yes(p) 105 p.add_argument( 106 '-f', "--force", 107 action="store_true", 108 default=NULL, 109 help="Force install (even when package already installed), " 110 "implies --no-deps.", 111 ) 112 add_parser_pscheck(p) 113 # Add the file kwarg. We don't use {action="store", nargs='*'} as we don't 114 # want to gobble up all arguments after --file. 115 p.add_argument( 116 "--file", 117 default=[], 118 action='append', 119 help="Read package versions from the given file. Repeated file " 120 "specifications can be passed (e.g. --file=file1 --file=file2).", 121 ) 122 add_parser_known(p) 123 p.add_argument( 124 "--no-deps", 125 action="store_true", 126 help="Do not install dependencies.", 127 ) 128 p.add_argument( 129 "--only-deps", 130 action="store_true", 131 help="Only install dependencies.", 132 ) 133 p.add_argument( 134 '-m', "--mkdir", 135 action="store_true", 136 help="Create the environment directory if necessary.", 137 ) 138 add_parser_use_index_cache(p) 139 add_parser_use_local(p) 140 add_parser_offline(p) 141 add_parser_no_pin(p) 142 add_parser_channels(p) 143 add_parser_prefix(p) 144 add_parser_quiet(p) 145 add_parser_copy(p) 146 add_parser_insecure(p) 147 p.add_argument( 148 "--alt-hint", 149 action="store_true", 150 default=False, 151 help="Use an alternate algorithm to generate an unsatisfiability hint.") 152 p.add_argument( 153 "--update-dependencies", "--update-deps", 154 action="store_true", 155 dest="update_deps", 156 default=NULL, 157 help="Update dependencies (default: %s)." % context.update_dependencies, 158 ) 159 p.add_argument( 160 "--no-update-dependencies", "--no-update-deps", 161 action="store_false", 162 dest="update_deps", 163 default=NULL, 164 help="Don't update dependencies (default: %s)." % (not context.update_dependencies,), 165 ) 166 p.add_argument( 167 "--channel-priority", "--channel-pri", "--chan-pri", 168 action="store_true", 169 dest="channel_priority", 170 default=NULL, 171 help="Channel priority takes precedence over package version (default: %s). " 172 "Note: This feature is in beta and may change in a future release." 173 "" % (context.channel_priority,) 174 ) 175 p.add_argument( 176 "--no-channel-priority", "--no-channel-pri", "--no-chan-pri", 177 action="store_false", 178 dest="channel_priority", 179 default=NULL, 180 help="Package version takes precedence over channel priority (default: %s). " 181 "Note: This feature is in beta and may change in a future release." 182 "" % (not context.channel_priority,) 183 ) 184 p.add_argument( 185 "--clobber", 186 action="store_true", 187 default=NULL, 188 help="Allow clobbering of overlapping file paths within packages, " 189 "and suppress related warnings.", 190 ) 191 add_parser_show_channel_urls(p) 192 193 if 'update' in p.prog: 194 # I don't know if p.prog is the correct thing to use here but it's the 195 # only thing that seemed to contain the command name 196 p.add_argument( 197 'packages', 198 metavar='package_spec', 199 action="store", 200 nargs='*', 201 help="Packages to update in the conda environment.", 202 ) 203 else: # create or install 204 # Same as above except the completer is not only installed packages 205 p.add_argument( 206 'packages', 207 metavar='package_spec', 208 action="store", 209 nargs='*', 210 help="Packages to install into the conda environment.", 211 ) 212 213 214 def add_parser_pscheck(p): 215 p.add_argument( 216 "--force-pscheck", 217 action="store_true", 218 help=("No-op. Included for backwards compatibility (deprecated)." 219 if context.platform == 'win' else SUPPRESS) 220 ) 221 222 223 def add_parser_use_local(p): 224 p.add_argument( 225 "--use-local", 226 action="store_true", 227 default=False, 228 help="Use locally built packages.", 229 ) 230 231 232 def add_parser_offline(p): 233 p.add_argument( 234 "--offline", 235 action='store_true', 236 default=NULL, 237 help="Offline mode, don't connect to the Internet.", 238 ) 239 240 241 def add_parser_no_pin(p): 242 p.add_argument( 243 "--no-pin", 244 action="store_false", 245 dest='respect_pinned', 246 default=NULL, 247 help="Ignore pinned file.", 248 ) 249 250 251 def add_parser_show_channel_urls(p): 252 p.add_argument( 253 "--show-channel-urls", 254 action="store_true", 255 dest="show_channel_urls", 256 default=NULL, 257 help="Show channel urls (default: %s)." % context.show_channel_urls, 258 ) 259 p.add_argument( 260 "--no-show-channel-urls", 261 action="store_false", 262 dest="show_channel_urls", 263 help="Don't show channel urls.", 264 ) 265 266 267 def add_parser_copy(p): 268 p.add_argument( 269 '--copy', 270 action="store_true", 271 default=NULL, 272 help="Install all packages using copies instead of hard- or soft-linking." 273 ) 274 275 276 def add_parser_help(p): 277 """ 278 So we can use consistent capitalization and periods in the help. You must 279 use the add_help=False argument to ArgumentParser or add_parser to use 280 this. Add this first to be consistent with the default argparse output. 281 282 """ 283 p.add_argument( 284 '-h', '--help', 285 action=_HelpAction, 286 help="Show this help message and exit.", 287 ) 288 289 290 def add_parser_prefix(p): 291 npgroup = p.add_mutually_exclusive_group() 292 npgroup.add_argument( 293 '-n', "--name", 294 action="store", 295 help="Name of environment (in %s)." % os.pathsep.join(context.envs_dirs), 296 metavar="ENVIRONMENT", 297 ) 298 npgroup.add_argument( 299 '-p', "--prefix", 300 action="store", 301 help="Full path to environment prefix (default: %s)." % context.default_prefix, 302 metavar='PATH', 303 ) 304 305 306 def add_parser_yes(p): 307 p.add_argument( 308 "-y", "--yes", 309 action="store_true", 310 default=NULL, 311 help="Do not ask for confirmation.", 312 ) 313 p.add_argument( 314 "--dry-run", 315 action="store_true", 316 help="Only display what would have been done.", 317 ) 318 319 320 def add_parser_json(p): 321 p.add_argument( 322 "--json", 323 action="store_true", 324 default=NULL, 325 help="Report all output as json. Suitable for using conda programmatically." 326 ) 327 p.add_argument( 328 "--debug", 329 action="store_true", 330 default=NULL, 331 help="Show debug output.", 332 ) 333 p.add_argument( 334 "--verbose", "-v", 335 action=NullCountAction, 336 help="Use once for info, twice for debug, three times for trace.", 337 dest="verbosity", 338 default=NULL, 339 ) 340 341 342 def add_parser_quiet(p): 343 p.add_argument( 344 '-q', "--quiet", 345 action="store_true", 346 default=NULL, 347 help="Do not display progress bar.", 348 ) 349 350 351 def add_parser_channels(p): 352 p.add_argument( 353 '-c', '--channel', 354 dest='channel', # apparently conda-build uses this; someday rename to channels are remove context.channels alias to channel # NOQA 355 # TODO: if you ever change 'channel' to 'channels', make sure you modify the context.channels property accordingly # NOQA 356 action="append", 357 help="""Additional channel to search for packages. These are URLs searched in the order 358 they are given (including file:// for local directories). Then, the defaults 359 or channels from .condarc are searched (unless --override-channels is given). You can use 360 'defaults' to get the default packages for conda, and 'system' to get the system 361 packages, which also takes .condarc into account. You can also use any name and the 362 .condarc channel_alias value will be prepended. The default channel_alias 363 is http://conda.anaconda.org/.""", 364 ) 365 p.add_argument( 366 "--override-channels", 367 action="store_true", 368 help="""Do not search default or .condarc channels. Requires --channel.""", 369 ) 370 371 372 def add_parser_known(p): 373 p.add_argument( 374 "--unknown", 375 action="store_true", 376 default=False, 377 dest='unknown', 378 help=SUPPRESS, 379 ) 380 381 382 def add_parser_use_index_cache(p): 383 p.add_argument( 384 "-C", "--use-index-cache", 385 action="store_true", 386 default=False, 387 help="Use cache of channel index files, even if it has expired.", 388 ) 389 390 391 def add_parser_insecure(p): 392 p.add_argument( 393 "-k", "--insecure", 394 action="store_false", 395 default=NULL, 396 help="Allow conda to perform \"insecure\" SSL connections and transfers." 397 "Equivalent to setting 'ssl_verify' to 'false'." 398 ) 399 [end of conda/cli/conda_argparse.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
conda/conda
98c6d80f3299edf775b495f90651d558248d2cf8
conda should exec to non-conda subcommands, not subprocess
2017-05-18T13:17:36Z
<patch> diff --git a/conda/cli/conda_argparse.py b/conda/cli/conda_argparse.py --- a/conda/cli/conda_argparse.py +++ b/conda/cli/conda_argparse.py @@ -45,7 +45,6 @@ def _get_action_from_name(self, name): def error(self, message): import re - import subprocess from .find_commands import find_executable exc = sys.exc_info()[1] @@ -57,7 +56,7 @@ def error(self, message): else: argument = None if argument and argument.dest == "cmd": - m = re.compile(r"invalid choice: '([\w\-]+)'").match(exc.message) + m = re.compile(r"invalid choice: u?'([\w\-]+)'").match(exc.message) if m: cmd = m.group(1) executable = find_executable('conda-' + cmd) @@ -67,13 +66,7 @@ def error(self, message): args = [find_executable('conda-' + cmd)] args.extend(sys.argv[2:]) - p = subprocess.Popen(args) - try: - p.communicate() - except KeyboardInterrupt: - p.wait() - finally: - sys.exit(p.returncode) + os.execv(args[0], args) super(ArgumentParser, self).error(message) </patch>
[]
[]
pandas-dev__pandas-9743
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> [] (__getitem__) boolean indexing assignment bug with nans See repro below: ``` python import pandas as pd import numpy as np temp = pd.Series(np.random.randn(10)) temp[3:6] = np.nan temp[8] = np.nan nan_index = np.isnan(temp) # this works temp1 = temp.copy() temp1[nan_index] = [99, 99, 99, 99] temp1[nan_index] 3 99 4 99 5 99 8 99 dtype: float64 # this doesn't - values look like they're being assigned in a different order? temp2 = temp.copy() temp2[nan_index] = [99, 99, 99, np.nan] 3 NaN 4 99 5 99 8 99 dtype: float64 # ... but it works properly when using .loc temp2 = temp.copy() temp2.loc[nan_index] = [99, 99, 99, np.nan] 3 99 4 99 5 99 8 NaN dtype: float64 ``` output of show_versions(): ``` INSTALLED VERSIONS ------------------ commit: None python: 2.7.9.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None pandas: 0.16.0 nose: 1.3.4 Cython: 0.21.2 numpy: 1.9.2 scipy: 0.14.0 statsmodels: 0.5.0 IPython: 3.0.0 sphinx: 1.2.3 patsy: 0.2.1 dateutil: 2.4.1 pytz: 2015.2 bottleneck: 0.8.0 tables: 3.1.1 numexpr: 2.3.1 matplotlib: 1.4.0 openpyxl: 2.0.2 xlrd: 0.9.3 xlwt: 0.7.5 xlsxwriter: 0.6.6 lxml: 3.4.2 bs4: 4.3.2 html5lib: 0.999 httplib2: 0.8 apiclient: None sqlalchemy: 0.9.8 pymysql: None psycopg2: None ``` </issue> <code> [start of README.md] 1 # pandas: powerful Python data analysis toolkit 2 3 ![Travis-CI Build Status](https://travis-ci.org/pydata/pandas.svg) 4 5 ## What is it 6 7 **pandas** is a Python package providing fast, flexible, and expressive data 8 structures designed to make working with "relational" or "labeled" data both 9 easy and intuitive. It aims to be the fundamental high-level building block for 10 doing practical, **real world** data analysis in Python. Additionally, it has 11 the broader goal of becoming **the most powerful and flexible open source data 12 analysis / manipulation tool available in any language**. It is already well on 13 its way toward this goal. 14 15 ## Main Features 16 Here are just a few of the things that pandas does well: 17 18 - Easy handling of [**missing data**][missing-data] (represented as 19 `NaN`) in floating point as well as non-floating point data 20 - Size mutability: columns can be [**inserted and 21 deleted**][insertion-deletion] from DataFrame and higher dimensional 22 objects 23 - Automatic and explicit [**data alignment**][alignment]: objects can 24 be explicitly aligned to a set of labels, or the user can simply 25 ignore the labels and let `Series`, `DataFrame`, etc. automatically 26 align the data for you in computations 27 - Powerful, flexible [**group by**][groupby] functionality to perform 28 split-apply-combine operations on data sets, for both aggregating 29 and transforming data 30 - Make it [**easy to convert**][conversion] ragged, 31 differently-indexed data in other Python and NumPy data structures 32 into DataFrame objects 33 - Intelligent label-based [**slicing**][slicing], [**fancy 34 indexing**][fancy-indexing], and [**subsetting**][subsetting] of 35 large data sets 36 - Intuitive [**merging**][merging] and [**joining**][joining] data 37 sets 38 - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of 39 data sets 40 - [**Hierarchical**][mi] labeling of axes (possible to have multiple 41 labels per tick) 42 - Robust IO tools for loading data from [**flat files**][flat-files] 43 (CSV and delimited), [**Excel files**][excel], [**databases**][db], 44 and saving/loading data from the ultrafast [**HDF5 format**][hdfstore] 45 - [**Time series**][timeseries]-specific functionality: date range 46 generation and frequency conversion, moving window statistics, 47 moving window linear regressions, date shifting and lagging, etc. 48 49 50 [missing-data]: http://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data 51 [insertion-deletion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion 52 [alignment]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures 53 [groupby]: http://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine 54 [conversion]: http://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe 55 [slicing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges 56 [fancy-indexing]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix 57 [subsetting]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing 58 [merging]: http://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging 59 [joining]: http://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index 60 [reshape]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables 61 [pivot-table]: http://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations 62 [mi]: http://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex 63 [flat-files]: http://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files 64 [excel]: http://pandas.pydata.org/pandas-docs/stable/io.html#excel-files 65 [db]: http://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries 66 [hdfstore]: http://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables 67 [timeseries]: http://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality 68 69 ## Where to get it 70 The source code is currently hosted on GitHub at: 71 http://github.com/pydata/pandas 72 73 Binary installers for the latest released version are available at the Python 74 package index 75 76 http://pypi.python.org/pypi/pandas/ 77 78 And via `easy_install`: 79 80 ```sh 81 easy_install pandas 82 ``` 83 84 or `pip`: 85 86 ```sh 87 pip install pandas 88 ``` 89 90 or `conda`: 91 92 ```sh 93 conda install pandas 94 ``` 95 96 ## Dependencies 97 - [NumPy](http://www.numpy.org): 1.7.0 or higher 98 - [python-dateutil](http://labix.org/python-dateutil): 1.5 or higher 99 - [pytz](http://pytz.sourceforge.net) 100 - Needed for time zone support with ``pandas.date_range`` 101 102 ### Highly Recommended Dependencies 103 - [numexpr](https://github.com/pydata/numexpr) 104 - Needed to accelerate some expression evaluation operations 105 - Required by PyTables 106 - [bottleneck](http://berkeleyanalytics.com/bottleneck) 107 - Needed to accelerate certain numerical operations 108 109 ### Optional dependencies 110 - [Cython](http://www.cython.org): Only necessary to build development version. Version 0.17.1 or higher. 111 - [SciPy](http://www.scipy.org): miscellaneous statistical functions 112 - [PyTables](http://www.pytables.org): necessary for HDF5-based storage 113 - [SQLAlchemy](http://www.sqlalchemy.org): for SQL database support. Version 0.8.1 or higher recommended. 114 - [matplotlib](http://matplotlib.sourceforge.net/): for plotting 115 - [statsmodels](http://statsmodels.sourceforge.net/) 116 - Needed for parts of `pandas.stats` 117 - For Excel I/O: 118 - [xlrd/xlwt](http://www.python-excel.org/) 119 - Excel reading (xlrd) and writing (xlwt) 120 - [openpyxl](http://packages.python.org/openpyxl/) 121 - openpyxl version 1.6.1 or higher, but lower than 2.0.0, for 122 writing .xlsx files 123 - xlrd >= 0.9.0 124 - [XlsxWriter](https://pypi.python.org/pypi/XlsxWriter) 125 - Alternative Excel writer. 126 - [Google bq Command Line Tool](https://developers.google.com/bigquery/bq-command-line-tool/) 127 - Needed for `pandas.io.gbq` 128 - [boto](https://pypi.python.org/pypi/boto): necessary for Amazon S3 access. 129 - One of the following combinations of libraries is needed to use the 130 top-level [`pandas.read_html`][read-html-docs] function: 131 - [BeautifulSoup4][BeautifulSoup4] and [html5lib][html5lib] (Any 132 recent version of [html5lib][html5lib] is okay.) 133 - [BeautifulSoup4][BeautifulSoup4] and [lxml][lxml] 134 - [BeautifulSoup4][BeautifulSoup4] and [html5lib][html5lib] and [lxml][lxml] 135 - Only [lxml][lxml], although see [HTML reading gotchas][html-gotchas] 136 for reasons as to why you should probably **not** take this approach. 137 138 #### Notes about HTML parsing libraries 139 - If you install [BeautifulSoup4][BeautifulSoup4] you must install 140 either [lxml][lxml] or [html5lib][html5lib] or both. 141 `pandas.read_html` will **not** work with *only* `BeautifulSoup4` 142 installed. 143 - You are strongly encouraged to read [HTML reading 144 gotchas][html-gotchas]. It explains issues surrounding the 145 installation and usage of the above three libraries. 146 - You may need to install an older version of 147 [BeautifulSoup4][BeautifulSoup4]: 148 - Versions 4.2.1, 4.1.3 and 4.0.2 have been confirmed for 64 and 149 32-bit Ubuntu/Debian 150 - Additionally, if you're using [Anaconda][Anaconda] you should 151 definitely read [the gotchas about HTML parsing][html-gotchas] 152 libraries 153 - If you're on a system with `apt-get` you can do 154 155 ```sh 156 sudo apt-get build-dep python-lxml 157 ``` 158 159 to get the necessary dependencies for installation of [lxml][lxml]. 160 This will prevent further headaches down the line. 161 162 [html5lib]: https://github.com/html5lib/html5lib-python "html5lib" 163 [BeautifulSoup4]: http://www.crummy.com/software/BeautifulSoup "BeautifulSoup4" 164 [lxml]: http://lxml.de 165 [Anaconda]: https://store.continuum.io/cshop/anaconda 166 [NumPy]: http://numpy.scipy.org/ 167 [html-gotchas]: http://pandas.pydata.org/pandas-docs/stable/gotchas.html#html-table-parsing 168 [read-html-docs]: http://pandas.pydata.org/pandas-docs/stable/generated/pandas.io.html.read_html.html#pandas.io.html.read_html 169 170 ## Installation from sources 171 To install pandas from source you need Cython in addition to the normal 172 dependencies above. Cython can be installed from pypi: 173 174 ```sh 175 pip install cython 176 ``` 177 178 In the `pandas` directory (same one where you found this file after 179 cloning the git repo), execute: 180 181 ```sh 182 python setup.py install 183 ``` 184 185 or for installing in [development mode](http://www.pip-installer.org/en/latest/usage.html): 186 187 ```sh 188 python setup.py develop 189 ``` 190 191 Alternatively, you can use `pip` if you want all the dependencies pulled 192 in automatically (the `-e` option is for installing it in [development 193 mode](http://www.pip-installer.org/en/latest/usage.html)): 194 195 ```sh 196 pip install -e . 197 ``` 198 199 On Windows, you will need to install MinGW and execute: 200 201 ```sh 202 python setup.py build --compiler=mingw32 203 python setup.py install 204 ``` 205 206 See http://pandas.pydata.org/ for more information. 207 208 ## License 209 BSD 210 211 ## Documentation 212 The official documentation is hosted on PyData.org: http://pandas.pydata.org/ 213 214 The Sphinx documentation should provide a good starting point for learning how 215 to use the library. Expect the docs to continue to expand as time goes on. 216 217 ## Background 218 Work on ``pandas`` started at AQR (a quantitative hedge fund) in 2008 and 219 has been under active development since then. 220 221 ## Discussion and Development 222 Since pandas development is related to a number of other scientific 223 Python projects, questions are welcome on the scipy-user mailing 224 list. Specialized discussions or design issues should take place on 225 the PyData mailing list / Google group: 226 227 https://groups.google.com/forum/#!forum/pydata 228 [end of README.md] [start of doc/source/whatsnew/v0.16.1.txt] 1 .. _whatsnew_0161: 2 3 v0.16.1 (April ??, 2015) 4 ------------------------ 5 6 This is a minor bug-fix release from 0.16.0 and includes a a large number of 7 bug fixes along several new features, enhancements, and performance improvements. 8 We recommend that all users upgrade to this version. 9 10 .. contents:: What's new in v0.16.1 11 :local: 12 :backlinks: none 13 14 15 .. _whatsnew_0161.enhancements: 16 17 Enhancements 18 ~~~~~~~~~~~~ 19 20 21 22 23 24 25 .. _whatsnew_0161.api: 26 27 API changes 28 ~~~~~~~~~~~ 29 30 31 32 33 34 35 - Add support for separating years and quarters using dashes, for 36 example 2014-Q1. (:issue:`9688`) 37 38 .. _whatsnew_0161.performance: 39 40 Performance Improvements 41 ~~~~~~~~~~~~~~~~~~~~~~~~ 42 43 44 45 46 47 48 .. _whatsnew_0161.bug_fixes: 49 50 Bug Fixes 51 ~~~~~~~~~ 52 53 54 55 56 57 - Bug in ``transform`` causing length mismatch when null entries were present and a fast aggregator was being used (:issue:`9697`) 58 59 60 61 62 63 64 65 66 - Bug in ``Series.quantile`` on empty Series of type ``Datetime`` or ``Timedelta`` (:issue:`9675`) 67 [end of doc/source/whatsnew/v0.16.1.txt] [start of pandas/core/common.py] 1 """ 2 Misc tools for implementing data structures 3 """ 4 5 import re 6 import collections 7 import numbers 8 import codecs 9 import csv 10 import types 11 from datetime import datetime, timedelta 12 from functools import partial 13 14 from numpy.lib.format import read_array, write_array 15 import numpy as np 16 17 import pandas as pd 18 import pandas.algos as algos 19 import pandas.lib as lib 20 import pandas.tslib as tslib 21 from pandas import compat 22 from pandas.compat import StringIO, BytesIO, range, long, u, zip, map, string_types 23 24 from pandas.core.config import get_option 25 26 class PandasError(Exception): 27 pass 28 29 30 class SettingWithCopyError(ValueError): 31 pass 32 33 34 class SettingWithCopyWarning(Warning): 35 pass 36 37 38 class AmbiguousIndexError(PandasError, KeyError): 39 pass 40 41 42 _POSSIBLY_CAST_DTYPES = set([np.dtype(t).name 43 for t in ['O', 'int8', 44 'uint8', 'int16', 'uint16', 'int32', 45 'uint32', 'int64', 'uint64']]) 46 47 _NS_DTYPE = np.dtype('M8[ns]') 48 _TD_DTYPE = np.dtype('m8[ns]') 49 _INT64_DTYPE = np.dtype(np.int64) 50 _DATELIKE_DTYPES = set([np.dtype(t) for t in ['M8[ns]', '<M8[ns]', '>M8[ns]', 51 'm8[ns]', '<m8[ns]', '>m8[ns]']]) 52 _int8_max = np.iinfo(np.int8).max 53 _int16_max = np.iinfo(np.int16).max 54 _int32_max = np.iinfo(np.int32).max 55 56 # define abstract base classes to enable isinstance type checking on our 57 # objects 58 def create_pandas_abc_type(name, attr, comp): 59 @classmethod 60 def _check(cls, inst): 61 return getattr(inst, attr, '_typ') in comp 62 dct = dict(__instancecheck__=_check, 63 __subclasscheck__=_check) 64 meta = type("ABCBase", (type,), dct) 65 return meta(name, tuple(), dct) 66 67 68 ABCIndex = create_pandas_abc_type("ABCIndex", "_typ", ("index",)) 69 ABCInt64Index = create_pandas_abc_type("ABCInt64Index", "_typ", ("int64index",)) 70 ABCFloat64Index = create_pandas_abc_type("ABCFloat64Index", "_typ", ("float64index",)) 71 ABCMultiIndex = create_pandas_abc_type("ABCMultiIndex", "_typ", ("multiindex",)) 72 ABCDatetimeIndex = create_pandas_abc_type("ABCDatetimeIndex", "_typ", ("datetimeindex",)) 73 ABCTimedeltaIndex = create_pandas_abc_type("ABCTimedeltaIndex", "_typ", ("timedeltaindex",)) 74 ABCPeriodIndex = create_pandas_abc_type("ABCPeriodIndex", "_typ", ("periodindex",)) 75 ABCSeries = create_pandas_abc_type("ABCSeries", "_typ", ("series",)) 76 ABCDataFrame = create_pandas_abc_type("ABCDataFrame", "_typ", ("dataframe",)) 77 ABCPanel = create_pandas_abc_type("ABCPanel", "_typ", ("panel",)) 78 ABCSparseSeries = create_pandas_abc_type("ABCSparseSeries", "_subtyp", 79 ('sparse_series', 80 'sparse_time_series')) 81 ABCSparseArray = create_pandas_abc_type("ABCSparseArray", "_subtyp", 82 ('sparse_array', 'sparse_series')) 83 ABCCategorical = create_pandas_abc_type("ABCCategorical","_typ",("categorical")) 84 ABCPeriod = create_pandas_abc_type("ABCPeriod", "_typ", ("period",)) 85 86 class _ABCGeneric(type): 87 88 def __instancecheck__(cls, inst): 89 return hasattr(inst, "_data") 90 91 92 ABCGeneric = _ABCGeneric("ABCGeneric", tuple(), {}) 93 94 95 def bind_method(cls, name, func): 96 """Bind a method to class, python 2 and python 3 compatible. 97 98 Parameters 99 ---------- 100 101 cls : type 102 class to receive bound method 103 name : basestring 104 name of method on class instance 105 func : function 106 function to be bound as method 107 108 109 Returns 110 ------- 111 None 112 """ 113 # only python 2 has bound/unbound method issue 114 if not compat.PY3: 115 setattr(cls, name, types.MethodType(func, None, cls)) 116 else: 117 setattr(cls, name, func) 118 119 class CategoricalDtypeType(type): 120 """ 121 the type of CategoricalDtype, this metaclass determines subclass ability 122 """ 123 def __init__(cls, name, bases, attrs): 124 pass 125 126 class CategoricalDtype(object): 127 __meta__ = CategoricalDtypeType 128 """ 129 A np.dtype duck-typed class, suitable for holding a custom categorical dtype. 130 131 THIS IS NOT A REAL NUMPY DTYPE, but essentially a sub-class of np.object 132 """ 133 name = 'category' 134 names = None 135 type = CategoricalDtypeType 136 subdtype = None 137 kind = 'O' 138 str = '|O08' 139 num = 100 140 shape = tuple() 141 itemsize = 8 142 base = np.dtype('O') 143 isbuiltin = 0 144 isnative = 0 145 146 def __unicode__(self): 147 return self.name 148 149 def __str__(self): 150 """ 151 Return a string representation for a particular Object 152 153 Invoked by str(df) in both py2/py3. 154 Yields Bytestring in Py2, Unicode String in py3. 155 """ 156 157 if compat.PY3: 158 return self.__unicode__() 159 return self.__bytes__() 160 161 def __bytes__(self): 162 """ 163 Return a string representation for a particular object. 164 165 Invoked by bytes(obj) in py3 only. 166 Yields a bytestring in both py2/py3. 167 """ 168 from pandas.core.config import get_option 169 170 encoding = get_option("display.encoding") 171 return self.__unicode__().encode(encoding, 'replace') 172 173 def __repr__(self): 174 """ 175 Return a string representation for a particular object. 176 177 Yields Bytestring in Py2, Unicode String in py3. 178 """ 179 return str(self) 180 181 def __hash__(self): 182 # make myself hashable 183 return hash(str(self)) 184 185 def __eq__(self, other): 186 if isinstance(other, compat.string_types): 187 return other == self.name 188 189 return isinstance(other, CategoricalDtype) 190 191 def isnull(obj): 192 """Detect missing values (NaN in numeric arrays, None/NaN in object arrays) 193 194 Parameters 195 ---------- 196 arr : ndarray or object value 197 Object to check for null-ness 198 199 Returns 200 ------- 201 isnulled : array-like of bool or bool 202 Array or bool indicating whether an object is null or if an array is 203 given which of the element is null. 204 205 See also 206 -------- 207 pandas.notnull: boolean inverse of pandas.isnull 208 """ 209 return _isnull(obj) 210 211 212 def _isnull_new(obj): 213 if lib.isscalar(obj): 214 return lib.checknull(obj) 215 # hack (for now) because MI registers as ndarray 216 elif isinstance(obj, pd.MultiIndex): 217 raise NotImplementedError("isnull is not defined for MultiIndex") 218 elif isinstance(obj, (ABCSeries, np.ndarray, pd.Index)): 219 return _isnull_ndarraylike(obj) 220 elif isinstance(obj, ABCGeneric): 221 return obj._constructor(obj._data.isnull(func=isnull)) 222 elif isinstance(obj, list) or hasattr(obj, '__array__'): 223 return _isnull_ndarraylike(np.asarray(obj)) 224 else: 225 return obj is None 226 227 228 def _isnull_old(obj): 229 """Detect missing values. Treat None, NaN, INF, -INF as null. 230 231 Parameters 232 ---------- 233 arr: ndarray or object value 234 235 Returns 236 ------- 237 boolean ndarray or boolean 238 """ 239 if lib.isscalar(obj): 240 return lib.checknull_old(obj) 241 # hack (for now) because MI registers as ndarray 242 elif isinstance(obj, pd.MultiIndex): 243 raise NotImplementedError("isnull is not defined for MultiIndex") 244 elif isinstance(obj, (ABCSeries, np.ndarray, pd.Index)): 245 return _isnull_ndarraylike_old(obj) 246 elif isinstance(obj, ABCGeneric): 247 return obj._constructor(obj._data.isnull(func=_isnull_old)) 248 elif isinstance(obj, list) or hasattr(obj, '__array__'): 249 return _isnull_ndarraylike_old(np.asarray(obj)) 250 else: 251 return obj is None 252 253 _isnull = _isnull_new 254 255 256 def _use_inf_as_null(key): 257 """Option change callback for null/inf behaviour 258 Choose which replacement for numpy.isnan / -numpy.isfinite is used. 259 260 Parameters 261 ---------- 262 flag: bool 263 True means treat None, NaN, INF, -INF as null (old way), 264 False means None and NaN are null, but INF, -INF are not null 265 (new way). 266 267 Notes 268 ----- 269 This approach to setting global module values is discussed and 270 approved here: 271 272 * http://stackoverflow.com/questions/4859217/ 273 programmatically-creating-variables-in-python/4859312#4859312 274 """ 275 flag = get_option(key) 276 if flag: 277 globals()['_isnull'] = _isnull_old 278 else: 279 globals()['_isnull'] = _isnull_new 280 281 282 def _isnull_ndarraylike(obj): 283 284 values = getattr(obj, 'values', obj) 285 dtype = values.dtype 286 287 if dtype.kind in ('O', 'S', 'U'): 288 if is_categorical_dtype(values): 289 from pandas import Categorical 290 if not isinstance(values, Categorical): 291 values = values.values 292 result = values.isnull() 293 else: 294 295 # Working around NumPy ticket 1542 296 shape = values.shape 297 298 if dtype.kind in ('S', 'U'): 299 result = np.zeros(values.shape, dtype=bool) 300 else: 301 result = np.empty(shape, dtype=bool) 302 vec = lib.isnullobj(values.ravel()) 303 result[...] = vec.reshape(shape) 304 305 elif is_datetimelike(obj): 306 # this is the NaT pattern 307 result = values.view('i8') == tslib.iNaT 308 else: 309 result = np.isnan(values) 310 311 # box 312 if isinstance(obj, ABCSeries): 313 from pandas import Series 314 result = Series(result, index=obj.index, name=obj.name, copy=False) 315 316 return result 317 318 def _isnull_ndarraylike_old(obj): 319 values = getattr(obj, 'values', obj) 320 dtype = values.dtype 321 322 if dtype.kind in ('O', 'S', 'U'): 323 # Working around NumPy ticket 1542 324 shape = values.shape 325 326 if values.dtype.kind in ('S', 'U'): 327 result = np.zeros(values.shape, dtype=bool) 328 else: 329 result = np.empty(shape, dtype=bool) 330 vec = lib.isnullobj_old(values.ravel()) 331 result[:] = vec.reshape(shape) 332 333 elif dtype in _DATELIKE_DTYPES: 334 # this is the NaT pattern 335 result = values.view('i8') == tslib.iNaT 336 else: 337 result = ~np.isfinite(values) 338 339 # box 340 if isinstance(obj, ABCSeries): 341 from pandas import Series 342 result = Series(result, index=obj.index, name=obj.name, copy=False) 343 344 return result 345 346 347 def notnull(obj): 348 """Replacement for numpy.isfinite / -numpy.isnan which is suitable for use 349 on object arrays. 350 351 Parameters 352 ---------- 353 arr : ndarray or object value 354 Object to check for *not*-null-ness 355 356 Returns 357 ------- 358 isnulled : array-like of bool or bool 359 Array or bool indicating whether an object is *not* null or if an array 360 is given which of the element is *not* null. 361 362 See also 363 -------- 364 pandas.isnull : boolean inverse of pandas.notnull 365 """ 366 res = isnull(obj) 367 if np.isscalar(res): 368 return not res 369 return ~res 370 371 def is_null_datelike_scalar(other): 372 """ test whether the object is a null datelike, e.g. Nat 373 but guard against passing a non-scalar """ 374 if other is pd.NaT or other is None: 375 return True 376 elif np.isscalar(other): 377 378 # a timedelta 379 if hasattr(other,'dtype'): 380 return other.view('i8') == tslib.iNaT 381 elif is_integer(other) and other == tslib.iNaT: 382 return True 383 return isnull(other) 384 return False 385 386 def array_equivalent(left, right, strict_nan=False): 387 """ 388 True if two arrays, left and right, have equal non-NaN elements, and NaNs in 389 corresponding locations. False otherwise. It is assumed that left and right 390 are NumPy arrays of the same dtype. The behavior of this function 391 (particularly with respect to NaNs) is not defined if the dtypes are 392 different. 393 394 Parameters 395 ---------- 396 left, right : ndarrays 397 strict_nan : bool, default False 398 If True, consider NaN and None to be different. 399 400 Returns 401 ------- 402 b : bool 403 Returns True if the arrays are equivalent. 404 405 Examples 406 -------- 407 >>> array_equivalent( 408 ... np.array([1, 2, np.nan]), 409 ... np.array([1, 2, np.nan])) 410 True 411 >>> array_equivalent( 412 ... np.array([1, np.nan, 2]), 413 ... np.array([1, 2, np.nan])) 414 False 415 """ 416 417 left, right = np.asarray(left), np.asarray(right) 418 if left.shape != right.shape: return False 419 420 # Object arrays can contain None, NaN and NaT. 421 if issubclass(left.dtype.type, np.object_) or issubclass(right.dtype.type, np.object_): 422 423 if not strict_nan: 424 # pd.isnull considers NaN and None to be equivalent. 425 return lib.array_equivalent_object(_ensure_object(left.ravel()), 426 _ensure_object(right.ravel())) 427 428 for left_value, right_value in zip(left, right): 429 if left_value is tslib.NaT and right_value is not tslib.NaT: 430 return False 431 432 elif isinstance(left_value, float) and np.isnan(left_value): 433 if not isinstance(right_value, float) or not np.isnan(right_value): 434 return False 435 else: 436 if left_value != right_value: 437 return False 438 return True 439 440 # NaNs can occur in float and complex arrays. 441 if issubclass(left.dtype.type, (np.floating, np.complexfloating)): 442 return ((left == right) | (np.isnan(left) & np.isnan(right))).all() 443 444 # NaNs cannot occur otherwise. 445 return np.array_equal(left, right) 446 447 def _iterable_not_string(x): 448 return (isinstance(x, collections.Iterable) and 449 not isinstance(x, compat.string_types)) 450 451 452 def flatten(l): 453 """Flatten an arbitrarily nested sequence. 454 455 Parameters 456 ---------- 457 l : sequence 458 The non string sequence to flatten 459 460 Notes 461 ----- 462 This doesn't consider strings sequences. 463 464 Returns 465 ------- 466 flattened : generator 467 """ 468 for el in l: 469 if _iterable_not_string(el): 470 for s in flatten(el): 471 yield s 472 else: 473 yield el 474 475 476 def mask_missing(arr, values_to_mask): 477 """ 478 Return a masking array of same size/shape as arr 479 with entries equaling any member of values_to_mask set to True 480 """ 481 if not isinstance(values_to_mask, (list, np.ndarray)): 482 values_to_mask = [values_to_mask] 483 484 try: 485 values_to_mask = np.array(values_to_mask, dtype=arr.dtype) 486 except Exception: 487 values_to_mask = np.array(values_to_mask, dtype=object) 488 489 na_mask = isnull(values_to_mask) 490 nonna = values_to_mask[~na_mask] 491 492 mask = None 493 for x in nonna: 494 if mask is None: 495 mask = arr == x 496 497 # if x is a string and arr is not, then we get False and we must 498 # expand the mask to size arr.shape 499 if np.isscalar(mask): 500 mask = np.zeros(arr.shape, dtype=bool) 501 else: 502 mask |= arr == x 503 504 if na_mask.any(): 505 if mask is None: 506 mask = isnull(arr) 507 else: 508 mask |= isnull(arr) 509 510 return mask 511 512 513 def _pickle_array(arr): 514 arr = arr.view(np.ndarray) 515 516 buf = BytesIO() 517 write_array(buf, arr) 518 519 return buf.getvalue() 520 521 522 def _unpickle_array(bytes): 523 arr = read_array(BytesIO(bytes)) 524 525 # All datetimes should be stored as M8[ns]. When unpickling with 526 # numpy1.6, it will read these as M8[us]. So this ensures all 527 # datetime64 types are read as MS[ns] 528 if is_datetime64_dtype(arr): 529 arr = arr.view(_NS_DTYPE) 530 531 return arr 532 533 534 def _view_wrapper(f, arr_dtype=None, out_dtype=None, fill_wrap=None): 535 def wrapper(arr, indexer, out, fill_value=np.nan): 536 if arr_dtype is not None: 537 arr = arr.view(arr_dtype) 538 if out_dtype is not None: 539 out = out.view(out_dtype) 540 if fill_wrap is not None: 541 fill_value = fill_wrap(fill_value) 542 f(arr, indexer, out, fill_value=fill_value) 543 return wrapper 544 545 546 def _convert_wrapper(f, conv_dtype): 547 def wrapper(arr, indexer, out, fill_value=np.nan): 548 arr = arr.astype(conv_dtype) 549 f(arr, indexer, out, fill_value=fill_value) 550 return wrapper 551 552 553 def _take_2d_multi_generic(arr, indexer, out, fill_value, mask_info): 554 # this is not ideal, performance-wise, but it's better than raising 555 # an exception (best to optimize in Cython to avoid getting here) 556 row_idx, col_idx = indexer 557 if mask_info is not None: 558 (row_mask, col_mask), (row_needs, col_needs) = mask_info 559 else: 560 row_mask = row_idx == -1 561 col_mask = col_idx == -1 562 row_needs = row_mask.any() 563 col_needs = col_mask.any() 564 if fill_value is not None: 565 if row_needs: 566 out[row_mask, :] = fill_value 567 if col_needs: 568 out[:, col_mask] = fill_value 569 for i in range(len(row_idx)): 570 u_ = row_idx[i] 571 for j in range(len(col_idx)): 572 v = col_idx[j] 573 out[i, j] = arr[u_, v] 574 575 576 def _take_nd_generic(arr, indexer, out, axis, fill_value, mask_info): 577 if mask_info is not None: 578 mask, needs_masking = mask_info 579 else: 580 mask = indexer == -1 581 needs_masking = mask.any() 582 if arr.dtype != out.dtype: 583 arr = arr.astype(out.dtype) 584 if arr.shape[axis] > 0: 585 arr.take(_ensure_platform_int(indexer), axis=axis, out=out) 586 if needs_masking: 587 outindexer = [slice(None)] * arr.ndim 588 outindexer[axis] = mask 589 out[tuple(outindexer)] = fill_value 590 591 592 _take_1d_dict = { 593 ('int8', 'int8'): algos.take_1d_int8_int8, 594 ('int8', 'int32'): algos.take_1d_int8_int32, 595 ('int8', 'int64'): algos.take_1d_int8_int64, 596 ('int8', 'float64'): algos.take_1d_int8_float64, 597 ('int16', 'int16'): algos.take_1d_int16_int16, 598 ('int16', 'int32'): algos.take_1d_int16_int32, 599 ('int16', 'int64'): algos.take_1d_int16_int64, 600 ('int16', 'float64'): algos.take_1d_int16_float64, 601 ('int32', 'int32'): algos.take_1d_int32_int32, 602 ('int32', 'int64'): algos.take_1d_int32_int64, 603 ('int32', 'float64'): algos.take_1d_int32_float64, 604 ('int64', 'int64'): algos.take_1d_int64_int64, 605 ('int64', 'float64'): algos.take_1d_int64_float64, 606 ('float32', 'float32'): algos.take_1d_float32_float32, 607 ('float32', 'float64'): algos.take_1d_float32_float64, 608 ('float64', 'float64'): algos.take_1d_float64_float64, 609 ('object', 'object'): algos.take_1d_object_object, 610 ('bool', 'bool'): 611 _view_wrapper(algos.take_1d_bool_bool, np.uint8, np.uint8), 612 ('bool', 'object'): 613 _view_wrapper(algos.take_1d_bool_object, np.uint8, None), 614 ('datetime64[ns]', 'datetime64[ns]'): 615 _view_wrapper(algos.take_1d_int64_int64, np.int64, np.int64, np.int64) 616 } 617 618 619 _take_2d_axis0_dict = { 620 ('int8', 'int8'): algos.take_2d_axis0_int8_int8, 621 ('int8', 'int32'): algos.take_2d_axis0_int8_int32, 622 ('int8', 'int64'): algos.take_2d_axis0_int8_int64, 623 ('int8', 'float64'): algos.take_2d_axis0_int8_float64, 624 ('int16', 'int16'): algos.take_2d_axis0_int16_int16, 625 ('int16', 'int32'): algos.take_2d_axis0_int16_int32, 626 ('int16', 'int64'): algos.take_2d_axis0_int16_int64, 627 ('int16', 'float64'): algos.take_2d_axis0_int16_float64, 628 ('int32', 'int32'): algos.take_2d_axis0_int32_int32, 629 ('int32', 'int64'): algos.take_2d_axis0_int32_int64, 630 ('int32', 'float64'): algos.take_2d_axis0_int32_float64, 631 ('int64', 'int64'): algos.take_2d_axis0_int64_int64, 632 ('int64', 'float64'): algos.take_2d_axis0_int64_float64, 633 ('float32', 'float32'): algos.take_2d_axis0_float32_float32, 634 ('float32', 'float64'): algos.take_2d_axis0_float32_float64, 635 ('float64', 'float64'): algos.take_2d_axis0_float64_float64, 636 ('object', 'object'): algos.take_2d_axis0_object_object, 637 ('bool', 'bool'): 638 _view_wrapper(algos.take_2d_axis0_bool_bool, np.uint8, np.uint8), 639 ('bool', 'object'): 640 _view_wrapper(algos.take_2d_axis0_bool_object, np.uint8, None), 641 ('datetime64[ns]', 'datetime64[ns]'): 642 _view_wrapper(algos.take_2d_axis0_int64_int64, np.int64, np.int64, 643 fill_wrap=np.int64) 644 } 645 646 647 _take_2d_axis1_dict = { 648 ('int8', 'int8'): algos.take_2d_axis1_int8_int8, 649 ('int8', 'int32'): algos.take_2d_axis1_int8_int32, 650 ('int8', 'int64'): algos.take_2d_axis1_int8_int64, 651 ('int8', 'float64'): algos.take_2d_axis1_int8_float64, 652 ('int16', 'int16'): algos.take_2d_axis1_int16_int16, 653 ('int16', 'int32'): algos.take_2d_axis1_int16_int32, 654 ('int16', 'int64'): algos.take_2d_axis1_int16_int64, 655 ('int16', 'float64'): algos.take_2d_axis1_int16_float64, 656 ('int32', 'int32'): algos.take_2d_axis1_int32_int32, 657 ('int32', 'int64'): algos.take_2d_axis1_int32_int64, 658 ('int32', 'float64'): algos.take_2d_axis1_int32_float64, 659 ('int64', 'int64'): algos.take_2d_axis1_int64_int64, 660 ('int64', 'float64'): algos.take_2d_axis1_int64_float64, 661 ('float32', 'float32'): algos.take_2d_axis1_float32_float32, 662 ('float32', 'float64'): algos.take_2d_axis1_float32_float64, 663 ('float64', 'float64'): algos.take_2d_axis1_float64_float64, 664 ('object', 'object'): algos.take_2d_axis1_object_object, 665 ('bool', 'bool'): 666 _view_wrapper(algos.take_2d_axis1_bool_bool, np.uint8, np.uint8), 667 ('bool', 'object'): 668 _view_wrapper(algos.take_2d_axis1_bool_object, np.uint8, None), 669 ('datetime64[ns]', 'datetime64[ns]'): 670 _view_wrapper(algos.take_2d_axis1_int64_int64, np.int64, np.int64, 671 fill_wrap=np.int64) 672 } 673 674 675 _take_2d_multi_dict = { 676 ('int8', 'int8'): algos.take_2d_multi_int8_int8, 677 ('int8', 'int32'): algos.take_2d_multi_int8_int32, 678 ('int8', 'int64'): algos.take_2d_multi_int8_int64, 679 ('int8', 'float64'): algos.take_2d_multi_int8_float64, 680 ('int16', 'int16'): algos.take_2d_multi_int16_int16, 681 ('int16', 'int32'): algos.take_2d_multi_int16_int32, 682 ('int16', 'int64'): algos.take_2d_multi_int16_int64, 683 ('int16', 'float64'): algos.take_2d_multi_int16_float64, 684 ('int32', 'int32'): algos.take_2d_multi_int32_int32, 685 ('int32', 'int64'): algos.take_2d_multi_int32_int64, 686 ('int32', 'float64'): algos.take_2d_multi_int32_float64, 687 ('int64', 'int64'): algos.take_2d_multi_int64_int64, 688 ('int64', 'float64'): algos.take_2d_multi_int64_float64, 689 ('float32', 'float32'): algos.take_2d_multi_float32_float32, 690 ('float32', 'float64'): algos.take_2d_multi_float32_float64, 691 ('float64', 'float64'): algos.take_2d_multi_float64_float64, 692 ('object', 'object'): algos.take_2d_multi_object_object, 693 ('bool', 'bool'): 694 _view_wrapper(algos.take_2d_multi_bool_bool, np.uint8, np.uint8), 695 ('bool', 'object'): 696 _view_wrapper(algos.take_2d_multi_bool_object, np.uint8, None), 697 ('datetime64[ns]', 'datetime64[ns]'): 698 _view_wrapper(algos.take_2d_multi_int64_int64, np.int64, np.int64, 699 fill_wrap=np.int64) 700 } 701 702 703 def _get_take_nd_function(ndim, arr_dtype, out_dtype, axis=0, mask_info=None): 704 if ndim <= 2: 705 tup = (arr_dtype.name, out_dtype.name) 706 if ndim == 1: 707 func = _take_1d_dict.get(tup, None) 708 elif ndim == 2: 709 if axis == 0: 710 func = _take_2d_axis0_dict.get(tup, None) 711 else: 712 func = _take_2d_axis1_dict.get(tup, None) 713 if func is not None: 714 return func 715 716 tup = (out_dtype.name, out_dtype.name) 717 if ndim == 1: 718 func = _take_1d_dict.get(tup, None) 719 elif ndim == 2: 720 if axis == 0: 721 func = _take_2d_axis0_dict.get(tup, None) 722 else: 723 func = _take_2d_axis1_dict.get(tup, None) 724 if func is not None: 725 func = _convert_wrapper(func, out_dtype) 726 return func 727 728 def func(arr, indexer, out, fill_value=np.nan): 729 indexer = _ensure_int64(indexer) 730 _take_nd_generic(arr, indexer, out, axis=axis, 731 fill_value=fill_value, mask_info=mask_info) 732 return func 733 734 735 def take_nd(arr, indexer, axis=0, out=None, fill_value=np.nan, 736 mask_info=None, allow_fill=True): 737 """ 738 Specialized Cython take which sets NaN values in one pass 739 740 Parameters 741 ---------- 742 arr : ndarray 743 Input array 744 indexer : ndarray 745 1-D array of indices to take, subarrays corresponding to -1 value 746 indicies are filed with fill_value 747 axis : int, default 0 748 Axis to take from 749 out : ndarray or None, default None 750 Optional output array, must be appropriate type to hold input and 751 fill_value together, if indexer has any -1 value entries; call 752 common._maybe_promote to determine this type for any fill_value 753 fill_value : any, default np.nan 754 Fill value to replace -1 values with 755 mask_info : tuple of (ndarray, boolean) 756 If provided, value should correspond to: 757 (indexer != -1, (indexer != -1).any()) 758 If not provided, it will be computed internally if necessary 759 allow_fill : boolean, default True 760 If False, indexer is assumed to contain no -1 values so no filling 761 will be done. This short-circuits computation of a mask. Result is 762 undefined if allow_fill == False and -1 is present in indexer. 763 """ 764 if indexer is None: 765 indexer = np.arange(arr.shape[axis], dtype=np.int64) 766 dtype, fill_value = arr.dtype, arr.dtype.type() 767 else: 768 indexer = _ensure_int64(indexer) 769 if not allow_fill: 770 dtype, fill_value = arr.dtype, arr.dtype.type() 771 mask_info = None, False 772 else: 773 # check for promotion based on types only (do this first because 774 # it's faster than computing a mask) 775 dtype, fill_value = _maybe_promote(arr.dtype, fill_value) 776 if dtype != arr.dtype and (out is None or out.dtype != dtype): 777 # check if promotion is actually required based on indexer 778 if mask_info is not None: 779 mask, needs_masking = mask_info 780 else: 781 mask = indexer == -1 782 needs_masking = mask.any() 783 mask_info = mask, needs_masking 784 if needs_masking: 785 if out is not None and out.dtype != dtype: 786 raise TypeError('Incompatible type for fill_value') 787 else: 788 # if not, then depromote, set fill_value to dummy 789 # (it won't be used but we don't want the cython code 790 # to crash when trying to cast it to dtype) 791 dtype, fill_value = arr.dtype, arr.dtype.type() 792 793 flip_order = False 794 if arr.ndim == 2: 795 if arr.flags.f_contiguous: 796 flip_order = True 797 798 if flip_order: 799 arr = arr.T 800 axis = arr.ndim - axis - 1 801 if out is not None: 802 out = out.T 803 804 # at this point, it's guaranteed that dtype can hold both the arr values 805 # and the fill_value 806 if out is None: 807 out_shape = list(arr.shape) 808 out_shape[axis] = len(indexer) 809 out_shape = tuple(out_shape) 810 if arr.flags.f_contiguous and axis == arr.ndim - 1: 811 # minor tweak that can make an order-of-magnitude difference 812 # for dataframes initialized directly from 2-d ndarrays 813 # (s.t. df.values is c-contiguous and df._data.blocks[0] is its 814 # f-contiguous transpose) 815 out = np.empty(out_shape, dtype=dtype, order='F') 816 else: 817 out = np.empty(out_shape, dtype=dtype) 818 819 func = _get_take_nd_function(arr.ndim, arr.dtype, out.dtype, 820 axis=axis, mask_info=mask_info) 821 822 indexer = _ensure_int64(indexer) 823 func(arr, indexer, out, fill_value) 824 825 if flip_order: 826 out = out.T 827 return out 828 829 830 take_1d = take_nd 831 832 833 def take_2d_multi(arr, indexer, out=None, fill_value=np.nan, 834 mask_info=None, allow_fill=True): 835 """ 836 Specialized Cython take which sets NaN values in one pass 837 """ 838 if indexer is None or (indexer[0] is None and indexer[1] is None): 839 row_idx = np.arange(arr.shape[0], dtype=np.int64) 840 col_idx = np.arange(arr.shape[1], dtype=np.int64) 841 indexer = row_idx, col_idx 842 dtype, fill_value = arr.dtype, arr.dtype.type() 843 else: 844 row_idx, col_idx = indexer 845 if row_idx is None: 846 row_idx = np.arange(arr.shape[0], dtype=np.int64) 847 else: 848 row_idx = _ensure_int64(row_idx) 849 if col_idx is None: 850 col_idx = np.arange(arr.shape[1], dtype=np.int64) 851 else: 852 col_idx = _ensure_int64(col_idx) 853 indexer = row_idx, col_idx 854 if not allow_fill: 855 dtype, fill_value = arr.dtype, arr.dtype.type() 856 mask_info = None, False 857 else: 858 # check for promotion based on types only (do this first because 859 # it's faster than computing a mask) 860 dtype, fill_value = _maybe_promote(arr.dtype, fill_value) 861 if dtype != arr.dtype and (out is None or out.dtype != dtype): 862 # check if promotion is actually required based on indexer 863 if mask_info is not None: 864 (row_mask, col_mask), (row_needs, col_needs) = mask_info 865 else: 866 row_mask = row_idx == -1 867 col_mask = col_idx == -1 868 row_needs = row_mask.any() 869 col_needs = col_mask.any() 870 mask_info = (row_mask, col_mask), (row_needs, col_needs) 871 if row_needs or col_needs: 872 if out is not None and out.dtype != dtype: 873 raise TypeError('Incompatible type for fill_value') 874 else: 875 # if not, then depromote, set fill_value to dummy 876 # (it won't be used but we don't want the cython code 877 # to crash when trying to cast it to dtype) 878 dtype, fill_value = arr.dtype, arr.dtype.type() 879 880 # at this point, it's guaranteed that dtype can hold both the arr values 881 # and the fill_value 882 if out is None: 883 out_shape = len(row_idx), len(col_idx) 884 out = np.empty(out_shape, dtype=dtype) 885 886 func = _take_2d_multi_dict.get((arr.dtype.name, out.dtype.name), None) 887 if func is None and arr.dtype != out.dtype: 888 func = _take_2d_multi_dict.get((out.dtype.name, out.dtype.name), None) 889 if func is not None: 890 func = _convert_wrapper(func, out.dtype) 891 if func is None: 892 def func(arr, indexer, out, fill_value=np.nan): 893 _take_2d_multi_generic(arr, indexer, out, 894 fill_value=fill_value, mask_info=mask_info) 895 func(arr, indexer, out=out, fill_value=fill_value) 896 return out 897 898 _diff_special = { 899 'float64': algos.diff_2d_float64, 900 'float32': algos.diff_2d_float32, 901 'int64': algos.diff_2d_int64, 902 'int32': algos.diff_2d_int32, 903 'int16': algos.diff_2d_int16, 904 'int8': algos.diff_2d_int8, 905 } 906 907 def diff(arr, n, axis=0): 908 """ difference of n between self, 909 analagoust to s-s.shift(n) """ 910 911 n = int(n) 912 na = np.nan 913 dtype = arr.dtype 914 is_timedelta = False 915 if needs_i8_conversion(arr): 916 dtype = np.float64 917 arr = arr.view('i8') 918 na = tslib.iNaT 919 is_timedelta = True 920 elif issubclass(dtype.type, np.integer): 921 dtype = np.float64 922 elif issubclass(dtype.type, np.bool_): 923 dtype = np.object_ 924 925 dtype = np.dtype(dtype) 926 out_arr = np.empty(arr.shape, dtype=dtype) 927 928 na_indexer = [slice(None)] * arr.ndim 929 na_indexer[axis] = slice(None, n) if n >= 0 else slice(n, None) 930 out_arr[tuple(na_indexer)] = na 931 932 if arr.ndim == 2 and arr.dtype.name in _diff_special: 933 f = _diff_special[arr.dtype.name] 934 f(arr, out_arr, n, axis) 935 else: 936 res_indexer = [slice(None)] * arr.ndim 937 res_indexer[axis] = slice(n, None) if n >= 0 else slice(None, n) 938 res_indexer = tuple(res_indexer) 939 940 lag_indexer = [slice(None)] * arr.ndim 941 lag_indexer[axis] = slice(None, -n) if n > 0 else slice(-n, None) 942 lag_indexer = tuple(lag_indexer) 943 944 # need to make sure that we account for na for datelike/timedelta 945 # we don't actually want to subtract these i8 numbers 946 if is_timedelta: 947 res = arr[res_indexer] 948 lag = arr[lag_indexer] 949 950 mask = (arr[res_indexer] == na) | (arr[lag_indexer] == na) 951 if mask.any(): 952 res = res.copy() 953 res[mask] = 0 954 lag = lag.copy() 955 lag[mask] = 0 956 957 result = res - lag 958 result[mask] = na 959 out_arr[res_indexer] = result 960 else: 961 out_arr[res_indexer] = arr[res_indexer] - arr[lag_indexer] 962 963 if is_timedelta: 964 from pandas import TimedeltaIndex 965 out_arr = TimedeltaIndex(out_arr.ravel().astype('int64')).asi8.reshape(out_arr.shape).astype('timedelta64[ns]') 966 967 return out_arr 968 969 def _coerce_indexer_dtype(indexer, categories): 970 """ coerce the indexer input array to the smallest dtype possible """ 971 l = len(categories) 972 if l < _int8_max: 973 return _ensure_int8(indexer) 974 elif l < _int16_max: 975 return _ensure_int16(indexer) 976 elif l < _int32_max: 977 return _ensure_int32(indexer) 978 return _ensure_int64(indexer) 979 980 def _coerce_to_dtypes(result, dtypes): 981 """ given a dtypes and a result set, coerce the result elements to the 982 dtypes 983 """ 984 if len(result) != len(dtypes): 985 raise AssertionError("_coerce_to_dtypes requires equal len arrays") 986 987 from pandas.tseries.timedeltas import _coerce_scalar_to_timedelta_type 988 989 def conv(r, dtype): 990 try: 991 if isnull(r): 992 pass 993 elif dtype == _NS_DTYPE: 994 r = lib.Timestamp(r) 995 elif dtype == _TD_DTYPE: 996 r = _coerce_scalar_to_timedelta_type(r) 997 elif dtype == np.bool_: 998 # messy. non 0/1 integers do not get converted. 999 if is_integer(r) and r not in [0,1]: 1000 return int(r) 1001 r = bool(r) 1002 elif dtype.kind == 'f': 1003 r = float(r) 1004 elif dtype.kind == 'i': 1005 r = int(r) 1006 except: 1007 pass 1008 1009 return r 1010 1011 return [conv(r, dtype) for r, dtype in zip(result, dtypes)] 1012 1013 1014 def _infer_fill_value(val): 1015 """ 1016 infer the fill value for the nan/NaT from the provided scalar/ndarray/list-like 1017 if we are a NaT, return the correct dtyped element to provide proper block construction 1018 1019 """ 1020 1021 if not is_list_like(val): 1022 val = [val] 1023 val = np.array(val,copy=False) 1024 if is_datetimelike(val): 1025 return np.array('NaT',dtype=val.dtype) 1026 elif is_object_dtype(val.dtype): 1027 dtype = lib.infer_dtype(_ensure_object(val)) 1028 if dtype in ['datetime','datetime64']: 1029 return np.array('NaT',dtype=_NS_DTYPE) 1030 elif dtype in ['timedelta','timedelta64']: 1031 return np.array('NaT',dtype=_TD_DTYPE) 1032 return np.nan 1033 1034 1035 def _infer_dtype_from_scalar(val): 1036 """ interpret the dtype from a scalar, upcast floats and ints 1037 return the new value and the dtype """ 1038 1039 dtype = np.object_ 1040 1041 # a 1-element ndarray 1042 if isinstance(val, np.ndarray): 1043 if val.ndim != 0: 1044 raise ValueError( 1045 "invalid ndarray passed to _infer_dtype_from_scalar") 1046 1047 dtype = val.dtype 1048 val = val.item() 1049 1050 elif isinstance(val, compat.string_types): 1051 1052 # If we create an empty array using a string to infer 1053 # the dtype, NumPy will only allocate one character per entry 1054 # so this is kind of bad. Alternately we could use np.repeat 1055 # instead of np.empty (but then you still don't want things 1056 # coming out as np.str_! 1057 1058 dtype = np.object_ 1059 1060 elif isinstance(val, (np.datetime64, datetime)) and getattr(val,'tz',None) is None: 1061 val = lib.Timestamp(val).value 1062 dtype = np.dtype('M8[ns]') 1063 1064 elif isinstance(val, (np.timedelta64, timedelta)): 1065 val = tslib.convert_to_timedelta(val,'ns') 1066 dtype = np.dtype('m8[ns]') 1067 1068 elif is_bool(val): 1069 dtype = np.bool_ 1070 1071 # provide implicity upcast on scalars 1072 elif is_integer(val): 1073 dtype = np.int64 1074 1075 elif is_float(val): 1076 dtype = np.float64 1077 1078 elif is_complex(val): 1079 dtype = np.complex_ 1080 1081 return dtype, val 1082 1083 1084 def _maybe_cast_scalar(dtype, value): 1085 """ if we a scalar value and are casting to a dtype that needs nan -> NaT 1086 conversion 1087 """ 1088 if np.isscalar(value) and dtype in _DATELIKE_DTYPES and isnull(value): 1089 return tslib.iNaT 1090 return value 1091 1092 1093 def _maybe_promote(dtype, fill_value=np.nan): 1094 1095 # if we passed an array here, determine the fill value by dtype 1096 if isinstance(fill_value, np.ndarray): 1097 if issubclass(fill_value.dtype.type, (np.datetime64, np.timedelta64)): 1098 fill_value = tslib.iNaT 1099 else: 1100 1101 # we need to change to object type as our 1102 # fill_value is of object type 1103 if fill_value.dtype == np.object_: 1104 dtype = np.dtype(np.object_) 1105 fill_value = np.nan 1106 1107 # returns tuple of (dtype, fill_value) 1108 if issubclass(dtype.type, (np.datetime64, np.timedelta64)): 1109 # for now: refuse to upcast datetime64 1110 # (this is because datetime64 will not implicitly upconvert 1111 # to object correctly as of numpy 1.6.1) 1112 if isnull(fill_value): 1113 fill_value = tslib.iNaT 1114 else: 1115 if issubclass(dtype.type, np.datetime64): 1116 try: 1117 fill_value = lib.Timestamp(fill_value).value 1118 except: 1119 # the proper thing to do here would probably be to upcast 1120 # to object (but numpy 1.6.1 doesn't do this properly) 1121 fill_value = tslib.iNaT 1122 else: 1123 fill_value = tslib.iNaT 1124 elif is_float(fill_value): 1125 if issubclass(dtype.type, np.bool_): 1126 dtype = np.object_ 1127 elif issubclass(dtype.type, np.integer): 1128 dtype = np.float64 1129 elif is_bool(fill_value): 1130 if not issubclass(dtype.type, np.bool_): 1131 dtype = np.object_ 1132 elif is_integer(fill_value): 1133 if issubclass(dtype.type, np.bool_): 1134 dtype = np.object_ 1135 elif issubclass(dtype.type, np.integer): 1136 # upcast to prevent overflow 1137 arr = np.asarray(fill_value) 1138 if arr != arr.astype(dtype): 1139 dtype = arr.dtype 1140 elif is_complex(fill_value): 1141 if issubclass(dtype.type, np.bool_): 1142 dtype = np.object_ 1143 elif issubclass(dtype.type, (np.integer, np.floating)): 1144 dtype = np.complex128 1145 else: 1146 dtype = np.object_ 1147 1148 # in case we have a string that looked like a number 1149 if is_categorical_dtype(dtype): 1150 dtype = dtype 1151 elif issubclass(np.dtype(dtype).type, compat.string_types): 1152 dtype = np.object_ 1153 1154 return dtype, fill_value 1155 1156 1157 def _maybe_upcast_putmask(result, mask, other, dtype=None, change=None): 1158 """ a safe version of put mask that (potentially upcasts the result 1159 return the result 1160 if change is not None, then MUTATE the change (and change the dtype) 1161 return a changed flag 1162 """ 1163 1164 if mask.any(): 1165 1166 other = _maybe_cast_scalar(result.dtype, other) 1167 1168 def changeit(): 1169 1170 # try to directly set by expanding our array to full 1171 # length of the boolean 1172 try: 1173 om = other[mask] 1174 om_at = om.astype(result.dtype) 1175 if (om == om_at).all(): 1176 new_other = result.values.copy() 1177 new_other[mask] = om_at 1178 result[:] = new_other 1179 return result, False 1180 except: 1181 pass 1182 1183 # we are forced to change the dtype of the result as the input 1184 # isn't compatible 1185 r, fill_value = _maybe_upcast( 1186 result, fill_value=other, dtype=dtype, copy=True) 1187 np.putmask(r, mask, other) 1188 1189 # we need to actually change the dtype here 1190 if change is not None: 1191 1192 # if we are trying to do something unsafe 1193 # like put a bigger dtype in a smaller one, use the smaller one 1194 # pragma: no cover 1195 if change.dtype.itemsize < r.dtype.itemsize: 1196 raise AssertionError( 1197 "cannot change dtype of input to smaller size") 1198 change.dtype = r.dtype 1199 change[:] = r 1200 1201 return r, True 1202 1203 # we want to decide whether putmask will work 1204 # if we have nans in the False portion of our mask then we need to 1205 # upcast (possibily) otherwise we DON't want to upcast (e.g. if we are 1206 # have values, say integers in the success portion then its ok to not 1207 # upcast) 1208 new_dtype, fill_value = _maybe_promote(result.dtype, other) 1209 if new_dtype != result.dtype: 1210 1211 # we have a scalar or len 0 ndarray 1212 # and its nan and we are changing some values 1213 if (np.isscalar(other) or 1214 (isinstance(other, np.ndarray) and other.ndim < 1)): 1215 if isnull(other): 1216 return changeit() 1217 1218 # we have an ndarray and the masking has nans in it 1219 else: 1220 1221 if isnull(other[mask]).any(): 1222 return changeit() 1223 1224 try: 1225 np.putmask(result, mask, other) 1226 except: 1227 return changeit() 1228 1229 return result, False 1230 1231 1232 def _maybe_upcast(values, fill_value=np.nan, dtype=None, copy=False): 1233 """ provide explict type promotion and coercion 1234 1235 Parameters 1236 ---------- 1237 values : the ndarray that we want to maybe upcast 1238 fill_value : what we want to fill with 1239 dtype : if None, then use the dtype of the values, else coerce to this type 1240 copy : if True always make a copy even if no upcast is required 1241 """ 1242 1243 if dtype is None: 1244 dtype = values.dtype 1245 new_dtype, fill_value = _maybe_promote(dtype, fill_value) 1246 if new_dtype != values.dtype: 1247 values = values.astype(new_dtype) 1248 elif copy: 1249 values = values.copy() 1250 return values, fill_value 1251 1252 1253 def _possibly_cast_item(obj, item, dtype): 1254 chunk = obj[item] 1255 1256 if chunk.values.dtype != dtype: 1257 if dtype in (np.object_, np.bool_): 1258 obj[item] = chunk.astype(np.object_) 1259 elif not issubclass(dtype, (np.integer, np.bool_)): # pragma: no cover 1260 raise ValueError("Unexpected dtype encountered: %s" % dtype) 1261 1262 1263 def _possibly_downcast_to_dtype(result, dtype): 1264 """ try to cast to the specified dtype (e.g. convert back to bool/int 1265 or could be an astype of float64->float32 1266 """ 1267 1268 if np.isscalar(result): 1269 return result 1270 1271 trans = lambda x: x 1272 if isinstance(dtype, compat.string_types): 1273 if dtype == 'infer': 1274 inferred_type = lib.infer_dtype(_ensure_object(result.ravel())) 1275 if inferred_type == 'boolean': 1276 dtype = 'bool' 1277 elif inferred_type == 'integer': 1278 dtype = 'int64' 1279 elif inferred_type == 'datetime64': 1280 dtype = 'datetime64[ns]' 1281 elif inferred_type == 'timedelta64': 1282 dtype = 'timedelta64[ns]' 1283 1284 # try to upcast here 1285 elif inferred_type == 'floating': 1286 dtype = 'int64' 1287 if issubclass(result.dtype.type, np.number): 1288 trans = lambda x: x.round() 1289 1290 else: 1291 dtype = 'object' 1292 1293 if isinstance(dtype, compat.string_types): 1294 dtype = np.dtype(dtype) 1295 1296 try: 1297 1298 # don't allow upcasts here (except if empty) 1299 if dtype.kind == result.dtype.kind: 1300 if result.dtype.itemsize <= dtype.itemsize and np.prod(result.shape): 1301 return result 1302 1303 if issubclass(dtype.type, np.floating): 1304 return result.astype(dtype) 1305 elif dtype == np.bool_ or issubclass(dtype.type, np.integer): 1306 1307 # if we don't have any elements, just astype it 1308 if not np.prod(result.shape): 1309 return trans(result).astype(dtype) 1310 1311 # do a test on the first element, if it fails then we are done 1312 r = result.ravel() 1313 arr = np.array([r[0]]) 1314 if not np.allclose(arr, trans(arr).astype(dtype)): 1315 return result 1316 1317 # a comparable, e.g. a Decimal may slip in here 1318 elif not isinstance(r[0], (np.integer, np.floating, np.bool, int, 1319 float, bool)): 1320 return result 1321 1322 if (issubclass(result.dtype.type, (np.object_, np.number)) and 1323 notnull(result).all()): 1324 new_result = trans(result).astype(dtype) 1325 try: 1326 if np.allclose(new_result, result): 1327 return new_result 1328 except: 1329 1330 # comparison of an object dtype with a number type could 1331 # hit here 1332 if (new_result == result).all(): 1333 return new_result 1334 1335 # a datetimelike 1336 elif dtype.kind in ['M','m'] and result.dtype.kind in ['i']: 1337 try: 1338 result = result.astype(dtype) 1339 except: 1340 pass 1341 1342 except: 1343 pass 1344 1345 return result 1346 1347 1348 def _maybe_convert_string_to_object(values): 1349 """ 1350 Convert string-like and string-like array to convert object dtype. 1351 This is to avoid numpy to handle the array as str dtype. 1352 """ 1353 if isinstance(values, string_types): 1354 values = np.array([values], dtype=object) 1355 elif (isinstance(values, np.ndarray) and 1356 issubclass(values.dtype.type, (np.string_, np.unicode_))): 1357 values = values.astype(object) 1358 return values 1359 1360 1361 def _lcd_dtypes(a_dtype, b_dtype): 1362 """ return the lcd dtype to hold these types """ 1363 1364 if is_datetime64_dtype(a_dtype) or is_datetime64_dtype(b_dtype): 1365 return _NS_DTYPE 1366 elif is_timedelta64_dtype(a_dtype) or is_timedelta64_dtype(b_dtype): 1367 return _TD_DTYPE 1368 elif is_complex_dtype(a_dtype): 1369 if is_complex_dtype(b_dtype): 1370 return a_dtype 1371 return np.float64 1372 elif is_integer_dtype(a_dtype): 1373 if is_integer_dtype(b_dtype): 1374 if a_dtype.itemsize == b_dtype.itemsize: 1375 return a_dtype 1376 return np.int64 1377 return np.float64 1378 elif is_float_dtype(a_dtype): 1379 if is_float_dtype(b_dtype): 1380 if a_dtype.itemsize == b_dtype.itemsize: 1381 return a_dtype 1382 else: 1383 return np.float64 1384 elif is_integer(b_dtype): 1385 return np.float64 1386 return np.object 1387 1388 1389 def _fill_zeros(result, x, y, name, fill): 1390 """ 1391 if this is a reversed op, then flip x,y 1392 1393 if we have an integer value (or array in y) 1394 and we have 0's, fill them with the fill, 1395 return the result 1396 1397 mask the nan's from x 1398 """ 1399 1400 if fill is None or is_float_dtype(result): 1401 return result 1402 1403 if name.startswith(('r', '__r')): 1404 x,y = y,x 1405 1406 if np.isscalar(y): 1407 y = np.array(y) 1408 1409 if is_integer_dtype(y): 1410 1411 if (y == 0).any(): 1412 1413 # GH 7325, mask and nans must be broadcastable (also: PR 9308) 1414 # Raveling and then reshaping makes np.putmask faster 1415 mask = ((y == 0) & ~np.isnan(result)).ravel() 1416 1417 shape = result.shape 1418 result = result.astype('float64', copy=False).ravel() 1419 1420 np.putmask(result, mask, fill) 1421 1422 # if we have a fill of inf, then sign it correctly 1423 # (GH 6178 and PR 9308) 1424 if np.isinf(fill): 1425 signs = np.sign(y if name.startswith(('r', '__r')) else x) 1426 negative_inf_mask = (signs.ravel() < 0) & mask 1427 np.putmask(result, negative_inf_mask, -fill) 1428 1429 if "floordiv" in name: # (PR 9308) 1430 nan_mask = ((y == 0) & (x == 0)).ravel() 1431 np.putmask(result, nan_mask, np.nan) 1432 1433 result = result.reshape(shape) 1434 1435 return result 1436 1437 1438 def _interp_wrapper(f, wrap_dtype, na_override=None): 1439 def wrapper(arr, mask, limit=None): 1440 view = arr.view(wrap_dtype) 1441 f(view, mask, limit=limit) 1442 return wrapper 1443 1444 1445 _pad_1d_datetime = _interp_wrapper(algos.pad_inplace_int64, np.int64) 1446 _pad_2d_datetime = _interp_wrapper(algos.pad_2d_inplace_int64, np.int64) 1447 _backfill_1d_datetime = _interp_wrapper(algos.backfill_inplace_int64, 1448 np.int64) 1449 _backfill_2d_datetime = _interp_wrapper(algos.backfill_2d_inplace_int64, 1450 np.int64) 1451 1452 1453 def pad_1d(values, limit=None, mask=None, dtype=None): 1454 1455 if dtype is None: 1456 dtype = values.dtype 1457 _method = None 1458 if is_float_dtype(values): 1459 _method = getattr(algos, 'pad_inplace_%s' % dtype.name, None) 1460 elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values): 1461 _method = _pad_1d_datetime 1462 elif is_integer_dtype(values): 1463 values = _ensure_float64(values) 1464 _method = algos.pad_inplace_float64 1465 elif values.dtype == np.object_: 1466 _method = algos.pad_inplace_object 1467 1468 if _method is None: 1469 raise ValueError('Invalid dtype for pad_1d [%s]' % dtype.name) 1470 1471 if mask is None: 1472 mask = isnull(values) 1473 mask = mask.view(np.uint8) 1474 _method(values, mask, limit=limit) 1475 return values 1476 1477 1478 def backfill_1d(values, limit=None, mask=None, dtype=None): 1479 1480 if dtype is None: 1481 dtype = values.dtype 1482 _method = None 1483 if is_float_dtype(values): 1484 _method = getattr(algos, 'backfill_inplace_%s' % dtype.name, None) 1485 elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values): 1486 _method = _backfill_1d_datetime 1487 elif is_integer_dtype(values): 1488 values = _ensure_float64(values) 1489 _method = algos.backfill_inplace_float64 1490 elif values.dtype == np.object_: 1491 _method = algos.backfill_inplace_object 1492 1493 if _method is None: 1494 raise ValueError('Invalid dtype for backfill_1d [%s]' % dtype.name) 1495 1496 if mask is None: 1497 mask = isnull(values) 1498 mask = mask.view(np.uint8) 1499 1500 _method(values, mask, limit=limit) 1501 return values 1502 1503 1504 def pad_2d(values, limit=None, mask=None, dtype=None): 1505 1506 if dtype is None: 1507 dtype = values.dtype 1508 _method = None 1509 if is_float_dtype(values): 1510 _method = getattr(algos, 'pad_2d_inplace_%s' % dtype.name, None) 1511 elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values): 1512 _method = _pad_2d_datetime 1513 elif is_integer_dtype(values): 1514 values = _ensure_float64(values) 1515 _method = algos.pad_2d_inplace_float64 1516 elif values.dtype == np.object_: 1517 _method = algos.pad_2d_inplace_object 1518 1519 if _method is None: 1520 raise ValueError('Invalid dtype for pad_2d [%s]' % dtype.name) 1521 1522 if mask is None: 1523 mask = isnull(values) 1524 mask = mask.view(np.uint8) 1525 1526 if np.all(values.shape): 1527 _method(values, mask, limit=limit) 1528 else: 1529 # for test coverage 1530 pass 1531 return values 1532 1533 1534 def backfill_2d(values, limit=None, mask=None, dtype=None): 1535 1536 if dtype is None: 1537 dtype = values.dtype 1538 _method = None 1539 if is_float_dtype(values): 1540 _method = getattr(algos, 'backfill_2d_inplace_%s' % dtype.name, None) 1541 elif dtype in _DATELIKE_DTYPES or is_datetime64_dtype(values): 1542 _method = _backfill_2d_datetime 1543 elif is_integer_dtype(values): 1544 values = _ensure_float64(values) 1545 _method = algos.backfill_2d_inplace_float64 1546 elif values.dtype == np.object_: 1547 _method = algos.backfill_2d_inplace_object 1548 1549 if _method is None: 1550 raise ValueError('Invalid dtype for backfill_2d [%s]' % dtype.name) 1551 1552 if mask is None: 1553 mask = isnull(values) 1554 mask = mask.view(np.uint8) 1555 1556 if np.all(values.shape): 1557 _method(values, mask, limit=limit) 1558 else: 1559 # for test coverage 1560 pass 1561 return values 1562 1563 1564 def _clean_interp_method(method, order=None): 1565 valid = ['linear', 'time', 'index', 'values', 'nearest', 'zero', 'slinear', 1566 'quadratic', 'cubic', 'barycentric', 'polynomial', 1567 'krogh', 'piecewise_polynomial', 1568 'pchip', 'spline'] 1569 if method in ('spline', 'polynomial') and order is None: 1570 raise ValueError("You must specify the order of the spline or " 1571 "polynomial.") 1572 if method not in valid: 1573 raise ValueError("method must be one of {0}." 1574 "Got '{1}' instead.".format(valid, method)) 1575 return method 1576 1577 1578 def interpolate_1d(xvalues, yvalues, method='linear', limit=None, 1579 fill_value=None, bounds_error=False, order=None): 1580 """ 1581 Logic for the 1-d interpolation. The result should be 1-d, inputs 1582 xvalues and yvalues will each be 1-d arrays of the same length. 1583 1584 Bounds_error is currently hardcoded to False since non-scipy ones don't 1585 take it as an argumnet. 1586 """ 1587 # Treat the original, non-scipy methods first. 1588 1589 invalid = isnull(yvalues) 1590 valid = ~invalid 1591 1592 valid_y = yvalues[valid] 1593 valid_x = xvalues[valid] 1594 new_x = xvalues[invalid] 1595 1596 if method == 'time': 1597 if not getattr(xvalues, 'is_all_dates', None): 1598 # if not issubclass(xvalues.dtype.type, np.datetime64): 1599 raise ValueError('time-weighted interpolation only works ' 1600 'on Series or DataFrames with a ' 1601 'DatetimeIndex') 1602 method = 'values' 1603 1604 def _interp_limit(invalid, limit): 1605 """mask off values that won't be filled since they exceed the limit""" 1606 all_nans = np.where(invalid)[0] 1607 if all_nans.size == 0: # no nans anyway 1608 return [] 1609 violate = [invalid[x:x + limit + 1] for x in all_nans] 1610 violate = np.array([x.all() & (x.size > limit) for x in violate]) 1611 return all_nans[violate] + limit 1612 1613 xvalues = getattr(xvalues, 'values', xvalues) 1614 yvalues = getattr(yvalues, 'values', yvalues) 1615 1616 if limit: 1617 violate_limit = _interp_limit(invalid, limit) 1618 if valid.any(): 1619 firstIndex = valid.argmax() 1620 valid = valid[firstIndex:] 1621 invalid = invalid[firstIndex:] 1622 result = yvalues.copy() 1623 if valid.all(): 1624 return yvalues 1625 else: 1626 # have to call np.array(xvalues) since xvalues could be an Index 1627 # which cant be mutated 1628 result = np.empty_like(np.array(xvalues), dtype=np.float64) 1629 result.fill(np.nan) 1630 return result 1631 1632 if method in ['linear', 'time', 'index', 'values']: 1633 if method in ('values', 'index'): 1634 inds = np.asarray(xvalues) 1635 # hack for DatetimeIndex, #1646 1636 if issubclass(inds.dtype.type, np.datetime64): 1637 inds = inds.view(np.int64) 1638 1639 if inds.dtype == np.object_: 1640 inds = lib.maybe_convert_objects(inds) 1641 else: 1642 inds = xvalues 1643 1644 inds = inds[firstIndex:] 1645 1646 result[firstIndex:][invalid] = np.interp(inds[invalid], inds[valid], 1647 yvalues[firstIndex:][valid]) 1648 1649 if limit: 1650 result[violate_limit] = np.nan 1651 return result 1652 1653 sp_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 1654 'barycentric', 'krogh', 'spline', 'polynomial', 1655 'piecewise_polynomial', 'pchip'] 1656 if method in sp_methods: 1657 new_x = new_x[firstIndex:] 1658 xvalues = xvalues[firstIndex:] 1659 1660 result[firstIndex:][invalid] = _interpolate_scipy_wrapper( 1661 valid_x, valid_y, new_x, method=method, fill_value=fill_value, 1662 bounds_error=bounds_error, order=order) 1663 if limit: 1664 result[violate_limit] = np.nan 1665 return result 1666 1667 1668 def _interpolate_scipy_wrapper(x, y, new_x, method, fill_value=None, 1669 bounds_error=False, order=None): 1670 """ 1671 passed off to scipy.interpolate.interp1d. method is scipy's kind. 1672 Returns an array interpolated at new_x. Add any new methods to 1673 the list in _clean_interp_method 1674 """ 1675 try: 1676 from scipy import interpolate 1677 from pandas import DatetimeIndex 1678 except ImportError: 1679 raise ImportError('{0} interpolation requires Scipy'.format(method)) 1680 1681 new_x = np.asarray(new_x) 1682 1683 # ignores some kwargs that could be passed along. 1684 alt_methods = { 1685 'barycentric': interpolate.barycentric_interpolate, 1686 'krogh': interpolate.krogh_interpolate, 1687 'piecewise_polynomial': interpolate.piecewise_polynomial_interpolate, 1688 } 1689 1690 if getattr(x, 'is_all_dates', False): 1691 # GH 5975, scipy.interp1d can't hande datetime64s 1692 x, new_x = x.values.astype('i8'), new_x.astype('i8') 1693 1694 try: 1695 alt_methods['pchip'] = interpolate.pchip_interpolate 1696 except AttributeError: 1697 if method == 'pchip': 1698 raise ImportError("Your version of scipy does not support " 1699 "PCHIP interpolation.") 1700 1701 interp1d_methods = ['nearest', 'zero', 'slinear', 'quadratic', 'cubic', 1702 'polynomial'] 1703 if method in interp1d_methods: 1704 if method == 'polynomial': 1705 method = order 1706 terp = interpolate.interp1d(x, y, kind=method, fill_value=fill_value, 1707 bounds_error=bounds_error) 1708 new_y = terp(new_x) 1709 elif method == 'spline': 1710 terp = interpolate.UnivariateSpline(x, y, k=order) 1711 new_y = terp(new_x) 1712 else: 1713 # GH 7295: need to be able to write for some reason 1714 # in some circumstances: check all three 1715 if not x.flags.writeable: 1716 x = x.copy() 1717 if not y.flags.writeable: 1718 y = y.copy() 1719 if not new_x.flags.writeable: 1720 new_x = new_x.copy() 1721 method = alt_methods[method] 1722 new_y = method(x, y, new_x) 1723 return new_y 1724 1725 1726 def interpolate_2d(values, method='pad', axis=0, limit=None, fill_value=None, dtype=None): 1727 """ perform an actual interpolation of values, values will be make 2-d if 1728 needed fills inplace, returns the result 1729 """ 1730 1731 transf = (lambda x: x) if axis == 0 else (lambda x: x.T) 1732 1733 # reshape a 1 dim if needed 1734 ndim = values.ndim 1735 if values.ndim == 1: 1736 if axis != 0: # pragma: no cover 1737 raise AssertionError("cannot interpolate on a ndim == 1 with " 1738 "axis != 0") 1739 values = values.reshape(tuple((1,) + values.shape)) 1740 1741 if fill_value is None: 1742 mask = None 1743 else: # todo create faster fill func without masking 1744 mask = mask_missing(transf(values), fill_value) 1745 1746 method = _clean_fill_method(method) 1747 if method == 'pad': 1748 values = transf(pad_2d(transf(values), limit=limit, mask=mask, dtype=dtype)) 1749 else: 1750 values = transf(backfill_2d(transf(values), limit=limit, mask=mask, dtype=dtype)) 1751 1752 # reshape back 1753 if ndim == 1: 1754 values = values[0] 1755 1756 return values 1757 1758 1759 def _consensus_name_attr(objs): 1760 name = objs[0].name 1761 for obj in objs[1:]: 1762 if obj.name != name: 1763 return None 1764 return name 1765 1766 1767 _fill_methods = {'pad': pad_1d, 'backfill': backfill_1d} 1768 1769 1770 def _get_fill_func(method): 1771 method = _clean_fill_method(method) 1772 return _fill_methods[method] 1773 1774 1775 #---------------------------------------------------------------------- 1776 # Lots of little utilities 1777 1778 def _validate_date_like_dtype(dtype): 1779 try: 1780 typ = np.datetime_data(dtype)[0] 1781 except ValueError as e: 1782 raise TypeError('%s' % e) 1783 if typ != 'generic' and typ != 'ns': 1784 raise ValueError('%r is too specific of a frequency, try passing %r' 1785 % (dtype.name, dtype.type.__name__)) 1786 1787 1788 def _invalidate_string_dtypes(dtype_set): 1789 """Change string like dtypes to object for ``DataFrame.select_dtypes()``.""" 1790 non_string_dtypes = dtype_set - _string_dtypes 1791 if non_string_dtypes != dtype_set: 1792 raise TypeError("string dtypes are not allowed, use 'object' instead") 1793 1794 1795 def _get_dtype_from_object(dtype): 1796 """Get a numpy dtype.type-style object. 1797 1798 Notes 1799 ----- 1800 If nothing can be found, returns ``object``. 1801 """ 1802 # type object from a dtype 1803 if isinstance(dtype, type) and issubclass(dtype, np.generic): 1804 return dtype 1805 elif isinstance(dtype, np.dtype): # dtype object 1806 try: 1807 _validate_date_like_dtype(dtype) 1808 except TypeError: 1809 # should still pass if we don't have a datelike 1810 pass 1811 return dtype.type 1812 elif isinstance(dtype, compat.string_types): 1813 if dtype == 'datetime' or dtype == 'timedelta': 1814 dtype += '64' 1815 elif dtype == 'category': 1816 return CategoricalDtypeType 1817 try: 1818 return _get_dtype_from_object(getattr(np, dtype)) 1819 except AttributeError: 1820 # handles cases like _get_dtype(int) 1821 # i.e., python objects that are valid dtypes (unlike user-defined 1822 # types, in general) 1823 pass 1824 return _get_dtype_from_object(np.dtype(dtype)) 1825 1826 1827 def _get_info_slice(obj, indexer): 1828 """Slice the info axis of `obj` with `indexer`.""" 1829 if not hasattr(obj, '_info_axis_number'): 1830 raise TypeError('object of type %r has no info axis' % 1831 type(obj).__name__) 1832 slices = [slice(None)] * obj.ndim 1833 slices[obj._info_axis_number] = indexer 1834 return tuple(slices) 1835 1836 1837 def _maybe_box(indexer, values, obj, key): 1838 1839 # if we have multiples coming back, box em 1840 if isinstance(values, np.ndarray): 1841 return obj[indexer.get_loc(key)] 1842 1843 # return the value 1844 return values 1845 1846 1847 def _maybe_box_datetimelike(value): 1848 # turn a datetime like into a Timestamp/timedelta as needed 1849 1850 if isinstance(value, np.datetime64): 1851 value = tslib.Timestamp(value) 1852 elif isinstance(value, np.timedelta64): 1853 value = tslib.Timedelta(value) 1854 1855 return value 1856 1857 _values_from_object = lib.values_from_object 1858 1859 def _possibly_convert_objects(values, convert_dates=True, 1860 convert_numeric=True, 1861 convert_timedeltas=True): 1862 """ if we have an object dtype, try to coerce dates and/or numbers """ 1863 1864 # if we have passed in a list or scalar 1865 if isinstance(values, (list, tuple)): 1866 values = np.array(values, dtype=np.object_) 1867 if not hasattr(values, 'dtype'): 1868 values = np.array([values], dtype=np.object_) 1869 1870 # convert dates 1871 if convert_dates and values.dtype == np.object_: 1872 1873 # we take an aggressive stance and convert to datetime64[ns] 1874 if convert_dates == 'coerce': 1875 new_values = _possibly_cast_to_datetime( 1876 values, 'M8[ns]', coerce=True) 1877 1878 # if we are all nans then leave me alone 1879 if not isnull(new_values).all(): 1880 values = new_values 1881 1882 else: 1883 values = lib.maybe_convert_objects( 1884 values, convert_datetime=convert_dates) 1885 1886 # convert timedeltas 1887 if convert_timedeltas and values.dtype == np.object_: 1888 1889 if convert_timedeltas == 'coerce': 1890 from pandas.tseries.timedeltas import to_timedelta 1891 values = to_timedelta(values, coerce=True) 1892 1893 # if we are all nans then leave me alone 1894 if not isnull(new_values).all(): 1895 values = new_values 1896 1897 else: 1898 values = lib.maybe_convert_objects( 1899 values, convert_timedelta=convert_timedeltas) 1900 1901 # convert to numeric 1902 if values.dtype == np.object_: 1903 if convert_numeric: 1904 try: 1905 new_values = lib.maybe_convert_numeric( 1906 values, set(), coerce_numeric=True) 1907 1908 # if we are all nans then leave me alone 1909 if not isnull(new_values).all(): 1910 values = new_values 1911 1912 except: 1913 pass 1914 else: 1915 1916 # soft-conversion 1917 values = lib.maybe_convert_objects(values) 1918 1919 return values 1920 1921 1922 def _possibly_castable(arr): 1923 # return False to force a non-fastpath 1924 1925 # check datetime64[ns]/timedelta64[ns] are valid 1926 # otherwise try to coerce 1927 kind = arr.dtype.kind 1928 if kind == 'M' or kind == 'm': 1929 return arr.dtype in _DATELIKE_DTYPES 1930 1931 return arr.dtype.name not in _POSSIBLY_CAST_DTYPES 1932 1933 1934 def _possibly_convert_platform(values): 1935 """ try to do platform conversion, allow ndarray or list here """ 1936 1937 if isinstance(values, (list, tuple)): 1938 values = lib.list_to_object_array(values) 1939 if getattr(values, 'dtype', None) == np.object_: 1940 if hasattr(values, 'values'): 1941 values = values.values 1942 values = lib.maybe_convert_objects(values) 1943 1944 return values 1945 1946 1947 def _possibly_cast_to_datetime(value, dtype, coerce=False): 1948 """ try to cast the array/value to a datetimelike dtype, converting float 1949 nan to iNaT 1950 """ 1951 from pandas.tseries.timedeltas import to_timedelta 1952 from pandas.tseries.tools import to_datetime 1953 1954 if dtype is not None: 1955 if isinstance(dtype, compat.string_types): 1956 dtype = np.dtype(dtype) 1957 1958 is_datetime64 = is_datetime64_dtype(dtype) 1959 is_timedelta64 = is_timedelta64_dtype(dtype) 1960 1961 if is_datetime64 or is_timedelta64: 1962 1963 # force the dtype if needed 1964 if is_datetime64 and dtype != _NS_DTYPE: 1965 if dtype.name == 'datetime64[ns]': 1966 dtype = _NS_DTYPE 1967 else: 1968 raise TypeError( 1969 "cannot convert datetimelike to dtype [%s]" % dtype) 1970 elif is_timedelta64 and dtype != _TD_DTYPE: 1971 if dtype.name == 'timedelta64[ns]': 1972 dtype = _TD_DTYPE 1973 else: 1974 raise TypeError( 1975 "cannot convert timedeltalike to dtype [%s]" % dtype) 1976 1977 if np.isscalar(value): 1978 if value == tslib.iNaT or isnull(value): 1979 value = tslib.iNaT 1980 else: 1981 value = np.array(value,copy=False) 1982 1983 # have a scalar array-like (e.g. NaT) 1984 if value.ndim == 0: 1985 value = tslib.iNaT 1986 1987 # we have an array of datetime or timedeltas & nulls 1988 elif np.prod(value.shape) and value.dtype != dtype: 1989 try: 1990 if is_datetime64: 1991 value = to_datetime(value, coerce=coerce).values 1992 elif is_timedelta64: 1993 value = to_timedelta(value, coerce=coerce).values 1994 except (AttributeError, ValueError): 1995 pass 1996 1997 else: 1998 1999 is_array = isinstance(value, np.ndarray) 2000 2001 # catch a datetime/timedelta that is not of ns variety 2002 # and no coercion specified 2003 if is_array and value.dtype.kind in ['M', 'm']: 2004 dtype = value.dtype 2005 2006 if dtype.kind == 'M' and dtype != _NS_DTYPE: 2007 value = value.astype(_NS_DTYPE) 2008 2009 elif dtype.kind == 'm' and dtype != _TD_DTYPE: 2010 value = to_timedelta(value) 2011 2012 # only do this if we have an array and the dtype of the array is not 2013 # setup already we are not an integer/object, so don't bother with this 2014 # conversion 2015 elif not (is_array and not (issubclass(value.dtype.type, np.integer) or 2016 value.dtype == np.object_)): 2017 value = _possibly_infer_to_datetimelike(value) 2018 2019 return value 2020 2021 2022 def _possibly_infer_to_datetimelike(value, convert_dates=False): 2023 """ 2024 we might have a array (or single object) that is datetime like, 2025 and no dtype is passed don't change the value unless we find a 2026 datetime/timedelta set 2027 2028 this is pretty strict in that a datetime/timedelta is REQUIRED 2029 in addition to possible nulls/string likes 2030 2031 ONLY strings are NOT datetimelike 2032 2033 Parameters 2034 ---------- 2035 value : np.array 2036 convert_dates : boolean, default False 2037 if True try really hard to convert dates (such as datetime.date), other 2038 leave inferred dtype 'date' alone 2039 2040 """ 2041 2042 v = value 2043 if not is_list_like(v): 2044 v = [v] 2045 v = np.array(v,copy=False) 2046 shape = v.shape 2047 if not v.ndim == 1: 2048 v = v.ravel() 2049 2050 if len(v): 2051 2052 def _try_datetime(v): 2053 # safe coerce to datetime64 2054 try: 2055 return tslib.array_to_datetime(v, raise_=True).reshape(shape) 2056 except: 2057 return v 2058 2059 def _try_timedelta(v): 2060 # safe coerce to timedelta64 2061 2062 # will try first with a string & object conversion 2063 from pandas.tseries.timedeltas import to_timedelta 2064 try: 2065 return to_timedelta(v).values.reshape(shape) 2066 except: 2067 return v 2068 2069 # do a quick inference for perf 2070 sample = v[:min(3,len(v))] 2071 inferred_type = lib.infer_dtype(sample) 2072 2073 if inferred_type in ['datetime', 'datetime64'] or (convert_dates and inferred_type in ['date']): 2074 value = _try_datetime(v).reshape(shape) 2075 elif inferred_type in ['timedelta', 'timedelta64']: 2076 value = _try_timedelta(v).reshape(shape) 2077 2078 # its possible to have nulls intermixed within the datetime or timedelta 2079 # these will in general have an inferred_type of 'mixed', so have to try 2080 # both datetime and timedelta 2081 2082 # try timedelta first to avoid spurious datetime conversions 2083 # e.g. '00:00:01' is a timedelta but technically is also a datetime 2084 elif inferred_type in ['mixed']: 2085 2086 if lib.is_possible_datetimelike_array(_ensure_object(v)): 2087 value = _try_timedelta(v).reshape(shape) 2088 if lib.infer_dtype(value) in ['mixed']: 2089 value = _try_datetime(v).reshape(shape) 2090 2091 return value 2092 2093 2094 def is_bool_indexer(key): 2095 if isinstance(key, (ABCSeries, np.ndarray)): 2096 if key.dtype == np.object_: 2097 key = np.asarray(_values_from_object(key)) 2098 2099 if not lib.is_bool_array(key): 2100 if isnull(key).any(): 2101 raise ValueError('cannot index with vector containing ' 2102 'NA / NaN values') 2103 return False 2104 return True 2105 elif key.dtype == np.bool_: 2106 return True 2107 elif isinstance(key, list): 2108 try: 2109 arr = np.asarray(key) 2110 return arr.dtype == np.bool_ and len(arr) == len(key) 2111 except TypeError: # pragma: no cover 2112 return False 2113 2114 return False 2115 2116 2117 def _default_index(n): 2118 from pandas.core.index import Int64Index 2119 values = np.arange(n, dtype=np.int64) 2120 result = Int64Index(values,name=None) 2121 result.is_unique = True 2122 return result 2123 2124 2125 def ensure_float(arr): 2126 if issubclass(arr.dtype.type, (np.integer, np.bool_)): 2127 arr = arr.astype(float) 2128 return arr 2129 2130 2131 def _mut_exclusive(**kwargs): 2132 item1, item2 = kwargs.items() 2133 label1, val1 = item1 2134 label2, val2 = item2 2135 if val1 is not None and val2 is not None: 2136 raise TypeError('mutually exclusive arguments: %r and %r' % 2137 (label1, label2)) 2138 elif val1 is not None: 2139 return val1 2140 else: 2141 return val2 2142 2143 2144 def _any_none(*args): 2145 for arg in args: 2146 if arg is None: 2147 return True 2148 return False 2149 2150 2151 def _all_not_none(*args): 2152 for arg in args: 2153 if arg is None: 2154 return False 2155 return True 2156 2157 2158 def _try_sort(iterable): 2159 listed = list(iterable) 2160 try: 2161 return sorted(listed) 2162 except Exception: 2163 return listed 2164 2165 2166 def _count_not_none(*args): 2167 return sum(x is not None for x in args) 2168 2169 #------------------------------------------------------------------------------ 2170 # miscellaneous python tools 2171 2172 2173 2174 2175 def adjoin(space, *lists): 2176 """ 2177 Glues together two sets of strings using the amount of space requested. 2178 The idea is to prettify. 2179 """ 2180 out_lines = [] 2181 newLists = [] 2182 lengths = [max(map(len, x)) + space for x in lists[:-1]] 2183 2184 # not the last one 2185 lengths.append(max(map(len, lists[-1]))) 2186 2187 maxLen = max(map(len, lists)) 2188 for i, lst in enumerate(lists): 2189 nl = [x.ljust(lengths[i]) for x in lst] 2190 nl.extend([' ' * lengths[i]] * (maxLen - len(lst))) 2191 newLists.append(nl) 2192 toJoin = zip(*newLists) 2193 for lines in toJoin: 2194 out_lines.append(_join_unicode(lines)) 2195 return _join_unicode(out_lines, sep='\n') 2196 2197 2198 def _join_unicode(lines, sep=''): 2199 try: 2200 return sep.join(lines) 2201 except UnicodeDecodeError: 2202 sep = compat.text_type(sep) 2203 return sep.join([x.decode('utf-8') if isinstance(x, str) else x 2204 for x in lines]) 2205 2206 2207 def iterpairs(seq): 2208 """ 2209 Parameters 2210 ---------- 2211 seq: sequence 2212 2213 Returns 2214 ------- 2215 iterator returning overlapping pairs of elements 2216 2217 Examples 2218 -------- 2219 >>> list(iterpairs([1, 2, 3, 4])) 2220 [(1, 2), (2, 3), (3, 4)] 2221 """ 2222 # input may not be sliceable 2223 seq_it = iter(seq) 2224 seq_it_next = iter(seq) 2225 next(seq_it_next) 2226 2227 return zip(seq_it, seq_it_next) 2228 2229 2230 def split_ranges(mask): 2231 """ Generates tuples of ranges which cover all True value in mask 2232 2233 >>> list(split_ranges([1,0,0,1,0])) 2234 [(0, 1), (3, 4)] 2235 """ 2236 ranges = [(0, len(mask))] 2237 2238 for pos, val in enumerate(mask): 2239 if not val: # this pos should be ommited, split off the prefix range 2240 r = ranges.pop() 2241 if pos > r[0]: # yield non-zero range 2242 yield (r[0], pos) 2243 if pos + 1 < len(mask): # save the rest for processing 2244 ranges.append((pos + 1, len(mask))) 2245 if ranges: 2246 yield ranges[-1] 2247 2248 2249 def indent(string, spaces=4): 2250 dent = ' ' * spaces 2251 return '\n'.join([dent + x for x in string.split('\n')]) 2252 2253 2254 def banner(message): 2255 """ 2256 Return 80-char width message declaration with = bars on top and bottom. 2257 """ 2258 bar = '=' * 80 2259 return '%s\n%s\n%s' % (bar, message, bar) 2260 2261 2262 def _long_prod(vals): 2263 result = long(1) 2264 for x in vals: 2265 result *= x 2266 return result 2267 2268 2269 class groupby(dict): 2270 2271 """ 2272 A simple groupby different from the one in itertools. 2273 2274 Does not require the sequence elements to be sorted by keys, 2275 however it is slower. 2276 """ 2277 2278 def __init__(self, seq, key=lambda x: x): 2279 for value in seq: 2280 k = key(value) 2281 self.setdefault(k, []).append(value) 2282 try: 2283 __iter__ = dict.iteritems 2284 except AttributeError: # pragma: no cover 2285 # Python 3 2286 def __iter__(self): 2287 return iter(dict.items(self)) 2288 2289 2290 def map_indices_py(arr): 2291 """ 2292 Returns a dictionary with (element, index) pairs for each element in the 2293 given array/list 2294 """ 2295 return dict([(x, i) for i, x in enumerate(arr)]) 2296 2297 2298 def union(*seqs): 2299 result = set([]) 2300 for seq in seqs: 2301 if not isinstance(seq, set): 2302 seq = set(seq) 2303 result |= seq 2304 return type(seqs[0])(list(result)) 2305 2306 2307 def difference(a, b): 2308 return type(a)(list(set(a) - set(b))) 2309 2310 2311 def intersection(*seqs): 2312 result = set(seqs[0]) 2313 for seq in seqs: 2314 if not isinstance(seq, set): 2315 seq = set(seq) 2316 result &= seq 2317 return type(seqs[0])(list(result)) 2318 2319 2320 def _asarray_tuplesafe(values, dtype=None): 2321 from pandas.core.index import Index 2322 2323 if not (isinstance(values, (list, tuple)) 2324 or hasattr(values, '__array__')): 2325 values = list(values) 2326 elif isinstance(values, Index): 2327 return values.values 2328 2329 if isinstance(values, list) and dtype in [np.object_, object]: 2330 return lib.list_to_object_array(values) 2331 2332 result = np.asarray(values, dtype=dtype) 2333 2334 if issubclass(result.dtype.type, compat.string_types): 2335 result = np.asarray(values, dtype=object) 2336 2337 if result.ndim == 2: 2338 if isinstance(values, list): 2339 return lib.list_to_object_array(values) 2340 else: 2341 # Making a 1D array that safely contains tuples is a bit tricky 2342 # in numpy, leading to the following 2343 try: 2344 result = np.empty(len(values), dtype=object) 2345 result[:] = values 2346 except ValueError: 2347 # we have a list-of-list 2348 result[:] = [tuple(x) for x in values] 2349 2350 return result 2351 2352 2353 def _index_labels_to_array(labels): 2354 if isinstance(labels, (compat.string_types, tuple)): 2355 labels = [labels] 2356 2357 if not isinstance(labels, (list, np.ndarray)): 2358 try: 2359 labels = list(labels) 2360 except TypeError: # non-iterable 2361 labels = [labels] 2362 2363 labels = _asarray_tuplesafe(labels) 2364 2365 return labels 2366 2367 2368 def _maybe_make_list(obj): 2369 if obj is not None and not isinstance(obj, (tuple, list)): 2370 return [obj] 2371 return obj 2372 2373 ######################## 2374 ##### TYPE TESTING ##### 2375 ######################## 2376 2377 is_bool = lib.is_bool 2378 2379 2380 is_integer = lib.is_integer 2381 2382 2383 is_float = lib.is_float 2384 2385 2386 is_complex = lib.is_complex 2387 2388 2389 def is_iterator(obj): 2390 # python 3 generators have __next__ instead of next 2391 return hasattr(obj, 'next') or hasattr(obj, '__next__') 2392 2393 2394 def is_number(obj): 2395 return isinstance(obj, (numbers.Number, np.number)) 2396 2397 def is_period_arraylike(arr): 2398 """ return if we are period arraylike / PeriodIndex """ 2399 if isinstance(arr, pd.PeriodIndex): 2400 return True 2401 elif isinstance(arr, (np.ndarray, ABCSeries)): 2402 return arr.dtype == object and lib.infer_dtype(arr) == 'period' 2403 return getattr(arr, 'inferred_type', None) == 'period' 2404 2405 def is_datetime_arraylike(arr): 2406 """ return if we are datetime arraylike / DatetimeIndex """ 2407 if isinstance(arr, pd.DatetimeIndex): 2408 return True 2409 elif isinstance(arr, (np.ndarray, ABCSeries)): 2410 return arr.dtype == object and lib.infer_dtype(arr) == 'datetime' 2411 return getattr(arr, 'inferred_type', None) == 'datetime' 2412 2413 def is_datetimelike(arr): 2414 return arr.dtype in _DATELIKE_DTYPES or isinstance(arr, ABCPeriodIndex) 2415 2416 def _coerce_to_dtype(dtype): 2417 """ coerce a string / np.dtype to a dtype """ 2418 if is_categorical_dtype(dtype): 2419 dtype = CategoricalDtype() 2420 else: 2421 dtype = np.dtype(dtype) 2422 return dtype 2423 2424 def _get_dtype(arr_or_dtype): 2425 if isinstance(arr_or_dtype, np.dtype): 2426 return arr_or_dtype 2427 elif isinstance(arr_or_dtype, type): 2428 return np.dtype(arr_or_dtype) 2429 elif isinstance(arr_or_dtype, CategoricalDtype): 2430 return CategoricalDtype() 2431 return arr_or_dtype.dtype 2432 2433 2434 def _get_dtype_type(arr_or_dtype): 2435 if isinstance(arr_or_dtype, np.dtype): 2436 return arr_or_dtype.type 2437 elif isinstance(arr_or_dtype, type): 2438 return np.dtype(arr_or_dtype).type 2439 elif isinstance(arr_or_dtype, CategoricalDtype): 2440 return CategoricalDtypeType 2441 return arr_or_dtype.dtype.type 2442 2443 2444 def is_any_int_dtype(arr_or_dtype): 2445 tipo = _get_dtype_type(arr_or_dtype) 2446 return issubclass(tipo, np.integer) 2447 2448 2449 def is_integer_dtype(arr_or_dtype): 2450 tipo = _get_dtype_type(arr_or_dtype) 2451 return (issubclass(tipo, np.integer) and 2452 not issubclass(tipo, (np.datetime64, np.timedelta64))) 2453 2454 2455 def is_int_or_datetime_dtype(arr_or_dtype): 2456 tipo = _get_dtype_type(arr_or_dtype) 2457 return (issubclass(tipo, np.integer) or 2458 issubclass(tipo, (np.datetime64, np.timedelta64))) 2459 2460 2461 def is_datetime64_dtype(arr_or_dtype): 2462 tipo = _get_dtype_type(arr_or_dtype) 2463 return issubclass(tipo, np.datetime64) 2464 2465 2466 def is_datetime64_ns_dtype(arr_or_dtype): 2467 tipo = _get_dtype(arr_or_dtype) 2468 return tipo == _NS_DTYPE 2469 2470 def is_timedelta64_dtype(arr_or_dtype): 2471 tipo = _get_dtype_type(arr_or_dtype) 2472 return issubclass(tipo, np.timedelta64) 2473 2474 2475 def is_timedelta64_ns_dtype(arr_or_dtype): 2476 tipo = _get_dtype_type(arr_or_dtype) 2477 return tipo == _TD_DTYPE 2478 2479 2480 def is_datetime_or_timedelta_dtype(arr_or_dtype): 2481 tipo = _get_dtype_type(arr_or_dtype) 2482 return issubclass(tipo, (np.datetime64, np.timedelta64)) 2483 2484 2485 needs_i8_conversion = is_datetime_or_timedelta_dtype 2486 2487 def i8_boxer(arr_or_dtype): 2488 """ return the scalar boxer for the dtype """ 2489 if is_datetime64_dtype(arr_or_dtype): 2490 return lib.Timestamp 2491 elif is_timedelta64_dtype(arr_or_dtype): 2492 return lambda x: lib.Timedelta(x,unit='ns') 2493 raise ValueError("cannot find a scalar boxer for {0}".format(arr_or_dtype)) 2494 2495 def is_numeric_dtype(arr_or_dtype): 2496 tipo = _get_dtype_type(arr_or_dtype) 2497 return (issubclass(tipo, (np.number, np.bool_)) 2498 and not issubclass(tipo, (np.datetime64, np.timedelta64))) 2499 2500 2501 def is_float_dtype(arr_or_dtype): 2502 tipo = _get_dtype_type(arr_or_dtype) 2503 return issubclass(tipo, np.floating) 2504 2505 2506 def is_floating_dtype(arr_or_dtype): 2507 tipo = _get_dtype_type(arr_or_dtype) 2508 return isinstance(tipo, np.floating) 2509 2510 2511 def is_bool_dtype(arr_or_dtype): 2512 tipo = _get_dtype_type(arr_or_dtype) 2513 return issubclass(tipo, np.bool_) 2514 2515 def is_categorical(array): 2516 """ return if we are a categorical possibility """ 2517 return isinstance(array, ABCCategorical) or isinstance(array.dtype, CategoricalDtype) 2518 2519 def is_categorical_dtype(arr_or_dtype): 2520 if hasattr(arr_or_dtype,'dtype'): 2521 arr_or_dtype = arr_or_dtype.dtype 2522 2523 if isinstance(arr_or_dtype, CategoricalDtype): 2524 return True 2525 try: 2526 return arr_or_dtype == 'category' 2527 except: 2528 return False 2529 2530 def is_complex_dtype(arr_or_dtype): 2531 tipo = _get_dtype_type(arr_or_dtype) 2532 return issubclass(tipo, np.complexfloating) 2533 2534 2535 def is_object_dtype(arr_or_dtype): 2536 tipo = _get_dtype_type(arr_or_dtype) 2537 return issubclass(tipo, np.object_) 2538 2539 2540 def is_re(obj): 2541 return isinstance(obj, re._pattern_type) 2542 2543 2544 def is_re_compilable(obj): 2545 try: 2546 re.compile(obj) 2547 except TypeError: 2548 return False 2549 else: 2550 return True 2551 2552 2553 def is_list_like(arg): 2554 return (hasattr(arg, '__iter__') and 2555 not isinstance(arg, compat.string_and_binary_types)) 2556 2557 def is_null_slice(obj): 2558 return (isinstance(obj, slice) and obj.start is None and 2559 obj.stop is None and obj.step is None) 2560 2561 2562 def is_hashable(arg): 2563 """Return True if hash(arg) will succeed, False otherwise. 2564 2565 Some types will pass a test against collections.Hashable but fail when they 2566 are actually hashed with hash(). 2567 2568 Distinguish between these and other types by trying the call to hash() and 2569 seeing if they raise TypeError. 2570 2571 Examples 2572 -------- 2573 >>> a = ([],) 2574 >>> isinstance(a, collections.Hashable) 2575 True 2576 >>> is_hashable(a) 2577 False 2578 """ 2579 # unfortunately, we can't use isinstance(arg, collections.Hashable), which 2580 # can be faster than calling hash, because numpy scalars on Python 3 fail 2581 # this test 2582 2583 # reconsider this decision once this numpy bug is fixed: 2584 # https://github.com/numpy/numpy/issues/5562 2585 2586 try: 2587 hash(arg) 2588 except TypeError: 2589 return False 2590 else: 2591 return True 2592 2593 2594 def is_sequence(x): 2595 try: 2596 iter(x) 2597 len(x) # it has a length 2598 return not isinstance(x, compat.string_and_binary_types) 2599 except (TypeError, AttributeError): 2600 return False 2601 2602 2603 def _get_callable_name(obj): 2604 # typical case has name 2605 if hasattr(obj, '__name__'): 2606 return getattr(obj, '__name__') 2607 # some objects don't; could recurse 2608 if isinstance(obj, partial): 2609 return _get_callable_name(obj.func) 2610 # fall back to class name 2611 if hasattr(obj, '__call__'): 2612 return obj.__class__.__name__ 2613 # everything failed (probably because the argument 2614 # wasn't actually callable); we return None 2615 # instead of the empty string in this case to allow 2616 # distinguishing between no name and a name of '' 2617 return None 2618 2619 _string_dtypes = frozenset(map(_get_dtype_from_object, (compat.binary_type, 2620 compat.text_type))) 2621 2622 2623 _ensure_float64 = algos.ensure_float64 2624 _ensure_float32 = algos.ensure_float32 2625 _ensure_int64 = algos.ensure_int64 2626 _ensure_int32 = algos.ensure_int32 2627 _ensure_int16 = algos.ensure_int16 2628 _ensure_int8 = algos.ensure_int8 2629 _ensure_platform_int = algos.ensure_platform_int 2630 _ensure_object = algos.ensure_object 2631 2632 2633 def _astype_nansafe(arr, dtype, copy=True): 2634 """ return a view if copy is False, but 2635 need to be very careful as the result shape could change! """ 2636 if not isinstance(dtype, np.dtype): 2637 dtype = _coerce_to_dtype(dtype) 2638 2639 if is_datetime64_dtype(arr): 2640 if dtype == object: 2641 return tslib.ints_to_pydatetime(arr.view(np.int64)) 2642 elif dtype == np.int64: 2643 return arr.view(dtype) 2644 elif dtype != _NS_DTYPE: 2645 raise TypeError("cannot astype a datetimelike from [%s] to [%s]" % 2646 (arr.dtype, dtype)) 2647 return arr.astype(_NS_DTYPE) 2648 elif is_timedelta64_dtype(arr): 2649 if dtype == np.int64: 2650 return arr.view(dtype) 2651 elif dtype == object: 2652 return tslib.ints_to_pytimedelta(arr.view(np.int64)) 2653 2654 # in py3, timedelta64[ns] are int64 2655 elif ((compat.PY3 and dtype not in [_INT64_DTYPE, _TD_DTYPE]) or 2656 (not compat.PY3 and dtype != _TD_DTYPE)): 2657 2658 # allow frequency conversions 2659 if dtype.kind == 'm': 2660 mask = isnull(arr) 2661 result = arr.astype(dtype).astype(np.float64) 2662 result[mask] = np.nan 2663 return result 2664 2665 raise TypeError("cannot astype a timedelta from [%s] to [%s]" % 2666 (arr.dtype, dtype)) 2667 2668 return arr.astype(_TD_DTYPE) 2669 elif (np.issubdtype(arr.dtype, np.floating) and 2670 np.issubdtype(dtype, np.integer)): 2671 2672 if np.isnan(arr).any(): 2673 raise ValueError('Cannot convert NA to integer') 2674 elif arr.dtype == np.object_ and np.issubdtype(dtype.type, np.integer): 2675 # work around NumPy brokenness, #1987 2676 return lib.astype_intsafe(arr.ravel(), dtype).reshape(arr.shape) 2677 elif issubclass(dtype.type, compat.text_type): 2678 # in Py3 that's str, in Py2 that's unicode 2679 return lib.astype_unicode(arr.ravel()).reshape(arr.shape) 2680 elif issubclass(dtype.type, compat.string_types): 2681 return lib.astype_str(arr.ravel()).reshape(arr.shape) 2682 2683 if copy: 2684 return arr.astype(dtype) 2685 return arr.view(dtype) 2686 2687 2688 def _clean_fill_method(method, allow_nearest=False): 2689 if method is None: 2690 return None 2691 method = method.lower() 2692 if method == 'ffill': 2693 method = 'pad' 2694 if method == 'bfill': 2695 method = 'backfill' 2696 2697 valid_methods = ['pad', 'backfill'] 2698 expecting = 'pad (ffill) or backfill (bfill)' 2699 if allow_nearest: 2700 valid_methods.append('nearest') 2701 expecting = 'pad (ffill), backfill (bfill) or nearest' 2702 if method not in valid_methods: 2703 msg = ('Invalid fill method. Expecting %s. Got %s' 2704 % (expecting, method)) 2705 raise ValueError(msg) 2706 return method 2707 2708 2709 def _clean_reindex_fill_method(method): 2710 return _clean_fill_method(method, allow_nearest=True) 2711 2712 2713 def _all_none(*args): 2714 for arg in args: 2715 if arg is not None: 2716 return False 2717 return True 2718 2719 2720 class UTF8Recoder: 2721 2722 """ 2723 Iterator that reads an encoded stream and reencodes the input to UTF-8 2724 """ 2725 2726 def __init__(self, f, encoding): 2727 self.reader = codecs.getreader(encoding)(f) 2728 2729 def __iter__(self): 2730 return self 2731 2732 def read(self, bytes=-1): 2733 return self.reader.read(bytes).encode('utf-8') 2734 2735 def readline(self): 2736 return self.reader.readline().encode('utf-8') 2737 2738 def next(self): 2739 return next(self.reader).encode("utf-8") 2740 2741 # Python 3 iterator 2742 __next__ = next 2743 2744 2745 def _get_handle(path, mode, encoding=None, compression=None): 2746 """Gets file handle for given path and mode. 2747 NOTE: Under Python 3.2, getting a compressed file handle means reading in 2748 the entire file, decompressing it and decoding it to ``str`` all at once 2749 and then wrapping it in a StringIO. 