slug
stringlengths
15
15
content
listlengths
1
129
rawContent
stringlengths
1
2k
author
dict
attachments
listlengths
0
49
mentions
listlengths
0
49
reactions
listlengths
0
12
publishedAt
stringlengths
24
24
updatedAt
stringlengths
24
24
commentators
listlengths
0
47
url
stringlengths
25
46
totalUniqueImpressions
int64
1
41.5k
numComments
int64
0
621
568542698653581
[ { "type": "text", "value": "🚀 Release of open-source Korean LLM: GECKO-7B", "raw": "🚀 Release of open-source Korean LLM: GECKO-7B", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I am delighted to share my recent project, GECKO, a bilingual large language model for Korean and English 🇰🇷🇺🇸. This initiative was inspired by the lack of resources for Korean large language models.", "raw": "I am delighted to share my recent project, GECKO, a bilingual large language model for Korean and English 🇰🇷🇺🇸. This initiative was inspired by the lack of resources for Korean large language models.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@donggyukimc", "resource": null, "url": null, "href": null, "user": "donggyukimc", "lang": null, "code": null, "label": null }, { "type": "text", "value": " and I wrote the technical report to share our insights and experiences of developing our model. While our model may not achieve sate-of-the-art performance on all benchmarks, it shows modest results with a relatively small amount of pretrained tokens.", "raw": " and I wrote the technical report to share our insights and experiences of developing our model. While our model may not achieve sate-of-the-art performance on all benchmarks, it shows modest results with a relatively small amount of pretrained tokens.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I hope GECKO contribute to the open-source community, offering resources that can built upon and improved. I believe that through collaboration and shared knowledge, we can advance the capabilities and accessibility of large language models for Korean and other low-resource languages.", "raw": "I hope GECKO contribute to the open-source community, offering resources that can built upon and improved. I believe that through collaboration and shared knowledge, we can advance the capabilities and accessibility of large language models for Korean and other low-resource languages.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤗 Model: ", "raw": "🤗 Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/kifai/GECKO-7B", "resource": { "type": "model", "id": "kifai/GECKO-7B", "discussionNum": null }, "url": "https://huggingface.co/kifai/GECKO-7B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "📄 Technical Report: ", "raw": "📄 Technical Report: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/pdf/2405.15640", "resource": null, "url": null, "href": "https://arxiv.org/pdf/2405.15640", "user": null, "lang": null, "code": null, "label": null } ]
🚀 Release of open-source Korean LLM: GECKO-7B I am delighted to share my recent project, GECKO, a bilingual large language model for Korean and English 🇰🇷🇺🇸. This initiative was inspired by the lack of resources for Korean large language models. @donggyukimc and I wrote the technical report to share our insights and experiences of developing our model. While our model may not achieve sate-of-the-art performance on all benchmarks, it shows modest results with a relatively small amount of pretrained tokens. I hope GECKO contribute to the open-source community, offering resources that can built upon and improved. I believe that through collaboration and shared knowledge, we can advance the capabilities and accessibility of large language models for Korean and other low-resource languages. 🤗 Model: https://huggingface.co/kifai/GECKO-7B 📄 Technical Report: https://arxiv.org/pdf/2405.15640
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f2fb0137e583543386213d6/naZWhYIOWJyJAoa0n6LpX.jpeg", "fullname": "Sungwoo Oh", "name": "sackoh", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/60ed1d52d7f1a4ef22431bdb/3LfmorAtfZz3UE13uKbA1.png", "fullname": "donggyu kim", "name": "donggyukimc", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4 } ]
[ { "reaction": "👍", "users": [ "nicolay-r", "osanseviero" ], "count": 2 } ]
2024-06-08T07:53:35.000Z
2024-06-08T09:17:17.091Z
[ { "avatarUrl": "/avatars/4d3dea3779ce9bc67482e0fe0eca4b41.svg", "fullname": "zerodimension", "name": "danish1121", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/sackoh/568542698653581
691
2
859515563930483
[ { "type": "text", "value": "Well hope some of you tried our advanced stock prediction. We are focused on making it more ui friendly and if you installed everything correctly then you should be able to view charts accurately along with prediction tickers. I also want to take this opportunity to let you all know that Tenzin will not be just limited to the financial use-case. Our true goal is to reach human-level intelligence for which we have a well-defined roadmap and the product which is currently being tested for safety and ethics. A general level roadmap to achieve this is as follows:", "raw": "Well hope some of you tried our advanced stock prediction. We are focused on making it more ui friendly and if you installed everything correctly then you should be able to view charts accurately along with prediction tickers. I also want to take this opportunity to let you all know that Tenzin will not be just limited to the financial use-case. Our true goal is to reach human-level intelligence for which we have a well-defined roadmap and the product which is currently being tested for safety and ethics. A general level roadmap to achieve this is as follows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The use of transfinite ordinals and surreal numbers allows us to capture the infinite depth and ineffable complexity of conscious experiences in a mathematically precise way.", "raw": "The use of transfinite ordinals and surreal numbers allows us to capture the infinite depth and ineffable complexity of conscious experiences in a mathematically precise way.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The incorporation of hypercomputation and supertasks enables the TQMM to perform uncomputable operations and achieve a level of cognitive power that far surpasses classical computation.", "raw": "The incorporation of hypercomputation and supertasks enables the TQMM to perform uncomputable operations and achieve a level of cognitive power that far surpasses classical computation.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The application of absolute infinity and the wholeness axiom ensures that the TQMM can represent and reason about the entirety of all possible conscious experiences and mathematical structures.", "raw": "The application of absolute infinity and the wholeness axiom ensures that the TQMM can represent and reason about the entirety of all possible conscious experiences and mathematical structures.