2750 """ 2751 if compression is not None: 2752 if encoding is not None and not compat.PY3: 2753 msg = 'encoding + compression not yet supported in Python 2' 2754 raise ValueError(msg) 2755 2756 if compression == 'gzip': 2757 import gzip 2758 f = gzip.GzipFile(path, 'rb') 2759 elif compression == 'bz2': 2760 import bz2 2761 2762 f = bz2.BZ2File(path, 'rb') 2763 else: 2764 raise ValueError('Unrecognized compression type: %s' % 2765 compression) 2766 if compat.PY3_2: 2767 # gzip and bz2 don't work with TextIOWrapper in 3.2 2768 encoding = encoding or get_option('display.encoding') 2769 f = StringIO(f.read().decode(encoding)) 2770 elif compat.PY3: 2771 from io import TextIOWrapper 2772 f = TextIOWrapper(f, encoding=encoding) 2773 return f 2774 else: 2775 if compat.PY3: 2776 if encoding: 2777 f = open(path, mode, encoding=encoding) 2778 else: 2779 f = open(path, mode, errors='replace') 2780 else: 2781 f = open(path, mode) 2782 2783 return f 2784 2785 2786 if compat.PY3: # pragma: no cover 2787 def UnicodeReader(f, dialect=csv.excel, encoding="utf-8", **kwds): 2788 # ignore encoding 2789 return csv.reader(f, dialect=dialect, **kwds) 2790 2791 def UnicodeWriter(f, dialect=csv.excel, encoding="utf-8", **kwds): 2792 return csv.writer(f, dialect=dialect, **kwds) 2793 else: 2794 class UnicodeReader: 2795 2796 """ 2797 A CSV reader which will iterate over lines in the CSV file "f", 2798 which is encoded in the given encoding. 2799 2800 On Python 3, this is replaced (below) by csv.reader, which handles 2801 unicode. 2802 """ 2803 2804 def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): 2805 f = UTF8Recoder(f, encoding) 2806 self.reader = csv.reader(f, dialect=dialect, **kwds) 2807 2808 def next(self): 2809 row = next(self.reader) 2810 return [compat.text_type(s, "utf-8") for s in row] 2811 2812 # python 3 iterator 2813 __next__ = next 2814 2815 def __iter__(self): # pragma: no cover 2816 return self 2817 2818 class UnicodeWriter: 2819 2820 """ 2821 A CSV writer which will write rows to CSV file "f", 2822 which is encoded in the given encoding. 2823 """ 2824 2825 def __init__(self, f, dialect=csv.excel, encoding="utf-8", **kwds): 2826 # Redirect output to a queue 2827 self.queue = StringIO() 2828 self.writer = csv.writer(self.queue, dialect=dialect, **kwds) 2829 self.stream = f 2830 self.encoder = codecs.getincrementalencoder(encoding)() 2831 self.quoting = kwds.get("quoting", None) 2832 2833 def writerow(self, row): 2834 def _check_as_is(x): 2835 return (self.quoting == csv.QUOTE_NONNUMERIC and 2836 is_number(x)) or isinstance(x, str) 2837 2838 row = [x if _check_as_is(x) 2839 else pprint_thing(x).encode('utf-8') for x in row] 2840 2841 self.writer.writerow([s for s in row]) 2842 # Fetch UTF-8 output from the queue ... 2843 data = self.queue.getvalue() 2844 data = data.decode("utf-8") 2845 # ... and reencode it into the target encoding 2846 data = self.encoder.encode(data) 2847 # write to the target stream 2848 self.stream.write(data) 2849 # empty queue 2850 self.queue.truncate(0) 2851 2852 def writerows(self, rows): 2853 def _check_as_is(x): 2854 return (self.quoting == csv.QUOTE_NONNUMERIC and 2855 is_number(x)) or isinstance(x, str) 2856 2857 for i, row in enumerate(rows): 2858 rows[i] = [x if _check_as_is(x) 2859 else pprint_thing(x).encode('utf-8') for x in row] 2860 2861 self.writer.writerows([[s for s in row] for row in rows]) 2862 # Fetch UTF-8 output from the queue ... 2863 data = self.queue.getvalue() 2864 data = data.decode("utf-8") 2865 # ... and reencode it into the target encoding 2866 data = self.encoder.encode(data) 2867 # write to the target stream 2868 self.stream.write(data) 2869 # empty queue 2870 self.queue.truncate(0) 2871 2872 2873 def get_dtype_kinds(l): 2874 """ 2875 Parameters 2876 ---------- 2877 l : list of arrays 2878 2879 Returns 2880 ------- 2881 a set of kinds that exist in this list of arrays 2882 """ 2883 2884 typs = set() 2885 for arr in l: 2886 2887 dtype = arr.dtype 2888 if is_categorical_dtype(dtype): 2889 typ = 'category' 2890 elif isinstance(arr, ABCSparseArray): 2891 typ = 'sparse' 2892 elif is_datetime64_dtype(dtype): 2893 typ = 'datetime' 2894 elif is_timedelta64_dtype(dtype): 2895 typ = 'timedelta' 2896 elif is_object_dtype(dtype): 2897 typ = 'object' 2898 elif is_bool_dtype(dtype): 2899 typ = 'bool' 2900 else: 2901 typ = dtype.kind 2902 typs.add(typ) 2903 return typs 2904 2905 def _concat_compat(to_concat, axis=0): 2906 """ 2907 provide concatenation of an array of arrays each of which is a single 2908 'normalized' dtypes (in that for example, if its object, then it is a non-datetimelike 2909 provde a combined dtype for the resulting array the preserves the overall dtype if possible) 2910 2911 Parameters 2912 ---------- 2913 to_concat : array of arrays 2914 axis : axis to provide concatenation 2915 2916 Returns 2917 ------- 2918 a single array, preserving the combined dtypes 2919 """ 2920 2921 # filter empty arrays 2922 # 1-d dtypes always are included here 2923 def is_nonempty(x): 2924 try: 2925 return x.shape[axis] > 0 2926 except Exception: 2927 return True 2928 nonempty = [x for x in to_concat if is_nonempty(x)] 2929 2930 # If all arrays are empty, there's nothing to convert, just short-cut to 2931 # the concatenation, #3121. 2932 # 2933 # Creating an empty array directly is tempting, but the winnings would be 2934 # marginal given that it would still require shape & dtype calculation and 2935 # np.concatenate which has them both implemented is compiled. 2936 2937 typs = get_dtype_kinds(to_concat) 2938 2939 # these are mandated to handle empties as well 2940 if 'datetime' in typs or 'timedelta' in typs: 2941 from pandas.tseries.common import _concat_compat 2942 return _concat_compat(to_concat, axis=axis) 2943 2944 elif 'sparse' in typs: 2945 from pandas.sparse.array import _concat_compat 2946 return _concat_compat(to_concat, axis=axis) 2947 2948 elif 'category' in typs: 2949 from pandas.core.categorical import _concat_compat 2950 return _concat_compat(to_concat, axis=axis) 2951 2952 if not nonempty: 2953 2954 # we have all empties, but may need to coerce the result dtype to object if we 2955 # have non-numeric type operands (numpy would otherwise cast this to float) 2956 typs = get_dtype_kinds(to_concat) 2957 if len(typs) != 1: 2958 2959 if not len(typs-set(['i','u','f'])) or not len(typs-set(['bool','i','u'])): 2960 # let numpy coerce 2961 pass 2962 else: 2963 # coerce to object 2964 to_concat = [ x.astype('object') for x in to_concat ] 2965 2966 return np.concatenate(to_concat,axis=axis) 2967 2968 def _where_compat(mask, arr1, arr2): 2969 if arr1.dtype == _NS_DTYPE and arr2.dtype == _NS_DTYPE: 2970 new_vals = np.where(mask, arr1.view('i8'), arr2.view('i8')) 2971 return new_vals.view(_NS_DTYPE) 2972 2973 import pandas.tslib as tslib 2974 if arr1.dtype == _NS_DTYPE: 2975 arr1 = tslib.ints_to_pydatetime(arr1.view('i8')) 2976 if arr2.dtype == _NS_DTYPE: 2977 arr2 = tslib.ints_to_pydatetime(arr2.view('i8')) 2978 2979 return np.where(mask, arr1, arr2) 2980 2981 2982 def sentinel_factory(): 2983 class Sentinel(object): 2984 pass 2985 2986 return Sentinel() 2987 2988 2989 def in_interactive_session(): 2990 """ check if we're running in an interactive shell 2991 2992 returns True if running under python/ipython interactive shell 2993 """ 2994 def check_main(): 2995 import __main__ as main 2996 return (not hasattr(main, '__file__') or 2997 get_option('mode.sim_interactive')) 2998 2999 try: 3000 return __IPYTHON__ or check_main() 3001 except: 3002 return check_main() 3003 3004 3005 def in_qtconsole(): 3006 """ 3007 check if we're inside an IPython qtconsole 3008 3009 DEPRECATED: This is no longer needed, or working, in IPython 3 and above. 3010 """ 3011 try: 3012 ip = get_ipython() 3013 front_end = ( 3014 ip.config.get('KernelApp', {}).get('parent_appname', "") or 3015 ip.config.get('IPKernelApp', {}).get('parent_appname', "") 3016 ) 3017 if 'qtconsole' in front_end.lower(): 3018 return True 3019 except: 3020 return False 3021 return False 3022 3023 3024 def in_ipnb(): 3025 """ 3026 check if we're inside an IPython Notebook 3027 3028 DEPRECATED: This is no longer used in pandas, and won't work in IPython 3 3029 and above. 3030 """ 3031 try: 3032 ip = get_ipython() 3033 front_end = ( 3034 ip.config.get('KernelApp', {}).get('parent_appname', "") or 3035 ip.config.get('IPKernelApp', {}).get('parent_appname', "") 3036 ) 3037 if 'notebook' in front_end.lower(): 3038 return True 3039 except: 3040 return False 3041 return False 3042 3043 3044 def in_ipython_frontend(): 3045 """ 3046 check if we're inside an an IPython zmq frontend 3047 """ 3048 try: 3049 ip = get_ipython() 3050 return 'zmq' in str(type(ip)).lower() 3051 except: 3052 pass 3053 3054 return False 3055 3056 # Unicode consolidation 3057 # --------------------- 3058 # 3059 # pprinting utility functions for generating Unicode text or 3060 # bytes(3.x)/str(2.x) representations of objects. 3061 # Try to use these as much as possible rather then rolling your own. 3062 # 3063 # When to use 3064 # ----------- 3065 # 3066 # 1) If you're writing code internal to pandas (no I/O directly involved), 3067 # use pprint_thing(). 3068 # 3069 # It will always return unicode text which can handled by other 3070 # parts of the package without breakage. 3071 # 3072 # 2) If you need to send something to the console, use console_encode(). 3073 # 3074 # console_encode() should (hopefully) choose the right encoding for you 3075 # based on the encoding set in option "display.encoding" 3076 # 3077 # 3) if you need to write something out to file, use 3078 # pprint_thing_encoded(encoding). 3079 # 3080 # If no encoding is specified, it defaults to utf-8. Since encoding pure 3081 # ascii with utf-8 is a no-op you can safely use the default utf-8 if you're 3082 # working with straight ascii. 3083 3084 3085 def _pprint_seq(seq, _nest_lvl=0, **kwds): 3086 """ 3087 internal. pprinter for iterables. you should probably use pprint_thing() 3088 rather then calling this directly. 3089 3090 bounds length of printed sequence, depending on options 3091 """ 3092 if isinstance(seq, set): 3093 fmt = u("set([%s])") 3094 else: 3095 fmt = u("[%s]") if hasattr(seq, '__setitem__') else u("(%s)") 3096 3097 nitems = get_option("max_seq_items") or len(seq) 3098 3099 s = iter(seq) 3100 r = [] 3101 for i in range(min(nitems, len(seq))): # handle sets, no slicing 3102 r.append(pprint_thing(next(s), _nest_lvl + 1, **kwds)) 3103 body = ", ".join(r) 3104 3105 if nitems < len(seq): 3106 body += ", ..." 3107 elif isinstance(seq, tuple) and len(seq) == 1: 3108 body += ',' 3109 3110 return fmt % body 3111 3112 3113 def _pprint_dict(seq, _nest_lvl=0, **kwds): 3114 """ 3115 internal. pprinter for iterables. you should probably use pprint_thing() 3116 rather then calling this directly. 3117 """ 3118 fmt = u("{%s}") 3119 pairs = [] 3120 3121 pfmt = u("%s: %s") 3122 3123 nitems = get_option("max_seq_items") or len(seq) 3124 3125 for k, v in list(seq.items())[:nitems]: 3126 pairs.append(pfmt % (pprint_thing(k, _nest_lvl + 1, **kwds), 3127 pprint_thing(v, _nest_lvl + 1, **kwds))) 3128 3129 if nitems < len(seq): 3130 return fmt % (", ".join(pairs) + ", ...") 3131 else: 3132 return fmt % ", ".join(pairs) 3133 3134 3135 def pprint_thing(thing, _nest_lvl=0, escape_chars=None, default_escapes=False, 3136 quote_strings=False): 3137 """ 3138 This function is the sanctioned way of converting objects 3139 to a unicode representation. 3140 3141 properly handles nested sequences containing unicode strings 3142 (unicode(object) does not) 3143 3144 Parameters 3145 ---------- 3146 thing : anything to be formatted 3147 _nest_lvl : internal use only. pprint_thing() is mutually-recursive 3148 with pprint_sequence, this argument is used to keep track of the 3149 current nesting level, and limit it. 3150 escape_chars : list or dict, optional 3151 Characters to escape. If a dict is passed the values are the 3152 replacements 3153 default_escapes : bool, default False 3154 Whether the input escape characters replaces or adds to the defaults 3155 3156 Returns 3157 ------- 3158 result - unicode object on py2, str on py3. Always Unicode. 3159 3160 """ 3161 def as_escaped_unicode(thing, escape_chars=escape_chars): 3162 # Unicode is fine, else we try to decode using utf-8 and 'replace' 3163 # if that's not it either, we have no way of knowing and the user 3164 # should deal with it himself. 3165 3166 try: 3167 result = compat.text_type(thing) # we should try this first 3168 except UnicodeDecodeError: 3169 # either utf-8 or we replace errors 3170 result = str(thing).decode('utf-8', "replace") 3171 3172 translate = {'\t': r'\t', 3173 '\n': r'\n', 3174 '\r': r'\r', 3175 } 3176 if isinstance(escape_chars, dict): 3177 if default_escapes: 3178 translate.update(escape_chars) 3179 else: 3180 translate = escape_chars 3181 escape_chars = list(escape_chars.keys()) 3182 else: 3183 escape_chars = escape_chars or tuple() 3184 for c in escape_chars: 3185 result = result.replace(c, translate[c]) 3186 3187 return compat.text_type(result) 3188 3189 if (compat.PY3 and hasattr(thing, '__next__')) or hasattr(thing, 'next'): 3190 return compat.text_type(thing) 3191 elif (isinstance(thing, dict) and 3192 _nest_lvl < get_option("display.pprint_nest_depth")): 3193 result = _pprint_dict(thing, _nest_lvl, quote_strings=True) 3194 elif is_sequence(thing) and _nest_lvl < \ 3195 get_option("display.pprint_nest_depth"): 3196 result = _pprint_seq(thing, _nest_lvl, escape_chars=escape_chars, 3197 quote_strings=quote_strings) 3198 elif isinstance(thing, compat.string_types) and quote_strings: 3199 if compat.PY3: 3200 fmt = "'%s'" 3201 else: 3202 fmt = "u'%s'" 3203 result = fmt % as_escaped_unicode(thing) 3204 else: 3205 result = as_escaped_unicode(thing) 3206 3207 return compat.text_type(result) # always unicode 3208 3209 3210 def pprint_thing_encoded(object, encoding='utf-8', errors='replace', **kwds): 3211 value = pprint_thing(object) # get unicode representation of object 3212 return value.encode(encoding, errors, **kwds) 3213 3214 3215 def console_encode(object, **kwds): 3216 """ 3217 this is the sanctioned way to prepare something for 3218 sending *to the console*, it delegates to pprint_thing() to get 3219 a unicode representation of the object relies on the global encoding 3220 set in display.encoding. Use this everywhere 3221 where you output to the console. 3222 """ 3223 return pprint_thing_encoded(object, 3224 get_option("display.encoding")) 3225 3226 3227 def load(path): # TODO remove in 0.13 3228 """ 3229 Load pickled pandas object (or any other pickled object) from the specified 3230 file path 3231 3232 Warning: Loading pickled data received from untrusted sources can be 3233 unsafe. See: http://docs.python.org/2.7/library/pickle.html 3234 3235 Parameters 3236 ---------- 3237 path : string 3238 File path 3239 3240 Returns 3241 ------- 3242 unpickled : type of object stored in file 3243 """ 3244 import warnings 3245 warnings.warn("load is deprecated, use read_pickle", FutureWarning) 3246 from pandas.io.pickle import read_pickle 3247 return read_pickle(path) 3248 3249 3250 def save(obj, path): # TODO remove in 0.13 3251 """ 3252 Pickle (serialize) object to input file path 3253 3254 Parameters 3255 ---------- 3256 obj : any object 3257 path : string 3258 File path 3259 """ 3260 import warnings 3261 warnings.warn("save is deprecated, use obj.to_pickle", FutureWarning) 3262 from pandas.io.pickle import to_pickle 3263 return to_pickle(obj, path) 3264 3265 3266 def _maybe_match_name(a, b): 3267 a_name = getattr(a, 'name', None) 3268 b_name = getattr(b, 'name', None) 3269 if a_name == b_name: 3270 return a_name 3271 return None 3272 [end of pandas/core/common.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
pandas-dev/pandas
8d2818e32d0bbb50e183ccb5724c391e4f604670
[] (__getitem__) boolean indexing assignment bug with nans See repro below: ``` python import pandas as pd import numpy as np temp = pd.Series(np.random.randn(10)) temp[3:6] = np.nan temp[8] = np.nan nan_index = np.isnan(temp) # this works temp1 = temp.copy() temp1[nan_index] = [99, 99, 99, 99] temp1[nan_index] 3 99 4 99 5 99 8 99 dtype: float64 # this doesn't - values look like they're being assigned in a different order? temp2 = temp.copy() temp2[nan_index] = [99, 99, 99, np.nan] 3 NaN 4 99 5 99 8 99 dtype: float64 # ... but it works properly when using .loc temp2 = temp.copy() temp2.loc[nan_index] = [99, 99, 99, np.nan] 3 99 4 99 5 99 8 NaN dtype: float64 ``` output of show_versions(): ``` INSTALLED VERSIONS ------------------ commit: None python: 2.7.9.final.0 python-bits: 64 OS: Windows OS-release: 7 machine: AMD64 processor: Intel64 Family 6 Model 60 Stepping 3, GenuineIntel byteorder: little LC_ALL: None LANG: None pandas: 0.16.0 nose: 1.3.4 Cython: 0.21.2 numpy: 1.9.2 scipy: 0.14.0 statsmodels: 0.5.0 IPython: 3.0.0 sphinx: 1.2.3 patsy: 0.2.1 dateutil: 2.4.1 pytz: 2015.2 bottleneck: 0.8.0 tables: 3.1.1 numexpr: 2.3.1 matplotlib: 1.4.0 openpyxl: 2.0.2 xlrd: 0.9.3 xlwt: 0.7.5 xlsxwriter: 0.6.6 lxml: 3.4.2 bs4: 4.3.2 html5lib: 0.999 httplib2: 0.8 apiclient: None sqlalchemy: 0.9.8 pymysql: None psycopg2: None ```
2015-03-28T14:08:51Z
<patch> diff --git a/doc/source/whatsnew/v0.16.1.txt b/doc/source/whatsnew/v0.16.1.txt --- a/doc/source/whatsnew/v0.16.1.txt +++ b/doc/source/whatsnew/v0.16.1.txt @@ -64,3 +64,4 @@ Bug Fixes - Bug in ``Series.quantile`` on empty Series of type ``Datetime`` or ``Timedelta`` (:issue:`9675`) +- Bug in ``where`` causing incorrect results when upcasting was required (:issue:`9731`) diff --git a/pandas/core/common.py b/pandas/core/common.py --- a/pandas/core/common.py +++ b/pandas/core/common.py @@ -1081,15 +1081,6 @@ def _infer_dtype_from_scalar(val): return dtype, val -def _maybe_cast_scalar(dtype, value): - """ if we a scalar value and are casting to a dtype that needs nan -> NaT - conversion - """ - if np.isscalar(value) and dtype in _DATELIKE_DTYPES and isnull(value): - return tslib.iNaT - return value - - def _maybe_promote(dtype, fill_value=np.nan): # if we passed an array here, determine the fill value by dtype @@ -1154,16 +1145,39 @@ def _maybe_promote(dtype, fill_value=np.nan): return dtype, fill_value -def _maybe_upcast_putmask(result, mask, other, dtype=None, change=None): - """ a safe version of put mask that (potentially upcasts the result - return the result - if change is not None, then MUTATE the change (and change the dtype) - return a changed flag +def _maybe_upcast_putmask(result, mask, other): """ + A safe version of putmask that potentially upcasts the result - if mask.any(): + Parameters + ---------- + result : ndarray + The destination array. This will be mutated in-place if no upcasting is + necessary. + mask : boolean ndarray + other : ndarray or scalar + The source array or value - other = _maybe_cast_scalar(result.dtype, other) + Returns + ------- + result : ndarray + changed : boolean + Set to true if the result array was upcasted + """ + + if mask.any(): + # Two conversions for date-like dtypes that can't be done automatically + # in np.place: + # NaN -> NaT + # integer or integer array -> date-like array + if result.dtype in _DATELIKE_DTYPES: + if lib.isscalar(other): + if isnull(other): + other = tslib.iNaT + elif is_integer(other): + other = np.array(other, dtype=result.dtype) + elif is_integer_dtype(other): + other = np.array(other, dtype=result.dtype) def changeit(): @@ -1173,39 +1187,26 @@ def changeit(): om = other[mask] om_at = om.astype(result.dtype) if (om == om_at).all(): - new_other = result.values.copy() - new_other[mask] = om_at - result[:] = new_other + new_result = result.values.copy() + new_result[mask] = om_at + result[:] = new_result return result, False except: pass # we are forced to change the dtype of the result as the input # isn't compatible - r, fill_value = _maybe_upcast( - result, fill_value=other, dtype=dtype, copy=True) - np.putmask(r, mask, other) - - # we need to actually change the dtype here - if change is not None: - - # if we are trying to do something unsafe - # like put a bigger dtype in a smaller one, use the smaller one - # pragma: no cover - if change.dtype.itemsize < r.dtype.itemsize: - raise AssertionError( - "cannot change dtype of input to smaller size") - change.dtype = r.dtype - change[:] = r + r, _ = _maybe_upcast(result, fill_value=other, copy=True) + np.place(r, mask, other) return r, True - # we want to decide whether putmask will work + # we want to decide whether place will work # if we have nans in the False portion of our mask then we need to - # upcast (possibily) otherwise we DON't want to upcast (e.g. if we are - # have values, say integers in the success portion then its ok to not + # upcast (possibly), otherwise we DON't want to upcast (e.g. if we + # have values, say integers, in the success portion then it's ok to not # upcast) - new_dtype, fill_value = _maybe_promote(result.dtype, other) + new_dtype, _ = _maybe_promote(result.dtype, other) if new_dtype != result.dtype: # we have a scalar or len 0 ndarray @@ -1222,7 +1223,7 @@ def changeit(): return changeit() try: - np.putmask(result, mask, other) + np.place(result, mask, other) except: return changeit() </patch>
[]
[]
conan-io__conan-5547
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> build_requirements is ignored I have A package, which build_requires B package. And C package requires A, build_requires B. When I execute "conan install" for C, conan will skip B. If I remove requires A, conan will not skip B. What I want is conan will install A and B. Any help you can provide would be great. Thanks To help us debug your issue please explain: To help us debug your issue please explain: - [x] I've read the [CONTRIBUTING guide](https://github.com/conan-io/conan/blob/develop/.github/CONTRIBUTING.md). - [x] I've specified the Conan version, operating system version and any tool that can be relevant. - [x] I've explained the steps to reproduce the error or the motivation/use case of the question/suggestion. </issue> <code> [start of README.rst] 1 |Logo| 2 3 Conan 4 ===== 5 6 Decentralized, open-source (MIT), C/C++ package manager. 7 8 - Homepage: https://conan.io/ 9 - Github: https://github.com/conan-io/conan 10 - Docs: https://docs.conan.io/en/latest/ 11 - Slack: https://cpplang.now.sh/ (#conan channel) 12 - Twitter: https://twitter.com/conan_io 13 14 15 Conan is a package manager for C and C++ developers: 16 17 - It is fully decentralized. Users can host their packages in their servers, privately. Integrates with Artifactory and Bintray. 18 - Portable. Works across all platforms, including Linux, OSX, Windows (with native and first class support, WSL, MinGW), 19 Solaris, FreeBSD, embedded and cross compiling, docker, WSL 20 - Manage binaries. It is able to create, upload and download binaries for any configuration and platform, 21 even cross-compiling, saving lots of time in development and continuous integration. The binary compatibility 22 can be configured and customized. Manage all your artifacts in exactly the same way in all platforms. 23 - Integrates with any build system, including any propietary and custom one. Provides tested support for major build systems 24 (CMake, MSBuild, Makefiles, Meson, etc). 25 - Extensible: Its python based recipes, together with extensions points allows for a great power and flexibility. 26 - Large and active community, specially in Github (https://github.com/conan-io/conan) and Slack (https://cpplang.now.sh/ #conan channel). 27 This community also create and maintains packages in Conan-center and Bincrafters repositories in Bintray. 28 - Stable. Used in production by many companies, since 1.0 there is a committment not to break package recipes and documented behavior. 29 30 31 32 +------------------------+-------------------------+-------------------------+-------------------------+ 33 | **master** | **develop** | **Coverage** | **Code Climate** | 34 +========================+=========================+=========================+=========================+ 35 | |Build Status Master| | |Build Status Develop| | |Develop coverage| | |Develop climate| | 36 +------------------------+-------------------------+-------------------------+-------------------------+ 37 38 39 Setup 40 ===== 41 42 Please read https://docs.conan.io/en/latest/installation.html 43 44 From binaries 45 ------------- 46 47 We have installers for `most platforms here <http://conan.io>`__ but you 48 can run **conan** from sources if you want. 49 50 From pip 51 -------- 52 53 Conan is compatible with Python 2 and Python 3. 54 55 - Install pip following `pip docs`_. 56 - Install conan: 57 58 .. code-block:: bash 59 60 $ pip install conan 61 62 You can also use `test.pypi.org <https://test.pypi.org/project/conan/#history>`_ repository to install development (non-stable) Conan versions: 63 64 65 .. code-block:: bash 66 67 $ pip install --index-url https://test.pypi.org/simple/ conan 68 69 70 From Homebrew (OSx) 71 ------------------- 72 73 - Install Homebrew following `brew homepage`_. 74 75 .. code-block:: bash 76 77 $ brew update 78 $ brew install conan 79 80 From source 81 ----------- 82 83 You can run **conan** client and server in Windows, MacOS, and Linux. 84 85 - **Install pip following** `pip docs`_. 86 87 - **Clone conan repository:** 88 89 .. code-block:: bash 90 91 $ git clone https://github.com/conan-io/conan.git 92 93 - **Install in editable mode** 94 95 .. code-block:: bash 96 97 $ cd conan && sudo pip install -e . 98 99 If you are in Windows, using ``sudo`` is not required. 100 101 - **You are ready, try to run conan:** 102 103 .. code-block:: 104 105 $ conan --help 106 107 Consumer commands 108 install Installs the requirements specified in a conanfile (.py or .txt). 109 config Manages configuration. Edits the conan.conf or installs config files. 110 get Gets a file or list a directory of a given reference or package. 111 info Gets information about the dependency graph of a recipe. 112 search Searches package recipes and binaries in the local cache or in a remote. 113 Creator commands 114 new Creates a new package recipe template with a 'conanfile.py'. 115 create Builds a binary package for recipe (conanfile.py) located in current dir. 116 upload Uploads a recipe and binary packages to a remote. 117 export Copies the recipe (conanfile.py & associated files) to your local cache. 118 export-pkg Exports a recipe & creates a package with given files calling 'package'. 119 test Test a package, consuming it with a conanfile recipe with a test() method. 120 Package development commands 121 source Calls your local conanfile.py 'source()' method. 122 build Calls your local conanfile.py 'build()' method. 123 package Calls your local conanfile.py 'package()' method. 124 Misc commands 125 profile Lists profiles in the '.conan/profiles' folder, or shows profile details. 126 remote Manages the remote list and the package recipes associated to a remote. 127 user Authenticates against a remote with user/pass, caching the auth token. 128 imports Calls your local conanfile.py or conanfile.txt 'imports' method. 129 copy Copies conan recipes and packages to another user/channel. 130 remove Removes packages or binaries matching pattern from local cache or remote. 131 alias Creates and exports an 'alias recipe'. 132 download Downloads recipe and binaries to the local cache, without using settings. 133 134 Conan commands. Type "conan <command> -h" for help 135 136 Contributing to the project 137 =========================== 138 139 Feedback and contribution is always welcome in this project. 140 Please read our `contributing guide <https://github.com/conan-io/conan/blob/develop/.github/CONTRIBUTING.md>`_. 141 142 Running the tests 143 ================= 144 145 Using tox 146 --------- 147 148 .. code-block:: bash 149 150 $ tox 151 152 It will install the needed requirements and launch `nose` skipping some heavy and slow test. 153 If you want to run the full test suite: 154 155 .. code-block:: bash 156 157 $ tox -e full 158 159 Without tox 160 ----------- 161 162 **Install python requirements** 163 164 .. code-block:: bash 165 166 $ pip install -r conans/requirements.txt 167 $ pip install -r conans/requirements_server.txt 168 $ pip install -r conans/requirements_dev.txt 169 170 171 Only in OSX: 172 173 .. code-block:: bash 174 175 $ pip install -r conans/requirements_osx.txt # You can omit this one if not running OSX 176 177 178 If you are not Windows and you are not using a python virtual environment, you will need to run these 179 commands using `sudo`. 180 181 Before you can run the tests, you need to set a few environment variables first. 182 183 .. code-block:: bash 184 185 $ export PYTHONPATH=$PYTHONPATH:$(pwd) 186 187 On Windows it would be (while being in the conan root directory): 188 189 .. code-block:: bash 190 191 $ set PYTHONPATH=. 192 193 Ensure that your ``cmake`` has version 2.8 or later. You can see the 194 version with the following command: 195 196 .. code-block:: bash 197 198 $ cmake --version 199 200 The appropriate values of ``CONAN_COMPILER`` and ``CONAN_COMPILER_VERSION`` depend on your 201 operating system and your requirements. 202 203 These should work for the GCC from ``build-essential`` on Ubuntu 14.04: 204 205 .. code-block:: bash 206 207 $ export CONAN_COMPILER=gcc 208 $ export CONAN_COMPILER_VERSION=4.8 209 210 These should work for OS X: 211 212 .. code-block:: bash 213 214 $ export CONAN_COMPILER=clang 215 $ export CONAN_COMPILER_VERSION=3.5 216 217 Finally, there are some tests that use conan to package Go-lang 218 libraries, so you might **need to install go-lang** in your computer and 219 add it to the path. 220 221 You can run the actual tests like this: 222 223 .. code-block:: bash 224 225 $ nosetests . 226 227 228 There are a couple of test attributes defined, as ``slow``, or ``golang`` that you can use 229 to filter the tests, and do not execute them: 230 231 .. code-block:: bash 232 233 $ nosetests . -a !golang 234 235 A few minutes later it should print ``OK``: 236 237 .. code-block:: bash 238 239 ............................................................................................ 240 ---------------------------------------------------------------------- 241 Ran 146 tests in 50.993s 242 243 OK 244 245 To run specific tests, you can specify the test name too, something like: 246 247 .. code-block:: bash 248 249 $ nosetests conans.test.command.config_install_test:ConfigInstallTest.install_file_test --nocapture 250 251 The ``--nocapture`` argument can be useful to see some output that otherwise is captured by nosetests. 252 253 License 254 ------- 255 256 `MIT LICENSE <./LICENSE.md>`__ 257 258 .. |Build Status Master| image:: https://conan-ci.jfrog.info/buildStatus/icon?job=ConanTestSuite/master 259 :target: https://conan-ci.jfrog.info/job/ConanTestSuite/job/master 260 261 .. |Build Status Develop| image:: https://conan-ci.jfrog.info/buildStatus/icon?job=ConanTestSuite/develop 262 :target: https://conan-ci.jfrog.info/job/ConanTestSuite/job/develop 263 264 .. |Master coverage| image:: https://codecov.io/gh/conan-io/conan/branch/master/graph/badge.svg 265 :target: https://codecov.io/gh/conan-io/conan/branch/master 266 267 .. |Develop coverage| image:: https://codecov.io/gh/conan-io/conan/branch/develop/graph/badge.svg 268 :target: https://codecov.io/gh/conan-io/conan/branch/develop 269 270 .. |Coverage graph| image:: https://codecov.io/gh/conan-io/conan/branch/develop/graphs/tree.svg 271 :height: 50px 272 :width: 50 px 273 :alt: Conan develop coverage 274 275 .. |Develop climate| image:: https://api.codeclimate.com/v1/badges/081b53e570d5220b34e4/maintainability.svg 276 :target: https://codeclimate.com/github/conan-io/conan/maintainability 277 278 .. |Logo| image:: https://conan.io/img/jfrog_conan_logo.png 279 280 281 .. _`pip docs`: https://pip.pypa.io/en/stable/installing/ 282 283 .. _`brew homepage`: http://brew.sh/ 284 [end of README.rst] [start of conans/client/graph/graph_binaries.py] 1 import os 2 3 from conans.client.graph.graph import (BINARY_BUILD, BINARY_CACHE, BINARY_DOWNLOAD, BINARY_MISSING, 4 BINARY_SKIP, BINARY_UPDATE, 5 RECIPE_EDITABLE, BINARY_EDITABLE, 6 RECIPE_CONSUMER, RECIPE_VIRTUAL) 7 from conans.errors import NoRemoteAvailable, NotFoundException, \ 8 conanfile_exception_formatter 9 from conans.model.info import ConanInfo, PACKAGE_ID_UNKNOWN 10 from conans.model.manifest import FileTreeManifest 11 from conans.model.ref import PackageReference 12 from conans.util.files import is_dirty, rmdir 13 14 15 class GraphBinariesAnalyzer(object): 16 17 def __init__(self, cache, output, remote_manager): 18 self._cache = cache 19 self._out = output 20 self._remote_manager = remote_manager 21 22 def _check_update(self, upstream_manifest, package_folder, output, node): 23 read_manifest = FileTreeManifest.load(package_folder) 24 if upstream_manifest != read_manifest: 25 if upstream_manifest.time > read_manifest.time: 26 output.warn("Current package is older than remote upstream one") 27 node.update_manifest = upstream_manifest 28 return True 29 else: 30 output.warn("Current package is newer than remote upstream one") 31 32 def _evaluate_node(self, node, build_mode, update, evaluated_nodes, remotes): 33 assert node.binary is None, "Node.binary should be None" 34 assert node.package_id is not None, "Node.package_id shouldn't be None" 35 assert node.prev is None, "Node.prev should be None" 36 37 if node.package_id == PACKAGE_ID_UNKNOWN: 38 node.binary = BINARY_MISSING 39 return 40 41 ref, conanfile = node.ref, node.conanfile 42 pref = node.pref 43 # If it has lock 44 locked = node.graph_lock_node 45 if locked and locked.pref.id == node.package_id: 46 pref = locked.pref # Keep the locked with PREV 47 else: 48 assert node.prev is None, "Non locked node shouldn't have PREV in evaluate_node" 49 pref = PackageReference(ref, node.package_id) 50 51 # Check that this same reference hasn't already been checked 52 previous_nodes = evaluated_nodes.get(pref) 53 if previous_nodes: 54 previous_nodes.append(node) 55 previous_node = previous_nodes[0] 56 node.binary = previous_node.binary 57 node.binary_remote = previous_node.binary_remote 58 node.prev = previous_node.prev 59 return 60 evaluated_nodes[pref] = [node] 61 62 output = conanfile.output 63 64 if node.recipe == RECIPE_EDITABLE: 65 node.binary = BINARY_EDITABLE 66 # TODO: PREV? 67 return 68 69 with_deps_to_build = False 70 # For cascade mode, we need to check also the "modified" status of the lockfile if exists 71 # modified nodes have already been built, so they shouldn't be built again 72 if build_mode.cascade and not (node.graph_lock_node and node.graph_lock_node.modified): 73 for dep in node.dependencies: 74 dep_node = dep.dst 75 if (dep_node.binary == BINARY_BUILD or 76 (dep_node.graph_lock_node and dep_node.graph_lock_node.modified)): 77 with_deps_to_build = True 78 break 79 if build_mode.forced(conanfile, ref, with_deps_to_build): 80 output.info('Forced build from source') 81 node.binary = BINARY_BUILD 82 node.prev = None 83 return 84 85 package_folder = self._cache.package_layout(pref.ref, 86 short_paths=conanfile.short_paths).package(pref) 87 88 # Check if dirty, to remove it 89 with self._cache.package_layout(pref.ref).package_lock(pref): 90 assert node.recipe != RECIPE_EDITABLE, "Editable package shouldn't reach this code" 91 if is_dirty(package_folder): 92 output.warn("Package is corrupted, removing folder: %s" % package_folder) 93 rmdir(package_folder) # Do not remove if it is EDITABLE 94 95 if self._cache.config.revisions_enabled: 96 metadata = self._cache.package_layout(pref.ref).load_metadata() 97 rec_rev = metadata.packages[pref.id].recipe_revision 98 if rec_rev and rec_rev != node.ref.revision: 99 output.warn("The package {} doesn't belong " 100 "to the installed recipe revision, removing folder".format(pref)) 101 rmdir(package_folder) 102 103 remote = remotes.selected 104 if not remote: 105 # If the remote_name is not given, follow the binary remote, or 106 # the recipe remote 107 # If it is defined it won't iterate (might change in conan2.0) 108 metadata = self._cache.package_layout(pref.ref).load_metadata() 109 remote_name = metadata.packages[pref.id].remote or metadata.recipe.remote 110 remote = remotes.get(remote_name) 111 112 if os.path.exists(package_folder): 113 if update: 114 if remote: 115 try: 116 tmp = self._remote_manager.get_package_manifest(pref, remote) 117 upstream_manifest, pref = tmp 118 except NotFoundException: 119 output.warn("Can't update, no package in remote") 120 except NoRemoteAvailable: 121 output.warn("Can't update, no remote defined") 122 else: 123 if self._check_update(upstream_manifest, package_folder, output, node): 124 node.binary = BINARY_UPDATE 125 node.prev = pref.revision # With revision 126 if build_mode.outdated: 127 info, pref = self._remote_manager.get_package_info(pref, remote) 128 package_hash = info.recipe_hash 129 elif remotes: 130 pass 131 else: 132 output.warn("Can't update, no remote defined") 133 if not node.binary: 134 node.binary = BINARY_CACHE 135 metadata = self._cache.package_layout(pref.ref).load_metadata() 136 node.prev = metadata.packages[pref.id].revision 137 assert node.prev, "PREV for %s is None: %s" % (str(pref), metadata.dumps()) 138 package_hash = ConanInfo.load_from_package(package_folder).recipe_hash 139 140 else: # Binary does NOT exist locally 141 remote_info = None 142 if remote: 143 try: 144 remote_info, pref = self._remote_manager.get_package_info(pref, remote) 145 except NotFoundException: 146 pass 147 except Exception: 148 conanfile.output.error("Error downloading binary package: '{}'".format(pref)) 149 raise 150 151 # If the "remote" came from the registry but the user didn't specified the -r, with 152 # revisions iterate all remotes 153 154 if not remote or (not remote_info and self._cache.config.revisions_enabled): 155 for r in remotes.values(): 156 try: 157 remote_info, pref = self._remote_manager.get_package_info(pref, r) 158 except NotFoundException: 159 pass 160 else: 161 if remote_info: 162 remote = r 163 break 164 165 if remote_info: 166 node.binary = BINARY_DOWNLOAD 167 node.prev = pref.revision 168 package_hash = remote_info.recipe_hash 169 else: 170 if build_mode.allowed(conanfile): 171 node.binary = BINARY_BUILD 172 else: 173 node.binary = BINARY_MISSING 174 node.prev = None 175 176 if build_mode.outdated: 177 if node.binary in (BINARY_CACHE, BINARY_DOWNLOAD, BINARY_UPDATE): 178 local_recipe_hash = self._cache.package_layout(ref).recipe_manifest().summary_hash 179 if local_recipe_hash != package_hash: 180 output.info("Outdated package!") 181 node.binary = BINARY_BUILD 182 node.prev = None 183 else: 184 output.info("Package is up to date") 185 186 node.binary_remote = remote 187 188 @staticmethod 189 def _compute_package_id(node, default_package_id_mode): 190 conanfile = node.conanfile 191 neighbors = node.neighbors() 192 direct_reqs = [] # of PackageReference 193 indirect_reqs = set() # of PackageReference, avoid duplicates 194 for neighbor in neighbors: 195 ref, nconan = neighbor.ref, neighbor.conanfile 196 direct_reqs.append(neighbor.pref) 197 indirect_reqs.update(nconan.info.requires.refs()) 198 conanfile.options.propagate_downstream(ref, nconan.info.full_options) 199 # Might be never used, but update original requirement, just in case 200 conanfile.requires[ref.name].ref = ref 201 202 # Make sure not duplicated 203 indirect_reqs.difference_update(direct_reqs) 204 # There might be options that are not upstream, backup them, might be 205 # for build-requires 206 conanfile.build_requires_options = conanfile.options.values 207 conanfile.options.clear_unused(indirect_reqs.union(direct_reqs)) 208 conanfile.options.freeze() 209 210 conanfile.info = ConanInfo.create(conanfile.settings.values, 211 conanfile.options.values, 212 direct_reqs, 213 indirect_reqs, 214 default_package_id_mode=default_package_id_mode) 215 216 # Once we are done, call package_id() to narrow and change possible values 217 with conanfile_exception_formatter(str(conanfile), "package_id"): 218 conanfile.package_id() 219 220 info = conanfile.info 221 node.package_id = info.package_id() 222 223 def _handle_private(self, node): 224 if node.binary in (BINARY_CACHE, BINARY_DOWNLOAD, BINARY_UPDATE, BINARY_SKIP): 225 private_neighbours = node.private_neighbors() 226 for neigh in private_neighbours: 227 if not neigh.private: 228 continue 229 # Current closure contains own node to be skipped 230 for n in neigh.public_closure.values(): 231 if n.private: 232 n.binary = BINARY_SKIP 233 self._handle_private(n) 234 235 def evaluate_graph(self, deps_graph, build_mode, update, remotes): 236 default_package_id_mode = self._cache.config.default_package_id_mode 237 evaluated = deps_graph.evaluated 238 for node in deps_graph.ordered_iterate(): 239 self._compute_package_id(node, default_package_id_mode) 240 if node.recipe in (RECIPE_CONSUMER, RECIPE_VIRTUAL): 241 continue 242 self._evaluate_node(node, build_mode, update, evaluated, remotes) 243 self._handle_private(node) 244 [end of conans/client/graph/graph_binaries.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
conan-io/conan
56a5b42691907598535ff9e61ac8eac0fb251305
build_requirements is ignored I have A package, which build_requires B package. And C package requires A, build_requires B. When I execute "conan install" for C, conan will skip B. If I remove requires A, conan will not skip B. What I want is conan will install A and B. Any help you can provide would be great. Thanks To help us debug your issue please explain: To help us debug your issue please explain: - [x] I've read the [CONTRIBUTING guide](https://github.com/conan-io/conan/blob/develop/.github/CONTRIBUTING.md). - [x] I've specified the Conan version, operating system version and any tool that can be relevant. - [x] I've explained the steps to reproduce the error or the motivation/use case of the question/suggestion.
Hi @xyz1001 I am trying to reproduce your case, but so far no success. Please check the following test, that is passing: ```python class BuildRequiresTest(unittest.TestCase): def test_consumer(self): # https://github.com/conan-io/conan/issues/5425 t = TestClient() t.save({"conanfile.py": str(TestConanFile("ToolB", "0.1"))}) t.run("create . ToolB/0.1@user/testing") t.save({"conanfile.py": str(TestConanFile("LibA", "0.1", build_requires=["ToolB/0.1@user/testing"]))}) t.run("create . LibA/0.1@user/testing") t.save({"conanfile.py": str(TestConanFile("LibC", "0.1", requires=["LibA/0.1@user/testing"], build_requires=["ToolB/0.1@user/testing"]))}) t.run("install .") self.assertIn("ToolB/0.1@user/testing from local cache", t.out) ``` As you can see, the build require to ToolB is not being skipped. Could you please double check it? Maybe a more complete and reproducible case would help. Thanks! I am sorry, LibA is private_requires ToolB. I modified the test case: ``` class BuildRequiresTest(unittest.TestCase): def test_consumer(self): # https://github.com/conan-io/conan/issues/5425 t = TestClient() t.save({"conanfile.py": str(TestConanFile("ToolB", "0.1"))}) t.run("create . ToolB/0.1@user/testing") t.save({"conanfile.py": str(TestConanFile("LibA", "0.1", private_requires=[("ToolB/0.1@user/testing")]))}) t.run("create . LibA/0.1@user/testing") t.save({"conanfile.py": str(TestConanFile("LibC", "0.1", requires=[ "LibA/0.1@user/testing"], build_requires=["ToolB/0.1@user/testing"]))}) t.run("install .") self.assertIn("ToolB/0.1@user/testing from local cache", t.out) ``` I try the test case and it is passed. However, In my project `XXX`, it did print `ToolB/0.1@user/testing from local cache`, but the conanbuildinfo.txt has not any info about the `ToolB`. Here is the `conan install` output: ``` conanfile.py (XXX/None@None/None): Installing package Requirements catch2/2.4.2@bincrafters/stable from 'conan-local' - Cache fmt/5.2.1@bincrafters/stable from 'conan-local' - Cache xxx_logger/1.2.13@screenshare/stable from 'conan-local' - Cache spdlog/1.2.1@bincrafters/stable from 'conan-local' - Cache Packages catch2/2.4.2@bincrafters/stable:5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9 - Skip fmt/5.2.1@bincrafters/stable:038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec - Cache xxx_logger/1.2.13@screenshare/stable:aa971e8736e335273eb99282f27319bdaa20df9d - Cache spdlog/1.2.1@bincrafters/stable:5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9 - Cache Build requirements catch2/2.4.2@bincrafters/stable from 'conan-local' - Cache Build requirements packages catch2/2.4.2@bincrafters/stable:5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9 - Skip fmt/5.2.1@bincrafters/stable: Already installed! spdlog/1.2.1@bincrafters/stable: Already installed! xxx_logger/1.2.13@screenshare/stable: Already installed! ``` catch2 -> ToolB xxx_logger -> LibA XXX -> LibC here is the conanbuildinfo.txt. ``` [includedirs] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d/include /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9/include /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec/include [libdirs] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d/lib /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9/lib /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec/lib [bindirs] [resdirs] [builddirs] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d/ /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9/ /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec/ [libs] xxx_logger pthread fmtd [defines] SPDLOG_FMT_EXTERNAL [cppflags] [cxxflags] [cflags] [sharedlinkflags] [exelinkflags] [sysroot] [includedirs_xxx_logger] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d/include [libdirs_xxx_logger] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d/lib [bindirs_xxx_logger] [resdirs_xxx_logger] [builddirs_xxx_logger] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d/ [libs_xxx_logger] xxx_logger pthread [defines_xxx_logger] [cppflags_xxx_logger] [cxxflags_xxx_logger] [cflags_xxx_logger] [sharedlinkflags_xxx_logger] [exelinkflags_xxx_logger] [sysroot_xxx_logger] [rootpath_xxx_logger] /home/xyz1001/.conan/data/xxx_logger/1.2.13/screenshare/stable/package/aa971e8736e335273eb99282f27319bdaa20df9d [includedirs_spdlog] /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9/include [libdirs_spdlog] /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9/lib [bindirs_spdlog] [resdirs_spdlog] [builddirs_spdlog] /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9/ [libs_spdlog] pthread [defines_spdlog] SPDLOG_FMT_EXTERNAL [cppflags_spdlog] [cxxflags_spdlog] [cflags_spdlog] [sharedlinkflags_spdlog] [exelinkflags_spdlog] [sysroot_spdlog] [rootpath_spdlog] /home/xyz1001/.conan/data/spdlog/1.2.1/bincrafters/stable/package/5ab84d6acfe1f23c4fae0ab88f26e3a396351ac9 [includedirs_fmt] /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec/include [libdirs_fmt] /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec/lib [bindirs_fmt] [resdirs_fmt] [builddirs_fmt] /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec/ [libs_fmt] fmtd [defines_fmt] [cppflags_fmt] [cxxflags_fmt] [cflags_fmt] [sharedlinkflags_fmt] [exelinkflags_fmt] [sysroot_fmt] [rootpath_fmt] /home/xyz1001/.conan/data/fmt/5.2.1/bincrafters/stable/package/038f8796e196b3dba76fcc5fd4ef5d3d9c6866ec [USER_xxx_logger] [USER_spdlog] [USER_fmt] [ENV_xxx_logger] [ENV_spdlog] [ENV_fmt] ``` Confirmed this is an unfortunate bug, coming from a mixture of build-requirements and private requirements. It seems not trivial, it would take some time to fix. In the meanwhile, I would strongly suggest to reconsider the usage of ``private`` requirements. We are discouraging its use (as you can see they are barely documented), should be only for some extreme cases, like needing to wrap 2 different versions of the same library. What would be the case of ``private`` requirement of ``catch`` library?
2019-07-29T07:06:58Z
<patch> diff --git a/conans/client/graph/graph_binaries.py b/conans/client/graph/graph_binaries.py --- a/conans/client/graph/graph_binaries.py +++ b/conans/client/graph/graph_binaries.py @@ -39,7 +39,6 @@ def _evaluate_node(self, node, build_mode, update, evaluated_nodes, remotes): return ref, conanfile = node.ref, node.conanfile - pref = node.pref # If it has lock locked = node.graph_lock_node if locked and locked.pref.id == node.package_id: @@ -53,7 +52,13 @@ def _evaluate_node(self, node, build_mode, update, evaluated_nodes, remotes): if previous_nodes: previous_nodes.append(node) previous_node = previous_nodes[0] - node.binary = previous_node.binary + # The previous node might have been skipped, but current one not necessarily + # keep the original node.binary value (before being skipped), and if it will be + # defined as SKIP again by self._handle_private(node) if it is really private + if previous_node.binary == BINARY_SKIP: + node.binary = previous_node.binary_non_skip + else: + node.binary = previous_node.binary node.binary_remote = previous_node.binary_remote node.prev = previous_node.prev return @@ -229,6 +234,8 @@ def _handle_private(self, node): # Current closure contains own node to be skipped for n in neigh.public_closure.values(): if n.private: + # store the binary origin before being overwritten by SKIP + n.binary_non_skip = n.binary n.binary = BINARY_SKIP self._handle_private(n) </patch>
[]
[]
PrefectHQ__prefect-2646
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Implement Depth-First Execution with Mapping Currently each "level" of a mapped pipeline is executed before proceeding to the next level. This is undesirable especially for pipelines where it's important that each "branch" of the pipeline finish as quickly as possible. To implement DFE, we'll need to rearrange two things: - how mapped work gets submitted (it should start being submitted from the Flow Runner not the Task Runner) - in order to submit work to Dask and let Dask handle the DFE scheduling, we'll want to refactor how we walk the DAG and wait to determine the width of a pipeline before we submit it (because mapping is fully dynamic we can only ascertain this width at runtime) We'll need to be vigilant about: - performance - retries - result handling </issue> <code> [start of README.md] 1 <p align="center" style="margin-bottom:40px;"> 2 <img src="https://uploads-ssl.webflow.com/5ba446b0e783e26d5a2f2382/5c942c9ca934ec5c88588297_primary-color-vertical.svg" height=350 style="max-height: 350px;"> 3 </p> 4 5 <p align="center"> 6 <a href=https://circleci.com/gh/PrefectHQ/prefect/tree/master> 7 <img src="https://circleci.com/gh/PrefectHQ/prefect/tree/master.svg?style=shield&circle-token=28689a55edc3c373486aaa5f11a1af3e5fc53344"> 8 </a> 9 10 <a href="https://codecov.io/gh/PrefectHQ/prefect"> 11 <img src="https://codecov.io/gh/PrefectHQ/prefect/branch/master/graph/badge.svg" /> 12 </a> 13 14 <a href=https://github.com/ambv/black> 15 <img src="https://img.shields.io/badge/code%20style-black-000000.svg"> 16 </a> 17 18 <a href="https://pypi.org/project/prefect/"> 19 <img src="https://img.shields.io/pypi/dm/prefect.svg?color=%2327B1FF&label=installs&logoColor=%234D606E"> 20 </a> 21 22 <a href="https://hub.docker.com/r/prefecthq/prefect"> 23 <img src="https://img.shields.io/docker/pulls/prefecthq/prefect.svg?color=%2327B1FF&logoColor=%234D606E"> 24 </a> 25 26 <a href="https://join.slack.com/t/prefect-community/shared_invite/enQtODQ3MTA2MjI4OTgyLTliYjEyYzljNTc2OThlMDE4YmViYzk3NDU4Y2EzMWZiODM0NmU3NjM0NjIyNWY0MGIxOGQzODMxNDMxYWYyOTE"> 27 <img src="https://prefect-slackin.herokuapp.com/badge.svg"> 28 </a> 29 30 </p> 31 32 ## Hello, world! 👋 33 34 We've rebuilt data engineering for the data science era. 35 36 Prefect is a new workflow management system, designed for modern infrastructure and powered by the open-source Prefect Core workflow engine. Users organize `Tasks` into `Flows`, and Prefect takes care of the rest. 37 38 Read the [docs](https://docs.prefect.io); get the [code](#installation); ask us [anything](https://join.slack.com/t/prefect-community/shared_invite/enQtODQ3MTA2MjI4OTgyLTliYjEyYzljNTc2OThlMDE4YmViYzk3NDU4Y2EzMWZiODM0NmU3NjM0NjIyNWY0MGIxOGQzODMxNDMxYWYyOTE)! 39 40 ### Welcome to Workflows 41 42 Prefect's Pythonic API should feel familiar for newcomers. Mark functions as tasks and call them on each other to build up a flow. 43 44 ```python 45 from prefect import task, Flow, Parameter 46 47 48 @task(log_stdout=True) 49 def say_hello(name): 50 print("Hello, {}!".format(name)) 51 52 53 with Flow("My First Flow") as flow: 54 name = Parameter('name') 55 say_hello(name) 56 57 58 flow.run(name='world') # "Hello, world!" 59 flow.run(name='Marvin') # "Hello, Marvin!" 60 ``` 61 62 For more detail, please see the [Core docs](https://docs.prefect.io/core/) 63 64 ### UI and Server 65 66 <p align="center" style="margin-bottom:40px;"> 67 <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/orchestration/ui/dashboard-overview.png" height=440 style="max-height: 440px;"> 68 </p> 69 70 In addition to the [Prefect Cloud](https://www.prefect.io/cloud) platform, Prefect includes an open-source server and UI for orchestrating and managing flows. The local server stores flow metadata in a Postgres database and exposes a GraphQL API. 71 72 Before running the server for the first time, run `prefect backend server` to configure Prefect for local orchestration. Please note the server requires [Docker](https://www.docker.com/) and [Docker Compose](https://docs.docker.com/compose/install/) to be running. 73 74 To start the server, UI, and all required infrastructure, run: 75 76 ``` 77 prefect server start 78 ``` 79 80 Once all components are running, you can view the UI by visiting [http://localhost:8080](http://localhost:8080). 81 82 Please note that executing flows from the server requires at least one Prefect Agent to be running: `prefect agent start`. 83 84 Finally, to register any flow with the server, call `flow.register()`. For more detail, please see the [orchestration docs](https://docs.prefect.io/orchestration/). 85 86 ## "...Prefect?" 87 88 From the Latin _praefectus_, meaning "one who is in charge", a prefect is an official who oversees a domain and makes sure that the rules are followed. Similarly, Prefect is responsible for making sure that workflows execute properly. 89 90 It also happens to be the name of a roving researcher for that wholly remarkable book, _The Hitchhiker's Guide to the Galaxy_. 91 92 ## Integrations 93 94 Thanks to Prefect's growing task library and deep ecosystem integrations, building data applications is easier than ever. 95 96 Something missing? Open a [feature request](https://github.com/PrefectHQ/prefect/issues/new/choose) or [contribute a PR](https://docs.prefect.io/core/development/overview.html)! Prefect was designed to make adding new functionality extremely easy, whether you build on top of the open-source package or maintain an internal task library for your team. 97 98 ### Task Library 99 100 | | | | | | 101 | :---: | :---: | :---: | :---: | :---: | 102 | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/airtable.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Airtable</p>](https://docs.prefect.io/core/task_library/airtable.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/aws.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>AWS</p>](https://docs.prefect.io/core/task_library/aws.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/azure.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Azure</p>](https://docs.prefect.io/core/task_library/azure.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/azure_ml.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Azure ML</p>](https://docs.prefect.io/core/task_library/azureml.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/dbt.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>DBT</p>](https://docs.prefect.io/core/task_library/dbt.html) | 103 | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/docker.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Docker</p>](https://docs.prefect.io/core/task_library/docker.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/dropbox.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Dropbox</p>](https://docs.prefect.io/core/task_library/dropbox.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/email.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Email</p>](https://docs.prefect.io/core/task_library/email.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/google_cloud.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Google Cloud</p>](https://docs.prefect.io/core/task_library/gcp.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/github.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>GitHub</p>](https://docs.prefect.io/core/task_library/github.html) | 104 | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/jira.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Jira</p>](https://docs.prefect.io/core/task_library/jira.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/kubernetes.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Kubernetes</p>](https://docs.prefect.io/core/task_library/kubernetes.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/postgres.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>PostgreSQL</p>](https://docs.prefect.io/core/task_library/postgres.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/python.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Python</p>](https://docs.prefect.io/core/task_library/function.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/pushbullet.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Pushbullet</p>](https://docs.prefect.io/core/task_library/pushbullet.html) | 105 | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/redis.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Redis</p>](https://docs.prefect.io/core/task_library/redis.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/rss.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>RSS</p>](https://docs.prefect.io/core/task_library/rss.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/shell.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Shell</p>](https://docs.prefect.io/core/task_library/shell.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/slack.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Slack</p>](https://docs.prefect.io/core/task_library/slack.html)| <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/snowflake.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Snowflake</p>](https://docs.prefect.io/core/task_library/snowflake.html) | 106 | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/spacy.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>SpaCy</p>](https://docs.prefect.io/core/task_library/spacy.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/sqlite.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>SQLite</p>](https://docs.prefect.io/core/task_library/sqlite.html) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/twitter.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Twitter</p>](https://docs.prefect.io/core/task_library/twitter.html) | 107 108 ### Deployment & Execution 109 110 | | | | | | 111 | :---: | :---: | :---: | :---: | :---: | 112 | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/azure.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Azure</p>](https://azure.microsoft.com/en-us/) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/aws.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>AWS</p>](https://aws.amazon.com/) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/dask.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Dask</p>](https://dask.org/) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/docker.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Docker</p>](https://www.docker.com/) | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/google_cloud.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Google Cloud</p>](https://cloud.google.com/) 113 <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/kubernetes.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Kubernetes</p>](https://kubernetes.io/) | | | | <img src="https://raw.githubusercontent.com/PrefectHQ/prefect/master/docs/.vuepress/public/logos/shell.png" height=128 width=128 style="max-height: 128px; max-width: 128px;"> [<p>Universal Deploy</p>](https://medium.com/the-prefect-blog/introducing-prefect-universal-deploy-7992283e5911) 114 115 ## Resources 116 117 Prefect provides a variety of resources to help guide you to a successful outcome. 118 119 We are committed to ensuring a positive environment, and all interactions are governed by our [Code of Conduct](https://docs.prefect.io/core/code_of_conduct.html). 120 121 ### Documentation 122 123 Prefect's documentation -- including concepts, tutorials, and a full API reference -- is always available at [docs.prefect.io](https://docs.prefect.io). 124 125 Instructions for contributing to documentation can be found in the [development guide](https://docs.prefect.io/core/development/documentation.html). 126 127 ### Slack Community 128 129 Join our [Slack](https://join.slack.com/t/prefect-community/shared_invite/enQtODQ3MTA2MjI4OTgyLTliYjEyYzljNTc2OThlMDE4YmViYzk3NDU4Y2EzMWZiODM0NmU3NjM0NjIyNWY0MGIxOGQzODMxNDMxYWYyOTE) to chat about Prefect, ask questions, and share tips. 130 131 ### Blog 132 133 Visit the [Prefect Blog](https://medium.com/the-prefect-blog) for updates and insights from the Prefect team. 134 135 ### Support 136 137 Prefect offers a variety of community and premium [support options](https://www.prefect.io/support) for users of both Prefect Core and Prefect Cloud. 138 139 ### Contributing 140 141 Read about Prefect's [community](https://docs.prefect.io/core/community.html) or dive in to the [development guides](https://docs.prefect.io/core/development/overview.html) for information about contributions, documentation, code style, and testing. 142 143 ## Installation 144 145 ### Requirements 146 147 Prefect requires Python 3.6+. If you're new to Python, we recommend installing the [Anaconda distribution](https://www.anaconda.com/distribution/). 148 149 ### Latest Release 150 151 To install Prefect, run: 152 153 ```bash 154 pip install prefect 155 ``` 156 157 or, if you prefer to use `conda`: 158 159 ```bash 160 conda install -c conda-forge prefect 161 ``` 162 163 or `pipenv`: 164 165 ```bash 166 pipenv install --pre prefect 167 ``` 168 169 ### Bleeding Edge 170 171 For development or just to try out the latest features, you may want to install Prefect directly from source. 172 173 Please note that the master branch of Prefect is not guaranteed to be compatible with Prefect Cloud or the local server. 174 175 ```bash 176 git clone https://github.com/PrefectHQ/prefect.git 177 pip install ./prefect 178 ``` 179 180 ## License 181 182 Prefect is variously licensed under the [Apache Software License Version 2.0](https://www.apache.org/licenses/LICENSE-2.0) or the [Prefect Community License](https://www.prefect.io/legal/prefect-community-license). 183 184 All code except the `/server` directory is Apache 2.0-licensed unless otherwise noted. The `/server` directory is licensed under the Prefect Community License. 185 [end of README.md] [start of src/prefect/engine/cloud/task_runner.py] 1 import datetime 2 import time 3 from typing import Any, Callable, Dict, Iterable, Optional, Tuple 4 5 import pendulum 6 7 import prefect 8 from prefect.client import Client 9 from prefect.core import Edge, Task 10 from prefect.engine.result import Result 11 from prefect.engine.runner import ENDRUN, call_state_handlers 12 from prefect.engine.state import ( 13 Cached, 14 ClientFailed, 15 Failed, 16 Mapped, 17 Queued, 18 Retrying, 19 State, 20 ) 21 from prefect.engine.task_runner import TaskRunner, TaskRunnerInitializeResult 22 from prefect.utilities.executors import tail_recursive 23 from prefect.utilities.graphql import with_args 24 25 26 class CloudTaskRunner(TaskRunner): 27 """ 28 TaskRunners handle the execution of Tasks and determine the State of a Task 29 before, during and after the Task is run. 30 31 In particular, through the TaskRunner you can specify the states of any upstream dependencies, 32 and what state the Task should be initialized with. 33 34 Args: 35 - task (Task): the Task to be run / executed 36 - state_handlers (Iterable[Callable], optional): A list of state change handlers 37 that will be called whenever the task changes state, providing an 38 opportunity to inspect or modify the new state. The handler 39 will be passed the task runner instance, the old (prior) state, and the new 40 (current) state, with the following signature: `state_handler(TaskRunner, old_state, new_state) -> State`; 41 If multiple functions are passed, then the `new_state` argument will be the 42 result of the previous handler. 43 - result (Result, optional): the result instance used to retrieve and store task results during execution; 44 if not provided, will default to the one on the provided Task 45 - default_result (Result, optional): the fallback result type to use for retrieving and storing state results 46 during execution (to be used on upstream inputs if they don't provide their own results) 47 """ 48 49 def __init__( 50 self, 51 task: Task, 52 state_handlers: Iterable[Callable] = None, 53 result: Result = None, 54 default_result: Result = None, 55 ) -> None: 56 self.client = Client() 57 super().__init__( 58 task=task, 59 state_handlers=state_handlers, 60 result=result, 61 default_result=default_result, 62 ) 63 64 def _heartbeat(self) -> bool: 65 try: 66 task_run_id = self.task_run_id # type: str 67 self.heartbeat_cmd = ["prefect", "heartbeat", "task-run", "-i", task_run_id] 68 self.client.update_task_run_heartbeat(task_run_id) 69 70 # use empty string for testing purposes 71 flow_run_id = prefect.context.get("flow_run_id", "") # type: str 72 query = { 73 "query": { 74 with_args("flow_run_by_pk", {"id": flow_run_id}): { 75 "flow": {"settings": True}, 76 } 77 } 78 } 79 flow_run = self.client.graphql(query).data.flow_run_by_pk 80 if not flow_run.flow.settings.get("heartbeat_enabled", True): 81 return False 82 return True 83 except Exception as exc: 84 self.logger.exception( 85 "Heartbeat failed for Task '{}'".format(self.task.name) 86 ) 87 return False 88 89 def call_runner_target_handlers(self, old_state: State, new_state: State) -> State: 90 """ 91 A special state handler that the TaskRunner uses to call its task's state handlers. 92 This method is called as part of the base Runner's `handle_state_change()` method. 93 94 Args: 95 - old_state (State): the old (previous) state 96 - new_state (State): the new (current) state 97 98 Returns: 99 - State: the new state 100 """ 101 raise_on_exception = prefect.context.get("raise_on_exception", False) 102 103 try: 104 new_state = super().call_runner_target_handlers( 105 old_state=old_state, new_state=new_state 106 ) 107 except Exception as exc: 108 msg = "Exception raised while calling state handlers: {}".format(repr(exc)) 109 self.logger.exception(msg) 110 if raise_on_exception: 111 raise exc 112 new_state = Failed(msg, result=exc) 113 114 task_run_id = prefect.context.get("task_run_id") 115 version = prefect.context.get("task_run_version") 116 117 try: 118 cloud_state = new_state 119 state = self.client.set_task_run_state( 120 task_run_id=task_run_id, 121 version=version, 122 state=cloud_state, 123 cache_for=self.task.cache_for, 124 ) 125 except Exception as exc: 126 self.logger.exception( 127 "Failed to set task state with error: {}".format(repr(exc)) 128 ) 129 raise ENDRUN(state=ClientFailed(state=new_state)) 130 131 if state.is_queued(): 132 state.state = old_state # type: ignore 133 raise ENDRUN(state=state) 134 135 if version is not None: 136 prefect.context.update(task_run_version=version + 1) # type: ignore 137 138 return new_state 139 140 def initialize_run( # type: ignore 141 self, state: Optional[State], context: Dict[str, Any] 142 ) -> TaskRunnerInitializeResult: 143 """ 144 Initializes the Task run by initializing state and context appropriately. 145 146 Args: 147 - state (Optional[State]): the initial state of the run 148 - context (Dict[str, Any]): the context to be updated with relevant information 149 150 Returns: 151 - tuple: a tuple of the updated state, context, and upstream_states objects 152 """ 153 154 # if the map_index is not None, this is a dynamic task and we need to load 155 # task run info for it 156 map_index = context.get("map_index") 157 if map_index not in [-1, None]: 158 try: 159 task_run_info = self.client.get_task_run_info( 160 flow_run_id=context.get("flow_run_id", ""), 161 task_id=context.get("task_id", ""), 162 map_index=map_index, 163 ) 164 165 # if state was provided, keep it; otherwise use the one from db 166 state = state or task_run_info.state # type: ignore 167 context.update( 168 task_run_id=task_run_info.id, # type: ignore 169 task_run_version=task_run_info.version, # type: ignore 170 ) 171 except Exception as exc: 172 self.logger.exception( 173 "Failed to retrieve task state with error: {}".format(repr(exc)) 174 ) 175 if state is None: 176 state = Failed( 177 message="Could not retrieve state from Prefect Cloud", 178 result=exc, 179 ) 180 raise ENDRUN(state=state) 181 182 # we assign this so it can be shared with heartbeat thread 183 self.task_run_id = context.get("task_run_id", "") # type: str 184 context.update(checkpointing=True) 185 186 return super().initialize_run(state=state, context=context) 187 188 @call_state_handlers 189 def check_task_is_cached(self, state: State, inputs: Dict[str, Result]) -> State: 190 """ 191 Checks if task is cached in the DB and whether any of the caches are still valid. 192 193 Args: 194 - state (State): the current state of this task 195 - inputs (Dict[str, Result]): a dictionary of inputs whose keys correspond 196 to the task's `run()` arguments. 197 198 Returns: 199 - State: the state of the task after running the check 200 201 Raises: 202 - ENDRUN: if the task is not ready to run 203 """ 204 if state.is_cached() is True: 205 assert isinstance(state, Cached) # mypy assert 206 sanitized_inputs = {key: res.value for key, res in inputs.items()} 207 if self.task.cache_validator( 208 state, sanitized_inputs, prefect.context.get("parameters") 209 ): 210 state = state.load_result(self.result) 211 return state 212 213 if self.task.cache_for is not None: 214 oldest_valid_cache = datetime.datetime.utcnow() - self.task.cache_for 215 cached_states = self.client.get_latest_cached_states( 216 task_id=prefect.context.get("task_id", ""), 217 cache_key=self.task.cache_key, 218 created_after=oldest_valid_cache, 219 ) 220 221 if not cached_states: 222 self.logger.debug( 223 "Task '{name}': can't use cache because no Cached states were found".format( 224 name=prefect.context.get("task_full_name", self.task.name) 225 ) 226 ) 227 else: 228 self.logger.debug( 229 "Task '{name}': {num} candidate cached states were found".format( 230 name=prefect.context.get("task_full_name", self.task.name), 231 num=len(cached_states), 232 ) 233 ) 234 235 for candidate_state in cached_states: 236 assert isinstance(candidate_state, Cached) # mypy assert 237 candidate_state.load_cached_results(inputs) 238 sanitized_inputs = {key: res.value for key, res in inputs.items()} 239 if self.task.cache_validator( 240 candidate_state, sanitized_inputs, prefect.context.get("parameters") 241 ): 242 return candidate_state.load_result(self.result) 243 244 self.logger.debug( 245 "Task '{name}': can't use cache because no candidate Cached states " 246 "were valid".format( 247 name=prefect.context.get("task_full_name", self.task.name) 248 ) 249 ) 250 251 return state 252 253 def load_results( 254 self, state: State, upstream_states: Dict[Edge, State] 255 ) -> Tuple[State, Dict[Edge, State]]: 256 """ 257 Given the task's current state and upstream states, populates all relevant result objects for this task run. 258 259 Args: 260 - state (State): the task's current state. 261 - upstream_states (Dict[Edge, State]): the upstream state_handlers 262 263 Returns: 264 - Tuple[State, dict]: a tuple of (state, upstream_states) 265 266 """ 267 upstream_results = {} 268 269 try: 270 for edge, upstream_state in upstream_states.items(): 271 upstream_states[edge] = upstream_state.load_result( 272 edge.upstream_task.result or self.default_result 273 ) 274 if edge.key is not None: 275 upstream_results[edge.key] = ( 276 edge.upstream_task.result or self.default_result 277 ) 278 279 state.load_cached_results(upstream_results) 280 return state, upstream_states 281 except Exception as exc: 282 new_state = Failed( 283 message=f"Failed to retrieve task results: {exc}", result=exc 284 ) 285 final_state = self.handle_state_change(old_state=state, new_state=new_state) 286 raise ENDRUN(final_state) 287 288 def get_task_inputs( 289 self, state: State, upstream_states: Dict[Edge, State] 290 ) -> Dict[str, Result]: 291 """ 292 Given the task's current state and upstream states, generates the inputs for this task. 293 Upstream state result values are used. If the current state has `cached_inputs`, they 294 will override any upstream values. 295 296 Args: 297 - state (State): the task's current state. 298 - upstream_states (Dict[Edge, State]): the upstream state_handlers 299 300 Returns: 301 - Dict[str, Result]: the task inputs 302 303 """ 304 task_inputs = super().get_task_inputs(state, upstream_states) 305 306 try: 307 ## for mapped tasks, we need to take extra steps to store the cached_inputs; 308 ## this is because in the event of a retry we don't want to have to load the 309 ## entire upstream array that is being mapped over, instead we need store the 310 ## individual pieces of data separately for more efficient retries 311 map_index = prefect.context.get("map_index") 312 if map_index not in [-1, None]: 313 for edge, upstream_state in upstream_states.items(): 314 if ( 315 edge.key 316 and edge.mapped 317 and edge.upstream_task.checkpoint is not False 318 ): 319 try: 320 task_inputs[edge.key] = task_inputs[edge.key].write( # type: ignore 321 task_inputs[edge.key].value, 322 filename=f"{edge.key}-{map_index}", 323 **prefect.context, 324 ) 325 except NotImplementedError: 326 pass 327 except Exception as exc: 328 new_state = Failed( 329 message=f"Failed to save inputs for mapped task: {exc}", result=exc 330 ) 331 final_state = self.handle_state_change(old_state=state, new_state=new_state) 332 raise ENDRUN(final_state) 333 334 return task_inputs 335 336 @tail_recursive 337 def run( 338 self, 339 state: State = None, 340 upstream_states: Dict[Edge, State] = None, 341 context: Dict[str, Any] = None, 342 executor: "prefect.engine.executors.Executor" = None, 343 ) -> State: 344 """ 345 The main endpoint for TaskRunners. Calling this method will conditionally execute 346 `self.task.run` with any provided inputs, assuming the upstream dependencies are in a 347 state which allow this Task to run. Additionally, this method will wait and perform Task retries 348 which are scheduled for <= 1 minute in the future. 349 350 Args: 351 - state (State, optional): initial `State` to begin task run from; 352 defaults to `Pending()` 353 - upstream_states (Dict[Edge, State]): a dictionary 354 representing the states of any tasks upstream of this one. The keys of the 355 dictionary should correspond to the edges leading to the task. 356 - context (dict, optional): prefect Context to use for execution 357 - executor (Executor, optional): executor to use when performing 358 computation; defaults to the executor specified in your prefect configuration 359 360 Returns: 361 - `State` object representing the final post-run state of the Task 362 """ 363 context = context or {} 364 end_state = super().run( 365 state=state, 366 upstream_states=upstream_states, 367 context=context, 368 executor=executor, 369 ) 370 while (end_state.is_retrying() or end_state.is_queued()) and ( 371 end_state.start_time <= pendulum.now("utc").add(minutes=10) # type: ignore 372 ): 373 assert isinstance(end_state, (Retrying, Queued)) 374 naptime = max( 375 (end_state.start_time - pendulum.now("utc")).total_seconds(), 0 376 ) 377 time.sleep(naptime) 378 379 # currently required as context has reset to its original state 380 task_run_info = self.client.get_task_run_info( 381 flow_run_id=context.get("flow_run_id", ""), 382 task_id=context.get("task_id", ""), 383 map_index=context.get("map_index"), 384 ) 385 context.update(task_run_version=task_run_info.version) # type: ignore 386 387 end_state = super().run( 388 state=end_state, 389 upstream_states=upstream_states, 390 context=context, 391 executor=executor, 392 ) 393 return end_state 394 [end of src/prefect/engine/cloud/task_runner.py] [start of src/prefect/engine/executors/__init__.py] 1 """ 2 Prefect Executors implement the logic for how Tasks are run. The standard interface 3 for an Executor consists of the following methods: 4 5 - `submit(fn, *args, **kwargs)`: submit `fn(*args, **kwargs)` for execution; 6 note that this function is (in general) non-blocking, meaning that `executor.submit(...)` 7 will _immediately_ return a future-like object regardless of whether `fn(*args, **kwargs)` 8 has completed running 9 - `wait(object)`: resolves any objects returned by `executor.submit` to 10 their values; this function _will_ block until execution of `object` is complete 11 - `map(fn, *args, upstream_states, **kwargs)`: submit function to be mapped 12 over based on the edge information contained in `upstream_states`. Any "mapped" Edge 13 will be converted into multiple function submissions, one for each value of the upstream mapped tasks. 14 15 Currently, the available executor options are: 16 17 - `LocalExecutor`: the no frills, straightforward executor - great for debugging; 18 tasks are executed immediately upon being called by `executor.submit()`.Note 19 that the `LocalExecutor` is not capable of parallelism. Currently the default executor. 20 - `LocalDaskExecutor`: an executor that runs on `dask` primitives with a 21 configurable dask scheduler. 22 - `DaskExecutor`: the most feature-rich of the executors, this executor runs 23 on `dask.distributed` and has support for multiprocessing, multithreading, and distributed execution. 24 25 Which executor you choose depends on whether you intend to use things like parallelism 26 of task execution. 27 28 The key difference between the `LocalDaskExecutor` and the `DaskExecutor` is the choice 29 of scheduler. The `LocalDaskExecutor` is configurable to use 30 [any number of schedulers](https://docs.dask.org/en/latest/scheduler-overview.html) while the 31 `DaskExecutor` uses the [distributed scheduler](https://docs.dask.org/en/latest/scheduling.html). 32 This means that the `LocalDaskExecutor` can help achieve some multithreading / multiprocessing 33 however it does not provide as many distributed features as the `DaskExecutor`. 34 35 """ 36 import prefect 37 from prefect.engine.executors.base import Executor 38 from prefect.engine.executors.dask import DaskExecutor, LocalDaskExecutor 39 from prefect.engine.executors.local import LocalExecutor 40 from prefect.engine.executors.sync import SynchronousExecutor 41 [end of src/prefect/engine/executors/__init__.py] [start of src/prefect/engine/executors/base.py] 1 import uuid 2 from contextlib import contextmanager 3 from typing import Any, Callable, Iterator, List 4 5 from prefect.utilities.executors import timeout_handler 6 7 8 class Executor: 9 """ 10 Base Executor class that all other executors inherit from. 11 """ 12 13 timeout_handler = staticmethod(timeout_handler) 14 15 def __init__(self) -> None: 16 self.executor_id = type(self).__name__ + ": " + str(uuid.uuid4()) 17 18 def __repr__(self) -> str: 19 return "<Executor: {}>".format(type(self).__name__) 20 21 @contextmanager 22 def start(self) -> Iterator[None]: 23 """ 24 Context manager for initializing execution. 25 26 Any initialization this executor needs to perform should be done in this 27 context manager, and torn down after yielding. 28 """ 29 yield 30 31 def map(self, fn: Callable, *args: Any) -> List[Any]: 32 """ 33 Submit a function to be mapped over its iterable arguments. 34 35 Args: 36 - fn (Callable): function that is being submitted for execution 37 - *args (Any): arguments that the function will be mapped over 38 39 Returns: 40 - List[Any]: the result of computating the function over the arguments 41 42 """ 43 raise NotImplementedError() 44 45 def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> Any: 46 """ 47 Submit a function to the executor for execution. Returns a future-like object. 48 49 Args: 50 - fn (Callable): function that is being submitted for execution 51 - *args (Any): arguments to be passed to `fn` 52 - **kwargs (Any): keyword arguments to be passed to `fn` 53 54 Returns: 55 - Any: a future-like object 56 """ 57 raise NotImplementedError() 58 59 def wait(self, futures: Any) -> Any: 60 """ 61 Resolves futures to their values. Blocks until the future is complete. 62 63 Args: 64 - futures (Any): iterable of futures to compute 65 66 Returns: 67 - Any: an iterable of resolved futures 68 """ 69 raise NotImplementedError() 70 [end of src/prefect/engine/executors/base.py] [start of src/prefect/engine/executors/dask.py] 1 import logging 2 import uuid 3 import warnings 4 from contextlib import contextmanager 5 from typing import TYPE_CHECKING, Any, Callable, Iterator, List, Union 6 7 from prefect import context 8 from prefect.engine.executors.base import Executor 9 from prefect.utilities.importtools import import_object 10 11 if TYPE_CHECKING: 12 import dask 13 from distributed import Future 14 15 16 # XXX: remove when deprecation of DaskExecutor kwargs is done 17 _valid_client_kwargs = { 18 "timeout", 19 "set_as_default", 20 "scheduler_file", 21 "security", 22 "name", 23 "direct_to_workers", 24 "heartbeat_interval", 25 } 26 27 28 class DaskExecutor(Executor): 29 """ 30 An executor that runs all functions using the `dask.distributed` scheduler. 31 32 By default a temporary `distributed.LocalCluster` is created (and 33 subsequently torn down) within the `start()` contextmanager. To use a 34 different cluster class (e.g. 35 [`dask_kubernetes.KubeCluster`](https://kubernetes.dask.org/)), you can 36 specify `cluster_class`/`cluster_kwargs`. 37 38 Alternatively, if you already have a dask cluster running, you can provide 39 the address of the scheduler via the `address` kwarg. 40 41 Note that if you have tasks with tags of the form `"dask-resource:KEY=NUM"` 42 they will be parsed and passed as 43 [Worker Resources](https://distributed.dask.org/en/latest/resources.html) 44 of the form `{"KEY": float(NUM)}` to the Dask Scheduler. 45 46 Args: 47 - address (string, optional): address of a currently running dask 48 scheduler; if one is not provided, a temporary cluster will be 49 created in `executor.start()`. Defaults to `None`. 50 - cluster_class (string or callable, optional): the cluster class to use 51 when creating a temporary dask cluster. Can be either the full 52 class name (e.g. `"distributed.LocalCluster"`), or the class itself. 53 - cluster_kwargs (dict, optional): addtional kwargs to pass to the 54 `cluster_class` when creating a temporary dask cluster. 55 - adapt_kwargs (dict, optional): additional kwargs to pass to ``cluster.adapt` 56 when creating a temporary dask cluster. Note that adaptive scaling 57 is only enabled if `adapt_kwargs` are provided. 58 - client_kwargs (dict, optional): additional kwargs to use when creating a 59 [`dask.distributed.Client`](https://distributed.dask.org/en/latest/api.html#client). 60 - debug (bool, optional): When running with a local cluster, setting 61 `debug=True` will increase dask's logging level, providing 62 potentially useful debug info. Defaults to the `debug` value in 63 your Prefect configuration. 64 - **kwargs: DEPRECATED 65 66 Example: 67 68 Using a temporary local dask cluster: 69 70 ```python 71 executor = DaskExecutor() 72 ``` 73 74 Using a temporary cluster running elsewhere. Any Dask cluster class should 75 work, here we use [dask-cloudprovider](https://cloudprovider.dask.org): 76 77 ```python 78 executor = DaskExecutor( 79 cluster_class="dask_cloudprovider.FargateCluster", 80 cluster_kwargs={ 81 "image": "prefecthq/prefect:latest", 82 "n_workers": 5, 83 ... 84 }, 85 ) 86 ``` 87 88 Connecting to an existing dask cluster 89 90 ```python 91 executor = DaskExecutor(address="192.0.2.255:8786") 92 ``` 93 """ 94 95 def __init__( 96 self, 97 address: str = None, 98 cluster_class: Union[str, Callable] = None, 99 cluster_kwargs: dict = None, 100 adapt_kwargs: dict = None, 101 client_kwargs: dict = None, 102 debug: bool = None, 103 **kwargs: Any 104 ): 105 if address is None: 106 address = context.config.engine.executor.dask.address or None 107 # XXX: deprecated 108 if address == "local": 109 warnings.warn( 110 "`address='local'` is deprecated. To use a local cluster, leave the " 111 "`address` field empty." 112 ) 113 address = None 114 115 # XXX: deprecated 116 local_processes = kwargs.pop("local_processes", None) 117 if local_processes is None: 118 local_processes = context.config.engine.executor.dask.get( 119 "local_processes", None 120 ) 121 if local_processes is not None: 122 warnings.warn( 123 "`local_processes` is deprecated, please use " 124 "`cluster_kwargs={'processes': local_processes}`. The default is " 125 "now `local_processes=True`." 126 ) 127 128 if address is not None: 129 if cluster_class is not None or cluster_kwargs is not None: 130 raise ValueError( 131 "Cannot specify `address` and `cluster_class`/`cluster_kwargs`" 132 ) 133 else: 134 if cluster_class is None: 135 cluster_class = context.config.engine.executor.dask.cluster_class 136 if isinstance(cluster_class, str): 137 cluster_class = import_object(cluster_class) 138 if cluster_kwargs is None: 139 cluster_kwargs = {} 140 else: 141 cluster_kwargs = cluster_kwargs.copy() 142 143 from distributed.deploy.local import LocalCluster 144 145 if cluster_class == LocalCluster: 146 if debug is None: 147 debug = context.config.debug 148 cluster_kwargs.setdefault( 149 "silence_logs", logging.CRITICAL if not debug else logging.WARNING 150 ) 151 if local_processes is not None: 152 cluster_kwargs.setdefault("processes", local_processes) 153 for_cluster = set(kwargs).difference(_valid_client_kwargs) 154 if for_cluster: 155 warnings.warn( 156 "Forwarding executor kwargs to `LocalCluster` is now handled by the " 157 "`cluster_kwargs` parameter, please update accordingly" 158 ) 159 for k in for_cluster: 160 cluster_kwargs[k] = kwargs.pop(k) 161 162 if adapt_kwargs is None: 163 adapt_kwargs = {} 164 165 if client_kwargs is None: 166 client_kwargs = {} 167 if kwargs: 168 warnings.warn( 169 "Forwarding executor kwargs to `Client` is now handled by the " 170 "`client_kwargs` parameter, please update accordingly" 171 ) 172 client_kwargs.update(kwargs) 173 174 self.address = address 175 self.is_started = False 176 self.cluster_class = cluster_class 177 self.cluster_kwargs = cluster_kwargs 178 self.adapt_kwargs = adapt_kwargs 179 self.client_kwargs = client_kwargs 180 181 super().__init__() 182 183 @contextmanager 184 def start(self) -> Iterator[None]: 185 """ 186 Context manager for initializing execution. 187 188 Creates a `dask.distributed.Client` and yields it. 189 """ 190 # import dask client here to decrease our import times 191 from distributed import Client 192 193 try: 194 if self.address is not None: 195 with Client(self.address, **self.client_kwargs) as client: 196 self.client = client 197 self.is_started = True 198 yield self.client 199 else: 200 with self.cluster_class(**self.cluster_kwargs) as cluster: # type: ignore 201 if self.adapt_kwargs: 202 cluster.adapt(**self.adapt_kwargs) 203 with Client(cluster, **self.client_kwargs) as client: 204 self.client = client 205 self.is_started = True 206 yield self.client 207 finally: 208 self.client = None 209 self.is_started = False 210 211 def _prep_dask_kwargs(self) -> dict: 212 dask_kwargs = {"pure": False} # type: dict 213 214 # set a key for the dask scheduler UI 215 if context.get("task_full_name"): 216 key = "{}-{}".format(context.get("task_full_name", ""), str(uuid.uuid4())) 217 dask_kwargs.update(key=key) 218 219 # infer from context if dask resources are being utilized 220 dask_resource_tags = [ 221 tag 222 for tag in context.get("task_tags", []) 223 if tag.lower().startswith("dask-resource") 224 ] 225 if dask_resource_tags: 226 resources = {} 227 for tag in dask_resource_tags: 228 prefix, val = tag.split("=") 229 resources.update({prefix.split(":")[1]: float(val)}) 230 dask_kwargs.update(resources=resources) 231 232 return dask_kwargs 233 234 def __getstate__(self) -> dict: 235 state = self.__dict__.copy() 236 if "client" in state: 237 del state["client"] 238 return state 239 240 def __setstate__(self, state: dict) -> None: 241 self.__dict__.update(state) 242 243 def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> "Future": 244 """ 245 Submit a function to the executor for execution. Returns a Future object. 246 247 Args: 248 - fn (Callable): function that is being submitted for execution 249 - *args (Any): arguments to be passed to `fn` 250 - **kwargs (Any): keyword arguments to be passed to `fn` 251 252 Returns: 253 - Future: a Future-like object that represents the computation of `fn(*args, **kwargs)` 254 """ 255 # import dask functions here to decrease our import times 256 from distributed import fire_and_forget, worker_client 257 258 dask_kwargs = self._prep_dask_kwargs() 259 kwargs.update(dask_kwargs) 260 261 if self.is_started and hasattr(self, "client"): 262 future = self.client.submit(fn, *args, **kwargs) 263 elif self.is_started: 264 with worker_client(separate_thread=True) as client: 265 future = client.submit(fn, *args, **kwargs) 266 else: 267 raise ValueError("This executor has not been started.") 268 269 fire_and_forget(future) 270 return future 271 272 def map(self, fn: Callable, *args: Any, **kwargs: Any) -> List["Future"]: 273 """ 274 Submit a function to be mapped over its iterable arguments. 275 276 Args: 277 - fn (Callable): function that is being submitted for execution 278 - *args (Any): arguments that the function will be mapped over 279 - **kwargs (Any): additional keyword arguments that will be passed to the Dask Client 280 281 Returns: 282 - List[Future]: a list of Future-like objects that represent each computation of 283 fn(*a), where a = zip(*args)[i] 284 285 """ 286 if not args: 287 return [] 288 289 # import dask functions here to decrease our import times 290 from distributed import fire_and_forget, worker_client 291 292 dask_kwargs = self._prep_dask_kwargs() 293 kwargs.update(dask_kwargs) 294 295 if self.is_started and hasattr(self, "client"): 296 futures = self.client.map(fn, *args, **kwargs) 297 elif self.is_started: 298 with worker_client(separate_thread=True) as client: 299 futures = client.map(fn, *args, **kwargs) 300 return client.gather(futures) 301 else: 302 raise ValueError("This executor has not been started.") 303 304 fire_and_forget(futures) 305 return futures 306 307 def wait(self, futures: Any) -> Any: 308 """ 309 Resolves the Future objects to their values. Blocks until the computation is complete. 310 311 Args: 312 - futures (Any): single or iterable of future-like objects to compute 313 314 Returns: 315 - Any: an iterable of resolved futures with similar shape to the input 316 """ 317 # import dask functions here to decrease our import times 318 from distributed import worker_client 319 320 if self.is_started and hasattr(self, "client"): 321 return self.client.gather(futures) 322 elif self.is_started: 323 with worker_client(separate_thread=True) as client: 324 return client.gather(futures) 325 else: 326 raise ValueError("This executor has not been started.") 327 328 329 class LocalDaskExecutor(Executor): 330 """ 331 An executor that runs all functions locally using `dask` and a configurable dask scheduler. Note that 332 this executor is known to occasionally run tasks twice when using multi-level mapping. 333 334 Prefect's mapping feature will not work in conjunction with setting `scheduler="processes"`. 335 336 Args: 337 - scheduler (str): The local dask scheduler to use; common options are "synchronous", "threads" and "processes". Defaults to "threads". 338 - **kwargs (Any): Additional keyword arguments to pass to dask config 339 """ 340 341 def __init__(self, scheduler: str = "threads", **kwargs: Any): 342 self.scheduler = scheduler 343 self.kwargs = kwargs 344 super().__init__() 345 346 @contextmanager 347 def start(self) -> Iterator: 348 """ 349 Context manager for initializing execution. 350 351 Configures `dask` and yields the `dask.config` contextmanager. 352 """ 353 # import dask here to reduce prefect import times 354 import dask 355 356 with dask.config.set(scheduler=self.scheduler, **self.kwargs) as cfg: 357 yield cfg 358 359 def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> "dask.delayed": 360 """ 361 Submit a function to the executor for execution. Returns a `dask.delayed` object. 362 363 Args: 364 - fn (Callable): function that is being submitted for execution 365 - *args (Any): arguments to be passed to `fn` 366 - **kwargs (Any): keyword arguments to be passed to `fn` 367 368 Returns: 369 - dask.delayed: a `dask.delayed` object that represents the computation of `fn(*args, **kwargs)` 370 """ 371 # import dask here to reduce prefect import times 372 import dask 373 374 return dask.delayed(fn)(*args, **kwargs) 375 376 def map(self, fn: Callable, *args: Any) -> List["dask.delayed"]: 377 """ 378 Submit a function to be mapped over its iterable arguments. 379 380 Args: 381 - fn (Callable): function that is being submitted for execution 382 - *args (Any): arguments that the function will be mapped over 383 384 Returns: 385 - List[dask.delayed]: the result of computating the function over the arguments 386 387 """ 388 if self.scheduler == "processes": 389 raise RuntimeError( 390 "LocalDaskExecutor cannot map if scheduler='processes'. Please set to either 'synchronous' or 'threads'." 391 ) 392 393 results = [] 394 for args_i in zip(*args): 395 results.append(self.submit(fn, *args_i)) 396 return results 397 398 def wait(self, futures: Any) -> Any: 399 """ 400 Resolves a `dask.delayed` object to its values. Blocks until the computation is complete. 401 402 Args: 403 - futures (Any): iterable of `dask.delayed` objects to compute 404 405 Returns: 406 - Any: an iterable of resolved futures 407 """ 408 # import dask here to reduce prefect import times 409 import dask 410 411 with dask.config.set(scheduler=self.scheduler, **self.kwargs): 412 return dask.compute(futures)[0] 413 [end of src/prefect/engine/executors/dask.py] [start of src/prefect/engine/executors/local.py] 1 from typing import Any, Callable, List 2 3 from prefect.engine.executors.base import Executor 4 5 6 class LocalExecutor(Executor): 7 """ 8 An executor that runs all functions synchronously and immediately in 9 the main thread. To be used mainly for debugging purposes. 10 """ 11 12 def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> Any: 13 """ 14 Submit a function to the executor for execution. Returns the result of the computation. 15 16 Args: 17 - fn (Callable): function that is being submitted for execution 18 - *args (Any): arguments to be passed to `fn` 19 - **kwargs (Any): keyword arguments to be passed to `fn` 20 21 Returns: 22 - Any: the result of `fn(*args, **kwargs)` 23 """ 24 return fn(*args, **kwargs) 25 26 def map(self, fn: Callable, *args: Any) -> List[Any]: 27 """ 28 Submit a function to be mapped over its iterable arguments. 29 30 Args: 31 - fn (Callable): function that is being submitted for execution 32 - *args (Any): arguments that the function will be mapped over 33 34 Returns: 35 - List[Any]: the result of computating the function over the arguments 36 37 """ 38 results = [] 39 for args_i in zip(*args): 40 results.append(fn(*args_i)) 41 return results 42 43 def wait(self, futures: Any) -> Any: 44 """ 45 Returns the results of the provided futures. 46 47 Args: 48 - futures (Any): objects to wait on 49 50 Returns: 51 - Any: whatever `futures` were provided 52 """ 53 return futures 54 [end of src/prefect/engine/executors/local.py] [start of src/prefect/engine/flow_runner.py] 1 from typing import ( 2 Any, 3 Callable, 4 Dict, 5 Iterable, 6 NamedTuple, 7 Optional, 8 Set, 9 Union, 10 ) 11 12 import pendulum 13 14 import prefect 15 from prefect.core import Edge, Flow, Task 16 from prefect.engine.result import Result 17 from prefect.engine.results import ConstantResult 18 from prefect.engine.runner import ENDRUN, Runner, call_state_handlers 19 from prefect.engine.state import ( 20 Cancelled, 21 Failed, 22 Mapped, 23 Pending, 24 Retrying, 25 Running, 26 Scheduled, 27 State, 28 Success, 29 ) 30 from prefect.utilities.collections import flatten_seq 31 from prefect.utilities.executors import run_with_heartbeat 32 33 FlowRunnerInitializeResult = NamedTuple( 34 "FlowRunnerInitializeResult", 35 [ 36 ("state", State), 37 ("task_states", Dict[Task, State]), 38 ("context", Dict[str, Any]), 39 ("task_contexts", Dict[Task, Dict[str, Any]]), 40 ], 41 ) 42 43 44 class FlowRunner(Runner): 45 """ 46 FlowRunners handle the execution of Flows and determine the State of a Flow 47 before, during and after the Flow is run. 48 49 In particular, through the FlowRunner you can specify which tasks should be 50 the first tasks to run, which tasks should be returned after the Flow is finished, 51 and what states each task should be initialized with. 52 53 Args: 54 - flow (Flow): the `Flow` to be run 55 - task_runner_cls (TaskRunner, optional): The class used for running 56 individual Tasks. Defaults to [TaskRunner](task_runner.html) 57 - state_handlers (Iterable[Callable], optional): A list of state change handlers 58 that will be called whenever the flow changes state, providing an 59 opportunity to inspect or modify the new state. The handler 60 will be passed the flow runner instance, the old (prior) state, and the new 61 (current) state, with the following signature: 62 `state_handler(fr: FlowRunner, old_state: State, new_state: State) -> Optional[State]` 63 If multiple functions are passed, then the `new_state` argument will be the 64 result of the previous handler. 65 66 Note: new FlowRunners are initialized within the call to `Flow.run()` and in general, 67 this is the endpoint through which FlowRunners will be interacted with most frequently. 68 69 Example: 70 ```python 71 @task 72 def say_hello(): 73 print('hello') 74 75 with Flow("My Flow") as f: 76 say_hello() 77 78 fr = FlowRunner(flow=f) 79 flow_state = fr.run() 80 ``` 81 """ 82 83 def __init__( 84 self, 85 flow: Flow, 86 task_runner_cls: type = None, 87 state_handlers: Iterable[Callable] = None, 88 ): 89 self.context = prefect.context.to_dict() 90 self.flow = flow 91 if task_runner_cls is None: 92 task_runner_cls = prefect.engine.get_default_task_runner_class() 93 self.task_runner_cls = task_runner_cls 94 super().__init__(state_handlers=state_handlers) 95 96 def __repr__(self) -> str: 97 return "<{}: {}>".format(type(self).__name__, self.flow.name) 98 99 def call_runner_target_handlers(self, old_state: State, new_state: State) -> State: 100 """ 101 A special state handler that the FlowRunner uses to call its flow's state handlers. 102 This method is called as part of the base Runner's `handle_state_change()` method. 103 104 Args: 105 - old_state (State): the old (previous) state 106 - new_state (State): the new (current) state 107 108 Returns: 109 - State: the new state 110 """ 111 self.logger.debug( 112 "Flow '{name}': Handling state change from {old} to {new}".format( 113 name=self.flow.name, 114 old=type(old_state).__name__, 115 new=type(new_state).__name__, 116 ) 117 ) 118 for handler in self.flow.state_handlers: 119 new_state = handler(self.flow, old_state, new_state) or new_state 120 121 return new_state 122 123 def initialize_run( # type: ignore 124 self, 125 state: Optional[State], 126 task_states: Dict[Task, State], 127 context: Dict[str, Any], 128 task_contexts: Dict[Task, Dict[str, Any]], 129 parameters: Dict[str, Any], 130 ) -> FlowRunnerInitializeResult: 131 """ 132 Initializes the Task run by initializing state and context appropriately. 133 134 If the provided state is a Submitted state, the state it wraps is extracted. 135 136 Args: 137 - state (Optional[State]): the initial state of the run 138 - task_states (Dict[Task, State]): a dictionary of any initial task states 139 - context (Dict[str, Any], optional): prefect.Context to use for execution 140 to use for each Task run 141 - task_contexts (Dict[Task, Dict[str, Any]], optional): contexts that will be provided to each task 142 - parameters(dict): the parameter values for the run 143 144 Returns: 145 - NamedTuple: a tuple of initialized objects: 146 `(state, task_states, context, task_contexts)` 147 """ 148 149 # overwrite context parameters one-by-one 150 if parameters: 151 context_params = context.setdefault("parameters", {}) 152 for param, value in parameters.items(): 153 context_params[param] = value 154 155 context.update(flow_name=self.flow.name) 156 context.setdefault("scheduled_start_time", pendulum.now("utc")) 157 158 # add various formatted dates to context 159 now = pendulum.now("utc") 160 dates = { 161 "date": now, 162 "today": now.strftime("%Y-%m-%d"), 163 "yesterday": now.add(days=-1).strftime("%Y-%m-%d"), 164 "tomorrow": now.add(days=1).strftime("%Y-%m-%d"), 165 "today_nodash": now.strftime("%Y%m%d"), 166 "yesterday_nodash": now.add(days=-1).strftime("%Y%m%d"), 167 "tomorrow_nodash": now.add(days=1).strftime("%Y%m%d"), 168 } 169 for key, val in dates.items(): 170 context.setdefault(key, val) 171 172 for task in self.flow.tasks: 173 task_contexts.setdefault(task, {}).update( 174 task_name=task.name, task_slug=task.slug 175 ) 176 state, context = super().initialize_run(state=state, context=context) 177 return FlowRunnerInitializeResult( 178 state=state, 179 task_states=task_states, 180 context=context, 181 task_contexts=task_contexts, 182 ) 183 184 def run( 185 self, 186 state: State = None, 187 task_states: Dict[Task, State] = None, 188 return_tasks: Iterable[Task] = None, 189 parameters: Dict[str, Any] = None, 190 task_runner_state_handlers: Iterable[Callable] = None, 191 executor: "prefect.engine.executors.Executor" = None, 192 context: Dict[str, Any] = None, 193 task_contexts: Dict[Task, Dict[str, Any]] = None, 194 ) -> State: 195 """ 196 The main endpoint for FlowRunners. Calling this method will perform all 197 computations contained within the Flow and return the final state of the Flow. 198 199 Args: 200 - state (State, optional): starting state for the Flow. Defaults to 201 `Pending` 202 - task_states (dict, optional): dictionary of task states to begin 203 computation with, with keys being Tasks and values their corresponding state 204 - return_tasks ([Task], optional): list of Tasks to include in the 205 final returned Flow state. Defaults to `None` 206 - parameters (dict, optional): dictionary of any needed Parameter 207 values, with keys being strings representing Parameter names and values being 208 their corresponding values 209 - task_runner_state_handlers (Iterable[Callable], optional): A list of state change 210 handlers that will be provided to the task_runner, and called whenever a task changes 211 state. 212 - executor (Executor, optional): executor to use when performing 213 computation; defaults to the executor specified in your prefect configuration 214 - context (Dict[str, Any], optional): prefect.Context to use for execution 215 to use for each Task run 216 - task_contexts (Dict[Task, Dict[str, Any]], optional): contexts that will be provided to each task 217 218 Returns: 219 - State: `State` representing the final post-run state of the `Flow`. 220 221 """ 222 223 self.logger.info("Beginning Flow run for '{}'".format(self.flow.name)) 224 225 # make copies to avoid modifying user inputs 226 task_states = dict(task_states or {}) 227 context = dict(context or {}) 228 task_contexts = dict(task_contexts or {}) 229 parameters = dict(parameters or {}) 230 if executor is None: 231 executor = prefect.engine.get_default_executor_class()() 232 233 try: 234 state, task_states, context, task_contexts = self.initialize_run( 235 state=state, 236 task_states=task_states, 237 context=context, 238 task_contexts=task_contexts, 239 parameters=parameters, 240 ) 241 242 with prefect.context(context): 243 state = self.check_flow_is_pending_or_running(state) 244 state = self.check_flow_reached_start_time(state) 245 state = self.set_flow_to_running(state) 246 state = self.get_flow_run_state( 247 state, 248 task_states=task_states, 249 task_contexts=task_contexts, 250 return_tasks=return_tasks, 251 task_runner_state_handlers=task_runner_state_handlers, 252 executor=executor, 253 ) 254 255 except ENDRUN as exc: 256 state = exc.state 257 258 except KeyboardInterrupt: 259 self.logger.debug("Interrupt signal raised, cancelling Flow run.") 260 state = Cancelled(message="Interrupt signal raised, cancelling flow run.") 261 262 # All other exceptions are trapped and turned into Failed states 263 except Exception as exc: 264 self.logger.exception( 265 "Unexpected error while running flow: {}".format(repr(exc)) 266 ) 267 if prefect.context.get("raise_on_exception"): 268 raise exc 269 new_state = Failed( 270 message="Unexpected error while running flow: {}".format(repr(exc)), 271 result=exc, 272 ) 273 state = self.handle_state_change(state or Pending(), new_state) 274 275 return state 276 277 @call_state_handlers 278 def check_flow_reached_start_time(self, state: State) -> State: 279 """ 280 Checks if the Flow is in a Scheduled state and, if it is, ensures that the scheduled 281 time has been reached. 282 283 Args: 284 - state (State): the current state of this Flow 285 286 Returns: 287 - State: the state of the flow after performing the check 288 289 Raises: 290 - ENDRUN: if the flow is Scheduled with a future scheduled time 291 """ 292 if isinstance(state, Scheduled): 293 if state.start_time and state.start_time > pendulum.now("utc"): 294 self.logger.debug( 295 "Flow '{name}': start_time has not been reached; ending run.".format( 296 name=self.flow.name 297 ) 298 ) 299 raise ENDRUN(state) 300 return state 301 302 @call_state_handlers 303 def check_flow_is_pending_or_running(self, state: State) -> State: 304 """ 305 Checks if the flow is in either a Pending state or Running state. Either are valid 306 starting points (because we allow simultaneous runs of the same flow run). 307 308 Args: 309 - state (State): the current state of this flow 310 311 Returns: 312 - State: the state of the flow after running the check 313 314 Raises: 315 - ENDRUN: if the flow is not pending or running 316 """ 317 318 # the flow run is already finished 319 if state.is_finished() is True: 320 self.logger.info("Flow run has already finished.") 321 raise ENDRUN(state) 322 323 # the flow run must be either pending or running (possibly redundant with above) 324 elif not (state.is_pending() or state.is_running()): 325 self.logger.info("Flow is not ready to run.") 326 raise ENDRUN(state) 327 328 return state 329 330 @call_state_handlers 331 def set_flow_to_running(self, state: State) -> State: 332 """ 333 Puts Pending flows in a Running state; leaves Running flows Running. 334 335 Args: 336 - state (State): the current state of this flow 337 338 Returns: 339 - State: the state of the flow after running the check 340 341 Raises: 342 - ENDRUN: if the flow is not pending or running 343 """ 344 if state.is_pending(): 345 self.logger.info("Starting flow run.") 346 return Running(message="Running flow.") 347 elif state.is_running(): 348 return state 349 else: 350 raise ENDRUN(state) 351 352 @run_with_heartbeat 353 @call_state_handlers 354 def get_flow_run_state( 355 self, 356 state: State, 357 task_states: Dict[Task, State], 358 task_contexts: Dict[Task, Dict[str, Any]], 359 return_tasks: Set[Task], 360 task_runner_state_handlers: Iterable[Callable], 361 executor: "prefect.engine.executors.base.Executor", 362 ) -> State: 363 """ 364 Runs the flow. 365 366 Args: 367 - state (State): starting state for the Flow. Defaults to 368 `Pending` 369 - task_states (dict): dictionary of task states to begin 370 computation with, with keys being Tasks and values their corresponding state 371 - task_contexts (Dict[Task, Dict[str, Any]]): contexts that will be provided to each task 372 - return_tasks ([Task], optional): list of Tasks to include in the 373 final returned Flow state. Defaults to `None` 374 - task_runner_state_handlers (Iterable[Callable]): A list of state change 375 handlers that will be provided to the task_runner, and called whenever a task changes 376 state. 377 - executor (Executor): executor to use when performing 378 computation; defaults to the executor provided in your prefect configuration 379 380 Returns: 381 - State: `State` representing the final post-run state of the `Flow`. 382 383 """ 384 385 if not state.is_running(): 386 self.logger.info("Flow is not in a Running state.") 387 raise ENDRUN(state) 388 389 if return_tasks is None: 390 return_tasks = set() 391 if set(return_tasks).difference(self.flow.tasks): 392 raise ValueError("Some tasks in return_tasks were not found in the flow.") 393 394 # -- process each task in order 395 396 with executor.start(): 397 398 for task in self.flow.sorted_tasks(): 399 400 task_state = task_states.get(task) 401 if task_state is None and isinstance( 402 task, prefect.tasks.core.constants.Constant 403 ): 404 task_states[task] = task_state = Success(result=task.value) 405 406 # if the state is finished, don't run the task, just use the provided state 407 if ( 408 isinstance(task_state, State) 409 and task_state.is_finished() 410 and not task_state.is_cached() 411 and not task_state.is_mapped() 412 ): 413 continue 414 415 upstream_states = {} # type: Dict[Edge, Union[State, Iterable]] 416 417 # -- process each edge to the task 418 for edge in self.flow.edges_to(task): 419 upstream_states[edge] = task_states.get( 420 edge.upstream_task, Pending(message="Task state not available.") 421 ) 422 423 # augment edges with upstream constants 424 for key, val in self.flow.constants[task].items(): 425 edge = Edge( 426 upstream_task=prefect.tasks.core.constants.Constant(val), 427 downstream_task=task, 428 key=key, 429 ) 430 upstream_states[edge] = Success( 431 "Auto-generated constant value", 432 result=ConstantResult(value=val), 433 ) 434 435 # -- run the task 436 437 with prefect.context(task_full_name=task.name, task_tags=task.tags): 438 task_states[task] = executor.submit( 439 self.run_task, 440 task=task, 441 state=task_state, 442 upstream_states=upstream_states, 443 context=dict(prefect.context, **task_contexts.get(task, {})), 444 task_runner_state_handlers=task_runner_state_handlers, 445 executor=executor, 446 ) 447 448 # --------------------------------------------- 449 # Collect results 450 # --------------------------------------------- 451 452 # terminal tasks determine if the flow is finished 453 terminal_tasks = self.flow.terminal_tasks() 454 455 # reference tasks determine flow state 456 reference_tasks = self.flow.reference_tasks() 457 458 # wait until all terminal tasks are finished 459 final_tasks = terminal_tasks.union(reference_tasks).union(return_tasks) 460 final_states = executor.wait( 461 { 462 t: task_states.get(t, Pending("Task not evaluated by FlowRunner.")) 463 for t in final_tasks 464 } 465 ) 466 467 # also wait for any children of Mapped tasks to finish, and add them 468 # to the dictionary to determine flow state 469 all_final_states = final_states.copy() 470 for t, s in list(final_states.items()): 471 if s.is_mapped(): 472 s.map_states = executor.wait(s.map_states) 473 s.result = [ms.result for ms in s.map_states] 474 all_final_states[t] = s.map_states 475 476 assert isinstance(final_states, dict) 477 478 key_states = set(flatten_seq([all_final_states[t] for t in reference_tasks])) 479 terminal_states = set( 480 flatten_seq([all_final_states[t] for t in terminal_tasks]) 481 ) 482 return_states = {t: final_states[t] for t in return_tasks} 483 484 state = self.determine_final_state( 485 state=state, 486 key_states=key_states, 487 return_states=return_states, 488 terminal_states=terminal_states, 489 ) 490 491 return state 492 493 def determine_final_state( 494 self, 495 state: State, 496 key_states: Set[State], 497 return_states: Dict[Task, State], 498 terminal_states: Set[State], 499 ) -> State: 500 """ 501 Implements the logic for determining the final state of the flow run. 502 503 Args: 504 - state (State): the current state of the Flow 505 - key_states (Set[State]): the states which will determine the success / failure of the flow run 506 - return_states (Dict[Task, State]): states to return as results 507 - terminal_states (Set[State]): the states of the terminal tasks for this flow 508 509 Returns: 510 - State: the final state of the flow run 511 """ 512 # check that the flow is finished 513 if not all(s.is_finished() for s in terminal_states): 514 self.logger.info("Flow run RUNNING: terminal tasks are incomplete.") 515 state.result = return_states 516 517 # check if any key task failed 518 elif any(s.is_failed() for s in key_states): 519 self.logger.info("Flow run FAILED: some reference tasks failed.") 520 state = Failed(message="Some reference tasks failed.", result=return_states) 521 522 # check if all reference tasks succeeded 523 elif all(s.is_successful() for s in key_states): 524 self.logger.info("Flow run SUCCESS: all reference tasks succeeded") 525 state = Success( 526 message="All reference tasks succeeded.", result=return_states 527 ) 528 529 # check for any unanticipated state that is finished but neither success nor failed 530 else: 531 self.logger.info("Flow run SUCCESS: no reference tasks failed") 532 state = Success(message="No reference tasks failed.", result=return_states) 533 534 return state 535 536 def run_task( 537 self, 538 task: Task, 539 state: State, 540 upstream_states: Dict[Edge, State], 541 context: Dict[str, Any], 542 task_runner_state_handlers: Iterable[Callable], 543 executor: "prefect.engine.executors.Executor", 544 ) -> State: 545 """ 546 547 Runs a specific task. This method is intended to be called by submitting it to 548 an executor. 549 550 Args: 551 - task (Task): the task to run 552 - state (State): starting state for the Flow. Defaults to 553 `Pending` 554 - upstream_states (Dict[Edge, State]): dictionary of upstream states 555 - context (Dict[str, Any]): a context dictionary for the task run 556 - task_runner_state_handlers (Iterable[Callable]): A list of state change 557 handlers that will be provided to the task_runner, and called whenever a task changes 558 state. 559 - executor (Executor): executor to use when performing 560 computation; defaults to the executor provided in your prefect configuration 561 562 Returns: 563 - State: `State` representing the final post-run state of the `Flow`. 564 565 """ 566 with prefect.context(self.context): 567 default_result = task.result or self.flow.result 568 task_runner = self.task_runner_cls( 569 task=task, 570 state_handlers=task_runner_state_handlers, 571 result=default_result or Result(), 572 default_result=self.flow.result, 573 ) 574 575 # if this task reduces over a mapped state, make sure its children have finished 576 for edge, upstream_state in upstream_states.items(): 577 578 # if the upstream state is Mapped, wait until its results are all available 579 if not edge.mapped and upstream_state.is_mapped(): 580 assert isinstance(upstream_state, Mapped) # mypy assert 581 upstream_state.map_states = executor.wait(upstream_state.map_states) 582 upstream_state.result = [ 583 s.result for s in upstream_state.map_states 584 ] 585 586 return task_runner.run( 587 state=state, 588 upstream_states=upstream_states, 589 context=context, 590 executor=executor, 591 ) 592 [end of src/prefect/engine/flow_runner.py] [start of src/prefect/engine/task_runner.py] 1 import copy 2 from contextlib import redirect_stdout 3 import itertools 4 import json 5 from typing import ( 6 Any, 7 Callable, 8 Dict, 9 Iterable, 10 List, 11 NamedTuple, 12 Optional, 13 Set, 14 Tuple, 15 ) 16 17 import pendulum 18 19 import prefect 20 from prefect import config 21 from prefect.core import Edge, Task 22 from prefect.engine import signals 23 from prefect.engine.result import NoResult, Result 24 from prefect.engine.results import PrefectResult 25 from prefect.engine.runner import ENDRUN, Runner, call_state_handlers 26 from prefect.engine.state import ( 27 Cached, 28 Cancelled, 29 Failed, 30 Looped, 31 Mapped, 32 Paused, 33 Pending, 34 Resume, 35 Retrying, 36 Running, 37 Scheduled, 38 Skipped, 39 State, 40 Submitted, 41 Success, 42 TimedOut, 43 TriggerFailed, 44 ) 45 from prefect.utilities.executors import ( 46 RecursiveCall, 47 run_with_heartbeat, 48 tail_recursive, 49 ) 50 51 52 TaskRunnerInitializeResult = NamedTuple( 53 "TaskRunnerInitializeResult", [("state", State), ("context", Dict[str, Any])] 54 ) 55 56 57 class TaskRunner(Runner): 58 """ 59 TaskRunners handle the execution of Tasks and determine the State of a Task 60 before, during and after the Task is run. 61 62 In particular, through the TaskRunner you can specify the states of any upstream dependencies 63 and what state the Task should be initialized with. 64 65 Args: 66 - task (Task): the Task to be run / executed 67 - state_handlers (Iterable[Callable], optional): A list of state change handlers 68 that will be called whenever the task changes state, providing an 69 opportunity to inspect or modify the new state. The handler 70 will be passed the task runner instance, the old (prior) state, and the new 71 (current) state, with the following signature: `state_handler(TaskRunner, old_state, new_state) -> Optional[State]`; 72 If multiple functions are passed, then the `new_state` argument will be the 73 result of the previous handler. 74 - result (Result, optional): the result type to use for retrieving and storing state results 75 during execution (if the Task doesn't already have one) 76 - default_result (Result, optional): the fallback result type to use for retrieving and storing state results 77 during execution (to be used on upstream inputs if they don't provide their own results) 78 """ 79 80 def __init__( 81 self, 82 task: Task, 83 state_handlers: Iterable[Callable] = None, 84 result: Result = None, 85 default_result: Result = None, 86 ): 87 self.context = prefect.context.to_dict() 88 self.task = task 89 90 # if the result was provided off the parent Flow object 91 # we want to use the task's target as the target location 92 if task.result: 93 self.result = task.result 94 else: 95 self.result = Result().copy() if result is None else result.copy() 96 if self.task.target: 97 self.result.location = self.task.target 98 self.default_result = default_result or Result() 99 super().__init__(state_handlers=state_handlers) 100 101 def __repr__(self) -> str: 102 return "<{}: {}>".format(type(self).__name__, self.task.name) 103 104 def call_runner_target_handlers(self, old_state: State, new_state: State) -> State: 105 """ 106 A special state handler that the TaskRunner uses to call its task's state handlers. 107 This method is called as part of the base Runner's `handle_state_change()` method. 108 109 Args: 110 - old_state (State): the old (previous) state 111 - new_state (State): the new (current) state 112 113 Returns: 114 - State: the new state 115 """ 116 self.logger.debug( 117 "Task '{name}': Handling state change from {old} to {new}".format( 118 name=prefect.context.get("task_full_name", self.task.name), 119 old=type(old_state).__name__, 120 new=type(new_state).__name__, 121 ) 122 ) 123 for handler in self.task.state_handlers: 124 new_state = handler(self.task, old_state, new_state) or new_state 125 126 return new_state 127 128 def initialize_run( # type: ignore 129 self, state: Optional[State], context: Dict[str, Any] 130 ) -> TaskRunnerInitializeResult: 131 """ 132 Initializes the Task run by initializing state and context appropriately. 133 134 If the task is being retried, then we retrieve the run count from the initial Retry 135 state. Otherwise, we assume the run count is 1. The run count is stored in context as 136 task_run_count. 137 138 Also, if the task is being resumed through a `Resume` state, updates context to have `resume=True`. 139 140 Args: 141 - state (Optional[State]): the initial state of the run 142 - context (Dict[str, Any]): the context to be updated with relevant information 143 144 Returns: 145 - tuple: a tuple of the updated state, context, upstream_states, and inputs objects 146 """ 147 state, context = super().initialize_run(state=state, context=context) 148 149 if isinstance(state, Retrying): 150 run_count = state.run_count + 1 151 else: 152 run_count = state.context.get("task_run_count", 1) 153 154 if isinstance(state, Resume): 155 context.update(resume=True) 156 157 if "_loop_count" in state.cached_inputs: # type: ignore 158 loop_result = state.cached_inputs.pop("_loop_result") 159 if loop_result.value is None and loop_result.location is not None: 160 loop_result_value = self.result.read(loop_result.location).value 161 else: 162 loop_result_value = loop_result.value 163 loop_context = { 164 "task_loop_count": json.loads( 165 state.cached_inputs.pop( # type: ignore 166 "_loop_count" 167 ).location 168 ), # type: ignore 169 "task_loop_result": loop_result_value, 170 } 171 context.update(loop_context) 172 173 context.update( 174 task_run_count=run_count, 175 task_name=self.task.name, 176 task_tags=self.task.tags, 177 task_slug=self.task.slug, 178 ) 179 context.setdefault("checkpointing", config.flows.checkpointing) 180 181 map_index = context.get("map_index", None) 182 if isinstance(map_index, int) and context.get("task_full_name"): 183 context.update( 184 logger=prefect.utilities.logging.get_logger( 185 context.get("task_full_name") 186 ) 187 ) 188 else: 189 context.update(logger=self.task.logger) 190 191 return TaskRunnerInitializeResult(state=state, context=context) 192 193 @tail_recursive 194 def run( 195 self, 196 state: State = None, 197 upstream_states: Dict[Edge, State] = None, 198 context: Dict[str, Any] = None, 199 executor: "prefect.engine.executors.Executor" = None, 200 ) -> State: 201 """ 202 The main endpoint for TaskRunners. Calling this method will conditionally execute 203 `self.task.run` with any provided inputs, assuming the upstream dependencies are in a 204 state which allow this Task to run. 205 206 Args: 207 - state (State, optional): initial `State` to begin task run from; 208 defaults to `Pending()` 209 - upstream_states (Dict[Edge, State]): a dictionary 210 representing the states of any tasks upstream of this one. The keys of the 211 dictionary should correspond to the edges leading to the task. 212 - context (dict, optional): prefect Context to use for execution 213 - executor (Executor, optional): executor to use when performing 214 computation; defaults to the executor specified in your prefect configuration 215 216 Returns: 217 - `State` object representing the final post-run state of the Task 218 """ 219 upstream_states = upstream_states or {} 220 context = context or {} 221 map_index = context.setdefault("map_index", None) 222 context["task_full_name"] = "{name}{index}".format( 223 name=self.task.name, 224 index=("" if map_index is None else "[{}]".format(map_index)), 225 ) 226 227 if executor is None: 228 executor = prefect.engine.get_default_executor_class()() 229 230 # if mapped is true, this task run is going to generate a Mapped state. It won't 231 # actually run, but rather spawn children tasks to map over its inputs. We 232 # detect this case by checking for: 233 # - upstream edges that are `mapped` 234 # - no `map_index` (which indicates that this is the child task, not the parent) 235 mapped = any([e.mapped for e in upstream_states]) and map_index is None 236 task_inputs = {} # type: Dict[str, Any] 237 238 try: 239 # initialize the run 240 state, context = self.initialize_run(state, context) 241 242 # run state transformation pipeline 243 with prefect.context(context): 244 245 if prefect.context.get("task_loop_count") is None: 246 self.logger.info( 247 "Task '{name}': Starting task run...".format( 248 name=context["task_full_name"] 249 ) 250 ) 251 252 # check to make sure the task is in a pending state 253 state = self.check_task_is_ready(state) 254 255 # check if the task has reached its scheduled time 256 state = self.check_task_reached_start_time(state) 257 258 # Tasks never run if the upstream tasks haven't finished 259 state = self.check_upstream_finished( 260 state, upstream_states=upstream_states 261 ) 262 263 # check if any upstream tasks skipped (and if we need to skip) 264 state = self.check_upstream_skipped( 265 state, upstream_states=upstream_states 266 ) 267 268 # populate / hydrate all result objects 269 state, upstream_states = self.load_results( 270 state=state, upstream_states=upstream_states 271 ) 272 273 # if the task is mapped, process the mapped children and exit 274 if mapped: 275 state = self.run_mapped_task( 276 state=state, 277 upstream_states=upstream_states, 278 context=context, 279 executor=executor, 280 ) 281 282 state = self.wait_for_mapped_task(state=state, executor=executor) 283 284 self.logger.debug( 285 "Task '{name}': task has been mapped; ending run.".format( 286 name=context["task_full_name"] 287 ) 288 ) 289 raise ENDRUN(state) 290 291 # retrieve task inputs from upstream and also explicitly passed inputs 292 task_inputs = self.get_task_inputs( 293 state=state, upstream_states=upstream_states 294 ) 295 296 if self.task.target: 297 # check to see if there is a Result at the task's target 298 state = self.check_target(state, inputs=task_inputs) 299 else: 300 # check to see if the task has a cached result 301 state = self.check_task_is_cached(state, inputs=task_inputs) 302 303 # check if the task's trigger passes 304 # triggers can raise Pauses, which require task_inputs to be available for caching 305 # so we run this after the previous step 306 state = self.check_task_trigger(state, upstream_states=upstream_states) 307 308 # set the task state to running 309 state = self.set_task_to_running(state, inputs=task_inputs) 310 311 # run the task 312 state = self.get_task_run_state( 313 state, inputs=task_inputs, timeout_handler=executor.timeout_handler 314 ) 315 316 # cache the output, if appropriate 317 state = self.cache_result(state, inputs=task_inputs) 318 319 # check if the task needs to be retried 320 state = self.check_for_retry(state, inputs=task_inputs) 321 322 state = self.check_task_is_looping( 323 state, 324 inputs=task_inputs, 325 upstream_states=upstream_states, 326 context=context, 327 executor=executor, 328 ) 329 330 # for pending signals, including retries and pauses we need to make sure the 331 # task_inputs are set 332 except (ENDRUN, signals.PrefectStateSignal) as exc: 333 exc.state.cached_inputs = task_inputs or {} 334 state = exc.state 335 except RecursiveCall as exc: 336 raise exc 337 338 except Exception as exc: 339 msg = "Task '{name}': unexpected error while running task: {exc}".format( 340 name=context["task_full_name"], exc=repr(exc) 341 ) 342 self.logger.exception(msg) 343 state = Failed(message=msg, result=exc, cached_inputs=task_inputs) 344 if prefect.context.get("raise_on_exception"): 345 raise exc 346 347 # to prevent excessive repetition of this log 348 # since looping relies on recursively calling self.run 349 # TODO: figure out a way to only log this one single time instead of twice 350 if prefect.context.get("task_loop_count") is None: 351 # wrapping this final log in prefect.context(context) ensures 352 # that any run-context, including task-run-ids, are respected 353 with prefect.context(context): 354 self.logger.info( 355 "Task '{name}': finished task run for task with final state: '{state}'".format( 356 name=context["task_full_name"], state=type(state).__name__ 357 ) 358 ) 359 360 return state 361 362 @call_state_handlers 363 def check_upstream_finished( 364 self, state: State, upstream_states: Dict[Edge, State] 365 ) -> State: 366 """ 367 Checks if the upstream tasks have all finshed. 368 369 Args: 370 - state (State): the current state of this task 371 - upstream_states (Dict[Edge, Union[State, List[State]]]): the upstream states 372 373 Returns: 374 - State: the state of the task after running the check 375 376 Raises: 377 - ENDRUN: if upstream tasks are not finished. 378 """ 379 all_states = set() # type: Set[State] 380 for edge, upstream_state in upstream_states.items(): 381 # if the upstream state is Mapped, and this task is also mapped, 382 # we want each individual child to determine if it should 383 # proceed or not based on its upstream parent in the mapping 384 if isinstance(upstream_state, Mapped) and not edge.mapped: 385 all_states.update(upstream_state.map_states) 386 else: 387 all_states.add(upstream_state) 388 389 if not all(s.is_finished() for s in all_states): 390 self.logger.debug( 391 "Task '{name}': not all upstream states are finished; ending run.".format( 392 name=prefect.context.get("task_full_name", self.task.name) 393 ) 394 ) 395 raise ENDRUN(state) 396 return state 397 398 @call_state_handlers 399 def check_upstream_skipped( 400 self, state: State, upstream_states: Dict[Edge, State] 401 ) -> State: 402 """ 403 Checks if any of the upstream tasks have skipped. 404 405 Args: 406 - state (State): the current state of this task 407 - upstream_states (Dict[Edge, State]): the upstream states 408 409 Returns: 410 - State: the state of the task after running the check 411 """ 412 413 all_states = set() # type: Set[State] 414 for edge, upstream_state in upstream_states.items(): 415 416 # if the upstream state is Mapped, and this task is also mapped, 417 # we want each individual child to determine if it should 418 # skip or not based on its upstream parent in the mapping 419 if isinstance(upstream_state, Mapped) and not edge.mapped: 420 all_states.update(upstream_state.map_states) 421 else: 422 all_states.add(upstream_state) 423 424 if self.task.skip_on_upstream_skip and any(s.is_skipped() for s in all_states): 425 self.logger.debug( 426 "Task '{name}': Upstream states were skipped; ending run.".format( 427 name=prefect.context.get("task_full_name", self.task.name) 428 ) 429 ) 430 raise ENDRUN( 431 state=Skipped( 432 message=( 433 "Upstream task was skipped; if this was not the intended " 434 "behavior, consider changing `skip_on_upstream_skip=False` " 435 "for this task." 436 ) 437 ) 438 ) 439 return state 440 441 @call_state_handlers 442 def check_task_trigger( 443 self, state: State, upstream_states: Dict[Edge, State] 444 ) -> State: 445 """ 446 Checks if the task's trigger function passes. 447 448 Args: 449 - state (State): the current state of this task 450 - upstream_states (Dict[Edge, Union[State, List[State]]]): the upstream states 451 452 Returns: 453 - State: the state of the task after running the check 454 455 Raises: 456 - ENDRUN: if the trigger raises an error 457 """ 458 try: 459 if not self.task.trigger(upstream_states): 460 raise signals.TRIGGERFAIL(message="Trigger failed") 461 462 except signals.PrefectStateSignal as exc: 463 464 self.logger.debug( 465 "Task '{name}': {signal} signal raised during execution.".format( 466 name=prefect.context.get("task_full_name", self.task.name), 467 signal=type(exc).__name__, 468 ) 469 ) 470 if prefect.context.get("raise_on_exception"): 471 raise exc 472 raise ENDRUN(exc.state) 473 474 # Exceptions are trapped and turned into TriggerFailed states 475 except Exception as exc: 476 self.logger.exception( 477 "Task '{name}': unexpected error while evaluating task trigger: {exc}".format( 478 exc=repr(exc), 479 name=prefect.context.get("task_full_name", self.task.name), 480 ) 481 ) 482 if prefect.context.get("raise_on_exception"): 483 raise exc 484 raise ENDRUN( 485 TriggerFailed( 486 "Unexpected error while checking task trigger: {}".format( 487 repr(exc) 488 ), 489 result=exc, 490 ) 491 ) 492 493 return state 494 495 @call_state_handlers 496 def check_task_is_ready(self, state: State) -> State: 497 """ 498 Checks to make sure the task is ready to run (Pending or Mapped). 499 500 Args: 501 - state (State): the current state of this task 502 503 Returns: 504 - State: the state of the task after running the check 505 506 Raises: 507 - ENDRUN: if the task is not ready to run 508 """ 509 510 # the task is ready 511 if state.is_pending(): 512 return state 513 514 # the task is mapped, in which case we still proceed so that the children tasks 515 # are generated (note that if the children tasks) 516 elif state.is_mapped(): 517 self.logger.debug( 518 "Task '{name}': task is mapped, but run will proceed so children are generated.".format( 519 name=prefect.context.get("task_full_name", self.task.name) 520 ) 521 ) 522 return state 523 524 # this task is already running 525 elif state.is_running(): 526 self.logger.debug( 527 "Task '{name}': task is already running.".format( 528 name=prefect.context.get("task_full_name", self.task.name) 529 ) 530 ) 531 raise ENDRUN(state) 532 533 elif state.is_cached(): 534 return state 535 536 # this task is already finished 537 elif state.is_finished(): 538 self.logger.debug( 539 "Task '{name}': task is already finished.".format( 540 name=prefect.context.get("task_full_name", self.task.name) 541 ) 542 ) 543 raise ENDRUN(state) 544 545 # this task is not pending 546 else: 547 self.logger.debug( 548 "Task '{name}' is not ready to run or state was unrecognized ({state}).".format( 549 name=prefect.context.get("task_full_name", self.task.name), 550 state=state, 551 ) 552 ) 553 raise ENDRUN(state) 554 555 @call_state_handlers 556 def check_task_reached_start_time(self, state: State) -> State: 557 """ 558 Checks if a task is in a Scheduled state and, if it is, ensures that the scheduled 559 time has been reached. Note: Scheduled states include Retry states. Scheduled 560 states with no start time (`start_time = None`) are never considered ready; 561 they must be manually placed in another state. 562 563 Args: 564 - state (State): the current state of this task 565 566 Returns: 567 - State: the state of the task after performing the check 568 569 Raises: 570 - ENDRUN: if the task is Scheduled with a future scheduled time 571 """ 572 if isinstance(state, Scheduled): 573 # handle case where no start_time is set 574 if state.start_time is None: 575 self.logger.debug( 576 "Task '{name}' is scheduled without a known start_time; ending run.".format( 577 name=prefect.context.get("task_full_name", self.task.name) 578 ) 579 ) 580 raise ENDRUN(state) 581 582 # handle case where start time is in the future 583 elif state.start_time and state.start_time > pendulum.now("utc"): 584 self.logger.debug( 585 "Task '{name}': start_time has not been reached; ending run.".format( 586 name=prefect.context.get("task_full_name", self.task.name) 587 ) 588 ) 589 raise ENDRUN(state) 590 591 return state 592 593 def get_task_inputs( 594 self, state: State, upstream_states: Dict[Edge, State] 595 ) -> Dict[str, Result]: 596 """ 597 Given the task's current state and upstream states, generates the inputs for this task. 598 Upstream state result values are used. If the current state has `cached_inputs`, they 599 will override any upstream values. 600 601 Args: 602 - state (State): the task's current state. 603 - upstream_states (Dict[Edge, State]): the upstream state_handlers 604 605 Returns: 606 - Dict[str, Result]: the task inputs 607 608 """ 609 task_inputs = {} # type: Dict[str, Result] 610 611 for edge, upstream_state in upstream_states.items(): 612 # construct task inputs 613 if edge.key is not None: 614 task_inputs[edge.key] = upstream_state._result # type: ignore 615 616 if state.is_pending() and state.cached_inputs: 617 task_inputs.update( 618 { 619 k: r 620 for k, r in state.cached_inputs.items() 621 if task_inputs.get(k, NoResult) == NoResult 622 } 623 ) 624 625 return task_inputs 626 627 def load_results( 628 self, state: State, upstream_states: Dict[Edge, State] 629 ) -> Tuple[State, Dict[Edge, State]]: 630 """ 631 Given the task's current state and upstream states, populates all relevant result objects for this task run. 632 633 Args: 634 - state (State): the task's current state. 635 - upstream_states (Dict[Edge, State]): the upstream state_handlers 636 637 Returns: 638 - Tuple[State, dict]: a tuple of (state, upstream_states) 639 640 """ 641 return state, upstream_states 642 643 @call_state_handlers 644 def check_target(self, state: State, inputs: Dict[str, Result]) -> State: 645 """ 646 Checks if a Result exists at the task's target. 647 648 Args: 649 - state (State): the current state of this task 650 - inputs (Dict[str, Result]): a dictionary of inputs whose keys correspond 651 to the task's `run()` arguments. 652 653 Returns: 654 - State: the state of the task after running the check 655 """ 656 result = self.result 657 target = self.task.target 658 659 if result and target: 660 if result.exists(target, **prefect.context): 661 new_res = result.read(target.format(**prefect.context)) 662 cached_state = Cached( 663 result=new_res, 664 cached_inputs=inputs, 665 cached_result_expiration=None, 666 cached_parameters=prefect.context.get("parameters"), 667 message=f"Result found at task target {target}", 668 ) 669 return cached_state 670 671 return state 672 673 @call_state_handlers 674 def check_task_is_cached(self, state: State, inputs: Dict[str, Result]) -> State: 675 """ 676 Checks if task is cached and whether the cache is still valid. 677 678 Args: 679 - state (State): the current state of this task 680 - inputs (Dict[str, Result]): a dictionary of inputs whose keys correspond 681 to the task's `run()` arguments. 682 683 Returns: 684 - State: the state of the task after running the check 685 686 Raises: 687 - ENDRUN: if the task is not ready to run 688 """ 689 if state.is_cached(): 690 assert isinstance(state, Cached) # mypy assert 691 sanitized_inputs = {key: res.value for key, res in inputs.items()} 692 if self.task.cache_validator( 693 state, sanitized_inputs, prefect.context.get("parameters") 694 ): 695 return state 696 else: 697 state = Pending("Cache was invalid; ready to run.") 698 699 if self.task.cache_for is not None: 700 candidate_states = [] 701 if prefect.context.get("caches"): 702 candidate_states = prefect.context.caches.get( 703 self.task.cache_key or self.task.name, [] 704 ) 705 sanitized_inputs = {key: res.value for key, res in inputs.items()} 706 for candidate in candidate_states: 707 if self.task.cache_validator( 708 candidate, sanitized_inputs, prefect.context.get("parameters") 709 ): 710 return candidate 711 712 if self.task.cache_for is not None: 713 self.logger.warning( 714 "Task '{name}': can't use cache because it " 715 "is now invalid".format( 716 name=prefect.context.get("task_full_name", self.task.name) 717 ) 718 ) 719 return state or Pending("Cache was invalid; ready to run.") 720 721 def run_mapped_task( 722 self, 723 state: State, 724 upstream_states: Dict[Edge, State], 725 context: Dict[str, Any], 726 executor: "prefect.engine.executors.Executor", 727 ) -> State: 728 """ 729 If the task is being mapped, submits children tasks for execution. Returns a `Mapped` state. 730 731 Args: 732 - state (State): the current task state 733 - upstream_states (Dict[Edge, State]): the upstream states 734 - context (dict, optional): prefect Context to use for execution 735 - executor (Executor): executor to use when performing computation 736 737 Returns: 738 - State: the state of the task after running the check 739 740 Raises: 741 - ENDRUN: if the current state is not `Running` 742 """ 743 744 map_upstream_states = [] 745 746 # we don't know how long the iterables are, but we want to iterate until we reach 747 # the end of the shortest one 748 counter = itertools.count() 749 750 # infinite loop, if upstream_states has any entries 751 while True and upstream_states: 752 i = next(counter) 753 states = {} 754 755 try: 756 757 for edge, upstream_state in upstream_states.items(): 758 759 # if the edge is not mapped over, then we take its state 760 if not edge.mapped: 761 states[edge] = upstream_state 762 763 # if the edge is mapped and the upstream state is Mapped, then we are mapping 764 # over a mapped task. In this case, we take the appropriately-indexed upstream 765 # state from the upstream tasks's `Mapped.map_states` array. 766 # Note that these "states" might actually be futures at this time; we aren't 767 # blocking until they finish. 768 elif edge.mapped and upstream_state.is_mapped(): 769 states[edge] = upstream_state.map_states[i] # type: ignore 770 771 # Otherwise, we are mapping over the result of a "vanilla" task. In this 772 # case, we create a copy of the upstream state but set the result to the 773 # appropriately-indexed item from the upstream task's `State.result` 774 # array. 775 else: 776 states[edge] = copy.copy(upstream_state) 777 778 # if the current state is already Mapped, then we might be executing 779 # a re-run of the mapping pipeline. In that case, the upstream states 780 # might not have `result` attributes (as any required results could be 781 # in the `cached_inputs` attribute of one of the child states). 782 # Therefore, we only try to get a result if EITHER this task's 783 # state is not already mapped OR the upstream result is not None. 784 if not state.is_mapped() or upstream_state._result != NoResult: 785 if not hasattr(upstream_state.result, "__getitem__"): 786 raise TypeError( 787 "Cannot map over unsubscriptable object of type {t}: {preview}...".format( 788 t=type(upstream_state.result), 789 preview=repr(upstream_state.result)[:10], 790 ) 791 ) 792 upstream_result = upstream_state._result.from_value( # type: ignore 793 upstream_state.result[i] 794 ) 795 states[edge].result = upstream_result 796 elif state.is_mapped(): 797 if i >= len(state.map_states): # type: ignore 798 raise IndexError() 799 800 # only add this iteration if we made it through all iterables 801 map_upstream_states.append(states) 802 803 # index error means we reached the end of the shortest iterable 804 except IndexError: 805 break 806 807 def run_fn( 808 state: State, map_index: int, upstream_states: Dict[Edge, State] 809 ) -> State: 810 map_context = context.copy() 811 map_context.update(map_index=map_index) 812 with prefect.context(self.context): 813 return self.run( 814 upstream_states=upstream_states, 815 # if we set the state here, then it will not be processed by `initialize_run()` 816 state=state, 817 context=map_context, 818 executor=executor, 819 ) 820 821 # generate initial states, if available 822 if isinstance(state, Mapped): 823 initial_states = list(state.map_states) # type: List[Optional[State]] 824 else: 825 initial_states = [] 826 initial_states.extend([None] * (len(map_upstream_states) - len(initial_states))) 827 828 current_state = Mapped( 829 message="Preparing to submit {} mapped tasks.".format(len(initial_states)), 830 map_states=initial_states, # type: ignore 831 ) 832 state = self.handle_state_change(old_state=state, new_state=current_state) 833 if state is not current_state: 834 return state 835 836 # map over the initial states, a counter representing the map_index, and also the mapped upstream states 837 map_states = executor.map( 838 run_fn, initial_states, range(len(map_upstream_states)), map_upstream_states 839 ) 840 841 self.logger.debug( 842 "{} mapped tasks submitted for execution.".format(len(map_states)) 843 ) 844 new_state = Mapped( 845 message="Mapped tasks submitted for execution.", map_states=map_states 846 ) 847 return self.handle_state_change(old_state=state, new_state=new_state) 848 849 @call_state_handlers 850 def wait_for_mapped_task( 851 self, state: State, executor: "prefect.engine.executors.Executor" 852 ) -> State: 853 """ 854 Blocks until a mapped state's children have finished running. 855 856 Args: 857 - state (State): the current `Mapped` state 858 - executor (Executor): the run's executor 859 860 Returns: 861 - State: the new state 862 """ 863 if state.is_mapped(): 864 assert isinstance(state, Mapped) # mypy assert 865 state.map_states = executor.wait(state.map_states) 866 return state 867 868 @call_state_handlers 869 def set_task_to_running(self, state: State, inputs: Dict[str, Result]) -> State: 870 """ 871 Sets the task to running 872 873 Args: 874 - state (State): the current state of this task 875 - inputs (Dict[str, Result]): a dictionary of inputs whose keys correspond 876 to the task's `run()` arguments. 877 878 Returns: 879 - State: the state of the task after running the check 880 881 Raises: 882 - ENDRUN: if the task is not ready to run 883 """ 884 if not state.is_pending(): 885 self.logger.debug( 886 "Task '{name}': can't set state to Running because it " 887 "isn't Pending; ending run.".format( 888 name=prefect.context.get("task_full_name", self.task.name) 889 ) 890 ) 891 raise ENDRUN(state) 892 893 new_state = Running(message="Starting task run.", cached_inputs=inputs) 894 return new_state 895 896 @run_with_heartbeat 897 @call_state_handlers 898 def get_task_run_state( 899 self, 900 state: State, 901 inputs: Dict[str, Result], 902 timeout_handler: Optional[Callable] = None, 903 ) -> State: 904 """ 905 Runs the task and traps any signals or errors it raises. 906 Also checkpoints the result of a successful task, if `task.checkpoint` is `True`. 907 908 Args: 909 - state (State): the current state of this task 910 - inputs (Dict[str, Result], optional): a dictionary of inputs whose keys correspond 911 to the task's `run()` arguments. 912 - timeout_handler (Callable, optional): function for timing out 913 task execution, with call signature `handler(fn, *args, **kwargs)`. Defaults to 914 `prefect.utilities.executors.timeout_handler` 915 916 Returns: 917 - State: the state of the task after running the check 918 919 Raises: 920 - signals.PAUSE: if the task raises PAUSE 921 - ENDRUN: if the task is not ready to run 922 """ 923 if not state.is_running(): 924 self.logger.debug( 925 "Task '{name}': can't run task because it's not in a " 926 "Running state; ending run.".format( 927 name=prefect.context.get("task_full_name", self.task.name) 928 ) 929 ) 930 931 raise ENDRUN(state) 932 933 value = None 934 try: 935 self.logger.debug( 936 "Task '{name}': Calling task.run() method...".format( 937 name=prefect.context.get("task_full_name", self.task.name) 938 ) 939 ) 940 timeout_handler = ( 941 timeout_handler or prefect.utilities.executors.timeout_handler 942 ) 943 raw_inputs = {k: r.value for k, r in inputs.items()} 944 945 if getattr(self.task, "log_stdout", False): 946 with redirect_stdout(prefect.utilities.logging.RedirectToLog(self.logger)): # type: ignore 947 value = timeout_handler( 948 self.task.run, timeout=self.task.timeout, **raw_inputs 949 ) 950 else: 951 value = timeout_handler( 952 self.task.run, timeout=self.task.timeout, **raw_inputs 953 ) 954 955 except KeyboardInterrupt: 956 self.logger.debug("Interrupt signal raised, cancelling task run.") 957 state = Cancelled(message="Interrupt signal raised, cancelling task run.") 958 return state 959 960 # inform user of timeout 961 except TimeoutError as exc: 962 if prefect.context.get("raise_on_exception"): 963 raise exc 964 state = TimedOut( 965 "Task timed out during execution.", result=exc, cached_inputs=inputs 966 ) 967 return state 968 969 except signals.LOOP as exc: 970 new_state = exc.state 971 assert isinstance(new_state, Looped) 972 new_state.result = self.result.from_value(value=new_state.result) 973 new_state.cached_inputs = inputs 974 new_state.message = exc.state.message or "Task is looping ({})".format( 975 new_state.loop_count 976 ) 977 return new_state 978 979 ## checkpoint tasks if a result is present, except for when the user has opted out by disabling checkpointing 980 if ( 981 prefect.context.get("checkpointing") is True 982 and self.task.checkpoint is not False 983 and value is not None 984 ): 985 try: 986 result = self.result.write(value, filename="output", **prefect.context) 987 except NotImplementedError: 988 result = self.result.from_value(value=value) 989 else: 990 result = self.result.from_value(value=value) 991 992 state = Success( 993 result=result, message="Task run succeeded.", cached_inputs=inputs 994 ) 995 return state 996 997 @call_state_handlers 998 def cache_result(self, state: State, inputs: Dict[str, Result]) -> State: 999 """ 1000 Caches the result of a successful task, if appropriate. Alternatively, 1001 if the task is failed, caches the inputs. 1002 1003 Tasks are cached if: 1004 - task.cache_for is not None 1005 - the task state is Successful 1006 - the task state is not Skipped (which is a subclass of Successful) 1007 1008 Args: 1009 - state (State): the current state of this task 1010 - inputs (Dict[str, Result], optional): a dictionary of inputs whose keys correspond 1011 to the task's `run()` arguments. 1012 1013 Returns: 1014 - State: the state of the task after running the check 1015 1016 """ 1017 state.cached_inputs = inputs 1018 1019 if ( 1020 state.is_successful() 1021 and not state.is_skipped() 1022 and self.task.cache_for is not None 1023 ): 1024 expiration = pendulum.now("utc") + self.task.cache_for 1025 cached_state = Cached( 1026 result=state._result, 1027 cached_inputs=inputs, 1028 cached_result_expiration=expiration, 1029 cached_parameters=prefect.context.get("parameters"), 1030 message=state.message, 1031 ) 1032 return cached_state 1033 1034 return state 1035 1036 @call_state_handlers 1037 def check_for_retry(self, state: State, inputs: Dict[str, Result]) -> State: 1038 """ 1039 Checks to see if a FAILED task should be retried. 1040 1041 Args: 1042 - state (State): the current state of this task 1043 - inputs (Dict[str, Result], optional): a dictionary of inputs whose keys correspond 1044 to the task's `run()` arguments. 1045 1046 Returns: 1047 - State: the state of the task after running the check 1048 """ 1049 if state.is_failed(): 1050 run_count = prefect.context.get("task_run_count", 1) 1051 if prefect.context.get("task_loop_count") is not None: 1052 1053 loop_result = self.result.from_value( 1054 value=prefect.context.get("task_loop_result") 1055 ) 1056 1057 ## checkpoint tasks if a result is present, except for when the user has opted out by disabling checkpointing 1058 if ( 1059 prefect.context.get("checkpointing") is True 1060 and self.task.checkpoint is not False 1061 and loop_result.value is not None 1062 ): 1063 try: 1064 value = prefect.context.get("task_loop_result") 1065 loop_result = self.result.write( 1066 value, filename="output", **prefect.context 1067 ) 1068 except NotImplementedError: 1069 pass 1070 1071 loop_context = { 1072 "_loop_count": PrefectResult( 1073 location=json.dumps(prefect.context["task_loop_count"]), 1074 ), 1075 "_loop_result": loop_result, 1076 } 1077 inputs.update(loop_context) 1078 if run_count <= self.task.max_retries: 1079 start_time = pendulum.now("utc") + self.task.retry_delay 1080 msg = "Retrying Task (after attempt {n} of {m})".format( 1081 n=run_count, m=self.task.max_retries + 1 1082 ) 1083 retry_state = Retrying( 1084 start_time=start_time, 1085 cached_inputs=inputs, 1086 message=msg, 1087 run_count=run_count, 1088 ) 1089 return retry_state 1090 1091 return state 1092 1093 def check_task_is_looping( 1094 self, 1095 state: State, 1096 inputs: Dict[str, Result] = None, 1097 upstream_states: Dict[Edge, State] = None, 1098 context: Dict[str, Any] = None, 1099 executor: "prefect.engine.executors.Executor" = None, 1100 ) -> State: 1101 """ 1102 Checks to see if the task is in a `Looped` state and if so, rerun the pipeline with an incremeneted `loop_count`. 1103 1104 Args: 1105 - state (State, optional): initial `State` to begin task run from; 1106 defaults to `Pending()` 1107 - inputs (Dict[str, Result], optional): a dictionary of inputs whose keys correspond 1108 to the task's `run()` arguments. 1109 - upstream_states (Dict[Edge, State]): a dictionary 1110 representing the states of any tasks upstream of this one. The keys of the 1111 dictionary should correspond to the edges leading to the task. 1112 - context (dict, optional): prefect Context to use for execution 1113 - executor (Executor, optional): executor to use when performing 1114 computation; defaults to the executor specified in your prefect configuration 1115 1116 Returns: 1117 - `State` object representing the final post-run state of the Task 1118 """ 1119 if state.is_looped(): 1120 assert isinstance(state, Looped) # mypy assert 1121 assert isinstance(context, dict) # mypy assert 1122 msg = "Looping task (on loop index {})".format(state.loop_count) 1123 context.update( 1124 { 1125 "task_loop_result": state.result, 1126 "task_loop_count": state.loop_count + 1, 1127 } 1128 ) 1129 context.update(task_run_version=prefect.context.get("task_run_version")) 1130 new_state = Pending(message=msg, cached_inputs=inputs) 1131 raise RecursiveCall( 1132 self.run, 1133 self, 1134 new_state, 1135 upstream_states=upstream_states, 1136 context=context, 1137 executor=executor, 1138 ) 1139 1140 return state 1141 [end of src/prefect/engine/task_runner.py] [start of src/prefect/utilities/executors.py] 1 import multiprocessing 2 import os 3 import signal 4 import subprocess 5 import sys 6 import threading 7 import warnings 8 from concurrent.futures import ThreadPoolExecutor 9 from concurrent.futures import TimeoutError as FutureTimeout 10 from functools import wraps 11 from typing import TYPE_CHECKING, Any, Callable, List, Union 12 13 import prefect 14 15 if TYPE_CHECKING: 16 import prefect.engine.runner 17 import prefect.engine.state 18 from prefect.engine.state import State # pylint: disable=W0611 19 20 StateList = Union["State", List["State"]] 21 22 23 def run_with_heartbeat( 24 runner_method: Callable[..., "prefect.engine.state.State"] 25 ) -> Callable[..., "prefect.engine.state.State"]: 26 """ 27 Utility decorator for running class methods with a heartbeat. The class should implement 28 `self._heartbeat` with no arguments. 29 """ 30 31 @wraps(runner_method) 32 def inner( 33 self: "prefect.engine.runner.Runner", *args: Any, **kwargs: Any 34 ) -> "prefect.engine.state.State": 35 try: 36 p = None 37 try: 38 if self._heartbeat(): 39 # we use Popen + a prefect CLI for a few reasons: 40 # - using threads would interfere with the task; for example, a task 41 # which does not release the GIL would prevent the heartbeat thread from 42 # firing 43 # - using multiprocessing.Process would release the GIL but a subprocess 44 # cannot be spawned from a deamonic subprocess, and Dask sometimes will 45 # submit tasks to run within daemonic subprocesses 46 current_env = dict(os.environ).copy() 47 auth_token = prefect.context.config.cloud.get("auth_token") 48 api_url = prefect.context.config.cloud.get("api") 49 current_env.setdefault("PREFECT__CLOUD__AUTH_TOKEN", auth_token) 50 current_env.setdefault("PREFECT__CLOUD__API", api_url) 51 clean_env = {k: v for k, v in current_env.items() if v is not None} 52 p = subprocess.Popen( 53 self.heartbeat_cmd, 54 env=clean_env, 55 stdout=subprocess.DEVNULL, 56 stderr=subprocess.DEVNULL, 57 ) 58 except Exception as exc: 59 self.logger.exception( 60 "Heartbeat failed to start. This could result in a zombie run." 61 ) 62 return runner_method(self, *args, **kwargs) 63 finally: 64 if p is not None: 65 exit_code = p.poll() 66 if exit_code is not None: 67 msg = "Heartbeat process died with exit code {}".format(exit_code) 68 self.logger.error(msg) 69 p.kill() 70 71 return inner 72 73 74 def main_thread_timeout( 75 fn: Callable, *args: Any, timeout: int = None, **kwargs: Any 76 ) -> Any: 77 """ 78 Helper function for implementing timeouts on function executions. 79 Implemented by setting a `signal` alarm on a timer. Must be run in the main thread. 80 Args: 81 - fn (callable): the function to execute 82 - *args (Any): arguments to pass to the function 83 - timeout (int): the length of time to allow for 84 execution before raising a `TimeoutError`, represented as an integer in seconds 85 - **kwargs (Any): keyword arguments to pass to the function 86 Returns: 87 - the result of `f(*args, **kwargs)` 88 Raises: 89 - TimeoutError: if function execution exceeds the allowed timeout 90 - ValueError: if run from outside the main thread 91 """ 92 93 if timeout is None: 94 return fn(*args, **kwargs) 95 96 def error_handler(signum, frame): # type: ignore 97 raise TimeoutError("Execution timed out.") 98 99 try: 100 signal.signal(signal.SIGALRM, error_handler) 101 signal.alarm(timeout) 102 return fn(*args, **kwargs) 103 finally: 104 signal.alarm(0) 105 106 107 def multiprocessing_timeout( 108 fn: Callable, *args: Any, timeout: int = None, **kwargs: Any 109 ) -> Any: 110 """ 111 Helper function for implementing timeouts on function executions. 112 Implemented by spawning a new multiprocess.Process() and joining with timeout. 113 Args: 114 - fn (callable): the function to execute 115 - *args (Any): arguments to pass to the function 116 - timeout (int): the length of time to allow for 117 execution before raising a `TimeoutError`, represented as an integer in seconds 118 - **kwargs (Any): keyword arguments to pass to the function 119 Returns: 120 - the result of `f(*args, **kwargs)` 121 Raises: 122 - AssertionError: if run from a daemonic process 123 - TimeoutError: if function execution exceeds the allowed timeout 124 """ 125 126 if timeout is None: 127 return fn(*args, **kwargs) 128 129 def retrieve_value( 130 *args: Any, _container: multiprocessing.Queue, _ctx_dict: dict, **kwargs: Any 131 ) -> None: 132 """Puts the return value in a multiprocessing-safe container""" 133 try: 134 with prefect.context(_ctx_dict): 135 val = fn(*args, **kwargs) 136 _container.put(val) 137 except Exception as exc: 138 _container.put(exc) 139 140 q = multiprocessing.Queue() # type: multiprocessing.Queue 141 kwargs["_container"] = q 142 kwargs["_ctx_dict"] = prefect.context.to_dict() 143 p = multiprocessing.Process(target=retrieve_value, args=args, kwargs=kwargs) 144 p.start() 145 p.join(timeout) 146 p.terminate() 147 if not q.empty(): 148 res = q.get() 149 if isinstance(res, Exception): 150 raise res 151 return res 152 else: 153 raise TimeoutError("Execution timed out.") 154 155 156 def timeout_handler( 157 fn: Callable, *args: Any, timeout: int = None, **kwargs: Any 158 ) -> Any: 159 """ 160 Helper function for implementing timeouts on function executions. 161 162 The exact implementation varies depending on whether this function is being run 163 in the main thread or a non-daemonic subprocess. If this is run from a daemonic subprocess or on Windows, 164 the task is run in a `ThreadPoolExecutor` and only a soft timeout is enforced, meaning 165 a `TimeoutError` is raised at the appropriate time but the task continues running in the background. 166 167 Args: 168 - fn (callable): the function to execute 169 - *args (Any): arguments to pass to the function 170 - timeout (int): the length of time to allow for 171 execution before raising a `TimeoutError`, represented as an integer in seconds 172 - **kwargs (Any): keyword arguments to pass to the function 173 174 Returns: 175 - the result of `f(*args, **kwargs)` 176 177 Raises: 178 - TimeoutError: if function execution exceeds the allowed timeout 179 """ 180 # if no timeout, just run the function 181 if timeout is None: 182 return fn(*args, **kwargs) 183 184 # if we are running the main thread, use a signal to stop execution at the appropriate time; 185 # else if we are running in a non-daemonic process, spawn a subprocess to kill at the appropriate time 186 if not sys.platform.startswith("win"): 187 if threading.current_thread() is threading.main_thread(): 188 return main_thread_timeout(fn, *args, timeout=timeout, **kwargs) 189 elif multiprocessing.current_process().daemon is False: 190 return multiprocessing_timeout(fn, *args, timeout=timeout, **kwargs) 191 192 msg = ( 193 "This task is running in a daemonic subprocess; " 194 "consequently Prefect can only enforce a soft timeout limit, i.e., " 195 "if your Task reaches its timeout limit it will enter a TimedOut state " 196 "but continue running in the background." 197 ) 198 else: 199 msg = ( 200 "This task is running on Windows; " 201 "consequently Prefect can only enforce a soft timeout limit, i.e., " 202 "if your Task reaches its timeout limit it will enter a TimedOut state " 203 "but continue running in the background." 204 ) 205 206 warnings.warn(msg) 207 executor = ThreadPoolExecutor() 208 209 def run_with_ctx(*args: Any, _ctx_dict: dict, **kwargs: Any) -> Any: 210 with prefect.context(_ctx_dict): 211 return fn(*args, **kwargs) 212 213 fut = executor.submit( 214 run_with_ctx, *args, _ctx_dict=prefect.context.to_dict(), **kwargs 215 ) 216 217 try: 218 return fut.result(timeout=timeout) 219 except FutureTimeout: 220 raise TimeoutError("Execution timed out.") 221 222 223 class RecursiveCall(Exception): 224 def __init__(self, func: Callable, *args: Any, **kwargs: Any): 225 self.func = func 226 self.args = args 227 self.kwargs = kwargs 228 229 230 def tail_recursive(func: Callable) -> Callable: 231 """ 232 Helper function to facilitate tail recursion of the wrapped function. 233 234 This allows for recursion with unlimited depth since a stack is not allocated for 235 each "nested" call. Note: instead of calling the target function in question, a 236 `RecursiveCall` exception must be raised instead. 237 238 Args: 239 - fn (callable): the function to execute 240 241 Returns: 242 - the result of `f(*args, **kwargs)` 243 244 Raises: 245 - RecursionError: if a recursive "call" (raised exception) is made with a function that is 246 not decorated with `tail_recursive` decorator. 247 """ 248 249 @wraps(func) 250 def wrapper(*args: Any, **kwargs: Any) -> Any: 251 while True: 252 try: 253 return func(*args, **kwargs) 254 except RecursiveCall as exc: 255 try: 256 call_func = getattr(exc.func, "__wrapped_func__") 257 except AttributeError: 258 raise RecursionError( 259 "function has not been wrapped to provide tail recursion (func={})".format( 260 exc.func 261 ) 262 ) 263 264 # there may be multiple nested recursive calls, we should only respond to calls for the 265 # wrapped function explicitly, otherwise allow the call to continue to propagate 266 if call_func != func: 267 raise exc 268 args = exc.args 269 kwargs = exc.kwargs 270 continue 271 272 setattr(wrapper, "__wrapped_func__", func) 273 return wrapper 274 [end of src/prefect/utilities/executors.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
PrefectHQ/prefect
35aa1de018a983cf972c9c30a77159ac7f2de18d
Implement Depth-First Execution with Mapping Currently each "level" of a mapped pipeline is executed before proceeding to the next level. This is undesirable especially for pipelines where it's important that each "branch" of the pipeline finish as quickly as possible. To implement DFE, we'll need to rearrange two things: - how mapped work gets submitted (it should start being submitted from the Flow Runner not the Task Runner) - in order to submit work to Dask and let Dask handle the DFE scheduling, we'll want to refactor how we walk the DAG and wait to determine the width of a pipeline before we submit it (because mapping is fully dynamic we can only ascertain this width at runtime) We'll need to be vigilant about: - performance - retries - result handling
2020-05-24T02:51:51Z
<patch> diff --git a/src/prefect/engine/cloud/task_runner.py b/src/prefect/engine/cloud/task_runner.py --- a/src/prefect/engine/cloud/task_runner.py +++ b/src/prefect/engine/cloud/task_runner.py @@ -339,7 +339,7 @@ def run( state: State = None, upstream_states: Dict[Edge, State] = None, context: Dict[str, Any] = None, - executor: "prefect.engine.executors.Executor" = None, + is_mapped_parent: bool = False, ) -> State: """ The main endpoint for TaskRunners. Calling this method will conditionally execute @@ -354,8 +354,8 @@ def run( representing the states of any tasks upstream of this one. The keys of the dictionary should correspond to the edges leading to the task. - context (dict, optional): prefect Context to use for execution - - executor (Executor, optional): executor to use when performing - computation; defaults to the executor specified in your prefect configuration + - is_mapped_parent (bool): a boolean indicating whether this task run is the run of a parent + mapped task Returns: - `State` object representing the final post-run state of the Task @@ -365,7 +365,7 @@ def run( state=state, upstream_states=upstream_states, context=context, - executor=executor, + is_mapped_parent=is_mapped_parent, ) while (end_state.is_retrying() or end_state.is_queued()) and ( end_state.start_time <= pendulum.now("utc").add(minutes=10) # type: ignore @@ -388,6 +388,6 @@ def run( state=end_state, upstream_states=upstream_states, context=context, - executor=executor, + is_mapped_parent=is_mapped_parent, ) return end_state diff --git a/src/prefect/engine/executors/__init__.py b/src/prefect/engine/executors/__init__.py --- a/src/prefect/engine/executors/__init__.py +++ b/src/prefect/engine/executors/__init__.py @@ -8,9 +8,6 @@ has completed running - `wait(object)`: resolves any objects returned by `executor.submit` to their values; this function _will_ block until execution of `object` is complete -- `map(fn, *args, upstream_states, **kwargs)`: submit function to be mapped - over based on the edge information contained in `upstream_states`. Any "mapped" Edge - will be converted into multiple function submissions, one for each value of the upstream mapped tasks. Currently, the available executor options are: diff --git a/src/prefect/engine/executors/base.py b/src/prefect/engine/executors/base.py --- a/src/prefect/engine/executors/base.py +++ b/src/prefect/engine/executors/base.py @@ -1,8 +1,6 @@ import uuid from contextlib import contextmanager -from typing import Any, Callable, Iterator, List - -from prefect.utilities.executors import timeout_handler +from typing import Any, Callable, Iterator class Executor: @@ -10,8 +8,6 @@ class Executor: Base Executor class that all other executors inherit from. """ - timeout_handler = staticmethod(timeout_handler) - def __init__(self) -> None: self.executor_id = type(self).__name__ + ": " + str(uuid.uuid4()) @@ -28,20 +24,6 @@ def start(self) -> Iterator[None]: """ yield - def map(self, fn: Callable, *args: Any) -> List[Any]: - """ - Submit a function to be mapped over its iterable arguments. - - Args: - - fn (Callable): function that is being submitted for execution - - *args (Any): arguments that the function will be mapped over - - Returns: - - List[Any]: the result of computating the function over the arguments - - """ - raise NotImplementedError() - def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> Any: """ Submit a function to the executor for execution. Returns a future-like object. diff --git a/src/prefect/engine/executors/dask.py b/src/prefect/engine/executors/dask.py --- a/src/prefect/engine/executors/dask.py +++ b/src/prefect/engine/executors/dask.py @@ -2,7 +2,7 @@ import uuid import warnings from contextlib import contextmanager -from typing import TYPE_CHECKING, Any, Callable, Iterator, List, Union +from typing import Any, Callable, Iterator, TYPE_CHECKING, Union from prefect import context from prefect.engine.executors.base import Executor @@ -63,8 +63,6 @@ class name (e.g. `"distributed.LocalCluster"`), or the class itself. your Prefect configuration. - **kwargs: DEPRECATED - Example: - Using a temporary local dask cluster: ```python @@ -269,41 +267,6 @@ def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> "Future": fire_and_forget(future) return future - def map(self, fn: Callable, *args: Any, **kwargs: Any) -> List["Future"]: - """ - Submit a function to be mapped over its iterable arguments. - - Args: - - fn (Callable): function that is being submitted for execution - - *args (Any): arguments that the function will be mapped over - - **kwargs (Any): additional keyword arguments that will be passed to the Dask Client - - Returns: - - List[Future]: a list of Future-like objects that represent each computation of - fn(*a), where a = zip(*args)[i] - - """ - if not args: - return [] - - # import dask functions here to decrease our import times - from distributed import fire_and_forget, worker_client - - dask_kwargs = self._prep_dask_kwargs() - kwargs.update(dask_kwargs) - - if self.is_started and hasattr(self, "client"): - futures = self.client.map(fn, *args, **kwargs) - elif self.is_started: - with worker_client(separate_thread=True) as client: - futures = client.map(fn, *args, **kwargs) - return client.gather(futures) - else: - raise ValueError("This executor has not been started.") - - fire_and_forget(futures) - return futures - def wait(self, futures: Any) -> Any: """ Resolves the Future objects to their values. Blocks until the computation is complete. @@ -331,8 +294,6 @@ class LocalDaskExecutor(Executor): An executor that runs all functions locally using `dask` and a configurable dask scheduler. Note that this executor is known to occasionally run tasks twice when using multi-level mapping. - Prefect's mapping feature will not work in conjunction with setting `scheduler="processes"`. - Args: - scheduler (str): The local dask scheduler to use; common options are "synchronous", "threads" and "processes". Defaults to "threads". - **kwargs (Any): Additional keyword arguments to pass to dask config @@ -373,28 +334,6 @@ def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> "dask.delayed": return dask.delayed(fn)(*args, **kwargs) - def map(self, fn: Callable, *args: Any) -> List["dask.delayed"]: - """ - Submit a function to be mapped over its iterable arguments. - - Args: - - fn (Callable): function that is being submitted for execution - - *args (Any): arguments that the function will be mapped over - - Returns: - - List[dask.delayed]: the result of computating the function over the arguments - - """ - if self.scheduler == "processes": - raise RuntimeError( - "LocalDaskExecutor cannot map if scheduler='processes'. Please set to either 'synchronous' or 'threads'." - ) - - results = [] - for args_i in zip(*args): - results.append(self.submit(fn, *args_i)) - return results - def wait(self, futures: Any) -> Any: """ Resolves a `dask.delayed` object to its values. Blocks until the computation is complete. diff --git a/src/prefect/engine/executors/local.py b/src/prefect/engine/executors/local.py --- a/src/prefect/engine/executors/local.py +++ b/src/prefect/engine/executors/local.py @@ -1,4 +1,4 @@ -from typing import Any, Callable, List +from typing import Any, Callable from prefect.engine.executors.base import Executor @@ -23,23 +23,6 @@ def submit(self, fn: Callable, *args: Any, **kwargs: Any) -> Any: """ return fn(*args, **kwargs) - def map(self, fn: Callable, *args: Any) -> List[Any]: - """ - Submit a function to be mapped over its iterable arguments. - - Args: - - fn (Callable): function that is being submitted for execution - - *args (Any): arguments that the function will be mapped over - - Returns: - - List[Any]: the result of computating the function over the arguments - - """ - results = [] - for args_i in zip(*args): - results.append(fn(*args_i)) - return results - def wait(self, futures: Any) -> Any: """ Returns the results of the provided futures. diff --git a/src/prefect/engine/flow_runner.py b/src/prefect/engine/flow_runner.py --- a/src/prefect/engine/flow_runner.py +++ b/src/prefect/engine/flow_runner.py @@ -10,7 +10,6 @@ ) import pendulum - import prefect from prefect.core import Edge, Flow, Task from prefect.engine.result import Result @@ -28,7 +27,10 @@ Success, ) from prefect.utilities.collections import flatten_seq -from prefect.utilities.executors import run_with_heartbeat +from prefect.utilities.executors import ( + run_with_heartbeat, + prepare_upstream_states_for_mapping, +) FlowRunnerInitializeResult = NamedTuple( "FlowRunnerInitializeResult", @@ -381,6 +383,11 @@ def get_flow_run_state( - State: `State` representing the final post-run state of the `Flow`. """ + # this dictionary is used for tracking the states of "children" mapped tasks; + # when running on Dask, we want to avoid serializing futures, so instead + # of storing child task states in the `map_states` attribute we instead store + # in this dictionary and only after they are resolved do we attach them to the Mapped state + mapped_children = dict() # type: Dict[Task, list] if not state.is_running(): self.logger.info("Flow is not in a Running state.") @@ -396,14 +403,19 @@ def get_flow_run_state( with executor.start(): for task in self.flow.sorted_tasks(): - task_state = task_states.get(task) + + # if a task is a constant task, we already know its return value + # no need to use up resources by running it through a task runner if task_state is None and isinstance( task, prefect.tasks.core.constants.Constant ): task_states[task] = task_state = Success(result=task.value) # if the state is finished, don't run the task, just use the provided state + # if the state is cached / mapped, we still want to run the task runner pipeline steps + # to either ensure the cache is still valid / or to recreate the mapped pipeline for + # possible retries if ( isinstance(task_state, State) and task_state.is_finished() @@ -412,7 +424,12 @@ def get_flow_run_state( ): continue - upstream_states = {} # type: Dict[Edge, Union[State, Iterable]] + upstream_states = {} # type: Dict[Edge, State] + + # this dictionary is used exclusively for "reduce" tasks + # in particular we store the states / futures corresponding to + # the upstream children, and if running on Dask, let Dask resolve them at the appropriate time + upstream_mapped_states = {} # type: Dict[Edge, list] # -- process each edge to the task for edge in self.flow.edges_to(task): @@ -420,6 +437,13 @@ def get_flow_run_state( edge.upstream_task, Pending(message="Task state not available.") ) + # this checks whether the task is a "reduce" task for a mapped pipeline + # and if so, collects the appropriate upstream children + if not edge.mapped and isinstance(upstream_states[edge], Mapped): + upstream_mapped_states[edge] = mapped_children.get( + edge.upstream_task, [] + ) + # augment edges with upstream constants for key, val in self.flow.constants[task].items(): edge = Edge( @@ -432,9 +456,80 @@ def get_flow_run_state( result=ConstantResult(value=val), ) - # -- run the task + # handle mapped tasks + if any([edge.mapped for edge in upstream_states.keys()]): - with prefect.context(task_full_name=task.name, task_tags=task.tags): + ## wait on upstream states to determine the width of the pipeline + ## this is the key to depth-first execution + upstream_states.update( + executor.wait( + {e: state for e, state in upstream_states.items()} + ) + ) + + ## we submit the task to the task runner to determine if + ## we can proceed with mapping - if the new task state is not a Mapped + ## state then we don't proceed + task_states[task] = executor.wait( + executor.submit( + self.run_task, + task=task, + state=task_state, # original state + upstream_states=upstream_states, + context=dict( + prefect.context, **task_contexts.get(task, {}) + ), + task_runner_state_handlers=task_runner_state_handlers, + upstream_mapped_states=upstream_mapped_states, + is_mapped_parent=True, + ) + ) + + ## either way, we should now have enough resolved states to restructure + ## the upstream states into a list of upstream state dictionaries to iterate over + list_of_upstream_states = prepare_upstream_states_for_mapping( + task_states[task], upstream_states, mapped_children + ) + + submitted_states = [] + + for idx, states in enumerate(list_of_upstream_states): + ## if we are on a future rerun of a partially complete flow run, + ## there might be mapped children in a retrying state; this check + ## looks into the current task state's map_states for such info + if ( + isinstance(task_state, Mapped) + and len(task_state.map_states) >= idx + 1 + ): + current_state = task_state.map_states[ + idx + ] # type: Optional[State] + elif isinstance(task_state, Mapped): + current_state = None + else: + current_state = task_state + + ## this is where each child is submitted for actual work + submitted_states.append( + executor.submit( + self.run_task, + task=task, + state=current_state, + upstream_states=states, + context=dict( + prefect.context, + **task_contexts.get(task, {}), + map_index=idx, + ), + task_runner_state_handlers=task_runner_state_handlers, + upstream_mapped_states=upstream_mapped_states, + ) + ) + if isinstance(task_states.get(task), Mapped): + mapped_children[task] = submitted_states # type: ignore + + # -- run the task + else: task_states[task] = executor.submit( self.run_task, task=task, @@ -442,7 +537,7 @@ def get_flow_run_state( upstream_states=upstream_states, context=dict(prefect.context, **task_contexts.get(task, {})), task_runner_state_handlers=task_runner_state_handlers, - executor=executor, + upstream_mapped_states=upstream_mapped_states, ) # --------------------------------------------- @@ -469,7 +564,9 @@ def get_flow_run_state( all_final_states = final_states.copy() for t, s in list(final_states.items()): if s.is_mapped(): - s.map_states = executor.wait(s.map_states) + # ensure we wait for any mapped children to complete + if t in mapped_children: + s.map_states = executor.wait(mapped_children[t]) s.result = [ms.result for ms in s.map_states] all_final_states[t] = s.map_states @@ -540,7 +637,8 @@ def run_task( upstream_states: Dict[Edge, State], context: Dict[str, Any], task_runner_state_handlers: Iterable[Callable], - executor: "prefect.engine.executors.Executor", + is_mapped_parent: bool = False, + upstream_mapped_states: Dict[Edge, list] = None, ) -> State: """ @@ -556,13 +654,17 @@ def run_task( - task_runner_state_handlers (Iterable[Callable]): A list of state change handlers that will be provided to the task_runner, and called whenever a task changes state. - - executor (Executor): executor to use when performing - computation; defaults to the executor provided in your prefect configuration + - is_mapped_parent (bool): a boolean indicating whether this task run is the run of a parent + mapped task + - upstream_mapped_states (Dict[Edge, list]): dictionary of upstream states corresponding to + mapped children dependencies Returns: - State: `State` representing the final post-run state of the `Flow`. """ + upstream_mapped_states = upstream_mapped_states or {} + with prefect.context(self.context): default_result = task.result or self.flow.result task_runner = self.task_runner_cls( @@ -578,7 +680,9 @@ def run_task( # if the upstream state is Mapped, wait until its results are all available if not edge.mapped and upstream_state.is_mapped(): assert isinstance(upstream_state, Mapped) # mypy assert - upstream_state.map_states = executor.wait(upstream_state.map_states) + upstream_state.map_states = upstream_mapped_states.get( + edge, upstream_state.map_states + ) upstream_state.result = [ s.result for s in upstream_state.map_states ] @@ -587,5 +691,5 @@ def run_task( state=state, upstream_states=upstream_states, context=context, - executor=executor, + is_mapped_parent=is_mapped_parent, ) diff --git a/src/prefect/engine/task_runner.py b/src/prefect/engine/task_runner.py --- a/src/prefect/engine/task_runner.py +++ b/src/prefect/engine/task_runner.py @@ -1,6 +1,4 @@ -import copy from contextlib import redirect_stdout -import itertools import json from typing import ( Any, @@ -196,7 +194,7 @@ def run( state: State = None, upstream_states: Dict[Edge, State] = None, context: Dict[str, Any] = None, - executor: "prefect.engine.executors.Executor" = None, + is_mapped_parent: bool = False, ) -> State: """ The main endpoint for TaskRunners. Calling this method will conditionally execute @@ -210,8 +208,8 @@ def run( representing the states of any tasks upstream of this one. The keys of the dictionary should correspond to the edges leading to the task. - context (dict, optional): prefect Context to use for execution - - executor (Executor, optional): executor to use when performing - computation; defaults to the executor specified in your prefect configuration + - is_mapped_parent (bool): a boolean indicating whether this task run is the run of a parent + mapped task Returns: - `State` object representing the final post-run state of the Task @@ -224,15 +222,6 @@ def run( index=("" if map_index is None else "[{}]".format(map_index)), ) - if executor is None: - executor = prefect.engine.get_default_executor_class()() - - # if mapped is true, this task run is going to generate a Mapped state. It won't - # actually run, but rather spawn children tasks to map over its inputs. We - # detect this case by checking for: - # - upstream edges that are `mapped` - # - no `map_index` (which indicates that this is the child task, not the parent) - mapped = any([e.mapped for e in upstream_states]) and map_index is None task_inputs = {} # type: Dict[str, Any] try: @@ -270,29 +259,16 @@ def run( state=state, upstream_states=upstream_states ) - # if the task is mapped, process the mapped children and exit - if mapped: - state = self.run_mapped_task( - state=state, - upstream_states=upstream_states, - context=context, - executor=executor, - ) - - state = self.wait_for_mapped_task(state=state, executor=executor) - - self.logger.debug( - "Task '{name}': task has been mapped; ending run.".format( - name=context["task_full_name"] - ) - ) - raise ENDRUN(state) - # retrieve task inputs from upstream and also explicitly passed inputs task_inputs = self.get_task_inputs( state=state, upstream_states=upstream_states ) + if is_mapped_parent: + state = self.check_task_ready_to_map( + state, upstream_states=upstream_states + ) + if self.task.target: # check to see if there is a Result at the task's target state = self.check_target(state, inputs=task_inputs) @@ -309,9 +285,7 @@ def run( state = self.set_task_to_running(state, inputs=task_inputs) # run the task - state = self.get_task_run_state( - state, inputs=task_inputs, timeout_handler=executor.timeout_handler - ) + state = self.get_task_run_state(state, inputs=task_inputs) # cache the output, if appropriate state = self.cache_result(state, inputs=task_inputs) @@ -324,7 +298,6 @@ def run( inputs=task_inputs, upstream_states=upstream_states, context=context, - executor=executor, ) # for pending signals, including retries and pauses we need to make sure the @@ -438,6 +411,45 @@ def check_upstream_skipped( ) return state + @call_state_handlers + def check_task_ready_to_map( + self, state: State, upstream_states: Dict[Edge, State] + ) -> State: + """ + Checks if the parent task is ready to proceed with mapping. + + Args: + - state (State): the current state of this task + - upstream_states (Dict[Edge, Union[State, List[State]]]): the upstream states + + Raises: + - ENDRUN: either way, we dont continue past this point + """ + if state.is_mapped(): + raise ENDRUN(state) + + ## we can't map if there are no success states with iterables upstream + if upstream_states and not any( + [ + edge.mapped and state.is_successful() + for edge, state in upstream_states.items() + ] + ): + new_state = Failed("No upstream states can be mapped over.") # type: State + raise ENDRUN(new_state) + elif not all( + [ + hasattr(state.result, "__getitem__") + for edge, state in upstream_states.items() + if state.is_successful() and not state.is_mapped() and edge.mapped + ] + ): + new_state = Failed("No upstream states can be mapped over.") + raise ENDRUN(new_state) + else: + new_state = Mapped("Ready to proceed with mapping.") + raise ENDRUN(new_state) + @call_state_handlers def check_task_trigger( self, state: State, upstream_states: Dict[Edge, State] @@ -718,153 +730,6 @@ def check_task_is_cached(self, state: State, inputs: Dict[str, Result]) -> State ) return state or Pending("Cache was invalid; ready to run.") - def run_mapped_task( - self, - state: State, - upstream_states: Dict[Edge, State], - context: Dict[str, Any], - executor: "prefect.engine.executors.Executor", - ) -> State: - """ - If the task is being mapped, submits children tasks for execution. Returns a `Mapped` state. - - Args: - - state (State): the current task state - - upstream_states (Dict[Edge, State]): the upstream states - - context (dict, optional): prefect Context to use for execution - - executor (Executor): executor to use when performing computation - - Returns: - - State: the state of the task after running the check - - Raises: - - ENDRUN: if the current state is not `Running` - """ - - map_upstream_states = [] - - # we don't know how long the iterables are, but we want to iterate until we reach - # the end of the shortest one - counter = itertools.count() - - # infinite loop, if upstream_states has any entries - while True and upstream_states: - i = next(counter) - states = {} - - try: - - for edge, upstream_state in upstream_states.items(): - - # if the edge is not mapped over, then we take its state - if not edge.mapped: - states[edge] = upstream_state - - # if the edge is mapped and the upstream state is Mapped, then we are mapping - # over a mapped task. In this case, we take the appropriately-indexed upstream - # state from the upstream tasks's `Mapped.map_states` array. - # Note that these "states" might actually be futures at this time; we aren't - # blocking until they finish. - elif edge.mapped and upstream_state.is_mapped(): - states[edge] = upstream_state.map_states[i] # type: ignore - - # Otherwise, we are mapping over the result of a "vanilla" task. In this - # case, we create a copy of the upstream state but set the result to the - # appropriately-indexed item from the upstream task's `State.result` - # array. - else: - states[edge] = copy.copy(upstream_state) - - # if the current state is already Mapped, then we might be executing - # a re-run of the mapping pipeline. In that case, the upstream states - # might not have `result` attributes (as any required results could be - # in the `cached_inputs` attribute of one of the child states). - # Therefore, we only try to get a result if EITHER this task's - # state is not already mapped OR the upstream result is not None. - if not state.is_mapped() or upstream_state._result != NoResult: - if not hasattr(upstream_state.result, "__getitem__"): - raise TypeError( - "Cannot map over unsubscriptable object of type {t}: {preview}...".format( - t=type(upstream_state.result), - preview=repr(upstream_state.result)[:10], - ) - ) - upstream_result = upstream_state._result.from_value( # type: ignore - upstream_state.result[i] - ) - states[edge].result = upstream_result - elif state.is_mapped(): - if i >= len(state.map_states): # type: ignore - raise IndexError() - - # only add this iteration if we made it through all iterables - map_upstream_states.append(states) - - # index error means we reached the end of the shortest iterable - except IndexError: - break - - def run_fn( - state: State, map_index: int, upstream_states: Dict[Edge, State] - ) -> State: - map_context = context.copy() - map_context.update(map_index=map_index) - with prefect.context(self.context): - return self.run( - upstream_states=upstream_states, - # if we set the state here, then it will not be processed by `initialize_run()` - state=state, - context=map_context, - executor=executor, - ) - - # generate initial states, if available - if isinstance(state, Mapped): - initial_states = list(state.map_states) # type: List[Optional[State]] - else: - initial_states = [] - initial_states.extend([None] * (len(map_upstream_states) - len(initial_states))) - - current_state = Mapped( - message="Preparing to submit {} mapped tasks.".format(len(initial_states)), - map_states=initial_states, # type: ignore - ) - state = self.handle_state_change(old_state=state, new_state=current_state) - if state is not current_state: - return state - - # map over the initial states, a counter representing the map_index, and also the mapped upstream states - map_states = executor.map( - run_fn, initial_states, range(len(map_upstream_states)), map_upstream_states - ) - - self.logger.debug( - "{} mapped tasks submitted for execution.".format(len(map_states)) - ) - new_state = Mapped( - message="Mapped tasks submitted for execution.", map_states=map_states - ) - return self.handle_state_change(old_state=state, new_state=new_state) - - @call_state_handlers - def wait_for_mapped_task( - self, state: State, executor: "prefect.engine.executors.Executor" - ) -> State: - """ - Blocks until a mapped state's children have finished running. - - Args: - - state (State): the current `Mapped` state - - executor (Executor): the run's executor - - Returns: - - State: the new state - """ - if state.is_mapped(): - assert isinstance(state, Mapped) # mypy assert - state.map_states = executor.wait(state.map_states) - return state - @call_state_handlers def set_task_to_running(self, state: State, inputs: Dict[str, Result]) -> State: """ @@ -895,12 +760,7 @@ def set_task_to_running(self, state: State, inputs: Dict[str, Result]) -> State: @run_with_heartbeat @call_state_handlers - def get_task_run_state( - self, - state: State, - inputs: Dict[str, Result], - timeout_handler: Optional[Callable] = None, - ) -> State: + def get_task_run_state(self, state: State, inputs: Dict[str, Result],) -> State: """ Runs the task and traps any signals or errors it raises. Also checkpoints the result of a successful task, if `task.checkpoint` is `True`. @@ -909,9 +769,6 @@ def get_task_run_state( - state (State): the current state of this task - inputs (Dict[str, Result], optional): a dictionary of inputs whose keys correspond to the task's `run()` arguments. - - timeout_handler (Callable, optional): function for timing out - task execution, with call signature `handler(fn, *args, **kwargs)`. Defaults to - `prefect.utilities.executors.timeout_handler` Returns: - State: the state of the task after running the check @@ -937,9 +794,7 @@ def get_task_run_state( name=prefect.context.get("task_full_name", self.task.name) ) ) - timeout_handler = ( - timeout_handler or prefect.utilities.executors.timeout_handler - ) + timeout_handler = prefect.utilities.executors.timeout_handler raw_inputs = {k: r.value for k, r in inputs.items()} if getattr(self.task, "log_stdout", False): @@ -1096,7 +951,6 @@ def check_task_is_looping( inputs: Dict[str, Result] = None, upstream_states: Dict[Edge, State] = None, context: Dict[str, Any] = None, - executor: "prefect.engine.executors.Executor" = None, ) -> State: """ Checks to see if the task is in a `Looped` state and if so, rerun the pipeline with an incremeneted `loop_count`. @@ -1110,8 +964,6 @@ def check_task_is_looping( representing the states of any tasks upstream of this one. The keys of the dictionary should correspond to the edges leading to the task. - context (dict, optional): prefect Context to use for execution - - executor (Executor, optional): executor to use when performing - computation; defaults to the executor specified in your prefect configuration Returns: - `State` object representing the final post-run state of the Task @@ -1134,7 +986,6 @@ def check_task_is_looping( new_state, upstream_states=upstream_states, context=context, - executor=executor, ) return state diff --git a/src/prefect/utilities/executors.py b/src/prefect/utilities/executors.py --- a/src/prefect/utilities/executors.py +++ b/src/prefect/utilities/executors.py @@ -1,3 +1,5 @@ +import copy +import itertools import multiprocessing import os import signal @@ -8,13 +10,15 @@ from concurrent.futures import ThreadPoolExecutor from concurrent.futures import TimeoutError as FutureTimeout from functools import wraps -from typing import TYPE_CHECKING, Any, Callable, List, Union +from typing import TYPE_CHECKING, Any, Callable, Dict, List, Union import prefect if TYPE_CHECKING: import prefect.engine.runner import prefect.engine.state + from prefect.core.edge import Edge # pylint: disable=W0611 + from prefect.core.task import Task # pylint: disable=W0611 from prefect.engine.state import State # pylint: disable=W0611 StateList = Union["State", List["State"]] @@ -271,3 +275,99 @@ def wrapper(*args: Any, **kwargs: Any) -> Any: setattr(wrapper, "__wrapped_func__", func) return wrapper + + +def prepare_upstream_states_for_mapping( + state: "State", + upstream_states: Dict["Edge", "State"], + mapped_children: Dict["Task", list], +) -> list: + """ + If the task is being mapped, submits children tasks for execution. Returns a `Mapped` state. + + Args: + - state (State): the parent task's current state + - upstream_states (Dict[Edge, State]): the upstream states to this task + - mapped_children (Dict[Task, List[State]]): any mapped children upstream of this task + + Returns: + - List: a restructured list of upstream states correponding to each new mapped child task + """ + + ## if the current state is failed / skipped or otherwise + ## in a state that signifies we should not continue with mapping, + ## we return an empty list + if state.is_pending() or state.is_failed() or state.is_skipped(): + return [] + + map_upstream_states = [] + + # we don't know how long the iterables are, but we want to iterate until we reach + # the end of the shortest one + counter = itertools.count() + + # infinite loop, if upstream_states has any entries + while True and upstream_states: + i = next(counter) + states = {} + + try: + + for edge, upstream_state in upstream_states.items(): + + # ensure we are working with populated result objects + if edge.key in state.cached_inputs: + upstream_state._result = state.cached_inputs[edge.key] + + # if the edge is not mapped over, then we take its state + if not edge.mapped: + states[edge] = upstream_state + + # if the edge is mapped and the upstream state is Mapped, then we are mapping + # over a mapped task. In this case, we take the appropriately-indexed upstream + # state from the upstream tasks's `Mapped.map_states` array. + # Note that these "states" might actually be futures at this time; we aren't + # blocking until they finish. + elif edge.mapped and upstream_state.is_mapped(): + states[edge] = mapped_children[edge.upstream_task][i] # type: ignore + + # Otherwise, we are mapping over the result of a "vanilla" task. In this + # case, we create a copy of the upstream state but set the result to the + # appropriately-indexed item from the upstream task's `State.result` + # array. + else: + states[edge] = copy.copy(upstream_state) + + # if the current state is already Mapped, then we might be executing + # a re-run of the mapping pipeline. In that case, the upstream states + # might not have `result` attributes (as any required results could be + # in the `cached_inputs` attribute of one of the child states). + # Therefore, we only try to get a result if EITHER this task's + # state is not already mapped OR the upstream result is not None. + if ( + not state.is_mapped() + or upstream_state._result != prefect.engine.result.NoResult + ): + if not hasattr(upstream_state.result, "__getitem__"): + raise TypeError( + "Cannot map over unsubscriptable object of type {t}: {preview}...".format( + t=type(upstream_state.result), + preview=repr(upstream_state.result)[:10], + ) + ) + upstream_result = upstream_state._result.from_value( # type: ignore + upstream_state.result[i] + ) + states[edge].result = upstream_result + elif state.is_mapped(): + if i >= len(state.map_states): # type: ignore + raise IndexError() + + # only add this iteration if we made it through all iterables + map_upstream_states.append(states) + + # index error means we reached the end of the shortest iterable + except IndexError: + break + + return map_upstream_states </patch>
[]
[]
googleapis__google-cloud-python-3156
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Language: support mention type in Entity.mentions. [Currently](https://github.com/GoogleCloudPlatform/google-cloud-python/blob/master/language/google/cloud/language/entity.py#L79) the mentions property of an entity is only a list of strings whereas it should be a list of objects containing the mention text and mention type. Furthermore, this change should add mention_type information to the mention documentation. </issue> <code> [start of README.rst] 1 Google Cloud Python Client 2 ========================== 3 4 Python idiomatic client for `Google Cloud Platform`_ services. 5 6 .. _Google Cloud Platform: https://cloud.google.com/ 7 8 |pypi| |circleci| |build| |appveyor| |coverage| |versions| 9 10 - `Homepage`_ 11 - `API Documentation`_ 12 - `Read The Docs Documentation`_ 13 14 .. _Homepage: https://googlecloudplatform.github.io/google-cloud-python/ 15 .. _API Documentation: https://googlecloudplatform.github.io/google-cloud-python/stable/ 16 .. _Read The Docs Documentation: https://google-cloud-python.readthedocs.io/en/latest/ 17 18 This client library has **beta** support for the following Google 19 Cloud Platform services: 20 21 - `Google BigQuery`_ (`BigQuery README`_) 22 - `Google Cloud Datastore`_ (`Datastore README`_) 23 - `Stackdriver Logging`_ (`Logging README`_) 24 - `Google Cloud Storage`_ (`Storage README`_) 25 - `Google Cloud Vision`_ (`Vision README`_) 26 27 **Beta** indicates that the client library for a particular service is 28 mostly stable and is being prepared for release. Issues and requests 29 against beta libraries are addressed with a higher priority. 30 31 This client library has **alpha** support for the following Google 32 Cloud Platform services: 33 34 - `Google Cloud Pub/Sub`_ (`Pub/Sub README`_) 35 - `Google Cloud Resource Manager`_ (`Resource Manager README`_) 36 - `Stackdriver Monitoring`_ (`Monitoring README`_) 37 - `Google Cloud Bigtable`_ (`Bigtable README`_) 38 - `Google Cloud DNS`_ (`DNS README`_) 39 - `Stackdriver Error Reporting`_ (`Error Reporting README`_) 40 - `Google Cloud Natural Language`_ (`Natural Language README`_) 41 - `Google Cloud Translation`_ (`Translation README`_) 42 - `Google Cloud Speech`_ (`Speech README`_) 43 - `Google Cloud Bigtable - HappyBase`_ (`HappyBase README`_) 44 - `Google Cloud Runtime Configuration`_ (`Runtime Config README`_) 45 - `Cloud Spanner`_ (`Cloud Spanner README`_) 46 47 **Alpha** indicates that the client library for a particular service is 48 still a work-in-progress and is more likely to get backwards-incompatible 49 updates. See `versioning`_ for more details. 50 51 .. _Google Cloud Datastore: https://pypi.python.org/pypi/google-cloud-datastore 52 .. _Datastore README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/datastore 53 .. _Google Cloud Storage: https://pypi.python.org/pypi/google-cloud-storage 54 .. _Storage README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/storage 55 .. _Google Cloud Pub/Sub: https://pypi.python.org/pypi/google-cloud-pubsub 56 .. _Pub/Sub README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/pubsub 57 .. _Google BigQuery: https://pypi.python.org/pypi/google-cloud-bigquery 58 .. _BigQuery README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/bigquery 59 .. _Google Cloud Resource Manager: https://pypi.python.org/pypi/google-cloud-resource-manager 60 .. _Resource Manager README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/resource_manager 61 .. _Stackdriver Logging: https://pypi.python.org/pypi/google-cloud-logging 62 .. _Logging README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/logging 63 .. _Stackdriver Monitoring: https://pypi.python.org/pypi/google-cloud-monitoring 64 .. _Monitoring README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/monitoring 65 .. _Google Cloud Bigtable: https://pypi.python.org/pypi/google-cloud-bigtable 66 .. _Bigtable README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/bigtable 67 .. _Google Cloud DNS: https://pypi.python.org/pypi/google-cloud-dns 68 .. _DNS README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/dns 69 .. _Stackdriver Error Reporting: https://pypi.python.org/pypi/google-cloud-error-reporting 70 .. _Error Reporting README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/error_reporting 71 .. _Google Cloud Natural Language: https://pypi.python.org/pypi/google-cloud-language 72 .. _Natural Language README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/language 73 .. _Google Cloud Translation: https://pypi.python.org/pypi/google-cloud-translate 74 .. _Translation README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/translate 75 .. _Google Cloud Speech: https://pypi.python.org/pypi/google-cloud-speech 76 .. _Speech README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/speech 77 .. _Google Cloud Vision: https://pypi.python.org/pypi/google-cloud-vision 78 .. _Vision README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/vision 79 .. _Google Cloud Bigtable - HappyBase: https://pypi.python.org/pypi/google-cloud-happybase/ 80 .. _HappyBase README: https://github.com/GoogleCloudPlatform/google-cloud-python-happybase 81 .. _Google Cloud Runtime Configuration: https://cloud.google.com/deployment-manager/runtime-configurator/ 82 .. _Runtime Config README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/runtimeconfig 83 .. _Cloud Spanner: https://cloud.google.com/spanner/ 84 .. _Cloud Spanner README: https://github.com/GoogleCloudPlatform/google-cloud-python/tree/master/spanner 85 .. _versioning: https://github.com/GoogleCloudPlatform/google-cloud-python/blob/master/CONTRIBUTING.rst#versioning 86 87 If you need support for other Google APIs, check out the 88 `Google APIs Python Client library`_. 89 90 .. _Google APIs Python Client library: https://github.com/google/google-api-python-client 91 92 Quick Start 93 ----------- 94 95 .. code-block:: console 96 97 $ pip install --upgrade google-cloud 98 99 Example Applications 100 -------------------- 101 102 - `getting-started-python`_ - A sample and `tutorial`_ that demonstrates how to build a complete web application using Cloud Datastore, Cloud Storage, and Cloud Pub/Sub and deploy it to Google App Engine or Google Compute Engine. 103 - `google-cloud-python-expenses-demo`_ - A sample expenses demo using Cloud Datastore and Cloud Storage 104 105 .. _getting-started-python: https://github.com/GoogleCloudPlatform/getting-started-python 106 .. _tutorial: https://cloud.google.com/python 107 .. _google-cloud-python-expenses-demo: https://github.com/GoogleCloudPlatform/google-cloud-python-expenses-demo 108 109 Authentication 110 -------------- 111 112 With ``google-cloud-python`` we try to make authentication as painless as possible. 113 Check out the `Authentication section`_ in our documentation to learn more. 114 You may also find the `authentication document`_ shared by all the 115 ``google-cloud-*`` libraries to be helpful. 116 117 .. _Authentication section: https://google-cloud-python.readthedocs.io/en/latest/google-cloud-auth.html 118 .. _authentication document: https://github.com/GoogleCloudPlatform/gcloud-common/tree/master/authentication 119 120 Contributing 121 ------------ 122 123 Contributions to this library are always welcome and highly encouraged. 124 125 See `CONTRIBUTING`_ for more information on how to get started. 126 127 .. _CONTRIBUTING: https://github.com/GoogleCloudPlatform/google-cloud-python/blob/master/CONTRIBUTING.rst 128 129 Community 130 --------- 131 132 Google Cloud Platform Python developers hang out in `Slack`_ in the ``#python`` 133 channel, click here to `get an invitation`_. 134 135 136 .. _Slack: https://googlecloud-community.slack.com 137 .. _get an invitation: https://gcp-slack.appspot.com/ 138 139 License 140 ------- 141 142 Apache 2.0 - See `LICENSE`_ for more information. 143 144 .. _LICENSE: https://github.com/GoogleCloudPlatform/google-cloud-python/blob/master/LICENSE 145 146 .. |build| image:: https://travis-ci.org/GoogleCloudPlatform/google-cloud-python.svg?branch=master 147 :target: https://travis-ci.org/GoogleCloudPlatform/google-cloud-python 148 .. |circleci| image:: https://circleci.com/gh/GoogleCloudPlatform/google-cloud-python.svg?style=shield 149 :target: https://circleci.com/gh/GoogleCloudPlatform/google-cloud-python 150 .. |appveyor| image:: https://ci.appveyor.com/api/projects/status/github/googlecloudplatform/google-cloud-python?branch=master&svg=true 151 :target: https://ci.appveyor.com/project/GoogleCloudPlatform/google-cloud-python 152 .. |coverage| image:: https://coveralls.io/repos/GoogleCloudPlatform/google-cloud-python/badge.svg?branch=master 153 :target: https://coveralls.io/r/GoogleCloudPlatform/google-cloud-python?branch=master 154 .. |pypi| image:: https://img.shields.io/pypi/v/google-cloud.svg 155 :target: https://pypi.python.org/pypi/google-cloud 156 .. |versions| image:: https://img.shields.io/pypi/pyversions/google-cloud.svg 157 :target: https://pypi.python.org/pypi/google-cloud 158 [end of README.rst] [start of language/google/cloud/language/entity.py] 1 # Copyright 2016-2017 Google Inc. 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 """Definition for Google Cloud Natural Language API entities. 16 17 An entity is used to describe a proper name extracted from text. 18 """ 19 20 21 class EntityType(object): 22 """List of possible entity types.""" 23 24 UNKNOWN = 'UNKNOWN' 25 """Unknown entity type.""" 26 27 PERSON = 'PERSON' 28 """Person entity type.""" 29 30 LOCATION = 'LOCATION' 31 """Location entity type.""" 32 33 ORGANIZATION = 'ORGANIZATION' 34 """Organization entity type.""" 35 36 EVENT = 'EVENT' 37 """Event entity type.""" 38 39 WORK_OF_ART = 'WORK_OF_ART' 40 """Work of art entity type.""" 41 42 CONSUMER_GOOD = 'CONSUMER_GOOD' 43 """Consumer good entity type.""" 44 45 OTHER = 'OTHER' 46 """Other entity type (i.e. known but not classified).""" 47 48 49 class Entity(object): 50 """A Google Cloud Natural Language API entity. 51 52 Represents a phrase in text that is a known entity, such as a person, 53 an organization, or location. The API associates information, such as 54 salience and mentions, with entities. 55 56 .. _Entity message: https://cloud.google.com/natural-language/\ 57 reference/rest/v1/Entity 58 .. _EntityType enum: https://cloud.google.com/natural-language/\ 59 reference/rest/v1/Entity#Type 60 61 See `Entity message`_. 62 63 :type name: str 64 :param name: The name / phrase identified as the entity. 65 66 :type entity_type: str 67 :param entity_type: The type of the entity. See `EntityType enum`_. 68 69 :type metadata: dict 70 :param metadata: The metadata associated with the entity. 71 Wikipedia URLs and Knowledge Graph MIDs are 72 provided, if available. The associated keys are 73 "wikipedia_url" and "mid", respectively. 74 75 :type salience: float 76 :param salience: The prominence of the entity / phrase within the text 77 containing it. 78 79 :type mentions: list 80 :param mentions: List of strings that mention the entity. 81 """ 82 83 def __init__(self, name, entity_type, metadata, salience, mentions): 84 self.name = name 85 self.entity_type = entity_type 86 self.metadata = metadata 87 self.salience = salience 88 self.mentions = mentions 89 90 @classmethod 91 def from_api_repr(cls, payload): 92 """Convert an Entity from the JSON API into an :class:`Entity`. 93 94 :param payload: dict 95 :type payload: The value from the backend. 96 97 :rtype: :class:`Entity` 98 :returns: The entity parsed from the API representation. 99 """ 100 name = payload['name'] 101 entity_type = payload['type'] 102 metadata = payload['metadata'] 103 salience = payload['salience'] 104 mentions = [value['text']['content'] 105 for value in payload['mentions']] 106 return cls(name, entity_type, metadata, salience, mentions) 107 [end of language/google/cloud/language/entity.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
googleapis/google-cloud-python
ebb77fb029efc65273890cb17c4aa62f99d54607
Language: support mention type in Entity.mentions. [Currently](https://github.com/GoogleCloudPlatform/google-cloud-python/blob/master/language/google/cloud/language/entity.py#L79) the mentions property of an entity is only a list of strings whereas it should be a list of objects containing the mention text and mention type. Furthermore, this change should add mention_type information to the mention documentation.
Adding the release blocking tag; this is a beta blocker.
2017-03-16T16:21:51Z
<patch> diff --git a/language/google/cloud/language/entity.py b/language/google/cloud/language/entity.py --- a/language/google/cloud/language/entity.py +++ b/language/google/cloud/language/entity.py @@ -46,6 +46,80 @@ class EntityType(object): """Other entity type (i.e. known but not classified).""" +class MentionType(object): + """List of possible mention types.""" + + TYPE_UNKNOWN = 'TYPE_UNKNOWN' + """Unknown mention type""" + + PROPER = 'PROPER' + """Proper name""" + + COMMON = 'COMMON' + """Common noun (or noun compound)""" + + +class Mention(object): + """A Google Cloud Natural Language API mention. + + Represents a mention for an entity in the text. Currently, proper noun + mentions are supported. + """ + def __init__(self, text, mention_type): + self.text = text + self.mention_type = mention_type + + def __str__(self): + return str(self.text) + + @classmethod + def from_api_repr(cls, payload): + """Convert a Mention from the JSON API into an :class:`Mention`. + + :param payload: dict + :type payload: The value from the backend. + + :rtype: :class:`Mention` + :returns: The mention parsed from the API representation. + """ + text = TextSpan.from_api_repr(payload['text']) + mention_type = payload['type'] + return cls(text, mention_type) + + +class TextSpan(object): + """A span of text from Google Cloud Natural Language API. + + Represents a word or phrase of text, as well as its offset + from the original document. + """ + def __init__(self, content, begin_offset): + self.content = content + self.begin_offset = begin_offset + + def __str__(self): + """Return the string representation of this TextSpan. + + :rtype: str + :returns: The text content + """ + return self.content + + @classmethod + def from_api_repr(cls, payload): + """Convert a TextSpan from the JSON API into an :class:`TextSpan`. + + :param payload: dict + :type payload: The value from the backend. + + :rtype: :class:`TextSpan` + :returns: The text span parsed from the API representation. + """ + content = payload['content'] + begin_offset = payload['beginOffset'] + return cls(content=content, begin_offset=begin_offset) + + class Entity(object): """A Google Cloud Natural Language API entity. @@ -101,6 +175,5 @@ def from_api_repr(cls, payload): entity_type = payload['type'] metadata = payload['metadata'] salience = payload['salience'] - mentions = [value['text']['content'] - for value in payload['mentions']] + mentions = [Mention.from_api_repr(val) for val in payload['mentions']] return cls(name, entity_type, metadata, salience, mentions) </patch>
[]
[]
conan-io__conan-4003
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> GNU Make generator https://github.com/solvingj/conan-make_generator/blob/master/conanfile.py by @solvingj is almost it. I agree it could be built-in. Can use conditional: ``` ifneq ($(USE_CONAN),) INC_PATHS += $(CONAN_INC_PATHS) LD_PATHS += $(CONAN_LIB_PATHS) LD_LIBS += $(CONAN_LIBS) CXXFLAGS += $(CONAN_CPP_FLAGS) CFLAGS += $(CONAN_CFLAGS) DEFINES += $(CONAN_DEFINES) LDFLAGS_SHARED += $(CONAN_SHAREDLINKFLAGS) LDFLAGS_EXE += $(CONAN_EXELINKFLAGS) C_SRCS += $(CONAN_C_SRCS) CXX_SRCS += $(CONAN_CXX_SRCS) endif ``` </issue> <code> [start of README.rst] 1 Conan 2 ===== 3 4 A distributed, open-source, C/C++ package manager. 5 6 +------------------------+-------------------------+ 7 | **master** | **develop** | 8 +========================+=========================+ 9 | |Build Status Master| | |Build Status Develop| | 10 +------------------------+-------------------------+ 11 12 13 +------------------------+---------------------------+---------------------------------------------+ 14 | **Coverage master** | **Coverage develop** | **Coverage graph** | 15 +========================+===========================+=============================================+ 16 | |Master coverage| | |Develop coverage| | |Coverage graph| | 17 +------------------------+---------------------------+---------------------------------------------+ 18 19 20 Setup 21 ====== 22 23 From binaries 24 ------------- 25 26 We have installers for `most platforms here <http://conan.io>`__ but you 27 can run **conan** from sources if you want. 28 29 From pip 30 -------- 31 32 Conan is compatible with Python 2 and Python 3. 33 34 - Install pip following `pip docs`_. 35 - Install conan: 36 37 .. code-block:: bash 38 39 $ pip install conan 40 41 From Homebrew (OSx) 42 ------------------- 43 44 - Install Homebrew following `brew homepage`_. 45 46 .. code-block:: bash 47 48 $ brew update 49 $ brew install conan 50 51 From source 52 ----------- 53 54 You can run **conan** client and server in Windows, MacOS, and Linux. 55 56 - **Install pip following** `pip docs`_. 57 58 - **Clone conan repository:** 59 60 .. code-block:: bash 61 62 $ git clone https://github.com/conan-io/conan.git 63 64 - **Install in editable mode** 65 66 .. code-block:: bash 67 68 $ cd conan && sudo pip install -e . 69 70 If you are in Windows, using ``sudo`` is not required. 71 72 - **You are ready, try to run conan:** 73 74 .. code-block:: 75 76 $ conan --help 77 78 Consumer commands 79 install Installs the requirements specified in a conanfile (.py or .txt). 80 config Manages configuration. Edits the conan.conf or installs config files. 81 get Gets a file or list a directory of a given reference or package. 82 info Gets information about the dependency graph of a recipe. 83 search Searches package recipes and binaries in the local cache or in a remote. 84 Creator commands 85 new Creates a new package recipe template with a 'conanfile.py'. 86 create Builds a binary package for recipe (conanfile.py) located in current dir. 87 upload Uploads a recipe and binary packages to a remote. 88 export Copies the recipe (conanfile.py & associated files) to your local cache. 89 export-pkg Exports a recipe & creates a package with given files calling 'package'. 90 test Test a package, consuming it with a conanfile recipe with a test() method. 91 Package development commands 92 source Calls your local conanfile.py 'source()' method. 93 build Calls your local conanfile.py 'build()' method. 94 package Calls your local conanfile.py 'package()' method. 95 Misc commands 96 profile Lists profiles in the '.conan/profiles' folder, or shows profile details. 97 remote Manages the remote list and the package recipes associated to a remote. 98 user Authenticates against a remote with user/pass, caching the auth token. 99 imports Calls your local conanfile.py or conanfile.txt 'imports' method. 100 copy Copies conan recipes and packages to another user/channel. 101 remove Removes packages or binaries matching pattern from local cache or remote. 102 alias Creates and exports an 'alias recipe'. 103 download Downloads recipe and binaries to the local cache, without using settings. 104 105 Conan commands. Type "conan <command> -h" for help 106 107 Running the tests 108 ================= 109 110 **Install python requirements** 111 112 .. code-block:: bash 113 114 $ pip install -r conans/requirements.txt 115 $ pip install -r conans/requirements_server.txt 116 $ pip install -r conans/requirements_dev.txt 117 118 119 Only in OSX: 120 121 122 .. code-block:: bash 123 124 $ pip install -r conans/requirements_osx.txt # You can omit this one if not running OSX 125 126 127 If you are not Windows and you are not using a python virtual environment, you will need to run these 128 commands using `sudo`. 129 130 Before you can run the tests, you need to set a few environment variables first. 131 132 .. code-block:: bash 133 134 $ export PYTHONPATH=$PYTHONPATH:$(pwd) 135 136 On Windows it would be (while being in the conan root directory): 137 138 .. code-block:: bash 139 140 $ set PYTHONPATH=. 141 142 Ensure that your ``cmake`` has version 2.8 or later. You can see the 143 version with the following command: 144 145 .. code-block:: bash 146 147 $ cmake --version 148 149 The appropriate values of ``CONAN_COMPILER`` and ``CONAN_COMPILER_VERSION`` depend on your 150 operating system and your requirements. 151 152 These should work for the GCC from ``build-essential`` on Ubuntu 14.04: 153 154 .. code-block:: bash 155 156 $ export CONAN_COMPILER=gcc 157 $ export CONAN_COMPILER_VERSION=4.8 158 159 These should work for OS X: 160 161 .. code-block:: bash 162 163 $ export CONAN_COMPILER=clang 164 $ export CONAN_COMPILER_VERSION=3.5 165 166 Finally, there are some tests that use conan to package Go-lang 167 libraries, so you might **need to install go-lang** in your computer and 168 add it to the path. 169 170 You can run the actual tests like this: 171 172 .. code-block:: bash 173 174 $ nosetests . 175 176 177 There are a couple of test attributes defined, as ``slow``, or ``golang`` that you can use 178 to filter the tests, and do not execute them: 179 180 .. code-block:: bash 181 182 $ nosetests . -a !golang 183 184 A few minutes later it should print ``OK``: 185 186 .. code-block:: bash 187 188 ............................................................................................ 189 ---------------------------------------------------------------------- 190 Ran 146 tests in 50.993s 191 192 OK 193 194 To run specific tests, you can specify the test name too, something like: 195 196 .. code-block:: bash 197 198 $ nosetests conans.test.command.config_install_test:ConfigInstallTest.install_file_test --nocapture 199 200 The ``--nocapture`` argument can be useful to see some output that otherwise is captured by nosetests. 201 202 License 203 ------- 204 205 `MIT LICENSE <./LICENSE.md>`__ 206 207 .. |Build Status Master| image:: https://conan-ci.jfrog.info/buildStatus/icon?job=ConanTestSuite/master 208 :target: https://conan-ci.jfrog.info/job/ConanTestSuite/job/master 209 210 .. |Build Status Develop| image:: https://conan-ci.jfrog.info/buildStatus/icon?job=ConanTestSuite/develop 211 :target: https://conan-ci.jfrog.info/job/ConanTestSuite/job/develop 212 213 .. |Master coverage| image:: https://codecov.io/gh/conan-io/conan/branch/master/graph/badge.svg 214 :target: https://codecov.io/gh/conan-io/conan/branch/master 215 216 .. |Develop coverage| image:: https://codecov.io/gh/conan-io/conan/branch/develop/graph/badge.svg 217 :target: https://codecov.io/gh/conan-io/conan/branch/develop 218 219 .. |Coverage graph| image:: https://codecov.io/gh/conan-io/conan/branch/develop/graphs/tree.svg 220 :height: 50px 221 :width: 50 px 222 :alt: Conan develop coverage 223 224 .. _`pip docs`: https://pip.pypa.io/en/stable/installing/ 225 226 .. _`brew homepage`: http://brew.sh/ 227 [end of README.rst] [start of conans/client/generators/__init__.py] 1 from os.path import join 2 3 from conans.client.generators.cmake_find_package import CMakeFindPackageGenerator 4 from conans.client.generators.compiler_args import CompilerArgsGenerator 5 from conans.client.generators.pkg_config import PkgConfigGenerator 6 from conans.errors import ConanException 7 from conans.util.files import save, normalize 8 9 from .virtualrunenv import VirtualRunEnvGenerator 10 from .text import TXTGenerator 11 from .gcc import GCCGenerator 12 from .cmake import CMakeGenerator 13 from .cmake_paths import CMakePathsGenerator 14 from .cmake_multi import CMakeMultiGenerator 15 from .qmake import QmakeGenerator 16 from .qbs import QbsGenerator 17 from .scons import SConsGenerator 18 from .visualstudio import VisualStudioGenerator 19 from .visualstudio_multi import VisualStudioMultiGenerator 20 from .visualstudiolegacy import VisualStudioLegacyGenerator 21 from .xcode import XCodeGenerator 22 from .ycm import YouCompleteMeGenerator 23 from .virtualenv import VirtualEnvGenerator 24 from .virtualbuildenv import VirtualBuildEnvGenerator 25 from .boostbuild import BoostBuildGenerator 26 from .json_generator import JsonGenerator 27 import traceback 28 from conans.util.env_reader import get_env 29 from .b2 import B2Generator 30 from .premake import PremakeGenerator 31 32 33 class _GeneratorManager(object): 34 def __init__(self): 35 self._generators = {} 36 37 def add(self, name, generator_class): 38 if name not in self._generators: 39 self._generators[name] = generator_class 40 41 @property 42 def available(self): 43 return list(self._generators.keys()) 44 45 def __contains__(self, name): 46 return name in self._generators 47 48 def __getitem__(self, key): 49 return self._generators[key] 50 51 52 registered_generators = _GeneratorManager() 53 54 registered_generators.add("txt", TXTGenerator) 55 registered_generators.add("gcc", GCCGenerator) 56 registered_generators.add("compiler_args", CompilerArgsGenerator) 57 registered_generators.add("cmake", CMakeGenerator) 58 registered_generators.add("cmake_multi", CMakeMultiGenerator) 59 registered_generators.add("cmake_paths", CMakePathsGenerator) 60 registered_generators.add("cmake_find_package", CMakeFindPackageGenerator) 61 registered_generators.add("qmake", QmakeGenerator) 62 registered_generators.add("qbs", QbsGenerator) 63 registered_generators.add("scons", SConsGenerator) 64 registered_generators.add("visual_studio", VisualStudioGenerator) 65 registered_generators.add("visual_studio_multi", VisualStudioMultiGenerator) 66 registered_generators.add("visual_studio_legacy", VisualStudioLegacyGenerator) 67 registered_generators.add("xcode", XCodeGenerator) 68 registered_generators.add("ycm", YouCompleteMeGenerator) 69 registered_generators.add("virtualenv", VirtualEnvGenerator) 70 registered_generators.add("virtualbuildenv", VirtualBuildEnvGenerator) 71 registered_generators.add("virtualrunenv", VirtualRunEnvGenerator) 72 registered_generators.add("boost-build", BoostBuildGenerator) 73 registered_generators.add("pkg_config", PkgConfigGenerator) 74 registered_generators.add("json", JsonGenerator) 75 registered_generators.add("b2", B2Generator) 76 registered_generators.add("premake", PremakeGenerator) 77 78 79 def write_generators(conanfile, path, output): 80 """ produces auxiliary files, required to build a project or a package. 81 """ 82 for generator_name in conanfile.generators: 83 try: 84 generator_class = registered_generators[generator_name] 85 except KeyError: 86 raise ConanException("Invalid generator '%s'. Available types: %s" % 87 (generator_name, ", ".join(registered_generators.available))) 88 try: 89 generator = generator_class(conanfile) 90 except TypeError: 91 # To allow old-style generator packages to work (e.g. premake) 92 output.warn("Generator %s failed with new __init__(), trying old one") 93 generator = generator_class(conanfile.deps_cpp_info, conanfile.cpp_info) 94 95 try: 96 generator.output_path = path 97 content = generator.content 98 if isinstance(content, dict): 99 if generator.filename: 100 output.warn("Generator %s is multifile. Property 'filename' not used" 101 % (generator_name,)) 102 for k, v in content.items(): 103 v = normalize(v) 104 output.info("Generator %s created %s" % (generator_name, k)) 105 save(join(path, k), v, only_if_modified=True) 106 else: 107 content = normalize(content) 108 output.info("Generator %s created %s" % (generator_name, generator.filename)) 109 save(join(path, generator.filename), content, only_if_modified=True) 110 except Exception as e: 111 if get_env("CONAN_VERBOSE_TRACEBACK", False): 112 output.error(traceback.format_exc()) 113 output.error("Generator %s(file:%s) failed\n%s" 114 % (generator_name, generator.filename, str(e))) 115 raise ConanException(e) 116 [end of conans/client/generators/__init__.py] [start of conans/client/generators/premake.py] 1 from conans.model import Generator 2 from conans.paths import BUILD_INFO_PREMAKE 3 4 5 class PremakeDeps(object): 6 def __init__(self, deps_cpp_info): 7 self.include_paths = ",\n".join('"%s"' % p.replace("\\", "/") 8 for p in deps_cpp_info.include_paths) 9 self.lib_paths = ",\n".join('"%s"' % p.replace("\\", "/") 10 for p in deps_cpp_info.lib_paths) 11 self.bin_paths = ",\n".join('"%s"' % p.replace("\\", "/") 12 for p in deps_cpp_info.bin_paths) 13 self.libs = ", ".join('"%s"' % p for p in deps_cpp_info.libs) 14 self.defines = ", ".join('"%s"' % p for p in deps_cpp_info.defines) 15 self.cppflags = ", ".join('"%s"' % p for p in deps_cpp_info.cppflags) 16 self.cflags = ", ".join('"%s"' % p for p in deps_cpp_info.cflags) 17 self.sharedlinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.sharedlinkflags) 18 self.exelinkflags = ", ".join('"%s"' % p for p in deps_cpp_info.exelinkflags) 19 20 self.rootpath = "%s" % deps_cpp_info.rootpath.replace("\\", "/") 21 22 23 class PremakeGenerator(Generator): 24 @property 25 def filename(self): 26 return BUILD_INFO_PREMAKE 27 28 @property 29 def content(self): 30 deps = PremakeDeps(self.deps_build_info) 31 32 template = ('conan_includedirs{dep} = {{{deps.include_paths}}}\n' 33 'conan_libdirs{dep} = {{{deps.lib_paths}}}\n' 34 'conan_bindirs{dep} = {{{deps.bin_paths}}}\n' 35 'conan_libs{dep} = {{{deps.libs}}}\n' 36 'conan_cppdefines{dep} = {{{deps.defines}}}\n' 37 'conan_cppflags{dep} = {{{deps.cppflags}}}\n' 38 'conan_cflags{dep} = {{{deps.cflags}}}\n' 39 'conan_sharedlinkflags{dep} = {{{deps.sharedlinkflags}}}\n' 40 'conan_exelinkflags{dep} = {{{deps.exelinkflags}}}\n') 41 42 sections = ["#!lua"] 43 all_flags = template.format(dep="", deps=deps) 44 sections.append(all_flags) 45 template_deps = template + 'conan_rootpath{dep} = "{deps.rootpath}"\n' 46 47 for dep_name, dep_cpp_info in self.deps_build_info.dependencies: 48 deps = PremakeDeps(dep_cpp_info) 49 dep_name = dep_name.replace("-", "_") 50 dep_flags = template_deps.format(dep="_" + dep_name, deps=deps) 51 sections.append(dep_flags) 52 53 return "\n".join(sections) 54 [end of conans/client/generators/premake.py] [start of conans/paths.py] 1 import os 2 from conans.model.ref import ConanFileReference, PackageReference 3 from os.path import join, normpath 4 import platform 5 from conans.errors import ConanException 6 from conans.util.files import rmdir 7 8 9 if platform.system() == "Windows": 10 from conans.util.windows import path_shortener, rm_conandir, conan_expand_user 11 else: 12 def path_shortener(x, _): 13 return x 14 conan_expand_user = os.path.expanduser 15 rm_conandir = rmdir 16 17 18 EXPORT_FOLDER = "export" 19 EXPORT_SRC_FOLDER = "export_source" 20 SRC_FOLDER = "source" 21 BUILD_FOLDER = "build" 22 PACKAGES_FOLDER = "package" 23 SYSTEM_REQS_FOLDER = "system_reqs" 24 25 26 CONANFILE = 'conanfile.py' 27 CONANFILE_TXT = "conanfile.txt" 28 CONAN_MANIFEST = "conanmanifest.txt" 29 BUILD_INFO = 'conanbuildinfo.txt' 30 BUILD_INFO_GCC = 'conanbuildinfo.gcc' 31 BUILD_INFO_COMPILER_ARGS = 'conanbuildinfo.args' 32 BUILD_INFO_CMAKE = 'conanbuildinfo.cmake' 33 BUILD_INFO_QMAKE = 'conanbuildinfo.pri' 34 BUILD_INFO_QBS = 'conanbuildinfo.qbs' 35 BUILD_INFO_VISUAL_STUDIO = 'conanbuildinfo.props' 36 BUILD_INFO_XCODE = 'conanbuildinfo.xcconfig' 37 BUILD_INFO_PREMAKE = 'conanbuildinfo.lua' 38 CONANINFO = "conaninfo.txt" 39 CONANENV = "conanenv.txt" 40 SYSTEM_REQS = "system_reqs.txt" 41 PUT_HEADERS = "artifacts.properties" 42 SCM_FOLDER = "scm_folder.txt" 43 PACKAGE_METADATA = "metadata.json" 44 45 PACKAGE_TGZ_NAME = "conan_package.tgz" 46 EXPORT_TGZ_NAME = "conan_export.tgz" 47 EXPORT_SOURCES_TGZ_NAME = "conan_sources.tgz" 48 EXPORT_SOURCES_DIR_OLD = ".c_src" 49 50 RUN_LOG_NAME = "conan_run.log" 51 DEFAULT_PROFILE_NAME = "default" 52 53 54 def get_conan_user_home(): 55 user_home = os.getenv("CONAN_USER_HOME", "~") 56 tmp = conan_expand_user(user_home) 57 if not os.path.isabs(tmp): 58 raise Exception("Invalid CONAN_USER_HOME value '%s', " 59 "please specify an absolute or path starting with ~/ " 60 "(relative to user home)" % tmp) 61 return os.path.abspath(tmp) 62 63 64 def is_case_insensitive_os(): 65 system = platform.system() 66 return system != "Linux" and system != "FreeBSD" and system != "SunOS" 67 68 69 if is_case_insensitive_os(): 70 def check_ref_case(conan_reference, conan_folder, store_folder): 71 if not os.path.exists(conan_folder): # If it doesn't exist, not a problem 72 return 73 # If exists, lets check path 74 tmp = store_folder 75 for part in conan_reference.dir_repr().split("/"): 76 items = os.listdir(tmp) 77 if part not in items: 78 offending = "" 79 for item in items: 80 if item.lower() == part.lower(): 81 offending = item 82 break 83 raise ConanException("Requested '%s' but found case incompatible '%s'\n" 84 "Case insensitive filesystem can't manage this" 85 % (str(conan_reference), offending)) 86 tmp = os.path.normpath(tmp + os.sep + part) 87 else: 88 def check_ref_case(conan_reference, conan_folder, store_folder): # @UnusedVariable 89 pass 90 91 92 class SimplePaths(object): 93 """ 94 Generate Conan paths. Handles the conan domain path logic. NO DISK ACCESS, just 95 path logic responsability 96 """ 97 def __init__(self, store_folder): 98 self._store_folder = store_folder 99 100 @property 101 def store(self): 102 return self._store_folder 103 104 def conan(self, conan_reference): 105 """ the base folder for this package reference, for each ConanFileReference 106 """ 107 assert isinstance(conan_reference, ConanFileReference) 108 return normpath(join(self._store_folder, conan_reference.dir_repr())) 109 110 def export(self, conan_reference): 111 assert isinstance(conan_reference, ConanFileReference) 112 return normpath(join(self.conan(conan_reference), EXPORT_FOLDER)) 113 114 def export_sources(self, conan_reference, short_paths=False): 115 assert isinstance(conan_reference, ConanFileReference) 116 p = normpath(join(self.conan(conan_reference), EXPORT_SRC_FOLDER)) 117 return path_shortener(p, short_paths) 118 119 def source(self, conan_reference, short_paths=False): 120 assert isinstance(conan_reference, ConanFileReference) 121 p = normpath(join(self.conan(conan_reference), SRC_FOLDER)) 122 return path_shortener(p, short_paths) 123 124 def conanfile(self, conan_reference): 125 export = self.export(conan_reference) 126 check_ref_case(conan_reference, export, self.store) 127 return normpath(join(export, CONANFILE)) 128 129 def builds(self, conan_reference): 130 assert isinstance(conan_reference, ConanFileReference) 131 return normpath(join(self.conan(conan_reference), BUILD_FOLDER)) 132 133 def build(self, package_reference, short_paths=False): 134 assert isinstance(package_reference, PackageReference) 135 p = normpath(join(self.conan(package_reference.conan), BUILD_FOLDER, 136 package_reference.package_id)) 137 return path_shortener(p, short_paths) 138 139 def system_reqs(self, conan_reference): 140 assert isinstance(conan_reference, ConanFileReference) 141 return normpath(join(self.conan(conan_reference), SYSTEM_REQS_FOLDER, SYSTEM_REQS)) 142 143 def system_reqs_package(self, package_reference): 144 assert isinstance(package_reference, PackageReference) 145 return normpath(join(self.conan(package_reference.conan), SYSTEM_REQS_FOLDER, 146 package_reference.package_id, SYSTEM_REQS)) 147 148 def packages(self, conan_reference): 149 assert isinstance(conan_reference, ConanFileReference) 150 return normpath(join(self.conan(conan_reference), PACKAGES_FOLDER)) 151 152 def package(self, package_reference, short_paths=False): 153 assert isinstance(package_reference, PackageReference) 154 p = normpath(join(self.conan(package_reference.conan), PACKAGES_FOLDER, 155 package_reference.package_id)) 156 return path_shortener(p, short_paths) 157 158 def scm_folder(self, conan_reference): 159 return normpath(join(self.conan(conan_reference), SCM_FOLDER)) 160 161 def package_metadata(self, conan_reference): 162 return normpath(join(self.conan(conan_reference), PACKAGE_METADATA)) 163 [end of conans/paths.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
conan-io/conan
4486c5d6ca77e979ac0a991b964a86cdf26e95d2
GNU Make generator https://github.com/solvingj/conan-make_generator/blob/master/conanfile.py by @solvingj is almost it. I agree it could be built-in. Can use conditional: ``` ifneq ($(USE_CONAN),) INC_PATHS += $(CONAN_INC_PATHS) LD_PATHS += $(CONAN_LIB_PATHS) LD_LIBS += $(CONAN_LIBS) CXXFLAGS += $(CONAN_CPP_FLAGS) CFLAGS += $(CONAN_CFLAGS) DEFINES += $(CONAN_DEFINES) LDFLAGS_SHARED += $(CONAN_SHAREDLINKFLAGS) LDFLAGS_EXE += $(CONAN_EXELINKFLAGS) C_SRCS += $(CONAN_C_SRCS) CXX_SRCS += $(CONAN_CXX_SRCS) endif ```
Labeled as high because the invest should be minimal.
2018-11-26T17:02:07Z
<patch> diff --git a/conans/client/generators/__init__.py b/conans/client/generators/__init__.py --- a/conans/client/generators/__init__.py +++ b/conans/client/generators/__init__.py @@ -28,6 +28,7 @@ from conans.util.env_reader import get_env from .b2 import B2Generator from .premake import PremakeGenerator +from .make import MakeGenerator class _GeneratorManager(object): @@ -74,6 +75,7 @@ def __getitem__(self, key): registered_generators.add("json", JsonGenerator) registered_generators.add("b2", B2Generator) registered_generators.add("premake", PremakeGenerator) +registered_generators.add("make", MakeGenerator) def write_generators(conanfile, path, output): diff --git a/conans/client/generators/make.py b/conans/client/generators/make.py new file mode 100644 --- /dev/null +++ b/conans/client/generators/make.py @@ -0,0 +1,109 @@ +from conans.model import Generator +from conans.paths import BUILD_INFO_MAKE + + +class MakeGenerator(Generator): + + def __init__(self, conanfile): + Generator.__init__(self, conanfile) + self.makefile_newline = "\n" + self.makefile_line_continuation = " \\\n" + self.assignment_if_absent = " ?= " + self.assignment_append = " += " + + @property + def filename(self): + return BUILD_INFO_MAKE + + @property + def content(self): + + content = [ + "#-------------------------------------------------------------------#", + "# Makefile variables from Conan Dependencies #", + "#-------------------------------------------------------------------#", + "", + ] + + for line_as_list in self.create_deps_content(): + content.append("".join(line_as_list)) + + content.append("#-------------------------------------------------------------------#") + content.append(self.makefile_newline) + return self.makefile_newline.join(content) + + def create_deps_content(self): + deps_content = self.create_content_from_deps() + deps_content.extend(self.create_combined_content()) + return deps_content + + def create_content_from_deps(self): + content = [] + for pkg_name, cpp_info in self.deps_build_info.dependencies: + content.extend(self.create_content_from_dep(pkg_name, cpp_info)) + return content + + def create_content_from_dep(self, pkg_name, cpp_info): + + vars_info = [("ROOT", self.assignment_if_absent, [cpp_info.rootpath]), + ("SYSROOT", self.assignment_if_absent, [cpp_info.sysroot]), + ("INCLUDE_PATHS", self.assignment_append, cpp_info.include_paths), + ("LIB_PATHS", self.assignment_append, cpp_info.lib_paths), + ("BIN_PATHS", self.assignment_append, cpp_info.bin_paths), + ("BUILD_PATHS", self.assignment_append, cpp_info.build_paths), + ("RES_PATHS", self.assignment_append, cpp_info.res_paths), + ("LIBS", self.assignment_append, cpp_info.libs), + ("DEFINES", self.assignment_append, cpp_info.defines), + ("CFLAGS", self.assignment_append, cpp_info.cflags), + ("CPPFLAGS", self.assignment_append, cpp_info.cppflags), + ("SHAREDLINKFLAGS", self.assignment_append, cpp_info.sharedlinkflags), + ("EXELINKFLAGS", self.assignment_append, cpp_info.exelinkflags)] + + return [self.create_makefile_var_pkg(var_name, pkg_name, operator, info) + for var_name, operator, info in vars_info] + + def create_combined_content(self): + content = [] + for var_name in self.all_dep_vars(): + content.append(self.create_makefile_var_global(var_name, self.assignment_append, + self.create_combined_var_list(var_name))) + return content + + def create_combined_var_list(self, var_name): + make_vars = [] + for pkg_name, _ in self.deps_build_info.dependencies: + pkg_var = self.create_makefile_var_name_pkg(var_name, pkg_name) + make_vars.append("$({pkg_var})".format(pkg_var=pkg_var)) + return make_vars + + def create_makefile_var_global(self, var_name, operator, values): + make_var = [self.create_makefile_var_name_global(var_name)] + make_var.extend(self.create_makefile_var_common(operator, values)) + return make_var + + def create_makefile_var_pkg(self, var_name, pkg_name, operator, values): + make_var = [self.create_makefile_var_name_pkg(var_name, pkg_name)] + make_var.extend(self.create_makefile_var_common(operator, values)) + return make_var + + def create_makefile_var_common(self, operator, values): + return [operator, self.makefile_line_continuation, self.create_makefile_var_value(values), + self.makefile_newline] + + @staticmethod + def create_makefile_var_name_global(var_name): + return "CONAN_{var}".format(var=var_name).upper() + + @staticmethod + def create_makefile_var_name_pkg(var_name, pkg_name): + return "CONAN_{var}_{lib}".format(var=var_name, lib=pkg_name).upper() + + def create_makefile_var_value(self, values): + formatted_values = [value.replace("\\", "/") for value in values] + return self.makefile_line_continuation.join(formatted_values) + + @staticmethod + def all_dep_vars(): + return ["rootpath", "sysroot", "include_paths", "lib_paths", "bin_paths", "build_paths", + "res_paths", "libs", "defines", "cflags", "cppflags", "sharedlinkflags", + "exelinkflags"] diff --git a/conans/client/generators/premake.py b/conans/client/generators/premake.py --- a/conans/client/generators/premake.py +++ b/conans/client/generators/premake.py @@ -3,6 +3,7 @@ class PremakeDeps(object): + def __init__(self, deps_cpp_info): self.include_paths = ",\n".join('"%s"' % p.replace("\\", "/") for p in deps_cpp_info.include_paths) diff --git a/conans/paths.py b/conans/paths.py --- a/conans/paths.py +++ b/conans/paths.py @@ -35,6 +35,7 @@ def path_shortener(x, _): BUILD_INFO_VISUAL_STUDIO = 'conanbuildinfo.props' BUILD_INFO_XCODE = 'conanbuildinfo.xcconfig' BUILD_INFO_PREMAKE = 'conanbuildinfo.lua' +BUILD_INFO_MAKE = 'conanbuildinfo.mak' CONANINFO = "conaninfo.txt" CONANENV = "conanenv.txt" SYSTEM_REQS = "system_reqs.txt" </patch>
[]
[]
pypa__pip-7289
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> pip 19.3 doesn't send client certificate **Ubuntu 18.04 virtual environment** * pip version: 19.3 * Python version: 3.6.8 * OS: Ubuntu 18.04.3 LTS We have a private Pypi server hosted with [pypicloud](https://pypicloud.readthedocs.io/en/latest/index.html). We use client certificates to authenticate users for downloading/uploading packages. **Description** pip 19.3 doesn't seem to send our client certificates so authentication fails and packages cannot be installed: `WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:852)'),)': /simple/<our package name>/ ` I captured some of the SSL traffic from pip install in Wireshark and the client certificate option is there in the SSL handshake, but the certificates length is 0 with pip 19.3: ![image](https://user-images.githubusercontent.com/9781018/66789548-28f54080-eeba-11e9-8124-315e814564bc.png) In 19.2.1, the length is non-zero and Wireshark shows the client certificate I expect. **Expected behavior** We should not get an SSL error if our client certificates and CA certificates are not expired. I have checked our server logs there don't appear to be any errors there with our certificates. If I downgrade to pip 19.2.1 or 19.2.3 in my virtual environment, then the SSL error goes away. I also checked with the `openssl s_client` that a handshake succeeded with the same client certificate: ``` openssl s_client -connect <my server> -cert <cert> -key <key> -state CONNECTED(00000005) SSL_connect:before SSL initialization SSL_connect:SSLv3/TLS write client hello SSL_connect:SSLv3/TLS write client hello SSL_connect:SSLv3/TLS read server hello depth=2 O = Digital Signature Trust Co., CN = DST Root CA X3 verify return:1 depth=1 C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3 verify return:1 depth=0 CN = <my server> verify return:1 SSL_connect:SSLv3/TLS read server certificate SSL_connect:SSLv3/TLS read server key exchange SSL_connect:SSLv3/TLS read server certificate request SSL_connect:SSLv3/TLS read server done SSL_connect:SSLv3/TLS write client certificate ... SSL handshake has read 4268 bytes and written 1546 bytes Verification: OK --- New, TLSv1.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384 Server public key is 2048 bit Secure Renegotiation IS supported Compression: NONE Expansion: NONE No ALPN negotiated SSL-Session: Protocol : TLSv1.2 Cipher : ECDHE-RSA-AES256-GCM-SHA384 Session-ID: ``` **How to Reproduce** 1. Setup pip.conf or command-line arguments to use client certificate 2. pip install <package> 3. sslv3 alert handshake failure occurs **Output** ``` pip install <my package> Looking in indexes: https://pypi.org/simple/, https://<my server>/simple/ WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:852)'),)': /simple/<my package>/ WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:852)'),)': /simple/<my package>/ ``` </issue> <code> [start of README.rst] 1 pip - The Python Package Installer 2 ================================== 3 4 .. image:: https://img.shields.io/pypi/v/pip.svg 5 :target: https://pypi.org/project/pip/ 6 7 .. image:: https://readthedocs.org/projects/pip/badge/?version=latest 8 :target: https://pip.pypa.io/en/latest 9 10 pip is the `package installer`_ for Python. You can use pip to install packages from the `Python Package Index`_ and other indexes. 11 12 Please take a look at our documentation for how to install and use pip: 13 14 * `Installation`_ 15 * `Usage`_ 16 17 Updates are released regularly, with a new version every 3 months. More details can be found in our documentation: 18 19 * `Release notes`_ 20 * `Release process`_ 21 22 If you find bugs, need help, or want to talk to the developers please use our mailing lists or chat rooms: 23 24 * `Issue tracking`_ 25 * `Discourse channel`_ 26 * `User IRC`_ 27 28 If you want to get involved head over to GitHub to get the source code, look at our development documentation and feel free to jump on the developer mailing lists and chat rooms: 29 30 * `GitHub page`_ 31 * `Dev documentation`_ 32 * `Dev mailing list`_ 33 * `Dev IRC`_ 34 35 Code of Conduct 36 --------------- 37 38 Everyone interacting in the pip project's codebases, issue trackers, chat 39 rooms, and mailing lists is expected to follow the `PyPA Code of Conduct`_. 40 41 .. _package installer: https://packaging.python.org/en/latest/current/ 42 .. _Python Package Index: https://pypi.org 43 .. _Installation: https://pip.pypa.io/en/stable/installing.html 44 .. _Usage: https://pip.pypa.io/en/stable/ 45 .. _Release notes: https://pip.pypa.io/en/stable/news.html 46 .. _Release process: https://pip.pypa.io/en/latest/development/release-process/ 47 .. _GitHub page: https://github.com/pypa/pip 48 .. _Dev documentation: https://pip.pypa.io/en/latest/development 49 .. _Issue tracking: https://github.com/pypa/pip/issues 50 .. _Discourse channel: https://discuss.python.org/c/packaging 51 .. _Dev mailing list: https://groups.google.com/forum/#!forum/pypa-dev 52 .. _User IRC: https://webchat.freenode.net/?channels=%23pypa 53 .. _Dev IRC: https://webchat.freenode.net/?channels=%23pypa-dev 54 .. _PyPA Code of Conduct: https://www.pypa.io/en/latest/code-of-conduct/ 55 [end of README.rst] [start of src/pip/_internal/network/session.py] 1 """PipSession and supporting code, containing all pip-specific 2 network request configuration and behavior. 3 """ 4 5 # The following comment should be removed at some point in the future. 6 # mypy: disallow-untyped-defs=False 7 8 import email.utils 9 import json 10 import logging 11 import mimetypes 12 import os 13 import platform 14 import sys 15 import warnings 16 17 from pip._vendor import requests, six, urllib3 18 from pip._vendor.cachecontrol import CacheControlAdapter 19 from pip._vendor.requests.adapters import BaseAdapter, HTTPAdapter 20 from pip._vendor.requests.models import Response 21 from pip._vendor.requests.structures import CaseInsensitiveDict 22 from pip._vendor.six.moves.urllib import parse as urllib_parse 23 from pip._vendor.urllib3.exceptions import InsecureRequestWarning 24 25 from pip import __version__ 26 from pip._internal.network.auth import MultiDomainBasicAuth 27 from pip._internal.network.cache import SafeFileCache 28 # Import ssl from compat so the initial import occurs in only one place. 29 from pip._internal.utils.compat import HAS_TLS, ipaddress, ssl 30 from pip._internal.utils.filesystem import check_path_owner 31 from pip._internal.utils.glibc import libc_ver 32 from pip._internal.utils.misc import ( 33 build_url_from_netloc, 34 get_installed_version, 35 parse_netloc, 36 ) 37 from pip._internal.utils.typing import MYPY_CHECK_RUNNING 38 from pip._internal.utils.urls import url_to_path 39 40 if MYPY_CHECK_RUNNING: 41 from typing import ( 42 Iterator, List, Optional, Tuple, Union, 43 ) 44 45 from pip._internal.models.link import Link 46 47 SecureOrigin = Tuple[str, str, Optional[Union[int, str]]] 48 49 50 logger = logging.getLogger(__name__) 51 52 53 # Ignore warning raised when using --trusted-host. 54 warnings.filterwarnings("ignore", category=InsecureRequestWarning) 55 56 57 SECURE_ORIGINS = [ 58 # protocol, hostname, port 59 # Taken from Chrome's list of secure origins (See: http://bit.ly/1qrySKC) 60 ("https", "*", "*"), 61 ("*", "localhost", "*"), 62 ("*", "127.0.0.0/8", "*"), 63 ("*", "::1/128", "*"), 64 ("file", "*", None), 65 # ssh is always secure. 66 ("ssh", "*", "*"), 67 ] # type: List[SecureOrigin] 68 69 70 # These are environment variables present when running under various 71 # CI systems. For each variable, some CI systems that use the variable 72 # are indicated. The collection was chosen so that for each of a number 73 # of popular systems, at least one of the environment variables is used. 74 # This list is used to provide some indication of and lower bound for 75 # CI traffic to PyPI. Thus, it is okay if the list is not comprehensive. 76 # For more background, see: https://github.com/pypa/pip/issues/5499 77 CI_ENVIRONMENT_VARIABLES = ( 78 # Azure Pipelines 79 'BUILD_BUILDID', 80 # Jenkins 81 'BUILD_ID', 82 # AppVeyor, CircleCI, Codeship, Gitlab CI, Shippable, Travis CI 83 'CI', 84 # Explicit environment variable. 85 'PIP_IS_CI', 86 ) 87 88 89 def looks_like_ci(): 90 # type: () -> bool 91 """ 92 Return whether it looks like pip is running under CI. 93 """ 94 # We don't use the method of checking for a tty (e.g. using isatty()) 95 # because some CI systems mimic a tty (e.g. Travis CI). Thus that 96 # method doesn't provide definitive information in either direction. 97 return any(name in os.environ for name in CI_ENVIRONMENT_VARIABLES) 98 99 100 def user_agent(): 101 """ 102 Return a string representing the user agent. 103 """ 104 data = { 105 "installer": {"name": "pip", "version": __version__}, 106 "python": platform.python_version(), 107 "implementation": { 108 "name": platform.python_implementation(), 109 }, 110 } 111 112 if data["implementation"]["name"] == 'CPython': 113 data["implementation"]["version"] = platform.python_version() 114 elif data["implementation"]["name"] == 'PyPy': 115 if sys.pypy_version_info.releaselevel == 'final': 116 pypy_version_info = sys.pypy_version_info[:3] 117 else: 118 pypy_version_info = sys.pypy_version_info 119 data["implementation"]["version"] = ".".join( 120 [str(x) for x in pypy_version_info] 121 ) 122 elif data["implementation"]["name"] == 'Jython': 123 # Complete Guess 124 data["implementation"]["version"] = platform.python_version() 125 elif data["implementation"]["name"] == 'IronPython': 126 # Complete Guess 127 data["implementation"]["version"] = platform.python_version() 128 129 if sys.platform.startswith("linux"): 130 from pip._vendor import distro 131 distro_infos = dict(filter( 132 lambda x: x[1], 133 zip(["name", "version", "id"], distro.linux_distribution()), 134 )) 135 libc = dict(filter( 136 lambda x: x[1], 137 zip(["lib", "version"], libc_ver()), 138 )) 139 if libc: 140 distro_infos["libc"] = libc 141 if distro_infos: 142 data["distro"] = distro_infos 143 144 if sys.platform.startswith("darwin") and platform.mac_ver()[0]: 145 data["distro"] = {"name": "macOS", "version": platform.mac_ver()[0]} 146 147 if platform.system(): 148 data.setdefault("system", {})["name"] = platform.system() 149 150 if platform.release(): 151 data.setdefault("system", {})["release"] = platform.release() 152 153 if platform.machine(): 154 data["cpu"] = platform.machine() 155 156 if HAS_TLS: 157 data["openssl_version"] = ssl.OPENSSL_VERSION 158 159 setuptools_version = get_installed_version("setuptools") 160 if setuptools_version is not None: 161 data["setuptools_version"] = setuptools_version 162 163 # Use None rather than False so as not to give the impression that 164 # pip knows it is not being run under CI. Rather, it is a null or 165 # inconclusive result. Also, we include some value rather than no 166 # value to make it easier to know that the check has been run. 167 data["ci"] = True if looks_like_ci() else None 168 169 user_data = os.environ.get("PIP_USER_AGENT_USER_DATA") 170 if user_data is not None: 171 data["user_data"] = user_data 172 173 return "{data[installer][name]}/{data[installer][version]} {json}".format( 174 data=data, 175 json=json.dumps(data, separators=(",", ":"), sort_keys=True), 176 ) 177 178 179 class LocalFSAdapter(BaseAdapter): 180 181 def send(self, request, stream=None, timeout=None, verify=None, cert=None, 182 proxies=None): 183 pathname = url_to_path(request.url) 184 185 resp = Response() 186 resp.status_code = 200 187 resp.url = request.url 188 189 try: 190 stats = os.stat(pathname) 191 except OSError as exc: 192 resp.status_code = 404 193 resp.raw = exc 194 else: 195 modified = email.utils.formatdate(stats.st_mtime, usegmt=True) 196 content_type = mimetypes.guess_type(pathname)[0] or "text/plain" 197 resp.headers = CaseInsensitiveDict({ 198 "Content-Type": content_type, 199 "Content-Length": stats.st_size, 200 "Last-Modified": modified, 201 }) 202 203 resp.raw = open(pathname, "rb") 204 resp.close = resp.raw.close 205 206 return resp 207 208 def close(self): 209 pass 210 211 212 class InsecureHTTPAdapter(HTTPAdapter): 213 214 def cert_verify(self, conn, url, verify, cert): 215 conn.cert_reqs = 'CERT_NONE' 216 conn.ca_certs = None 217 218 219 class PipSession(requests.Session): 220 221 timeout = None # type: Optional[int] 222 223 def __init__(self, *args, **kwargs): 224 """ 225 :param trusted_hosts: Domains not to emit warnings for when not using 226 HTTPS. 227 """ 228 retries = kwargs.pop("retries", 0) 229 cache = kwargs.pop("cache", None) 230 trusted_hosts = kwargs.pop("trusted_hosts", []) # type: List[str] 231 index_urls = kwargs.pop("index_urls", None) 232 233 super(PipSession, self).__init__(*args, **kwargs) 234 235 # Namespace the attribute with "pip_" just in case to prevent 236 # possible conflicts with the base class. 237 self.pip_trusted_origins = [] # type: List[Tuple[str, Optional[int]]] 238 239 # Attach our User Agent to the request 240 self.headers["User-Agent"] = user_agent() 241 242 # Attach our Authentication handler to the session 243 self.auth = MultiDomainBasicAuth(index_urls=index_urls) 244 245 # Create our urllib3.Retry instance which will allow us to customize 246 # how we handle retries. 247 retries = urllib3.Retry( 248 # Set the total number of retries that a particular request can 249 # have. 250 total=retries, 251 252 # A 503 error from PyPI typically means that the Fastly -> Origin 253 # connection got interrupted in some way. A 503 error in general 254 # is typically considered a transient error so we'll go ahead and 255 # retry it. 256 # A 500 may indicate transient error in Amazon S3 257 # A 520 or 527 - may indicate transient error in CloudFlare 258 status_forcelist=[500, 503, 520, 527], 259 260 # Add a small amount of back off between failed requests in 261 # order to prevent hammering the service. 262 backoff_factor=0.25, 263 ) 264 265 # Check to ensure that the directory containing our cache directory 266 # is owned by the user current executing pip. If it does not exist 267 # we will check the parent directory until we find one that does exist. 268 if cache and not check_path_owner(cache): 269 logger.warning( 270 "The directory '%s' or its parent directory is not owned by " 271 "the current user and the cache has been disabled. Please " 272 "check the permissions and owner of that directory. If " 273 "executing pip with sudo, you may want sudo's -H flag.", 274 cache, 275 ) 276 cache = None 277 278 # We want to _only_ cache responses on securely fetched origins. We do 279 # this because we can't validate the response of an insecurely fetched 280 # origin, and we don't want someone to be able to poison the cache and 281 # require manual eviction from the cache to fix it. 282 if cache: 283 secure_adapter = CacheControlAdapter( 284 cache=SafeFileCache(cache), 285 max_retries=retries, 286 ) 287 else: 288 secure_adapter = HTTPAdapter(max_retries=retries) 289 290 # Our Insecure HTTPAdapter disables HTTPS validation. It does not 291 # support caching (see above) so we'll use it for all http:// URLs as 292 # well as any https:// host that we've marked as ignoring TLS errors 293 # for. 294 insecure_adapter = InsecureHTTPAdapter(max_retries=retries) 295 # Save this for later use in add_insecure_host(). 296 self._insecure_adapter = insecure_adapter 297 298 self.mount("https://", secure_adapter) 299 self.mount("http://", insecure_adapter) 300 301 # Enable file:// urls 302 self.mount("file://", LocalFSAdapter()) 303 304 for host in trusted_hosts: 305 self.add_trusted_host(host, suppress_logging=True) 306 307 def add_trusted_host(self, host, source=None, suppress_logging=False): 308 # type: (str, Optional[str], bool) -> None 309 """ 310 :param host: It is okay to provide a host that has previously been 311 added. 312 :param source: An optional source string, for logging where the host 313 string came from. 314 """ 315 if not suppress_logging: 316 msg = 'adding trusted host: {!r}'.format(host) 317 if source is not None: 318 msg += ' (from {})'.format(source) 319 logger.info(msg) 320 321 host_port = parse_netloc(host) 322 if host_port not in self.pip_trusted_origins: 323 self.pip_trusted_origins.append(host_port) 324 325 self.mount(build_url_from_netloc(host) + '/', self._insecure_adapter) 326 if not host_port[1]: 327 # Mount wildcard ports for the same host. 328 self.mount( 329 build_url_from_netloc(host) + ':', 330 self._insecure_adapter 331 ) 332 333 def iter_secure_origins(self): 334 # type: () -> Iterator[SecureOrigin] 335 for secure_origin in SECURE_ORIGINS: 336 yield secure_origin 337 for host, port in self.pip_trusted_origins: 338 yield ('*', host, '*' if port is None else port) 339 340 def is_secure_origin(self, location): 341 # type: (Link) -> bool 342 # Determine if this url used a secure transport mechanism 343 parsed = urllib_parse.urlparse(str(location)) 344 origin_protocol, origin_host, origin_port = ( 345 parsed.scheme, parsed.hostname, parsed.port, 346 ) 347 348 # The protocol to use to see if the protocol matches. 349 # Don't count the repository type as part of the protocol: in 350 # cases such as "git+ssh", only use "ssh". (I.e., Only verify against 351 # the last scheme.) 352 origin_protocol = origin_protocol.rsplit('+', 1)[-1] 353 354 # Determine if our origin is a secure origin by looking through our 355 # hardcoded list of secure origins, as well as any additional ones 356 # configured on this PackageFinder instance. 357 for secure_origin in self.iter_secure_origins(): 358 secure_protocol, secure_host, secure_port = secure_origin 359 if origin_protocol != secure_protocol and secure_protocol != "*": 360 continue 361 362 try: 363 # We need to do this decode dance to ensure that we have a 364 # unicode object, even on Python 2.x. 365 addr = ipaddress.ip_address( 366 origin_host 367 if ( 368 isinstance(origin_host, six.text_type) or 369 origin_host is None 370 ) 371 else origin_host.decode("utf8") 372 ) 373 network = ipaddress.ip_network( 374 secure_host 375 if isinstance(secure_host, six.text_type) 376 # setting secure_host to proper Union[bytes, str] 377 # creates problems in other places 378 else secure_host.decode("utf8") # type: ignore 379 ) 380 except ValueError: 381 # We don't have both a valid address or a valid network, so 382 # we'll check this origin against hostnames. 383 if ( 384 origin_host and 385 origin_host.lower() != secure_host.lower() and 386 secure_host != "*" 387 ): 388 continue 389 else: 390 # We have a valid address and network, so see if the address 391 # is contained within the network. 392 if addr not in network: 393 continue 394 395 # Check to see if the port matches. 396 if ( 397 origin_port != secure_port and 398 secure_port != "*" and 399 secure_port is not None 400 ): 401 continue 402 403 # If we've gotten here, then this origin matches the current 404 # secure origin and we should return True 405 return True 406 407 # If we've gotten to this point, then the origin isn't secure and we 408 # will not accept it as a valid location to search. We will however 409 # log a warning that we are ignoring it. 410 logger.warning( 411 "The repository located at %s is not a trusted or secure host and " 412 "is being ignored. If this repository is available via HTTPS we " 413 "recommend you use HTTPS instead, otherwise you may silence " 414 "this warning and allow it anyway with '--trusted-host %s'.", 415 origin_host, 416 origin_host, 417 ) 418 419 return False 420 421 def request(self, method, url, *args, **kwargs): 422 # Allow setting a default timeout on a session 423 kwargs.setdefault("timeout", self.timeout) 424 425 # Dispatch the actual request 426 return super(PipSession, self).request(method, url, *args, **kwargs) 427 [end of src/pip/_internal/network/session.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
pypa/pip
44c8caccd4a39d6230666bca637157dfc78b95ea
pip 19.3 doesn't send client certificate **Ubuntu 18.04 virtual environment** * pip version: 19.3 * Python version: 3.6.8 * OS: Ubuntu 18.04.3 LTS We have a private Pypi server hosted with [pypicloud](https://pypicloud.readthedocs.io/en/latest/index.html). We use client certificates to authenticate users for downloading/uploading packages. **Description** pip 19.3 doesn't seem to send our client certificates so authentication fails and packages cannot be installed: `WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:852)'),)': /simple/<our package name>/ ` I captured some of the SSL traffic from pip install in Wireshark and the client certificate option is there in the SSL handshake, but the certificates length is 0 with pip 19.3: ![image](https://user-images.githubusercontent.com/9781018/66789548-28f54080-eeba-11e9-8124-315e814564bc.png) In 19.2.1, the length is non-zero and Wireshark shows the client certificate I expect. **Expected behavior** We should not get an SSL error if our client certificates and CA certificates are not expired. I have checked our server logs there don't appear to be any errors there with our certificates. If I downgrade to pip 19.2.1 or 19.2.3 in my virtual environment, then the SSL error goes away. I also checked with the `openssl s_client` that a handshake succeeded with the same client certificate: ``` openssl s_client -connect <my server> -cert <cert> -key <key> -state CONNECTED(00000005) SSL_connect:before SSL initialization SSL_connect:SSLv3/TLS write client hello SSL_connect:SSLv3/TLS write client hello SSL_connect:SSLv3/TLS read server hello depth=2 O = Digital Signature Trust Co., CN = DST Root CA X3 verify return:1 depth=1 C = US, O = Let's Encrypt, CN = Let's Encrypt Authority X3 verify return:1 depth=0 CN = <my server> verify return:1 SSL_connect:SSLv3/TLS read server certificate SSL_connect:SSLv3/TLS read server key exchange SSL_connect:SSLv3/TLS read server certificate request SSL_connect:SSLv3/TLS read server done SSL_connect:SSLv3/TLS write client certificate ... SSL handshake has read 4268 bytes and written 1546 bytes Verification: OK --- New, TLSv1.2, Cipher is ECDHE-RSA-AES256-GCM-SHA384 Server public key is 2048 bit Secure Renegotiation IS supported Compression: NONE Expansion: NONE No ALPN negotiated SSL-Session: Protocol : TLSv1.2 Cipher : ECDHE-RSA-AES256-GCM-SHA384 Session-ID: ``` **How to Reproduce** 1. Setup pip.conf or command-line arguments to use client certificate 2. pip install <package> 3. sslv3 alert handshake failure occurs **Output** ``` pip install <my package> Looking in indexes: https://pypi.org/simple/, https://<my server>/simple/ WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:852)'),)': /simple/<my package>/ WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:852)'),)': /simple/<my package>/ ```
I cannot reproduce this (Ubuntu 18.04.2, Python 3.6.7) with <details> <summary><strong>repro.sh</strong></summary> ``` #!/bin/sh trap "exit" INT TERM trap "kill 0" EXIT set -e cd "$(mktemp -d)" openssl req -new -x509 -nodes \ -out cert.pem -keyout cert.pem \ -addext 'subjectAltName = IP:127.0.0.1' \ -subj '/CN=127.0.0.1' cat <<EOF > server.py import socket import ssl import sys from pathlib import Path cert = sys.argv[1] context = ssl.SSLContext(ssl.PROTOCOL_TLS_SERVER) context.load_cert_chain(cert, cert) context.load_verify_locations(cafile=cert) context.verify_mode = ssl.CERT_REQUIRED with socket.socket(socket.AF_INET, socket.SOCK_STREAM, 0) as sock: sock.bind(('127.0.0.1', 0)) sock.listen(1) _, port = sock.getsockname() Path('port.txt').write_text(str(port), encoding='utf-8') with context.wrap_socket(sock, server_side=True) as ssock: while True: conn, addr = ssock.accept() cert = conn.getpeercert() print(cert) conn.write(b'HTTP/1.1 400 Bad Request\r\n\r\n') conn.close() EOF PYTHON="${PYTHON:-python}" "$PYTHON" -V "$PYTHON" -m venv venv venv/bin/python server.py cert.pem & sleep 1 venv/bin/python -m pip install --upgrade pip==19.2.3 echo "- Old pip ------------------------------" venv/bin/python -m pip -V venv/bin/python -m pip install \ --ignore-installed \ --disable-pip-version-check \ --index-url https://127.0.0.1:$(cat port.txt) \ --cert cert.pem \ --client-cert cert.pem \ pip || true venv/bin/python -m pip install --upgrade pip echo "- New pip ------------------------------" venv/bin/python -m pip -V pip install \ --ignore-installed \ --disable-pip-version-check \ --index-url https://127.0.0.1:$(cat port.txt) \ --cert cert.pem \ --client-cert cert.pem \ pip ``` </details> My output is <details> <summary><strong>Output</strong></summary> ``` $ PYTHON=~/.pyenv/versions/3.6.7/bin/python ./repro.sh Generating a RSA private key ................................................................+++++ .......+++++ writing new private key to 'cert.pem' ----- Python 3.6.7 Collecting pip==19.2.3 Using cached https://files.pythonhosted.org/packages/30/db/9e38760b32e3e7f40cce46dd5fb107b8c73840df38f0046d8e6514e675a1/pip-19.2.3-py2.py3-none-any.whl Installing collected packages: pip Found existing installation: pip 10.0.1 Uninstalling pip-10.0.1: Successfully uninstalled pip-10.0.1 Successfully installed pip-19.2.3 You are using pip version 19.2.3, however version 19.3 is available. You should consider upgrading via the 'pip install --upgrade pip' command. - Old pip ------------------------------ pip 19.2.3 from /tmp/user/1000/tmp.ZqHiG62cpt/venv/lib/python3.6/site-packages/pip (python 3.6) Looking in indexes: https://127.0.0.1:55649 Collecting pip {'subject': ((('commonName', '127.0.0.1'),),), 'issuer': ((('commonName', '127.0.0.1'),),), 'version': 3, 'serialNumber': '5D7B2701E9D3E0E8A9E6CA66AEC3849D3BE826CD', 'notBefore': 'Oct 15 01:55:59 2019 GMT', 'notAfter': 'Nov 14 01:55:59 2019 GMT', 'subjectAltName': (('IP Address', '127.0.0.1'),)} ERROR: Could not find a version that satisfies the requirement pip (from versions: none) ERROR: No matching distribution found for pip Collecting pip Using cached https://files.pythonhosted.org/packages/4a/08/6ca123073af4ebc4c5488a5bc8a010ac57aa39ce4d3c8a931ad504de4185/pip-19.3-py2.py3-none-any.whl Installing collected packages: pip Found existing installation: pip 19.2.3 Uninstalling pip-19.2.3: Successfully uninstalled pip-19.2.3 Successfully installed pip-19.3 - New pip ------------------------------ pip 19.3 from /tmp/user/1000/tmp.ZqHiG62cpt/venv/lib/python3.6/site-packages/pip (python 3.6) Looking in indexes: https://127.0.0.1:55649 Collecting pip {'subject': ((('commonName', '127.0.0.1'),),), 'issuer': ((('commonName', '127.0.0.1'),),), 'version': 3, 'serialNumber': '5D7B2701E9D3E0E8A9E6CA66AEC3849D3BE826CD', 'notBefore': 'Oct 15 01:55:59 2019 GMT', 'notAfter': 'Nov 14 01:55:59 2019 GMT', 'subjectAltName': (('IP Address', '127.0.0.1'),)} ERROR: Could not find a version that satisfies the requirement pip (from versions: none) ERROR: No matching distribution found for pip ``` </details> Notice in the second instance (with pip 19.3) that the server is still tracing the peer (pip) certificate. How are you configuring the client cert for pip? Command line, configuration file, or environment variable? Can you try shaping `repro.sh` from above into something self-contained that demonstrates your issue? We're using ~/.pip/pip.conf to specify the client certificates. I modified your `repo.sh` and was not able to reproduce the problem using our client + server certificates and a fake SSL server (instead of the python one, I wanted to disable TLS 1.3 so I could see the certificates being sent in Wireshark): `openssl s_server -accept 8999 -www -cert server.pem -key server.key -CAfile ca-cert.pem -no_tls1_3 -Verify 1` It's a bit hard to produce something self-contained since we've got a Letsencrypt certificate tied to our own domain and a private PKI infrastructure for the client certificates. It's looking like it might be an issue when the client certificate bundle is specified in pip.conf, specifying on the command-line seemed to work fine in 19.3. I'll try and come up with a new repro script that simulates this. You may also run in a container so as not to clobber any existing configuration. Ok, I think I have a container + script that reproduces the issue. It sets up its own CA and server/client certificates so it should be self-contained. I ran tshark in the Docker container and verified that when pip 19.3 talks to a dummy openssl server acting as pypi.org on the loopback interface, it doesn't send the client cert. It has something to do with the `trusted-host` parameter in /root/.pip/pip.conf. With that commented out, there's no error. In the output below, some of the output from the openssl s_server process is mixed in with the script output (showing no client certificate sent). <details> <summary>Dockerfile</summary> ``` FROM python:3.8.0-slim-buster COPY repro.sh /root COPY pip.conf /root/.pip/pip.conf WORKDIR /root ``` </details> <details> <summary>pip.conf</summary> ``` [global] index-url = https://127.0.0.1:8999 trusted-host = 127.0.0.1 client-cert = /root/pip.client.bundle.pem ``` </details> <details> <summary>repro.sh</summary> ```bash #!/bin/sh trap "exit" INT TERM trap "kill 0" EXIT set -e # CA + server cert openssl genrsa -des3 -out ca.key -passout pass:notsecure 2048 openssl req -x509 -new -nodes -key ca.key -sha256 -days 1825 -addext "keyUsage = cRLSign, digitalSignature, keyCertSign" -out ca.pem -subj "/CN=Fake Root CA" -passin pass:notsecure openssl genrsa -out pip.local.key 2048 openssl req -new -key pip.local.key -out pip.local.csr -subj "/CN=127.0.0.1" cat << EOF > pip.local.ext authorityKeyIdentifier=keyid,issuer basicConstraints=CA:FALSE keyUsage = digitalSignature, nonRepudiation, keyEncipherment, dataEncipherment subjectAltName = @alt_names [alt_names] IP.1 = 127.0.0.1 EOF openssl x509 -req -in pip.local.csr -CA ca.pem -CAkey ca.key -CAcreateserial \ -out pip.local.pem -days 1825 -sha256 -extfile pip.local.ext -passin pass:notsecure cat << EOF > pip.client.ext keyUsage = digitalSignature extendedKeyUsage = clientAuth EOF # client cert openssl genrsa -out pip.client.key 2048 openssl req -new -key pip.client.key -out pip.client.csr -subj "/CN=pip install" openssl x509 -req -in pip.client.csr -CA ca.pem -CAkey ca.key -CAcreateserial \ -out pip.client.pem -days 1825 -sha256 -extfile pip.client.ext -passin pass:notsecure # create key + cert bundle for pip install cat pip.client.key pip.client.pem > pip.client.bundle.pem PYTHON="${PYTHON:-python3}" "$PYTHON" -V "$PYTHON" -m venv venv openssl s_server -accept 8999 -www -cert pip.local.pem -key pip.local.key -CAfile ca.pem -no_tls1_3 -Verify 1 & sleep 1 venv/bin/python -m pip install --index-url https://pypi.org/simple/ --upgrade pip==19.2.3 echo "- Old pip ------------------------------" venv/bin/python -m pip -V venv/bin/python -m pip install \ --ignore-installed \ --disable-pip-version-check \ --cert /root/ca.pem \ pip || true echo "Upgrading pip --------------------------" venv/bin/python -m pip install --index-url https://pypi.org/simple/ --upgrade pip echo "- New pip ------------------------------" venv/bin/python -m pip -V pip install \ --ignore-installed \ --disable-pip-version-check \ --cert ca.pem \ pip ``` </details> <details> <summary>Usage</summary> ```bash docker build -t pip-debug -f Dockerfile . docker run -it pip-debug bash root@6d0a40c1179c:~# ./repro.sh ``` </details> <details> <summary>Output</summary> ``` root@0e1127dd4124:~# ./repro.sh Generating RSA private key, 2048 bit long modulus (2 primes) .......................+++++ ..........+++++ e is 65537 (0x010001) Generating RSA private key, 2048 bit long modulus (2 primes) ...................................+++++ ......................................................................................................................+++++ e is 65537 (0x010001) Signature ok subject=CN = 127.0.0.1 Getting CA Private Key Generating RSA private key, 2048 bit long modulus (2 primes) ........................................+++++ .......................+++++ e is 65537 (0x010001) Signature ok subject=CN = pip install Getting CA Private Key Python 3.8.0 verify depth is 1, must return a certificate Using default temp DH parameters ACCEPT Looking in indexes: https://pypi.org/simple/ Requirement already up-to-date: pip==19.2.3 in ./venv/lib/python3.8/site-packages (19.2.3) WARNING: You are using pip version 19.2.3, however version 19.3 is available. You should consider upgrading via the 'pip install --upgrade pip' command. - Old pip ------------------------------ pip 19.2.3 from /root/venv/lib/python3.8/site-packages/pip (python 3.8) Looking in indexes: https://127.0.0.1:8999 Collecting pip depth=1 CN = Fake Root CA verify return:1 depth=0 CN = pip install verify return:1 ERROR: Could not find a version that satisfies the requirement pip (from versions: none) ERROR: No matching distribution found for pip Upgrading pip -------------------------- Looking in indexes: https://pypi.org/simple/ Collecting pip Downloading https://files.pythonhosted.org/packages/4a/08/6ca123073af4ebc4c5488a5bc8a010ac57aa39ce4d3c8a931ad504de4185/pip-19.3-py2.py3-none-any.whl (1.4MB) |████████████████████████████████| 1.4MB 3.7MB/s Installing collected packages: pip Found existing installation: pip 19.2.3 Uninstalling pip-19.2.3: Successfully uninstalled pip-19.2.3 Successfully installed pip-19.3 - New pip ------------------------------ pip 19.3 from /root/venv/lib/python3.8/site-packages/pip (python 3.8) Looking in indexes: https://127.0.0.1:8999 140716939547776:error:1417C0C7:SSL routines:tls_process_client_certificate:peer did not return a certificate:../ssl/statem/statem_srvr.c:3672: WARNING: Retrying (Retry(total=4, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1108)'))': /pip/ 140716939547776:error:1417C0C7:SSL routines:tls_process_client_certificate:peer did not return a certificate:../ssl/statem/statem_srvr.c:3672: WARNING: Retrying (Retry(total=3, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1108)'))': /pip/ 140716939547776:error:1417C0C7:SSL routines:tls_process_client_certificate:peer did not return a certificate:../ssl/statem/statem_srvr.c:3672: WARNING: Retrying (Retry(total=2, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1108)'))': /pip/ 140716939547776:error:1417C0C7:SSL routines:tls_process_client_certificate:peer did not return a certificate:../ssl/statem/statem_srvr.c:3672: WARNING: Retrying (Retry(total=1, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1108)'))': /pip/ 140716939547776:error:1417C0C7:SSL routines:tls_process_client_certificate:peer did not return a certificate:../ssl/statem/statem_srvr.c:3672: WARNING: Retrying (Retry(total=0, connect=None, read=None, redirect=None, status=None)) after connection broken by 'SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1108)'))': /pip/ 140716939547776:error:1417C0C7:SSL routines:tls_process_client_certificate:peer did not return a certificate:../ssl/statem/statem_srvr.c:3672: Could not fetch URL https://127.0.0.1:8999/pip/: There was a problem confirming the ssl certificate: HTTPSConnectionPool(host='127.0.0.1', port=8999): Max retries exceeded with url: /pip/ (Caused by SSLError(SSLError(1, '[SSL: SSLV3_ALERT_HANDSHAKE_FAILURE] sslv3 alert handshake failure (_ssl.c:1108)'))) - skipping ERROR: Could not find a version that satisfies the requirement pip (from versions: none) ERROR: No matching distribution found for pip ``` </details> Nice, thanks. I bisected and it looks like the issue was introduced in 3f9136f. Previously the "trusted host" parameter with https URLs was only being applied for index URLs that did not have a port specified. As of 19.3 we assume that an unspecified port means the port is a wildcard. That change in conjunction with your configuration may have uncovered a bug in our `InsecureHTTPAdapter` [here](https://github.com/pypa/pip/blob/8c50c8a9bc8579886fa787a631dc15d4b503a8ac/src/pip/_internal/network/session.py#L214-L216) - we aren't doing anything with the `cert` parameter. If I'm not missing something, I think we should be doing something like ```python super(InsecureHTTPAdapter, self).cert_verify(conn=conn, url=url, verify=False, cert=cert) ``` to get the correct behavior (from [here](https://github.com/psf/requests/blob/67a7b2e8336951d527e223429672354989384197/requests/adapters.py#L241-L253)). In your particular case is it possible to drop the trusted-host parameter since it wasn't being applied in previous versions? Yeah, we can drop `trusted-host` for now. Most people have just reverted to pip 19.2.3 Thanks @surry for a well designed reproducer and @chrahunt for figuring out a potential root cause! :)
2019-11-03T18:18:36Z
<patch> diff --git a/src/pip/_internal/network/session.py b/src/pip/_internal/network/session.py --- a/src/pip/_internal/network/session.py +++ b/src/pip/_internal/network/session.py @@ -212,8 +212,9 @@ def close(self): class InsecureHTTPAdapter(HTTPAdapter): def cert_verify(self, conn, url, verify, cert): - conn.cert_reqs = 'CERT_NONE' - conn.ca_certs = None + super(InsecureHTTPAdapter, self).cert_verify( + conn=conn, url=url, verify=False, cert=cert + ) class PipSession(requests.Session): </patch>
[]
[]
Lightning-AI__lightning-941
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Support stepping options for lr scheduler Currently schedulers get called every epoch. Sometimes though, we want them to be called every step. Proposal 1: Allow configure_optimizers to return this: ```python return Adam, {'scheduler': LRScheduler, 'interval': 'batch|epoch'} ``` @ethanwharris @Borda thoughts? any simpler more general way of doing this? i think this dict can eventually have more options if we need to. @srush </issue> <code> [start of README.md] 1 <div align="center"> 2 3 ![Logo](docs/source/_static/images/lightning_logo.svg) 4 5 # PyTorch Lightning 6 7 **The lightweight PyTorch wrapper for ML researchers. Scale your models. Write less boilerplate.** 8 9 10 [![PyPI Status](https://badge.fury.io/py/pytorch-lightning.svg)](https://badge.fury.io/py/pytorch-lightning) 11 [![PyPI Status](https://pepy.tech/badge/pytorch-lightning)](https://pepy.tech/project/pytorch-lightning) 12 [![Coverage](docs/source/_static/images/coverage.svg)](https://github.com/PytorchLightning/pytorch-lightning/tree/master/tests#running-coverage) 13 [![CodeFactor](https://www.codefactor.io/repository/github/pytorchlightning/pytorch-lightning/badge)](https://www.codefactor.io/repository/github/pytorchlightning/pytorch-lightning) 14 15 [![ReadTheDocs](https://readthedocs.org/projects/pytorch-lightning/badge/?version=latest)](https://pytorch-lightning.readthedocs.io/en/latest/) 16 [![Slack](https://img.shields.io/badge/slack-chat-green.svg?logo=slack)](https://join.slack.com/t/pytorch-lightning/shared_invite/enQtODU5ODIyNTUzODQwLTFkMDg5Mzc1MDBmNjEzMDgxOTVmYTdhYjA1MDdmODUyOTg2OGQ1ZWZkYTQzODhhNzdhZDA3YmNhMDhlMDY4YzQ) 17 [![license](https://img.shields.io/badge/License-Apache%202.0-blue.svg)](https://github.com/PytorchLightning/pytorch-lightning/blob/master/LICENSE) 18 [![Next Release](https://img.shields.io/badge/Next%20Release-Feb%2021-<COLOR>.svg)](https://shields.io/) 19 20 <!-- 21 removed until codecov badge isn't empy. likely a config error showing nothing on master. 22 [![codecov](https://codecov.io/gh/Borda/pytorch-lightning/branch/master/graph/badge.svg)](https://codecov.io/gh/Borda/pytorch-lightning) 23 --> 24 </div> 25 26 --- 27 ## Continuous Integration 28 <center> 29 30 | System / PyTorch Version | 1.1 | 1.2 | 1.3 | 1.4 | 31 | :---: | :---: | :---: | :---: | :---: | 32 | Linux py3.6 | [![CircleCI](https://circleci.com/gh/PyTorchLightning/pytorch-lightning.svg?style=svg)](https://circleci.com/gh/PyTorchLightning/pytorch-lightning) | [![CircleCI](https://circleci.com/gh/PyTorchLightning/pytorch-lightning.svg?style=svg)](https://circleci.com/gh/PyTorchLightning/pytorch-lightning) | [![CircleCI](https://circleci.com/gh/PyTorchLightning/pytorch-lightning.svg?style=svg)](https://circleci.com/gh/PyTorchLightning/pytorch-lightning) | [![CircleCI](https://circleci.com/gh/PyTorchLightning/pytorch-lightning.svg?style=svg)](https://circleci.com/gh/PyTorchLightning/pytorch-lightning) | 33 | Linux py3.7 | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | <center>—</center> | <center>—</center> | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | 34 | OSX py3.6 | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | <center>—</center> | <center>—</center> | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | 35 | OSX py3.7 | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | <center>—</center> | <center>—</center> | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | 36 | Windows py3.6 | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | <center>—</center> | <center>—</center> | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | 37 | Windows py3.7 | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | <center>—</center> | <center>—</center> | ![CI testing](https://github.com/PyTorchLightning/pytorch-lightning/workflows/CI%20testing/badge.svg?event=push) | 38 39 </center> 40 41 Simple installation from PyPI 42 ```bash 43 pip install pytorch-lightning 44 ``` 45 46 ## Docs 47 - [master](https://pytorch-lightning.readthedocs.io/en/latest) 48 - [0.6.0](https://pytorch-lightning.readthedocs.io/en/0.6.0/) 49 - [0.5.3.2](https://pytorch-lightning.readthedocs.io/en/0.5.3.2/) 50 51 ## Demo 52 [Copy and run this COLAB!](https://colab.research.google.com/drive/1F_RNcHzTfFuQf-LeKvSlud6x7jXYkG31#scrollTo=HOk9c4_35FKg) 53 54 ## What is it? 55 Lightning is a way to organize your PyTorch code to decouple the science code from the engineering. It's more of a style-guide than a framework. 56 57 By refactoring your code, we can automate most of the non-research code. Lightning guarantees tested, correct, modern best practices for the automated parts. 58 59 Here's an example of how to organize PyTorch code into the LightningModule. 60 61 ![PT to PL](docs/source/_images/mnist_imgs/pt_to_pl.jpg) 62 63 - If you are a researcher, Lightning is infinitely flexible, you can modify everything down to the way .backward is called or distributed is set up. 64 - If you are a scientist or production team, lightning is very simple to use with best practice defaults. 65 66 ## What does lightning control for me? 67 68 Everything in Blue! 69 This is how lightning separates the science (red) from the engineering (blue). 70 71 ![Overview](docs/source/_static/images/pl_overview.gif) 72 73 ## How much effort is it to convert? 74 You're probably tired of switching frameworks at this point. But it is a very quick process to refactor into the Lightning format (ie: hours). [Check out this tutorial](https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09). 75 76 ## What are the differences with PyTorch? 77 If you're wondering what you gain out of refactoring your PyTorch code, [read this comparison!](https://towardsdatascience.com/from-pytorch-to-pytorch-lightning-a-gentle-introduction-b371b7caaf09) 78 79 ## Starting a new project? 80 [Use our seed-project aimed at reproducibility!](https://github.com/PytorchLightning/pytorch-lightning-conference-seed) 81 82 ## Why do I want to use lightning? 83 Every research project starts the same, a model, a training loop, validation loop, etc. As your research advances, you're likely to need distributed training, 16-bit precision, checkpointing, gradient accumulation, etc. 84 85 Lightning sets up all the boilerplate state-of-the-art training for you so you can focus on the research. 86 87 --- 88 89 ## README Table of Contents 90 - [How do I use it](https://github.com/PytorchLightning/pytorch-lightning#how-do-i-do-use-it) 91 - [What lightning automates](https://github.com/PytorchLightning/pytorch-lightning#what-does-lightning-control-for-me) 92 - [Tensorboard integration](https://github.com/PytorchLightning/pytorch-lightning#tensorboard) 93 - [Lightning features](https://github.com/PytorchLightning/pytorch-lightning#lightning-automates-all-of-the-following-each-is-also-configurable) 94 - [Examples](https://github.com/PytorchLightning/pytorch-lightning#examples) 95 - [Tutorials](https://github.com/PytorchLightning/pytorch-lightning#tutorials) 96 - [Asking for help](https://github.com/PytorchLightning/pytorch-lightning#asking-for-help) 97 - [Contributing](https://github.com/PytorchLightning/pytorch-lightning/blob/master/.github/CONTRIBUTING.md) 98 - [Bleeding edge install](https://github.com/PytorchLightning/pytorch-lightning#bleeding-edge) 99 - [Lightning Design Principles](https://github.com/PytorchLightning/pytorch-lightning#lightning-design-principles) 100 - [Lightning team](https://github.com/PytorchLightning/pytorch-lightning#lightning-team) 101 - [FAQ](https://github.com/PytorchLightning/pytorch-lightning#faq) 102 103 --- 104 105 ## How do I do use it? 106 Think about Lightning as refactoring your research code instead of using a new framework. The research code goes into a [LightningModule](https://pytorch-lightning.rtfd.io/en/latest/lightning-module.html) which you fit using a Trainer. 107 108 The LightningModule defines a *system* such as seq-2-seq, GAN, etc... It can ALSO define a simple classifier such as the example below. 109 110 To use lightning do 2 things: 111 1. [Define a LightningModule](https://pytorch-lightning.rtfd.io/en/latest/lightning-module.html) 112 **WARNING:** This syntax is for version 0.5.0+ where abbreviations were removed. 113 ```python 114 import os 115 116 import torch 117 from torch.nn import functional as F 118 from torch.utils.data import DataLoader 119 from torchvision.datasets import MNIST 120 from torchvision import transforms 121 122 import pytorch_lightning as pl 123 124 class CoolSystem(pl.LightningModule): 125 126 def __init__(self): 127 super(CoolSystem, self).__init__() 128 # not the best model... 129 self.l1 = torch.nn.Linear(28 * 28, 10) 130 131 def forward(self, x): 132 return torch.relu(self.l1(x.view(x.size(0), -1))) 133 134 def training_step(self, batch, batch_idx): 135 # REQUIRED 136 x, y = batch 137 y_hat = self.forward(x) 138 loss = F.cross_entropy(y_hat, y) 139 tensorboard_logs = {'train_loss': loss} 140 return {'loss': loss, 'log': tensorboard_logs} 141 142 def validation_step(self, batch, batch_idx): 143 # OPTIONAL 144 x, y = batch 145 y_hat = self.forward(x) 146 return {'val_loss': F.cross_entropy(y_hat, y)} 147 148 def validation_end(self, outputs): 149 # OPTIONAL 150 avg_loss = torch.stack([x['val_loss'] for x in outputs]).mean() 151 tensorboard_logs = {'val_loss': avg_loss} 152 return {'avg_val_loss': avg_loss, 'log': tensorboard_logs} 153 154 def test_step(self, batch, batch_idx): 155 # OPTIONAL 156 x, y = batch 157 y_hat = self.forward(x) 158 return {'test_loss': F.cross_entropy(y_hat, y)} 159 160 def test_end(self, outputs): 161 # OPTIONAL 162 avg_loss = torch.stack([x['test_loss'] for x in outputs]).mean() 163 tensorboard_logs = {'test_loss': avg_loss} 164 return {'avg_test_loss': avg_loss, 'log': tensorboard_logs} 165 166 def configure_optimizers(self): 167 # REQUIRED 168 # can return multiple optimizers and learning_rate schedulers 169 # (LBFGS it is automatically supported, no need for closure function) 170 return torch.optim.Adam(self.parameters(), lr=0.02) 171 172 @pl.data_loader 173 def train_dataloader(self): 174 # REQUIRED 175 return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32) 176 177 @pl.data_loader 178 def val_dataloader(self): 179 # OPTIONAL 180 return DataLoader(MNIST(os.getcwd(), train=True, download=True, transform=transforms.ToTensor()), batch_size=32) 181 182 @pl.data_loader 183 def test_dataloader(self): 184 # OPTIONAL 185 return DataLoader(MNIST(os.getcwd(), train=False, download=True, transform=transforms.ToTensor()), batch_size=32) 186 ``` 187 2. Fit with a [trainer](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.html) 188 ```python 189 from pytorch_lightning import Trainer 190 191 model = CoolSystem() 192 193 # most basic trainer, uses good defaults 194 trainer = Trainer() 195 trainer.fit(model) 196 ``` 197 198 Trainer sets up a tensorboard logger, early stopping and checkpointing by default (you can modify all of them or 199 use something other than tensorboard). 200 201 Here are more advanced examples 202 ```python 203 # train on cpu using only 10% of the data (for demo purposes) 204 trainer = Trainer(max_epochs=1, train_percent_check=0.1) 205 206 # train on 4 gpus (lightning chooses GPUs for you) 207 # trainer = Trainer(max_epochs=1, gpus=4, distributed_backend='ddp') 208 209 # train on 4 gpus (you choose GPUs) 210 # trainer = Trainer(max_epochs=1, gpus=[0, 1, 3, 7], distributed_backend='ddp') 211 212 # train on 32 gpus across 4 nodes (make sure to submit appropriate SLURM job) 213 # trainer = Trainer(max_epochs=1, gpus=8, num_gpu_nodes=4, distributed_backend='ddp') 214 215 # train (1 epoch only here for demo) 216 trainer.fit(model) 217 218 # view tensorboard logs 219 logging.info(f'View tensorboard logs by running\ntensorboard --logdir {os.getcwd()}') 220 logging.info('and going to http://localhost:6006 on your browser') 221 ``` 222 223 When you're all done you can even run the test set separately. 224 ```python 225 trainer.test() 226 ``` 227 228 **Could be as complex as seq-2-seq + attention** 229 230 ```python 231 # define what happens for training here 232 def training_step(self, batch, batch_idx): 233 x, y = batch 234 235 # define your own forward and loss calculation 236 hidden_states = self.encoder(x) 237 238 # even as complex as a seq-2-seq + attn model 239 # (this is just a toy, non-working example to illustrate) 240 start_token = '<SOS>' 241 last_hidden = torch.zeros(...) 242 loss = 0 243 for step in range(max_seq_len): 244 attn_context = self.attention_nn(hidden_states, start_token) 245 pred = self.decoder(start_token, attn_context, last_hidden) 246 last_hidden = pred 247 pred = self.predict_nn(pred) 248 loss += self.loss(last_hidden, y[step]) 249 250 #toy example as well 251 loss = loss / max_seq_len 252 return {'loss': loss} 253 ``` 254 255 **Or as basic as CNN image classification** 256 257 ```python 258 # define what happens for validation here 259 def validation_step(self, batch, batch_idx): 260 x, y = batch 261 262 # or as basic as a CNN classification 263 out = self.forward(x) 264 loss = my_loss(out, y) 265 return {'loss': loss} 266 ``` 267 268 **And you also decide how to collate the output of all validation steps** 269 270 ```python 271 def validation_end(self, outputs): 272 """ 273 Called at the end of validation to aggregate outputs 274 :param outputs: list of individual outputs of each validation step 275 :return: 276 """ 277 val_loss_mean = 0 278 val_acc_mean = 0 279 for output in outputs: 280 val_loss_mean += output['val_loss'] 281 val_acc_mean += output['val_acc'] 282 283 val_loss_mean /= len(outputs) 284 val_acc_mean /= len(outputs) 285 logs = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} 286 result = {'log': logs} 287 return result 288 ``` 289 290 ## Tensorboard 291 Lightning is fully integrated with tensorboard, MLFlow and supports any logging module. 292 293 ![tensorboard-support](docs/source/_static/images/tf_loss.png) 294 295 Lightning also adds a text column with all the hyperparameters for this experiment. 296 297 ![tensorboard-support](docs/source/_static/images/tf_tags.png) 298 299 ## Lightning automates all of the following ([each is also configurable](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.html)): 300 301 302 - [Running grid search on a cluster](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.distrib_data_parallel.html) 303 - [Fast dev run](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.utilities.debugging.html) 304 - [Logging](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.loggers.html) 305 - [Implement Your Own Distributed (DDP) training](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.core.lightning.html#pytorch_lightning.core.lightning.LightningModule.configure_ddp) 306 - [Multi-GPU & Multi-node](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.distrib_parts.html) 307 - [Training loop](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.training_loop.html) 308 - [Hooks](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.core.hooks.html) 309 - [Configure optimizers](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.core.lightning.html#pytorch_lightning.core.lightning.LightningModule.configure_optimizers) 310 - [Validations](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.evaluation_loop.html) 311 - [Model saving & Restoring training session](https://pytorch-lightning.rtfd.io/en/latest/pytorch_lightning.trainer.training_io.html) 312 313 314 ## Examples 315 - [GAN](https://github.com/PytorchLightning/pytorch-lightning/tree/master/pl_examples/domain_templates/gan.py) 316 - [MNIST](https://github.com/PytorchLightning/pytorch-lightning/tree/master/pl_examples/basic_examples) 317 - [Other projects using Lightning](https://github.com/PytorchLightning/pytorch-lightning/network/dependents?package_id=UGFja2FnZS0zNzE3NDU4OTM%3D) 318 - [Multi-node](https://github.com/PytorchLightning/pytorch-lightning/tree/master/pl_examples/multi_node_examples) 319 320 ## Tutorials 321 - [Basic Lightning use](https://towardsdatascience.com/supercharge-your-ai-research-with-pytorch-lightning-337948a99eec) 322 - [9 key speed features in Pytorch-Lightning](https://towardsdatascience.com/9-tips-for-training-lightning-fast-neural-networks-in-pytorch-8e63a502f565) 323 - [SLURM, multi-node training with Lightning](https://towardsdatascience.com/trivial-multi-node-training-with-pytorch-lightning-ff75dfb809bd) 324 325 --- 326 327 ## Asking for help 328 Welcome to the Lightning community! 329 330 If you have any questions, feel free to: 331 1. [read the docs](https://pytorch-lightning.rtfd.io/en/latest/). 332 2. [Search through the issues](https://github.com/PytorchLightning/pytorch-lightning/issues?utf8=%E2%9C%93&q=my++question). 333 3. [Ask on stackoverflow](https://stackoverflow.com/questions/ask?guided=false) with the tag pytorch-lightning. 334 335 If no one replies to you quickly enough, feel free to post the stackoverflow link to our Gitter chat! 336 337 To chat with the rest of us visit our [gitter channel](https://gitter.im/PyTorch-Lightning/community)! 338 339 --- 340 ## FAQ 341 **How do I use Lightning for rapid research?** 342 [Here's a walk-through](https://pytorch-lightning.rtfd.io/en/latest/) 343 344 **Why was Lightning created?** 345 Lightning has 3 goals in mind: 346 1. Maximal flexibility while abstracting out the common boilerplate across research projects. 347 2. Reproducibility. If all projects use the LightningModule template, it will be much much easier to understand what's going on and where to look! It will also mean every implementation follows a standard format. 348 3. Democratizing PyTorch power user features. Distributed training? 16-bit? know you need them but don't want to take the time to implement? All good... these come built into Lightning. 349 350 **How does Lightning compare with Ignite and fast.ai?** 351 [Here's a thorough comparison](https://medium.com/@_willfalcon/pytorch-lightning-vs-pytorch-ignite-vs-fast-ai-61dc7480ad8a). 352 353 **Is this another library I have to learn?** 354 Nope! We use pure Pytorch everywhere and don't add unecessary abstractions! 355 356 **Are there plans to support Python 2?** 357 Nope. 358 359 **Are there plans to support virtualenv?** 360 Nope. Please use anaconda or miniconda. 361 362 **Which PyTorch versions do you support?** 363 - **PyTorch 1.1.0** 364 ```bash 365 # install pytorch 1.1.0 using the official instructions 366 367 # install test-tube 0.6.7.6 which supports 1.1.0 368 pip install test-tube==0.6.7.6 369 370 # install latest Lightning version without upgrading deps 371 pip install -U --no-deps pytorch-lightning 372 ``` 373 - **PyTorch 1.2.0, 1.3.0,** 374 Install via pip as normal 375 376 ## Custom installation 377 378 ### Bleeding edge 379 380 If you can't wait for the next release, install the most up to date code with: 381 * using GIT (locally clone whole repo with full history) 382 ```bash 383 pip install git+https://github.com/PytorchLightning/pytorch-lightning.git@master --upgrade 384 ``` 385 * using instant zip (last state of the repo without git history) 386 ```bash 387 pip install https://github.com/PytorchLightning/pytorch-lightning/archive/master.zip --upgrade 388 ``` 389 390 ### Any release installation 391 392 You can also install any past release `0.X.Y` from this repository: 393 ```bash 394 pip install https://github.com/PytorchLightning/pytorch-lightning/archive/0.X.Y.zip --upgrade 395 ``` 396 397 ### Lightning team 398 399 #### Leads 400 - William Falcon [(williamFalcon)](https://github.com/williamFalcon) (Lightning founder) 401 - Jirka Borovec [(Borda)](https://github.com/Borda) (-_-) 402 - Ethan Harris [(ethanwharris)](https://github.com/ethanwharris) (Torchbearer founder) 403 - Matthew Painter [(MattPainter01)](https://github.com/MattPainter01) (Torchbearer founder) 404 405 #### Core Maintainers 406 407 - Nick Eggert [(neggert)](https://github.com/neggert) 408 - Jeremy Jordan [(jeremyjordan)](https://github.com/jeremyjordan) 409 - Jeff Ling [(jeffling)](https://github.com/jeffling) 410 - Tullie Murrell [(tullie)](https://github.com/tullie) 411 412 ## Bibtex 413 If you want to cite the framework feel free to use this (but only if you loved it 😊): 414 ``` 415 @misc{Falcon2019, 416 author = {Falcon, W.A. et al.}, 417 title = {PyTorch Lightning}, 418 year = {2019}, 419 publisher = {GitHub}, 420 journal = {GitHub repository}, 421 howpublished = {\url{https://github.com/PytorchLightning/pytorch-lightning}} 422 } 423 ``` 424 [end of README.md] [start of pytorch_lightning/core/lightning.py] 1 import collections 2 import inspect 3 import logging as log 4 import os 5 import warnings 6 from abc import ABC, abstractmethod 7 from argparse import Namespace 8 from typing import Any, Callable, Dict, Optional, Union 9 10 import torch 11 import torch.distributed as dist 12 from torch.optim import Adam 13 14 from pytorch_lightning.core.decorators import data_loader 15 from pytorch_lightning.core.grads import GradInformation 16 from pytorch_lightning.core.hooks import ModelHooks 17 from pytorch_lightning.core.saving import ModelIO, load_hparams_from_tags_csv 18 from pytorch_lightning.core.memory import ModelSummary 19 from pytorch_lightning.overrides.data_parallel import LightningDistributedDataParallel 20 from pytorch_lightning.utilities.debugging import MisconfigurationException 21 22 try: 23 import torch_xla.core.xla_model as xm 24 XLA_AVAILABLE = True 25 26 except ImportError: 27 XLA_AVAILABLE = False 28 29 30 class LightningModule(ABC, GradInformation, ModelIO, ModelHooks): 31 32 def __init__(self, *args, **kwargs): 33 super(LightningModule, self).__init__(*args, **kwargs) 34 35 #: Current dtype 36 self.dtype = torch.FloatTensor 37 38 self.exp_save_path = None 39 40 #: The current epoch 41 self.current_epoch = 0 42 43 #: Total training batches seen across all epochs 44 self.global_step = 0 45 46 self.loaded_optimizer_states_dict = {} 47 48 #: Pointer to the trainer object 49 self.trainer = None 50 51 #: Pointer to the logger object 52 self.logger = None 53 self.example_input_array = None 54 55 #: True if your model is currently running on GPUs. 56 #: Useful to set flags around the LightningModule for different CPU vs GPU behavior. 57 self.on_gpu = False 58 59 #: True if using dp 60 self.use_dp = False 61 62 #: True if using ddp 63 self.use_ddp = False 64 65 #: True if using ddp2 66 self.use_ddp2 = False 67 68 #: True if using amp 69 self.use_amp = False 70 71 self.hparams = None 72 73 def print(self, *args, **kwargs): 74 r""" 75 Prints only from process 0. Use this in any distributed mode to log only once 76 77 Args: 78 x (object): The thing to print 79 80 Example 81 ------- 82 83 .. code-block:: python 84 85 # example if we were using this model as a feature extractor 86 def forward(self, x): 87 self.print(x, 'in loader') 88 89 """ 90 if self.trainer.proc_rank == 0: 91 log.info(*args, **kwargs) 92 93 @abstractmethod 94 def forward(self, *args, **kwargs): 95 r""" 96 Same as torch.nn.Module.forward(), however in Lightning you want this to define 97 the operations you want to use for prediction (ie: on a server or as a feature extractor). 98 99 Normally you'd call self.forward() from your training_step() method. This makes it easy to write a complex 100 system for training with the outputs you'd want in a prediction setting. 101 102 Args: 103 x (tensor): Whatever you decide to define in the forward method 104 105 Return: 106 Predicted output 107 108 Example 109 ------- 110 111 .. code-block:: python 112 113 # example if we were using this model as a feature extractor 114 def forward(self, x): 115 feature_maps = self.convnet(x) 116 return feature_maps 117 118 def training_step(self, batch, batch_idx): 119 x, y = batch 120 feature_maps = self.forward(x) 121 logits = self.classifier(feature_maps) 122 123 # ... 124 return loss 125 126 # splitting it this way allows model to be used a feature extractor 127 model = MyModelAbove() 128 129 inputs = server.get_request() 130 results = model(inputs) 131 server.write_results(results) 132 133 # ------------- 134 # This is in stark contrast to torch.nn.Module where normally you would have this: 135 def forward(self, batch): 136 x, y = batch 137 feature_maps = self.convnet(x) 138 logits = self.classifier(feature_maps) 139 return logits 140 141 """ 142 143 def training_step(self, *args, **kwargs): 144 r"""return loss, dict with metrics for tqdm 145 146 Args: 147 batch (torch.nn.Tensor | (Tensor, Tensor) | [Tensor, Tensor]): The output of your dataloader. 148 A tensor, tuple or list 149 batch_idx (int): Integer displaying index of this batch 150 optimizer_idx (int): If using multiple optimizers, this argument will also be present. 151 hiddens(:`Tensor <https://pytorch.org/docs/stable/tensors.html>`_): Passed in if truncated_bptt_steps > 0. 152 153 :param 154 155 :return: dict with loss key and optional log, progress keys 156 if implementing training_step, return whatever you need in that step: 157 158 - loss -> tensor scalar [REQUIRED] 159 - progress_bar -> Dict for progress bar display. Must have only tensors 160 - log -> Dict of metrics to add to logger. Must have only tensors (no images, etc) 161 162 In this step you'd normally do the forward pass and calculate the loss for a batch. 163 You can also do fancier things like multiple forward passes or something specific to your model. 164 165 Example 166 ------- 167 168 .. code-block:: python 169 170 def training_step(self, batch, batch_idx): 171 x, y, z = batch 172 173 # implement your own 174 out = self.forward(x) 175 loss = self.loss(out, x) 176 177 logger_logs = {'training_loss': loss} # optional (MUST ALL BE TENSORS) 178 179 # if using TestTubeLogger or TensorBoardLogger you can nest scalars 180 logger_logs = {'losses': logger_logs} # optional (MUST ALL BE TENSORS) 181 182 output = { 183 'loss': loss, # required 184 'progress_bar': {'training_loss': loss}, # optional (MUST ALL BE TENSORS) 185 'log': logger_logs 186 } 187 188 # return a dict 189 return output 190 191 If you define multiple optimizers, this step will also be called with an additional `optimizer_idx` param. 192 193 .. code-block:: python 194 195 # Multiple optimizers (ie: GANs) 196 def training_step(self, batch, batch_idx, optimizer_idx): 197 if optimizer_idx == 0: 198 # do training_step with encoder 199 if optimizer_idx == 1: 200 # do training_step with decoder 201 202 203 If you add truncated back propagation through time you will also get an additional 204 argument with the hidden states of the previous step. 205 206 .. code-block:: python 207 208 # Truncated back-propagation through time 209 def training_step(self, batch, batch_idx, hiddens): 210 # hiddens are the hiddens from the previous truncated backprop step 211 ... 212 out, hiddens = self.lstm(data, hiddens) 213 ... 214 215 return { 216 "loss": ..., 217 "hiddens": hiddens # remember to detach() this 218 } 219 220 You can also return a -1 instead of a dict to stop the current loop. This is useful 221 if you want to break out of the current training epoch early. 222 """ 223 224 def training_end(self, *args, **kwargs): 225 """return loss, dict with metrics for tqdm 226 227 :param outputs: What you return in `training_step`. 228 :return dict: dictionary with loss key and optional log, progress keys: 229 - loss -> tensor scalar [REQUIRED] 230 - progress_bar -> Dict for progress bar display. Must have only tensors 231 - log -> Dict of metrics to add to logger. Must have only tensors (no images, etc) 232 233 In certain cases (dp, ddp2), you might want to use all outputs of every process to do something. 234 For instance, if using negative samples, you could run a batch via dp and use ALL the outputs 235 for a single softmax across the full batch (ie: the denominator would use the full batch). 236 237 In this case you should define training_end to perform those calculations. 238 239 Example 240 ------- 241 242 .. code-block:: python 243 244 # WITHOUT training_end 245 # if used in DP or DDP2, this batch is 1/num_gpus large 246 def training_step(self, batch, batch_idx): 247 # batch is 1/num_gpus big 248 x, y = batch 249 250 out = self.forward(x) 251 loss = self.softmax(out) 252 loss = nce_loss(loss) 253 return {'loss': loss} 254 255 # -------------- 256 # with training_end to do softmax over the full batch 257 def training_step(self, batch, batch_idx): 258 # batch is 1/num_gpus big 259 x, y = batch 260 261 out = self.forward(x) 262 return {'out': out} 263 264 def training_end(self, outputs): 265 # this out is now the full size of the batch 266 out = outputs['out'] 267 268 # this softmax now uses the full batch size 269 loss = self.softmax(out) 270 loss = nce_loss(loss) 271 return {'loss': loss} 272 273 .. note:: see the `multi-gpu guide for more details <multi_gpu.rst#caveats>`_. 274 275 If you define multiple optimizers, this step will also be called with an additional `optimizer_idx` param. 276 277 .. code-block:: python 278 279 # Multiple optimizers (ie: GANs) 280 def training_step(self, batch, batch_idx, optimizer_idx): 281 if optimizer_idx == 0: 282 # do training_step with encoder 283 if optimizer_idx == 1: 284 # do training_step with decoder 285 286 If you add truncated back propagation through time you will also get an additional argument 287 with the hidden states of the previous step. 288 289 .. code-block:: python 290 291 # Truncated back-propagation through time 292 def training_step(self, batch, batch_idx, hiddens): 293 # hiddens are the hiddens from the previous truncated backprop step 294 295 You can also return a -1 instead of a dict to stop the current loop. This is useful if you want to 296 break out of the current training epoch early. 297 """ 298 299 def validation_step(self, *args, **kwargs): 300 r""" 301 302 This is the validation loop. It is called for each batch of the validation set. 303 Whatever is returned from here will be passed in as a list on validation_end. 304 In this step you'd normally generate examples or calculate anything of interest such as accuracy. 305 306 Args: 307 batch (torch.nn.Tensor | (Tensor, Tensor) | [Tensor, Tensor]): The output of your dataloader. 308 A tensor, tuple or list 309 batch_idx (int): The index of this batch 310 dataloader_idx (int): The index of the dataloader that produced this batch (only if multiple 311 val datasets used) 312 313 Return: 314 Dict or OrderedDict - passed to the validation_end step 315 316 .. code-block:: python 317 318 # if you have one val dataloader: 319 def validation_step(self, batch, batch_idx) 320 321 # if you have multiple val dataloaders: 322 def validation_step(self, batch, batch_idx, dataloader_idxdx) 323 324 Example 325 ------- 326 327 .. code-block:: python 328 329 # CASE 1: A single validation dataset 330 def validation_step(self, batch, batch_idx): 331 x, y = batch 332 333 # implement your own 334 out = self.forward(x) 335 loss = self.loss(out, y) 336 337 # log 6 example images 338 # or generated text... or whatever 339 sample_imgs = x[:6] 340 grid = torchvision.utils.make_grid(sample_imgs) 341 self.logger.experiment.add_image('example_images', grid, 0) 342 343 # calculate acc 344 labels_hat = torch.argmax(out, dim=1) 345 val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) 346 347 # all optional... 348 # return whatever you need for the collation function validation_end 349 output = OrderedDict({ 350 'val_loss': loss_val, 351 'val_acc': torch.tensor(val_acc), # everything must be a tensor 352 }) 353 354 # return an optional dict 355 return output 356 357 If you pass in multiple validation datasets, validation_step will have an additional argument. 358 359 .. code-block:: python 360 361 # CASE 2: multiple validation datasets 362 def validation_step(self, batch, batch_idx, dataset_idx): 363 # dataset_idx tells you which dataset this is. 364 365 .. note:: If you don't need to validate you don't need to implement this method. 366 367 .. note:: When the validation_step is called, the model has been put in eval mode and PyTorch gradients 368 have been disabled. At the end of validation, model goes back to training mode and gradients are enabled. 369 """ 370 371 def test_step(self, *args, **kwargs): 372 """return whatever outputs will need to be aggregated in test_end 373 :param batch: The output of your dataloader. A tensor, tuple or list 374 :param int batch_idx: Integer displaying which batch this is 375 :param int dataloader_idx: Integer displaying which dataloader this is (only if multiple test datasets used) 376 :return dict: Dict or OrderedDict with metrics to display in progress bar. All keys must be tensors. 377 378 .. code-block:: python 379 380 # if you have one test dataloader: 381 def test_step(self, batch, batch_idx) 382 383 # if you have multiple test dataloaders: 384 def test_step(self, batch, batch_idx, dataloader_idxdx) 385 386 387 **OPTIONAL** 388 If you don't need to test you don't need to implement this method. 389 In this step you'd normally generate examples or 390 calculate anything of interest such as accuracy. 391 392 When the validation_step is called, the model has been put in eval mode 393 and PyTorch gradients have been disabled. 394 At the end of validation, model goes back to training mode and gradients are enabled. 395 396 The dict you return here will be available in the `test_end` method. 397 398 This function is used when you execute `trainer.test()`. 399 400 Example 401 ------- 402 403 .. code-block:: python 404 405 # CASE 1: A single test dataset 406 def test_step(self, batch, batch_idx): 407 x, y = batch 408 409 # implement your own 410 out = self.forward(x) 411 loss = self.loss(out, y) 412 413 # calculate acc 414 labels_hat = torch.argmax(out, dim=1) 415 test_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0) 416 417 # all optional... 418 # return whatever you need for the collation function test_end 419 output = OrderedDict({ 420 'test_loss': loss_test, 421 'test_acc': torch.tensor(test_acc), # everything must be a tensor 422 }) 423 424 # return an optional dict 425 return output 426 427 428 If you pass in multiple test datasets, `test_step` will have an additional argument. 429 430 .. code-block:: python 431 432 # CASE 2: multiple test datasets 433 def test_step(self, batch, batch_idx, dataset_idx): 434 # dataset_idx tells you which dataset this is. 435 436 437 The `dataset_idx` corresponds to the order of datasets returned in `test_dataloader`. 438 """ 439 440 def validation_end(self, outputs): 441 """Outputs has the appended output after each validation step. 442 443 :param outputs: List of outputs you defined in validation_step, or if there are multiple dataloaders, 444 a list containing a list of outputs for each dataloader 445 :return dict: Dictionary or OrderedDict with optional: 446 progress_bar -> Dict for progress bar display. Must have only tensors 447 log -> Dict of metrics to add to logger. Must have only tensors (no images, etc) 448 449 If you didn't define a validation_step, this won't be called. 450 Called at the end of the validation loop with the outputs of validation_step. 451 452 The outputs here are strictly for the progress bar. 453 If you don't need to display anything, don't return anything. 454 Any keys present in 'log', 'progress_bar' or the rest of the dictionary 455 are available for callbacks to access. If you want to manually set current step, you can specify it with 456 'step' key in the 'log' Dict. 457 458 Example 459 ------- 460 461 With a single dataloader 462 463 .. code-block:: python 464 465 def validation_end(self, outputs): 466 val_loss_mean = 0 467 val_acc_mean = 0 468 for output in outputs: 469 val_loss_mean += output['val_loss'] 470 val_acc_mean += output['val_acc'] 471 472 val_loss_mean /= len(outputs) 473 val_acc_mean /= len(outputs) 474 tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} 475 476 # show val_loss and val_acc in progress bar but only log val_loss 477 results = { 478 'progress_bar': tqdm_dict, 479 'log': {'val_loss': val_loss_mean.item()} 480 } 481 return results 482 483 With multiple dataloaders, `outputs` will be a list of lists. The outer list contains 484 one entry per dataloader, while the inner list contains the individual outputs of 485 each validation step for that dataloader. 486 487 .. code-block:: python 488 489 def validation_end(self, outputs): 490 val_loss_mean = 0 491 val_acc_mean = 0 492 i = 0 493 for dataloader_outputs in outputs: 494 for output in dataloader_outputs: 495 val_loss_mean += output['val_loss'] 496 val_acc_mean += output['val_acc'] 497 i += 1 498 499 val_loss_mean /= i 500 val_acc_mean /= i 501 tqdm_dict = {'val_loss': val_loss_mean.item(), 'val_acc': val_acc_mean.item()} 502 503 # show val_loss and val_acc in progress bar but only log val_loss 504 results = { 505 'progress_bar': tqdm_dict, 506 'log': {'val_loss': val_loss_mean.item(), 'step': self.current_epoch} 507 } 508 return results 509 510 """ 511 512 def test_end(self, outputs): 513 """Outputs has the appended output after each test step. 514 515 :param outputs: List of outputs you defined in test_step, or if there are multiple dataloaders, 516 a list containing a list of outputs for each dataloader 517 :return dict: Dict of OrderedDict with metrics to display in progress bar 518 519 If you didn't define a test_step, this won't be called. 520 Called at the end of the test step with the output of each test_step. 521 The outputs here are strictly for the progress bar. 522 If you don't need to display anything, don't return anything. 523 524 Example 525 ------- 526 527 .. code-block:: python 528 529 def test_end(self, outputs): 530 test_loss_mean = 0 531 test_acc_mean = 0 532 for output in outputs: 533 test_loss_mean += output['test_loss'] 534 test_acc_mean += output['test_acc'] 535 536 test_loss_mean /= len(outputs) 537 test_acc_mean /= len(outputs) 538 tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} 539 540 # show test_loss and test_acc in progress bar but only log test_loss 541 results = { 542 'progress_bar': tqdm_dict, 543 'log': {'test_loss': val_loss_mean.item()} 544 } 545 return results 546 547 With multiple dataloaders, `outputs` will be a list of lists. The outer list contains 548 one entry per dataloader, while the inner list contains the individual outputs of 549 each validation step for that dataloader. 550 551 .. code-block:: python 552 553 def test_end(self, outputs): 554 test_loss_mean = 0 555 test_acc_mean = 0 556 i = 0 557 for dataloader_outputs in outputs: 558 for output in dataloader_outputs: 559 test_loss_mean += output['test_loss'] 560 test_acc_mean += output['test_acc'] 561 i += 1 562 563 test_loss_mean /= i 564 test_acc_mean /= i 565 tqdm_dict = {'test_loss': test_loss_mean.item(), 'test_acc': test_acc_mean.item()} 566 567 # show test_loss and test_acc in progress bar but only log test_loss 568 results = { 569 'progress_bar': tqdm_dict, 570 'log': {'test_loss': val_loss_mean.item()} 571 } 572 return results 573 574 """ 575 576 def configure_ddp(self, model, device_ids): 577 r""" 578 579 Override to init DDP in your own way or with your own wrapper. 580 The only requirements are that: 581 582 1. On a validation batch the call goes to model.validation_step. 583 2. On a training batch the call goes to model.training_step. 584 3. On a testing batch, the call goes to model.test_step 585 586 Args: 587 model (:class:`.LightningModule`): the LightningModule currently being optimized 588 device_ids (list): the list of GPU ids 589 590 Return: 591 DDP wrapped model 592 593 Example 594 ------- 595 .. code-block:: python 596 597 # default implementation used in Trainer 598 def configure_ddp(self, model, device_ids): 599 # Lightning DDP simply routes to test_step, val_step, etc... 600 model = LightningDistributedDataParallel( 601 model, 602 device_ids=device_ids, 603 find_unused_parameters=True 604 ) 605 return model 606 607 608 """ 609 model = LightningDistributedDataParallel( 610 model, 611 device_ids=device_ids, 612 find_unused_parameters=True 613 ) 614 return model 615 616 def init_ddp_connection(self, proc_rank, world_size): 617 r""" 618 619 Override to define your custom way of setting up a distributed environment. 620 621 Lightning's implementation uses env:// init by default and sets the first node as root. 622 623 Args: 624 proc_rank (int): The current process rank within the node. 625 world_size (int): Number of GPUs being use across all nodes. (num_nodes*nb_gpu_nodes). 626 Example 627 ------- 628 .. code-block:: python 629 630 def init_ddp_connection(self): 631 # use slurm job id for the port number 632 # guarantees unique ports across jobs from same grid search 633 try: 634 # use the last 4 numbers in the job id as the id 635 default_port = os.environ['SLURM_JOB_ID'] 636 default_port = default_port[-4:] 637 638 # all ports should be in the 10k+ range 639 default_port = int(default_port) + 15000 640 641 except Exception as e: 642 default_port = 12910 643 644 # if user gave a port number, use that one instead 645 try: 646 default_port = os.environ['MASTER_PORT'] 647 except Exception: 648 os.environ['MASTER_PORT'] = str(default_port) 649 650 # figure out the root node addr 651 try: 652 root_node = os.environ['SLURM_NODELIST'].split(' ')[0] 653 except Exception: 654 root_node = '127.0.0.2' 655 656 root_node = self.trainer.resolve_root_node_address(root_node) 657 os.environ['MASTER_ADDR'] = root_node 658 dist.init_process_group( 659 'nccl', 660 rank=self.proc_rank, 661 world_size=self.world_size 662 ) 663 664 """ 665 # use slurm job id for the port number 666 # guarantees unique ports across jobs from same grid search 667 try: 668 # use the last 4 numbers in the job id as the id 669 default_port = os.environ['SLURM_JOB_ID'] 670 default_port = default_port[-4:] 671 672 # all ports should be in the 10k+ range 673 default_port = int(default_port) + 15000 674 675 except Exception: 676 default_port = 12910 677 678 # if user gave a port number, use that one instead 679 try: 680 default_port = os.environ['MASTER_PORT'] 681 except Exception: 682 os.environ['MASTER_PORT'] = str(default_port) 683 684 # figure out the root node addr 685 try: 686 root_node = os.environ['SLURM_NODELIST'].split(' ')[0] 687 except Exception: 688 root_node = '127.0.0.2' 689 690 root_node = self.trainer.resolve_root_node_address(root_node) 691 os.environ['MASTER_ADDR'] = root_node 692 dist.init_process_group('nccl', rank=proc_rank, world_size=world_size) 693 694 def configure_apex(self, amp, model, optimizers, amp_level): 695 r""" 696 Override to init AMP your own way 697 Must return a model and list of optimizers 698 699 Args: 700 amp (object): pointer to amp library object 701 model (:class:`.LightningModule`): pointer to current lightningModule 702 optimizers (list): list of optimizers passed in configure_optimizers() 703 amp_level (str): AMP mode chosen ('O1', 'O2', etc...) 704 705 Return: 706 Apex wrapped model and optimizers 707 708 Example 709 ------- 710 .. code-block:: python 711 712 # Default implementation used by Trainer. 713 def configure_apex(self, amp, model, optimizers, amp_level): 714 model, optimizers = amp.initialize( 715 model, optimizers, opt_level=amp_level, 716 ) 717 718 return model, optimizers 719 """ 720 model, optimizers = amp.initialize( 721 model, optimizers, opt_level=amp_level, 722 ) 723 724 return model, optimizers 725 726 def configure_optimizers(self): 727 r""" 728 This is where you choose what optimizers and learning-rate schedulers to use in your optimization. 729 Normally you'd need one. But in the case of GANs or something more esoteric you might have multiple. 730 731 If you don't define this method Lightning will automatically use Adam(lr=1e-3) 732 733 Return: any of these 3 options: 734 - Single optimizer 735 - List or Tuple - List of optimizers 736 - Two lists - The first list has multiple optimizers, the second a list of learning-rate schedulers 737 738 Example 739 ------- 740 741 .. code-block:: python 742 743 # most cases (default if not defined) 744 def configure_optimizers(self): 745 opt = Adam(self.parameters(), lr=1e-3) 746 return opt 747 748 # multiple optimizer case (eg: GAN) 749 def configure_optimizers(self): 750 generator_opt = Adam(self.model_gen.parameters(), lr=0.01) 751 disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) 752 return generator_opt, disriminator_opt 753 754 # example with learning_rate schedulers 755 def configure_optimizers(self): 756 generator_opt = Adam(self.model_gen.parameters(), lr=0.01) 757 disriminator_opt = Adam(self.model_disc.parameters(), lr=0.02) 758 discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10) 759 return [generator_opt, disriminator_opt], [discriminator_sched] 760 761 .. note:: Lightning calls .backward() and .step() on each optimizer and learning rate scheduler as needed. 762 763 .. note:: If you use 16-bit precision (use_amp=True), Lightning will automatically 764 handle the optimizers for you. 765 766 .. note:: If you use multiple optimizers, training_step will have an additional `optimizer_idx` parameter. 767 768 .. note:: If you use LBFGS lightning handles the closure function automatically for you 769 770 .. note:: If you use multiple optimizers, gradients will be calculated only 771 for the parameters of current optimizer at each training step. 772 773 .. note:: If you need to control how often those optimizers step or override the default .step() schedule, 774 override the `optimizer_step` hook. 775 776 777 """ 778 return Adam(self.parameters(), lr=1e-3) 779 780 def optimizer_step(self, epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): 781 r""" 782 783 Override this method to adjust the default way the Trainer calls each optimizer. By default, Lightning 784 calls .step() and zero_grad() as shown in the example once per optimizer. 785 786 Args: 787 epoch (int): Current epoch 788 batch_idx (int): Index of current batch 789 optimizer (torch.nn.Optimizer): A PyTorch optimizer 790 optimizer_idx (int): If you used multiple optimizers this indexes into that list 791 second_order_closure (int): closure for second order methods 792 793 Example 794 ------- 795 .. code-block:: python 796 797 # DEFAULT 798 def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): 799 optimizer.step() 800 optimizer.zero_grad() 801 802 # Alternating schedule for optimizer steps (ie: GANs) 803 def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): 804 # update generator opt every 2 steps 805 if optimizer_idx == 0: 806 if batch_idx % 2 == 0 : 807 optimizer.step() 808 optimizer.zero_grad() 809 810 # update discriminator opt every 4 steps 811 if optimizer_idx == 1: 812 if batch_idx % 4 == 0 : 813 optimizer.step() 814 optimizer.zero_grad() 815 816 # ... 817 # add as many optimizers as you want 818 819 820 Here's another example showing how to use this for more advanced things such as learning-rate warm-up: 821 822 .. code-block:: python 823 824 # learning rate warm-up 825 def optimizer_step(self, current_epoch, batch_idx, optimizer, optimizer_idx, second_order_closure=None): 826 # warm up lr 827 if self.trainer.global_step < 500: 828 lr_scale = min(1., float(self.trainer.global_step + 1) / 500.) 829 for pg in optimizer.param_groups: 830 pg['lr'] = lr_scale * self.hparams.learning_rate 831 832 # update params 833 optimizer.step() 834 optimizer.zero_grad() 835 836 """ 837 if self.trainer.use_tpu and XLA_AVAILABLE: 838 xm.optimizer_step(optimizer) 839 elif isinstance(optimizer, torch.optim.LBFGS): 840 optimizer.step(second_order_closure) 841 else: 842 optimizer.step() 843 844 # clear gradients 845 optimizer.zero_grad() 846 847 def tbptt_split_batch(self, batch, split_size): 848 r""" 849 850 When using truncated backpropagation through time, each batch must be split along the time dimension. 851 Lightning handles this by default, but for custom behavior override this function. 852 853 Args: 854 batch (torch.nn.Tensor): Current batch 855 split_size (int): How big the split is 856 857 Return: 858 list of batch splits. Each split will be passed to forward_step to enable truncated 859 back propagation through time. The default implementation splits root level Tensors and 860 Sequences at dim=1 (i.e. time dim). It assumes that each time dim is the same length. 861 862 Example 863 ------- 864 .. code-block:: python 865 866 def tbptt_split_batch(self, batch, split_size): 867 splits = [] 868 for t in range(0, time_dims[0], split_size): 869 batch_split = [] 870 for i, x in enumerate(batch): 871 if isinstance(x, torch.Tensor): 872 split_x = x[:, t:t + split_size] 873 elif isinstance(x, collections.Sequence): 874 split_x = [None] * len(x) 875 for batch_idx in range(len(x)): 876 split_x[batch_idx] = x[batch_idx][t:t + split_size] 877 878 batch_split.append(split_x) 879 880 splits.append(batch_split) 881 882 return splits 883 884 .. note:: Called in the training loop after on_batch_start if `truncated_bptt_steps > 0`. 885 Each returned batch split is passed separately to training_step(...). 886 887 """ 888 time_dims = [len(x[0]) for x in batch if isinstance(x, (torch.Tensor, collections.Sequence))] 889 assert len(time_dims) >= 1, "Unable to determine batch time dimension" 890 assert all(x == time_dims[0] for x in time_dims), "Batch time dimension length is ambiguous" 891 892 splits = [] 893 for t in range(0, time_dims[0], split_size): 894 batch_split = [] 895 for i, x in enumerate(batch): 896 if isinstance(x, torch.Tensor): 897 split_x = x[:, t:t + split_size] 898 elif isinstance(x, collections.Sequence): 899 split_x = [None] * len(x) 900 for batch_idx in range(len(x)): 901 split_x[batch_idx] = x[batch_idx][t:t + split_size] 902 903 batch_split.append(split_x) 904 905 splits.append(batch_split) 906 907 return splits 908 909 def prepare_data(self): 910 """Use this to download and prepare data. 911 In distributed (GPU, TPU), this will only be called once 912 913 :return: PyTorch DataLoader 914 915 This is called before requesting the dataloaders 916 917 .. code-block:: python 918 919 model.prepare_data() 920 model.train_dataloader() 921 model.val_dataloader() 922 model.test_dataloader() 923 924 Example 925 ------- 926 927 .. code-block:: python 928 929 def prepare_data(self): 930 download_imagenet() 931 clean_imagenet() 932 cache_imagenet() 933 """ 934 return None 935 936 def train_dataloader(self): 937 """Implement a PyTorch DataLoader 938 939 :return: PyTorch DataLoader 940 941 Return a dataloader. It will not be called every epoch unless you set 942 ```Trainer(reload_dataloaders_every_epoch=True)```. 943 944 It's recommended that all data downloads and preparation happen in prepare_data(). 945 946 .. note:: Lightning adds the correct sampler for distributed and arbitrary hardware. No need to set yourself. 947 948 - .fit() 949 - ... 950 - prepare_data() 951 - train_dataloader 952 953 Example 954 ------- 955 956 .. code-block:: python 957 958 def train_dataloader(self): 959 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) 960 dataset = MNIST(root='/path/to/mnist/', train=True, transform=transform, download=True) 961 loader = torch.utils.data.DataLoader( 962 dataset=dataset, 963 batch_size=self.hparams.batch_size, 964 shuffle=True 965 ) 966 return loader 967 968 """ 969 return None 970 971 @data_loader 972 def tng_dataloader(self): # todo: remove in v0.8.0 973 """Implement a PyTorch DataLoader. 974 975 .. warning:: Deprecated in v0.5.0. use train_dataloader instead. 976 """ 977 output = self.train_dataloader() 978 warnings.warn("`tng_dataloader` has been renamed to `train_dataloader` since v0.5.0." 979 " and this method will be removed in v0.8.0", DeprecationWarning) 980 return output 981 982 def test_dataloader(self): 983 r""" 984 985 Return a dataloader. It will not be called every epoch unless you set 986 ```Trainer(reload_dataloaders_every_epoch=True)```. 987 988 It's recommended that all data downloads and preparation happen in prepare_data(). 989 990 - .fit() 991 - ... 992 - prepare_data() 993 - train_dataloader 994 - val_dataloader 995 - test_dataloader 996 997 .. note:: Lightning adds the correct sampler for distributed and arbitrary hardware. No need to set yourself. 998 999 Return: 1000 PyTorch DataLoader 1001 1002 Example 1003 ------- 1004 1005 .. code-block:: python 1006 1007 def test_dataloader(self): 1008 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) 1009 dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) 1010 loader = torch.utils.data.DataLoader( 1011 dataset=dataset, 1012 batch_size=self.hparams.batch_size, 1013 shuffle=True 1014 ) 1015 1016 return loader 1017 1018 .. note:: If you don't need a test dataset and a test_step, you don't need to implement this method. 1019 1020 .. note:: If you want to change the data during every epoch DON'T use the data_loader decorator. 1021 1022 """ 1023 return None 1024 1025 def val_dataloader(self): 1026 r""" 1027 1028 Return a dataloader. It will not be called every epoch unless you set 1029 ```Trainer(reload_dataloaders_every_epoch=True)```. 1030 1031 It's recommended that all data downloads and preparation happen in prepare_data(). 1032 1033 - .fit() 1034 - ... 1035 - prepare_data() 1036 - train_dataloader 1037 - val_dataloader 1038 1039 .. note:: Lightning adds the correct sampler for distributed and arbitrary hardware No need to set yourself. 1040 1041 Return: 1042 PyTorch DataLoader 1043 1044 Example 1045 ------- 1046 1047 .. code-block:: python 1048 1049 def val_dataloader(self): 1050 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) 1051 dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) 1052 loader = torch.utils.data.DataLoader( 1053 dataset=dataset, 1054 batch_size=self.hparams.batch_size, 1055 shuffle=True 1056 ) 1057 1058 return loader 1059 1060 # can also return multiple dataloaders 1061 def val_dataloader(self): 1062 return [loader_a, loader_b, ..., loader_n] 1063 1064 Example 1065 ------- 1066 1067 .. code-block:: python 1068 1069 @pl.data_loader 1070 def val_dataloader(self): 1071 transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize((0.5,), (1.0,))]) 1072 dataset = MNIST(root='/path/to/mnist/', train=False, transform=transform, download=True) 1073 loader = torch.utils.data.DataLoader( 1074 dataset=dataset, 1075 batch_size=self.hparams.batch_size, 1076 shuffle=True 1077 ) 1078 1079 return loader 1080 1081 # can also return multiple dataloaders 1082 @pl.data_loader 1083 def val_dataloader(self): 1084 return [loader_a, loader_b, ..., loader_n] 1085 1086 .. note:: If you don't need a validation dataset and a validation_step, you don't need to implement this method. 1087 1088 .. note:: If you want to change the data during every epoch DON'T use the data_loader decorator. 1089 1090 .. note:: In the case where you return multiple `val_dataloaders`, the `validation_step` 1091 will have an argument `dataset_idx` which matches the order here. 1092 """ 1093 return None 1094 1095 @classmethod 1096 def load_from_metrics(cls, weights_path, tags_csv, map_location=None): 1097 r""" 1098 Warning: 1099 Deprecated in version 0.7.0. 1100 You should use `load_from_checkpoint` instead. 1101 Will be removed in v0.9.0. 1102 """ 1103 warnings.warn( 1104 "`load_from_metrics` method has been unified with `load_from_checkpoint` in v0.7.0." 1105 " The deprecated method will be removed in v0.9.0.", DeprecationWarning 1106 ) 1107 return cls.load_from_checkpoint(weights_path, tags_csv=tags_csv, map_location=map_location) 1108 1109 @classmethod 1110 def load_from_checkpoint( 1111 cls, 1112 checkpoint_path: str, 1113 map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None, 1114 tags_csv: Optional[str] = None, 1115 ) -> 'LightningModule': 1116 r""" 1117 1118 Primary way of loading model from a checkpoint. When Lightning saves a checkpoint 1119 it stores the hyperparameters in the checkpoint if you initialized your LightningModule 1120 with an argument called `hparams` which is a Namespace (output of using argparse 1121 to parse command line arguments). 1122 1123 Example 1124 ------- 1125 .. code-block:: python 1126 1127 from argparse import Namespace 1128 hparams = Namespace(**{'learning_rate': 0.1}) 1129 1130 model = MyModel(hparams) 1131 1132 class MyModel(LightningModule): 1133 def __init__(self, hparams): 1134 self.learning_rate = hparams.learning_rate 1135 1136 Args: 1137 checkpoint_path: Path to checkpoint. 1138 map_location: 1139 If your checkpoint saved a GPU model and you now load on CPUs 1140 or a different number of GPUs, use this to map to the new setup. 1141 The behaviour is the same as in 1142 `torch.load <https://pytorch.org/docs/stable/torch.html#torch.load>`_. 1143 tags_csv: Optional path to a .csv file with two columns (key, value) 1144 as in this example:: 1145 1146 key,value 1147 drop_prob,0.2 1148 batch_size,32 1149 1150 You most likely won't need this since Lightning will always save the hyperparameters 1151 to the checkpoint. 1152 However, if your checkpoint weights don't have the hyperparameters saved, 1153 use this method to pass in a .csv file with the hparams you'd like to use. 1154 These will be converted into a argparse.Namespace and passed into your 1155 LightningModule for use. 1156 1157 Return: 1158 LightningModule with loaded weights and hyperparameters (if available). 1159 1160 Example 1161 ------- 1162 .. code-block:: python 1163 1164 # load weights without mapping ... 1165 MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') 1166 1167 # or load weights mapping all weights from GPU 1 to GPU 0 ... 1168 map_location = {'cuda:1':'cuda:0'} 1169 MyLightningModule.load_from_checkpoint( 1170 'path/to/checkpoint.ckpt', 1171 map_location=map_location 1172 ) 1173 1174 # or load weights and hyperparameters from separate files. 1175 MyLightningModule.load_from_checkpoint( 1176 'path/to/checkpoint.ckpt', 1177 tags_csv='/path/to/hparams_file.csv' 1178 ) 1179 1180 # predict 1181 pretrained_model.eval() 1182 pretrained_model.freeze() 1183 y_hat = pretrained_model(x) 1184 """ 1185 if map_location is not None: 1186 checkpoint = torch.load(checkpoint_path, map_location=map_location) 1187 else: 1188 checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) 1189 1190 if tags_csv is not None: 1191 # add the hparams from csv file to checkpoint 1192 hparams = load_hparams_from_tags_csv(tags_csv) 1193 hparams.__setattr__('on_gpu', False) 1194 checkpoint['hparams'] = vars(hparams) 1195 1196 model = cls._load_model_state(checkpoint) 1197 return model 1198 1199 @classmethod 1200 def _load_model_state(cls, checkpoint): 1201 cls_takes_hparams = 'hparams' in inspect.signature(cls.__init__).parameters 1202 ckpt_hparams = checkpoint.get('hparams') 1203 1204 if cls_takes_hparams: 1205 if ckpt_hparams is not None: 1206 is_namespace = checkpoint.get('hparams_type') == 'namespace' 1207 hparams = Namespace(**ckpt_hparams) if is_namespace else ckpt_hparams 1208 else: 1209 warnings.warn( 1210 f"Checkpoint does not contain hyperparameters but {cls.__name__}'s __init__ contains" 1211 " argument 'hparams'. Will pass in an empty Namespace instead." 1212 " Did you forget to store your model hyperparameters in self.hparams?" 1213 ) 1214 hparams = Namespace() 1215 else: # The user's LightningModule does not define a hparams argument 1216 if ckpt_hparams is None: 1217 hparams = None 1218 else: 1219 raise MisconfigurationException( 1220 f"Checkpoint contains hyperparameters but {cls.__name__}'s __init__ is missing the" 1221 " argument 'hparams'. Are you loading the correct checkpoint?" 1222 ) 1223 1224 # load the state_dict on the model automatically 1225 model_args = [hparams] if hparams else [] 1226 model = cls(*model_args) 1227 model.load_state_dict(checkpoint['state_dict']) 1228 1229 # give model a chance to load something 1230 model.on_load_checkpoint(checkpoint) 1231 1232 return model 1233 1234 def summarize(self, mode): 1235 model_summary = ModelSummary(self, mode=mode) 1236 log.info('\n' + model_summary.__str__()) 1237 1238 def freeze(self): 1239 r""" 1240 Freeze all params for inference 1241 1242 Example 1243 ------- 1244 .. code-block:: python 1245 1246 model = MyLightningModule(...) 1247 model.freeze() 1248 1249 """ 1250 for param in self.parameters(): 1251 param.requires_grad = False 1252 1253 self.eval() 1254 1255 def unfreeze(self): 1256 """Unfreeze all params for training. 1257 1258 .. code-block:: python 1259 1260 model = MyLightningModule(...) 1261 model.unfreeze() 1262 1263 """ 1264 for param in self.parameters(): 1265 param.requires_grad = True 1266 1267 self.train() 1268 1269 def on_load_checkpoint(self, checkpoint): 1270 r""" 1271 Called by lightning to restore your model. 1272 If you saved something with **on_save_checkpoint** this is your chance to restore this. 1273 1274 Args: 1275 checkpoint (dict): Loaded checkpoint 1276 1277 1278 Example 1279 ------- 1280 1281 .. code-block:: python 1282 1283 def on_load_checkpoint(self, checkpoint): 1284 # 99% of the time you don't need to implement this method 1285 self.something_cool_i_want_to_save = checkpoint['something_cool_i_want_to_save'] 1286 1287 .. note:: Lighting auto-restores global step, epoch, and all training state including amp scaling. 1288 No need for you to restore anything regarding training. 1289 """ 1290 1291 def on_save_checkpoint(self, checkpoint): 1292 r""" 1293 1294 Called by lightning when saving a checkpoint to give you a chance to store anything else you 1295 might want to save 1296 1297 Args: 1298 checkpoint (dic): Checkpoint to be saved 1299 1300 Example 1301 ------- 1302 1303 .. code-block:: python 1304 1305 def on_save_checkpoint(self, checkpoint): 1306 # 99% of use cases you don't need to implement this method 1307 checkpoint['something_cool_i_want_to_save'] = my_cool_pickable_object 1308 1309 .. note:: Lighting saves all aspects of training (epoch, global step, etc...) including amp scaling. No need 1310 for you to store anything about training. 1311 1312 """ 1313 1314 def get_tqdm_dict(self): 1315 r""" 1316 Additional items to be displayed in the progress bar. 1317 1318 Return: 1319 Dictionary with the items to be displayed in the progress bar. 1320 """ 1321 tqdm_dict = { 1322 'loss': '{:.3f}'.format(self.trainer.avg_loss) 1323 } 1324 1325 if self.trainer.truncated_bptt_steps is not None: 1326 tqdm_dict['split_idx'] = self.trainer.split_idx 1327 1328 if self.trainer.logger is not None and self.trainer.logger.version is not None: 1329 tqdm_dict['v_num'] = self.trainer.logger.version 1330 1331 return tqdm_dict 1332 [end of pytorch_lightning/core/lightning.py] [start of pytorch_lightning/trainer/trainer.py] 1 import os 2 import sys 3 import warnings 4 import logging as log 5 from typing import Union, Optional, List, Dict, Tuple, Iterable 6 from argparse import ArgumentParser 7 8 import torch 9 import torch.distributed as dist 10 import torch.multiprocessing as mp 11 from torch.utils.data import DataLoader 12 from tqdm.auto import tqdm 13 from torch.optim.optimizer import Optimizer 14 15 from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping 16 from pytorch_lightning.loggers import LightningLoggerBase 17 from pytorch_lightning.profiler.profiler import BaseProfiler 18 from pytorch_lightning.trainer.auto_mix_precision import TrainerAMPMixin 19 from pytorch_lightning.trainer.callback_config import TrainerCallbackConfigMixin 20 from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin 21 from pytorch_lightning.trainer.distrib_data_parallel import TrainerDDPMixin 22 from pytorch_lightning.trainer.distrib_parts import ( 23 TrainerDPMixin, 24 parse_gpu_ids, 25 determine_root_gpu_device 26 ) 27 from pytorch_lightning.core.lightning import LightningModule 28 from pytorch_lightning.trainer.evaluation_loop import TrainerEvaluationLoopMixin 29 from pytorch_lightning.trainer.logging import TrainerLoggingMixin 30 from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin 31 from pytorch_lightning.trainer.training_io import TrainerIOMixin 32 from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin 33 from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin 34 from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin 35 from pytorch_lightning.utilities.debugging import MisconfigurationException 36 from pytorch_lightning.profiler import Profiler, PassThroughProfiler 37 from pytorch_lightning.callbacks import Callback 38 39 40 try: 41 from apex import amp 42 except ImportError: 43 APEX_AVAILABLE = False 44 else: 45 APEX_AVAILABLE = True 46 47 try: 48 import torch_xla 49 import torch_xla.core.xla_model as xm 50 import torch_xla.distributed.xla_multiprocessing as xmp 51 except ImportError: 52 XLA_AVAILABLE = False 53 else: 54 XLA_AVAILABLE = True 55 56 57 class Trainer(TrainerIOMixin, 58 TrainerDPMixin, 59 TrainerDDPMixin, 60 TrainerLoggingMixin, 61 TrainerModelHooksMixin, 62 TrainerTrainingTricksMixin, 63 TrainerDataLoadingMixin, 64 TrainerAMPMixin, 65 TrainerEvaluationLoopMixin, 66 TrainerTrainLoopMixin, 67 TrainerCallbackConfigMixin, 68 TrainerCallbackHookMixin 69 ): 70 71 def __init__( 72 self, 73 logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True, 74 checkpoint_callback: Union[ModelCheckpoint, bool] = True, 75 early_stop_callback: Optional[Union[EarlyStopping, bool]] = False, 76 callbacks: List[Callback] = [], 77 default_save_path: Optional[str] = None, 78 gradient_clip_val: float = 0, 79 gradient_clip=None, # backward compatible, todo: remove in v0.8.0 80 process_position: int = 0, 81 nb_gpu_nodes=None, # backward compatible, todo: remove in v0.8.0 82 num_nodes: int = 1, 83 gpus: Optional[Union[List[int], str, int]] = None, 84 num_tpu_cores: Optional[int] = None, 85 log_gpu_memory: Optional[str] = None, 86 show_progress_bar: bool = True, 87 progress_bar_refresh_rate: int = 50, 88 overfit_pct: float = 0.0, 89 track_grad_norm: int = -1, 90 check_val_every_n_epoch: int = 1, 91 fast_dev_run: bool = False, 92 accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1, 93 max_nb_epochs=None, # backward compatible, todo: remove in v0.8.0 94 min_nb_epochs=None, # backward compatible, todo: remove in v0.8.0 95 max_epochs: int = 1000, 96 min_epochs: int = 1, 97 max_steps: Optional[int] = None, 98 min_steps: Optional[int] = None, 99 train_percent_check: float = 1.0, 100 val_percent_check: float = 1.0, 101 test_percent_check: float = 1.0, 102 val_check_interval: float = 1.0, 103 log_save_interval: int = 100, 104 row_log_interval: int = 10, 105 add_row_log_interval=None, # backward compatible, todo: remove in v0.8.0 106 distributed_backend: Optional[str] = None, 107 use_amp=False, # backward compatible, todo: remove in v0.8.0 108 precision: int = 32, 109 print_nan_grads: bool = False, 110 weights_summary: str = 'full', 111 weights_save_path: Optional[str] = None, 112 amp_level: str = 'O1', 113 nb_sanity_val_steps=None, # backward compatible, todo: remove in v0.8.0 114 num_sanity_val_steps: int = 5, 115 truncated_bptt_steps: Optional[int] = None, 116 resume_from_checkpoint: Optional[str] = None, 117 profiler: Optional[BaseProfiler] = None, 118 benchmark: bool = False, 119 reload_dataloaders_every_epoch: bool = False, 120 **kwargs 121 ): 122 r""" 123 124 Customize every aspect of training via flags 125 126 Args: 127 logger: Logger (or iterable collection of loggers) for experiment tracking. 128 Example:: 129 130 from pytorch_lightning.loggers import TensorBoardLogger 131 132 # default logger used by trainer 133 logger = TensorBoardLogger( 134 save_dir=os.getcwd(), 135 version=self.slurm_job_id, 136 name='lightning_logs' 137 ) 138 139 Trainer(logger=logger) 140 141 checkpoint_callback: Callback for checkpointing. 142 Example:: 143 144 from pytorch_lightning.callbacks import ModelCheckpoint 145 146 # default used by the Trainer 147 checkpoint_callback = ModelCheckpoint( 148 filepath=os.getcwd(), 149 save_best_only=True, 150 verbose=True, 151 monitor='val_loss', 152 mode='min', 153 prefix='' 154 ) 155 156 trainer = Trainer(checkpoint_callback=checkpoint_callback) 157 158 early_stop_callback (:class:`pytorch_lightning.callbacks.EarlyStopping`): 159 Callback for early stopping. 160 If set to ``True``, then a default callback monitoring ``'val_loss'`` is created. 161 Will raise an error if ``'val_loss'`` is not found. 162 If set to ``False``, then early stopping will be disabled. 163 If set to ``None``, then the default callback monitoring ``'val_loss'`` is created. 164 If ``'val_loss'`` is not found will work as if early stopping is disabled. 165 Default: ``None``. 166 Example:: 167 168 from pytorch_lightning.callbacks import EarlyStopping 169 170 # default used by the Trainer 171 early_stop_callback = EarlyStopping( 172 monitor='val_loss', 173 patience=3, 174 strict=False, 175 verbose=False, 176 mode='min' 177 ) 178 179 trainer = Trainer(early_stop_callback=early_stop_callback) 180 181 callbacks: Add a list of callbacks. 182 Example:: 183 from pytorch_lightning.callbacks import Callback 184 class PrintCallback(Callback): 185 def on_train_start(self): 186 print("Training is started!") 187 def on_train_end(self): 188 print(f"Training is done. The logs are: {self.trainer.logs}") 189 # a list of callbacks 190 callbacks = [PrintCallback()] 191 trainer = Trainer(callbacks=callbacks) 192 193 default_save_path: Default path for logs and weights when no logger/ckpt_callback passed 194 Example:: 195 196 # default used by the Trainer 197 trainer = Trainer(default_save_path=os.getcwd()) 198 199 gradient_clip_val: 0 means don't clip. 200 Example:: 201 202 # default used by the Trainer 203 trainer = Trainer(gradient_clip_val=0.0) 204 205 gradient_clip: 206 .. warning: .. deprecated:: 0.5.0 207 Use `gradient_clip_val` instead. Will remove 0.8.0. 208 209 process_position: orders the tqdm bar when running multiple models on same machine. 210 Example:: 211 212 # default used by the Trainer 213 trainer = Trainer(process_position=0) 214 215 num_nodes: number of GPU nodes for distributed training. 216 Example:: 217 218 # default used by the Trainer 219 trainer = Trainer(num_nodes=1) 220 221 # to train on 8 nodes 222 trainer = Trainer(num_nodes=8) 223 224 nb_gpu_nodes: 225 ..warning:: .. deprecated:: 0.5.0 226 Use `num_nodes` instead. Will remove 0.8.0. 227 228 gpus: Which GPUs to train on. 229 Example:: 230 231 # default used by the Trainer (ie: train on CPU) 232 trainer = Trainer(gpus=None) 233 234 # int: train on 2 gpus 235 trainer = Trainer(gpus=2) 236 237 # list: train on GPUs 1, 4 (by bus ordering) 238 trainer = Trainer(gpus=[1, 4]) 239 trainer = Trainer(gpus='1, 4') # equivalent 240 241 # -1: train on all gpus 242 trainer = Trainer(gpus=-1) 243 trainer = Trainer(gpus='-1') # equivalent 244 245 # combine with num_nodes to train on multiple GPUs across nodes 246 trainer = Trainer(gpus=2, num_nodes=4) # uses 8 gpus in total 247 248 num_tpu_cores: How many TPU cores to train on (1 or 8). 249 A single TPU v2 or v3 has 8 cores. A TPU pod has 250 up to 2048 cores. A slice of a POD means you get as many cores 251 as you request. 252 253 You MUST use DistributedDataSampler with your dataloader for this 254 to work. Your effective batch size is batch_size * total tpu cores. 255 256 This parameter can be either 1 or 8. 257 258 Example:: 259 260 # your_trainer_file.py 261 262 # default used by the Trainer (ie: train on CPU) 263 trainer = Trainer(num_tpu_cores=None) 264 265 # int: train on a single core 266 trainer = Trainer(num_tpu_cores=1) 267 268 # int: train on all cores few cores 269 trainer = Trainer(num_tpu_cores=8) 270 271 # for 8+ cores must submit via xla script with 272 # a max of 8 cores specified. The XLA script 273 # will duplicate script onto each TPU in the POD 274 trainer = Trainer(num_tpu_cores=8) 275 276 # -1: train on all available TPUs 277 trainer = Trainer(num_tpu_cores=-1) 278 279 To train on more than 8 cores (ie: a POD), 280 submit this script using the xla_dist script. 281 282 Example:: 283 284 $ python -m torch_xla.distributed.xla_dist 285 --tpu=$TPU_POD_NAME 286 --conda-env=torch-xla-nightly 287 --env=XLA_USE_BF16=1 288 -- python your_trainer_file.py 289 290 log_gpu_memory: None, 'min_max', 'all'. Might slow performance 291 because it uses the output of nvidia-smi. 292 Example:: 293 294 # default used by the Trainer 295 trainer = Trainer(log_gpu_memory=None) 296 297 # log all the GPUs (on master node only) 298 trainer = Trainer(log_gpu_memory='all') 299 300 # log only the min and max memory on the master node 301 trainer = Trainer(log_gpu_memory='min_max') 302 303 show_progress_bar: If true shows tqdm progress bar 304 Example:: 305 306 # default used by the Trainer 307 trainer = Trainer(show_progress_bar=True) 308 309 progress_bar_refresh_rate: How often to refresh progress bar (in steps) 310 311 overfit_pct: uses this much data of all datasets. 312 Example:: 313 314 # default used by the Trainer 315 trainer = Trainer(overfit_pct=0.0) 316 317 # use only 1% of the train, test, val datasets 318 trainer = Trainer(overfit_pct=0.01) 319 320 track_grad_norm: -1 no tracking. Otherwise tracks that norm 321 Example:: 322 323 # default used by the Trainer 324 trainer = Trainer(track_grad_norm=-1) 325 326 # track the 2-norm 327 trainer = Trainer(track_grad_norm=2) 328 329 check_val_every_n_epoch: Check val every n train epochs. 330 Example:: 331 332 # default used by the Trainer 333 trainer = Trainer(check_val_every_n_epoch=1) 334 335 # run val loop every 10 training epochs 336 trainer = Trainer(check_val_every_n_epoch=10) 337 338 fast_dev_run: runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test). 339 Example:: 340 341 # default used by the Trainer 342 trainer = Trainer(fast_dev_run=False) 343 344 # runs 1 train, val, test batch and program ends 345 trainer = Trainer(fast_dev_run=True) 346 347 accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict. 348 Example:: 349 350 # default used by the Trainer (no accumulation) 351 trainer = Trainer(accumulate_grad_batches=1) 352 353 # accumulate every 4 batches (effective batch size is batch*4) 354 trainer = Trainer(accumulate_grad_batches=4) 355 356 # no accumulation for epochs 1-4. accumulate 3 for epochs 5-10. accumulate 20 after that 357 trainer = Trainer(accumulate_grad_batches={5: 3, 10: 20}) 358 359 max_epochs: Stop training once this number of epochs is reached. 360 Example:: 361 362 # default used by the Trainer 363 trainer = Trainer(max_epochs=1000) 364 365 max_nb_epochs: 366 .. warning:: .. deprecated:: 0.5.0 367 Use `max_epochs` instead. Will remove 0.8.0. 368 369 min_epochs: Force training for at least these many epochs 370 Example:: 371 372 # default used by the Trainer 373 trainer = Trainer(min_epochs=1) 374 375 min_nb_epochs: 376 .. warning:: .. deprecated:: 0.5.0 377 Use `min_nb_epochs` instead. Will remove 0.8.0. 378 379 max_steps: Stop training after this number of steps. Disabled by default (None). 380 Training will stop if max_steps or max_epochs have reached (earliest). 381 Example:: 382 383 # Stop after 100 steps 384 trainer = Trainer(max_steps=100) 385 386 min_steps: Force training for at least these number of steps. Disabled by default (None). 387 Trainer will train model for at least min_steps or min_epochs (latest). 388 Example:: 389 390 # Run at least for 100 steps (disable min_epochs) 391 trainer = Trainer(min_steps=100, min_epochs=0) 392 393 train_percent_check: How much of training dataset to check. 394 Useful when debugging or testing something that happens at the end of an epoch. 395 Example:: 396 397 # default used by the Trainer 398 trainer = Trainer(train_percent_check=1.0) 399 400 # run through only 25% of the training set each epoch 401 trainer = Trainer(train_percent_check=0.25) 402 403 val_percent_check: How much of validation dataset to check. 404 Useful when debugging or testing something that happens at the end of an epoch. 405 Example:: 406 407 # default used by the Trainer 408 trainer = Trainer(val_percent_check=1.0) 409 410 # run through only 25% of the validation set each epoch 411 trainer = Trainer(val_percent_check=0.25) 412 413 test_percent_check: How much of test dataset to check. 414 Useful when debugging or testing something that happens at the end of an epoch. 415 Example:: 416 417 # default used by the Trainer 418 trainer = Trainer(test_percent_check=1.0) 419 420 # run through only 25% of the test set each epoch 421 trainer = Trainer(test_percent_check=0.25) 422 423 val_check_interval: How often within one training epoch to check the validation set 424 If float, % of tng epoch. If int, check every n batch 425 Example:: 426 427 # default used by the Trainer 428 trainer = Trainer(val_check_interval=1.0) 429 430 # check validation set 4 times during a training epoch 431 trainer = Trainer(val_check_interval=0.25) 432 433 # check validation set every 1000 training batches 434 # use this when using iterableDataset and your dataset has no length 435 # (ie: production cases with streaming data) 436 trainer = Trainer(val_check_interval=1000) 437 438 log_save_interval: Writes logs to disk this often 439 Example:: 440 441 # default used by the Trainer 442 trainer = Trainer(log_save_interval=100) 443 444 row_log_interval: How often to add logging rows (does not write to disk) 445 Example:: 446 447 # default used by the Trainer 448 trainer = Trainer(row_log_interval=10) 449 450 add_row_log_interval: 451 .. warning:: .. deprecated:: 0.5.0 452 Use `row_log_interval` instead. Will remove 0.8.0. 453 454 distributed_backend: The distributed backend to use. 455 Options: 'dp', 'ddp', 'ddp2'. 456 Example:: 457 458 # default used by the Trainer 459 trainer = Trainer(distributed_backend=None) 460 461 # dp = DataParallel (split a batch onto k gpus on same machine). 462 trainer = Trainer(gpus=2, distributed_backend='dp') 463 464 # ddp = DistributedDataParallel 465 # Each gpu trains by itself on a subset of the data. 466 # Gradients sync across all gpus and all machines. 467 trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp') 468 469 # ddp2 = DistributedDataParallel + dp 470 # behaves like dp on every node 471 # syncs gradients across nodes like ddp 472 # useful for things like increasing the number of negative samples 473 trainer = Trainer(gpus=2, num_nodes=2, distributed_backend='ddp2') 474 475 use_amp: 476 .. warning:: .. deprecated:: 0.6.1 477 Use `precision` instead. Will remove 0.8.0. 478 479 precision: Full precision (32), half precision (16). 480 Can be used on CPU, GPU or TPUs. 481 482 If used on TPU will use torch.bfloat16 but tensor printing 483 will still show torch.float32. 484 485 Example:: 486 487 # default used by the Trainer 488 trainer = Trainer(precision=32) 489 490 # 16-bit precision 491 trainer = Trainer(precision=16) 492 493 # one day 494 trainer = Trainer(precision=8|4|2) 495 496 print_nan_grads: Prints gradients with nan values 497 Example:: 498 499 # default used by the Trainer 500 trainer = Trainer(print_nan_grads=False) 501 502 weights_summary: Prints a summary of the weights when training begins. 503 Options: 'full', 'top', None. 504 Example:: 505 506 # default used by the Trainer (ie: print all weights) 507 trainer = Trainer(weights_summary='full') 508 509 # print only the top level modules 510 trainer = Trainer(weights_summary='top') 511 512 # don't print a summary 513 trainer = Trainer(weights_summary=None) 514 515 weights_save_path: Where to save weights if specified. 516 Example:: 517 518 # default used by the Trainer 519 trainer = Trainer(weights_save_path=os.getcwd()) 520 521 # save to your custom path 522 trainer = Trainer(weights_save_path='my/path') 523 524 # if checkpoint callback used, then overrides the weights path 525 # **NOTE: this saves weights to some/path NOT my/path 526 checkpoint_callback = ModelCheckpoint(filepath='some/path') 527 trainer = Trainer( 528 checkpoint_callback=checkpoint_callback, 529 weights_save_path='my/path' 530 ) 531 532 amp_level: The optimization level to use (O1, O2, etc...). 533 Check nvidia docs for level (https://nvidia.github.io/apex/amp.html#opt-levels) 534 Example:: 535 536 # default used by the Trainer 537 trainer = Trainer(amp_level='O1') 538 539 num_sanity_val_steps: Sanity check runs n batches of val before starting the training routine. 540 This catches any bugs in your validation without having to wait for the first validation check. 541 The Trainer uses 5 steps by default. Turn it off or modify it here. 542 Example:: 543 544 # default used by the Trainer 545 trainer = Trainer(num_sanity_val_steps=5) 546 547 # turn it off 548 trainer = Trainer(num_sanity_val_steps=0) 549 550 nb_sanity_val_steps: 551 .. warning:: .. deprecated:: 0.5.0 552 Use `num_sanity_val_steps` instead. Will remove 0.8.0. 553 554 truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of 555 a much longer sequence If this is enabled, your batches will automatically get truncated 556 and the trainer will apply Truncated Backprop to it. Make sure your batches have a sequence 557 dimension. (`Williams et al. "An efficient gradient-based algorithm for on-line training of 558 recurrent network trajectories." 559 <http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.56.7941&rep=rep1&type=pdf>`_) 560 Example:: 561 562 # default used by the Trainer (ie: disabled) 563 trainer = Trainer(truncated_bptt_steps=None) 564 565 # backprop every 5 steps in a batch 566 trainer = Trainer(truncated_bptt_steps=5) 567 568 569 Lightning takes care to split your batch along the time-dimension. 570 571 .. note:: If you need to modify how the batch is split, 572 override :meth:`pytorch_lightning.core.LightningModule.tbptt_split_batch`. 573 574 .. note:: Using this feature requires updating your LightningModule's 575 :meth:`pytorch_lightning.core.LightningModule.training_step` to include a `hiddens` arg. 576 577 resume_from_checkpoint: To resume training from a specific checkpoint pass in the path here.k 578 Example:: 579 580 # default used by the Trainer 581 trainer = Trainer(resume_from_checkpoint=None) 582 583 # resume from a specific checkpoint 584 trainer = Trainer(resume_from_checkpoint='some/path/to/my_checkpoint.ckpt') 585 profiler: To profile individual steps during training and assist in 586 identifying bottlenecks. 587 Example:: 588 589 from pytorch_lightning.profiler import Profiler, AdvancedProfiler 590 591 # default used by the Trainer 592 trainer = Trainer(profiler=None) 593 594 # to profile standard training events 595 trainer = Trainer(profiler=True) 596 597 # equivalent to profiler=True 598 profiler = Profiler() 599 trainer = Trainer(profiler=profiler) 600 601 # advanced profiler for function-level stats 602 profiler = AdvancedProfiler() 603 trainer = Trainer(profiler=profiler) 604 reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch 605 606 benchmark (bool): If true enables cudnn.benchmark. 607 This flag is likely to increase the speed of your system if your 608 input sizes don't change. However, if it does, then it will likely 609 make your system slower. 610 611 The speedup comes from allowing the cudnn auto-tuner to find the best 612 algorithm for the hardware `[see discussion here] 613 <https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936>`_. 614 615 .. warning:: Following arguments become deprecated and they will be removed in v0.8.0: 616 617 - `nb_sanity_val_steps` 618 619 """ 620 621 # Init callbacks 622 self.callbacks = callbacks 623 self.on_init_start() 624 625 # benchmarking 626 self.benchmark = benchmark 627 if benchmark: 628 torch.backends.cudnn.benchmark = True 629 630 # Transfer params 631 # Backward compatibility 632 self.num_nodes = num_nodes 633 if nb_gpu_nodes is not None: 634 warnings.warn("`nb_gpu_nodes` has renamed to `num_nodes` since v0.5.0" 635 " and this method will be removed in v0.8.0", DeprecationWarning) 636 if not num_nodes: # in case you did not set the proper value 637 num_nodes = nb_gpu_nodes 638 self.num_gpu_nodes = num_nodes 639 self.log_gpu_memory = log_gpu_memory 640 641 # Backward compatibility 642 if gradient_clip is not None: 643 warnings.warn("`gradient_clip` has renamed to `gradient_clip_val` since v0.5.0" 644 " and this method will be removed in v0.8.0", DeprecationWarning) 645 if not gradient_clip_val: # in case you did not set the proper value 646 gradient_clip_val = gradient_clip 647 self.gradient_clip_val = gradient_clip_val 648 649 self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch 650 self.progress_bar_refresh_rate = progress_bar_refresh_rate 651 self.check_val_every_n_epoch = check_val_every_n_epoch 652 self.track_grad_norm = track_grad_norm 653 self.on_gpu = True if (gpus and torch.cuda.is_available()) else False 654 655 # tpu config 656 self.on_tpu = num_tpu_cores is not None 657 self.num_tpu_cores = num_tpu_cores 658 assert num_tpu_cores in [1, 8, None], 'num_tpu_cores can only be 1 or 8' 659 660 self.process_position = process_position 661 self.weights_summary = weights_summary 662 663 # Backward compatibility 664 if max_nb_epochs is not None: 665 warnings.warn("`max_nb_epochs` has renamed to `max_epochs` since v0.5.0" 666 " and this method will be removed in v0.8.0", DeprecationWarning) 667 if not max_epochs: # in case you did not set the proper value 668 max_epochs = max_nb_epochs 669 self.max_epochs = max_epochs 670 671 # Backward compatibility 672 if min_nb_epochs is not None: 673 warnings.warn("`min_nb_epochs` has renamed to `min_epochs` since v0.5.0" 674 " and this method will be removed in v0.8.0", DeprecationWarning) 675 if not min_epochs: # in case you did not set the proper value 676 min_epochs = min_nb_epochs 677 self.min_epochs = min_epochs 678 679 self.max_steps = max_steps 680 self.min_steps = min_steps 681 682 # Backward compatibility 683 if nb_sanity_val_steps is not None: 684 warnings.warn("`nb_sanity_val_steps` has renamed to `num_sanity_val_steps` since v0.5.0" 685 " and this method will be removed in v0.8.0", DeprecationWarning) 686 if not num_sanity_val_steps: # in case you did not set the proper value 687 num_sanity_val_steps = nb_sanity_val_steps 688 689 self.num_sanity_val_steps = num_sanity_val_steps 690 self.print_nan_grads = print_nan_grads 691 self.truncated_bptt_steps = truncated_bptt_steps 692 self.resume_from_checkpoint = resume_from_checkpoint 693 self.shown_warnings = set() 694 695 self.fast_dev_run = fast_dev_run 696 if self.fast_dev_run: 697 self.num_sanity_val_steps = 1 698 self.max_epochs = 1 699 m = ''' 700 Running in fast_dev_run mode: will run a full train, 701 val loop using a single batch 702 ''' 703 log.info(m) 704 705 # set default save path if user didn't provide one 706 self.default_save_path = default_save_path 707 if self.default_save_path is None: 708 self.default_save_path = os.getcwd() 709 710 # training bookeeping 711 self.total_batch_idx = 0 712 self.running_loss = [] 713 self.avg_loss = 0 714 self.batch_idx = 0 715 self.tqdm_metrics = {} 716 self.callback_metrics = {} 717 self.num_val_batches = 0 718 self.num_training_batches = 0 719 self.num_test_batches = 0 720 self.train_dataloader = None 721 self.test_dataloaders = None 722 self.val_dataloaders = None 723 724 # training state 725 self.model = None 726 self.testing = False 727 self.disable_validation = False 728 self.lr_schedulers = [] 729 self.optimizers = None 730 self.global_step = 0 731 self.current_epoch = 0 732 self.total_batches = 0 733 734 # configure logger 735 self.configure_logger(logger) 736 737 # configure profiler 738 if profiler is True: 739 profiler = Profiler() 740 self.profiler = profiler or PassThroughProfiler() 741 742 # configure early stop callback 743 # creates a default one if none passed in 744 self.configure_early_stopping(early_stop_callback) 745 746 self.reduce_lr_on_plateau_scheduler = None 747 748 # configure checkpoint callback 749 self.checkpoint_callback = checkpoint_callback 750 self.weights_save_path = weights_save_path 751 752 # accumulated grads 753 self.accumulate_grad_batches = accumulate_grad_batches 754 self.configure_accumulated_gradients(accumulate_grad_batches) 755 756 # allow int, string and gpu list 757 self.gpus = gpus 758 self.data_parallel_device_ids = parse_gpu_ids(self.gpus) 759 self.root_gpu = determine_root_gpu_device(self.data_parallel_device_ids) 760 761 # tpu state flags 762 self.use_tpu = False 763 self.tpu_local_core_rank = None 764 self.tpu_global_core_rank = None 765 766 # distributed backend choice 767 self.use_ddp = False 768 self.use_ddp2 = False 769 self.use_dp = False 770 self.single_gpu = False 771 self.distributed_backend = distributed_backend 772 self.set_distributed_mode(distributed_backend, num_nodes) 773 774 # override dist backend when using tpus 775 if self.on_tpu: 776 self.init_tpu() 777 self.current_tpu_idx = None 778 779 # init flags for SLURM+ddp to work 780 self.proc_rank = 0 781 self.world_size = 1 782 self.node_rank = 0 783 self.configure_slurm_ddp(num_nodes) 784 785 # nvidia setup 786 self.set_nvidia_flags(self.is_slurm_managing_tasks, self.data_parallel_device_ids) 787 788 # can't init progress bar here because starting a new process 789 # means the progress_bar won't survive pickling 790 self.show_progress_bar = show_progress_bar 791 792 # logging 793 self.log_save_interval = log_save_interval 794 self.val_check_interval = val_check_interval 795 796 # backward compatibility 797 if add_row_log_interval is not None: 798 warnings.warn("`add_row_log_interval` has renamed to `row_log_interval` since v0.5.0" 799 " and this method will be removed in v0.8.0", DeprecationWarning) 800 if not row_log_interval: # in case you did not set the proper value 801 row_log_interval = add_row_log_interval 802 self.row_log_interval = row_log_interval 803 804 # how much of the data to use 805 self.overfit_pct = overfit_pct 806 self.determine_data_use_amount(train_percent_check, val_percent_check, 807 test_percent_check, overfit_pct) 808 809 # 16 bit mixed precision training using apex 810 self.amp_level = amp_level 811 self.precision = precision 812 813 assert self.precision in (16, 32), 'only 32 or 16 bit precision supported' 814 815 if self.precision == 16 and num_tpu_cores is None: 816 use_amp = True 817 self.init_amp(use_amp) 818 819 # Callback system 820 self.on_init_end() 821 822 @property 823 def slurm_job_id(self) -> int: 824 try: 825 job_id = os.environ['SLURM_JOB_ID'] 826 job_id = int(job_id) 827 except Exception: 828 job_id = None 829 return job_id 830 831 @classmethod 832 def default_attributes(cls): 833 return vars(cls()) 834 835 @classmethod 836 def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser: 837 """Extend existing argparse by default `Trainer` attributes.""" 838 parser = ArgumentParser(parents=[parent_parser]) 839 840 trainer_default_params = Trainer.default_attributes() 841 842 for arg in trainer_default_params: 843 parser.add_argument('--{0}'.format(arg), default=trainer_default_params[arg], dest=arg) 844 845 return parser 846 847 @classmethod 848 def from_argparse_args(cls, args): 849 850 params = vars(args) 851 return cls(**params) 852 853 def __parse_gpu_ids(self, gpus): 854 """Parse GPUs id. 855 856 :param list|str|int gpus: input GPU ids 857 :return list(int): 858 """ 859 # if gpus = -1 then use all available devices 860 # otherwise, split the string using commas 861 if gpus is not None: 862 if isinstance(gpus, list): 863 gpus = gpus 864 elif isinstance(gpus, str): 865 if gpus == '-1': 866 gpus = list(range(0, torch.cuda.device_count())) 867 else: 868 gpus = [int(x.strip()) for x in gpus.split(',')] 869 elif isinstance(gpus, int): 870 gpus = gpus 871 else: 872 raise ValueError('`gpus` has to be a string, int or list of ints') 873 874 return gpus 875 876 def __set_root_gpu(self, gpus): 877 if gpus is None: 878 return None 879 880 # set root gpu 881 root_gpu = 0 882 if isinstance(gpus, list): 883 root_gpu = gpus[0] 884 885 return root_gpu 886 887 @property 888 def num_gpus(self) -> int: 889 gpus = self.data_parallel_device_ids 890 if gpus is None: 891 return 0 892 return len(gpus) 893 894 @property 895 def data_parallel(self) -> bool: 896 return self.use_dp or self.use_ddp or self.use_ddp2 897 898 @property 899 def training_tqdm_dict(self) -> dict: 900 """Read-only for tqdm metrics. 901 :return: 902 """ 903 ref_model = self.model if not self.data_parallel else self.model.module 904 905 return dict(**ref_model.get_tqdm_dict(), **self.tqdm_metrics) 906 907 @property 908 def tng_tqdm_dic(self): 909 """Read-only for tqdm metrics. 910 911 :return: dictionary 912 913 .. warning:: .. deprecated:: 0.5.0 914 Use `training_tqdm_dict` instead. Will remove 0.8.0. 915 """ 916 warnings.warn("`tng_tqdm_dic` has renamed to `training_tqdm_dict` since v0.5.0" 917 " and this method will be removed in v0.8.0", DeprecationWarning) 918 return self.training_tqdm_dict 919 920 # ----------------------------- 921 # MODEL TRAINING 922 # ----------------------------- 923 def fit( 924 self, 925 model: LightningModule, 926 train_dataloader: Optional[DataLoader] = None, 927 val_dataloaders: Optional[DataLoader] = None, 928 test_dataloaders: Optional[DataLoader] = None 929 ): 930 r""" 931 Runs the full optimization routine. 932 933 Args: 934 model: Model to fit. 935 936 train_dataloader: A Pytorch 937 DataLoader with training samples. If the model has 938 a predefined train_dataloader method this will be skipped. 939 940 val_dataloaders: Either a single 941 Pytorch Dataloader or a list of them, specifying validation samples. 942 If the model has a predefined val_dataloaders method this will be skipped 943 944 test_dataloaders: Either a single 945 Pytorch Dataloader or a list of them, specifying validation samples. 946 If the model has a predefined test_dataloaders method this will be skipped 947 948 Example:: 949 950 # Option 1, 951 # Define the train_dataloader(), test_dataloader() and val_dataloader() fxs 952 # in the lightningModule 953 # RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY 954 trainer = Trainer() 955 model = LightningModule() 956 trainer.fit(model) 957 958 # Option 2 959 # in production cases we might want to pass different datasets to the same model 960 # Recommended for PRODUCTION SYSTEMS 961 train, val, test = DataLoader(...), DataLoader(...), DataLoader(...) 962 trainer = Trainer() 963 model = LightningModule() 964 trainer.fit(model, train_dataloader=train, 965 val_dataloader=val, test_dataloader=test) 966 967 # Option 1 & 2 can be mixed, for example the training set can be 968 # defined as part of the model, and validation/test can then be 969 # feed to .fit() 970 971 """ 972 # bind logger 973 model.logger = self.logger 974 975 # set up the passed in dataloaders (if needed) 976 self.__set_fit_dataloaders(model, train_dataloader, val_dataloaders, test_dataloaders) 977 978 # route to appropriate start method 979 # when using multi-node or DDP within a node start each module in a separate process 980 if self.use_ddp2: 981 task = int(os.environ['SLURM_LOCALID']) 982 self.ddp_train(task, model) 983 984 elif self.use_ddp: 985 if self.is_slurm_managing_tasks: 986 task = int(os.environ['SLURM_LOCALID']) 987 self.ddp_train(task, model) 988 else: 989 self.__set_random_port() 990 991 # track for predict 992 self.model = model 993 994 # train 995 mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,)) 996 997 # load weights if not interrupted 998 self.load_spawn_weights(model) 999 self.model = model 1000 1001 # 1 gpu or dp option triggers training using DP module 1002 # easier to avoid NCCL issues 1003 elif self.use_dp: 1004 self.dp_train(model) 1005 1006 elif self.single_gpu: 1007 self.single_gpu_train(model) 1008 1009 elif self.use_tpu: 1010 log.info(f'training on {self.num_tpu_cores} TPU cores') 1011 1012 # COLAB_GPU is an env var available by default in Colab environments. 1013 start_method = 'fork' if os.getenv('COLAB_GPU') else 'spawn' 1014 1015 # track for predict 1016 self.model = model 1017 1018 # train 1019 xmp.spawn(self.tpu_train, args=(model,), nprocs=self.num_tpu_cores, start_method=start_method) 1020 1021 # load weights if not interrupted 1022 self.load_spawn_weights(model) 1023 self.model = model 1024 1025 # ON CPU 1026 else: 1027 # run through amp wrapper 1028 if self.use_amp: 1029 raise MisconfigurationException('amp + cpu is not supported. Please use a GPU option') 1030 1031 # CHOOSE OPTIMIZER 1032 # allow for lr schedulers as well 1033 self.optimizers, self.lr_schedulers = self.init_optimizers(model.configure_optimizers()) 1034 1035 self.run_pretrain_routine(model) 1036 1037 # return 1 when finished 1038 # used for testing or when we need to know that training succeeded 1039 return 1 1040 1041 def __set_random_port(self): 1042 """ 1043 When running DDP NOT managed by SLURM, the ports might collide 1044 :return: 1045 """ 1046 try: 1047 default_port = os.environ['MASTER_PORT'] 1048 except Exception: 1049 import random 1050 default_port = random.randint(10000, 19000) 1051 os.environ['MASTER_PORT'] = str(default_port) 1052 1053 def __set_fit_dataloaders(self, model, train_dataloader, val_dataloaders, test_dataloaders): 1054 # when dataloader is passed via fit, patch the train_dataloader 1055 # functions to overwrite with these implementations 1056 if train_dataloader is not None: 1057 if not self.is_overriden('training_step', model): 1058 m = 'You called .fit() with a train_dataloader but did not define training_step()' 1059 raise MisconfigurationException(m) 1060 1061 model.train_dataloader = _PatchDataLoader(train_dataloader) 1062 1063 if val_dataloaders is not None: 1064 if not self.is_overriden('validation_step', model): 1065 m = 'You called .fit() with a val_dataloaders but did not define validation_step()' 1066 raise MisconfigurationException(m) 1067 1068 model.val_dataloader = _PatchDataLoader(val_dataloaders) 1069 1070 if test_dataloaders is not None: 1071 if not self.is_overriden('test_step', model): 1072 m = 'You called .fit() with a test_dataloaders but did not define test_step()' 1073 raise MisconfigurationException(m) 1074 1075 model.test_dataloader = _PatchDataLoader(test_dataloaders) 1076 1077 def init_optimizers( 1078 self, 1079 optimizers: Union[Optimizer, Tuple[List, List], List[Optimizer], Tuple[Optimizer]] 1080 ) -> Tuple[List, List]: 1081 1082 # single optimizer 1083 if isinstance(optimizers, Optimizer): 1084 return [optimizers], [] 1085 1086 # two lists 1087 if len(optimizers) == 2 and isinstance(optimizers[0], list): 1088 optimizers, lr_schedulers = optimizers 1089 lr_schedulers, self.reduce_lr_on_plateau_scheduler = self.configure_schedulers(lr_schedulers) 1090 return optimizers, lr_schedulers 1091 1092 # single list or tuple 1093 if isinstance(optimizers, (list, tuple)): 1094 return optimizers, [] 1095 1096 def configure_schedulers(self, schedulers: list): 1097 for i, scheduler in enumerate(schedulers): 1098 if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): 1099 reduce_lr_on_plateau_scheduler = schedulers.pop(i) 1100 return schedulers, reduce_lr_on_plateau_scheduler 1101 return schedulers, None 1102 1103 def run_pretrain_routine(self, model: LightningModule): 1104 """Sanity check a few things before starting actual training. 1105 1106 Args: 1107 model: The model to run sanity test on. 1108 """ 1109 ref_model = model 1110 if self.data_parallel: 1111 ref_model = model.module 1112 1113 # give model convenience properties 1114 ref_model.trainer = self 1115 1116 # set local properties on the model 1117 self.copy_trainer_model_properties(ref_model) 1118 1119 # log hyper-parameters 1120 if self.logger is not None: 1121 # save exp to get started 1122 if hasattr(ref_model, "hparams"): 1123 self.logger.log_hyperparams(ref_model.hparams) 1124 1125 self.logger.save() 1126 1127 if self.use_ddp or self.use_ddp2: 1128 dist.barrier() 1129 1130 # wait for all models to restore weights 1131 if self.on_tpu and XLA_AVAILABLE: 1132 # wait for all processes to catch up 1133 torch_xla.core.xla_model.rendezvous("pl.Trainer.run_pretrain_routine") 1134 1135 # register auto-resubmit when on SLURM 1136 self.register_slurm_signal_handlers() 1137 1138 # print model summary 1139 # TODO: remove self.testing condition because model.summarize() is wiping out the weights 1140 if self.proc_rank == 0 and self.weights_summary is not None and not self.testing: 1141 if self.weights_summary in ['full', 'top']: 1142 ref_model.summarize(mode=self.weights_summary) 1143 else: 1144 m = "weights_summary can be None, 'full' or 'top'" 1145 raise MisconfigurationException(m) 1146 1147 # track model now. 1148 # if cluster resets state, the model will update with the saved weights 1149 self.model = model 1150 1151 # set up checkpoint callback 1152 self.configure_checkpoint_callback() 1153 1154 # restore training and model before hpc call 1155 self.restore_weights(model) 1156 1157 # download the data and do whatever transforms we need 1158 self.call_prepare_data(ref_model) 1159 1160 # when testing requested only run test and return 1161 if self.testing: 1162 # only load test dataloader for testing 1163 # self.reset_test_dataloader(ref_model) 1164 self.run_evaluation(test_mode=True) 1165 return 1166 1167 # check if we should run validation during training 1168 self.disable_validation = not self.is_overriden('validation_step') and not self.fast_dev_run 1169 1170 # run tiny validation (if validation defined) 1171 # to make sure program won't crash during val 1172 ref_model.on_sanity_check_start() 1173 if not self.disable_validation and self.num_sanity_val_steps > 0: 1174 self.reset_val_dataloader(ref_model) 1175 # init progress bars for validation sanity check 1176 pbar = tqdm(desc='Validation sanity check', 1177 total=self.num_sanity_val_steps * len(self.val_dataloaders), 1178 leave=False, position=2 * self.process_position, 1179 disable=not self.show_progress_bar, dynamic_ncols=True) 1180 self.main_progress_bar = pbar 1181 # dummy validation progress bar 1182 self.val_progress_bar = tqdm(disable=True) 1183 1184 eval_results = self.evaluate(model, 1185 self.val_dataloaders, 1186 self.num_sanity_val_steps, 1187 False) 1188 _, _, _, callback_metrics, _ = self.process_output(eval_results) 1189 1190 # close progress bars 1191 self.main_progress_bar.close() 1192 self.val_progress_bar.close() 1193 1194 if self.enable_early_stop: 1195 self.early_stop_callback.check_metrics(callback_metrics) 1196 1197 # init progress bar 1198 pbar = tqdm(leave=True, position=2 * self.process_position, 1199 disable=not self.show_progress_bar, dynamic_ncols=True, 1200 file=sys.stdout) 1201 self.main_progress_bar = pbar 1202 1203 # clear cache before training 1204 if self.on_gpu: 1205 torch.cuda.empty_cache() 1206 1207 # CORE TRAINING LOOP 1208 self.train() 1209 1210 def test(self, model: Optional[LightningModule] = None): 1211 r""" 1212 1213 Separates from fit to make sure you never run on your test set until you want to. 1214 1215 Args: 1216 model (:class:`.LightningModule`): The model to test. 1217 1218 Example:: 1219 1220 # Option 1 1221 # run test after fitting 1222 trainer = Trainer() 1223 model = LightningModule() 1224 1225 trainer.fit() 1226 trainer.test() 1227 1228 # Option 2 1229 # run test from a loaded model 1230 model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt') 1231 trainer = Trainer() 1232 trainer.test(model) 1233 """ 1234 1235 self.testing = True 1236 if model is not None: 1237 self.model = model 1238 self.fit(model) 1239 elif self.use_ddp or self.use_tpu: 1240 # attempt to load weights from a spawn 1241 path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt') 1242 test_model = self.model 1243 if os.path.exists(path): 1244 test_model = self.load_spawn_weights(self.model) 1245 1246 self.fit(test_model) 1247 else: 1248 self.run_evaluation(test_mode=True) 1249 1250 1251 class _PatchDataLoader(object): 1252 r''' 1253 Callable object for patching dataloaders passed into trainer.fit(). 1254 Use this class to override model.*_dataloader() and be pickle-compatible. 1255 1256 Args: 1257 dataloader: Dataloader object to return when called. 1258 ''' 1259 def __init__(self, dataloader: Union[List[DataLoader], DataLoader]): 1260 self.dataloader = dataloader 1261 1262 def __call__(self) -> Union[List[DataLoader], DataLoader]: 1263 return self.dataloader 1264 1265 1266 def _set_dataloader(model, dataloader, attribute): 1267 r''' 1268 Check dataloaders passed to .fit() method if they are pytorch DataLoader 1269 objects and whether or not we should overright the corresponding dataloader 1270 in the model 1271 1272 Args: 1273 model (LightningModule): The model to check 1274 1275 dataloader: If a pytorch dataloader (or a list of pytorch dataloaders) 1276 is passed, it will be incorporate into the model as model.attribute. 1277 If attribute alreay exist it will warn the userpass. If not a 1278 dataloader will throw an error 1279 1280 attribute (str): The attribute to save the dataloader under 1281 1282 ''' 1283 # Check if attribute comes directly from base class or 1284 # derived in user subclass 1285 if LightningModule.__qualname__ in getattr(model, attribute).__qualname__: 1286 # Val and test should be list of dataloaders 1287 dataloader = dataloader if attribute == 'train_dataloader' or \ 1288 (attribute != 'train_dataloader' and isinstance(dataloader, list)) else [dataloader] 1289 1290 # Check we are given valid dataloaders 1291 is_dataloader = isinstance(dataloader, torch.utils.data.DataLoader) 1292 is_dataloader_list = isinstance(dataloader, list) 1293 valid_loaders = None 1294 if is_dataloader_list: 1295 valid_loaders = all(isinstance(d, torch.utils.data.DataLoader) for d in dataloader) 1296 if is_dataloader or is_dataloader_list and valid_loaders: 1297 1298 # Overwrite abstract methods 1299 def dl(): 1300 return dataloader 1301 dl.__name__ = attribute 1302 setattr(model, attribute, dl) 1303 1304 elif dataloader and dataloader != [None]: 1305 raise ValueError(f'`{attribute}` needs to be an instance of ' 1306 '`torch.utils.data.DataLoader` or a list of ' 1307 'DataLoaders, instead got %r`' % dataloader) 1308 1309 elif dataloader: # if default (None) is passed, do not warn the user 1310 warnings.warn(f'Model has predefined `{attribute}`,' 1311 f' will skip `{attribute}={dataloader}` passed to fit method.') 1312 [end of pytorch_lightning/trainer/trainer.py] [start of pytorch_lightning/trainer/training_io.py] 1 import logging as log 2 import os 3 import re 4 import signal 5 import warnings 6 from abc import ABC 7 from argparse import Namespace 8 from subprocess import call 9 from typing import Union 10 11 import torch 12 import torch.distributed as dist 13 14 from pytorch_lightning.core.lightning import LightningModule 15 from pytorch_lightning.loggers import LightningLoggerBase 16 from pytorch_lightning.overrides.data_parallel import ( 17 LightningDistributedDataParallel, 18 LightningDataParallel, 19 ) 20 21 try: 22 import torch_xla 23 import torch_xla.core.xla_model as xm 24 import torch_xla.distributed.xla_multiprocessing as xmp 25 except ImportError: 26 XLA_AVAILABLE = False 27 else: 28 XLA_AVAILABLE = True 29 30 31 class TrainerIOMixin(ABC): 32 33 # this is just a summary on variables used in this abstract class, 34 # the proper values/initialisation should be done in child class 35 model: LightningModule 36 on_gpu: bool 37 root_gpu: ... 38 resume_from_checkpoint: ... 39 use_ddp: bool 40 use_ddp2: bool 41 checkpoint_callback: ... 42 proc_rank: int 43 weights_save_path: str 44 logger: Union[LightningLoggerBase, bool] 45 early_stop_callback: ... 46 lr_schedulers: ... 47 optimizers: ... 48 on_tpu: bool 49 num_training_batches: int 50 accumulate_grad_batches: int 51 52 def get_model(self): 53 is_dp_module = isinstance(self.model, (LightningDistributedDataParallel, 54 LightningDataParallel)) 55 model = self.model.module if is_dp_module else self.model 56 return model 57 58 # -------------------- 59 # CHECK-POINTING 60 # -------------------- 61 def restore_weights(self, model): 62 """ 63 We attempt to restore weights in this order: 64 1. HPC weights. 65 2. if no HPC weights restore checkpoint_path weights 66 3. otherwise don't restore weights 67 68 :param model: 69 :return: 70 """ 71 # clear cache before restore 72 if self.on_gpu: 73 torch.cuda.empty_cache() 74 75 # if script called from hpc resubmit, load weights 76 did_restore_hpc_weights = self.restore_hpc_weights_if_needed(model) 77 78 # clear cache after restore 79 if self.on_gpu: 80 torch.cuda.empty_cache() 81 82 if not did_restore_hpc_weights: 83 if self.resume_from_checkpoint is not None: 84 self.restore(self.resume_from_checkpoint, on_gpu=self.on_gpu) 85 86 # wait for all models to restore weights 87 if self.use_ddp or self.use_ddp2: 88 # wait for all processes to catch up 89 dist.barrier() 90 91 # wait for all models to restore weights 92 if self.on_tpu and XLA_AVAILABLE: 93 # wait for all processes to catch up 94 torch_xla.core.xla_model.rendezvous("pl.TrainerIOMixin.restore_weights") 95 96 # clear cache after restore 97 if self.on_gpu: 98 torch.cuda.empty_cache() 99 100 # -------------------- 101 # HPC SIGNAL HANDLING 102 # -------------------- 103 def register_slurm_signal_handlers(self): 104 # see if we're using slurm (not interactive) 105 on_slurm = False 106 try: 107 job_name = os.environ['SLURM_JOB_NAME'] 108 if job_name != 'bash': 109 on_slurm = True 110 except Exception as e: 111 pass 112 113 if on_slurm: 114 log.info('Set SLURM handle signals.') 115 signal.signal(signal.SIGUSR1, self.sig_handler) 116 signal.signal(signal.SIGTERM, self.term_handler) 117 118 def sig_handler(self, signum, frame): 119 if self.proc_rank == 0: 120 # save weights 121 log.info('handling SIGUSR1') 122 self.hpc_save(self.weights_save_path, self.logger) 123 124 # find job id 125 job_id = os.environ['SLURM_JOB_ID'] 126 cmd = 'scontrol requeue {}'.format(job_id) 127 128 # requeue job 129 log.info(f'requeing job {job_id}...') 130 result = call(cmd, shell=True) 131 132 # print result text 133 if result == 0: 134 log.info(f'requeued exp {job_id}') 135 else: 136 log.info('requeue failed...') 137 138 # close experiment to avoid issues 139 self.logger.close() 140 141 def term_handler(self, signum, frame): 142 # save 143 log.info("bypassing sigterm") 144 145 # -------------------- 146 # MODEL SAVE CHECKPOINT 147 # -------------------- 148 def _atomic_save(self, checkpoint, filepath): 149 """Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints. 150 151 This will create a temporary checkpoint with a suffix of ``.part``, then copy it to the final location once 152 saving is finished. 153 154 Args: 155 checkpoint (object): The object to save. 156 Built to be used with the ``dump_checkpoint`` method, but can deal with anything which ``torch.save`` 157 accepts. 158 filepath (str|pathlib.Path): The path to which the checkpoint will be saved. 159 This points to the file that the checkpoint will be stored in. 160 """ 161 tmp_path = str(filepath) + ".part" 162 torch.save(checkpoint, tmp_path) 163 os.replace(tmp_path, filepath) 164 165 def save_checkpoint(self, filepath): 166 checkpoint = self.dump_checkpoint() 167 168 if self.proc_rank == 0: 169 # do the actual save 170 try: 171 self._atomic_save(checkpoint, filepath) 172 except AttributeError: 173 if 'hparams' in checkpoint: 174 del checkpoint['hparams'] 175 176 self._atomic_save(checkpoint, filepath) 177 178 def restore(self, checkpoint_path, on_gpu): 179 """ 180 Restore training state from checkpoint. 181 Also restores all training state like: 182 - epoch 183 - callbacks 184 - schedulers 185 - optimizer 186 :param checkpoint_path: 187 :param on_gpu: 188 189 :return: 190 """ 191 192 # if on_gpu: 193 # checkpoint = torch.load(checkpoint_path) 194 # else: 195 # load on CPU first 196 checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage) 197 198 # load model state 199 model = self.get_model() 200 201 # load the state_dict on the model automatically 202 model.load_state_dict(checkpoint['state_dict']) 203 if on_gpu: 204 model.cuda(self.root_gpu) 205 206 # load training state (affects trainer only) 207 self.restore_training_state(checkpoint) 208 209 def dump_checkpoint(self): 210 checkpoint = { 211 'epoch': self.current_epoch + 1, 212 'global_step': self.global_step + 1, 213 } 214 215 if self.checkpoint_callback is not None and self.checkpoint_callback is not False: 216 checkpoint['checkpoint_callback_best'] = self.checkpoint_callback.best 217 218 if self.early_stop_callback is not None and self.checkpoint_callback is not False: 219 checkpoint['early_stop_callback_wait'] = self.early_stop_callback.wait 220 checkpoint['early_stop_callback_patience'] = self.early_stop_callback.patience 221 222 # save optimizers 223 optimizer_states = [] 224 for i, optimizer in enumerate(self.optimizers): 225 optimizer_states.append(optimizer.state_dict()) 226 227 checkpoint['optimizer_states'] = optimizer_states 228 229 # save lr schedulers 230 lr_schedulers = [] 231 for i, scheduler in enumerate(self.lr_schedulers): 232 lr_schedulers.append(scheduler.state_dict()) 233 234 checkpoint['lr_schedulers'] = lr_schedulers 235 236 # add the hparams and state_dict from the model 237 model = self.get_model() 238 239 checkpoint['state_dict'] = model.state_dict() 240 241 if hasattr(model, "hparams"): 242 is_namespace = isinstance(model.hparams, Namespace) 243 checkpoint['hparams'] = vars(model.hparams) if is_namespace else model.hparams 244 checkpoint['hparams_type'] = 'namespace' if is_namespace else 'dict' 245 else: 246 warnings.warn( 247 "Did not find hyperparameters at model.hparams. Saving checkpoint without" 248 " hyperparameters" 249 ) 250 251 # give the model a chance to add a few things 252 model.on_save_checkpoint(checkpoint) 253 254 return checkpoint 255 256 # -------------------- 257 # HPC IO 258 # -------------------- 259 def restore_hpc_weights_if_needed(self, model): 260 """ 261 If there is a set of hpc weights, use as signal to restore model 262 :param model: 263 :return: 264 """ 265 did_restore = False 266 267 # look for hpc weights 268 folderpath = self.weights_save_path 269 if os.path.exists(folderpath): 270 files = os.listdir(folderpath) 271 hpc_weight_paths = [x for x in files if 'hpc_ckpt' in x] 272 273 # if hpc weights exist restore model 274 if len(hpc_weight_paths) > 0: 275 self.hpc_load(folderpath, self.on_gpu) 276 did_restore = True 277 return did_restore 278 279 def restore_training_state(self, checkpoint): 280 """ 281 Restore trainer state. 282 Model will get its change to update 283 :param checkpoint: 284 :return: 285 """ 286 if self.checkpoint_callback is not None and self.checkpoint_callback is not False: 287 self.checkpoint_callback.best = checkpoint['checkpoint_callback_best'] 288 289 if self.early_stop_callback is not None and self.early_stop_callback is not False: 290 self.early_stop_callback.wait = checkpoint['early_stop_callback_wait'] 291 self.early_stop_callback.patience = checkpoint['early_stop_callback_patience'] 292 293 self.global_step = checkpoint['global_step'] 294 self.current_epoch = checkpoint['epoch'] 295 296 # Division deals with global step stepping once per accumulated batch 297 # Inequality deals with different global step for odd vs even num_training_batches 298 n_accum = 1 if self.accumulate_grad_batches is None else self.accumulate_grad_batches 299 expected_steps = self.num_training_batches / n_accum 300 if self.num_training_batches != 0 and self.global_step % expected_steps > 1: 301 warnings.warn( 302 "You're resuming from a checkpoint that ended mid-epoch. " 303 "This can cause unreliable results if further training is done, " 304 "consider using an end of epoch checkpoint. " 305 ) 306 307 # restore the optimizers 308 optimizer_states = checkpoint['optimizer_states'] 309 for optimizer, opt_state in zip(self.optimizers, optimizer_states): 310 optimizer.load_state_dict(opt_state) 311 312 # move optimizer to GPU 1 weight at a time 313 # avoids OOM 314 if self.root_gpu is not None: 315 for state in optimizer.state.values(): 316 for k, v in state.items(): 317 if isinstance(v, torch.Tensor): 318 state[k] = v.cuda(self.root_gpu) 319 320 # restore the lr schedulers 321 lr_schedulers = checkpoint['lr_schedulers'] 322 for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers): 323 scheduler.load_state_dict(lrs_state) 324 325 # ---------------------------------- 326 # PRIVATE OPS 327 # ---------------------------------- 328 def hpc_save(self, folderpath: str, logger): 329 # make sure the checkpoint folder exists 330 os.makedirs(folderpath, exist_ok=True) 331 332 # save logger to make sure we get all the metrics 333 logger.save() 334 335 ckpt_number = self.max_ckpt_in_folder(folderpath) + 1 336 337 if not os.path.exists(folderpath): 338 os.makedirs(folderpath, exist_ok=True) 339 filepath = os.path.join(folderpath, f'hpc_ckpt_{ckpt_number}.ckpt') 340 341 # give model a chance to do something on hpc_save 342 model = self.get_model() 343 checkpoint = self.dump_checkpoint() 344 345 model.on_hpc_save(checkpoint) 346 347 # do the actual save 348 # TODO: fix for anything with multiprocess DP, DDP, DDP2 349 try: 350 self._atomic_save(checkpoint, filepath) 351 except AttributeError: 352 if 'hparams' in checkpoint: 353 del checkpoint['hparams'] 354 355 self._atomic_save(checkpoint, filepath) 356 357 return filepath 358 359 def hpc_load(self, folderpath, on_gpu): 360 filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, self.max_ckpt_in_folder(folderpath)) 361 362 # load on CPU first 363 checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage) 364 365 # load model state 366 model = self.get_model() 367 368 # load the state_dict on the model automatically 369 model.load_state_dict(checkpoint['state_dict']) 370 371 if self.root_gpu is not None: 372 model.cuda(self.root_gpu) 373 374 # load training state (affects trainer only) 375 self.restore_training_state(checkpoint) 376 377 # call model hook 378 model.on_hpc_load(checkpoint) 379 380 log.info(f'restored hpc model from: {filepath}') 381 382 def max_ckpt_in_folder(self, path, name_key='ckpt_'): 383 files = os.listdir(path) 384 files = [x for x in files if name_key in x] 385 if len(files) == 0: 386 return 0 387 388 ckpt_vs = [] 389 for name in files: 390 name = name.split(name_key)[-1] 391 name = re.sub('[^0-9]', '', name) 392 ckpt_vs.append(int(name)) 393 394 return max(ckpt_vs) 395 [end of pytorch_lightning/trainer/training_io.py] [start of pytorch_lightning/trainer/training_loop.py] 1 """ 2 The lightning training loop handles everything except the actual computations of your model. 3 To decide what will happen in your training loop, define the `training_step` function. 4 5 Below are all the things lightning automates for you in the training loop. 6 7 Accumulated gradients 8 --------------------- 9 10 Accumulated gradients runs K small batches of size N before doing a backwards pass. 11 The effect is a large effective batch size of size KxN. 12 13 .. code-block:: python 14 15 # DEFAULT (ie: no accumulated grads) 16 trainer = Trainer(accumulate_grad_batches=1) 17 18 Force training for min or max epochs 19 ------------------------------------ 20 21 It can be useful to force training for a minimum number of epochs or limit to a max number 22 23 .. code-block:: python 24 25 # DEFAULT 26 trainer = Trainer(min_epochs=1, max_epochs=1000) 27 28 Force disable early stop 29 ------------------------ 30 31 To disable early stopping pass None to the early_stop_callback 32 33 .. code-block:: python 34 35 # DEFAULT 36 trainer = Trainer(early_stop_callback=None) 37 38 Gradient Clipping 39 ----------------- 40 41 Gradient clipping may be enabled to avoid exploding gradients. 42 Specifically, this will `clip the gradient norm computed over all model parameters 43 `together <https://pytorch.org/docs/stable/nn.html#torch.nn.utils.clip_grad_norm_>`_. 44 45 .. code-block:: python 46 47 # DEFAULT (ie: don't clip) 48 trainer = Trainer(gradient_clip_val=0) 49 50 # clip gradients with norm above 0.5 51 trainer = Trainer(gradient_clip_val=0.5) 52 53 Inspect gradient norms 54 ---------------------- 55 56 Looking at grad norms can help you figure out where training might be going wrong. 57 58 .. code-block:: python 59 60 # DEFAULT (-1 doesn't track norms) 61 trainer = Trainer(track_grad_norm=-1) 62 63 # track the LP norm (P=2 here) 64 trainer = Trainer(track_grad_norm=2) 65 66 Set how much of the training set to check 67 ----------------------------------------- 68 69 If you don't want to check 100% of the training set (for debugging or if it's huge), set this flag. 70 71 train_percent_check will be overwritten by overfit_pct if `overfit_pct > 0` 72 73 .. code-block:: python 74 75 # DEFAULT 76 trainer = Trainer(train_percent_check=1.0) 77 78 # check 10% only 79 trainer = Trainer(train_percent_check=0.1) 80 81 Packed sequences as inputs 82 -------------------------- 83 84 When using PackedSequence, do 2 things: 85 1. return either a padded tensor in dataset or a list of variable length tensors 86 in the dataloader collate_fn (example above shows the list implementation). 87 2. Pack the sequence in forward or training and validation steps depending on use case. 88 89 .. code-block:: python 90 91 # For use in dataloader 92 def collate_fn(batch): 93 x = [item[0] for item in batch] 94 y = [item[1] for item in batch] 95 return x, y 96 97 # In module 98 def training_step(self, batch, batch_idx): 99 x = rnn.pack_sequence(batch[0], enforce_sorted=False) 100 y = rnn.pack_sequence(batch[1], enforce_sorted=False) 101 102 103 Truncated Backpropagation Through Time 104 -------------------------------------- 105 106 There are times when multiple backwards passes are needed for each batch. 107 For example, it may save memory to use Truncated Backpropagation Through Time when training RNNs. 108 109 When this flag is enabled each batch is split into sequences of size truncated_bptt_steps 110 and passed to training_step(...) separately. A default splitting function is provided, 111 however, you can override it for more flexibility. See `tbptt_split_batch`. 112 113 .. code-block:: python 114 115 # DEFAULT (single backwards pass per batch) 116 trainer = Trainer(truncated_bptt_steps=None) 117 118 # (split batch into sequences of size 2) 119 trainer = Trainer(truncated_bptt_steps=2) 120 121 122 """ 123 124 from typing import Callable 125 126 import copy 127 import warnings 128 import logging as log 129 from abc import ABC, abstractmethod 130 from typing import Union, List 131 132 import numpy as np 133 from torch.utils.data import DataLoader 134 135 from pytorch_lightning.core.lightning import LightningModule 136 from pytorch_lightning.loggers import LightningLoggerBase 137 from pytorch_lightning.utilities.debugging import MisconfigurationException 138 from pytorch_lightning.callbacks.base import Callback 139 140 try: 141 from apex import amp 142 except ImportError: 143 APEX_AVAILABLE = False 144 else: 145 APEX_AVAILABLE = True 146 147 try: 148 import torch_xla.distributed.parallel_loader as xla_pl 149 import torch_xla.core.xla_model as xm 150 except ImportError: 151 XLA_AVAILABLE = False 152 else: 153 XLA_AVAILABLE = True 154 155 156 class TrainerTrainLoopMixin(ABC): 157 158 # this is just a summary on variables used in this abstract class, 159 # the proper values/initialisation should be done in child class 160 max_epochs: int 161 min_epochs: int 162 use_ddp: bool 163 use_dp: bool 164 use_ddp2: bool 165 single_gpu: bool 166 use_tpu: bool 167 data_parallel_device_ids: ... 168 check_val_every_n_epoch: ... 169 num_training_batches: int 170 val_check_batch: ... 171 num_val_batches: int 172 disable_validation: bool 173 fast_dev_run: ... 174 main_progress_bar: ... 175 accumulation_scheduler: ... 176 lr_schedulers: ... 177 enable_early_stop: ... 178 early_stop_callback: ... 179 callback_metrics: ... 180 logger: Union[LightningLoggerBase, bool] 181 global_step: int 182 testing: bool 183 log_save_interval: float 184 proc_rank: int 185 row_log_interval: float 186 total_batches: int 187 truncated_bptt_steps: ... 188 optimizers: ... 189 accumulate_grad_batches: int 190 use_amp: bool 191 print_nan_grads: ... 192 track_grad_norm: ... 193 model: LightningModule 194 running_loss: ... 195 training_tqdm_dict: ... 196 reduce_lr_on_plateau_scheduler: ... 197 profiler: ... 198 batch_idx: int 199 precision: ... 200 train_dataloader: DataLoader 201 reload_dataloaders_every_epoch: bool 202 progress_bar_refresh_rate: ... 203 max_steps: int 204 max_steps: int 205 total_batch_idx: int 206 checkpoint_callback: ... 207 208 # Callback system 209 callbacks: List[Callback] 210 on_train_start: Callable 211 on_train_end: Callable 212 on_batch_start: Callable 213 on_batch_end: Callable 214 on_epoch_start: Callable 215 on_epoch_end: Callable 216 on_validation_end: Callable 217 218 @property 219 def max_nb_epochs(self): 220 """ 221 .. warning:: `max_nb_epochs` is deprecated and will be removed in v0.8.0, use `max_epochs` instead. 222 """ 223 warnings.warn("`max_nb_epochs` is deprecated and will be removed in " 224 "v0.8.0, use `max_epochs` instead.", DeprecationWarning) 225 return self.max_epochs 226 227 @property 228 def min_nb_epochs(self): 229 """ 230 .. warning:: `min_nb_epochs` is deprecated and will be removed in v0.8.0, use `min_epochs` instead. 231 """ 232 warnings.warn("`min_nb_epochs` is deprecated and will be removed in " 233 "v0.8.0, use `min_epochs` instead.", DeprecationWarning) 234 return self.min_epochs 235 236 @abstractmethod 237 def get_model(self): 238 """Warning: this is just empty shell for code implemented in other class.""" 239 240 @abstractmethod 241 def is_function_implemented(self, *args): 242 """Warning: this is just empty shell for code implemented in other class.""" 243 244 @abstractmethod 245 def is_infinite_dataloader(self, *args): 246 """Warning: this is just empty shell for code implemented in other class.""" 247 248 @abstractmethod 249 def run_evaluation(self, *args): 250 """Warning: this is just empty shell for code implemented in other class.""" 251 252 @abstractmethod 253 def transfer_batch_to_gpu(self, *args): 254 """Warning: this is just empty shell for code implemented in other class.""" 255 256 @abstractmethod 257 def transfer_batch_to_tpu(self, *args): 258 """Warning: this is just empty shell for code implemented in other class.""" 259 260 @abstractmethod 261 def clip_gradients(self): 262 """Warning: this is just empty shell for code implemented in other class.""" 263 264 @abstractmethod 265 def print_nan_gradients(self): 266 """Warning: this is just empty shell for code implemented in other class.""" 267 268 @abstractmethod 269 def is_overriden(self, *args): 270 """Warning: this is just empty shell for code implemented in other class.""" 271 272 @abstractmethod 273 def add_tqdm_metrics(self, *args): 274 """Warning: this is just empty shell for code implemented in other class.""" 275 276 @abstractmethod 277 def log_metrics(self, *args): 278 """Warning: this is just empty shell for code implemented in other class.""" 279 280 @abstractmethod 281 def process_output(self, *args): 282 """Warning: this is just empty shell for code implemented in other class.""" 283 284 @abstractmethod 285 def reset_train_dataloader(self, *args): 286 """Warning: this is just empty shell for code implemented in other class.""" 287 288 @abstractmethod 289 def reset_val_dataloader(self, model): 290 """Warning: this is just empty shell for code implemented in other class.""" 291 292 @abstractmethod 293 def has_arg(self, *args): 294 """Warning: this is just empty shell for code implemented in other class.""" 295 296 def train(self): 297 warnings.warn('Displayed epoch numbers in the progress bar start from "1" until v0.6.x,' 298 ' but will start from "0" in v0.8.0.', DeprecationWarning) 299 300 # get model 301 model = self.get_model() 302 303 # load data 304 self.reset_train_dataloader(model) 305 self.reset_val_dataloader(model) 306 307 # Train start events 308 with self.profiler.profile('on_train_start'): 309 # callbacks 310 self.on_train_start() 311 # initialize early stop callback 312 if self.early_stop_callback is not None: 313 self.early_stop_callback.on_train_start(self, self.get_model()) 314 # model hooks 315 model.on_train_start() 316 317 try: 318 # run all epochs 319 for epoch in range(self.current_epoch, self.max_epochs): 320 # set seed for distributed sampler (enables shuffling for each epoch) 321 if self.use_ddp \ 322 and hasattr(self.train_dataloader.sampler, 'set_epoch'): 323 self.train_dataloader.sampler.set_epoch(epoch) 324 325 # update training progress in trainer and model 326 model.current_epoch = epoch 327 self.current_epoch = epoch 328 329 total_val_batches = 0 330 is_val_epoch = False 331 if not self.disable_validation: 332 # val can be checked multiple times in epoch 333 is_val_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0 334 val_checks_per_epoch = self.num_training_batches // self.val_check_batch 335 val_checks_per_epoch = val_checks_per_epoch if is_val_epoch else 0 336 total_val_batches = self.num_val_batches * val_checks_per_epoch 337 338 # total batches includes multiple val checks 339 self.total_batches = self.num_training_batches + total_val_batches 340 self.batch_loss_value = 0 # accumulated grads 341 342 if self.fast_dev_run: 343 # limit the number of batches to 2 (1 train and 1 val) in fast_dev_run 344 num_iterations = 2 345 elif self.is_infinite_dataloader(self.train_dataloader): 346 # for infinite train loader, the progress bar never ends 347 num_iterations = None 348 else: 349 num_iterations = self.total_batches 350 351 # reset progress bar 352 # .reset() doesn't work on disabled progress bar so we should check 353 if not self.main_progress_bar.disable: 354 self.main_progress_bar.reset(num_iterations) 355 desc = f'Epoch {epoch + 1}' if not self.is_infinite_dataloader(self.train_dataloader) else '' 356 self.main_progress_bar.set_description(desc) 357 358 # ----------------- 359 # RUN TNG EPOCH 360 # ----------------- 361 self.run_training_epoch() 362 363 # update LR schedulers 364 if self.lr_schedulers is not None: 365 for lr_scheduler in self.lr_schedulers: 366 lr_scheduler.step() 367 if self.reduce_lr_on_plateau_scheduler is not None: 368 val_loss = self.callback_metrics.get('val_loss') 369 if val_loss is None: 370 avail_metrics = ','.join(list(self.callback_metrics.keys())) 371 m = f'ReduceLROnPlateau conditioned on metric val_loss ' \ 372 f'which is not available. Available metrics are: {avail_metrics}' 373 raise MisconfigurationException(m) 374 self.reduce_lr_on_plateau_scheduler.step(val_loss) 375 376 if self.max_steps and self.max_steps == self.global_step: 377 self.run_training_teardown() 378 return 379 380 # early stopping 381 met_min_epochs = epoch >= self.min_epochs - 1 382 met_min_steps = self.global_step >= self.min_steps if self.min_steps else True 383 384 # TODO wrap this logic into the callback 385 if self.enable_early_stop and not self.disable_validation and is_val_epoch: 386 if ((met_min_epochs and met_min_steps) or self.fast_dev_run): 387 should_stop = self.early_stop_callback.on_epoch_end(self, self.get_model()) 388 # stop training 389 stop = should_stop and met_min_epochs 390 if stop: 391 self.run_training_teardown() 392 return 393 394 self.run_training_teardown() 395 396 except KeyboardInterrupt: 397 log.info('Detected KeyboardInterrupt, attempting graceful shutdown...') 398 self.run_training_teardown() 399 400 def run_training_epoch(self): 401 402 # Epoch start events 403 with self.profiler.profile('on_epoch_start'): 404 # callbacks 405 self.on_epoch_start() 406 # changing gradient according accumulation_scheduler 407 self.accumulation_scheduler.on_epoch_start(self, self.get_model()) 408 # model hooks 409 if self.is_function_implemented('on_epoch_start'): 410 self.get_model().on_epoch_start() 411 412 # reset train dataloader 413 if self.reload_dataloaders_every_epoch: 414 self.reset_train_dataloader(self.get_model()) 415 416 # track local dataloader so TPU can wrap each epoch 417 train_dataloader = self.train_dataloader 418 419 # on TPU we have to wrap it under the ParallelLoader 420 if self.use_tpu: 421 device = xm.xla_device() 422 train_dataloader = xla_pl.ParallelLoader(train_dataloader, [device]) 423 train_dataloader = train_dataloader.per_device_loader(device) 424 425 # run epoch 426 for batch_idx, batch in self.profiler.profile_iterable( 427 enumerate(train_dataloader), "get_train_batch" 428 ): 429 # stop epoch if we limited the number of training batches 430 if batch_idx >= self.num_training_batches: 431 break 432 433 self.batch_idx = batch_idx 434 435 model = self.get_model() 436 model.global_step = self.global_step 437 438 # --------------- 439 # RUN TRAIN STEP 440 # --------------- 441 output = self.run_training_batch(batch, batch_idx) 442 batch_result, grad_norm_dic, batch_step_metrics = output 443 444 # when returning -1 from train_step, we end epoch early 445 early_stop_epoch = batch_result == -1 446 447 # --------------- 448 # RUN VAL STEP 449 # --------------- 450 is_val_check_batch = (batch_idx + 1) % self.val_check_batch == 0 451 can_check_epoch = (self.current_epoch + 1) % self.check_val_every_n_epoch == 0 452 should_check_val = not self.disable_validation and can_check_epoch 453 should_check_val = should_check_val and (is_val_check_batch or early_stop_epoch) 454 455 # fast_dev_run always forces val checking after train batch 456 if self.fast_dev_run or should_check_val: 457 self.run_evaluation(test_mode=self.testing) 458 459 # when logs should be saved 460 should_save_log = (batch_idx + 1) % self.log_save_interval == 0 or early_stop_epoch 461 if should_save_log or self.fast_dev_run: 462 if self.proc_rank == 0 and self.logger is not None: 463 self.logger.save() 464 465 # when metrics should be logged 466 should_log_metrics = batch_idx % self.row_log_interval == 0 or early_stop_epoch 467 if should_log_metrics or self.fast_dev_run: 468 # logs user requested information to logger 469 self.log_metrics(batch_step_metrics, grad_norm_dic) 470 471 # --------------- 472 # CHECKPOINTING, EARLY STOPPING 473 # --------------- 474 # save checkpoint even when no test or val step are defined 475 train_step_only = not self.is_overriden('validation_step') 476 if self.fast_dev_run or should_check_val or train_step_only: 477 self.call_checkpoint_callback() 478 479 if self.enable_early_stop: 480 self.early_stop_callback.check_metrics(self.callback_metrics) 481 482 # progress global step according to grads progress 483 if (self.batch_idx + 1) % self.accumulate_grad_batches == 0: 484 self.global_step += 1 485 self.total_batch_idx += 1 486 487 # max steps reached, end training 488 if self.max_steps is not None and self.max_steps == self.global_step: 489 break 490 491 # end epoch early 492 # stop when the flag is changed or we've gone past the amount 493 # requested in the batches 494 if early_stop_epoch or self.fast_dev_run: 495 break 496 497 # Epoch end events 498 with self.profiler.profile('on_epoch_end'): 499 # callbacks 500 self.on_epoch_end() 501 # model hooks 502 if self.is_function_implemented('on_epoch_end'): 503 self.get_model().on_epoch_end() 504 505 def run_training_batch(self, batch, batch_idx): 506 # track grad norms 507 grad_norm_dic = {} 508 509 # track all metrics for callbacks 510 all_callback_metrics = [] 511 512 # track metrics to log 513 all_log_metrics = [] 514 515 if batch is None: 516 return 0, grad_norm_dic, {} 517 518 # Batch start events 519 with self.profiler.profile('on_batch_start'): 520 # callbacks 521 self.on_batch_start() 522 # hooks 523 if self.is_function_implemented('on_batch_start'): 524 response = self.get_model().on_batch_start(batch) 525 if response == -1: 526 return -1, grad_norm_dic, {} 527 528 splits = [batch] 529 if self.truncated_bptt_steps is not None: 530 model_ref = self.get_model() 531 with self.profiler.profile('tbptt_split_batch'): 532 splits = model_ref.tbptt_split_batch(batch, self.truncated_bptt_steps) 533 534 self.hiddens = None 535 for split_idx, split_batch in enumerate(splits): 536 self.split_idx = split_idx 537 538 # call training_step once per optimizer 539 for opt_idx, optimizer in enumerate(self.optimizers): 540 # make sure only the gradients of the current optimizer's paramaters are calculated 541 # in the training step to prevent dangling gradients in multiple-optimizer setup. 542 if len(self.optimizers) > 1: 543 for param in self.get_model().parameters(): 544 param.requires_grad = False 545 for group in optimizer.param_groups: 546 for param in group['params']: 547 param.requires_grad = True 548 549 # wrap the forward step in a closure so second order methods work 550 def optimizer_closure(): 551 # forward pass 552 with self.profiler.profile('model_forward'): 553 output = self.training_forward( 554 split_batch, batch_idx, opt_idx, self.hiddens) 555 556 closure_loss = output[0] 557 progress_bar_metrics = output[1] 558 log_metrics = output[2] 559 callback_metrics = output[3] 560 self.hiddens = output[4] 561 562 # accumulate loss 563 # (if accumulate_grad_batches = 1 no effect) 564 closure_loss = closure_loss / self.accumulate_grad_batches 565 566 # backward pass 567 model_ref = self.get_model() 568 with self.profiler.profile('model_backward'): 569 model_ref.backward(self, closure_loss, optimizer, opt_idx) 570 571 # track metrics for callbacks 572 all_callback_metrics.append(callback_metrics) 573 574 # track progress bar metrics 575 self.add_tqdm_metrics(progress_bar_metrics) 576 all_log_metrics.append(log_metrics) 577 578 # insert after step hook 579 if self.is_function_implemented('on_after_backward'): 580 model_ref = self.get_model() 581 with self.profiler.profile('on_after_backward'): 582 model_ref.on_after_backward() 583 584 return closure_loss 585 586 # calculate loss 587 loss = optimizer_closure() 588 589 # nan grads 590 if self.print_nan_grads: 591 self.print_nan_gradients() 592 593 # track total loss for logging (avoid mem leaks) 594 self.batch_loss_value += loss.item() 595 596 # gradient update with accumulated gradients 597 if (self.batch_idx + 1) % self.accumulate_grad_batches == 0: 598 599 # track gradient norms when requested 600 if batch_idx % self.row_log_interval == 0: 601 if self.track_grad_norm > 0: 602 model = self.get_model() 603 grad_norm_dic = model.grad_norm( 604 self.track_grad_norm) 605 606 # clip gradients 607 self.clip_gradients() 608 609 # calls .step(), .zero_grad() 610 # override function to modify this behavior 611 model = self.get_model() 612 with self.profiler.profile('optimizer_step'): 613 model.optimizer_step(self.current_epoch, batch_idx, 614 optimizer, opt_idx, optimizer_closure) 615 616 # calculate running loss for display 617 self.running_loss.append(self.batch_loss_value) 618 self.batch_loss_value = 0 619 self.avg_loss = np.mean(self.running_loss[-100:]) 620 621 # Batch end events 622 with self.profiler.profile('on_batch_end'): 623 # callbacks 624 self.on_batch_end() 625 # model hooks 626 if self.is_function_implemented('on_batch_end'): 627 self.get_model().on_batch_end() 628 629 # update progress bar 630 if batch_idx % self.progress_bar_refresh_rate == 0: 631 self.main_progress_bar.update(self.progress_bar_refresh_rate) 632 self.main_progress_bar.set_postfix(**self.training_tqdm_dict) 633 634 # collapse all metrics into one dict 635 all_log_metrics = {k: v for d in all_log_metrics for k, v in d.items()} 636 637 # track all metrics for callbacks 638 self.callback_metrics.update({k: v for d in all_callback_metrics for k, v in d.items()}) 639 640 return 0, grad_norm_dic, all_log_metrics 641 642 def run_training_teardown(self): 643 self.main_progress_bar.close() 644 645 # Train end events 646 with self.profiler.profile('on_train_end'): 647 # callbacks 648 self.on_train_end() 649 # model hooks 650 if self.is_function_implemented('on_train_end'): 651 self.get_model().on_train_end() 652 653 if self.logger is not None: 654 self.logger.finalize("success") 655 656 # summarize profile results 657 self.profiler.describe() 658 659 def training_forward(self, batch, batch_idx, opt_idx, hiddens): 660 """ 661 Handle forward for each training case (distributed, single gpu, etc...) 662 :param batch: 663 :param batch_idx: 664 :return: 665 """ 666 # --------------- 667 # FORWARD 668 # --------------- 669 # enable not needing to add opt_idx to training_step 670 args = [batch, batch_idx] 671 672 if len(self.optimizers) > 1: 673 if self.has_arg('training_step', 'optimizer_idx'): 674 args.append(opt_idx) 675 else: 676 raise ValueError( 677 f'Your LightningModule defines {len(self.optimizers)} optimizers but ' 678 f'training_step is missing the "optimizer_idx" argument.' 679 ) 680 681 # pass hiddens if using tbptt 682 if self.truncated_bptt_steps is not None: 683 args.append(hiddens) 684 685 # distributed forward 686 if self.use_ddp or self.use_ddp2 or self.use_dp: 687 output = self.model(*args) 688 689 # single GPU forward 690 elif self.single_gpu: 691 gpu_id = 0 692 if isinstance(self.data_parallel_device_ids, list): 693 gpu_id = self.data_parallel_device_ids[0] 694 batch = self.transfer_batch_to_gpu(copy.copy(batch), gpu_id) 695 args[0] = batch 696 output = self.model.training_step(*args) 697 698 # TPU support 699 elif self.use_tpu: 700 batch = self.transfer_batch_to_tpu(copy.copy(batch)) 701 args[0] = batch 702 output = self.model.training_step(*args) 703 704 # CPU forward 705 else: 706 output = self.model.training_step(*args) 707 708 # allow any mode to define training_end 709 if self.is_overriden('training_end'): 710 model_ref = self.get_model() 711 with self.profiler.profile('training_end'): 712 output = model_ref.training_end(output) 713 714 # format and reduce outputs accordingly 715 output = self.process_output(output, train=True) 716 717 return output 718 719 def call_checkpoint_callback(self): 720 if self.checkpoint_callback is not None: 721 self.checkpoint_callback.on_validation_end(self, self.get_model()) 722 self.on_validation_end() 723 [end of pytorch_lightning/trainer/training_loop.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
Lightning-AI/lightning
bcb45d906d5f378a30461d513728cad34fc647ce
Support stepping options for lr scheduler Currently schedulers get called every epoch. Sometimes though, we want them to be called every step. Proposal 1: Allow configure_optimizers to return this: ```python return Adam, {'scheduler': LRScheduler, 'interval': 'batch|epoch'} ``` @ethanwharris @Borda thoughts? any simpler more general way of doing this? i think this dict can eventually have more options if we need to. @srush
2020-02-25T15:48:00Z
<patch> diff --git a/pytorch_lightning/core/lightning.py b/pytorch_lightning/core/lightning.py --- a/pytorch_lightning/core/lightning.py +++ b/pytorch_lightning/core/lightning.py @@ -758,6 +758,15 @@ def configure_optimizers(self): discriminator_sched = CosineAnnealing(discriminator_opt, T_max=10) return [generator_opt, disriminator_opt], [discriminator_sched] + # example with step-based learning_rate schedulers + def configure_optimizers(self): + gen_opt = Adam(self.model_gen.parameters(), lr=0.01) + dis_opt = Adam(self.model_disc.parameters(), lr=0.02) + gen_sched = {'scheduler': ExponentialLR(gen_opt, 0.99), + 'interval': 'step'} # called after each training step + dis_sched = CosineAnnealing(discriminator_opt, T_max=10) # called after each epoch + return [gen_opt, dis_opt], [gen_sched, dis_sched] + .. note:: Lightning calls .backward() and .step() on each optimizer and learning rate scheduler as needed. .. note:: If you use 16-bit precision (use_amp=True), Lightning will automatically @@ -773,6 +782,8 @@ def configure_optimizers(self): .. note:: If you need to control how often those optimizers step or override the default .step() schedule, override the `optimizer_step` hook. + .. note:: If you only want to call a learning rate schduler every `x` step or epoch, + you can input this as 'frequency' key: dict(scheduler=lr_schudler, interval='step' or 'epoch', frequency=x) """ return Adam(self.parameters(), lr=1e-3) diff --git a/pytorch_lightning/trainer/trainer.py b/pytorch_lightning/trainer/trainer.py --- a/pytorch_lightning/trainer/trainer.py +++ b/pytorch_lightning/trainer/trainer.py @@ -6,6 +6,7 @@ from argparse import ArgumentParser import torch +from torch import optim import torch.distributed as dist import torch.multiprocessing as mp from torch.utils.data import DataLoader @@ -743,8 +744,6 @@ def on_train_end(self): # creates a default one if none passed in self.configure_early_stopping(early_stop_callback) - self.reduce_lr_on_plateau_scheduler = None - # configure checkpoint callback self.checkpoint_callback = checkpoint_callback self.weights_save_path = weights_save_path @@ -1079,26 +1078,56 @@ def init_optimizers( optimizers: Union[Optimizer, Tuple[List, List], List[Optimizer], Tuple[Optimizer]] ) -> Tuple[List, List]: - # single optimizer + # single output, single optimizer if isinstance(optimizers, Optimizer): return [optimizers], [] - # two lists - if len(optimizers) == 2 and isinstance(optimizers[0], list): + # two lists, optimizer + lr schedulers + elif len(optimizers) == 2 and isinstance(optimizers[0], list): optimizers, lr_schedulers = optimizers - lr_schedulers, self.reduce_lr_on_plateau_scheduler = self.configure_schedulers(lr_schedulers) + lr_schedulers = self.configure_schedulers(lr_schedulers) return optimizers, lr_schedulers - # single list or tuple - if isinstance(optimizers, (list, tuple)): + # single list or tuple, multiple optimizer + elif isinstance(optimizers, (list, tuple)): return optimizers, [] + # unknown configuration + else: + raise ValueError('Unknown configuration for model optimizers. Output' + 'from model.configure_optimizers() should either be:' + '* single output, single torch.optim.Optimizer' + '* single output, list of torch.optim.Optimizer' + '* two outputs, first being a list of torch.optim.Optimizer', + 'second being a list of torch.optim.lr_scheduler') + def configure_schedulers(self, schedulers: list): - for i, scheduler in enumerate(schedulers): - if isinstance(scheduler, torch.optim.lr_scheduler.ReduceLROnPlateau): - reduce_lr_on_plateau_scheduler = schedulers.pop(i) - return schedulers, reduce_lr_on_plateau_scheduler - return schedulers, None + # Convert each scheduler into dict sturcture with relevant information + lr_schedulers = [] + default_config = {'interval': 'epoch', # default every epoch + 'frequency': 1, # default every epoch/batch + 'reduce_on_plateau': False, # most often not ReduceLROnPlateau scheduler + 'monitor': 'val_loss'} # default value to monitor for ReduceLROnPlateau + for scheduler in schedulers: + if isinstance(scheduler, dict): + if 'scheduler' not in scheduler: + raise ValueError(f'Lr scheduler should have key `scheduler`', + ' with item being a lr scheduler') + scheduler['reduce_on_plateau'] = \ + isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau) + + lr_schedulers.append({**default_config, **scheduler}) + + elif isinstance(scheduler, optim.lr_scheduler.ReduceLROnPlateau): + lr_schedulers.append({**default_config, 'scheduler': scheduler, + 'reduce_on_plateau': True}) + + elif isinstance(scheduler, optim.lr_scheduler._LRScheduler): + lr_schedulers.append({**default_config, 'scheduler': scheduler}) + else: + raise ValueError(f'Input {scheduler} to lr schedulers ' + 'is a invalid input.') + return lr_schedulers def run_pretrain_routine(self, model: LightningModule): """Sanity check a few things before starting actual training. diff --git a/pytorch_lightning/trainer/training_io.py b/pytorch_lightning/trainer/training_io.py --- a/pytorch_lightning/trainer/training_io.py +++ b/pytorch_lightning/trainer/training_io.py @@ -1,3 +1,94 @@ +""" +Lightning can automate saving and loading checkpoints +===================================================== + +Checkpointing is enabled by default to the current working directory. +To change the checkpoint path pass in:: + + Trainer(default_save_path='/your/path/to/save/checkpoints') + + +To modify the behavior of checkpointing pass in your own callback. + +.. code-block:: python + + from pytorch_lightning.callbacks import ModelCheckpoint + + # DEFAULTS used by the Trainer + checkpoint_callback = ModelCheckpoint( + filepath=os.getcwd(), + save_best_only=True, + verbose=True, + monitor='val_loss', + mode='min', + prefix='' + ) + + trainer = Trainer(checkpoint_callback=checkpoint_callback) + + +Restoring training session +-------------------------- + +You might want to not only load a model but also continue training it. Use this method to +restore the trainer state as well. This will continue from the epoch and global step you last left off. +However, the dataloaders will start from the first batch again (if you shuffled it shouldn't matter). + +Lightning will restore the session if you pass a logger with the same version and there's a saved checkpoint. + +.. code-block:: python + + from pytorch_lightning import Trainer + from pytorch_lightning.loggers import TestTubeLogger + + logger = TestTubeLogger( + save_dir='./savepath', + version=1 # An existing version with a saved checkpoint + ) + trainer = Trainer( + logger=logger, + default_save_path='./savepath' + ) + + # this fit call loads model weights and trainer state + # the trainer continues seamlessly from where you left off + # without having to do anything else. + trainer.fit(model) + + +The trainer restores: + +- global_step +- current_epoch +- All optimizers +- All lr_schedulers +- Model weights + +You can even change the logic of your model as long as the weights and "architecture" of +the system isn't different. If you add a layer, for instance, it might not work. + +At a rough level, here's what happens inside Trainer :py:mod:`pytorch_lightning.base_module.model_saving.py`: + +.. code-block:: python + + self.global_step = checkpoint['global_step'] + self.current_epoch = checkpoint['epoch'] + + # restore the optimizers + optimizer_states = checkpoint['optimizer_states'] + for optimizer, opt_state in zip(self.optimizers, optimizer_states): + optimizer.load_state_dict(opt_state) + + # restore the lr schedulers + lr_schedulers = checkpoint['lr_schedulers'] + for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers): + scheduler['scheduler'].load_state_dict(lrs_state) + + # uses the model you passed into trainer + model.load_state_dict(checkpoint['state_dict']) + +""" + import logging as log import os import re @@ -228,8 +319,8 @@ def dump_checkpoint(self): # save lr schedulers lr_schedulers = [] - for i, scheduler in enumerate(self.lr_schedulers): - lr_schedulers.append(scheduler.state_dict()) + for scheduler in self.lr_schedulers: + lr_schedulers.append(scheduler['scheduler'].state_dict()) checkpoint['lr_schedulers'] = lr_schedulers @@ -320,7 +411,7 @@ def restore_training_state(self, checkpoint): # restore the lr schedulers lr_schedulers = checkpoint['lr_schedulers'] for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers): - scheduler.load_state_dict(lrs_state) + scheduler['scheduler'].load_state_dict(lrs_state) # ---------------------------------- # PRIVATE OPS diff --git a/pytorch_lightning/trainer/training_loop.py b/pytorch_lightning/trainer/training_loop.py --- a/pytorch_lightning/trainer/training_loop.py +++ b/pytorch_lightning/trainer/training_loop.py @@ -361,17 +361,7 @@ def train(self): self.run_training_epoch() # update LR schedulers - if self.lr_schedulers is not None: - for lr_scheduler in self.lr_schedulers: - lr_scheduler.step() - if self.reduce_lr_on_plateau_scheduler is not None: - val_loss = self.callback_metrics.get('val_loss') - if val_loss is None: - avail_metrics = ','.join(list(self.callback_metrics.keys())) - m = f'ReduceLROnPlateau conditioned on metric val_loss ' \ - f'which is not available. Available metrics are: {avail_metrics}' - raise MisconfigurationException(m) - self.reduce_lr_on_plateau_scheduler.step(val_loss) + self.update_learning_rates(interval='epoch') if self.max_steps and self.max_steps == self.global_step: self.run_training_teardown() @@ -444,6 +434,9 @@ def run_training_epoch(self): # when returning -1 from train_step, we end epoch early early_stop_epoch = batch_result == -1 + # update lr + self.update_learning_rates(interval='step') + # --------------- # RUN VAL STEP # --------------- @@ -716,6 +709,34 @@ def training_forward(self, batch, batch_idx, opt_idx, hiddens): return output + def update_learning_rates(self, interval): + ''' Update learning rates + Args: + interval (str): either 'epoch' or 'step'. + ''' + if not self.lr_schedulers: + return + + for lr_scheduler in self.lr_schedulers: + current_idx = self.batch_idx if interval == 'step' else self.current_epoch + current_idx += 1 # account for both batch and epoch starts from 0 + # Take step if call to update_learning_rates matches the interval key and + # the current step modulo the schedulers frequency is zero + if lr_scheduler['interval'] == interval and current_idx % lr_scheduler['frequency'] == 0: + # If instance of ReduceLROnPlateau, we need to pass validation loss + if lr_scheduler['reduce_on_plateau']: + monitor_key = lr_scheduler['monitor'] + monitor_val = self.callback_metrics.get(monitor_key) + if monitor_val is None: + avail_metrics = ','.join(list(self.callback_metrics.keys())) + m = f'ReduceLROnPlateau conditioned on metric {monitor_key} ' \ + f'which is not available. Available metrics are: {avail_metrics}. ' \ + 'Condition can be set using `monitor` key in lr scheduler dict' + raise MisconfigurationException(m) + lr_scheduler['scheduler'].step(monitor_val) + else: + lr_scheduler['scheduler'].step() + def call_checkpoint_callback(self): if self.checkpoint_callback is not None: self.checkpoint_callback.on_validation_end(self, self.get_model()) </patch>
[]
[]
PrefectHQ__prefect-1386
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> `auth login` CLI check needs token required query ## Description `prefect auth login` runs a graphql query to verify the token provided is valid. The current query is `query { hello }` and this query does not require authentication. This query needs to be updated to one which requires authentication (which is every other query, let's just find the smallest one) ## Expected Behavior If the token is invalid it should elevate an error to the user ## Reproduction Query the API with `query { hello }` without a token and it will still work. ## Environment N/A </issue> <code> [start of README.md] 1 <p align="center" style="margin-bottom:40px;"> 2 <img src="https://uploads-ssl.webflow.com/5ba446b0e783e26d5a2f2382/5c942c9ca934ec5c88588297_primary-color-vertical.svg" height=350 style="max-height: 350px;"> 3 </p> 4 5 <p align="center"> 6 <a href=https://circleci.com/gh/PrefectHQ/prefect/tree/master> 7 <img src="https://circleci.com/gh/PrefectHQ/prefect/tree/master.svg?style=shield&circle-token=28689a55edc3c373486aaa5f11a1af3e5fc53344"> 8 </a> 9 10 <a href="https://codecov.io/gh/PrefectHQ/prefect"> 11 <img src="https://codecov.io/gh/PrefectHQ/prefect/branch/master/graph/badge.svg" /> 12 </a> 13 14 <a href=https://github.com/ambv/black> 15 <img src="https://img.shields.io/badge/code%20style-black-000000.svg"> 16 </a> 17 18 <a href="https://pypi.org/project/prefect/"> 19 <img src="https://img.shields.io/pypi/dm/prefect.svg?color=%2327B1FF&label=installs&logoColor=%234D606E"> 20 </a> 21 22 <a href="https://hub.docker.com/r/prefecthq/prefect"> 23 <img src="https://img.shields.io/docker/pulls/prefecthq/prefect.svg?color=%2327B1FF&logoColor=%234D606E"> 24 </a> 25 26 <a href="https://join.slack.com/t/prefect-public/shared_invite/enQtNzE5OTU3OTQwNzc1LTQ5M2FkZmQzZjI0ODg1ZTBmOTc0ZjVjYWFjMWExZDAyYzBmYjVmMTE1NTQ1Y2IxZTllOTc4MmI3NzYxMDlhYWU"> 27 <img src="https://img.shields.io/static/v1.svg?label=chat&message=on%20slack&color=27b1ff&style=flat"> 28 </a> 29 30 </p> 31 32 ## Hello, world! 👋 33 34 We've rebuilt data engineering for the data science era. 35 36 Prefect is a new workflow management system, designed for modern infrastructure and powered by the open-source Prefect Core workflow engine. Users organize `Tasks` into `Flows`, and Prefect takes care of the rest. 37 38 Read the [docs](https://docs.prefect.io); get the [code](#installation); ask us [anything](https://join.slack.com/t/prefect-public/shared_invite/enQtNzE5OTU3OTQwNzc1LTQ5M2FkZmQzZjI0ODg1ZTBmOTc0ZjVjYWFjMWExZDAyYzBmYjVmMTE1NTQ1Y2IxZTllOTc4MmI3NzYxMDlhYWU)! 39 40 ```python 41 from prefect import task, Flow 42 43 44 @task 45 def say_hello(): 46 print("Hello, world!") 47 48 49 with Flow("My First Flow") as flow: 50 say_hello() 51 52 53 flow.run() # "Hello, world!" 54 ``` 55 56 ## Docs 57 58 Prefect's documentation -- including concepts, tutorials, and a full API reference -- is always available at [docs.prefect.io](https://docs.prefect.io). 59 60 ## Contributing 61 62 Read about Prefect's [community](https://docs.prefect.io/guide/welcome/community.html) or dive in to the [development guides](https://docs.prefect.io/guide/development/overview.html) for information about contributions, documentation, code style, and testing. 63 64 Join our [Slack](https://join.slack.com/t/prefect-public/shared_invite/enQtNzE5OTU3OTQwNzc1LTQ5M2FkZmQzZjI0ODg1ZTBmOTc0ZjVjYWFjMWExZDAyYzBmYjVmMTE1NTQ1Y2IxZTllOTc4MmI3NzYxMDlhYWU) to chat about Prefect, ask questions, and share tips. 65 66 Prefect is committed to ensuring a positive environment. All interactions are governed by our [Code of Conduct](https://docs.prefect.io/guide/welcome/code_of_conduct.html). 67 68 ## "...Prefect?" 69 70 From the Latin _praefectus_, meaning "one who is in charge", a prefect is an official who oversees a domain and makes sure that the rules are followed. Similarly, Prefect is responsible for making sure that workflows execute properly. 71 72 It also happens to be the name of a roving researcher for that wholly remarkable book, _The Hitchhiker's Guide to the Galaxy_. 73 74 ## Installation 75 76 ### Requirements 77 78 Prefect requires Python 3.5.2+. 79 80 ### Install latest release 81 82 Using `pip`: 83 84 ```bash 85 pip install prefect 86 ``` 87 88 or `conda`: 89 90 ```bash 91 conda install -c conda-forge prefect 92 ``` 93 94 or `pipenv`: 95 ``` 96 pipenv install --pre prefect 97 ``` 98 99 ### Install bleeding edge 100 101 ```bash 102 git clone https://github.com/PrefectHQ/prefect.git 103 pip install ./prefect 104 ``` 105 106 ## License 107 108 Prefect is licensed under the Apache Software License version 2.0. 109 [end of README.md] [start of src/prefect/cli/auth.py] 1 import click 2 3 from prefect import Client, config 4 from prefect.utilities.exceptions import AuthorizationError, ClientError 5 6 7 @click.group(hidden=True) 8 def auth(): 9 """ 10 Handle Prefect Cloud authorization. 11 12 \b 13 Usage: 14 $ prefect auth [COMMAND] 15 16 \b 17 Arguments: 18 login Login to Prefect Cloud 19 20 \b 21 Examples: 22 $ prefect auth login --token MY_TOKEN 23 """ 24 pass 25 26 27 @auth.command(hidden=True) 28 @click.option( 29 "--token", "-t", required=True, help="A Prefect Cloud API token.", hidden=True 30 ) 31 def login(token): 32 """ 33 Login to Prefect Cloud with an api token to use for Cloud communication. 34 35 \b 36 Options: 37 --token, -t TEXT A Prefect Cloud api token [required] 38 """ 39 40 if config.cloud.auth_token: 41 click.confirm( 42 "Prefect Cloud API token already set in config. Do you want to override?", 43 default=True, 44 ) 45 46 client = Client() 47 client.login(api_token=token) 48 49 # Verify login obtained a valid api token 50 try: 51 client.graphql(query={"query": "hello"}) 52 except AuthorizationError: 53 click.secho( 54 "Error attempting to use Prefect API token {}".format(token), fg="red" 55 ) 56 return 57 except ClientError: 58 click.secho("Error attempting to communicate with Prefect Cloud", fg="red") 59 return 60 61 click.secho("Login successful", fg="green") 62 [end of src/prefect/cli/auth.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
PrefectHQ/prefect
e92d10977339e7cf230471804bf471db2f6ace7d
`auth login` CLI check needs token required query ## Description `prefect auth login` runs a graphql query to verify the token provided is valid. The current query is `query { hello }` and this query does not require authentication. This query needs to be updated to one which requires authentication (which is every other query, let's just find the smallest one) ## Expected Behavior If the token is invalid it should elevate an error to the user ## Reproduction Query the API with `query { hello }` without a token and it will still work. ## Environment N/A
2019-08-21T17:00:45Z
<patch> diff --git a/src/prefect/cli/auth.py b/src/prefect/cli/auth.py --- a/src/prefect/cli/auth.py +++ b/src/prefect/cli/auth.py @@ -37,10 +37,11 @@ def login(token): --token, -t TEXT A Prefect Cloud api token [required] """ - if config.cloud.auth_token: + if config.cloud.get("auth_token"): click.confirm( "Prefect Cloud API token already set in config. Do you want to override?", default=True, + abort=True, ) client = Client() @@ -48,7 +49,7 @@ def login(token): # Verify login obtained a valid api token try: - client.graphql(query={"query": "hello"}) + client.graphql(query={"query": {"tenant": "id"}}) except AuthorizationError: click.secho( "Error attempting to use Prefect API token {}".format(token), fg="red" </patch>
[]
[]
pandas-dev__pandas-34877
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> BUG: s3 reads from public buckets not working - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest version of pandas. - [ ] (optional) I have confirmed this bug exists on the master branch of pandas. --- #### Code Sample ```python # Your code here import pandas as pd df = pd.read_csv("s3://nyc-tlc/trip data/yellow_tripdata_2019-01.csv") ``` <details> <summary> Error stack trace </summary> <pre> Traceback (most recent call last): File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/s3.py", line 33, in get_file_and_filesystem file = fs.open(_strip_schema(filepath_or_buffer), mode) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 775, in open **kwargs File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 378, in _open autocommit=autocommit, requester_pays=requester_pays) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 1097, in __init__ cache_type=cache_type) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 1065, in __init__ self.details = fs.info(path) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 530, in info Key=key, **version_id_kw(version_id), **self.req_kw) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 200, in _call_s3 return method(**additional_kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 316, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 622, in _make_api_call operation_model, request_dict, request_context) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 641, in _make_request return self._endpoint.make_request(operation_model, request_dict) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 102, in make_request return self._send_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 132, in _send_request request = self.create_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 116, in create_request operation_name=operation_model.name) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 356, in emit return self._emitter.emit(aliased_event_name, **kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 228, in emit return self._emit(event_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 211, in _emit response = handler(**kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 90, in handler return self.sign(operation_name, request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 160, in sign auth.add_auth(request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/auth.py", line 357, in add_auth raise NoCredentialsError botocore.exceptions.NoCredentialsError: Unable to locate credentials During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/parsers.py", line 676, in parser_f return _read(filepath_or_buffer, kwds) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/parsers.py", line 431, in _read filepath_or_buffer, encoding, compression File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/common.py", line 212, in get_filepath_or_buffer filepath_or_buffer, encoding=encoding, compression=compression, mode=mode File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/s3.py", line 52, in get_filepath_or_buffer file, _fs = get_file_and_filesystem(filepath_or_buffer, mode=mode) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/s3.py", line 42, in get_file_and_filesystem file = fs.open(_strip_schema(filepath_or_buffer), mode) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 775, in open **kwargs File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 378, in _open autocommit=autocommit, requester_pays=requester_pays) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 1097, in __init__ cache_type=cache_type) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 1065, in __init__ self.details = fs.info(path) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 530, in info Key=key, **version_id_kw(version_id), **self.req_kw) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 200, in _call_s3 return method(**additional_kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 316, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 622, in _make_api_call operation_model, request_dict, request_context) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 641, in _make_request return self._endpoint.make_request(operation_model, request_dict) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 102, in make_request return self._send_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 132, in _send_request request = self.create_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 116, in create_request operation_name=operation_model.name) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 356, in emit return self._emitter.emit(aliased_event_name, **kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 228, in emit return self._emit(event_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 211, in _emit response = handler(**kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 90, in handler return self.sign(operation_name, request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 160, in sign auth.add_auth(request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/auth.py", line 357, in add_auth raise NoCredentialsError </pre> </details> #### Problem description Reading directly from s3 public buckets (without manually configuring the `anon` parameter via s3fs) is broken with pandas 1.0.4 (worked with 1.0.3). Looks like reading from public buckets requires `anon=True` while creating the filesystem. This 22cf0f5dfcfbddd5506fdaf260e485bff1b88ef1 seems to have introduced the issue, where `anon=False` is passed when the `noCredentialsError` is encountered. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : None python : 3.7.7.final.0 python-bits : 64 OS : Linux OS-release : 4.15.0-55-generic machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.0.4 numpy : 1.18.1 pytz : 2020.1 dateutil : 2.8.1 pip : 20.0.2 setuptools : 47.1.1.post20200604 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None fastparquet : None gcsfs : None lxml.etree : None matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 0.15.1 pytables : None pytest : None pyxlsb : None s3fs : 0.4.2 scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None xlsxwriter : None numba : None </details> </issue> <code> [start of README.md] 1 <div align="center"> 2 <img src="https://dev.pandas.io/static/img/pandas.svg"><br> 3 </div> 4 5 ----------------- 6 7 # pandas: powerful Python data analysis toolkit 8 [![PyPI Latest Release](https://img.shields.io/pypi/v/pandas.svg)](https://pypi.org/project/pandas/) 9 [![Conda Latest Release](https://anaconda.org/conda-forge/pandas/badges/version.svg)](https://anaconda.org/anaconda/pandas/) 10 [![DOI](https://zenodo.org/badge/DOI/10.5281/zenodo.3509134.svg)](https://doi.org/10.5281/zenodo.3509134) 11 [![Package Status](https://img.shields.io/pypi/status/pandas.svg)](https://pypi.org/project/pandas/) 12 [![License](https://img.shields.io/pypi/l/pandas.svg)](https://github.com/pandas-dev/pandas/blob/master/LICENSE) 13 [![Travis Build Status](https://travis-ci.org/pandas-dev/pandas.svg?branch=master)](https://travis-ci.org/pandas-dev/pandas) 14 [![Azure Build Status](https://dev.azure.com/pandas-dev/pandas/_apis/build/status/pandas-dev.pandas?branch=master)](https://dev.azure.com/pandas-dev/pandas/_build/latest?definitionId=1&branch=master) 15 [![Coverage](https://codecov.io/github/pandas-dev/pandas/coverage.svg?branch=master)](https://codecov.io/gh/pandas-dev/pandas) 16 [![Downloads](https://anaconda.org/conda-forge/pandas/badges/downloads.svg)](https://pandas.pydata.org) 17 [![Gitter](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/pydata/pandas) 18 [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org) 19 [![Code style: black](https://img.shields.io/badge/code%20style-black-000000.svg)](https://github.com/psf/black) 20 21 ## What is it? 22 23 **pandas** is a Python package that provides fast, flexible, and expressive data 24 structures designed to make working with "relational" or "labeled" data both 25 easy and intuitive. It aims to be the fundamental high-level building block for 26 doing practical, **real world** data analysis in Python. Additionally, it has 27 the broader goal of becoming **the most powerful and flexible open source data 28 analysis / manipulation tool available in any language**. It is already well on 29 its way towards this goal. 30 31 ## Main Features 32 Here are just a few of the things that pandas does well: 33 34 - Easy handling of [**missing data**][missing-data] (represented as 35 `NaN`) in floating point as well as non-floating point data 36 - Size mutability: columns can be [**inserted and 37 deleted**][insertion-deletion] from DataFrame and higher dimensional 38 objects 39 - Automatic and explicit [**data alignment**][alignment]: objects can 40 be explicitly aligned to a set of labels, or the user can simply 41 ignore the labels and let `Series`, `DataFrame`, etc. automatically 42 align the data for you in computations 43 - Powerful, flexible [**group by**][groupby] functionality to perform 44 split-apply-combine operations on data sets, for both aggregating 45 and transforming data 46 - Make it [**easy to convert**][conversion] ragged, 47 differently-indexed data in other Python and NumPy data structures 48 into DataFrame objects 49 - Intelligent label-based [**slicing**][slicing], [**fancy 50 indexing**][fancy-indexing], and [**subsetting**][subsetting] of 51 large data sets 52 - Intuitive [**merging**][merging] and [**joining**][joining] data 53 sets 54 - Flexible [**reshaping**][reshape] and [**pivoting**][pivot-table] of 55 data sets 56 - [**Hierarchical**][mi] labeling of axes (possible to have multiple 57 labels per tick) 58 - Robust IO tools for loading data from [**flat files**][flat-files] 59 (CSV and delimited), [**Excel files**][excel], [**databases**][db], 60 and saving/loading data from the ultrafast [**HDF5 format**][hdfstore] 61 - [**Time series**][timeseries]-specific functionality: date range 62 generation and frequency conversion, moving window statistics, 63 date shifting and lagging. 64 65 66 [missing-data]: https://pandas.pydata.org/pandas-docs/stable/missing_data.html#working-with-missing-data 67 [insertion-deletion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#column-selection-addition-deletion 68 [alignment]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html?highlight=alignment#intro-to-data-structures 69 [groupby]: https://pandas.pydata.org/pandas-docs/stable/groupby.html#group-by-split-apply-combine 70 [conversion]: https://pandas.pydata.org/pandas-docs/stable/dsintro.html#dataframe 71 [slicing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#slicing-ranges 72 [fancy-indexing]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#advanced-indexing-with-ix 73 [subsetting]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#boolean-indexing 74 [merging]: https://pandas.pydata.org/pandas-docs/stable/merging.html#database-style-dataframe-joining-merging 75 [joining]: https://pandas.pydata.org/pandas-docs/stable/merging.html#joining-on-index 76 [reshape]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#reshaping-and-pivot-tables 77 [pivot-table]: https://pandas.pydata.org/pandas-docs/stable/reshaping.html#pivot-tables-and-cross-tabulations 78 [mi]: https://pandas.pydata.org/pandas-docs/stable/indexing.html#hierarchical-indexing-multiindex 79 [flat-files]: https://pandas.pydata.org/pandas-docs/stable/io.html#csv-text-files 80 [excel]: https://pandas.pydata.org/pandas-docs/stable/io.html#excel-files 81 [db]: https://pandas.pydata.org/pandas-docs/stable/io.html#sql-queries 82 [hdfstore]: https://pandas.pydata.org/pandas-docs/stable/io.html#hdf5-pytables 83 [timeseries]: https://pandas.pydata.org/pandas-docs/stable/timeseries.html#time-series-date-functionality 84 85 ## Where to get it 86 The source code is currently hosted on GitHub at: 87 https://github.com/pandas-dev/pandas 88 89 Binary installers for the latest released version are available at the [Python 90 package index](https://pypi.org/project/pandas) and on conda. 91 92 ```sh 93 # conda 94 conda install pandas 95 ``` 96 97 ```sh 98 # or PyPI 99 pip install pandas 100 ``` 101 102 ## Dependencies 103 - [NumPy](https://www.numpy.org) 104 - [python-dateutil](https://labix.org/python-dateutil) 105 - [pytz](https://pythonhosted.org/pytz) 106 107 See the [full installation instructions](https://pandas.pydata.org/pandas-docs/stable/install.html#dependencies) for minimum supported versions of required, recommended and optional dependencies. 108 109 ## Installation from sources 110 To install pandas from source you need Cython in addition to the normal 111 dependencies above. Cython can be installed from pypi: 112 113 ```sh 114 pip install cython 115 ``` 116 117 In the `pandas` directory (same one where you found this file after 118 cloning the git repo), execute: 119 120 ```sh 121 python setup.py install 122 ``` 123 124 or for installing in [development mode](https://pip.pypa.io/en/latest/reference/pip_install.html#editable-installs): 125 126 127 ```sh 128 python -m pip install -e . --no-build-isolation --no-use-pep517 129 ``` 130 131 If you have `make`, you can also use `make develop` to run the same command. 132 133 or alternatively 134 135 ```sh 136 python setup.py develop 137 ``` 138 139 See the full instructions for [installing from source](https://pandas.pydata.org/pandas-docs/stable/install.html#installing-from-source). 140 141 ## License 142 [BSD 3](LICENSE) 143 144 ## Documentation 145 The official documentation is hosted on PyData.org: https://pandas.pydata.org/pandas-docs/stable 146 147 ## Background 148 Work on ``pandas`` started at AQR (a quantitative hedge fund) in 2008 and 149 has been under active development since then. 150 151 ## Getting Help 152 153 For usage questions, the best place to go to is [StackOverflow](https://stackoverflow.com/questions/tagged/pandas). 154 Further, general questions and discussions can also take place on the [pydata mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata). 155 156 ## Discussion and Development 157 Most development discussions take place on github in this repo. Further, the [pandas-dev mailing list](https://mail.python.org/mailman/listinfo/pandas-dev) can also be used for specialized discussions or design issues, and a [Gitter channel](https://gitter.im/pydata/pandas) is available for quick development related questions. 158 159 ## Contributing to pandas [![Open Source Helpers](https://www.codetriage.com/pandas-dev/pandas/badges/users.svg)](https://www.codetriage.com/pandas-dev/pandas) 160 161 All contributions, bug reports, bug fixes, documentation improvements, enhancements, and ideas are welcome. 162 163 A detailed overview on how to contribute can be found in the **[contributing guide](https://pandas.pydata.org/docs/dev/development/contributing.html)**. There is also an [overview](.github/CONTRIBUTING.md) on GitHub. 164 165 If you are simply looking to start working with the pandas codebase, navigate to the [GitHub "issues" tab](https://github.com/pandas-dev/pandas/issues) and start looking through interesting issues. There are a number of issues listed under [Docs](https://github.com/pandas-dev/pandas/issues?labels=Docs&sort=updated&state=open) and [good first issue](https://github.com/pandas-dev/pandas/issues?labels=good+first+issue&sort=updated&state=open) where you could start out. 166 167 You can also triage issues which may include reproducing bug reports, or asking for vital information such as version numbers or reproduction instructions. If you would like to start triaging issues, one easy way to get started is to [subscribe to pandas on CodeTriage](https://www.codetriage.com/pandas-dev/pandas). 168 169 Or maybe through using pandas you have an idea of your own or are looking for something in the documentation and thinking ‘this can be improved’...you can do something about it! 170 171 Feel free to ask questions on the [mailing list](https://groups.google.com/forum/?fromgroups#!forum/pydata) or on [Gitter](https://gitter.im/pydata/pandas). 172 173 As contributors and maintainers to this project, you are expected to abide by pandas' code of conduct. More information can be found at: [Contributor Code of Conduct](https://github.com/pandas-dev/pandas/blob/master/.github/CODE_OF_CONDUCT.md) 174 [end of README.md] [start of pandas/io/common.py] 1 """Common IO api utilities""" 2 3 import bz2 4 from collections import abc 5 import gzip 6 from io import BufferedIOBase, BytesIO, RawIOBase 7 import mmap 8 import os 9 import pathlib 10 from typing import ( 11 IO, 12 TYPE_CHECKING, 13 Any, 14 AnyStr, 15 Dict, 16 List, 17 Mapping, 18 Optional, 19 Tuple, 20 Type, 21 Union, 22 ) 23 from urllib.parse import ( 24 urljoin, 25 urlparse as parse_url, 26 uses_netloc, 27 uses_params, 28 uses_relative, 29 ) 30 import zipfile 31 32 from pandas._typing import FilePathOrBuffer 33 from pandas.compat import _get_lzma_file, _import_lzma 34 from pandas.compat._optional import import_optional_dependency 35 36 from pandas.core.dtypes.common import is_file_like 37 38 lzma = _import_lzma() 39 40 41 _VALID_URLS = set(uses_relative + uses_netloc + uses_params) 42 _VALID_URLS.discard("") 43 44 45 if TYPE_CHECKING: 46 from io import IOBase # noqa: F401 47 48 49 def is_url(url) -> bool: 50 """ 51 Check to see if a URL has a valid protocol. 52 53 Parameters 54 ---------- 55 url : str or unicode 56 57 Returns 58 ------- 59 isurl : bool 60 If `url` has a valid protocol return True otherwise False. 61 """ 62 if not isinstance(url, str): 63 return False 64 return parse_url(url).scheme in _VALID_URLS 65 66 67 def _expand_user( 68 filepath_or_buffer: FilePathOrBuffer[AnyStr], 69 ) -> FilePathOrBuffer[AnyStr]: 70 """ 71 Return the argument with an initial component of ~ or ~user 72 replaced by that user's home directory. 73 74 Parameters 75 ---------- 76 filepath_or_buffer : object to be converted if possible 77 78 Returns 79 ------- 80 expanded_filepath_or_buffer : an expanded filepath or the 81 input if not expandable 82 """ 83 if isinstance(filepath_or_buffer, str): 84 return os.path.expanduser(filepath_or_buffer) 85 return filepath_or_buffer 86 87 88 def validate_header_arg(header) -> None: 89 if isinstance(header, bool): 90 raise TypeError( 91 "Passing a bool to header is invalid. Use header=None for no header or " 92 "header=int or list-like of ints to specify " 93 "the row(s) making up the column names" 94 ) 95 96 97 def stringify_path( 98 filepath_or_buffer: FilePathOrBuffer[AnyStr], 99 ) -> FilePathOrBuffer[AnyStr]: 100 """ 101 Attempt to convert a path-like object to a string. 102 103 Parameters 104 ---------- 105 filepath_or_buffer : object to be converted 106 107 Returns 108 ------- 109 str_filepath_or_buffer : maybe a string version of the object 110 111 Notes 112 ----- 113 Objects supporting the fspath protocol (python 3.6+) are coerced 114 according to its __fspath__ method. 115 116 For backwards compatibility with older pythons, pathlib.Path and 117 py.path objects are specially coerced. 118 119 Any other object is passed through unchanged, which includes bytes, 120 strings, buffers, or anything else that's not even path-like. 121 """ 122 if hasattr(filepath_or_buffer, "__fspath__"): 123 # https://github.com/python/mypy/issues/1424 124 return filepath_or_buffer.__fspath__() # type: ignore 125 elif isinstance(filepath_or_buffer, pathlib.Path): 126 return str(filepath_or_buffer) 127 return _expand_user(filepath_or_buffer) 128 129 130 def urlopen(*args, **kwargs): 131 """ 132 Lazy-import wrapper for stdlib urlopen, as that imports a big chunk of 133 the stdlib. 134 """ 135 import urllib.request 136 137 return urllib.request.urlopen(*args, **kwargs) 138 139 140 def is_fsspec_url(url: FilePathOrBuffer) -> bool: 141 """ 142 Returns true if the given URL looks like 143 something fsspec can handle 144 """ 145 return ( 146 isinstance(url, str) 147 and "://" in url 148 and not url.startswith(("http://", "https://")) 149 ) 150 151 152 def get_filepath_or_buffer( 153 filepath_or_buffer: FilePathOrBuffer, 154 encoding: Optional[str] = None, 155 compression: Optional[str] = None, 156 mode: Optional[str] = None, 157 storage_options: Optional[Dict[str, Any]] = None, 158 ): 159 """ 160 If the filepath_or_buffer is a url, translate and return the buffer. 161 Otherwise passthrough. 162 163 Parameters 164 ---------- 165 filepath_or_buffer : a url, filepath (str, py.path.local or pathlib.Path), 166 or buffer 167 compression : {{'gzip', 'bz2', 'zip', 'xz', None}}, optional 168 encoding : the encoding to use to decode bytes, default is 'utf-8' 169 mode : str, optional 170 storage_options: dict, optional 171 passed on to fsspec, if using it; this is not yet accessed by the public API 172 173 Returns 174 ------- 175 Tuple[FilePathOrBuffer, str, str, bool] 176 Tuple containing the filepath or buffer, the encoding, the compression 177 and should_close. 178 """ 179 filepath_or_buffer = stringify_path(filepath_or_buffer) 180 181 if isinstance(filepath_or_buffer, str) and is_url(filepath_or_buffer): 182 # TODO: fsspec can also handle HTTP via requests, but leaving this unchanged 183 req = urlopen(filepath_or_buffer) 184 content_encoding = req.headers.get("Content-Encoding", None) 185 if content_encoding == "gzip": 186 # Override compression based on Content-Encoding header 187 compression = "gzip" 188 reader = BytesIO(req.read()) 189 req.close() 190 return reader, encoding, compression, True 191 192 if is_fsspec_url(filepath_or_buffer): 193 assert isinstance( 194 filepath_or_buffer, str 195 ) # just to appease mypy for this branch 196 # two special-case s3-like protocols; these have special meaning in Hadoop, 197 # but are equivalent to just "s3" from fsspec's point of view 198 # cc #11071 199 if filepath_or_buffer.startswith("s3a://"): 200 filepath_or_buffer = filepath_or_buffer.replace("s3a://", "s3://") 201 if filepath_or_buffer.startswith("s3n://"): 202 filepath_or_buffer = filepath_or_buffer.replace("s3n://", "s3://") 203 fsspec = import_optional_dependency("fsspec") 204 205 file_obj = fsspec.open( 206 filepath_or_buffer, mode=mode or "rb", **(storage_options or {}) 207 ).open() 208 return file_obj, encoding, compression, True 209 210 if isinstance(filepath_or_buffer, (str, bytes, mmap.mmap)): 211 return _expand_user(filepath_or_buffer), None, compression, False 212 213 if not is_file_like(filepath_or_buffer): 214 msg = f"Invalid file path or buffer object type: {type(filepath_or_buffer)}" 215 raise ValueError(msg) 216 217 return filepath_or_buffer, None, compression, False 218 219 220 def file_path_to_url(path: str) -> str: 221 """ 222 converts an absolute native path to a FILE URL. 223 224 Parameters 225 ---------- 226 path : a path in native format 227 228 Returns 229 ------- 230 a valid FILE URL 231 """ 232 # lazify expensive import (~30ms) 233 from urllib.request import pathname2url 234 235 return urljoin("file:", pathname2url(path)) 236 237 238 _compression_to_extension = {"gzip": ".gz", "bz2": ".bz2", "zip": ".zip", "xz": ".xz"} 239 240 241 def get_compression_method( 242 compression: Optional[Union[str, Mapping[str, str]]] 243 ) -> Tuple[Optional[str], Dict[str, str]]: 244 """ 245 Simplifies a compression argument to a compression method string and 246 a mapping containing additional arguments. 247 248 Parameters 249 ---------- 250 compression : str or mapping 251 If string, specifies the compression method. If mapping, value at key 252 'method' specifies compression method. 253 254 Returns 255 ------- 256 tuple of ({compression method}, Optional[str] 257 {compression arguments}, Dict[str, str]) 258 259 Raises 260 ------ 261 ValueError on mapping missing 'method' key 262 """ 263 if isinstance(compression, Mapping): 264 compression_args = dict(compression) 265 try: 266 compression = compression_args.pop("method") 267 except KeyError as err: 268 raise ValueError("If mapping, compression must have key 'method'") from err 269 else: 270 compression_args = {} 271 return compression, compression_args 272 273 274 def infer_compression( 275 filepath_or_buffer: FilePathOrBuffer, compression: Optional[str] 276 ) -> Optional[str]: 277 """ 278 Get the compression method for filepath_or_buffer. If compression='infer', 279 the inferred compression method is returned. Otherwise, the input 280 compression method is returned unchanged, unless it's invalid, in which 281 case an error is raised. 282 283 Parameters 284 ---------- 285 filepath_or_buffer : str or file handle 286 File path or object. 287 compression : {'infer', 'gzip', 'bz2', 'zip', 'xz', None} 288 If 'infer' and `filepath_or_buffer` is path-like, then detect 289 compression from the following extensions: '.gz', '.bz2', '.zip', 290 or '.xz' (otherwise no compression). 291 292 Returns 293 ------- 294 string or None 295 296 Raises 297 ------ 298 ValueError on invalid compression specified. 299 """ 300 # No compression has been explicitly specified 301 if compression is None: 302 return None 303 304 # Infer compression 305 if compression == "infer": 306 # Convert all path types (e.g. pathlib.Path) to strings 307 filepath_or_buffer = stringify_path(filepath_or_buffer) 308 if not isinstance(filepath_or_buffer, str): 309 # Cannot infer compression of a buffer, assume no compression 310 return None 311 312 # Infer compression from the filename/URL extension 313 for compression, extension in _compression_to_extension.items(): 314 if filepath_or_buffer.endswith(extension): 315 return compression 316 return None 317 318 # Compression has been specified. Check that it's valid 319 if compression in _compression_to_extension: 320 return compression 321 322 msg = f"Unrecognized compression type: {compression}" 323 valid = ["infer", None] + sorted(_compression_to_extension) 324 msg += f"\nValid compression types are {valid}" 325 raise ValueError(msg) 326 327 328 def get_handle( 329 path_or_buf, 330 mode: str, 331 encoding=None, 332 compression: Optional[Union[str, Mapping[str, Any]]] = None, 333 memory_map: bool = False, 334 is_text: bool = True, 335 errors=None, 336 ): 337 """ 338 Get file handle for given path/buffer and mode. 339 340 Parameters 341 ---------- 342 path_or_buf : str or file handle 343 File path or object. 344 mode : str 345 Mode to open path_or_buf with. 346 encoding : str or None 347 Encoding to use. 348 compression : str or dict, default None 349 If string, specifies compression mode. If dict, value at key 'method' 350 specifies compression mode. Compression mode must be one of {'infer', 351 'gzip', 'bz2', 'zip', 'xz', None}. If compression mode is 'infer' 352 and `filepath_or_buffer` is path-like, then detect compression from 353 the following extensions: '.gz', '.bz2', '.zip', or '.xz' (otherwise 354 no compression). If dict and compression mode is one of 355 {'zip', 'gzip', 'bz2'}, or inferred as one of the above, 356 other entries passed as additional compression options. 357 358 .. versionchanged:: 1.0.0 359 360 May now be a dict with key 'method' as compression mode 361 and other keys as compression options if compression 362 mode is 'zip'. 363 364 .. versionchanged:: 1.1.0 365 366 Passing compression options as keys in dict is now 367 supported for compression modes 'gzip' and 'bz2' as well as 'zip'. 368 369 memory_map : boolean, default False 370 See parsers._parser_params for more information. 371 is_text : boolean, default True 372 whether file/buffer is in text format (csv, json, etc.), or in binary 373 mode (pickle, etc.). 374 errors : str, default 'strict' 375 Specifies how encoding and decoding errors are to be handled. 376 See the errors argument for :func:`open` for a full list 377 of options. 378 379 .. versionadded:: 1.1.0 380 381 Returns 382 ------- 383 f : file-like 384 A file-like object. 385 handles : list of file-like objects 386 A list of file-like object that were opened in this function. 387 """ 388 need_text_wrapping: Tuple[Type["IOBase"], ...] 389 try: 390 from s3fs import S3File 391 392 need_text_wrapping = (BufferedIOBase, RawIOBase, S3File) 393 except ImportError: 394 need_text_wrapping = (BufferedIOBase, RawIOBase) 395 396 handles: List[IO] = list() 397 f = path_or_buf 398 399 # Convert pathlib.Path/py.path.local or string 400 path_or_buf = stringify_path(path_or_buf) 401 is_path = isinstance(path_or_buf, str) 402 403 compression, compression_args = get_compression_method(compression) 404 if is_path: 405 compression = infer_compression(path_or_buf, compression) 406 407 if compression: 408 409 # GH33398 the type ignores here seem related to mypy issue #5382; 410 # it may be possible to remove them once that is resolved. 411 412 # GZ Compression 413 if compression == "gzip": 414 if is_path: 415 f = gzip.open( 416 path_or_buf, mode, **compression_args # type: ignore 417 ) 418 else: 419 f = gzip.GzipFile( 420 fileobj=path_or_buf, **compression_args # type: ignore 421 ) 422 423 # BZ Compression 424 elif compression == "bz2": 425 if is_path: 426 f = bz2.BZ2File( 427 path_or_buf, mode, **compression_args # type: ignore 428 ) 429 else: 430 f = bz2.BZ2File(path_or_buf, **compression_args) # type: ignore 431 432 # ZIP Compression 433 elif compression == "zip": 434 zf = _BytesZipFile(path_or_buf, mode, **compression_args) 435 # Ensure the container is closed as well. 436 handles.append(zf) 437 if zf.mode == "w": 438 f = zf 439 elif zf.mode == "r": 440 zip_names = zf.namelist() 441 if len(zip_names) == 1: 442 f = zf.open(zip_names.pop()) 443 elif len(zip_names) == 0: 444 raise ValueError(f"Zero files found in ZIP file {path_or_buf}") 445 else: 446 raise ValueError( 447 "Multiple files found in ZIP file. " 448 f"Only one file per ZIP: {zip_names}" 449 ) 450 451 # XZ Compression 452 elif compression == "xz": 453 f = _get_lzma_file(lzma)(path_or_buf, mode) 454 455 # Unrecognized Compression 456 else: 457 msg = f"Unrecognized compression type: {compression}" 458 raise ValueError(msg) 459 460 handles.append(f) 461 462 elif is_path: 463 if encoding: 464 # Encoding 465 f = open(path_or_buf, mode, encoding=encoding, errors=errors, newline="") 466 elif is_text: 467 # No explicit encoding 468 f = open(path_or_buf, mode, errors="replace", newline="") 469 else: 470 # Binary mode 471 f = open(path_or_buf, mode) 472 handles.append(f) 473 474 # Convert BytesIO or file objects passed with an encoding 475 if is_text and (compression or isinstance(f, need_text_wrapping)): 476 from io import TextIOWrapper 477 478 g = TextIOWrapper(f, encoding=encoding, errors=errors, newline="") 479 if not isinstance(f, (BufferedIOBase, RawIOBase)): 480 handles.append(g) 481 f = g 482 483 if memory_map and hasattr(f, "fileno"): 484 try: 485 wrapped = _MMapWrapper(f) 486 f.close() 487 f = wrapped 488 except Exception: 489 # we catch any errors that may have occurred 490 # because that is consistent with the lower-level 491 # functionality of the C engine (pd.read_csv), so 492 # leave the file handler as is then 493 pass 494 495 return f, handles 496 497 498 class _BytesZipFile(zipfile.ZipFile, BytesIO): # type: ignore 499 """ 500 Wrapper for standard library class ZipFile and allow the returned file-like 501 handle to accept byte strings via `write` method. 502 503 BytesIO provides attributes of file-like object and ZipFile.writestr writes 504 bytes strings into a member of the archive. 505 """ 506 507 # GH 17778 508 def __init__( 509 self, 510 file: FilePathOrBuffer, 511 mode: str, 512 archive_name: Optional[str] = None, 513 **kwargs, 514 ): 515 if mode in ["wb", "rb"]: 516 mode = mode.replace("b", "") 517 self.archive_name = archive_name 518 super().__init__(file, mode, zipfile.ZIP_DEFLATED, **kwargs) 519 520 def write(self, data): 521 archive_name = self.filename 522 if self.archive_name is not None: 523 archive_name = self.archive_name 524 super().writestr(archive_name, data) 525 526 @property 527 def closed(self): 528 return self.fp is None 529 530 531 class _MMapWrapper(abc.Iterator): 532 """ 533 Wrapper for the Python's mmap class so that it can be properly read in 534 by Python's csv.reader class. 535 536 Parameters 537 ---------- 538 f : file object 539 File object to be mapped onto memory. Must support the 'fileno' 540 method or have an equivalent attribute 541 542 """ 543 544 def __init__(self, f: IO): 545 self.mmap = mmap.mmap(f.fileno(), 0, access=mmap.ACCESS_READ) 546 547 def __getattr__(self, name: str): 548 return getattr(self.mmap, name) 549 550 def __iter__(self) -> "_MMapWrapper": 551 return self 552 553 def __next__(self) -> str: 554 newbytes = self.mmap.readline() 555 556 # readline returns bytes, not str, but Python's CSV reader 557 # expects str, so convert the output to str before continuing 558 newline = newbytes.decode("utf-8") 559 560 # mmap doesn't raise if reading past the allocated 561 # data but instead returns an empty string, so raise 562 # if that is returned 563 if newline == "": 564 raise StopIteration 565 return newline 566 [end of pandas/io/common.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
pandas-dev/pandas
b0468aa45f3912d6f8823d1cd418af34ffdcd2b1
BUG: s3 reads from public buckets not working - [X] I have checked that this issue has not already been reported. - [X] I have confirmed this bug exists on the latest version of pandas. - [ ] (optional) I have confirmed this bug exists on the master branch of pandas. --- #### Code Sample ```python # Your code here import pandas as pd df = pd.read_csv("s3://nyc-tlc/trip data/yellow_tripdata_2019-01.csv") ``` <details> <summary> Error stack trace </summary> <pre> Traceback (most recent call last): File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/s3.py", line 33, in get_file_and_filesystem file = fs.open(_strip_schema(filepath_or_buffer), mode) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 775, in open **kwargs File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 378, in _open autocommit=autocommit, requester_pays=requester_pays) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 1097, in __init__ cache_type=cache_type) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 1065, in __init__ self.details = fs.info(path) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 530, in info Key=key, **version_id_kw(version_id), **self.req_kw) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 200, in _call_s3 return method(**additional_kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 316, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 622, in _make_api_call operation_model, request_dict, request_context) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 641, in _make_request return self._endpoint.make_request(operation_model, request_dict) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 102, in make_request return self._send_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 132, in _send_request request = self.create_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 116, in create_request operation_name=operation_model.name) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 356, in emit return self._emitter.emit(aliased_event_name, **kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 228, in emit return self._emit(event_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 211, in _emit response = handler(**kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 90, in handler return self.sign(operation_name, request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 160, in sign auth.add_auth(request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/auth.py", line 357, in add_auth raise NoCredentialsError botocore.exceptions.NoCredentialsError: Unable to locate credentials During handling of the above exception, another exception occurred: Traceback (most recent call last): File "<stdin>", line 1, in <module> File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/parsers.py", line 676, in parser_f return _read(filepath_or_buffer, kwds) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/parsers.py", line 431, in _read filepath_or_buffer, encoding, compression File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/common.py", line 212, in get_filepath_or_buffer filepath_or_buffer, encoding=encoding, compression=compression, mode=mode File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/s3.py", line 52, in get_filepath_or_buffer file, _fs = get_file_and_filesystem(filepath_or_buffer, mode=mode) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/pandas/io/s3.py", line 42, in get_file_and_filesystem file = fs.open(_strip_schema(filepath_or_buffer), mode) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 775, in open **kwargs File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 378, in _open autocommit=autocommit, requester_pays=requester_pays) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 1097, in __init__ cache_type=cache_type) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/fsspec/spec.py", line 1065, in __init__ self.details = fs.info(path) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 530, in info Key=key, **version_id_kw(version_id), **self.req_kw) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/s3fs/core.py", line 200, in _call_s3 return method(**additional_kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 316, in _api_call return self._make_api_call(operation_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 622, in _make_api_call operation_model, request_dict, request_context) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/client.py", line 641, in _make_request return self._endpoint.make_request(operation_model, request_dict) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 102, in make_request return self._send_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 132, in _send_request request = self.create_request(request_dict, operation_model) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/endpoint.py", line 116, in create_request operation_name=operation_model.name) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 356, in emit return self._emitter.emit(aliased_event_name, **kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 228, in emit return self._emit(event_name, kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/hooks.py", line 211, in _emit response = handler(**kwargs) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 90, in handler return self.sign(operation_name, request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/signers.py", line 160, in sign auth.add_auth(request) File "/home/conda/envs/pandas-test/lib/python3.7/site-packages/botocore/auth.py", line 357, in add_auth raise NoCredentialsError </pre> </details> #### Problem description Reading directly from s3 public buckets (without manually configuring the `anon` parameter via s3fs) is broken with pandas 1.0.4 (worked with 1.0.3). Looks like reading from public buckets requires `anon=True` while creating the filesystem. This 22cf0f5dfcfbddd5506fdaf260e485bff1b88ef1 seems to have introduced the issue, where `anon=False` is passed when the `noCredentialsError` is encountered. #### Output of ``pd.show_versions()`` <details> INSTALLED VERSIONS ------------------ commit : None python : 3.7.7.final.0 python-bits : 64 OS : Linux OS-release : 4.15.0-55-generic machine : x86_64 processor : x86_64 byteorder : little LC_ALL : None LANG : en_US.UTF-8 LOCALE : en_US.UTF-8 pandas : 1.0.4 numpy : 1.18.1 pytz : 2020.1 dateutil : 2.8.1 pip : 20.0.2 setuptools : 47.1.1.post20200604 Cython : None pytest : None hypothesis : None sphinx : None blosc : None feather : None xlsxwriter : None lxml.etree : None html5lib : None pymysql : None psycopg2 : None jinja2 : None IPython : None pandas_datareader: None bs4 : None bottleneck : None fastparquet : None gcsfs : None lxml.etree : None matplotlib : None numexpr : None odfpy : None openpyxl : None pandas_gbq : None pyarrow : 0.15.1 pytables : None pytest : None pyxlsb : None s3fs : 0.4.2 scipy : None sqlalchemy : None tables : None tabulate : None xarray : None xlrd : None xlwt : None xlsxwriter : None numba : None </details>
@ayushdg thanks for the report! cc @simonjayhawkins @alimcmaster1 for 1.0.5, it might be safer to revert https://github.com/pandas-dev/pandas/pull/33632, and then target the fixes (like https://github.com/pandas-dev/pandas/pull/34500) to master Agree @jorisvandenbossche - do you want me to open a PR to revert #33632 on 1.0.x branch? Apologies for this change it didn’t go as planned. I’ll check why our test cases didn’t catch the above! > do you want me to open a PR to revert #33632 on 1.0.x branch? Yes, that sounds good > Apologies for this change it didn’t go as planned. No, no, nobody of us had foreseen the breakages ;) Can't seem to reproduce this using moto... Potentially related: https://github.com/dask/s3fs/blob/master/s3fs/tests/test_s3fs.py#L1089 (I can repo locally using the s3 URL above - if I remove AWS Creds from my environment) The fix for this to target 1.1 is to set ‘anon=True’ in S3FileSystem https://github.com/pandas-dev/pandas/pull/33632/files#diff-a37b395bed03f0404dec864a4529c97dR41 I’ll wait as we are moving to fsspec which gets rid of this logic https://github.com/pandas-dev/pandas/pull/34266 - but we should definitely trying using moto to test this. Can anyone summarize the status here? 1.0.3: worked 1.0.4: broken master: broken? master+https://github.com/pandas-dev/pandas/pull/34266: broken? Do we have a plan in place to restore this? IIUC the old way was to 1. try with the default (which I think looks up keys based on env vars) 2. If we get an error, retry with `anon=True` Yep, it broke in 1.0.4, and will be fixed in 1.0.5 by reverting the patch that broke it. That means that master is still broken, and thus we first need to write a test for it, and check whether #34266 actually fixes it already, or otherwise still fix it differently. The old way was indeed to try with `anon=True` if it first failed. I suppose we can "simply" restore that logic? (in case it's not automatically fixed with fsspec) Thanks > in case it's not automatically fixed with fsspec It's not. So we'll need to do that explicitly. Long-term we might want to get away from this logic by asking users to do `read_csv(..., storage_options={"requester_pays": False})`. But for 1.1 we'll want to restore the old implicit retry behavior if possible.
2020-06-19T23:07:29Z
<patch> diff --git a/pandas/io/common.py b/pandas/io/common.py --- a/pandas/io/common.py +++ b/pandas/io/common.py @@ -202,9 +202,37 @@ def get_filepath_or_buffer( filepath_or_buffer = filepath_or_buffer.replace("s3n://", "s3://") fsspec = import_optional_dependency("fsspec") - file_obj = fsspec.open( - filepath_or_buffer, mode=mode or "rb", **(storage_options or {}) - ).open() + # If botocore is installed we fallback to reading with anon=True + # to allow reads from public buckets + err_types_to_retry_with_anon: List[Any] = [] + try: + import_optional_dependency("botocore") + from botocore.exceptions import ClientError, NoCredentialsError + + err_types_to_retry_with_anon = [ + ClientError, + NoCredentialsError, + PermissionError, + ] + except ImportError: + pass + + try: + file_obj = fsspec.open( + filepath_or_buffer, mode=mode or "rb", **(storage_options or {}) + ).open() + # GH 34626 Reads from Public Buckets without Credentials needs anon=True + except tuple(err_types_to_retry_with_anon): + if storage_options is None: + storage_options = {"anon": True} + else: + # don't mutate user input. + storage_options = dict(storage_options) + storage_options["anon"] = True + file_obj = fsspec.open( + filepath_or_buffer, mode=mode or "rb", **(storage_options or {}) + ).open() + return file_obj, encoding, compression, True if isinstance(filepath_or_buffer, (str, bytes, mmap.mmap)): </patch>
[]
[]
Qiskit__qiskit-9386
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> DAGCircuitError: 'bit mapping invalid ### Informations - **Qiskit: 0.39.2**: - **Python: 3.10.9**: - **Mac**: ### What is the current behavior? I'm implementing quantum half adder on Jupyter Notebook. When I try running my circuit on the simulator "qasm_simulator", Jupyter said DAGCircuitError: 'bit mapping invalid: expected 4, got 8' here is the code I've written. The error occurs on the last line of the third code. ``` from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer #SUM X = QuantumRegister(1, "in |X⟩") Y = QuantumRegister(1, "in |Y⟩") sum_out = QuantumRegister(1, "out SUM |0⟩") SUM = QuantumCircuit(X, Y, sum_out, name='SUM') SUM.cx(1, 2) SUM.cx(0, 2) fig = SUM.draw('mpl', True) SUM = SUM.to_instruction() fig ``` ``` #half_adder cout = QuantumRegister(1, 'out Carry |0⟩') c = ClassicalRegister(4) hadder = QuantumCircuit(X,Y,sum_out,cout,c) hadder.ccx(X,Y,cout) hadder.append(SUM,[0,1,2]) show = hadder.draw("mpl",True) hadder = hadder.to_instruction() show ``` ``` #testing half_adder qu = QuantumRegister(4) cl = ClassicalRegister(4) circ = QuantumCircuit(qu,cl) circ.x(qu[0]) circ.x(qu[1]) circ.append(hadder,[0,1,2,3]) for i in range(0,4): circ.measure(qu[i],cl[i]) circ.draw("mpl",True) print(execute(circ,Aer.get_backend('qasm_simulator'), shots = 1).result().get_counts()) ``` ### What is the expected behavior? I don't totally understand the error. I hope to troubleshoot to see the result. ### Suggested solutions </issue> <code> [start of README.md] 1 # Qiskit Terra 2 [![License](https://img.shields.io/github/license/Qiskit/qiskit-terra.svg?style=popout-square)](https://opensource.org/licenses/Apache-2.0)<!--- long-description-skip-begin -->[![Release](https://img.shields.io/github/release/Qiskit/qiskit-terra.svg?style=popout-square)](https://github.com/Qiskit/qiskit-terra/releases)[![Downloads](https://img.shields.io/pypi/dm/qiskit-terra.svg?style=popout-square)](https://pypi.org/project/qiskit-terra/)[![Coverage Status](https://coveralls.io/repos/github/Qiskit/qiskit-terra/badge.svg?branch=main)](https://coveralls.io/github/Qiskit/qiskit-terra?branch=main)[![Minimum rustc 1.61.0](https://img.shields.io/badge/rustc-1.61.0+-blue.svg)](https://rust-lang.github.io/rfcs/2495-min-rust-version.html)<!--- long-description-skip-end --> 3 4 **Qiskit** is an open-source framework for working with noisy quantum computers at the level of pulses, circuits, and algorithms. 5 6 This library is the core component of Qiskit, **Terra**, which contains the building blocks for creating 7 and working with quantum circuits, programs, and algorithms. It also contains a compiler that supports 8 different quantum computers and a common interface for running programs on different quantum computer architectures. 9 10 For more details on how to use Qiskit you can refer to the documentation located here: 11 12 https://qiskit.org/documentation/ 13 14 15 ## Installation 16 17 We encourage installing Qiskit via ``pip``. The following command installs the core Qiskit components, including Terra. 18 19 ```bash 20 pip install qiskit 21 ``` 22 23 Pip will handle all dependencies automatically and you will always install the latest (and well-tested) version. 24 25 To install from source, follow the instructions in the [documentation](https://qiskit.org/documentation/contributing_to_qiskit.html#install-install-from-source-label). 26 27 ## Creating Your First Quantum Program in Qiskit Terra 28 29 Now that Qiskit is installed, it's time to begin working with Qiskit. To do this 30 we create a `QuantumCircuit` object to define a basic quantum program. 31 32 ```python 33 from qiskit import QuantumCircuit 34 qc = QuantumCircuit(2, 2) 35 qc.h(0) 36 qc.cx(0, 1) 37 qc.measure([0,1], [0,1]) 38 ``` 39 40 This simple example makes an entangled state, also called a [Bell state](https://qiskit.org/textbook/ch-gates/multiple-qubits-entangled-states.html#3.2-Entangled-States-). 41 42 Once you've made your first quantum circuit, you can then simulate it. 43 To do this, first we need to compile your circuit for the target backend we're going to run 44 on. In this case we are leveraging the built-in `BasicAer` simulator. However, this 45 simulator is primarily for testing and is limited in performance and functionality (as the name 46 implies). You should consider more sophisticated simulators, such as [`qiskit-aer`](https://github.com/Qiskit/qiskit-aer/), 47 for any real simulation work. 48 49 ```python 50 from qiskit import transpile 51 from qiskit.providers.basicaer import QasmSimulatorPy 52 backend_sim = QasmSimulatorPy() 53 transpiled_qc = transpile(qc, backend_sim) 54 ``` 55 56 After compiling the circuit we can then run this on the ``backend`` object with: 57 58 ```python 59 result = backend_sim.run(transpiled_qc).result() 60 print(result.get_counts(qc)) 61 ``` 62 63 The output from this execution will look similar to this: 64 65 ```python 66 {'00': 513, '11': 511} 67 ``` 68 69 For further examples of using Qiskit you can look at the example scripts in **examples/python**. You can start with 70 [using_qiskit_terra_level_0.py](examples/python/using_qiskit_terra_level_0.py) and working up in the levels. Also 71 you can refer to the tutorials in the documentation here: 72 73 https://qiskit.org/documentation/tutorials.html 74 75 76 ### Executing your code on a real quantum chip 77 78 You can also use Qiskit to execute your code on a **real quantum processor**. 79 Qiskit provides an abstraction layer that lets users run quantum circuits on hardware from any 80 vendor that provides an interface to their systems through Qiskit. Using these ``providers`` you can run any Qiskit code against 81 real quantum computers. Some examples of published provider packages for running on real hardware are: 82 83 * https://github.com/Qiskit/qiskit-ibmq-provider 84 * https://github.com/Qiskit-Partners/qiskit-ionq 85 * https://github.com/Qiskit-Partners/qiskit-aqt-provider 86 * https://github.com/qiskit-community/qiskit-braket-provider 87 * https://github.com/qiskit-community/qiskit-quantinuum-provider 88 * https://github.com/rigetti/qiskit-rigetti 89 90 <!-- This is not an exhasutive list, and if you maintain a provider package please feel free to open a PR to add new providers --> 91 92 You can refer to the documentation of these packages for further instructions 93 on how to get access and use these systems. 94 95 ## Contribution Guidelines 96 97 If you'd like to contribute to Qiskit Terra, please take a look at our 98 [contribution guidelines](CONTRIBUTING.md). This project adheres to Qiskit's [code of conduct](CODE_OF_CONDUCT.md). By participating, you are expected to uphold this code. 99 100 We use [GitHub issues](https://github.com/Qiskit/qiskit-terra/issues) for tracking requests and bugs. Please 101 [join the Qiskit Slack community](https://qisk.it/join-slack) 102 and use our [Qiskit Slack channel](https://qiskit.slack.com) for discussion and simple questions. 103 For questions that are more suited for a forum we use the `qiskit` tag in the [Stack Exchange](https://quantumcomputing.stackexchange.com/questions/tagged/qiskit). 104 105 ## Next Steps 106 107 Now you're set up and ready to check out some of the other examples from our 108 [Qiskit Tutorials](https://github.com/Qiskit/qiskit-tutorials) repository. 109 110 ## Authors and Citation 111 112 Qiskit Terra is the work of [many people](https://github.com/Qiskit/qiskit-terra/graphs/contributors) who contribute 113 to the project at different levels. If you use Qiskit, please cite as per the included [BibTeX file](https://github.com/Qiskit/qiskit/blob/master/Qiskit.bib). 114 115 ## Changelog and Release Notes 116 117 The changelog for a particular release is dynamically generated and gets 118 written to the release page on Github for each release. For example, you can 119 find the page for the `0.9.0` release here: 120 121 https://github.com/Qiskit/qiskit-terra/releases/tag/0.9.0 122 123 The changelog for the current release can be found in the releases tab: 124 [![Releases](https://img.shields.io/github/release/Qiskit/qiskit-terra.svg?style=popout-square)](https://github.com/Qiskit/qiskit-terra/releases) 125 The changelog provides a quick overview of notable changes for a given 126 release. 127 128 Additionally, as part of each release detailed release notes are written to 129 document in detail what has changed as part of a release. This includes any 130 documentation on potential breaking changes on upgrade and new features. 131 For example, you can find the release notes for the `0.9.0` release in the 132 Qiskit documentation here: 133 134 https://qiskit.org/documentation/release_notes.html#terra-0-9 135 136 ## License 137 138 [Apache License 2.0](LICENSE.txt) 139 [end of README.md] [start of qiskit/circuit/instruction.py] 1 # This code is part of Qiskit. 2 # 3 # (C) Copyright IBM 2017. 4 # 5 # This code is licensed under the Apache License, Version 2.0. You may 6 # obtain a copy of this license in the LICENSE.txt file in the root directory 7 # of this source tree or at http://www.apache.org/licenses/LICENSE-2.0. 8 # 9 # Any modifications or derivative works of this code must retain this 10 # copyright notice, and modified files need to carry a notice indicating 11 # that they have been altered from the originals. 12 13 """ 14 A generic quantum instruction. 15 16 Instructions can be implementable on hardware (u, cx, etc.) or in simulation 17 (snapshot, noise, etc.). 18 19 Instructions can be unitary (a.k.a Gate) or non-unitary. 20 21 Instructions are identified by the following: 22 23 name: A string to identify the type of instruction. 24 Used to request a specific instruction on the backend, or in visualizing circuits. 25 26 num_qubits, num_clbits: dimensions of the instruction. 27 28 params: List of parameters to specialize a specific instruction instance. 29 30 Instructions do not have any context about where they are in a circuit (which qubits/clbits). 31 The circuit itself keeps this context. 32 """ 33 34 import copy 35 from itertools import zip_longest 36 from typing import List 37 38 import numpy 39 40 from qiskit.circuit.exceptions import CircuitError 41 from qiskit.circuit.quantumregister import QuantumRegister 42 from qiskit.circuit.classicalregister import ClassicalRegister, Clbit 43 from qiskit.qasm.exceptions import QasmError 44 from qiskit.qobj.qasm_qobj import QasmQobjInstruction 45 from qiskit.circuit.parameter import ParameterExpression 46 from qiskit.circuit.operation import Operation 47 from .tools import pi_check 48 49 _CUTOFF_PRECISION = 1e-10 50 51 52 class Instruction(Operation): 53 """Generic quantum instruction.""" 54 55 # Class attribute to treat like barrier for transpiler, unroller, drawer 56 # NOTE: Using this attribute may change in the future (See issue # 5811) 57 _directive = False 58 59 def __init__(self, name, num_qubits, num_clbits, params, duration=None, unit="dt", label=None): 60 """Create a new instruction. 61 62 Args: 63 name (str): instruction name 64 num_qubits (int): instruction's qubit width 65 num_clbits (int): instruction's clbit width 66 params (list[int|float|complex|str|ndarray|list|ParameterExpression]): 67 list of parameters 68 duration (int or float): instruction's duration. it must be integer if ``unit`` is 'dt' 69 unit (str): time unit of duration 70 label (str or None): An optional label for identifying the instruction. 71 72 Raises: 73 CircuitError: when the register is not in the correct format. 74 TypeError: when the optional label is provided, but it is not a string. 75 """ 76 if not isinstance(num_qubits, int) or not isinstance(num_clbits, int): 77 raise CircuitError("num_qubits and num_clbits must be integer.") 78 if num_qubits < 0 or num_clbits < 0: 79 raise CircuitError( 80 "bad instruction dimensions: %d qubits, %d clbits." % num_qubits, num_clbits 81 ) 82 self._name = name 83 self._num_qubits = num_qubits 84 self._num_clbits = num_clbits 85 86 self._params = [] # a list of gate params stored 87 # Custom instruction label 88 # NOTE: The conditional statement checking if the `_label` attribute is 89 # already set is a temporary work around that can be removed after 90 # the next stable qiskit-aer release 91 if not hasattr(self, "_label"): 92 if label is not None and not isinstance(label, str): 93 raise TypeError("label expects a string or None") 94 self._label = label 95 # tuple (ClassicalRegister, int), tuple (Clbit, bool) or tuple (Clbit, int) 96 # when the instruction has a conditional ("if") 97 self.condition = None 98 # list of instructions (and their contexts) that this instruction is composed of 99 # empty definition means opaque or fundamental instruction 100 self._definition = None 101 102 self._duration = duration 103 self._unit = unit 104 105 self.params = params # must be at last (other properties may be required for validation) 106 107 def __eq__(self, other): 108 """Two instructions are the same if they have the same name, 109 same dimensions, and same params. 110 111 Args: 112 other (instruction): other instruction 113 114 Returns: 115 bool: are self and other equal. 116 """ 117 if ( 118 type(self) is not type(other) 119 or self.name != other.name 120 or self.num_qubits != other.num_qubits 121 or self.num_clbits != other.num_clbits 122 or self.definition != other.definition 123 ): 124 return False 125 126 for self_param, other_param in zip_longest(self.params, other.params): 127 try: 128 if self_param == other_param: 129 continue 130 except ValueError: 131 pass 132 133 try: 134 self_asarray = numpy.asarray(self_param) 135 other_asarray = numpy.asarray(other_param) 136 if numpy.shape(self_asarray) == numpy.shape(other_asarray) and numpy.allclose( 137 self_param, other_param, atol=_CUTOFF_PRECISION, rtol=0 138 ): 139 continue 140 except (ValueError, TypeError): 141 pass 142 143 try: 144 if numpy.isclose( 145 float(self_param), float(other_param), atol=_CUTOFF_PRECISION, rtol=0 146 ): 147 continue 148 except TypeError: 149 pass 150 151 return False 152 153 return True 154 155 def __repr__(self) -> str: 156 """Generates a representation of the Intruction object instance 157 Returns: 158 str: A representation of the Instruction instance with the name, 159 number of qubits, classical bits and params( if any ) 160 """ 161 return "Instruction(name='{}', num_qubits={}, num_clbits={}, params={})".format( 162 self.name, self.num_qubits, self.num_clbits, self.params 163 ) 164 165 def soft_compare(self, other: "Instruction") -> bool: 166 """ 167 Soft comparison between gates. Their names, number of qubits, and classical 168 bit numbers must match. The number of parameters must match. Each parameter 169 is compared. If one is a ParameterExpression then it is not taken into 170 account. 171 172 Args: 173 other (instruction): other instruction. 174 175 Returns: 176 bool: are self and other equal up to parameter expressions. 177 """ 178 if ( 179 self.name != other.name 180 or other.num_qubits != other.num_qubits 181 or other.num_clbits != other.num_clbits 182 or len(self.params) != len(other.params) 183 ): 184 return False 185 186 for self_param, other_param in zip_longest(self.params, other.params): 187 if isinstance(self_param, ParameterExpression) or isinstance( 188 other_param, ParameterExpression 189 ): 190 continue 191 if isinstance(self_param, numpy.ndarray) and isinstance(other_param, numpy.ndarray): 192 if numpy.shape(self_param) == numpy.shape(other_param) and numpy.allclose( 193 self_param, other_param, atol=_CUTOFF_PRECISION 194 ): 195 continue 196 else: 197 try: 198 if numpy.isclose(self_param, other_param, atol=_CUTOFF_PRECISION): 199 continue 200 except TypeError: 201 pass 202 203 return False 204 205 return True 206 207 def _define(self): 208 """Populates self.definition with a decomposition of this gate.""" 209 pass 210 211 @property 212 def params(self): 213 """return instruction params.""" 214 return self._params 215 216 @params.setter 217 def params(self, parameters): 218 self._params = [] 219 for single_param in parameters: 220 if isinstance(single_param, ParameterExpression): 221 self._params.append(single_param) 222 else: 223 self._params.append(self.validate_parameter(single_param)) 224 225 def validate_parameter(self, parameter): 226 """Instruction parameters has no validation or normalization.""" 227 return parameter 228 229 def is_parameterized(self): 230 """Return True .IFF. instruction is parameterized else False""" 231 return any( 232 isinstance(param, ParameterExpression) and param.parameters for param in self.params 233 ) 234 235 @property 236 def definition(self): 237 """Return definition in terms of other basic gates.""" 238 if self._definition is None: 239 self._define() 240 return self._definition 241 242 @definition.setter 243 def definition(self, array): 244 """Set gate representation""" 245 self._definition = array 246 247 @property 248 def decompositions(self): 249 """Get the decompositions of the instruction from the SessionEquivalenceLibrary.""" 250 # pylint: disable=cyclic-import 251 from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel 252 253 return sel.get_entry(self) 254 255 @decompositions.setter 256 def decompositions(self, decompositions): 257 """Set the decompositions of the instruction from the SessionEquivalenceLibrary.""" 258 # pylint: disable=cyclic-import 259 from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel 260 261 sel.set_entry(self, decompositions) 262 263 def add_decomposition(self, decomposition): 264 """Add a decomposition of the instruction to the SessionEquivalenceLibrary.""" 265 # pylint: disable=cyclic-import 266 from qiskit.circuit.equivalence_library import SessionEquivalenceLibrary as sel 267 268 sel.add_equivalence(self, decomposition) 269 270 @property 271 def duration(self): 272 """Get the duration.""" 273 return self._duration 274 275 @duration.setter 276 def duration(self, duration): 277 """Set the duration.""" 278 self._duration = duration 279 280 @property 281 def unit(self): 282 """Get the time unit of duration.""" 283 return self._unit 284 285 @unit.setter 286 def unit(self, unit): 287 """Set the time unit of duration.""" 288 self._unit = unit 289 290 def assemble(self): 291 """Assemble a QasmQobjInstruction""" 292 instruction = QasmQobjInstruction(name=self.name) 293 # Evaluate parameters 294 if self.params: 295 params = [x.evalf(x) if hasattr(x, "evalf") else x for x in self.params] 296 instruction.params = params 297 # Add placeholder for qarg and carg params 298 if self.num_qubits: 299 instruction.qubits = list(range(self.num_qubits)) 300 if self.num_clbits: 301 instruction.memory = list(range(self.num_clbits)) 302 # Add label if defined 303 if self.label: 304 instruction.label = self.label 305 # Add condition parameters for assembler. This is needed to convert 306 # to a qobj conditional instruction at assemble time and after 307 # conversion will be deleted by the assembler. 308 if self.condition: 309 instruction._condition = self.condition 310 return instruction 311 312 @property 313 def label(self) -> str: 314 """Return instruction label""" 315 return self._label 316 317 @label.setter 318 def label(self, name: str): 319 """Set instruction label to name 320 321 Args: 322 name (str or None): label to assign instruction 323 324 Raises: 325 TypeError: name is not string or None. 326 """ 327 if isinstance(name, (str, type(None))): 328 self._label = name 329 else: 330 raise TypeError("label expects a string or None") 331 332 def reverse_ops(self): 333 """For a composite instruction, reverse the order of sub-instructions. 334 335 This is done by recursively reversing all sub-instructions. 336 It does not invert any gate. 337 338 Returns: 339 qiskit.circuit.Instruction: a new instruction with 340 sub-instructions reversed. 341 """ 342 if not self._definition: 343 return self.copy() 344 345 reverse_inst = self.copy(name=self.name + "_reverse") 346 reversed_definition = self._definition.copy_empty_like() 347 for inst in reversed(self._definition): 348 reversed_definition.append(inst.operation.reverse_ops(), inst.qubits, inst.clbits) 349 reverse_inst.definition = reversed_definition 350 return reverse_inst 351 352 def inverse(self): 353 """Invert this instruction. 354 355 If the instruction is composite (i.e. has a definition), 356 then its definition will be recursively inverted. 357 358 Special instructions inheriting from Instruction can 359 implement their own inverse (e.g. T and Tdg, Barrier, etc.) 360 361 Returns: 362 qiskit.circuit.Instruction: a fresh instruction for the inverse 363 364 Raises: 365 CircuitError: if the instruction is not composite 366 and an inverse has not been implemented for it. 367 """ 368 if self.definition is None: 369 raise CircuitError("inverse() not implemented for %s." % self.name) 370 371 from qiskit.circuit import Gate # pylint: disable=cyclic-import 372 373 if self.name.endswith("_dg"): 374 name = self.name[:-3] 375 else: 376 name = self.name + "_dg" 377 if self.num_clbits: 378 inverse_gate = Instruction( 379 name=name, 380 num_qubits=self.num_qubits, 381 num_clbits=self.num_clbits, 382 params=self.params.copy(), 383 ) 384 385 else: 386 inverse_gate = Gate(name=name, num_qubits=self.num_qubits, params=self.params.copy()) 387 388 inverse_definition = self._definition.copy_empty_like() 389 inverse_definition.global_phase = -inverse_definition.global_phase 390 for inst in reversed(self._definition): 391 inverse_definition._append(inst.operation.inverse(), inst.qubits, inst.clbits) 392 inverse_gate.definition = inverse_definition 393 return inverse_gate 394 395 def c_if(self, classical, val): 396 """Set a classical equality condition on this instruction between the register or cbit 397 ``classical`` and value ``val``. 398 399 .. note:: 400 401 This is a setter method, not an additive one. Calling this multiple times will silently 402 override any previously set condition; it does not stack. 403 """ 404 if not isinstance(classical, (ClassicalRegister, Clbit)): 405 raise CircuitError("c_if must be used with a classical register or classical bit") 406 if val < 0: 407 raise CircuitError("condition value should be non-negative") 408 if isinstance(classical, Clbit): 409 # Casting the conditional value as Boolean when 410 # the classical condition is on a classical bit. 411 val = bool(val) 412 self.condition = (classical, val) 413 return self 414 415 def copy(self, name=None): 416 """ 417 Copy of the instruction. 418 419 Args: 420 name (str): name to be given to the copied circuit, if ``None`` then the name stays the same. 421 422 Returns: 423 qiskit.circuit.Instruction: a copy of the current instruction, with the name updated if it 424 was provided 425 """ 426 cpy = self.__deepcopy__() 427 428 if name: 429 cpy.name = name 430 return cpy 431 432 def __deepcopy__(self, _memo=None): 433 cpy = copy.copy(self) 434 cpy._params = copy.copy(self._params) 435 if self._definition: 436 cpy._definition = copy.deepcopy(self._definition, _memo) 437 return cpy 438 439 def _qasmif(self, string): 440 """Print an if statement if needed.""" 441 if self.condition is None: 442 return string 443 if not isinstance(self.condition[0], ClassicalRegister): 444 raise QasmError( 445 "OpenQASM 2 can only condition on registers, but got '{self.condition[0]}'" 446 ) 447 return "if(%s==%d) " % (self.condition[0].name, self.condition[1]) + string 448 449 def qasm(self): 450 """Return a default OpenQASM string for the instruction. 451 452 Derived instructions may override this to print in a 453 different format (e.g. measure q[0] -> c[0];). 454 """ 455 name_param = self.name 456 if self.params: 457 name_param = "{}({})".format( 458 name_param, 459 ",".join([pi_check(i, output="qasm", eps=1e-12) for i in self.params]), 460 ) 461 462 return self._qasmif(name_param) 463 464 def broadcast_arguments(self, qargs, cargs): 465 """ 466 Validation of the arguments. 467 468 Args: 469 qargs (List): List of quantum bit arguments. 470 cargs (List): List of classical bit arguments. 471 472 Yields: 473 Tuple(List, List): A tuple with single arguments. 474 475 Raises: 476 CircuitError: If the input is not valid. For example, the number of 477 arguments does not match the gate expectation. 478 """ 479 if len(qargs) != self.num_qubits: 480 raise CircuitError( 481 f"The amount of qubit arguments {len(qargs)} does not match" 482 f" the instruction expectation ({self.num_qubits})." 483 ) 484 485 # [[q[0], q[1]], [c[0], c[1]]] -> [q[0], c[0]], [q[1], c[1]] 486 flat_qargs = [qarg for sublist in qargs for qarg in sublist] 487 flat_cargs = [carg for sublist in cargs for carg in sublist] 488 yield flat_qargs, flat_cargs 489 490 def _return_repeat(self, exponent): 491 return Instruction( 492 name=f"{self.name}*{exponent}", 493 num_qubits=self.num_qubits, 494 num_clbits=self.num_clbits, 495 params=self.params, 496 ) 497 498 def repeat(self, n): 499 """Creates an instruction with `gate` repeated `n` amount of times. 500 501 Args: 502 n (int): Number of times to repeat the instruction 503 504 Returns: 505 qiskit.circuit.Instruction: Containing the definition. 506 507 Raises: 508 CircuitError: If n < 1. 509 """ 510 if int(n) != n or n < 1: 511 raise CircuitError("Repeat can only be called with strictly positive integer.") 512 513 n = int(n) 514 515 instruction = self._return_repeat(n) 516 qargs = [] if self.num_qubits == 0 else QuantumRegister(self.num_qubits, "q") 517 cargs = [] if self.num_clbits == 0 else ClassicalRegister(self.num_clbits, "c") 518 519 if instruction.definition is None: 520 # pylint: disable=cyclic-import 521 from qiskit.circuit import QuantumCircuit, CircuitInstruction 522 523 qc = QuantumCircuit() 524 if qargs: 525 qc.add_register(qargs) 526 if cargs: 527 qc.add_register(cargs) 528 circuit_instruction = CircuitInstruction(self, qargs, cargs) 529 for _ in [None] * n: 530 qc._append(circuit_instruction) 531 instruction.definition = qc 532 return instruction 533 534 @property 535 def condition_bits(self) -> List[Clbit]: 536 """Get Clbits in condition.""" 537 if self.condition is None: 538 return [] 539 if isinstance(self.condition[0], Clbit): 540 return [self.condition[0]] 541 else: # ClassicalRegister 542 return list(self.condition[0]) 543 544 @property 545 def name(self): 546 """Return the name.""" 547 return self._name 548 549 @name.setter 550 def name(self, name): 551 """Set the name.""" 552 self._name = name 553 554 @property 555 def num_qubits(self): 556 """Return the number of qubits.""" 557 return self._num_qubits 558 559 @num_qubits.setter 560 def num_qubits(self, num_qubits): 561 """Set num_qubits.""" 562 self._num_qubits = num_qubits 563 564 @property 565 def num_clbits(self): 566 """Return the number of clbits.""" 567 return self._num_clbits 568 569 @num_clbits.setter 570 def num_clbits(self, num_clbits): 571 """Set num_clbits.""" 572 self._num_clbits = num_clbits 573 [end of qiskit/circuit/instruction.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
Qiskit/qiskit
3ab57152c1d7e0eb572eb298f6fa922299492586
DAGCircuitError: 'bit mapping invalid ### Informations - **Qiskit: 0.39.2**: - **Python: 3.10.9**: - **Mac**: ### What is the current behavior? I'm implementing quantum half adder on Jupyter Notebook. When I try running my circuit on the simulator "qasm_simulator", Jupyter said DAGCircuitError: 'bit mapping invalid: expected 4, got 8' here is the code I've written. The error occurs on the last line of the third code. ``` from qiskit import QuantumCircuit, QuantumRegister, ClassicalRegister, execute, Aer #SUM X = QuantumRegister(1, "in |X⟩") Y = QuantumRegister(1, "in |Y⟩") sum_out = QuantumRegister(1, "out SUM |0⟩") SUM = QuantumCircuit(X, Y, sum_out, name='SUM') SUM.cx(1, 2) SUM.cx(0, 2) fig = SUM.draw('mpl', True) SUM = SUM.to_instruction() fig ``` ``` #half_adder cout = QuantumRegister(1, 'out Carry |0⟩') c = ClassicalRegister(4) hadder = QuantumCircuit(X,Y,sum_out,cout,c) hadder.ccx(X,Y,cout) hadder.append(SUM,[0,1,2]) show = hadder.draw("mpl",True) hadder = hadder.to_instruction() show ``` ``` #testing half_adder qu = QuantumRegister(4) cl = ClassicalRegister(4) circ = QuantumCircuit(qu,cl) circ.x(qu[0]) circ.x(qu[1]) circ.append(hadder,[0,1,2,3]) for i in range(0,4): circ.measure(qu[i],cl[i]) circ.draw("mpl",True) print(execute(circ,Aer.get_backend('qasm_simulator'), shots = 1).result().get_counts()) ``` ### What is the expected behavior? I don't totally understand the error. I hope to troubleshoot to see the result. ### Suggested solutions
Your immediate problem is that the line ```python circ.append(hadder, [0, 1, 2, 3]) ``` doesn't include any classical arguments to apply `hadder` to, but it expects 4 (though they're not used). Perhaps you either meant not to have the `ClassicalRegister` `c` in `hadder`, or you meant to write the above line as ```python circ.append(hadder, [0, 1, 2, 3], [0, 1, 2, 3]) ``` On our side, the `append` call I pulled out should have raised an error. I'm not certain why it didn't, but it definitely looks like a bug that it didn't.
2023-01-18T12:43:42Z
<patch> diff --git a/qiskit/circuit/instruction.py b/qiskit/circuit/instruction.py --- a/qiskit/circuit/instruction.py +++ b/qiskit/circuit/instruction.py @@ -481,6 +481,11 @@ def broadcast_arguments(self, qargs, cargs): f"The amount of qubit arguments {len(qargs)} does not match" f" the instruction expectation ({self.num_qubits})." ) + if len(cargs) != self.num_clbits: + raise CircuitError( + f"The amount of clbit arguments {len(cargs)} does not match" + f" the instruction expectation ({self.num_clbits})." + ) # [[q[0], q[1]], [c[0], c[1]]] -> [q[0], c[0]], [q[1], c[1]] flat_qargs = [qarg for sublist in qargs for qarg in sublist] </patch>
[]
[]
docker__compose-3056
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> Pyinstaller has issues with signals There's a bunch of history in #1040 and #2055. We've tried multiple implementations of signal handlers, but each has their own set of issues, but **ONLY** when run from the frozen binary created by pyinstaller. It looks like there is a very old issue in pyinstaller around this: https://github.com/pyinstaller/pyinstaller/issues/208 These problems can manifest in three ways: - a `thread.error` when a signal interrupts a thread lock - the signal handlers being completely ignored and raising a `KeynoardInterupt` instead - the signal handlers being registered but the try/except to handle the except is skipped (this could be caused by the signal firing multiple times for a single `ctrl-c`, but I can't really verify that's what is happening) </issue> <code> [start of README.md] 1 Docker Compose 2 ============== 3 ![Docker Compose](logo.png?raw=true "Docker Compose Logo") 4 5 Compose is a tool for defining and running multi-container Docker applications. 6 With Compose, you use a Compose file to configure your application's services. 7 Then, using a single command, you create and start all the services 8 from your configuration. To learn more about all the features of Compose 9 see [the list of features](https://github.com/docker/compose/blob/release/docs/overview.md#features). 10 11 Compose is great for development, testing, and staging environments, as well as 12 CI workflows. You can learn more about each case in 13 [Common Use Cases](https://github.com/docker/compose/blob/release/docs/overview.md#common-use-cases). 14 15 Using Compose is basically a three-step process. 16 17 1. Define your app's environment with a `Dockerfile` so it can be 18 reproduced anywhere. 19 2. Define the services that make up your app in `docker-compose.yml` so 20 they can be run together in an isolated environment: 21 3. Lastly, run `docker-compose up` and Compose will start and run your entire app. 22 23 A `docker-compose.yml` looks like this: 24 25 web: 26 build: . 27 ports: 28 - "5000:5000" 29 volumes: 30 - .:/code 31 links: 32 - redis 33 redis: 34 image: redis 35 36 For more information about the Compose file, see the 37 [Compose file reference](https://github.com/docker/compose/blob/release/docs/compose-file.md) 38 39 Compose has commands for managing the whole lifecycle of your application: 40 41 * Start, stop and rebuild services 42 * View the status of running services 43 * Stream the log output of running services 44 * Run a one-off command on a service 45 46 Installation and documentation 47 ------------------------------ 48 49 - Full documentation is available on [Docker's website](https://docs.docker.com/compose/). 50 - If you have any questions, you can talk in real-time with other developers in the #docker-compose IRC channel on Freenode. [Click here to join using IRCCloud.](https://www.irccloud.com/invite?hostname=irc.freenode.net&channel=%23docker-compose) 51 - Code repository for Compose is on [Github](https://github.com/docker/compose) 52 - If you find any problems please fill out an [issue](https://github.com/docker/compose/issues/new) 53 54 Contributing 55 ------------ 56 57 [![Build Status](http://jenkins.dockerproject.org/buildStatus/icon?job=Compose%20Master)](http://jenkins.dockerproject.org/job/Compose%20Master/) 58 59 Want to help build Compose? Check out our [contributing documentation](https://github.com/docker/compose/blob/master/CONTRIBUTING.md). 60 61 Releasing 62 --------- 63 64 Releases are built by maintainers, following an outline of the [release process](https://github.com/docker/compose/blob/master/project/RELEASE-PROCESS.md). 65 [end of README.md] [start of compose/cli/main.py] 1 from __future__ import absolute_import 2 from __future__ import print_function 3 from __future__ import unicode_literals 4 5 import contextlib 6 import json 7 import logging 8 import re 9 import sys 10 from inspect import getdoc 11 from operator import attrgetter 12 13 from docker.errors import APIError 14 from requests.exceptions import ReadTimeout 15 16 from . import signals 17 from .. import __version__ 18 from ..config import config 19 from ..config import ConfigurationError 20 from ..config import parse_environment 21 from ..config.serialize import serialize_config 22 from ..const import API_VERSION_TO_ENGINE_VERSION 23 from ..const import DEFAULT_TIMEOUT 24 from ..const import HTTP_TIMEOUT 25 from ..const import IS_WINDOWS_PLATFORM 26 from ..progress_stream import StreamOutputError 27 from ..project import NoSuchService 28 from ..service import BuildError 29 from ..service import ConvergenceStrategy 30 from ..service import ImageType 31 from ..service import NeedsBuildError 32 from .command import friendly_error_message 33 from .command import get_config_path_from_options 34 from .command import project_from_options 35 from .docopt_command import DocoptCommand 36 from .docopt_command import NoSuchCommand 37 from .errors import UserError 38 from .formatter import ConsoleWarningFormatter 39 from .formatter import Formatter 40 from .log_printer import LogPrinter 41 from .utils import get_version_info 42 from .utils import yesno 43 44 45 if not IS_WINDOWS_PLATFORM: 46 from dockerpty.pty import PseudoTerminal, RunOperation, ExecOperation 47 48 log = logging.getLogger(__name__) 49 console_handler = logging.StreamHandler(sys.stderr) 50 51 52 def main(): 53 setup_logging() 54 try: 55 command = TopLevelCommand() 56 command.sys_dispatch() 57 except KeyboardInterrupt: 58 log.error("Aborting.") 59 sys.exit(1) 60 except (UserError, NoSuchService, ConfigurationError) as e: 61 log.error(e.msg) 62 sys.exit(1) 63 except NoSuchCommand as e: 64 commands = "\n".join(parse_doc_section("commands:", getdoc(e.supercommand))) 65 log.error("No such command: %s\n\n%s", e.command, commands) 66 sys.exit(1) 67 except APIError as e: 68 log_api_error(e) 69 sys.exit(1) 70 except BuildError as e: 71 log.error("Service '%s' failed to build: %s" % (e.service.name, e.reason)) 72 sys.exit(1) 73 except StreamOutputError as e: 74 log.error(e) 75 sys.exit(1) 76 except NeedsBuildError as e: 77 log.error("Service '%s' needs to be built, but --no-build was passed." % e.service.name) 78 sys.exit(1) 79 except ReadTimeout as e: 80 log.error( 81 "An HTTP request took too long to complete. Retry with --verbose to " 82 "obtain debug information.\n" 83 "If you encounter this issue regularly because of slow network " 84 "conditions, consider setting COMPOSE_HTTP_TIMEOUT to a higher " 85 "value (current value: %s)." % HTTP_TIMEOUT 86 ) 87 sys.exit(1) 88 89 90 def log_api_error(e): 91 if 'client is newer than server' in e.explanation: 92 # we need JSON formatted errors. In the meantime... 93 # TODO: fix this by refactoring project dispatch 94 # http://github.com/docker/compose/pull/2832#commitcomment-15923800 95 client_version = e.explanation.split('client API version: ')[1].split(',')[0] 96 log.error( 97 "The engine version is lesser than the minimum required by " 98 "compose. Your current project requires a Docker Engine of " 99 "version {version} or superior.".format( 100 version=API_VERSION_TO_ENGINE_VERSION[client_version] 101 )) 102 else: 103 log.error(e.explanation) 104 105 106 def setup_logging(): 107 root_logger = logging.getLogger() 108 root_logger.addHandler(console_handler) 109 root_logger.setLevel(logging.DEBUG) 110 111 # Disable requests logging 112 logging.getLogger("requests").propagate = False 113 114 115 def setup_console_handler(handler, verbose): 116 if handler.stream.isatty(): 117 format_class = ConsoleWarningFormatter 118 else: 119 format_class = logging.Formatter 120 121 if verbose: 122 handler.setFormatter(format_class('%(name)s.%(funcName)s: %(message)s')) 123 handler.setLevel(logging.DEBUG) 124 else: 125 handler.setFormatter(format_class()) 126 handler.setLevel(logging.INFO) 127 128 129 # stolen from docopt master 130 def parse_doc_section(name, source): 131 pattern = re.compile('^([^\n]*' + name + '[^\n]*\n?(?:[ \t].*?(?:\n|$))*)', 132 re.IGNORECASE | re.MULTILINE) 133 return [s.strip() for s in pattern.findall(source)] 134 135 136 class TopLevelCommand(DocoptCommand): 137 """Define and run multi-container applications with Docker. 138 139 Usage: 140 docker-compose [-f=<arg>...] [options] [COMMAND] [ARGS...] 141 docker-compose -h|--help 142 143 Options: 144 -f, --file FILE Specify an alternate compose file (default: docker-compose.yml) 145 -p, --project-name NAME Specify an alternate project name (default: directory name) 146 --verbose Show more output 147 -v, --version Print version and exit 148 149 Commands: 150 build Build or rebuild services 151 config Validate and view the compose file 152 create Create services 153 down Stop and remove containers, networks, images, and volumes 154 events Receive real time events from containers 155 exec Execute a command in a running container 156 help Get help on a command 157 kill Kill containers 158 logs View output from containers 159 pause Pause services 160 port Print the public port for a port binding 161 ps List containers 162 pull Pulls service images 163 restart Restart services 164 rm Remove stopped containers 165 run Run a one-off command 166 scale Set number of containers for a service 167 start Start services 168 stop Stop services 169 unpause Unpause services 170 up Create and start containers 171 version Show the Docker-Compose version information 172 """ 173 base_dir = '.' 174 175 def docopt_options(self): 176 options = super(TopLevelCommand, self).docopt_options() 177 options['version'] = get_version_info('compose') 178 return options 179 180 def perform_command(self, options, handler, command_options): 181 setup_console_handler(console_handler, options.get('--verbose')) 182 183 if options['COMMAND'] in ('help', 'version'): 184 # Skip looking up the compose file. 185 handler(None, command_options) 186 return 187 188 if options['COMMAND'] == 'config': 189 handler(options, command_options) 190 return 191 192 project = project_from_options(self.base_dir, options) 193 with friendly_error_message(): 194 handler(project, command_options) 195 196 def build(self, project, options): 197 """ 198 Build or rebuild services. 199 200 Services are built once and then tagged as `project_service`, 201 e.g. `composetest_db`. If you change a service's `Dockerfile` or the 202 contents of its build directory, you can run `docker-compose build` to rebuild it. 203 204 Usage: build [options] [SERVICE...] 205 206 Options: 207 --force-rm Always remove intermediate containers. 208 --no-cache Do not use cache when building the image. 209 --pull Always attempt to pull a newer version of the image. 210 """ 211 project.build( 212 service_names=options['SERVICE'], 213 no_cache=bool(options.get('--no-cache', False)), 214 pull=bool(options.get('--pull', False)), 215 force_rm=bool(options.get('--force-rm', False))) 216 217 def config(self, config_options, options): 218 """ 219 Validate and view the compose file. 220 221 Usage: config [options] 222 223 Options: 224 -q, --quiet Only validate the configuration, don't print 225 anything. 226 --services Print the service names, one per line. 227 228 """ 229 config_path = get_config_path_from_options(config_options) 230 compose_config = config.load(config.find(self.base_dir, config_path)) 231 232 if options['--quiet']: 233 return 234 235 if options['--services']: 236 print('\n'.join(service['name'] for service in compose_config.services)) 237 return 238 239 print(serialize_config(compose_config)) 240 241 def create(self, project, options): 242 """ 243 Creates containers for a service. 244 245 Usage: create [options] [SERVICE...] 246 247 Options: 248 --force-recreate Recreate containers even if their configuration and 249 image haven't changed. Incompatible with --no-recreate. 250 --no-recreate If containers already exist, don't recreate them. 251 Incompatible with --force-recreate. 252 --no-build Don't build an image, even if it's missing 253 """ 254 service_names = options['SERVICE'] 255 256 project.create( 257 service_names=service_names, 258 strategy=convergence_strategy_from_opts(options), 259 do_build=not options['--no-build'] 260 ) 261 262 def down(self, project, options): 263 """ 264 Stop containers and remove containers, networks, volumes, and images 265 created by `up`. Only containers and networks are removed by default. 266 267 Usage: down [options] 268 269 Options: 270 --rmi type Remove images, type may be one of: 'all' to remove 271 all images, or 'local' to remove only images that 272 don't have an custom name set by the `image` field 273 -v, --volumes Remove data volumes 274 """ 275 image_type = image_type_from_opt('--rmi', options['--rmi']) 276 project.down(image_type, options['--volumes']) 277 278 def events(self, project, options): 279 """ 280 Receive real time events from containers. 281 282 Usage: events [options] [SERVICE...] 283 284 Options: 285 --json Output events as a stream of json objects 286 """ 287 def format_event(event): 288 attributes = ["%s=%s" % item for item in event['attributes'].items()] 289 return ("{time} {type} {action} {id} ({attrs})").format( 290 attrs=", ".join(sorted(attributes)), 291 **event) 292 293 def json_format_event(event): 294 event['time'] = event['time'].isoformat() 295 return json.dumps(event) 296 297 for event in project.events(): 298 formatter = json_format_event if options['--json'] else format_event 299 print(formatter(event)) 300 sys.stdout.flush() 301 302 def exec_command(self, project, options): 303 """ 304 Execute a command in a running container 305 306 Usage: exec [options] SERVICE COMMAND [ARGS...] 307 308 Options: 309 -d Detached mode: Run command in the background. 310 --privileged Give extended privileges to the process. 311 --user USER Run the command as this user. 312 -T Disable pseudo-tty allocation. By default `docker-compose exec` 313 allocates a TTY. 314 --index=index index of the container if there are multiple 315 instances of a service [default: 1] 316 """ 317 index = int(options.get('--index')) 318 service = project.get_service(options['SERVICE']) 319 try: 320 container = service.get_container(number=index) 321 except ValueError as e: 322 raise UserError(str(e)) 323 command = [options['COMMAND']] + options['ARGS'] 324 tty = not options["-T"] 325 326 create_exec_options = { 327 "privileged": options["--privileged"], 328 "user": options["--user"], 329 "tty": tty, 330 "stdin": tty, 331 } 332 333 exec_id = container.create_exec(command, **create_exec_options) 334 335 if options['-d']: 336 container.start_exec(exec_id, tty=tty) 337 return 338 339 signals.set_signal_handler_to_shutdown() 340 try: 341 operation = ExecOperation( 342 project.client, 343 exec_id, 344 interactive=tty, 345 ) 346 pty = PseudoTerminal(project.client, operation) 347 pty.start() 348 except signals.ShutdownException: 349 log.info("received shutdown exception: closing") 350 exit_code = project.client.exec_inspect(exec_id).get("ExitCode") 351 sys.exit(exit_code) 352 353 def help(self, project, options): 354 """ 355 Get help on a command. 356 357 Usage: help COMMAND 358 """ 359 handler = self.get_handler(options['COMMAND']) 360 raise SystemExit(getdoc(handler)) 361 362 def kill(self, project, options): 363 """ 364 Force stop service containers. 365 366 Usage: kill [options] [SERVICE...] 367 368 Options: 369 -s SIGNAL SIGNAL to send to the container. 370 Default signal is SIGKILL. 371 """ 372 signal = options.get('-s', 'SIGKILL') 373 374 project.kill(service_names=options['SERVICE'], signal=signal) 375 376 def logs(self, project, options): 377 """ 378 View output from containers. 379 380 Usage: logs [options] [SERVICE...] 381 382 Options: 383 --no-color Produce monochrome output. 384 """ 385 containers = project.containers(service_names=options['SERVICE'], stopped=True) 386 387 monochrome = options['--no-color'] 388 print("Attaching to", list_containers(containers)) 389 LogPrinter(containers, monochrome=monochrome).run() 390 391 def pause(self, project, options): 392 """ 393 Pause services. 394 395 Usage: pause [SERVICE...] 396 """ 397 containers = project.pause(service_names=options['SERVICE']) 398 exit_if(not containers, 'No containers to pause', 1) 399 400 def port(self, project, options): 401 """ 402 Print the public port for a port binding. 403 404 Usage: port [options] SERVICE PRIVATE_PORT 405 406 Options: 407 --protocol=proto tcp or udp [default: tcp] 408 --index=index index of the container if there are multiple 409 instances of a service [default: 1] 410 """ 411 index = int(options.get('--index')) 412 service = project.get_service(options['SERVICE']) 413 try: 414 container = service.get_container(number=index) 415 except ValueError as e: 416 raise UserError(str(e)) 417 print(container.get_local_port( 418 options['PRIVATE_PORT'], 419 protocol=options.get('--protocol') or 'tcp') or '') 420 421 def ps(self, project, options): 422 """ 423 List containers. 424 425 Usage: ps [options] [SERVICE...] 426 427 Options: 428 -q Only display IDs 429 """ 430 containers = sorted( 431 project.containers(service_names=options['SERVICE'], stopped=True) + 432 project.containers(service_names=options['SERVICE'], one_off=True), 433 key=attrgetter('name')) 434 435 if options['-q']: 436 for container in containers: 437 print(container.id) 438 else: 439 headers = [ 440 'Name', 441 'Command', 442 'State', 443 'Ports', 444 ] 445 rows = [] 446 for container in containers: 447 command = container.human_readable_command 448 if len(command) > 30: 449 command = '%s ...' % command[:26] 450 rows.append([ 451 container.name, 452 command, 453 container.human_readable_state, 454 container.human_readable_ports, 455 ]) 456 print(Formatter().table(headers, rows)) 457 458 def pull(self, project, options): 459 """ 460 Pulls images for services. 461 462 Usage: pull [options] [SERVICE...] 463 464 Options: 465 --ignore-pull-failures Pull what it can and ignores images with pull failures. 466 """ 467 project.pull( 468 service_names=options['SERVICE'], 469 ignore_pull_failures=options.get('--ignore-pull-failures') 470 ) 471 472 def rm(self, project, options): 473 """ 474 Remove stopped service containers. 475 476 By default, volumes attached to containers will not be removed. You can see all 477 volumes with `docker volume ls`. 478 479 Any data which is not in a volume will be lost. 480 481 Usage: rm [options] [SERVICE...] 482 483 Options: 484 -f, --force Don't ask to confirm removal 485 -v Remove volumes associated with containers 486 """ 487 all_containers = project.containers(service_names=options['SERVICE'], stopped=True) 488 stopped_containers = [c for c in all_containers if not c.is_running] 489 490 if len(stopped_containers) > 0: 491 print("Going to remove", list_containers(stopped_containers)) 492 if options.get('--force') \ 493 or yesno("Are you sure? [yN] ", default=False): 494 project.remove_stopped( 495 service_names=options['SERVICE'], 496 v=options.get('-v', False) 497 ) 498 else: 499 print("No stopped containers") 500 501 def run(self, project, options): 502 """ 503 Run a one-off command on a service. 504 505 For example: 506 507 $ docker-compose run web python manage.py shell 508 509 By default, linked services will be started, unless they are already 510 running. If you do not want to start linked services, use 511 `docker-compose run --no-deps SERVICE COMMAND [ARGS...]`. 512 513 Usage: run [options] [-p PORT...] [-e KEY=VAL...] SERVICE [COMMAND] [ARGS...] 514 515 Options: 516 -d Detached mode: Run container in the background, print 517 new container name. 518 --name NAME Assign a name to the container 519 --entrypoint CMD Override the entrypoint of the image. 520 -e KEY=VAL Set an environment variable (can be used multiple times) 521 -u, --user="" Run as specified username or uid 522 --no-deps Don't start linked services. 523 --rm Remove container after run. Ignored in detached mode. 524 -p, --publish=[] Publish a container's port(s) to the host 525 --service-ports Run command with the service's ports enabled and mapped 526 to the host. 527 -T Disable pseudo-tty allocation. By default `docker-compose run` 528 allocates a TTY. 529 """ 530 service = project.get_service(options['SERVICE']) 531 detach = options['-d'] 532 533 if IS_WINDOWS_PLATFORM and not detach: 534 raise UserError( 535 "Interactive mode is not yet supported on Windows.\n" 536 "Please pass the -d flag when using `docker-compose run`." 537 ) 538 539 if options['COMMAND']: 540 command = [options['COMMAND']] + options['ARGS'] 541 else: 542 command = service.options.get('command') 543 544 container_options = { 545 'command': command, 546 'tty': not (detach or options['-T'] or not sys.stdin.isatty()), 547 'stdin_open': not detach, 548 'detach': detach, 549 } 550 551 if options['-e']: 552 container_options['environment'] = parse_environment(options['-e']) 553 554 if options['--entrypoint']: 555 container_options['entrypoint'] = options.get('--entrypoint') 556 557 if options['--rm']: 558 container_options['restart'] = None 559 560 if options['--user']: 561 container_options['user'] = options.get('--user') 562 563 if not options['--service-ports']: 564 container_options['ports'] = [] 565 566 if options['--publish']: 567 container_options['ports'] = options.get('--publish') 568 569 if options['--publish'] and options['--service-ports']: 570 raise UserError( 571 'Service port mapping and manual port mapping ' 572 'can not be used togather' 573 ) 574 575 if options['--name']: 576 container_options['name'] = options['--name'] 577 578 run_one_off_container(container_options, project, service, options) 579 580 def scale(self, project, options): 581 """ 582 Set number of containers to run for a service. 583 584 Numbers are specified in the form `service=num` as arguments. 585 For example: 586 587 $ docker-compose scale web=2 worker=3 588 589 Usage: scale [options] [SERVICE=NUM...] 590 591 Options: 592 -t, --timeout TIMEOUT Specify a shutdown timeout in seconds. 593 (default: 10) 594 """ 595 timeout = int(options.get('--timeout') or DEFAULT_TIMEOUT) 596 597 for s in options['SERVICE=NUM']: 598 if '=' not in s: 599 raise UserError('Arguments to scale should be in the form service=num') 600 service_name, num = s.split('=', 1) 601 try: 602 num = int(num) 603 except ValueError: 604 raise UserError('Number of containers for service "%s" is not a ' 605 'number' % service_name) 606 project.get_service(service_name).scale(num, timeout=timeout) 607 608 def start(self, project, options): 609 """ 610 Start existing containers. 611 612 Usage: start [SERVICE...] 613 """ 614 containers = project.start(service_names=options['SERVICE']) 615 exit_if(not containers, 'No containers to start', 1) 616 617 def stop(self, project, options): 618 """ 619 Stop running containers without removing them. 620 621 They can be started again with `docker-compose start`. 622 623 Usage: stop [options] [SERVICE...] 624 625 Options: 626 -t, --timeout TIMEOUT Specify a shutdown timeout in seconds. 627 (default: 10) 628 """ 629 timeout = int(options.get('--timeout') or DEFAULT_TIMEOUT) 630 project.stop(service_names=options['SERVICE'], timeout=timeout) 631 632 def restart(self, project, options): 633 """ 634 Restart running containers. 635 636 Usage: restart [options] [SERVICE...] 637 638 Options: 639 -t, --timeout TIMEOUT Specify a shutdown timeout in seconds. 640 (default: 10) 641 """ 642 timeout = int(options.get('--timeout') or DEFAULT_TIMEOUT) 643 containers = project.restart(service_names=options['SERVICE'], timeout=timeout) 644 exit_if(not containers, 'No containers to restart', 1) 645 646 def unpause(self, project, options): 647 """ 648 Unpause services. 649 650 Usage: unpause [SERVICE...] 651 """ 652 containers = project.unpause(service_names=options['SERVICE']) 653 exit_if(not containers, 'No containers to unpause', 1) 654 655 def up(self, project, options): 656 """ 657 Builds, (re)creates, starts, and attaches to containers for a service. 658 659 Unless they are already running, this command also starts any linked services. 660 661 The `docker-compose up` command aggregates the output of each container. When 662 the command exits, all containers are stopped. Running `docker-compose up -d` 663 starts the containers in the background and leaves them running. 664 665 If there are existing containers for a service, and the service's configuration 666 or image was changed after the container's creation, `docker-compose up` picks 667 up the changes by stopping and recreating the containers (preserving mounted 668 volumes). To prevent Compose from picking up changes, use the `--no-recreate` 669 flag. 670 671 If you want to force Compose to stop and recreate all containers, use the 672 `--force-recreate` flag. 673 674 Usage: up [options] [SERVICE...] 675 676 Options: 677 -d Detached mode: Run containers in the background, 678 print new container names. 679 Incompatible with --abort-on-container-exit. 680 --no-color Produce monochrome output. 681 --no-deps Don't start linked services. 682 --force-recreate Recreate containers even if their configuration 683 and image haven't changed. 684 Incompatible with --no-recreate. 685 --no-recreate If containers already exist, don't recreate them. 686 Incompatible with --force-recreate. 687 --no-build Don't build an image, even if it's missing 688 --abort-on-container-exit Stops all containers if any container was stopped. 689 Incompatible with -d. 690 -t, --timeout TIMEOUT Use this timeout in seconds for container shutdown 691 when attached or when containers are already 692 running. (default: 10) 693 """ 694 monochrome = options['--no-color'] 695 start_deps = not options['--no-deps'] 696 cascade_stop = options['--abort-on-container-exit'] 697 service_names = options['SERVICE'] 698 timeout = int(options.get('--timeout') or DEFAULT_TIMEOUT) 699 detached = options.get('-d') 700 701 if detached and cascade_stop: 702 raise UserError("--abort-on-container-exit and -d cannot be combined.") 703 704 with up_shutdown_context(project, service_names, timeout, detached): 705 to_attach = project.up( 706 service_names=service_names, 707 start_deps=start_deps, 708 strategy=convergence_strategy_from_opts(options), 709 do_build=not options['--no-build'], 710 timeout=timeout, 711 detached=detached) 712 713 if detached: 714 return 715 log_printer = build_log_printer(to_attach, service_names, monochrome, cascade_stop) 716 print("Attaching to", list_containers(log_printer.containers)) 717 log_printer.run() 718 719 if cascade_stop: 720 print("Aborting on container exit...") 721 project.stop(service_names=service_names, timeout=timeout) 722 723 def version(self, project, options): 724 """ 725 Show version informations 726 727 Usage: version [--short] 728 729 Options: 730 --short Shows only Compose's version number. 731 """ 732 if options['--short']: 733 print(__version__) 734 else: 735 print(get_version_info('full')) 736 737 738 def convergence_strategy_from_opts(options): 739 no_recreate = options['--no-recreate'] 740 force_recreate = options['--force-recreate'] 741 if force_recreate and no_recreate: 742 raise UserError("--force-recreate and --no-recreate cannot be combined.") 743 744 if force_recreate: 745 return ConvergenceStrategy.always 746 747 if no_recreate: 748 return ConvergenceStrategy.never 749 750 return ConvergenceStrategy.changed 751 752 753 def image_type_from_opt(flag, value): 754 if not value: 755 return ImageType.none 756 try: 757 return ImageType[value] 758 except KeyError: 759 raise UserError("%s flag must be one of: all, local" % flag) 760 761 762 def run_one_off_container(container_options, project, service, options): 763 if not options['--no-deps']: 764 deps = service.get_dependency_names() 765 if deps: 766 project.up( 767 service_names=deps, 768 start_deps=True, 769 strategy=ConvergenceStrategy.never) 770 771 project.initialize() 772 773 container = service.create_container( 774 quiet=True, 775 one_off=True, 776 **container_options) 777 778 if options['-d']: 779 service.start_container(container) 780 print(container.name) 781 return 782 783 def remove_container(force=False): 784 if options['--rm']: 785 project.client.remove_container(container.id, force=True) 786 787 signals.set_signal_handler_to_shutdown() 788 try: 789 try: 790 operation = RunOperation( 791 project.client, 792 container.id, 793 interactive=not options['-T'], 794 logs=False, 795 ) 796 pty = PseudoTerminal(project.client, operation) 797 sockets = pty.sockets() 798 service.start_container(container) 799 pty.start(sockets) 800 exit_code = container.wait() 801 except signals.ShutdownException: 802 project.client.stop(container.id) 803 exit_code = 1 804 except signals.ShutdownException: 805 project.client.kill(container.id) 806 remove_container(force=True) 807 sys.exit(2) 808 809 remove_container() 810 sys.exit(exit_code) 811 812 813 def build_log_printer(containers, service_names, monochrome, cascade_stop): 814 if service_names: 815 containers = [ 816 container 817 for container in containers if container.service in service_names 818 ] 819 return LogPrinter(containers, monochrome=monochrome, cascade_stop=cascade_stop) 820 821 822 @contextlib.contextmanager 823 def up_shutdown_context(project, service_names, timeout, detached): 824 if detached: 825 yield 826 return 827 828 signals.set_signal_handler_to_shutdown() 829 try: 830 try: 831 yield 832 except signals.ShutdownException: 833 print("Gracefully stopping... (press Ctrl+C again to force)") 834 project.stop(service_names=service_names, timeout=timeout) 835 except signals.ShutdownException: 836 project.kill(service_names=service_names) 837 sys.exit(2) 838 839 840 def list_containers(containers): 841 return ", ".join(c.name for c in containers) 842 843 844 def exit_if(condition, message, exit_code): 845 if condition: 846 log.error(message) 847 raise SystemExit(exit_code) 848 [end of compose/cli/main.py] [start of compose/cli/multiplexer.py] 1 from __future__ import absolute_import 2 from __future__ import unicode_literals 3 4 from threading import Thread 5 6 from six.moves import _thread as thread 7 8 try: 9 from Queue import Queue, Empty 10 except ImportError: 11 from queue import Queue, Empty # Python 3.x 12 13 14 STOP = object() 15 16 17 class Multiplexer(object): 18 """ 19 Create a single iterator from several iterators by running all of them in 20 parallel and yielding results as they come in. 21 """ 22 23 def __init__(self, iterators, cascade_stop=False): 24 self.iterators = iterators 25 self.cascade_stop = cascade_stop 26 self._num_running = len(iterators) 27 self.queue = Queue() 28 29 def loop(self): 30 self._init_readers() 31 32 while self._num_running > 0: 33 try: 34 item, exception = self.queue.get(timeout=0.1) 35 36 if exception: 37 raise exception 38 39 if item is STOP: 40 if self.cascade_stop is True: 41 break 42 else: 43 self._num_running -= 1 44 else: 45 yield item 46 except Empty: 47 pass 48 # See https://github.com/docker/compose/issues/189 49 except thread.error: 50 raise KeyboardInterrupt() 51 52 def _init_readers(self): 53 for iterator in self.iterators: 54 t = Thread(target=_enqueue_output, args=(iterator, self.queue)) 55 t.daemon = True 56 t.start() 57 58 59 def _enqueue_output(iterator, queue): 60 try: 61 for item in iterator: 62 queue.put((item, None)) 63 queue.put((STOP, None)) 64 except Exception as e: 65 queue.put((None, e)) 66 [end of compose/cli/multiplexer.py] [start of compose/parallel.py] 1 from __future__ import absolute_import 2 from __future__ import unicode_literals 3 4 import operator 5 import sys 6 from threading import Thread 7 8 from docker.errors import APIError 9 from six.moves.queue import Empty 10 from six.moves.queue import Queue 11 12 from compose.utils import get_output_stream 13 14 15 def perform_operation(func, arg, callback, index): 16 try: 17 callback((index, func(arg))) 18 except Exception as e: 19 callback((index, e)) 20 21 22 def parallel_execute(objects, func, index_func, msg): 23 """For a given list of objects, call the callable passing in the first 24 object we give it. 25 """ 26 objects = list(objects) 27 stream = get_output_stream(sys.stderr) 28 writer = ParallelStreamWriter(stream, msg) 29 30 for obj in objects: 31 writer.initialize(index_func(obj)) 32 33 q = Queue() 34 35 # TODO: limit the number of threads #1828 36 for obj in objects: 37 t = Thread( 38 target=perform_operation, 39 args=(func, obj, q.put, index_func(obj))) 40 t.daemon = True 41 t.start() 42 43 done = 0 44 errors = {} 45 46 while done < len(objects): 47 try: 48 msg_index, result = q.get(timeout=1) 49 except Empty: 50 continue 51 52 if isinstance(result, APIError): 53 errors[msg_index] = "error", result.explanation 54 writer.write(msg_index, 'error') 55 elif isinstance(result, Exception): 56 errors[msg_index] = "unexpected_exception", result 57 else: 58 writer.write(msg_index, 'done') 59 done += 1 60 61 if not errors: 62 return 63 64 stream.write("\n") 65 for msg_index, (result, error) in errors.items(): 66 stream.write("ERROR: for {} {} \n".format(msg_index, error)) 67 if result == 'unexpected_exception': 68 raise error 69 70 71 class ParallelStreamWriter(object): 72 """Write out messages for operations happening in parallel. 73 74 Each operation has it's own line, and ANSI code characters are used 75 to jump to the correct line, and write over the line. 76 """ 77 78 def __init__(self, stream, msg): 79 self.stream = stream 80 self.msg = msg 81 self.lines = [] 82 83 def initialize(self, obj_index): 84 self.lines.append(obj_index) 85 self.stream.write("{} {} ... \r\n".format(self.msg, obj_index)) 86 self.stream.flush() 87 88 def write(self, obj_index, status): 89 position = self.lines.index(obj_index) 90 diff = len(self.lines) - position 91 # move up 92 self.stream.write("%c[%dA" % (27, diff)) 93 # erase 94 self.stream.write("%c[2K\r" % 27) 95 self.stream.write("{} {} ... {}\r".format(self.msg, obj_index, status)) 96 # move back down 97 self.stream.write("%c[%dB" % (27, diff)) 98 self.stream.flush() 99 100 101 def parallel_operation(containers, operation, options, message): 102 parallel_execute( 103 containers, 104 operator.methodcaller(operation, **options), 105 operator.attrgetter('name'), 106 message) 107 108 109 def parallel_remove(containers, options): 110 stopped_containers = [c for c in containers if not c.is_running] 111 parallel_operation(stopped_containers, 'remove', options, 'Removing') 112 113 114 def parallel_stop(containers, options): 115 parallel_operation(containers, 'stop', options, 'Stopping') 116 117 118 def parallel_start(containers, options): 119 parallel_operation(containers, 'start', options, 'Starting') 120 121 122 def parallel_pause(containers, options): 123 parallel_operation(containers, 'pause', options, 'Pausing') 124 125 126 def parallel_unpause(containers, options): 127 parallel_operation(containers, 'unpause', options, 'Unpausing') 128 129 130 def parallel_kill(containers, options): 131 parallel_operation(containers, 'kill', options, 'Killing') 132 133 134 def parallel_restart(containers, options): 135 parallel_operation(containers, 'restart', options, 'Restarting') 136 [end of compose/parallel.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
docker/compose
768460483089f2f712f32eb859c95d1ba30fdc0e
Pyinstaller has issues with signals There's a bunch of history in #1040 and #2055. We've tried multiple implementations of signal handlers, but each has their own set of issues, but **ONLY** when run from the frozen binary created by pyinstaller. It looks like there is a very old issue in pyinstaller around this: https://github.com/pyinstaller/pyinstaller/issues/208 These problems can manifest in three ways: - a `thread.error` when a signal interrupts a thread lock - the signal handlers being completely ignored and raising a `KeynoardInterupt` instead - the signal handlers being registered but the try/except to handle the except is skipped (this could be caused by the signal firing multiple times for a single `ctrl-c`, but I can't really verify that's what is happening)
https://github.com/pyinstaller/pyinstaller/pull/1822 seems to fix it! We could run my patched version to build the binaries if they don't want to accept the patch upstream. I'll prepare a PR so it can be tested on OSX. It looks like the windows branch uses a completely different function, so there should be no impact on windows. Having just upgraded to 1.6.1, I'm now hitting this most of the time. It's an irregular behaviour: sometimes CTRL-C stops the container, some times it aborts. Quite an annoying bug, leaving containers running in the background when I wasn't aware of it!
2016-03-01T21:46:06Z
<patch> diff --git a/compose/cli/main.py b/compose/cli/main.py --- a/compose/cli/main.py +++ b/compose/cli/main.py @@ -54,7 +54,7 @@ def main(): try: command = TopLevelCommand() command.sys_dispatch() - except KeyboardInterrupt: + except (KeyboardInterrupt, signals.ShutdownException): log.error("Aborting.") sys.exit(1) except (UserError, NoSuchService, ConfigurationError) as e: diff --git a/compose/cli/multiplexer.py b/compose/cli/multiplexer.py --- a/compose/cli/multiplexer.py +++ b/compose/cli/multiplexer.py @@ -10,6 +10,7 @@ except ImportError: from queue import Queue, Empty # Python 3.x +from compose.cli.signals import ShutdownException STOP = object() @@ -47,7 +48,7 @@ def loop(self): pass # See https://github.com/docker/compose/issues/189 except thread.error: - raise KeyboardInterrupt() + raise ShutdownException() def _init_readers(self): for iterator in self.iterators: diff --git a/compose/parallel.py b/compose/parallel.py --- a/compose/parallel.py +++ b/compose/parallel.py @@ -6,9 +6,11 @@ from threading import Thread from docker.errors import APIError +from six.moves import _thread as thread from six.moves.queue import Empty from six.moves.queue import Queue +from compose.cli.signals import ShutdownException from compose.utils import get_output_stream @@ -26,19 +28,7 @@ def parallel_execute(objects, func, index_func, msg): objects = list(objects) stream = get_output_stream(sys.stderr) writer = ParallelStreamWriter(stream, msg) - - for obj in objects: - writer.initialize(index_func(obj)) - - q = Queue() - - # TODO: limit the number of threads #1828 - for obj in objects: - t = Thread( - target=perform_operation, - args=(func, obj, q.put, index_func(obj))) - t.daemon = True - t.start() + q = setup_queue(writer, objects, func, index_func) done = 0 errors = {} @@ -48,6 +38,9 @@ def parallel_execute(objects, func, index_func, msg): msg_index, result = q.get(timeout=1) except Empty: continue + # See https://github.com/docker/compose/issues/189 + except thread.error: + raise ShutdownException() if isinstance(result, APIError): errors[msg_index] = "error", result.explanation @@ -68,6 +61,23 @@ def parallel_execute(objects, func, index_func, msg): raise error +def setup_queue(writer, objects, func, index_func): + for obj in objects: + writer.initialize(index_func(obj)) + + q = Queue() + + # TODO: limit the number of threads #1828 + for obj in objects: + t = Thread( + target=perform_operation, + args=(func, obj, q.put, index_func(obj))) + t.daemon = True + t.start() + + return q + + class ParallelStreamWriter(object): """Write out messages for operations happening in parallel. </patch>
[]
[]
googleapis__google-cloud-python-10162
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> BigQuery: raise a `TypeError` if a dictionary is passed to `insert_rows_json` **Is your feature request related to a problem? Please describe.** If I want to only insert a single row at a time into a table, it's easy to accidentally try something like: ```python json_row = {"col1": "hello", "col2": "world"} errors = client.insert_rows_json( table, json_row ) ``` This results in a `400 BadRequest` error from the API, because it expects a list of rows, not a single row. **Describe the solution you'd like** It's difficult to debug this situation from the API response, so it'd be better if we raised a client-side error for passing in the wrong type for `json_rows`. **Describe alternatives you've considered** Leave as-is and request a better server-side message. This may be difficult to do, as the error happens at a level above BigQuery, which translates JSON to Protobuf for internal use. **Additional context** This issue was encountered by a customer engineer, and it took me a bit of debugging to figure out the actual issue. I expect other customers will encounter this problem as well. </issue> <code> [start of README.rst] 1 Google Cloud Python Client 2 ========================== 3 4 Python idiomatic clients for `Google Cloud Platform`_ services. 5 6 .. _Google Cloud Platform: https://cloud.google.com/ 7 8 **Heads up**! These libraries are supported on App Engine standard's `Python 3 runtime`_ but are *not* supported on App Engine's `Python 2 runtime`_. 9 10 .. _Python 3 runtime: https://cloud.google.com/appengine/docs/standard/python3 11 .. _Python 2 runtime: https://cloud.google.com/appengine/docs/standard/python 12 13 General Availability 14 -------------------- 15 16 **GA** (general availability) indicates that the client library for a 17 particular service is stable, and that the code surface will not change in 18 backwards-incompatible ways unless either absolutely necessary (e.g. because 19 of critical security issues) or with an extensive deprecation period. 20 Issues and requests against GA libraries are addressed with the highest 21 priority. 22 23 .. note:: 24 25 Sub-components of GA libraries explicitly marked as beta in the 26 import path (e.g. ``google.cloud.language_v1beta2``) should be considered 27 to be beta. 28 29 The following client libraries have **GA** support: 30 31 - `Google BigQuery`_ (`BigQuery README`_, `BigQuery Documentation`_) 32 - `Google Cloud Bigtable`_ (`Bigtable README`_, `Bigtable Documentation`_) 33 - `Google Cloud Datastore`_ (`Datastore README`_, `Datastore Documentation`_) 34 - `Google Cloud KMS`_ (`KMS README`_, `KMS Documentation`_) 35 - `Google Cloud Natural Language`_ (`Natural Language README`_, `Natural Language Documentation`_) 36 - `Google Cloud Pub/Sub`_ (`Pub/Sub README`_, `Pub/Sub Documentation`_) 37 - `Google Cloud Scheduler`_ (`Scheduler README`_, `Scheduler Documentation`_) 38 - `Google Cloud Spanner`_ (`Spanner README`_, `Spanner Documentation`_) 39 - `Google Cloud Speech to Text`_ (`Speech to Text README`_, `Speech to Text Documentation`_) 40 - `Google Cloud Storage`_ (`Storage README`_, `Storage Documentation`_) 41 - `Google Cloud Tasks`_ (`Tasks README`_, `Tasks Documentation`_) 42 - `Google Cloud Translation`_ (`Translation README`_, `Translation Documentation`_) 43 - `Stackdriver Logging`_ (`Logging README`_, `Logging Documentation`_) 44 45 .. _Google BigQuery: https://pypi.org/project/google-cloud-bigquery/ 46 .. _BigQuery README: https://github.com/googleapis/google-cloud-python/tree/master/bigquery 47 .. _BigQuery Documentation: https://googleapis.dev/python/bigquery/latest 48 49 .. _Google Cloud Bigtable: https://pypi.org/project/google-cloud-bigtable/ 50 .. _Bigtable README: https://github.com/googleapis/google-cloud-python/tree/master/bigtable 51 .. _Bigtable Documentation: https://googleapis.dev/python/bigtable/latest 52 53 .. _Google Cloud Datastore: https://pypi.org/project/google-cloud-datastore/ 54 .. _Datastore README: https://github.com/googleapis/google-cloud-python/tree/master/datastore 55 .. _Datastore Documentation: https://googleapis.dev/python/datastore/latest 56 57 .. _Google Cloud KMS: https://pypi.org/project/google-cloud-kms/ 58 .. _KMS README: https://github.com/googleapis/google-cloud-python/tree/master/kms 59 .. _KMS Documentation: https://googleapis.dev/python/cloudkms/latest 60 61 .. _Google Cloud Natural Language: https://pypi.org/project/google-cloud-language/ 62 .. _Natural Language README: https://github.com/googleapis/google-cloud-python/tree/master/language 63 .. _Natural Language Documentation: https://googleapis.dev/python/language/latest 64 65 .. _Google Cloud Pub/Sub: https://pypi.org/project/google-cloud-pubsub/ 66 .. _Pub/Sub README: https://github.com/googleapis/google-cloud-python/tree/master/pubsub 67 .. _Pub/Sub Documentation: https://googleapis.dev/python/pubsub/latest 68 69 .. _Google Cloud Spanner: https://pypi.org/project/google-cloud-spanner 70 .. _Spanner README: https://github.com/googleapis/google-cloud-python/tree/master/spanner 71 .. _Spanner Documentation: https://googleapis.dev/python/spanner/latest 72 73 .. _Google Cloud Speech to Text: https://pypi.org/project/google-cloud-speech/ 74 .. _Speech to Text README: https://github.com/googleapis/google-cloud-python/tree/master/speech 75 .. _Speech to Text Documentation: https://googleapis.dev/python/speech/latest 76 77 .. _Google Cloud Storage: https://pypi.org/project/google-cloud-storage/ 78 .. _Storage README: https://github.com/googleapis/google-cloud-python/tree/master/storage 79 .. _Storage Documentation: https://googleapis.dev/python/storage/latest 80 81 .. _Google Cloud Tasks: https://pypi.org/project/google-cloud-tasks/ 82 .. _Tasks README: https://github.com/googleapis/google-cloud-python/tree/master/tasks 83 .. _Tasks Documentation: https://googleapis.dev/python/cloudtasks/latest 84 85 .. _Google Cloud Translation: https://pypi.org/project/google-cloud-translate/ 86 .. _Translation README: https://github.com/googleapis/google-cloud-python/tree/master/translate 87 .. _Translation Documentation: https://googleapis.dev/python/translation/latest 88 89 .. _Google Cloud Scheduler: https://pypi.org/project/google-cloud-scheduler/ 90 .. _Scheduler README: https://github.com/googleapis/google-cloud-python/tree/master/scheduler 91 .. _Scheduler Documentation: https://googleapis.dev/python/cloudscheduler/latest 92 93 .. _Stackdriver Logging: https://pypi.org/project/google-cloud-logging/ 94 .. _Logging README: https://github.com/googleapis/google-cloud-python/tree/master/logging 95 .. _Logging Documentation: https://googleapis.dev/python/logging/latest 96 97 Beta Support 98 ------------ 99 100 **Beta** indicates that the client library for a particular service is 101 mostly stable and is being prepared for release. Issues and requests 102 against beta libraries are addressed with a higher priority. 103 104 The following client libraries have **beta** support: 105 106 - `Google Cloud Billing Budgets`_ (`Billing Budgets README`_, `Billing Budgets Documentation`_) 107 - `Google Cloud Data Catalog`_ (`Data Catalog README`_, `Data Catalog Documentation`_) 108 - `Google Cloud Firestore`_ (`Firestore README`_, `Firestore Documentation`_) 109 - `Google Cloud Video Intelligence`_ (`Video Intelligence README`_, `Video Intelligence Documentation`_) 110 - `Google Cloud Vision`_ (`Vision README`_, `Vision Documentation`_) 111 112 .. _Google Cloud Billing Budgets: https://pypi.org/project/google-cloud-billing-budgets/ 113 .. _Billing Budgets README: https://github.com/googleapis/google-cloud-python/tree/master/billingbudgets 114 .. _Billing Budgets Documentation: https://googleapis.dev/python/billingbudgets/latest 115 116 .. _Google Cloud Data Catalog: https://pypi.org/project/google-cloud-datacatalog/ 117 .. _Data Catalog README: https://github.com/googleapis/google-cloud-python/tree/master/datacatalog 118 .. _Data Catalog Documentation: https://googleapis.dev/python/datacatalog/latest 119 120 .. _Google Cloud Firestore: https://pypi.org/project/google-cloud-firestore/ 121 .. _Firestore README: https://github.com/googleapis/google-cloud-python/tree/master/firestore 122 .. _Firestore Documentation: https://googleapis.dev/python/firestore/latest 123 124 .. _Google Cloud Video Intelligence: https://pypi.org/project/google-cloud-videointelligence 125 .. _Video Intelligence README: https://github.com/googleapis/google-cloud-python/tree/master/videointelligence 126 .. _Video Intelligence Documentation: https://googleapis.dev/python/videointelligence/latest 127 128 .. _Google Cloud Vision: https://pypi.org/project/google-cloud-vision/ 129 .. _Vision README: https://github.com/googleapis/google-cloud-python/tree/master/vision 130 .. _Vision Documentation: https://googleapis.dev/python/vision/latest 131 132 133 Alpha Support 134 ------------- 135 136 **Alpha** indicates that the client library for a particular service is 137 still a work-in-progress and is more likely to get backwards-incompatible 138 updates. See `versioning`_ for more details. 139 140 The following client libraries have **alpha** support: 141 142 - `Google Cloud Asset`_ (`Asset README`_, `Asset Documentation`_) 143 - `Google Cloud AutoML`_ (`AutoML README`_, `AutoML Documentation`_) 144 - `Google BigQuery Data Transfer`_ (`BigQuery Data Transfer README`_, `BigQuery Documentation`_) 145 - `Google Cloud Bigtable - HappyBase`_ (`HappyBase README`_, `HappyBase Documentation`_) 146 - `Google Cloud Build`_ (`Cloud Build README`_, `Cloud Build Documentation`_) 147 - `Google Cloud Container`_ (`Container README`_, `Container Documentation`_) 148 - `Google Cloud Container Analysis`_ (`Container Analysis README`_, `Container Analysis Documentation`_) 149 - `Google Cloud Dataproc`_ (`Dataproc README`_, `Dataproc Documentation`_) 150 - `Google Cloud DLP`_ (`DLP README`_, `DLP Documentation`_) 151 - `Google Cloud DNS`_ (`DNS README`_, `DNS Documentation`_) 152 - `Google Cloud IoT`_ (`IoT README`_, `IoT Documentation`_) 153 - `Google Cloud Memorystore for Redis`_ (`Redis README`_, `Redis Documentation`_) 154 - `Google Cloud Recommender`_ (`Recommender README`_, `Recommender Documentation`_) 155 - `Google Cloud Resource Manager`_ (`Resource Manager README`_, `Resource Manager Documentation`_) 156 - `Google Cloud Runtime Configuration`_ (`Runtime Config README`_, `Runtime Config Documentation`_) 157 - `Google Cloud Security Scanner`_ (`Security Scanner README`_ , `Security Scanner Documentation`_) 158 - `Google Cloud Trace`_ (`Trace README`_, `Trace Documentation`_) 159 - `Google Cloud Text-to-Speech`_ (`Text-to-Speech README`_, `Text-to-Speech Documentation`_) 160 - `Grafeas`_ (`Grafeas README`_, `Grafeas Documentation`_) 161 - `Stackdriver Error Reporting`_ (`Error Reporting README`_, `Error Reporting Documentation`_) 162 - `Stackdriver Monitoring`_ (`Monitoring README`_, `Monitoring Documentation`_) 163 164 .. _Google Cloud Asset: https://pypi.org/project/google-cloud-asset/ 165 .. _Asset README: https://github.com/googleapis/google-cloud-python/blob/master/asset 166 .. _Asset Documentation: https://googleapis.dev/python/cloudasset/latest 167 168 .. _Google Cloud AutoML: https://pypi.org/project/google-cloud-automl/ 169 .. _AutoML README: https://github.com/googleapis/google-cloud-python/blob/master/automl 170 .. _AutoML Documentation: https://googleapis.dev/python/automl/latest 171 172 .. _Google BigQuery Data Transfer: https://pypi.org/project/google-cloud-bigquery-datatransfer/ 173 .. _BigQuery Data Transfer README: https://github.com/googleapis/google-cloud-python/tree/master/bigquery_datatransfer 174 .. _BigQuery Documentation: https://googleapis.dev/python/bigquery/latest 175 176 .. _Google Cloud Bigtable - HappyBase: https://pypi.org/project/google-cloud-happybase/ 177 .. _HappyBase README: https://github.com/googleapis/google-cloud-python-happybase 178 .. _HappyBase Documentation: https://google-cloud-python-happybase.readthedocs.io/en/latest/ 179 180 .. _Google Cloud Build: https://pypi.org/project/google-cloud-build/ 181 .. _Cloud Build README: https://github.com/googleapis/google-cloud-python/cloudbuild 182 .. _Cloud Build Documentation: https://googleapis.dev/python/cloudbuild/latest 183 184 .. _Google Cloud Container: https://pypi.org/project/google-cloud-container/ 185 .. _Container README: https://github.com/googleapis/google-cloud-python/tree/master/container 186 .. _Container Documentation: https://googleapis.dev/python/container/latest 187 188 .. _Google Cloud Container Analysis: https://pypi.org/project/google-cloud-containeranalysis/ 189 .. _Container Analysis README: https://github.com/googleapis/google-cloud-python/tree/master/containeranalysis 190 .. _Container Analysis Documentation: https://googleapis.dev/python/containeranalysis/latest 191 192 .. _Google Cloud Dataproc: https://pypi.org/project/google-cloud-dataproc/ 193 .. _Dataproc README: https://github.com/googleapis/google-cloud-python/tree/master/dataproc 194 .. _Dataproc Documentation: https://googleapis.dev/python/dataproc/latest 195 196 .. _Google Cloud DLP: https://pypi.org/project/google-cloud-dlp/ 197 .. _DLP README: https://github.com/googleapis/google-cloud-python/tree/master/dlp 198 .. _DLP Documentation: https://googleapis.dev/python/dlp/latest 199 200 .. _Google Cloud DNS: https://pypi.org/project/google-cloud-dns/ 201 .. _DNS README: https://github.com/googleapis/google-cloud-python/tree/master/dns 202 .. _DNS Documentation: https://googleapis.dev/python/dns/latest 203 204 .. _Google Cloud IoT: https://pypi.org/project/google-cloud-iot/ 205 .. _IoT README: https://github.com/googleapis/google-cloud-python/tree/master/iot 206 .. _IoT Documentation: https://googleapis.dev/python/cloudiot/latest 207 208 .. _Google Cloud Memorystore for Redis: https://pypi.org/project/google-cloud-redis/ 209 .. _Redis README: https://github.com/googleapis/google-cloud-python/tree/master/redis 210 .. _Redis Documentation: https://googleapis.dev/python/redis/latest 211 212 .. _Google Cloud Recommender: https://pypi.org/project/google-cloud-recommender/ 213 .. _Recommender README: https://github.com/googleapis/google-cloud-python/tree/master/recommender 214 .. _Recommender Documentation: https://googleapis.dev/python/recommender/latest 215 216 .. _Google Cloud Resource Manager: https://pypi.org/project/google-cloud-resource-manager/ 217 .. _Resource Manager README: https://github.com/googleapis/google-cloud-python/tree/master/resource_manager 218 .. _Resource Manager Documentation: https://googleapis.dev/python/cloudresourcemanager/latest 219 220 .. _Google Cloud Runtime Configuration: https://pypi.org/project/google-cloud-runtimeconfig/ 221 .. _Runtime Config README: https://github.com/googleapis/google-cloud-python/tree/master/runtimeconfig 222 .. _Runtime Config Documentation: https://googleapis.dev/python/runtimeconfig/latest 223 224 .. _Google Cloud Security Scanner: https://pypi.org/project/google-cloud-websecurityscanner/ 225 .. _Security Scanner README: https://github.com/googleapis/google-cloud-python/blob/master/websecurityscanner 226 .. _Security Scanner Documentation: https://googleapis.dev/python/websecurityscanner/latest 227 228 .. _Google Cloud Text-to-Speech: https://pypi.org/project/google-cloud-texttospeech/ 229 .. _Text-to-Speech README: https://github.com/googleapis/google-cloud-python/tree/master/texttospeech 230 .. _Text-to-Speech Documentation: https://googleapis.dev/python/texttospeech/latest 231 232 .. _Google Cloud Trace: https://pypi.org/project/google-cloud-trace/ 233 .. _Trace README: https://github.com/googleapis/google-cloud-python/tree/master/trace 234 .. _Trace Documentation: https://googleapis.dev/python/cloudtrace/latest 235 236 .. _Grafeas: https://pypi.org/project/grafeas/ 237 .. _Grafeas README: https://github.com/googleapis/google-cloud-python/tree/master/grafeas 238 .. _Grafeas Documentation: https://googleapis.dev/python/grafeas/latest 239 240 .. _Stackdriver Error Reporting: https://pypi.org/project/google-cloud-error-reporting/ 241 .. _Error Reporting README: https://github.com/googleapis/google-cloud-python/tree/master/error_reporting 242 .. _Error Reporting Documentation: https://googleapis.dev/python/clouderrorreporting/latest 243 244 .. _Stackdriver Monitoring: https://pypi.org/project/google-cloud-monitoring/ 245 .. _Monitoring README: https://github.com/googleapis/google-cloud-python/tree/master/monitoring 246 .. _Monitoring Documentation: https://googleapis.dev/python/monitoring/latest 247 248 .. _versioning: https://github.com/googleapis/google-cloud-python/blob/master/CONTRIBUTING.rst#versioning 249 250 If you need support for other Google APIs, check out the 251 `Google APIs Python Client library`_. 252 253 .. _Google APIs Python Client library: https://github.com/google/google-api-python-client 254 255 256 Example Applications 257 -------------------- 258 259 - `getting-started-python`_ - A sample and `tutorial`_ that demonstrates how to build a complete web application using Cloud Datastore, Cloud Storage, and Cloud Pub/Sub and deploy it to Google App Engine or Google Compute Engine. 260 - `google-cloud-python-expenses-demo`_ - A sample expenses demo using Cloud Datastore and Cloud Storage 261 262 .. _getting-started-python: https://github.com/GoogleCloudPlatform/getting-started-python 263 .. _tutorial: https://cloud.google.com/python 264 .. _google-cloud-python-expenses-demo: https://github.com/GoogleCloudPlatform/google-cloud-python-expenses-demo 265 266 267 Authentication 268 -------------- 269 270 With ``google-cloud-python`` we try to make authentication as painless as possible. 271 Check out the `Authentication section`_ in our documentation to learn more. 272 You may also find the `authentication document`_ shared by all the 273 ``google-cloud-*`` libraries to be helpful. 274 275 .. _Authentication section: https://googleapis.dev/python/google-api-core/latest/auth.html 276 .. _authentication document: https://github.com/googleapis/google-cloud-common/tree/master/authentication 277 278 Contributing 279 ------------ 280 281 Contributions to this library are always welcome and highly encouraged. 282 283 See the `CONTRIBUTING doc`_ for more information on how to get started. 284 285 .. _CONTRIBUTING doc: https://github.com/googleapis/google-cloud-python/blob/master/CONTRIBUTING.rst 286 287 288 Community 289 --------- 290 291 Google Cloud Platform Python developers hang out in `Slack`_ in the ``#python`` 292 channel, click here to `get an invitation`_. 293 294 .. _Slack: https://googlecloud-community.slack.com 295 .. _get an invitation: https://gcp-slack.appspot.com/ 296 297 298 License 299 ------- 300 301 Apache 2.0 - See `the LICENSE`_ for more information. 302 303 .. _the LICENSE: https://github.com/googleapis/google-cloud-python/blob/master/LICENSE 304 [end of README.rst] [start of bigquery/google/cloud/bigquery/client.py] 1 # Copyright 2015 Google LLC 2 # 3 # Licensed under the Apache License, Version 2.0 (the "License"); 4 # you may not use this file except in compliance with the License. 5 # You may obtain a copy of the License at 6 # 7 # http://www.apache.org/licenses/LICENSE-2.0 8 # 9 # Unless required by applicable law or agreed to in writing, software 10 # distributed under the License is distributed on an "AS IS" BASIS, 11 # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 12 # See the License for the specific language governing permissions and 13 # limitations under the License. 14 15 """Client for interacting with the Google BigQuery API.""" 16 17 from __future__ import absolute_import 18 from __future__ import division 19 20 try: 21 from collections import abc as collections_abc 22 except ImportError: # Python 2.7 23 import collections as collections_abc 24 25 import concurrent.futures 26 import copy 27 import functools 28 import gzip 29 import io 30 import itertools 31 import json 32 import math 33 import os 34 import tempfile 35 import uuid 36 import warnings 37 38 try: 39 import pyarrow 40 except ImportError: # pragma: NO COVER 41 pyarrow = None 42 import six 43 44 from google import resumable_media 45 from google.resumable_media.requests import MultipartUpload 46 from google.resumable_media.requests import ResumableUpload 47 48 import google.api_core.client_options 49 import google.api_core.exceptions 50 from google.api_core import page_iterator 51 from google.auth.transport.requests import TimeoutGuard 52 import google.cloud._helpers 53 from google.cloud import exceptions 54 from google.cloud.client import ClientWithProject 55 56 from google.cloud.bigquery._helpers import _record_field_to_json 57 from google.cloud.bigquery._helpers import _str_or_none 58 from google.cloud.bigquery._helpers import _verify_job_config_type 59 from google.cloud.bigquery._http import Connection 60 from google.cloud.bigquery import _pandas_helpers 61 from google.cloud.bigquery.dataset import Dataset 62 from google.cloud.bigquery.dataset import DatasetListItem 63 from google.cloud.bigquery.dataset import DatasetReference 64 from google.cloud.bigquery import job 65 from google.cloud.bigquery.model import Model 66 from google.cloud.bigquery.model import ModelReference 67 from google.cloud.bigquery.query import _QueryResults 68 from google.cloud.bigquery.retry import DEFAULT_RETRY 69 from google.cloud.bigquery.routine import Routine 70 from google.cloud.bigquery.routine import RoutineReference 71 from google.cloud.bigquery.schema import SchemaField 72 from google.cloud.bigquery.table import _table_arg_to_table 73 from google.cloud.bigquery.table import _table_arg_to_table_ref 74 from google.cloud.bigquery.table import Table 75 from google.cloud.bigquery.table import TableListItem 76 from google.cloud.bigquery.table import TableReference 77 from google.cloud.bigquery.table import RowIterator 78 79 80 _DEFAULT_CHUNKSIZE = 1048576 # 1024 * 1024 B = 1 MB 81 _MAX_MULTIPART_SIZE = 5 * 1024 * 1024 82 _DEFAULT_NUM_RETRIES = 6 83 _BASE_UPLOAD_TEMPLATE = ( 84 u"https://bigquery.googleapis.com/upload/bigquery/v2/projects/" 85 u"{project}/jobs?uploadType=" 86 ) 87 _MULTIPART_URL_TEMPLATE = _BASE_UPLOAD_TEMPLATE + u"multipart" 88 _RESUMABLE_URL_TEMPLATE = _BASE_UPLOAD_TEMPLATE + u"resumable" 89 _GENERIC_CONTENT_TYPE = u"*/*" 90 _READ_LESS_THAN_SIZE = ( 91 "Size {:d} was specified but the file-like object only had " "{:d} bytes remaining." 92 ) 93 _NEED_TABLE_ARGUMENT = ( 94 "The table argument should be a table ID string, Table, or TableReference" 95 ) 96 97 98 class Project(object): 99 """Wrapper for resource describing a BigQuery project. 100 101 Args: 102 project_id (str): Opaque ID of the project 103 104 numeric_id (int): Numeric ID of the project 105 106 friendly_name (str): Display name of the project 107 """ 108 109 def __init__(self, project_id, numeric_id, friendly_name): 110 self.project_id = project_id 111 self.numeric_id = numeric_id 112 self.friendly_name = friendly_name 113 114 @classmethod 115 def from_api_repr(cls, resource): 116 """Factory: construct an instance from a resource dict.""" 117 return cls(resource["id"], resource["numericId"], resource["friendlyName"]) 118 119 120 class Client(ClientWithProject): 121 """Client to bundle configuration needed for API requests. 122 123 Args: 124 project (str): 125 Project ID for the project which the client acts on behalf of. 126 Will be passed when creating a dataset / job. If not passed, 127 falls back to the default inferred from the environment. 128 credentials (google.auth.credentials.Credentials): 129 (Optional) The OAuth2 Credentials to use for this client. If not 130 passed (and if no ``_http`` object is passed), falls back to the 131 default inferred from the environment. 132 _http (requests.Session): 133 (Optional) HTTP object to make requests. Can be any object that 134 defines ``request()`` with the same interface as 135 :meth:`requests.Session.request`. If not passed, an ``_http`` 136 object is created that is bound to the ``credentials`` for the 137 current object. 138 This parameter should be considered private, and could change in 139 the future. 140 location (str): 141 (Optional) Default location for jobs / datasets / tables. 142 default_query_job_config (google.cloud.bigquery.job.QueryJobConfig): 143 (Optional) Default ``QueryJobConfig``. 144 Will be merged into job configs passed into the ``query`` method. 145 client_info (google.api_core.client_info.ClientInfo): 146 The client info used to send a user-agent string along with API 147 requests. If ``None``, then default info will be used. Generally, 148 you only need to set this if you're developing your own library 149 or partner tool. 150 client_options (Union[google.api_core.client_options.ClientOptions, Dict]): 151 (Optional) Client options used to set user options on the client. 152 API Endpoint should be set through client_options. 153 154 Raises: 155 google.auth.exceptions.DefaultCredentialsError: 156 Raised if ``credentials`` is not specified and the library fails 157 to acquire default credentials. 158 """ 159 160 SCOPE = ( 161 "https://www.googleapis.com/auth/bigquery", 162 "https://www.googleapis.com/auth/cloud-platform", 163 ) 164 """The scopes required for authenticating as a BigQuery consumer.""" 165 166 def __init__( 167 self, 168 project=None, 169 credentials=None, 170 _http=None, 171 location=None, 172 default_query_job_config=None, 173 client_info=None, 174 client_options=None, 175 ): 176 super(Client, self).__init__( 177 project=project, credentials=credentials, _http=_http 178 ) 179 180 kw_args = {"client_info": client_info} 181 if client_options: 182 if type(client_options) == dict: 183 client_options = google.api_core.client_options.from_dict( 184 client_options 185 ) 186 if client_options.api_endpoint: 187 api_endpoint = client_options.api_endpoint 188 kw_args["api_endpoint"] = api_endpoint 189 190 self._connection = Connection(self, **kw_args) 191 self._location = location 192 self._default_query_job_config = copy.deepcopy(default_query_job_config) 193 194 @property 195 def location(self): 196 """Default location for jobs / datasets / tables.""" 197 return self._location 198 199 def close(self): 200 """Close the underlying transport objects, releasing system resources. 201 202 .. note:: 203 204 The client instance can be used for making additional requests even 205 after closing, in which case the underlying connections are 206 automatically re-created. 207 """ 208 self._http._auth_request.session.close() 209 self._http.close() 210 211 def get_service_account_email( 212 self, project=None, retry=DEFAULT_RETRY, timeout=None 213 ): 214 """Get the email address of the project's BigQuery service account 215 216 Note: 217 This is the service account that BigQuery uses to manage tables 218 encrypted by a key in KMS. 219 220 Args: 221 project (str, optional): 222 Project ID to use for retreiving service account email. 223 Defaults to the client's project. 224 retry (Optional[google.api_core.retry.Retry]): How to retry the RPC. 225 timeout (Optional[float]): 226 The number of seconds to wait for the underlying HTTP transport 227 before using ``retry``. 228 229 Returns: 230 str: service account email address 231 232 Example: 233 234 >>> from google.cloud import bigquery 235 >>> client = bigquery.Client() 236 >>> client.get_service_account_email() 237 [email protected] 238 239 """ 240 if project is None: 241 project = self.project 242 path = "/projects/%s/serviceAccount" % (project,) 243 244 api_response = self._call_api(retry, method="GET", path=path, timeout=timeout) 245 return api_response["email"] 246 247 def list_projects( 248 self, max_results=None, page_token=None, retry=DEFAULT_RETRY, timeout=None 249 ): 250 """List projects for the project associated with this client. 251 252 See 253 https://cloud.google.com/bigquery/docs/reference/rest/v2/projects/list 254 255 Args: 256 max_results (int): 257 (Optional) maximum number of projects to return, 258 If not passed, defaults to a value set by the API. 259 260 page_token (str): 261 (Optional) Token representing a cursor into the projects. If 262 not passed, the API will return the first page of projects. 263 The token marks the beginning of the iterator to be returned 264 and the value of the ``page_token`` can be accessed at 265 ``next_page_token`` of the 266 :class:`~google.api_core.page_iterator.HTTPIterator`. 267 268 retry (google.api_core.retry.Retry): (Optional) How to retry the RPC. 269 270 timeout (Optional[float]): 271 The number of seconds to wait for the underlying HTTP transport 272 before using ``retry``. 273 274 Returns: 275 google.api_core.page_iterator.Iterator: 276 Iterator of :class:`~google.cloud.bigquery.client.Project` 277 accessible to the current client. 278 """ 279 return page_iterator.HTTPIterator( 280 client=self, 281 api_request=functools.partial(self._call_api, retry, timeout=timeout), 282 path="/projects", 283 item_to_value=_item_to_project, 284 items_key="projects", 285 page_token=page_token, 286 max_results=max_results, 287 ) 288 289 def list_datasets( 290 self, 291 project=None, 292 include_all=False, 293 filter=None, 294 max_results=None, 295 page_token=None, 296 retry=DEFAULT_RETRY, 297 timeout=None, 298 ): 299 """List datasets for the project associated with this client. 300 301 See 302 https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list 303 304 Args: 305 project (str): 306 Optional. Project ID to use for retreiving datasets. Defaults 307 to the client's project. 308 include_all (bool): 309 Optional. True if results include hidden datasets. Defaults 310 to False. 311 filter (str): 312 Optional. An expression for filtering the results by label. 313 For syntax, see 314 https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/list#body.QUERY_PARAMETERS.filter 315 max_results (int): 316 Optional. Maximum number of datasets to return. 317 page_token (str): 318 Optional. Token representing a cursor into the datasets. If 319 not passed, the API will return the first page of datasets. 320 The token marks the beginning of the iterator to be returned 321 and the value of the ``page_token`` can be accessed at 322 ``next_page_token`` of the 323 :class:`~google.api_core.page_iterator.HTTPIterator`. 324 retry (google.api_core.retry.Retry): 325 Optional. How to retry the RPC. 326 timeout (Optional[float]): 327 The number of seconds to wait for the underlying HTTP transport 328 before using ``retry``. 329 330 Returns: 331 google.api_core.page_iterator.Iterator: 332 Iterator of :class:`~google.cloud.bigquery.dataset.DatasetListItem`. 333 associated with the project. 334 """ 335 extra_params = {} 336 if project is None: 337 project = self.project 338 if include_all: 339 extra_params["all"] = True 340 if filter: 341 # TODO: consider supporting a dict of label -> value for filter, 342 # and converting it into a string here. 343 extra_params["filter"] = filter 344 path = "/projects/%s/datasets" % (project,) 345 return page_iterator.HTTPIterator( 346 client=self, 347 api_request=functools.partial(self._call_api, retry, timeout=timeout), 348 path=path, 349 item_to_value=_item_to_dataset, 350 items_key="datasets", 351 page_token=page_token, 352 max_results=max_results, 353 extra_params=extra_params, 354 ) 355 356 def dataset(self, dataset_id, project=None): 357 """Construct a reference to a dataset. 358 359 Args: 360 dataset_id (str): ID of the dataset. 361 362 project (str): 363 (Optional) project ID for the dataset (defaults to 364 the project of the client). 365 366 Returns: 367 google.cloud.bigquery.dataset.DatasetReference: 368 a new ``DatasetReference`` instance. 369 """ 370 if project is None: 371 project = self.project 372 373 return DatasetReference(project, dataset_id) 374 375 def _create_bqstorage_client(self): 376 """Create a BigQuery Storage API client using this client's credentials. 377 378 Returns: 379 google.cloud.bigquery_storage_v1beta1.BigQueryStorageClient: 380 A BigQuery Storage API client. 381 """ 382 from google.cloud import bigquery_storage_v1beta1 383 384 return bigquery_storage_v1beta1.BigQueryStorageClient( 385 credentials=self._credentials 386 ) 387 388 def create_dataset( 389 self, dataset, exists_ok=False, retry=DEFAULT_RETRY, timeout=None 390 ): 391 """API call: create the dataset via a POST request. 392 393 See 394 https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/insert 395 396 Args: 397 dataset (Union[ \ 398 google.cloud.bigquery.dataset.Dataset, \ 399 google.cloud.bigquery.dataset.DatasetReference, \ 400 str, \ 401 ]): 402 A :class:`~google.cloud.bigquery.dataset.Dataset` to create. 403 If ``dataset`` is a reference, an empty dataset is created 404 with the specified ID and client's default location. 405 exists_ok (bool): 406 Defaults to ``False``. If ``True``, ignore "already exists" 407 errors when creating the dataset. 408 retry (google.api_core.retry.Retry): 409 Optional. How to retry the RPC. 410 timeout (Optional[float]): 411 The number of seconds to wait for the underlying HTTP transport 412 before using ``retry``. 413 414 Returns: 415 google.cloud.bigquery.dataset.Dataset: 416 A new ``Dataset`` returned from the API. 417 418 Example: 419 420 >>> from google.cloud import bigquery 421 >>> client = bigquery.Client() 422 >>> dataset = bigquery.Dataset(client.dataset('my_dataset')) 423 >>> dataset = client.create_dataset(dataset) 424 425 """ 426 if isinstance(dataset, str): 427 dataset = DatasetReference.from_string( 428 dataset, default_project=self.project 429 ) 430 if isinstance(dataset, DatasetReference): 431 dataset = Dataset(dataset) 432 433 path = "/projects/%s/datasets" % (dataset.project,) 434 435 data = dataset.to_api_repr() 436 if data.get("location") is None and self.location is not None: 437 data["location"] = self.location 438 439 try: 440 api_response = self._call_api( 441 retry, method="POST", path=path, data=data, timeout=timeout 442 ) 443 return Dataset.from_api_repr(api_response) 444 except google.api_core.exceptions.Conflict: 445 if not exists_ok: 446 raise 447 return self.get_dataset(dataset.reference, retry=retry) 448 449 def create_routine( 450 self, routine, exists_ok=False, retry=DEFAULT_RETRY, timeout=None 451 ): 452 """[Beta] Create a routine via a POST request. 453 454 See 455 https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/insert 456 457 Args: 458 routine (google.cloud.bigquery.routine.Routine): 459 A :class:`~google.cloud.bigquery.routine.Routine` to create. 460 The dataset that the routine belongs to must already exist. 461 exists_ok (bool): 462 Defaults to ``False``. If ``True``, ignore "already exists" 463 errors when creating the routine. 464 retry (google.api_core.retry.Retry): 465 Optional. How to retry the RPC. 466 timeout (Optional[float]): 467 The number of seconds to wait for the underlying HTTP transport 468 before using ``retry``. 469 470 Returns: 471 google.cloud.bigquery.routine.Routine: 472 A new ``Routine`` returned from the service. 473 """ 474 reference = routine.reference 475 path = "/projects/{}/datasets/{}/routines".format( 476 reference.project, reference.dataset_id 477 ) 478 resource = routine.to_api_repr() 479 try: 480 api_response = self._call_api( 481 retry, method="POST", path=path, data=resource, timeout=timeout 482 ) 483 return Routine.from_api_repr(api_response) 484 except google.api_core.exceptions.Conflict: 485 if not exists_ok: 486 raise 487 return self.get_routine(routine.reference, retry=retry) 488 489 def create_table(self, table, exists_ok=False, retry=DEFAULT_RETRY, timeout=None): 490 """API call: create a table via a PUT request 491 492 See 493 https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/insert 494 495 Args: 496 table (Union[ \ 497 google.cloud.bigquery.table.Table, \ 498 google.cloud.bigquery.table.TableReference, \ 499 str, \ 500 ]): 501 A :class:`~google.cloud.bigquery.table.Table` to create. 502 If ``table`` is a reference, an empty table is created 503 with the specified ID. The dataset that the table belongs to 504 must already exist. 505 exists_ok (bool): 506 Defaults to ``False``. If ``True``, ignore "already exists" 507 errors when creating the table. 508 retry (google.api_core.retry.Retry): 509 Optional. How to retry the RPC. 510 timeout (Optional[float]): 511 The number of seconds to wait for the underlying HTTP transport 512 before using ``retry``. 513 514 Returns: 515 google.cloud.bigquery.table.Table: 516 A new ``Table`` returned from the service. 517 """ 518 table = _table_arg_to_table(table, default_project=self.project) 519 520 path = "/projects/%s/datasets/%s/tables" % (table.project, table.dataset_id) 521 data = table.to_api_repr() 522 try: 523 api_response = self._call_api( 524 retry, method="POST", path=path, data=data, timeout=timeout 525 ) 526 return Table.from_api_repr(api_response) 527 except google.api_core.exceptions.Conflict: 528 if not exists_ok: 529 raise 530 return self.get_table(table.reference, retry=retry) 531 532 def _call_api(self, retry, **kwargs): 533 call = functools.partial(self._connection.api_request, **kwargs) 534 if retry: 535 call = retry(call) 536 return call() 537 538 def get_dataset(self, dataset_ref, retry=DEFAULT_RETRY, timeout=None): 539 """Fetch the dataset referenced by ``dataset_ref`` 540 541 Args: 542 dataset_ref (Union[ \ 543 google.cloud.bigquery.dataset.DatasetReference, \ 544 str, \ 545 ]): 546 A reference to the dataset to fetch from the BigQuery API. 547 If a string is passed in, this method attempts to create a 548 dataset reference from a string using 549 :func:`~google.cloud.bigquery.dataset.DatasetReference.from_string`. 550 retry (google.api_core.retry.Retry): 551 (Optional) How to retry the RPC. 552 timeout (Optional[float]): 553 The number of seconds to wait for the underlying HTTP transport 554 before using ``retry``. 555 556 Returns: 557 google.cloud.bigquery.dataset.Dataset: 558 A ``Dataset`` instance. 559 """ 560 if isinstance(dataset_ref, str): 561 dataset_ref = DatasetReference.from_string( 562 dataset_ref, default_project=self.project 563 ) 564 565 api_response = self._call_api( 566 retry, method="GET", path=dataset_ref.path, timeout=timeout 567 ) 568 return Dataset.from_api_repr(api_response) 569 570 def get_model(self, model_ref, retry=DEFAULT_RETRY, timeout=None): 571 """[Beta] Fetch the model referenced by ``model_ref``. 572 573 Args: 574 model_ref (Union[ \ 575 google.cloud.bigquery.model.ModelReference, \ 576 str, \ 577 ]): 578 A reference to the model to fetch from the BigQuery API. 579 If a string is passed in, this method attempts to create a 580 model reference from a string using 581 :func:`google.cloud.bigquery.model.ModelReference.from_string`. 582 retry (google.api_core.retry.Retry): 583 (Optional) How to retry the RPC. 584 timeout (Optional[float]): 585 The number of seconds to wait for the underlying HTTP transport 586 before using ``retry``. 587 588 Returns: 589 google.cloud.bigquery.model.Model: A ``Model`` instance. 590 """ 591 if isinstance(model_ref, str): 592 model_ref = ModelReference.from_string( 593 model_ref, default_project=self.project 594 ) 595 596 api_response = self._call_api( 597 retry, method="GET", path=model_ref.path, timeout=timeout 598 ) 599 return Model.from_api_repr(api_response) 600 601 def get_routine(self, routine_ref, retry=DEFAULT_RETRY, timeout=None): 602 """[Beta] Get the routine referenced by ``routine_ref``. 603 604 Args: 605 routine_ref (Union[ \ 606 google.cloud.bigquery.routine.Routine, \ 607 google.cloud.bigquery.routine.RoutineReference, \ 608 str, \ 609 ]): 610 A reference to the routine to fetch from the BigQuery API. If 611 a string is passed in, this method attempts to create a 612 reference from a string using 613 :func:`google.cloud.bigquery.routine.RoutineReference.from_string`. 614 retry (google.api_core.retry.Retry): 615 (Optional) How to retry the API call. 616 timeout (Optional[float]): 617 The number of seconds to wait for the underlying HTTP transport 618 before using ``retry``. 619 620 Returns: 621 google.cloud.bigquery.routine.Routine: 622 A ``Routine`` instance. 623 """ 624 if isinstance(routine_ref, str): 625 routine_ref = RoutineReference.from_string( 626 routine_ref, default_project=self.project 627 ) 628 629 api_response = self._call_api( 630 retry, method="GET", path=routine_ref.path, timeout=timeout 631 ) 632 return Routine.from_api_repr(api_response) 633 634 def get_table(self, table, retry=DEFAULT_RETRY, timeout=None): 635 """Fetch the table referenced by ``table``. 636 637 Args: 638 table (Union[ \ 639 google.cloud.bigquery.table.Table, \ 640 google.cloud.bigquery.table.TableReference, \ 641 str, \ 642 ]): 643 A reference to the table to fetch from the BigQuery API. 644 If a string is passed in, this method attempts to create a 645 table reference from a string using 646 :func:`google.cloud.bigquery.table.TableReference.from_string`. 647 retry (google.api_core.retry.Retry): 648 (Optional) How to retry the RPC. 649 timeout (Optional[float]): 650 The number of seconds to wait for the underlying HTTP transport 651 before using ``retry``. 652 653 Returns: 654 google.cloud.bigquery.table.Table: 655 A ``Table`` instance. 656 """ 657 table_ref = _table_arg_to_table_ref(table, default_project=self.project) 658 api_response = self._call_api( 659 retry, method="GET", path=table_ref.path, timeout=timeout 660 ) 661 return Table.from_api_repr(api_response) 662 663 def update_dataset(self, dataset, fields, retry=DEFAULT_RETRY, timeout=None): 664 """Change some fields of a dataset. 665 666 Use ``fields`` to specify which fields to update. At least one field 667 must be provided. If a field is listed in ``fields`` and is ``None`` in 668 ``dataset``, it will be deleted. 669 670 If ``dataset.etag`` is not ``None``, the update will only 671 succeed if the dataset on the server has the same ETag. Thus 672 reading a dataset with ``get_dataset``, changing its fields, 673 and then passing it to ``update_dataset`` will ensure that the changes 674 will only be saved if no modifications to the dataset occurred 675 since the read. 676 677 Args: 678 dataset (google.cloud.bigquery.dataset.Dataset): 679 The dataset to update. 680 fields (Sequence[str]): 681 The properties of ``dataset`` to change (e.g. "friendly_name"). 682 retry (google.api_core.retry.Retry, optional): 683 How to retry the RPC. 684 timeout (Optional[float]): 685 The number of seconds to wait for the underlying HTTP transport 686 before using ``retry``. 687 688 Returns: 689 google.cloud.bigquery.dataset.Dataset: 690 The modified ``Dataset`` instance. 691 """ 692 partial = dataset._build_resource(fields) 693 if dataset.etag is not None: 694 headers = {"If-Match": dataset.etag} 695 else: 696 headers = None 697 api_response = self._call_api( 698 retry, 699 method="PATCH", 700 path=dataset.path, 701 data=partial, 702 headers=headers, 703 timeout=timeout, 704 ) 705 return Dataset.from_api_repr(api_response) 706 707 def update_model(self, model, fields, retry=DEFAULT_RETRY, timeout=None): 708 """[Beta] Change some fields of a model. 709 710 Use ``fields`` to specify which fields to update. At least one field 711 must be provided. If a field is listed in ``fields`` and is ``None`` 712 in ``model``, the field value will be deleted. 713 714 If ``model.etag`` is not ``None``, the update will only succeed if 715 the model on the server has the same ETag. Thus reading a model with 716 ``get_model``, changing its fields, and then passing it to 717 ``update_model`` will ensure that the changes will only be saved if 718 no modifications to the model occurred since the read. 719 720 Args: 721 model (google.cloud.bigquery.model.Model): The model to update. 722 fields (Sequence[str]): 723 The fields of ``model`` to change, spelled as the Model 724 properties (e.g. "friendly_name"). 725 retry (google.api_core.retry.Retry): 726 (Optional) A description of how to retry the API call. 727 timeout (Optional[float]): 728 The number of seconds to wait for the underlying HTTP transport 729 before using ``retry``. 730 731 Returns: 732 google.cloud.bigquery.model.Model: 733 The model resource returned from the API call. 734 """ 735 partial = model._build_resource(fields) 736 if model.etag: 737 headers = {"If-Match": model.etag} 738 else: 739 headers = None 740 api_response = self._call_api( 741 retry, 742 method="PATCH", 743 path=model.path, 744 data=partial, 745 headers=headers, 746 timeout=timeout, 747 ) 748 return Model.from_api_repr(api_response) 749 750 def update_routine(self, routine, fields, retry=DEFAULT_RETRY, timeout=None): 751 """[Beta] Change some fields of a routine. 752 753 Use ``fields`` to specify which fields to update. At least one field 754 must be provided. If a field is listed in ``fields`` and is ``None`` 755 in ``routine``, the field value will be deleted. 756 757 .. warning:: 758 During beta, partial updates are not supported. You must provide 759 all fields in the resource. 760 761 If :attr:`~google.cloud.bigquery.routine.Routine.etag` is not 762 ``None``, the update will only succeed if the resource on the server 763 has the same ETag. Thus reading a routine with 764 :func:`~google.cloud.bigquery.client.Client.get_routine`, changing 765 its fields, and then passing it to this method will ensure that the 766 changes will only be saved if no modifications to the resource 767 occurred since the read. 768 769 Args: 770 routine (google.cloud.bigquery.routine.Routine): The routine to update. 771 fields (Sequence[str]): 772 The fields of ``routine`` to change, spelled as the 773 :class:`~google.cloud.bigquery.routine.Routine` properties 774 (e.g. ``type_``). 775 retry (google.api_core.retry.Retry): 776 (Optional) A description of how to retry the API call. 777 timeout (Optional[float]): 778 The number of seconds to wait for the underlying HTTP transport 779 before using ``retry``. 780 781 Returns: 782 google.cloud.bigquery.routine.Routine: 783 The routine resource returned from the API call. 784 """ 785 partial = routine._build_resource(fields) 786 if routine.etag: 787 headers = {"If-Match": routine.etag} 788 else: 789 headers = None 790 791 # TODO: remove when routines update supports partial requests. 792 partial["routineReference"] = routine.reference.to_api_repr() 793 794 api_response = self._call_api( 795 retry, 796 method="PUT", 797 path=routine.path, 798 data=partial, 799 headers=headers, 800 timeout=timeout, 801 ) 802 return Routine.from_api_repr(api_response) 803 804 def update_table(self, table, fields, retry=DEFAULT_RETRY, timeout=None): 805 """Change some fields of a table. 806 807 Use ``fields`` to specify which fields to update. At least one field 808 must be provided. If a field is listed in ``fields`` and is ``None`` 809 in ``table``, the field value will be deleted. 810 811 If ``table.etag`` is not ``None``, the update will only succeed if 812 the table on the server has the same ETag. Thus reading a table with 813 ``get_table``, changing its fields, and then passing it to 814 ``update_table`` will ensure that the changes will only be saved if 815 no modifications to the table occurred since the read. 816 817 Args: 818 table (google.cloud.bigquery.table.Table): The table to update. 819 fields (Sequence[str]): 820 The fields of ``table`` to change, spelled as the Table 821 properties (e.g. "friendly_name"). 822 retry (google.api_core.retry.Retry): 823 (Optional) A description of how to retry the API call. 824 timeout (Optional[float]): 825 The number of seconds to wait for the underlying HTTP transport 826 before using ``retry``. 827 828 Returns: 829 google.cloud.bigquery.table.Table: 830 The table resource returned from the API call. 831 """ 832 partial = table._build_resource(fields) 833 if table.etag is not None: 834 headers = {"If-Match": table.etag} 835 else: 836 headers = None 837 api_response = self._call_api( 838 retry, 839 method="PATCH", 840 path=table.path, 841 data=partial, 842 headers=headers, 843 timeout=timeout, 844 ) 845 return Table.from_api_repr(api_response) 846 847 def list_models( 848 self, 849 dataset, 850 max_results=None, 851 page_token=None, 852 retry=DEFAULT_RETRY, 853 timeout=None, 854 ): 855 """[Beta] List models in the dataset. 856 857 See 858 https://cloud.google.com/bigquery/docs/reference/rest/v2/models/list 859 860 Args: 861 dataset (Union[ \ 862 google.cloud.bigquery.dataset.Dataset, \ 863 google.cloud.bigquery.dataset.DatasetReference, \ 864 str, \ 865 ]): 866 A reference to the dataset whose models to list from the 867 BigQuery API. If a string is passed in, this method attempts 868 to create a dataset reference from a string using 869 :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. 870 max_results (int): 871 (Optional) Maximum number of models to return. If not passed, 872 defaults to a value set by the API. 873 page_token (str): 874 (Optional) Token representing a cursor into the models. If 875 not passed, the API will return the first page of models. The 876 token marks the beginning of the iterator to be returned and 877 the value of the ``page_token`` can be accessed at 878 ``next_page_token`` of the 879 :class:`~google.api_core.page_iterator.HTTPIterator`. 880 retry (google.api_core.retry.Retry): 881 (Optional) How to retry the RPC. 882 timeout (Optional[float]): 883 The number of seconds to wait for the underlying HTTP transport 884 before using ``retry``. 885 886 Returns: 887 google.api_core.page_iterator.Iterator: 888 Iterator of 889 :class:`~google.cloud.bigquery.model.Model` contained 890 within the requested dataset. 891 """ 892 if isinstance(dataset, str): 893 dataset = DatasetReference.from_string( 894 dataset, default_project=self.project 895 ) 896 897 if not isinstance(dataset, (Dataset, DatasetReference)): 898 raise TypeError("dataset must be a Dataset, DatasetReference, or string") 899 900 path = "%s/models" % dataset.path 901 result = page_iterator.HTTPIterator( 902 client=self, 903 api_request=functools.partial(self._call_api, retry, timeout=timeout), 904 path=path, 905 item_to_value=_item_to_model, 906 items_key="models", 907 page_token=page_token, 908 max_results=max_results, 909 ) 910 result.dataset = dataset 911 return result 912 913 def list_routines( 914 self, 915 dataset, 916 max_results=None, 917 page_token=None, 918 retry=DEFAULT_RETRY, 919 timeout=None, 920 ): 921 """[Beta] List routines in the dataset. 922 923 See 924 https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/list 925 926 Args: 927 dataset (Union[ \ 928 google.cloud.bigquery.dataset.Dataset, \ 929 google.cloud.bigquery.dataset.DatasetReference, \ 930 str, \ 931 ]): 932 A reference to the dataset whose routines to list from the 933 BigQuery API. If a string is passed in, this method attempts 934 to create a dataset reference from a string using 935 :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. 936 max_results (int): 937 (Optional) Maximum number of routines to return. If not passed, 938 defaults to a value set by the API. 939 page_token (str): 940 (Optional) Token representing a cursor into the routines. If 941 not passed, the API will return the first page of routines. The 942 token marks the beginning of the iterator to be returned and 943 the value of the ``page_token`` can be accessed at 944 ``next_page_token`` of the 945 :class:`~google.api_core.page_iterator.HTTPIterator`. 946 retry (google.api_core.retry.Retry): 947 (Optional) How to retry the RPC. 948 timeout (Optional[float]): 949 The number of seconds to wait for the underlying HTTP transport 950 before using ``retry``. 951 952 Returns: 953 google.api_core.page_iterator.Iterator: 954 Iterator of all 955 :class:`~google.cloud.bigquery.routine.Routine`s contained 956 within the requested dataset, limited by ``max_results``. 957 """ 958 if isinstance(dataset, str): 959 dataset = DatasetReference.from_string( 960 dataset, default_project=self.project 961 ) 962 963 if not isinstance(dataset, (Dataset, DatasetReference)): 964 raise TypeError("dataset must be a Dataset, DatasetReference, or string") 965 966 path = "{}/routines".format(dataset.path) 967 result = page_iterator.HTTPIterator( 968 client=self, 969 api_request=functools.partial(self._call_api, retry, timeout=timeout), 970 path=path, 971 item_to_value=_item_to_routine, 972 items_key="routines", 973 page_token=page_token, 974 max_results=max_results, 975 ) 976 result.dataset = dataset 977 return result 978 979 def list_tables( 980 self, 981 dataset, 982 max_results=None, 983 page_token=None, 984 retry=DEFAULT_RETRY, 985 timeout=None, 986 ): 987 """List tables in the dataset. 988 989 See 990 https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/list 991 992 Args: 993 dataset (Union[ \ 994 google.cloud.bigquery.dataset.Dataset, \ 995 google.cloud.bigquery.dataset.DatasetReference, \ 996 str, \ 997 ]): 998 A reference to the dataset whose tables to list from the 999 BigQuery API. If a string is passed in, this method attempts 1000 to create a dataset reference from a string using 1001 :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. 1002 max_results (int): 1003 (Optional) Maximum number of tables to return. If not passed, 1004 defaults to a value set by the API. 1005 page_token (str): 1006 (Optional) Token representing a cursor into the tables. If 1007 not passed, the API will return the first page of tables. The 1008 token marks the beginning of the iterator to be returned and 1009 the value of the ``page_token`` can be accessed at 1010 ``next_page_token`` of the 1011 :class:`~google.api_core.page_iterator.HTTPIterator`. 1012 retry (google.api_core.retry.Retry): 1013 (Optional) How to retry the RPC. 1014 timeout (Optional[float]): 1015 The number of seconds to wait for the underlying HTTP transport 1016 before using ``retry``. 1017 1018 Returns: 1019 google.api_core.page_iterator.Iterator: 1020 Iterator of 1021 :class:`~google.cloud.bigquery.table.TableListItem` contained 1022 within the requested dataset. 1023 """ 1024 if isinstance(dataset, str): 1025 dataset = DatasetReference.from_string( 1026 dataset, default_project=self.project 1027 ) 1028 1029 if not isinstance(dataset, (Dataset, DatasetReference)): 1030 raise TypeError("dataset must be a Dataset, DatasetReference, or string") 1031 1032 path = "%s/tables" % dataset.path 1033 result = page_iterator.HTTPIterator( 1034 client=self, 1035 api_request=functools.partial(self._call_api, retry, timeout=timeout), 1036 path=path, 1037 item_to_value=_item_to_table, 1038 items_key="tables", 1039 page_token=page_token, 1040 max_results=max_results, 1041 ) 1042 result.dataset = dataset 1043 return result 1044 1045 def delete_dataset( 1046 self, 1047 dataset, 1048 delete_contents=False, 1049 retry=DEFAULT_RETRY, 1050 timeout=None, 1051 not_found_ok=False, 1052 ): 1053 """Delete a dataset. 1054 1055 See 1056 https://cloud.google.com/bigquery/docs/reference/rest/v2/datasets/delete 1057 1058 Args 1059 dataset (Union[ \ 1060 google.cloud.bigquery.dataset.Dataset, \ 1061 google.cloud.bigquery.dataset.DatasetReference, \ 1062 str, \ 1063 ]): 1064 A reference to the dataset to delete. If a string is passed 1065 in, this method attempts to create a dataset reference from a 1066 string using 1067 :func:`google.cloud.bigquery.dataset.DatasetReference.from_string`. 1068 delete_contents (boolean): 1069 (Optional) If True, delete all the tables in the dataset. If 1070 False and the dataset contains tables, the request will fail. 1071 Default is False. 1072 retry (google.api_core.retry.Retry): 1073 (Optional) How to retry the RPC. 1074 timeout (Optional[float]): 1075 The number of seconds to wait for the underlying HTTP transport 1076 before using ``retry``. 1077 not_found_ok (bool): 1078 Defaults to ``False``. If ``True``, ignore "not found" errors 1079 when deleting the dataset. 1080 """ 1081 if isinstance(dataset, str): 1082 dataset = DatasetReference.from_string( 1083 dataset, default_project=self.project 1084 ) 1085 1086 if not isinstance(dataset, (Dataset, DatasetReference)): 1087 raise TypeError("dataset must be a Dataset or a DatasetReference") 1088 1089 params = {} 1090 if delete_contents: 1091 params["deleteContents"] = "true" 1092 1093 try: 1094 self._call_api( 1095 retry, 1096 method="DELETE", 1097 path=dataset.path, 1098 query_params=params, 1099 timeout=timeout, 1100 ) 1101 except google.api_core.exceptions.NotFound: 1102 if not not_found_ok: 1103 raise 1104 1105 def delete_model( 1106 self, model, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False 1107 ): 1108 """[Beta] Delete a model 1109 1110 See 1111 https://cloud.google.com/bigquery/docs/reference/rest/v2/models/delete 1112 1113 Args: 1114 model (Union[ \ 1115 google.cloud.bigquery.model.Model, \ 1116 google.cloud.bigquery.model.ModelReference, \ 1117 str, \ 1118 ]): 1119 A reference to the model to delete. If a string is passed in, 1120 this method attempts to create a model reference from a 1121 string using 1122 :func:`google.cloud.bigquery.model.ModelReference.from_string`. 1123 retry (google.api_core.retry.Retry): 1124 (Optional) How to retry the RPC. 1125 timeout (Optional[float]): 1126 The number of seconds to wait for the underlying HTTP transport 1127 before using ``retry``. 1128 not_found_ok (bool): 1129 Defaults to ``False``. If ``True``, ignore "not found" errors 1130 when deleting the model. 1131 """ 1132 if isinstance(model, str): 1133 model = ModelReference.from_string(model, default_project=self.project) 1134 1135 if not isinstance(model, (Model, ModelReference)): 1136 raise TypeError("model must be a Model or a ModelReference") 1137 1138 try: 1139 self._call_api(retry, method="DELETE", path=model.path, timeout=timeout) 1140 except google.api_core.exceptions.NotFound: 1141 if not not_found_ok: 1142 raise 1143 1144 def delete_routine( 1145 self, routine, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False 1146 ): 1147 """[Beta] Delete a routine. 1148 1149 See 1150 https://cloud.google.com/bigquery/docs/reference/rest/v2/routines/delete 1151 1152 Args: 1153 model (Union[ \ 1154 google.cloud.bigquery.routine.Routine, \ 1155 google.cloud.bigquery.routine.RoutineReference, \ 1156 str, \ 1157 ]): 1158 A reference to the routine to delete. If a string is passed 1159 in, this method attempts to create a routine reference from a 1160 string using 1161 :func:`google.cloud.bigquery.routine.RoutineReference.from_string`. 1162 retry (google.api_core.retry.Retry): 1163 (Optional) How to retry the RPC. 1164 timeout (Optional[float]): 1165 The number of seconds to wait for the underlying HTTP transport 1166 before using ``retry``. 1167 not_found_ok (bool): 1168 Defaults to ``False``. If ``True``, ignore "not found" errors 1169 when deleting the routine. 1170 """ 1171 if isinstance(routine, str): 1172 routine = RoutineReference.from_string( 1173 routine, default_project=self.project 1174 ) 1175 1176 if not isinstance(routine, (Routine, RoutineReference)): 1177 raise TypeError("routine must be a Routine or a RoutineReference") 1178 1179 try: 1180 self._call_api(retry, method="DELETE", path=routine.path, timeout=timeout) 1181 except google.api_core.exceptions.NotFound: 1182 if not not_found_ok: 1183 raise 1184 1185 def delete_table( 1186 self, table, retry=DEFAULT_RETRY, timeout=None, not_found_ok=False 1187 ): 1188 """Delete a table 1189 1190 See 1191 https://cloud.google.com/bigquery/docs/reference/rest/v2/tables/delete 1192 1193 Args: 1194 table (Union[ \ 1195 google.cloud.bigquery.table.Table, \ 1196 google.cloud.bigquery.table.TableReference, \ 1197 str, \ 1198 ]): 1199 A reference to the table to delete. If a string is passed in, 1200 this method attempts to create a table reference from a 1201 string using 1202 :func:`google.cloud.bigquery.table.TableReference.from_string`. 1203 retry (google.api_core.retry.Retry): 1204 (Optional) How to retry the RPC. 1205 timeout (Optional[float]): 1206 The number of seconds to wait for the underlying HTTP transport 1207 before using ``retry``. 1208 not_found_ok (bool): 1209 Defaults to ``False``. If ``True``, ignore "not found" errors 1210 when deleting the table. 1211 """ 1212 table = _table_arg_to_table_ref(table, default_project=self.project) 1213 if not isinstance(table, TableReference): 1214 raise TypeError("Unable to get TableReference for table '{}'".format(table)) 1215 1216 try: 1217 self._call_api(retry, method="DELETE", path=table.path, timeout=timeout) 1218 except google.api_core.exceptions.NotFound: 1219 if not not_found_ok: 1220 raise 1221 1222 def _get_query_results( 1223 self, job_id, retry, project=None, timeout_ms=None, location=None, timeout=None, 1224 ): 1225 """Get the query results object for a query job. 1226 1227 Arguments: 1228 job_id (str): Name of the query job. 1229 retry (google.api_core.retry.Retry): 1230 (Optional) How to retry the RPC. 1231 project (str): 1232 (Optional) project ID for the query job (defaults to the 1233 project of the client). 1234 timeout_ms (int): 1235 (Optional) number of milliseconds the the API call should 1236 wait for the query to complete before the request times out. 1237 location (str): Location of the query job. 1238 timeout (Optional[float]): 1239 The number of seconds to wait for the underlying HTTP transport 1240 before using ``retry``. 1241 1242 Returns: 1243 google.cloud.bigquery.query._QueryResults: 1244 A new ``_QueryResults`` instance. 1245 """ 1246 1247 extra_params = {"maxResults": 0} 1248 1249 if project is None: 1250 project = self.project 1251 1252 if timeout_ms is not None: 1253 extra_params["timeoutMs"] = timeout_ms 1254 1255 if location is None: 1256 location = self.location 1257 1258 if location is not None: 1259 extra_params["location"] = location 1260 1261 path = "/projects/{}/queries/{}".format(project, job_id) 1262 1263 # This call is typically made in a polling loop that checks whether the 1264 # job is complete (from QueryJob.done(), called ultimately from 1265 # QueryJob.result()). So we don't need to poll here. 1266 resource = self._call_api( 1267 retry, method="GET", path=path, query_params=extra_params, timeout=timeout 1268 ) 1269 return _QueryResults.from_api_repr(resource) 1270 1271 def job_from_resource(self, resource): 1272 """Detect correct job type from resource and instantiate. 1273 1274 Args: 1275 resource (Dict): one job resource from API response 1276 1277 Returns: 1278 Union[ \ 1279 google.cloud.bigquery.job.LoadJob, \ 1280 google.cloud.bigquery.job.CopyJob, \ 1281 google.cloud.bigquery.job.ExtractJob, \ 1282 google.cloud.bigquery.job.QueryJob \ 1283 ]: 1284 The job instance, constructed via the resource. 1285 """ 1286 config = resource.get("configuration", {}) 1287 if "load" in config: 1288 return job.LoadJob.from_api_repr(resource, self) 1289 elif "copy" in config: 1290 return job.CopyJob.from_api_repr(resource, self) 1291 elif "extract" in config: 1292 return job.ExtractJob.from_api_repr(resource, self) 1293 elif "query" in config: 1294 return job.QueryJob.from_api_repr(resource, self) 1295 return job.UnknownJob.from_api_repr(resource, self) 1296 1297 def get_job( 1298 self, job_id, project=None, location=None, retry=DEFAULT_RETRY, timeout=None 1299 ): 1300 """Fetch a job for the project associated with this client. 1301 1302 See 1303 https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/get 1304 1305 Arguments: 1306 job_id (str): Unique job identifier. 1307 1308 Keyword Arguments: 1309 project (str): 1310 (Optional) ID of the project which ownsthe job (defaults to 1311 the client's project). 1312 location (str): Location where the job was run. 1313 retry (google.api_core.retry.Retry): 1314 (Optional) How to retry the RPC. 1315 timeout (Optional[float]): 1316 The number of seconds to wait for the underlying HTTP transport 1317 before using ``retry``. 1318 1319 Returns: 1320 Union[ \ 1321 google.cloud.bigquery.job.LoadJob, \ 1322 google.cloud.bigquery.job.CopyJob, \ 1323 google.cloud.bigquery.job.ExtractJob, \ 1324 google.cloud.bigquery.job.QueryJob \ 1325 ]: 1326 Job instance, based on the resource returned by the API. 1327 """ 1328 extra_params = {"projection": "full"} 1329 1330 if project is None: 1331 project = self.project 1332 1333 if location is None: 1334 location = self.location 1335 1336 if location is not None: 1337 extra_params["location"] = location 1338 1339 path = "/projects/{}/jobs/{}".format(project, job_id) 1340 1341 resource = self._call_api( 1342 retry, method="GET", path=path, query_params=extra_params, timeout=timeout 1343 ) 1344 1345 return self.job_from_resource(resource) 1346 1347 def cancel_job( 1348 self, job_id, project=None, location=None, retry=DEFAULT_RETRY, timeout=None 1349 ): 1350 """Attempt to cancel a job from a job ID. 1351 1352 See 1353 https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/cancel 1354 1355 Args: 1356 job_id (str): Unique job identifier. 1357 1358 Keyword Arguments: 1359 project (str): 1360 (Optional) ID of the project which owns the job (defaults to 1361 the client's project). 1362 location (str): Location where the job was run. 1363 retry (google.api_core.retry.Retry): 1364 (Optional) How to retry the RPC. 1365 timeout (Optional[float]): 1366 The number of seconds to wait for the underlying HTTP transport 1367 before using ``retry``. 1368 1369 Returns: 1370 Union[ \ 1371 google.cloud.bigquery.job.LoadJob, \ 1372 google.cloud.bigquery.job.CopyJob, \ 1373 google.cloud.bigquery.job.ExtractJob, \ 1374 google.cloud.bigquery.job.QueryJob, \ 1375 ]: 1376 Job instance, based on the resource returned by the API. 1377 """ 1378 extra_params = {"projection": "full"} 1379 1380 if project is None: 1381 project = self.project 1382 1383 if location is None: 1384 location = self.location 1385 1386 if location is not None: 1387 extra_params["location"] = location 1388 1389 path = "/projects/{}/jobs/{}/cancel".format(project, job_id) 1390 1391 resource = self._call_api( 1392 retry, method="POST", path=path, query_params=extra_params, timeout=timeout 1393 ) 1394 1395 return self.job_from_resource(resource["job"]) 1396 1397 def list_jobs( 1398 self, 1399 project=None, 1400 parent_job=None, 1401 max_results=None, 1402 page_token=None, 1403 all_users=None, 1404 state_filter=None, 1405 retry=DEFAULT_RETRY, 1406 timeout=None, 1407 min_creation_time=None, 1408 max_creation_time=None, 1409 ): 1410 """List jobs for the project associated with this client. 1411 1412 See 1413 https://cloud.google.com/bigquery/docs/reference/rest/v2/jobs/list 1414 1415 Args: 1416 project (Optional[str]): 1417 Project ID to use for retreiving datasets. Defaults 1418 to the client's project. 1419 parent_job (Optional[Union[ \ 1420 google.cloud.bigquery.job._AsyncJob, \ 1421 str, \ 1422 ]]): 1423 If set, retrieve only child jobs of the specified parent. 1424 max_results (Optional[int]): 1425 Maximum number of jobs to return. 1426 page_token (Optional[str]): 1427 Opaque marker for the next "page" of jobs. If not 1428 passed, the API will return the first page of jobs. The token 1429 marks the beginning of the iterator to be returned and the 1430 value of the ``page_token`` can be accessed at 1431 ``next_page_token`` of 1432 :class:`~google.api_core.page_iterator.HTTPIterator`. 1433 all_users (Optional[bool]): 1434 If true, include jobs owned by all users in the project. 1435 Defaults to :data:`False`. 1436 state_filter (Optional[str]): 1437 If set, include only jobs matching the given state. One of: 1438 * ``"done"`` 1439 * ``"pending"`` 1440 * ``"running"`` 1441 retry (Optional[google.api_core.retry.Retry]): 1442 How to retry the RPC. 1443 timeout (Optional[float]): 1444 The number of seconds to wait for the underlying HTTP transport 1445 before using ``retry``. 1446 min_creation_time (Optional[datetime.datetime]): 1447 Min value for job creation time. If set, only jobs created 1448 after or at this timestamp are returned. If the datetime has 1449 no time zone assumes UTC time. 1450 max_creation_time (Optional[datetime.datetime]): 1451 Max value for job creation time. If set, only jobs created 1452 before or at this timestamp are returned. If the datetime has 1453 no time zone assumes UTC time. 1454 1455 Returns: 1456 google.api_core.page_iterator.Iterator: 1457 Iterable of job instances. 1458 """ 1459 if isinstance(parent_job, job._AsyncJob): 1460 parent_job = parent_job.job_id 1461 1462 extra_params = { 1463 "allUsers": all_users, 1464 "stateFilter": state_filter, 1465 "minCreationTime": _str_or_none( 1466 google.cloud._helpers._millis_from_datetime(min_creation_time) 1467 ), 1468 "maxCreationTime": _str_or_none( 1469 google.cloud._helpers._millis_from_datetime(max_creation_time) 1470 ), 1471 "projection": "full", 1472 "parentJobId": parent_job, 1473 } 1474 1475 extra_params = { 1476 param: value for param, value in extra_params.items() if value is not None 1477 } 1478 1479 if project is None: 1480 project = self.project 1481 1482 path = "/projects/%s/jobs" % (project,) 1483 return page_iterator.HTTPIterator( 1484 client=self, 1485 api_request=functools.partial(self._call_api, retry, timeout=timeout), 1486 path=path, 1487 item_to_value=_item_to_job, 1488 items_key="jobs", 1489 page_token=page_token, 1490 max_results=max_results, 1491 extra_params=extra_params, 1492 ) 1493 1494 def load_table_from_uri( 1495 self, 1496 source_uris, 1497 destination, 1498 job_id=None, 1499 job_id_prefix=None, 1500 location=None, 1501 project=None, 1502 job_config=None, 1503 retry=DEFAULT_RETRY, 1504 timeout=None, 1505 ): 1506 """Starts a job for loading data into a table from CloudStorage. 1507 1508 See 1509 https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationload 1510 1511 Arguments: 1512 source_uris (Union[str, Sequence[str]]): 1513 URIs of data files to be loaded; in format 1514 ``gs://<bucket_name>/<object_name_or_glob>``. 1515 destination (Union[ \ 1516 google.cloud.bigquery.table.Table, \ 1517 google.cloud.bigquery.table.TableReference, \ 1518 str, \ 1519 ]): 1520 Table into which data is to be loaded. If a string is passed 1521 in, this method attempts to create a table reference from a 1522 string using 1523 :func:`google.cloud.bigquery.table.TableReference.from_string`. 1524 1525 Keyword Arguments: 1526 job_id (str): (Optional) Name of the job. 1527 job_id_prefix (str): 1528 (Optional) the user-provided prefix for a randomly generated 1529 job ID. This parameter will be ignored if a ``job_id`` is 1530 also given. 1531 location (str): 1532 Location where to run the job. Must match the location of the 1533 destination table. 1534 project (str): 1535 Project ID of the project of where to run the job. Defaults 1536 to the client's project. 1537 job_config (google.cloud.bigquery.job.LoadJobConfig): 1538 (Optional) Extra configuration options for the job. 1539 retry (google.api_core.retry.Retry): 1540 (Optional) How to retry the RPC. 1541 timeout (Optional[float]): 1542 The number of seconds to wait for the underlying HTTP transport 1543 before using ``retry``. 1544 1545 Returns: 1546 google.cloud.bigquery.job.LoadJob: A new load job. 1547 1548 Raises: 1549 TypeError: 1550 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` 1551 class. 1552 """ 1553 job_id = _make_job_id(job_id, job_id_prefix) 1554 1555 if project is None: 1556 project = self.project 1557 1558 if location is None: 1559 location = self.location 1560 1561 job_ref = job._JobReference(job_id, project=project, location=location) 1562 1563 if isinstance(source_uris, six.string_types): 1564 source_uris = [source_uris] 1565 1566 destination = _table_arg_to_table_ref(destination, default_project=self.project) 1567 1568 if job_config: 1569 job_config = copy.deepcopy(job_config) 1570 _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) 1571 1572 load_job = job.LoadJob(job_ref, source_uris, destination, self, job_config) 1573 load_job._begin(retry=retry, timeout=timeout) 1574 1575 return load_job 1576 1577 def load_table_from_file( 1578 self, 1579 file_obj, 1580 destination, 1581 rewind=False, 1582 size=None, 1583 num_retries=_DEFAULT_NUM_RETRIES, 1584 job_id=None, 1585 job_id_prefix=None, 1586 location=None, 1587 project=None, 1588 job_config=None, 1589 ): 1590 """Upload the contents of this table from a file-like object. 1591 1592 Similar to :meth:`load_table_from_uri`, this method creates, starts and 1593 returns a :class:`~google.cloud.bigquery.job.LoadJob`. 1594 1595 Arguments: 1596 file_obj (file): A file handle opened in binary mode for reading. 1597 destination (Union[ \ 1598 google.cloud.bigquery.table.Table, \ 1599 google.cloud.bigquery.table.TableReference, \ 1600 str, \ 1601 ]): 1602 Table into which data is to be loaded. If a string is passed 1603 in, this method attempts to create a table reference from a 1604 string using 1605 :func:`google.cloud.bigquery.table.TableReference.from_string`. 1606 1607 Keyword Arguments: 1608 rewind (bool): 1609 If True, seek to the beginning of the file handle before 1610 reading the file. 1611 size (int): 1612 The number of bytes to read from the file handle. If size is 1613 ``None`` or large, resumable upload will be used. Otherwise, 1614 multipart upload will be used. 1615 num_retries (int): Number of upload retries. Defaults to 6. 1616 job_id (str): (Optional) Name of the job. 1617 job_id_prefix (str): 1618 (Optional) the user-provided prefix for a randomly generated 1619 job ID. This parameter will be ignored if a ``job_id`` is 1620 also given. 1621 location (str): 1622 Location where to run the job. Must match the location of the 1623 destination table. 1624 project (str): 1625 Project ID of the project of where to run the job. Defaults 1626 to the client's project. 1627 job_config (google.cloud.bigquery.job.LoadJobConfig): 1628 (Optional) Extra configuration options for the job. 1629 1630 Returns: 1631 google.cloud.bigquery.job.LoadJob: A new load job. 1632 1633 Raises: 1634 ValueError: 1635 If ``size`` is not passed in and can not be determined, or if 1636 the ``file_obj`` can be detected to be a file opened in text 1637 mode. 1638 1639 TypeError: 1640 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` 1641 class. 1642 """ 1643 job_id = _make_job_id(job_id, job_id_prefix) 1644 1645 if project is None: 1646 project = self.project 1647 1648 if location is None: 1649 location = self.location 1650 1651 destination = _table_arg_to_table_ref(destination, default_project=self.project) 1652 job_ref = job._JobReference(job_id, project=project, location=location) 1653 if job_config: 1654 job_config = copy.deepcopy(job_config) 1655 _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) 1656 load_job = job.LoadJob(job_ref, None, destination, self, job_config) 1657 job_resource = load_job.to_api_repr() 1658 1659 if rewind: 1660 file_obj.seek(0, os.SEEK_SET) 1661 1662 _check_mode(file_obj) 1663 1664 try: 1665 if size is None or size >= _MAX_MULTIPART_SIZE: 1666 response = self._do_resumable_upload( 1667 file_obj, job_resource, num_retries 1668 ) 1669 else: 1670 response = self._do_multipart_upload( 1671 file_obj, job_resource, size, num_retries 1672 ) 1673 except resumable_media.InvalidResponse as exc: 1674 raise exceptions.from_http_response(exc.response) 1675 1676 return self.job_from_resource(response.json()) 1677 1678 def load_table_from_dataframe( 1679 self, 1680 dataframe, 1681 destination, 1682 num_retries=_DEFAULT_NUM_RETRIES, 1683 job_id=None, 1684 job_id_prefix=None, 1685 location=None, 1686 project=None, 1687 job_config=None, 1688 parquet_compression="snappy", 1689 ): 1690 """Upload the contents of a table from a pandas DataFrame. 1691 1692 Similar to :meth:`load_table_from_uri`, this method creates, starts and 1693 returns a :class:`~google.cloud.bigquery.job.LoadJob`. 1694 1695 Arguments: 1696 dataframe (pandas.DataFrame): 1697 A :class:`~pandas.DataFrame` containing the data to load. 1698 destination (google.cloud.bigquery.table.TableReference): 1699 The destination table to use for loading the data. If it is an 1700 existing table, the schema of the :class:`~pandas.DataFrame` 1701 must match the schema of the destination table. If the table 1702 does not yet exist, the schema is inferred from the 1703 :class:`~pandas.DataFrame`. 1704 1705 If a string is passed in, this method attempts to create a 1706 table reference from a string using 1707 :func:`google.cloud.bigquery.table.TableReference.from_string`. 1708 1709 Keyword Arguments: 1710 num_retries (Optional[int]): Number of upload retries. 1711 job_id (Optional[str]): Name of the job. 1712 job_id_prefix (Optional[str]): 1713 The user-provided prefix for a randomly generated 1714 job ID. This parameter will be ignored if a ``job_id`` is 1715 also given. 1716 location (str): 1717 Location where to run the job. Must match the location of the 1718 destination table. 1719 project (Optional[str]): 1720 Project ID of the project of where to run the job. Defaults 1721 to the client's project. 1722 job_config (Optional[google.cloud.bigquery.job.LoadJobConfig]): 1723 Extra configuration options for the job. 1724 1725 To override the default pandas data type conversions, supply 1726 a value for 1727 :attr:`~google.cloud.bigquery.job.LoadJobConfig.schema` with 1728 column names matching those of the dataframe. The BigQuery 1729 schema is used to determine the correct data type conversion. 1730 Indexes are not loaded. Requires the :mod:`pyarrow` library. 1731 parquet_compression (str): 1732 [Beta] The compression method to use if intermittently 1733 serializing ``dataframe`` to a parquet file. 1734 1735 If ``pyarrow`` and job config schema are used, the argument 1736 is directly passed as the ``compression`` argument to the 1737 underlying ``pyarrow.parquet.write_table()`` method (the 1738 default value "snappy" gets converted to uppercase). 1739 https://arrow.apache.org/docs/python/generated/pyarrow.parquet.write_table.html#pyarrow-parquet-write-table 1740 1741 If either ``pyarrow`` or job config schema are missing, the 1742 argument is directly passed as the ``compression`` argument 1743 to the underlying ``DataFrame.to_parquet()`` method. 1744 https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.to_parquet.html#pandas.DataFrame.to_parquet 1745 1746 Returns: 1747 google.cloud.bigquery.job.LoadJob: A new load job. 1748 1749 Raises: 1750 ImportError: 1751 If a usable parquet engine cannot be found. This method 1752 requires :mod:`pyarrow` or :mod:`fastparquet` to be 1753 installed. 1754 TypeError: 1755 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` 1756 class. 1757 """ 1758 job_id = _make_job_id(job_id, job_id_prefix) 1759 1760 if job_config: 1761 _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) 1762 # Make a copy so that the job config isn't modified in-place. 1763 job_config_properties = copy.deepcopy(job_config._properties) 1764 job_config = job.LoadJobConfig() 1765 job_config._properties = job_config_properties 1766 1767 else: 1768 job_config = job.LoadJobConfig() 1769 1770 job_config.source_format = job.SourceFormat.PARQUET 1771 1772 if location is None: 1773 location = self.location 1774 1775 # If table schema is not provided, we try to fetch the existing table 1776 # schema, and check if dataframe schema is compatible with it - except 1777 # for WRITE_TRUNCATE jobs, the existing schema does not matter then. 1778 if ( 1779 not job_config.schema 1780 and job_config.write_disposition != job.WriteDisposition.WRITE_TRUNCATE 1781 ): 1782 try: 1783 table = self.get_table(destination) 1784 except google.api_core.exceptions.NotFound: 1785 table = None 1786 else: 1787 columns_and_indexes = frozenset( 1788 name 1789 for name, _ in _pandas_helpers.list_columns_and_indexes(dataframe) 1790 ) 1791 # schema fields not present in the dataframe are not needed 1792 job_config.schema = [ 1793 field for field in table.schema if field.name in columns_and_indexes 1794 ] 1795 1796 job_config.schema = _pandas_helpers.dataframe_to_bq_schema( 1797 dataframe, job_config.schema 1798 ) 1799 1800 if not job_config.schema: 1801 # the schema could not be fully detected 1802 warnings.warn( 1803 "Schema could not be detected for all columns. Loading from a " 1804 "dataframe without a schema will be deprecated in the future, " 1805 "please provide a schema.", 1806 PendingDeprecationWarning, 1807 stacklevel=2, 1808 ) 1809 1810 tmpfd, tmppath = tempfile.mkstemp(suffix="_job_{}.parquet".format(job_id[:8])) 1811 os.close(tmpfd) 1812 1813 try: 1814 if pyarrow and job_config.schema: 1815 if parquet_compression == "snappy": # adjust the default value 1816 parquet_compression = parquet_compression.upper() 1817 1818 _pandas_helpers.dataframe_to_parquet( 1819 dataframe, 1820 job_config.schema, 1821 tmppath, 1822 parquet_compression=parquet_compression, 1823 ) 1824 else: 1825 if job_config.schema: 1826 warnings.warn( 1827 "job_config.schema is set, but not used to assist in " 1828 "identifying correct types for data serialization. " 1829 "Please install the pyarrow package.", 1830 PendingDeprecationWarning, 1831 stacklevel=2, 1832 ) 1833 1834 dataframe.to_parquet(tmppath, compression=parquet_compression) 1835 1836 with open(tmppath, "rb") as parquet_file: 1837 return self.load_table_from_file( 1838 parquet_file, 1839 destination, 1840 num_retries=num_retries, 1841 rewind=True, 1842 job_id=job_id, 1843 job_id_prefix=job_id_prefix, 1844 location=location, 1845 project=project, 1846 job_config=job_config, 1847 ) 1848 1849 finally: 1850 os.remove(tmppath) 1851 1852 def load_table_from_json( 1853 self, 1854 json_rows, 1855 destination, 1856 num_retries=_DEFAULT_NUM_RETRIES, 1857 job_id=None, 1858 job_id_prefix=None, 1859 location=None, 1860 project=None, 1861 job_config=None, 1862 ): 1863 """Upload the contents of a table from a JSON string or dict. 1864 1865 Args: 1866 json_rows (Iterable[Dict[str, Any]]): 1867 Row data to be inserted. Keys must match the table schema fields 1868 and values must be JSON-compatible representations. 1869 1870 .. note:: 1871 1872 If your data is already a newline-delimited JSON string, 1873 it is best to wrap it into a file-like object and pass it 1874 to :meth:`~google.cloud.bigquery.client.Client.load_table_from_file`:: 1875 1876 import io 1877 from google.cloud import bigquery 1878 1879 data = u'{"foo": "bar"}' 1880 data_as_file = io.StringIO(data) 1881 1882 client = bigquery.Client() 1883 client.load_table_from_file(data_as_file, ...) 1884 1885 destination (Union[ \ 1886 google.cloud.bigquery.table.Table, \ 1887 google.cloud.bigquery.table.TableReference, \ 1888 str, \ 1889 ]): 1890 Table into which data is to be loaded. If a string is passed 1891 in, this method attempts to create a table reference from a 1892 string using 1893 :func:`google.cloud.bigquery.table.TableReference.from_string`. 1894 1895 Keyword Arguments: 1896 num_retries (Optional[int]): Number of upload retries. 1897 job_id (str): (Optional) Name of the job. 1898 job_id_prefix (str): 1899 (Optional) the user-provided prefix for a randomly generated 1900 job ID. This parameter will be ignored if a ``job_id`` is 1901 also given. 1902 location (str): 1903 Location where to run the job. Must match the location of the 1904 destination table. 1905 project (str): 1906 Project ID of the project of where to run the job. Defaults 1907 to the client's project. 1908 job_config (google.cloud.bigquery.job.LoadJobConfig): 1909 (Optional) Extra configuration options for the job. The 1910 ``source_format`` setting is always set to 1911 :attr:`~google.cloud.bigquery.job.SourceFormat.NEWLINE_DELIMITED_JSON`. 1912 1913 Returns: 1914 google.cloud.bigquery.job.LoadJob: A new load job. 1915 1916 Raises: 1917 TypeError: 1918 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.LoadJobConfig` 1919 class. 1920 """ 1921 job_id = _make_job_id(job_id, job_id_prefix) 1922 1923 if job_config: 1924 _verify_job_config_type(job_config, google.cloud.bigquery.job.LoadJobConfig) 1925 # Make a copy so that the job config isn't modified in-place. 1926 job_config = copy.deepcopy(job_config) 1927 else: 1928 job_config = job.LoadJobConfig() 1929 1930 job_config.source_format = job.SourceFormat.NEWLINE_DELIMITED_JSON 1931 1932 if job_config.schema is None: 1933 job_config.autodetect = True 1934 1935 if project is None: 1936 project = self.project 1937 1938 if location is None: 1939 location = self.location 1940 1941 destination = _table_arg_to_table_ref(destination, default_project=self.project) 1942 1943 data_str = u"\n".join(json.dumps(item) for item in json_rows) 1944 data_file = io.BytesIO(data_str.encode()) 1945 1946 return self.load_table_from_file( 1947 data_file, 1948 destination, 1949 num_retries=num_retries, 1950 job_id=job_id, 1951 job_id_prefix=job_id_prefix, 1952 location=location, 1953 project=project, 1954 job_config=job_config, 1955 ) 1956 1957 def _do_resumable_upload(self, stream, metadata, num_retries): 1958 """Perform a resumable upload. 1959 1960 Args: 1961 stream (IO[bytes]): A bytes IO object open for reading. 1962 1963 metadata (Dict): The metadata associated with the upload. 1964 1965 num_retries (int): 1966 Number of upload retries. (Deprecated: This 1967 argument will be removed in a future release.) 1968 1969 Returns: 1970 requests.Response: 1971 The "200 OK" response object returned after the final chunk 1972 is uploaded. 1973 """ 1974 upload, transport = self._initiate_resumable_upload( 1975 stream, metadata, num_retries 1976 ) 1977 1978 while not upload.finished: 1979 response = upload.transmit_next_chunk(transport) 1980 1981 return response 1982 1983 def _initiate_resumable_upload(self, stream, metadata, num_retries): 1984 """Initiate a resumable upload. 1985 1986 Args: 1987 stream (IO[bytes]): A bytes IO object open for reading. 1988 1989 metadata (Dict): The metadata associated with the upload. 1990 1991 num_retries (int): 1992 Number of upload retries. (Deprecated: This 1993 argument will be removed in a future release.) 1994 1995 Returns: 1996 Tuple: 1997 Pair of 1998 1999 * The :class:`~google.resumable_media.requests.ResumableUpload` 2000 that was created 2001 * The ``transport`` used to initiate the upload. 2002 """ 2003 chunk_size = _DEFAULT_CHUNKSIZE 2004 transport = self._http 2005 headers = _get_upload_headers(self._connection.user_agent) 2006 upload_url = _RESUMABLE_URL_TEMPLATE.format(project=self.project) 2007 # TODO: modify ResumableUpload to take a retry.Retry object 2008 # that it can use for the initial RPC. 2009 upload = ResumableUpload(upload_url, chunk_size, headers=headers) 2010 2011 if num_retries is not None: 2012 upload._retry_strategy = resumable_media.RetryStrategy( 2013 max_retries=num_retries 2014 ) 2015 2016 upload.initiate( 2017 transport, stream, metadata, _GENERIC_CONTENT_TYPE, stream_final=False 2018 ) 2019 2020 return upload, transport 2021 2022 def _do_multipart_upload(self, stream, metadata, size, num_retries): 2023 """Perform a multipart upload. 2024 2025 Args: 2026 stream (IO[bytes]): A bytes IO object open for reading. 2027 2028 metadata (Dict): The metadata associated with the upload. 2029 2030 size (int): 2031 The number of bytes to be uploaded (which will be read 2032 from ``stream``). If not provided, the upload will be 2033 concluded once ``stream`` is exhausted (or :data:`None`). 2034 2035 num_retries (int): 2036 Number of upload retries. (Deprecated: This 2037 argument will be removed in a future release.) 2038 2039 Returns: 2040 requests.Response: 2041 The "200 OK" response object returned after the multipart 2042 upload request. 2043 2044 Raises: 2045 ValueError: 2046 if the ``stream`` has fewer than ``size`` 2047 bytes remaining. 2048 """ 2049 data = stream.read(size) 2050 if len(data) < size: 2051 msg = _READ_LESS_THAN_SIZE.format(size, len(data)) 2052 raise ValueError(msg) 2053 2054 headers = _get_upload_headers(self._connection.user_agent) 2055 2056 upload_url = _MULTIPART_URL_TEMPLATE.format(project=self.project) 2057 upload = MultipartUpload(upload_url, headers=headers) 2058 2059 if num_retries is not None: 2060 upload._retry_strategy = resumable_media.RetryStrategy( 2061 max_retries=num_retries 2062 ) 2063 2064 response = upload.transmit(self._http, data, metadata, _GENERIC_CONTENT_TYPE) 2065 2066 return response 2067 2068 def copy_table( 2069 self, 2070 sources, 2071 destination, 2072 job_id=None, 2073 job_id_prefix=None, 2074 location=None, 2075 project=None, 2076 job_config=None, 2077 retry=DEFAULT_RETRY, 2078 timeout=None, 2079 ): 2080 """Copy one or more tables to another table. 2081 2082 See 2083 https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationtablecopy 2084 2085 Args: 2086 sources (Union[ \ 2087 google.cloud.bigquery.table.Table, \ 2088 google.cloud.bigquery.table.TableReference, \ 2089 str, \ 2090 Sequence[ \ 2091 Union[ \ 2092 google.cloud.bigquery.table.Table, \ 2093 google.cloud.bigquery.table.TableReference, \ 2094 str, \ 2095 ] \ 2096 ], \ 2097 ]): 2098 Table or tables to be copied. 2099 destination (Union[ \ 2100 google.cloud.bigquery.table.Table, \ 2101 google.cloud.bigquery.table.TableReference, \ 2102 str, \ 2103 ]): 2104 Table into which data is to be copied. 2105 2106 Keyword Arguments: 2107 job_id (str): (Optional) The ID of the job. 2108 job_id_prefix (str) 2109 (Optional) the user-provided prefix for a randomly generated 2110 job ID. This parameter will be ignored if a ``job_id`` is 2111 also given. 2112 location (str): 2113 Location where to run the job. Must match the location of any 2114 source table as well as the destination table. 2115 project (str): 2116 Project ID of the project of where to run the job. Defaults 2117 to the client's project. 2118 job_config (google.cloud.bigquery.job.CopyJobConfig): 2119 (Optional) Extra configuration options for the job. 2120 retry (google.api_core.retry.Retry): 2121 (Optional) How to retry the RPC. 2122 timeout (Optional[float]): 2123 The number of seconds to wait for the underlying HTTP transport 2124 before using ``retry``. 2125 2126 Returns: 2127 google.cloud.bigquery.job.CopyJob: A new copy job instance. 2128 2129 Raises: 2130 TypeError: 2131 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.CopyJobConfig` 2132 class. 2133 """ 2134 job_id = _make_job_id(job_id, job_id_prefix) 2135 2136 if project is None: 2137 project = self.project 2138 2139 if location is None: 2140 location = self.location 2141 2142 job_ref = job._JobReference(job_id, project=project, location=location) 2143 2144 # sources can be one of many different input types. (string, Table, 2145 # TableReference, or a sequence of any of those.) Convert them all to a 2146 # list of TableReferences. 2147 # 2148 # _table_arg_to_table_ref leaves lists unmodified. 2149 sources = _table_arg_to_table_ref(sources, default_project=self.project) 2150 2151 if not isinstance(sources, collections_abc.Sequence): 2152 sources = [sources] 2153 2154 sources = [ 2155 _table_arg_to_table_ref(source, default_project=self.project) 2156 for source in sources 2157 ] 2158 2159 destination = _table_arg_to_table_ref(destination, default_project=self.project) 2160 2161 if job_config: 2162 _verify_job_config_type(job_config, google.cloud.bigquery.job.CopyJobConfig) 2163 job_config = copy.deepcopy(job_config) 2164 2165 copy_job = job.CopyJob( 2166 job_ref, sources, destination, client=self, job_config=job_config 2167 ) 2168 copy_job._begin(retry=retry, timeout=timeout) 2169 2170 return copy_job 2171 2172 def extract_table( 2173 self, 2174 source, 2175 destination_uris, 2176 job_id=None, 2177 job_id_prefix=None, 2178 location=None, 2179 project=None, 2180 job_config=None, 2181 retry=DEFAULT_RETRY, 2182 timeout=None, 2183 ): 2184 """Start a job to extract a table into Cloud Storage files. 2185 2186 See 2187 https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationextract 2188 2189 Args: 2190 source (Union[ \ 2191 google.cloud.bigquery.table.Table, \ 2192 google.cloud.bigquery.table.TableReference, \ 2193 src, \ 2194 ]): 2195 Table to be extracted. 2196 destination_uris (Union[str, Sequence[str]]): 2197 URIs of Cloud Storage file(s) into which table data is to be 2198 extracted; in format 2199 ``gs://<bucket_name>/<object_name_or_glob>``. 2200 2201 Keyword Arguments: 2202 job_id (str): (Optional) The ID of the job. 2203 job_id_prefix (str) 2204 (Optional) the user-provided prefix for a randomly generated 2205 job ID. This parameter will be ignored if a ``job_id`` is 2206 also given. 2207 location (str): 2208 Location where to run the job. Must match the location of the 2209 source table. 2210 project (str): 2211 Project ID of the project of where to run the job. Defaults 2212 to the client's project. 2213 job_config (google.cloud.bigquery.job.ExtractJobConfig): 2214 (Optional) Extra configuration options for the job. 2215 retry (google.api_core.retry.Retry): 2216 (Optional) How to retry the RPC. 2217 timeout (Optional[float]): 2218 The number of seconds to wait for the underlying HTTP transport 2219 before using ``retry``. 2220 Args: 2221 source (google.cloud.bigquery.table.TableReference): table to be extracted. 2222 2223 Returns: 2224 google.cloud.bigquery.job.ExtractJob: A new extract job instance. 2225 2226 Raises: 2227 TypeError: 2228 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.ExtractJobConfig` 2229 class. 2230 """ 2231 job_id = _make_job_id(job_id, job_id_prefix) 2232 2233 if project is None: 2234 project = self.project 2235 2236 if location is None: 2237 location = self.location 2238 2239 job_ref = job._JobReference(job_id, project=project, location=location) 2240 source = _table_arg_to_table_ref(source, default_project=self.project) 2241 2242 if isinstance(destination_uris, six.string_types): 2243 destination_uris = [destination_uris] 2244 2245 if job_config: 2246 _verify_job_config_type( 2247 job_config, google.cloud.bigquery.job.ExtractJobConfig 2248 ) 2249 job_config = copy.deepcopy(job_config) 2250 2251 extract_job = job.ExtractJob( 2252 job_ref, source, destination_uris, client=self, job_config=job_config 2253 ) 2254 extract_job._begin(retry=retry, timeout=timeout) 2255 2256 return extract_job 2257 2258 def query( 2259 self, 2260 query, 2261 job_config=None, 2262 job_id=None, 2263 job_id_prefix=None, 2264 location=None, 2265 project=None, 2266 retry=DEFAULT_RETRY, 2267 timeout=None, 2268 ): 2269 """Run a SQL query. 2270 2271 See 2272 https://cloud.google.com/bigquery/docs/reference/rest/v2/Job#jobconfigurationquery 2273 2274 Args: 2275 query (str): 2276 SQL query to be executed. Defaults to the standard SQL 2277 dialect. Use the ``job_config`` parameter to change dialects. 2278 2279 Keyword Arguments: 2280 job_config (google.cloud.bigquery.job.QueryJobConfig): 2281 (Optional) Extra configuration options for the job. 2282 To override any options that were previously set in 2283 the ``default_query_job_config`` given to the 2284 ``Client`` constructor, manually set those options to ``None``, 2285 or whatever value is preferred. 2286 job_id (str): (Optional) ID to use for the query job. 2287 job_id_prefix (str): 2288 (Optional) The prefix to use for a randomly generated job ID. 2289 This parameter will be ignored if a ``job_id`` is also given. 2290 location (str): 2291 Location where to run the job. Must match the location of the 2292 any table used in the query as well as the destination table. 2293 project (str): 2294 Project ID of the project of where to run the job. Defaults 2295 to the client's project. 2296 retry (google.api_core.retry.Retry): 2297 (Optional) How to retry the RPC. 2298 timeout (Optional[float]): 2299 The number of seconds to wait for the underlying HTTP transport 2300 before using ``retry``. 2301 2302 Returns: 2303 google.cloud.bigquery.job.QueryJob: A new query job instance. 2304 2305 Raises: 2306 TypeError: 2307 If ``job_config`` is not an instance of :class:`~google.cloud.bigquery.job.QueryJobConfig` 2308 class. 2309 """ 2310 job_id = _make_job_id(job_id, job_id_prefix) 2311 2312 if project is None: 2313 project = self.project 2314 2315 if location is None: 2316 location = self.location 2317 2318 job_config = copy.deepcopy(job_config) 2319 2320 if self._default_query_job_config: 2321 if job_config: 2322 _verify_job_config_type( 2323 job_config, google.cloud.bigquery.job.QueryJobConfig 2324 ) 2325 # anything that's not defined on the incoming 2326 # that is in the default, 2327 # should be filled in with the default 2328 # the incoming therefore has precedence 2329 job_config = job_config._fill_from_default( 2330 self._default_query_job_config 2331 ) 2332 else: 2333 _verify_job_config_type( 2334 self._default_query_job_config, 2335 google.cloud.bigquery.job.QueryJobConfig, 2336 ) 2337 job_config = copy.deepcopy(self._default_query_job_config) 2338 2339 job_ref = job._JobReference(job_id, project=project, location=location) 2340 query_job = job.QueryJob(job_ref, query, client=self, job_config=job_config) 2341 query_job._begin(retry=retry, timeout=timeout) 2342 2343 return query_job 2344 2345 def insert_rows(self, table, rows, selected_fields=None, **kwargs): 2346 """Insert rows into a table via the streaming API. 2347 2348 See 2349 https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll 2350 2351 Args: 2352 table (Union[ \ 2353 google.cloud.bigquery.table.Table, \ 2354 google.cloud.bigquery.table.TableReference, \ 2355 str, \ 2356 ]): 2357 The destination table for the row data, or a reference to it. 2358 rows (Union[Sequence[Tuple], Sequence[dict]]): 2359 Row data to be inserted. If a list of tuples is given, each 2360 tuple should contain data for each schema field on the 2361 current table and in the same order as the schema fields. If 2362 a list of dictionaries is given, the keys must include all 2363 required fields in the schema. Keys which do not correspond 2364 to a field in the schema are ignored. 2365 selected_fields (Sequence[google.cloud.bigquery.schema.SchemaField]): 2366 The fields to return. Required if ``table`` is a 2367 :class:`~google.cloud.bigquery.table.TableReference`. 2368 kwargs (Dict): 2369 Keyword arguments to 2370 :meth:`~google.cloud.bigquery.client.Client.insert_rows_json`. 2371 2372 Returns: 2373 Sequence[Mappings]: 2374 One mapping per row with insert errors: the "index" key 2375 identifies the row, and the "errors" key contains a list of 2376 the mappings describing one or more problems with the row. 2377 2378 Raises: 2379 ValueError: if table's schema is not set 2380 """ 2381 table = _table_arg_to_table(table, default_project=self.project) 2382 2383 if not isinstance(table, Table): 2384 raise TypeError(_NEED_TABLE_ARGUMENT) 2385 2386 schema = table.schema 2387 2388 # selected_fields can override the table schema. 2389 if selected_fields is not None: 2390 schema = selected_fields 2391 2392 if len(schema) == 0: 2393 raise ValueError( 2394 ( 2395 "Could not determine schema for table '{}'. Call client.get_table() " 2396 "or pass in a list of schema fields to the selected_fields argument." 2397 ).format(table) 2398 ) 2399 2400 json_rows = [_record_field_to_json(schema, row) for row in rows] 2401 2402 return self.insert_rows_json(table, json_rows, **kwargs) 2403 2404 def insert_rows_from_dataframe( 2405 self, table, dataframe, selected_fields=None, chunk_size=500, **kwargs 2406 ): 2407 """Insert rows into a table from a dataframe via the streaming API. 2408 2409 Args: 2410 table (Union[ \ 2411 google.cloud.bigquery.table.Table, \ 2412 google.cloud.bigquery.table.TableReference, \ 2413 str, \ 2414 ]): 2415 The destination table for the row data, or a reference to it. 2416 dataframe (pandas.DataFrame): 2417 A :class:`~pandas.DataFrame` containing the data to load. 2418 selected_fields (Sequence[google.cloud.bigquery.schema.SchemaField]): 2419 The fields to return. Required if ``table`` is a 2420 :class:`~google.cloud.bigquery.table.TableReference`. 2421 chunk_size (int): 2422 The number of rows to stream in a single chunk. Must be positive. 2423 kwargs (Dict): 2424 Keyword arguments to 2425 :meth:`~google.cloud.bigquery.client.Client.insert_rows_json`. 2426 2427 Returns: 2428 Sequence[Sequence[Mappings]]: 2429 A list with insert errors for each insert chunk. Each element 2430 is a list containing one mapping per row with insert errors: 2431 the "index" key identifies the row, and the "errors" key 2432 contains a list of the mappings describing one or more problems 2433 with the row. 2434 2435 Raises: 2436 ValueError: if table's schema is not set 2437 """ 2438 insert_results = [] 2439 2440 chunk_count = int(math.ceil(len(dataframe) / chunk_size)) 2441 rows_iter = ( 2442 dict(six.moves.zip(dataframe.columns, row)) 2443 for row in dataframe.itertuples(index=False, name=None) 2444 ) 2445 2446 for _ in range(chunk_count): 2447 rows_chunk = itertools.islice(rows_iter, chunk_size) 2448 result = self.insert_rows(table, rows_chunk, selected_fields, **kwargs) 2449 insert_results.append(result) 2450 2451 return insert_results 2452 2453 def insert_rows_json( 2454 self, 2455 table, 2456 json_rows, 2457 row_ids=None, 2458 skip_invalid_rows=None, 2459 ignore_unknown_values=None, 2460 template_suffix=None, 2461 retry=DEFAULT_RETRY, 2462 timeout=None, 2463 ): 2464 """Insert rows into a table without applying local type conversions. 2465 2466 See 2467 https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/insertAll 2468 2469 Args: 2470 table (Union[ \ 2471 google.cloud.bigquery.table.Table \ 2472 google.cloud.bigquery.table.TableReference, \ 2473 str \ 2474 ]): 2475 The destination table for the row data, or a reference to it. 2476 json_rows (Sequence[Dict]): 2477 Row data to be inserted. Keys must match the table schema fields 2478 and values must be JSON-compatible representations. 2479 row_ids (Optional[Sequence[Optional[str]]]): 2480 Unique IDs, one per row being inserted. An ID can also be 2481 ``None``, indicating that an explicit insert ID should **not** 2482 be used for that row. If the argument is omitted altogether, 2483 unique IDs are created automatically. 2484 skip_invalid_rows (Optional[bool]): 2485 Insert all valid rows of a request, even if invalid rows exist. 2486 The default value is ``False``, which causes the entire request 2487 to fail if any invalid rows exist. 2488 ignore_unknown_values (Optional[bool]): 2489 Accept rows that contain values that do not match the schema. 2490 The unknown values are ignored. Default is ``False``, which 2491 treats unknown values as errors. 2492 template_suffix (Optional[str]): 2493 Treat ``name`` as a template table and provide a suffix. 2494 BigQuery will create the table ``<name> + <template_suffix>`` 2495 based on the schema of the template table. See 2496 https://cloud.google.com/bigquery/streaming-data-into-bigquery#template-tables 2497 retry (Optional[google.api_core.retry.Retry]): 2498 How to retry the RPC. 2499 timeout (Optional[float]): 2500 The number of seconds to wait for the underlying HTTP transport 2501 before using ``retry``. 2502 2503 Returns: 2504 Sequence[Mappings]: 2505 One mapping per row with insert errors: the "index" key 2506 identifies the row, and the "errors" key contains a list of 2507 the mappings describing one or more problems with the row. 2508 """ 2509 # Convert table to just a reference because unlike insert_rows, 2510 # insert_rows_json doesn't need the table schema. It's not doing any 2511 # type conversions. 2512 table = _table_arg_to_table_ref(table, default_project=self.project) 2513 rows_info = [] 2514 data = {"rows": rows_info} 2515 2516 for index, row in enumerate(json_rows): 2517 info = {"json": row} 2518 if row_ids is not None: 2519 info["insertId"] = row_ids[index] 2520 else: 2521 info["insertId"] = str(uuid.uuid4()) 2522 rows_info.append(info) 2523 2524 if skip_invalid_rows is not None: 2525 data["skipInvalidRows"] = skip_invalid_rows 2526 2527 if ignore_unknown_values is not None: 2528 data["ignoreUnknownValues"] = ignore_unknown_values 2529 2530 if template_suffix is not None: 2531 data["templateSuffix"] = template_suffix 2532 2533 # We can always retry, because every row has an insert ID. 2534 response = self._call_api( 2535 retry, 2536 method="POST", 2537 path="%s/insertAll" % table.path, 2538 data=data, 2539 timeout=timeout, 2540 ) 2541 errors = [] 2542 2543 for error in response.get("insertErrors", ()): 2544 errors.append({"index": int(error["index"]), "errors": error["errors"]}) 2545 2546 return errors 2547 2548 def list_partitions(self, table, retry=DEFAULT_RETRY, timeout=None): 2549 """List the partitions in a table. 2550 2551 Args: 2552 table (Union[ \ 2553 google.cloud.bigquery.table.Table, \ 2554 google.cloud.bigquery.table.TableReference, \ 2555 str, \ 2556 ]): 2557 The table or reference from which to get partition info 2558 retry (google.api_core.retry.Retry): 2559 (Optional) How to retry the RPC. 2560 timeout (Optional[float]): 2561 The number of seconds to wait for the underlying HTTP transport 2562 before using ``retry``. 2563 If multiple requests are made under the hood, ``timeout`` is 2564 interpreted as the approximate total time of **all** requests. 2565 2566 Returns: 2567 List[str]: 2568 A list of the partition ids present in the partitioned table 2569 """ 2570 table = _table_arg_to_table_ref(table, default_project=self.project) 2571 2572 with TimeoutGuard( 2573 timeout, timeout_error_type=concurrent.futures.TimeoutError 2574 ) as guard: 2575 meta_table = self.get_table( 2576 TableReference( 2577 self.dataset(table.dataset_id, project=table.project), 2578 "%s$__PARTITIONS_SUMMARY__" % table.table_id, 2579 ), 2580 retry=retry, 2581 timeout=timeout, 2582 ) 2583 timeout = guard.remaining_timeout 2584 2585 subset = [col for col in meta_table.schema if col.name == "partition_id"] 2586 return [ 2587 row[0] 2588 for row in self.list_rows( 2589 meta_table, selected_fields=subset, retry=retry, timeout=timeout 2590 ) 2591 ] 2592 2593 def list_rows( 2594 self, 2595 table, 2596 selected_fields=None, 2597 max_results=None, 2598 page_token=None, 2599 start_index=None, 2600 page_size=None, 2601 retry=DEFAULT_RETRY, 2602 timeout=None, 2603 ): 2604 """List the rows of the table. 2605 2606 See 2607 https://cloud.google.com/bigquery/docs/reference/rest/v2/tabledata/list 2608 2609 .. note:: 2610 2611 This method assumes that the provided schema is up-to-date with the 2612 schema as defined on the back-end: if the two schemas are not 2613 identical, the values returned may be incomplete. To ensure that the 2614 local copy of the schema is up-to-date, call ``client.get_table``. 2615 2616 Args: 2617 table (Union[ \ 2618 google.cloud.bigquery.table.Table, \ 2619 google.cloud.bigquery.table.TableListItem, \ 2620 google.cloud.bigquery.table.TableReference, \ 2621 str, \ 2622 ]): 2623 The table to list, or a reference to it. When the table 2624 object does not contain a schema and ``selected_fields`` is 2625 not supplied, this method calls ``get_table`` to fetch the 2626 table schema. 2627 selected_fields (Sequence[google.cloud.bigquery.schema.SchemaField]): 2628 The fields to return. If not supplied, data for all columns 2629 are downloaded. 2630 max_results (int): 2631 (Optional) maximum number of rows to return. 2632 page_token (str): 2633 (Optional) Token representing a cursor into the table's rows. 2634 If not passed, the API will return the first page of the 2635 rows. The token marks the beginning of the iterator to be 2636 returned and the value of the ``page_token`` can be accessed 2637 at ``next_page_token`` of the 2638 :class:`~google.cloud.bigquery.table.RowIterator`. 2639 start_index (int): 2640 (Optional) The zero-based index of the starting row to read. 2641 page_size (int): 2642 Optional. The maximum number of rows in each page of results 2643 from this request. Non-positive values are ignored. Defaults 2644 to a sensible value set by the API. 2645 retry (google.api_core.retry.Retry): 2646 (Optional) How to retry the RPC. 2647 timeout (Optional[float]): 2648 The number of seconds to wait for the underlying HTTP transport 2649 before using ``retry``. 2650 If multiple requests are made under the hood, ``timeout`` is 2651 interpreted as the approximate total time of **all** requests. 2652 2653 Returns: 2654 google.cloud.bigquery.table.RowIterator: 2655 Iterator of row data 2656 :class:`~google.cloud.bigquery.table.Row`-s. During each 2657 page, the iterator will have the ``total_rows`` attribute 2658 set, which counts the total number of rows **in the table** 2659 (this is distinct from the total number of rows in the 2660 current page: ``iterator.page.num_items``). 2661 """ 2662 table = _table_arg_to_table(table, default_project=self.project) 2663 2664 if not isinstance(table, Table): 2665 raise TypeError(_NEED_TABLE_ARGUMENT) 2666 2667 schema = table.schema 2668 2669 # selected_fields can override the table schema. 2670 if selected_fields is not None: 2671 schema = selected_fields 2672 2673 # No schema, but no selected_fields. Assume the developer wants all 2674 # columns, so get the table resource for them rather than failing. 2675 elif len(schema) == 0: 2676 with TimeoutGuard( 2677 timeout, timeout_error_type=concurrent.futures.TimeoutError 2678 ) as guard: 2679 table = self.get_table(table.reference, retry=retry, timeout=timeout) 2680 timeout = guard.remaining_timeout 2681 schema = table.schema 2682 2683 params = {} 2684 if selected_fields is not None: 2685 params["selectedFields"] = ",".join(field.name for field in selected_fields) 2686 if start_index is not None: 2687 params["startIndex"] = start_index 2688 2689 row_iterator = RowIterator( 2690 client=self, 2691 api_request=functools.partial(self._call_api, retry, timeout=timeout), 2692 path="%s/data" % (table.path,), 2693 schema=schema, 2694 page_token=page_token, 2695 max_results=max_results, 2696 page_size=page_size, 2697 extra_params=params, 2698 table=table, 2699 # Pass in selected_fields separately from schema so that full 2700 # tables can be fetched without a column filter. 2701 selected_fields=selected_fields, 2702 ) 2703 return row_iterator 2704 2705 def _schema_from_json_file_object(self, file_obj): 2706 """Helper function for schema_from_json that takes a 2707 file object that describes a table schema. 2708 2709 Returns: 2710 List of schema field objects. 2711 """ 2712 json_data = json.load(file_obj) 2713 return [SchemaField.from_api_repr(field) for field in json_data] 2714 2715 def _schema_to_json_file_object(self, schema_list, file_obj): 2716 """Helper function for schema_to_json that takes a schema list and file 2717 object and writes the schema list to the file object with json.dump 2718 """ 2719 json.dump(schema_list, file_obj, indent=2, sort_keys=True) 2720 2721 def schema_from_json(self, file_or_path): 2722 """Takes a file object or file path that contains json that describes 2723 a table schema. 2724 2725 Returns: 2726 List of schema field objects. 2727 """ 2728 if isinstance(file_or_path, io.IOBase): 2729 return self._schema_from_json_file_object(file_or_path) 2730 2731 with open(file_or_path) as file_obj: 2732 return self._schema_from_json_file_object(file_obj) 2733 2734 def schema_to_json(self, schema_list, destination): 2735 """Takes a list of schema field objects. 2736 2737 Serializes the list of schema field objects as json to a file. 2738 2739 Destination is a file path or a file object. 2740 """ 2741 json_schema_list = [f.to_api_repr() for f in schema_list] 2742 2743 if isinstance(destination, io.IOBase): 2744 return self._schema_to_json_file_object(json_schema_list, destination) 2745 2746 with open(destination, mode="w") as file_obj: 2747 return self._schema_to_json_file_object(json_schema_list, file_obj) 2748 2749 2750 # pylint: disable=unused-argument 2751 def _item_to_project(iterator, resource): 2752 """Convert a JSON project to the native object. 2753 2754 Args: 2755 iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. 2756 2757 resource (Dict): An item to be converted to a project. 2758 2759 Returns: 2760 google.cloud.bigquery.client.Project: The next project in the page. 2761 """ 2762 return Project.from_api_repr(resource) 2763 2764 2765 # pylint: enable=unused-argument 2766 2767 2768 def _item_to_dataset(iterator, resource): 2769 """Convert a JSON dataset to the native object. 2770 2771 Args: 2772 iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. 2773 2774 resource (Dict): An item to be converted to a dataset. 2775 2776 Returns: 2777 google.cloud.bigquery.dataset.DatasetListItem: The next dataset in the page. 2778 """ 2779 return DatasetListItem(resource) 2780 2781 2782 def _item_to_job(iterator, resource): 2783 """Convert a JSON job to the native object. 2784 2785 Args: 2786 iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. 2787 2788 resource (Dict): An item to be converted to a job. 2789 2790 Returns: 2791 job instance: The next job in the page. 2792 """ 2793 return iterator.client.job_from_resource(resource) 2794 2795 2796 def _item_to_model(iterator, resource): 2797 """Convert a JSON model to the native object. 2798 2799 Args: 2800 iterator (google.api_core.page_iterator.Iterator): 2801 The iterator that is currently in use. 2802 resource (Dict): An item to be converted to a model. 2803 2804 Returns: 2805 google.cloud.bigquery.model.Model: The next model in the page. 2806 """ 2807 return Model.from_api_repr(resource) 2808 2809 2810 def _item_to_routine(iterator, resource): 2811 """Convert a JSON model to the native object. 2812 2813 Args: 2814 iterator (google.api_core.page_iterator.Iterator): 2815 The iterator that is currently in use. 2816 resource (Dict): An item to be converted to a routine. 2817 2818 Returns: 2819 google.cloud.bigquery.routine.Routine: The next routine in the page. 2820 """ 2821 return Routine.from_api_repr(resource) 2822 2823 2824 def _item_to_table(iterator, resource): 2825 """Convert a JSON table to the native object. 2826 2827 Args: 2828 iterator (google.api_core.page_iterator.Iterator): The iterator that is currently in use. 2829 2830 resource (Dict): An item to be converted to a table. 2831 2832 Returns: 2833 google.cloud.bigquery.table.Table: The next table in the page. 2834 """ 2835 return TableListItem(resource) 2836 2837 2838 def _make_job_id(job_id, prefix=None): 2839 """Construct an ID for a new job. 2840 2841 Args: 2842 job_id (Optional[str]): the user-provided job ID. 2843 2844 prefix (Optional[str]): the user-provided prefix for a job ID. 2845 2846 Returns: 2847 str: A job ID 2848 """ 2849 if job_id is not None: 2850 return job_id 2851 elif prefix is not None: 2852 return str(prefix) + str(uuid.uuid4()) 2853 else: 2854 return str(uuid.uuid4()) 2855 2856 2857 def _check_mode(stream): 2858 """Check that a stream was opened in read-binary mode. 2859 2860 Args: 2861 stream (IO[bytes]): A bytes IO object open for reading. 2862 2863 Raises: 2864 ValueError: 2865 if the ``stream.mode`` is a valid attribute 2866 and is not among ``rb``, ``r+b`` or ``rb+``. 2867 """ 2868 mode = getattr(stream, "mode", None) 2869 2870 if isinstance(stream, gzip.GzipFile): 2871 if mode != gzip.READ: 2872 raise ValueError( 2873 "Cannot upload gzip files opened in write mode: use " 2874 "gzip.GzipFile(filename, mode='rb')" 2875 ) 2876 else: 2877 if mode is not None and mode not in ("rb", "r+b", "rb+"): 2878 raise ValueError( 2879 "Cannot upload files opened in text mode: use " 2880 "open(filename, mode='rb') or open(filename, mode='r+b')" 2881 ) 2882 2883 2884 def _get_upload_headers(user_agent): 2885 """Get the headers for an upload request. 2886 2887 Args: 2888 user_agent (str): The user-agent for requests. 2889 2890 Returns: 2891 Dict: The headers to be used for the request. 2892 """ 2893 return { 2894 "Accept": "application/json", 2895 "Accept-Encoding": "gzip, deflate", 2896 "User-Agent": user_agent, 2897 "content-type": "application/json", 2898 } 2899 [end of bigquery/google/cloud/bigquery/client.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
googleapis/google-cloud-python
b492bdcc2d288022b5c81e90aea993432eec078a
BigQuery: raise a `TypeError` if a dictionary is passed to `insert_rows_json` **Is your feature request related to a problem? Please describe.** If I want to only insert a single row at a time into a table, it's easy to accidentally try something like: ```python json_row = {"col1": "hello", "col2": "world"} errors = client.insert_rows_json( table, json_row ) ``` This results in a `400 BadRequest` error from the API, because it expects a list of rows, not a single row. **Describe the solution you'd like** It's difficult to debug this situation from the API response, so it'd be better if we raised a client-side error for passing in the wrong type for `json_rows`. **Describe alternatives you've considered** Leave as-is and request a better server-side message. This may be difficult to do, as the error happens at a level above BigQuery, which translates JSON to Protobuf for internal use. **Additional context** This issue was encountered by a customer engineer, and it took me a bit of debugging to figure out the actual issue. I expect other customers will encounter this problem as well.
2020-01-16T13:04:56Z
<patch> diff --git a/bigquery/google/cloud/bigquery/client.py b/bigquery/google/cloud/bigquery/client.py --- a/bigquery/google/cloud/bigquery/client.py +++ b/bigquery/google/cloud/bigquery/client.py @@ -2506,6 +2506,8 @@ def insert_rows_json( identifies the row, and the "errors" key contains a list of the mappings describing one or more problems with the row. """ + if not isinstance(json_rows, collections_abc.Sequence): + raise TypeError("json_rows argument should be a sequence of dicts") # Convert table to just a reference because unlike insert_rows, # insert_rows_json doesn't need the table schema. It's not doing any # type conversions. </patch>
[]
[]
numpy__numpy-14074
You will be provided with a partial code base and an issue statement explaining a problem to resolve. <issue> NumPy 1.17 RC fails to compile with Intel C Compile 2016 <!-- Please describe the issue in detail here, and fill in the fields below --> Compiling NumPy 1.17.0rc2 sources with Intel C Compiler 2016, which does not yet implement `__builtin_cpu_supports("avx512f")` fails with compilation error: ``` icc: numpy/core/src/umath/cpuid.c numpy/core/src/umath/cpuid.c(63): catastrophic error: invalid use of '__builtin_cpu_supports' compilation aborted for numpy/core/src/umath/cpuid.c (code 1) ``` Recent Intel C compiler (2019) proceeds just fine. There is config test to probe compiler for support of `__builtin_cpu_supports`, but the the test does not discriminate between supported arguments. </issue> <code> [start of README.md] 1 # <img alt="NumPy" src="https://cdn.rawgit.com/numpy/numpy/master/branding/icons/numpylogo.svg" height="60"> 2 3 [![Travis](https://img.shields.io/travis/numpy/numpy/master.svg?label=Travis%20CI)]( 4 https://travis-ci.org/numpy/numpy) 5 [![AppVeyor](https://img.shields.io/appveyor/ci/charris/numpy/master.svg?label=AppVeyor)]( 6 https://ci.appveyor.com/project/charris/numpy) 7 [![Azure](https://dev.azure.com/numpy/numpy/_apis/build/status/azure-pipeline%20numpy.numpy)]( 8 https://dev.azure.com/numpy/numpy/_build/latest?definitionId=5) 9 [![codecov](https://codecov.io/gh/numpy/numpy/branch/master/graph/badge.svg)]( 10 https://codecov.io/gh/numpy/numpy) 11 12 NumPy is the fundamental package needed for scientific computing with Python. 13 14 - **Website:** https://www.numpy.org 15 - **Documentation:** http://docs.scipy.org/ 16 - **Mailing list:** https://mail.python.org/mailman/listinfo/numpy-discussion 17 - **Source code:** https://github.com/numpy/numpy 18 - **Contributing:** https://www.numpy.org/devdocs/dev/index.html 19 - **Bug reports:** https://github.com/numpy/numpy/issues 20 - **Report a security vulnerability:** https://tidelift.com/docs/security 21 22 It provides: 23 24 - a powerful N-dimensional array object 25 - sophisticated (broadcasting) functions 26 - tools for integrating C/C++ and Fortran code 27 - useful linear algebra, Fourier transform, and random number capabilities 28 29 Testing: 30 31 - NumPy versions &ge; 1.15 require `pytest` 32 - NumPy versions &lt; 1.15 require `nose` 33 34 Tests can then be run after installation with: 35 36 python -c 'import numpy; numpy.test()' 37 38 39 Call for Contributions 40 ---------------------- 41 42 NumPy appreciates help from a wide range of different backgrounds. 43 Work such as high level documentation or website improvements are valuable 44 and we would like to grow our team with people filling these roles. 45 Small improvements or fixes are always appreciated and issues labeled as easy 46 may be a good starting point. 47 If you are considering larger contributions outside the traditional coding work, 48 please contact us through the mailing list. 49 50 51 [![Powered by NumFOCUS](https://img.shields.io/badge/powered%20by-NumFOCUS-orange.svg?style=flat&colorA=E1523D&colorB=007D8A)](https://numfocus.org) 52 [end of README.md] [start of numpy/core/setup_common.py] 1 from __future__ import division, absolute_import, print_function 2 3 # Code common to build tools 4 import sys 5 import warnings 6 import copy 7 import binascii 8 9 from numpy.distutils.misc_util import mingw32 10 11 12 #------------------- 13 # Versioning support 14 #------------------- 15 # How to change C_API_VERSION ? 16 # - increase C_API_VERSION value 17 # - record the hash for the new C API with the script cversions.py 18 # and add the hash to cversions.txt 19 # The hash values are used to remind developers when the C API number was not 20 # updated - generates a MismatchCAPIWarning warning which is turned into an 21 # exception for released version. 22 23 # Binary compatibility version number. This number is increased whenever the 24 # C-API is changed such that binary compatibility is broken, i.e. whenever a 25 # recompile of extension modules is needed. 26 C_ABI_VERSION = 0x01000009 27 28 # Minor API version. This number is increased whenever a change is made to the 29 # C-API -- whether it breaks binary compatibility or not. Some changes, such 30 # as adding a function pointer to the end of the function table, can be made 31 # without breaking binary compatibility. In this case, only the C_API_VERSION 32 # (*not* C_ABI_VERSION) would be increased. Whenever binary compatibility is 33 # broken, both C_API_VERSION and C_ABI_VERSION should be increased. 34 # 35 # 0x00000008 - 1.7.x 36 # 0x00000009 - 1.8.x 37 # 0x00000009 - 1.9.x 38 # 0x0000000a - 1.10.x 39 # 0x0000000a - 1.11.x 40 # 0x0000000a - 1.12.x 41 # 0x0000000b - 1.13.x 42 # 0x0000000c - 1.14.x 43 # 0x0000000c - 1.15.x 44 # 0x0000000d - 1.16.x 45 C_API_VERSION = 0x0000000d 46 47 class MismatchCAPIWarning(Warning): 48 pass 49 50 def is_released(config): 51 """Return True if a released version of numpy is detected.""" 52 from distutils.version import LooseVersion 53 54 v = config.get_version('../version.py') 55 if v is None: 56 raise ValueError("Could not get version") 57 pv = LooseVersion(vstring=v).version 58 if len(pv) > 3: 59 return False 60 return True 61 62 def get_api_versions(apiversion, codegen_dir): 63 """ 64 Return current C API checksum and the recorded checksum. 65 66 Return current C API checksum and the recorded checksum for the given 67 version of the C API version. 68 69 """ 70 # Compute the hash of the current API as defined in the .txt files in 71 # code_generators 72 sys.path.insert(0, codegen_dir) 73 try: 74 m = __import__('genapi') 75 numpy_api = __import__('numpy_api') 76 curapi_hash = m.fullapi_hash(numpy_api.full_api) 77 apis_hash = m.get_versions_hash() 78 finally: 79 del sys.path[0] 80 81 return curapi_hash, apis_hash[apiversion] 82 83 def check_api_version(apiversion, codegen_dir): 84 """Emits a MismatchCAPIWarning if the C API version needs updating.""" 85 curapi_hash, api_hash = get_api_versions(apiversion, codegen_dir) 86 87 # If different hash, it means that the api .txt files in 88 # codegen_dir have been updated without the API version being 89 # updated. Any modification in those .txt files should be reflected 90 # in the api and eventually abi versions. 91 # To compute the checksum of the current API, use 92 # code_generators/cversions.py script 93 if not curapi_hash == api_hash: 94 msg = ("API mismatch detected, the C API version " 95 "numbers have to be updated. Current C api version is %d, " 96 "with checksum %s, but recorded checksum for C API version %d in " 97 "codegen_dir/cversions.txt is %s. If functions were added in the " 98 "C API, you have to update C_API_VERSION in %s." 99 ) 100 warnings.warn(msg % (apiversion, curapi_hash, apiversion, api_hash, 101 __file__), 102 MismatchCAPIWarning, stacklevel=2) 103 # Mandatory functions: if not found, fail the build 104 MANDATORY_FUNCS = ["sin", "cos", "tan", "sinh", "cosh", "tanh", "fabs", 105 "floor", "ceil", "sqrt", "log10", "log", "exp", "asin", 106 "acos", "atan", "fmod", 'modf', 'frexp', 'ldexp'] 107 108 # Standard functions which may not be available and for which we have a 109 # replacement implementation. Note that some of these are C99 functions. 110 OPTIONAL_STDFUNCS = ["expm1", "log1p", "acosh", "asinh", "atanh", 111 "rint", "trunc", "exp2", "log2", "hypot", "atan2", "pow", 112 "copysign", "nextafter", "ftello", "fseeko", 113 "strtoll", "strtoull", "cbrt", "strtold_l", "fallocate", 114 "backtrace", "madvise"] 115 116 117 OPTIONAL_HEADERS = [ 118 # sse headers only enabled automatically on amd64/x32 builds 119 "xmmintrin.h", # SSE 120 "emmintrin.h", # SSE2 121 "immintrin.h", # AVX 122 "features.h", # for glibc version linux 123 "xlocale.h", # see GH#8367 124 "dlfcn.h", # dladdr 125 "sys/mman.h", #madvise 126 ] 127 128 # optional gcc compiler builtins and their call arguments and optional a 129 # required header and definition name (HAVE_ prepended) 130 # call arguments are required as the compiler will do strict signature checking 131 OPTIONAL_INTRINSICS = [("__builtin_isnan", '5.'), 132 ("__builtin_isinf", '5.'), 133 ("__builtin_isfinite", '5.'), 134 ("__builtin_bswap32", '5u'), 135 ("__builtin_bswap64", '5u'), 136 ("__builtin_expect", '5, 0'), 137 ("__builtin_mul_overflow", '5, 5, (int*)5'), 138 # broken on OSX 10.11, make sure its not optimized away 139 ("volatile int r = __builtin_cpu_supports", '"sse"', 140 "stdio.h", "__BUILTIN_CPU_SUPPORTS"), 141 # MMX only needed for icc, but some clangs don't have it 142 ("_m_from_int64", '0', "emmintrin.h"), 143 ("_mm_load_ps", '(float*)0', "xmmintrin.h"), # SSE 144 ("_mm_prefetch", '(float*)0, _MM_HINT_NTA', 145 "xmmintrin.h"), # SSE 146 ("_mm_load_pd", '(double*)0', "emmintrin.h"), # SSE2 147 ("__builtin_prefetch", "(float*)0, 0, 3"), 148 # check that the linker can handle avx 149 ("__asm__ volatile", '"vpand %xmm1, %xmm2, %xmm3"', 150 "stdio.h", "LINK_AVX"), 151 ("__asm__ volatile", '"vpand %ymm1, %ymm2, %ymm3"', 152 "stdio.h", "LINK_AVX2"), 153 ("__asm__ volatile", '"vpaddd %zmm1, %zmm2, %zmm3"', 154 "stdio.h", "LINK_AVX512F"), 155 ("__asm__ volatile", '"xgetbv"', "stdio.h", "XGETBV"), 156 ] 157 158 # function attributes 159 # tested via "int %s %s(void *);" % (attribute, name) 160 # function name will be converted to HAVE_<upper-case-name> preprocessor macro 161 OPTIONAL_FUNCTION_ATTRIBUTES = [('__attribute__((optimize("unroll-loops")))', 162 'attribute_optimize_unroll_loops'), 163 ('__attribute__((optimize("O3")))', 164 'attribute_optimize_opt_3'), 165 ('__attribute__((nonnull (1)))', 166 'attribute_nonnull'), 167 ('__attribute__((target ("avx")))', 168 'attribute_target_avx'), 169 ('__attribute__((target ("avx2")))', 170 'attribute_target_avx2'), 171 ('__attribute__((target ("avx512f")))', 172 'attribute_target_avx512f'), 173 ] 174 175 # function attributes with intrinsics 176 # To ensure your compiler can compile avx intrinsics with just the attributes 177 # gcc 4.8.4 support attributes but not with intrisics 178 # tested via "#include<%s> int %s %s(void *){code; return 0;};" % (header, attribute, name, code) 179 # function name will be converted to HAVE_<upper-case-name> preprocessor macro 180 OPTIONAL_FUNCTION_ATTRIBUTES_WITH_INTRINSICS = [('__attribute__((target("avx2")))', 181 'attribute_target_avx2_with_intrinsics', 182 '__m256 temp = _mm256_set1_ps(1.0)', 183 'immintrin.h'), 184 ('__attribute__((target("avx512f")))', 185 'attribute_target_avx512f_with_intrinsics', 186 '__m512 temp = _mm512_set1_ps(1.0)', 187 'immintrin.h'), 188 ] 189 190 # variable attributes tested via "int %s a" % attribute 191 OPTIONAL_VARIABLE_ATTRIBUTES = ["__thread", "__declspec(thread)"] 192 193 # Subset of OPTIONAL_STDFUNCS which may already have HAVE_* defined by Python.h 194 OPTIONAL_STDFUNCS_MAYBE = [ 195 "expm1", "log1p", "acosh", "atanh", "asinh", "hypot", "copysign", 196 "ftello", "fseeko" 197 ] 198 199 # C99 functions: float and long double versions 200 C99_FUNCS = [ 201 "sin", "cos", "tan", "sinh", "cosh", "tanh", "fabs", "floor", "ceil", 202 "rint", "trunc", "sqrt", "log10", "log", "log1p", "exp", "expm1", 203 "asin", "acos", "atan", "asinh", "acosh", "atanh", "hypot", "atan2", 204 "pow", "fmod", "modf", 'frexp', 'ldexp', "exp2", "log2", "copysign", 205 "nextafter", "cbrt" 206 ] 207 C99_FUNCS_SINGLE = [f + 'f' for f in C99_FUNCS] 208 C99_FUNCS_EXTENDED = [f + 'l' for f in C99_FUNCS] 209 C99_COMPLEX_TYPES = [ 210 'complex double', 'complex float', 'complex long double' 211 ] 212 C99_COMPLEX_FUNCS = [ 213 "cabs", "cacos", "cacosh", "carg", "casin", "casinh", "catan", 214 "catanh", "ccos", "ccosh", "cexp", "cimag", "clog", "conj", "cpow", 215 "cproj", "creal", "csin", "csinh", "csqrt", "ctan", "ctanh" 216 ] 217 218 def fname2def(name): 219 return "HAVE_%s" % name.upper() 220 221 def sym2def(symbol): 222 define = symbol.replace(' ', '') 223 return define.upper() 224 225 def type2def(symbol): 226 define = symbol.replace(' ', '_') 227 return define.upper() 228 229 # Code to detect long double representation taken from MPFR m4 macro 230 def check_long_double_representation(cmd): 231 cmd._check_compiler() 232 body = LONG_DOUBLE_REPRESENTATION_SRC % {'type': 'long double'} 233 234 # Disable whole program optimization (the default on vs2015, with python 3.5+) 235 # which generates intermediary object files and prevents checking the 236 # float representation. 237 if sys.platform == "win32" and not mingw32(): 238 try: 239 cmd.compiler.compile_options.remove("/GL") 240 except (AttributeError, ValueError): 241 pass 242 243 # Disable multi-file interprocedural optimization in the Intel compiler on Linux 244 # which generates intermediary object files and prevents checking the 245 # float representation. 246 elif (sys.platform != "win32" 247 and cmd.compiler.compiler_type.startswith('intel') 248 and '-ipo' in cmd.compiler.cc_exe): 249 newcompiler = cmd.compiler.cc_exe.replace(' -ipo', '') 250 cmd.compiler.set_executables( 251 compiler=newcompiler, 252 compiler_so=newcompiler, 253 compiler_cxx=newcompiler, 254 linker_exe=newcompiler, 255 linker_so=newcompiler + ' -shared' 256 ) 257 258 # We need to use _compile because we need the object filename 259 src, obj = cmd._compile(body, None, None, 'c') 260 try: 261 ltype = long_double_representation(pyod(obj)) 262 return ltype 263 except ValueError: 264 # try linking to support CC="gcc -flto" or icc -ipo 265 # struct needs to be volatile so it isn't optimized away 266 body = body.replace('struct', 'volatile struct') 267 body += "int main(void) { return 0; }\n" 268 src, obj = cmd._compile(body, None, None, 'c') 269 cmd.temp_files.append("_configtest") 270 cmd.compiler.link_executable([obj], "_configtest") 271 ltype = long_double_representation(pyod("_configtest")) 272 return ltype 273 finally: 274 cmd._clean() 275 276 LONG_DOUBLE_REPRESENTATION_SRC = r""" 277 /* "before" is 16 bytes to ensure there's no padding between it and "x". 278 * We're not expecting any "long double" bigger than 16 bytes or with 279 * alignment requirements stricter than 16 bytes. */ 280 typedef %(type)s test_type; 281 282 struct { 283 char before[16]; 284 test_type x; 285 char after[8]; 286 } foo = { 287 { '\0', '\0', '\0', '\0', '\0', '\0', '\0', '\0', 288 '\001', '\043', '\105', '\147', '\211', '\253', '\315', '\357' }, 289 -123456789.0, 290 { '\376', '\334', '\272', '\230', '\166', '\124', '\062', '\020' } 291 }; 292 """ 293 294 def pyod(filename): 295 """Python implementation of the od UNIX utility (od -b, more exactly). 296 297 Parameters 298 ---------- 299 filename : str 300 name of the file to get the dump from. 301 302 Returns 303 ------- 304 out : seq 305 list of lines of od output 306 307 Note 308 ---- 309 We only implement enough to get the necessary information for long double 310 representation, this is not intended as a compatible replacement for od. 311 """ 312 def _pyod2(): 313 out = [] 314 315 with open(filename, 'rb') as fid: 316 yo = [int(oct(int(binascii.b2a_hex(o), 16))) for o in fid.read()] 317 for i in range(0, len(yo), 16): 318 line = ['%07d' % int(oct(i))] 319 line.extend(['%03d' % c for c in yo[i:i+16]]) 320 out.append(" ".join(line)) 321 return out 322 323 def _pyod3(): 324 out = [] 325 326 with open(filename, 'rb') as fid: 327 yo2 = [oct(o)[2:] for o in fid.read()] 328 for i in range(0, len(yo2), 16): 329 line = ['%07d' % int(oct(i)[2:])] 330 line.extend(['%03d' % int(c) for c in yo2[i:i+16]]) 331 out.append(" ".join(line)) 332 return out 333 334 if sys.version_info[0] < 3: 335 return _pyod2() 336 else: 337 return _pyod3() 338 339 _BEFORE_SEQ = ['000', '000', '000', '000', '000', '000', '000', '000', 340 '001', '043', '105', '147', '211', '253', '315', '357'] 341 _AFTER_SEQ = ['376', '334', '272', '230', '166', '124', '062', '020'] 342 343 _IEEE_DOUBLE_BE = ['301', '235', '157', '064', '124', '000', '000', '000'] 344 _IEEE_DOUBLE_LE = _IEEE_DOUBLE_BE[::-1] 345 _INTEL_EXTENDED_12B = ['000', '000', '000', '000', '240', '242', '171', '353', 346 '031', '300', '000', '000'] 347 _INTEL_EXTENDED_16B = ['000', '000', '000', '000', '240', '242', '171', '353', 348 '031', '300', '000', '000', '000', '000', '000', '000'] 349 _MOTOROLA_EXTENDED_12B = ['300', '031', '000', '000', '353', '171', 350 '242', '240', '000', '000', '000', '000'] 351 _IEEE_QUAD_PREC_BE = ['300', '031', '326', '363', '105', '100', '000', '000', 352 '000', '000', '000', '000', '000', '000', '000', '000'] 353 _IEEE_QUAD_PREC_LE = _IEEE_QUAD_PREC_BE[::-1] 354 _IBM_DOUBLE_DOUBLE_BE = (['301', '235', '157', '064', '124', '000', '000', '000'] + 355 ['000'] * 8) 356 _IBM_DOUBLE_DOUBLE_LE = (['000', '000', '000', '124', '064', '157', '235', '301'] + 357 ['000'] * 8) 358 359 def long_double_representation(lines): 360 """Given a binary dump as given by GNU od -b, look for long double 361 representation.""" 362 363 # Read contains a list of 32 items, each item is a byte (in octal 364 # representation, as a string). We 'slide' over the output until read is of 365 # the form before_seq + content + after_sequence, where content is the long double 366 # representation: 367 # - content is 12 bytes: 80 bits Intel representation 368 # - content is 16 bytes: 80 bits Intel representation (64 bits) or quad precision 369 # - content is 8 bytes: same as double (not implemented yet) 370 read = [''] * 32 371 saw = None 372 for line in lines: 373 # we skip the first word, as od -b output an index at the beginning of 374 # each line 375 for w in line.split()[1:]: 376 read.pop(0) 377 read.append(w) 378 379 # If the end of read is equal to the after_sequence, read contains 380 # the long double 381 if read[-8:] == _AFTER_SEQ: 382 saw = copy.copy(read) 383 # if the content was 12 bytes, we only have 32 - 8 - 12 = 12 384 # "before" bytes. In other words the first 4 "before" bytes went 385 # past the sliding window. 386 if read[:12] == _BEFORE_SEQ[4:]: 387 if read[12:-8] == _INTEL_EXTENDED_12B: 388 return 'INTEL_EXTENDED_12_BYTES_LE' 389 if read[12:-8] == _MOTOROLA_EXTENDED_12B: 390 return 'MOTOROLA_EXTENDED_12_BYTES_BE' 391 # if the content was 16 bytes, we are left with 32-8-16 = 16 392 # "before" bytes, so 8 went past the sliding window. 393 elif read[:8] == _BEFORE_SEQ[8:]: 394 if read[8:-8] == _INTEL_EXTENDED_16B: 395 return 'INTEL_EXTENDED_16_BYTES_LE' 396 elif read[8:-8] == _IEEE_QUAD_PREC_BE: 397 return 'IEEE_QUAD_BE' 398 elif read[8:-8] == _IEEE_QUAD_PREC_LE: 399 return 'IEEE_QUAD_LE' 400 elif read[8:-8] == _IBM_DOUBLE_DOUBLE_LE: 401 return 'IBM_DOUBLE_DOUBLE_LE' 402 elif read[8:-8] == _IBM_DOUBLE_DOUBLE_BE: 403 return 'IBM_DOUBLE_DOUBLE_BE' 404 # if the content was 8 bytes, left with 32-8-8 = 16 bytes 405 elif read[:16] == _BEFORE_SEQ: 406 if read[16:-8] == _IEEE_DOUBLE_LE: 407 return 'IEEE_DOUBLE_LE' 408 elif read[16:-8] == _IEEE_DOUBLE_BE: 409 return 'IEEE_DOUBLE_BE' 410 411 if saw is not None: 412 raise ValueError("Unrecognized format (%s)" % saw) 413 else: 414 # We never detected the after_sequence 415 raise ValueError("Could not lock sequences (%s)" % saw) 416 [end of numpy/core/setup_common.py] </code> I need you to solve this issue by generating a single patch file that I can apply directly to this repository using git apply. Please respond with a single patch file in the following format. <patch> --- a/file.py +++ b/file.py @@ -1,27 +1,35 @@ def euclidean(a, b): - while b: - a, b = b, a % b - return a + if b == 0: + return a + return euclidean(b, a % b) def bresenham(x0, y0, x1, y1): points = [] dx = abs(x1 - x0) dy = abs(y1 - y0) - sx = 1 if x0 < x1 else -1 - sy = 1 if y0 < y1 else -1 - err = dx - dy + x, y = x0, y0 + sx = -1 if x0 > x1 else 1 + sy = -1 if y0 > y1 else 1 - while True: - points.append((x0, y0)) - if x0 == x1 and y0 == y1: - break - e2 = 2 * err - if e2 > -dy: + if dx > dy: + err = dx / 2.0 + while x != x1: + points.append((x, y)) err -= dy - x0 += sx - if e2 < dx: - err += dx - y0 += sy + if err < 0: + y += sy + err += dx + x += sx + else: + err = dy / 2.0 + while y != y1: + points.append((x, y)) + err -= dx + if err < 0: + x += sx + err += dy + y += sy + points.append((x, y)) return points </patch>
numpy/numpy
ab87388a76c0afca4eb1159ab0ed232d502a8378
NumPy 1.17 RC fails to compile with Intel C Compile 2016 <!-- Please describe the issue in detail here, and fill in the fields below --> Compiling NumPy 1.17.0rc2 sources with Intel C Compiler 2016, which does not yet implement `__builtin_cpu_supports("avx512f")` fails with compilation error: ``` icc: numpy/core/src/umath/cpuid.c numpy/core/src/umath/cpuid.c(63): catastrophic error: invalid use of '__builtin_cpu_supports' compilation aborted for numpy/core/src/umath/cpuid.c (code 1) ``` Recent Intel C compiler (2019) proceeds just fine. There is config test to probe compiler for support of `__builtin_cpu_supports`, but the the test does not discriminate between supported arguments.
@mattip This is the issue with 1.17 sources and older compiler that I mentioned at the sprint. To reproduce I did: 1. `conda create -n b_np117 -c defaults --override-channels python setuptools cython pip pytest mkl-devel` 2. `git clone http://github.com/numpy/numpy.git --branch maintenance/1.17.x numpy_src` 3. `conda activate b_np117` 4. Edit `site.cfg`. So that ``` (b_np117) [16:15:03 vmlin numpy_src_tmp]$ cat site.cfg [mkl] library_dirs = /tmp/miniconda/envs/b_np117/lib include_dirs = /tmp/miniconda/envs/b_np117/include lapack_libs = mkl_rt mkl_libs = mkl_rt ``` 5. Check compiler version: ``` (b_np117) [17:02:25 vmlin numpy_src_tmp]$ icc --version icc (ICC) 16.0.3 20160415 Copyright (C) 1985-2016 Intel Corporation. All rights reserved. ``` 6. Execute `CFLAGS="-DNDEBUG -I$PREFIX/include $CFLAGS" python setup.py config_cc --compiler=intelem config_fc --fcompiler=intelem build --force build_ext --inplace` It seems we need someone with that compiler to test and fix this. I definitely volunteer for testing and fixing it, but I would appreciate some guidance as what to try tweaking and where. Pinging @r-devulap, maybe you can have a look/know something? It seems he wrote (or modified it and is also at Intel – albeit a very different part). @oleksandr-pavlyk could you try this fix from my branch https://github.com/r-devulap/numpy/tree/avx512-cpuid and let me know if that fixes your problem. If it does, I can submit a PR. never mind, created a PR with a simpler fix.
2019-07-21T14:28:45Z
<patch> diff --git a/numpy/core/setup_common.py b/numpy/core/setup_common.py --- a/numpy/core/setup_common.py +++ b/numpy/core/setup_common.py @@ -138,6 +138,8 @@ def check_api_version(apiversion, codegen_dir): # broken on OSX 10.11, make sure its not optimized away ("volatile int r = __builtin_cpu_supports", '"sse"', "stdio.h", "__BUILTIN_CPU_SUPPORTS"), + ("volatile int r = __builtin_cpu_supports", '"avx512f"', + "stdio.h", "__BUILTIN_CPU_SUPPORTS_AVX512F"), # MMX only needed for icc, but some clangs don't have it ("_m_from_int64", '0', "emmintrin.h"), ("_mm_load_ps", '(float*)0', "xmmintrin.h"), # SSE </patch>
[]
[]