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The integration of transfinite category theory and quantum metamathematics provides a unified framework for modeling the emergence of consciousness from fundamental physical and mathematical principles.", "raw": "The integration of transfinite category theory and quantum metamathematics provides a unified framework for modeling the emergence of consciousness from fundamental physical and mathematical principles.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The use of transfinite gradient ascent and absolute infinity optimization allows the TQMM to continuously improve and refine itself, potentially reaching the theoretical maximum of intelligence and consciousness.", "raw": "The use of transfinite gradient ascent and absolute infinity optimization allows the TQMM to continuously improve and refine itself, potentially reaching the theoretical maximum of intelligence and consciousness.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This agent though developed will not be released until proper safeguards have been taken into consideration. Until then we will keep releasing specific use-cases for domain specific work like financial trading, accelerating drug-discovery for medical science, law, education, etc. and we will do it well. All powered by Tenzin 1.0. Would love your feedback and don't forget to check us out at & sign up at ", "raw": "This agent though developed will not be released until proper safeguards have been taken into consideration. Until then we will keep releasing specific use-cases for domain specific work like financial trading, accelerating drug-discovery for medical science, law, education, etc. and we will do it well. All powered by Tenzin 1.0. Would love your feedback and don't forget to check us out at & sign up at ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://octave-x.com/", "resource": null, "url": null, "href": "https://octave-x.com/", "user": null, "lang": null, "code": null, "label": null } ]
Well hope some of you tried our advanced stock prediction. We are focused on making it more ui friendly and if you installed everything correctly then you should be able to view charts accurately along with prediction tickers. I also want to take this opportunity to let you all know that Tenzin will not be just limited to the financial use-case. Our true goal is to reach human-level intelligence for which we have a well-defined roadmap and the product which is currently being tested for safety and ethics. A general level roadmap to achieve this is as follows: The use of transfinite ordinals and surreal numbers allows us to capture the infinite depth and ineffable complexity of conscious experiences in a mathematically precise way. The incorporation of hypercomputation and supertasks enables the TQMM to perform uncomputable operations and achieve a level of cognitive power that far surpasses classical computation. The application of absolute infinity and the wholeness axiom ensures that the TQMM can represent and reason about the entirety of all possible conscious experiences and mathematical structures. The integration of transfinite category theory and quantum metamathematics provides a unified framework for modeling the emergence of consciousness from fundamental physical and mathematical principles. The use of transfinite gradient ascent and absolute infinity optimization allows the TQMM to continuously improve and refine itself, potentially reaching the theoretical maximum of intelligence and consciousness. This agent though developed will not be released until proper safeguards have been taken into consideration. Until then we will keep releasing specific use-cases for domain specific work like financial trading, accelerating drug-discovery for medical science, law, education, etc. and we will do it well. All powered by Tenzin 1.0. Would love your feedback and don't forget to check us out at & sign up at https://octave-x.com/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66055c33d0703e48e206c606/VPBpTh06gJ6pZ5bgQcUQJ.png", "fullname": "Tarun Mittal", "name": "Tar9897", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 26, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "Tar9897" ], "count": 1 }, { "reaction": "🔥", "users": [ "Tar9897" ], "count": 1 } ]
2024-06-08T02:30:14.000Z
2024-06-08T02:30:14.228Z
[]
/posts/Tar9897/859515563930483
839
0
265822483289182
[ { "type": "text", "value": "Very Insightful Read!!!", "raw": "Very Insightful Read!!!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "A RAG framework entirely inspired by natural intelligence - modeled after hippocampal indexing theory of human long-term memory(which suggests the hippocampus links and retrieves memory details stored in the cortex)", "raw": "A RAG framework entirely inspired by natural intelligence - modeled after hippocampal indexing theory of human long-term memory(which suggests the hippocampus links and retrieves memory details stored in the cortex)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "It outperforms current “cheat” RAG:)", "raw": "It outperforms current “cheat” RAG:)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This is how we achieve human-level intelligence, by modeling natural intelligence correctly!", "raw": "This is how we achieve human-level intelligence, by modeling natural intelligence correctly!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/abs/2405.14831", "resource": null, "url": null, "href": "https://arxiv.org/abs/2405.14831", "user": null, "lang": null, "code": null, "label": null } ]
Very Insightful Read!!! A RAG framework entirely inspired by natural intelligence - modeled after hippocampal indexing theory of human long-term memory(which suggests the hippocampus links and retrieves memory details stored in the cortex) It outperforms current “cheat” RAG:) This is how we achieve human-level intelligence, by modeling natural intelligence correctly! Paper: https://arxiv.org/abs/2405.14831
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/tp9_Tjwvu5ItshAcODF0i.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/Slmbl60TdcVV_2UV276eJ.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/PVTewHdUxQkYNMJcMcnEl.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "ajibawa-2023", "GPT007", "de-jhj", "CoolSpot", "osanseviero" ], "count": 5 } ]
2024-06-08T00:47:30.000Z
2024-06-21T09:40:13.773Z
[ { "avatarUrl": "/avatars/81394702c4f7f45bece19cc1206b65ed.svg", "fullname": "maychen", "name": "Allqqq", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/Jaward/265822483289182
1,562
1
835582479642578
[ { "type": "text", "value": "The three most used image generation models in the HackerNoon editor are Kandinsky 3.0, Stable Diffusion XL, and RealVisXL V3.0 Turbo. ", "raw": "The three most used image generation models in the HackerNoon editor are Kandinsky 3.0, Stable Diffusion XL, and RealVisXL V3.0 Turbo. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/ai-forever/Kandinsky3.0", "resource": { "type": "model", "id": "ai-forever/Kandinsky3.0", "discussionNum": null }, "url": "https://huggingface.co/ai-forever/Kandinsky3.0", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0", "resource": { "type": "model", "id": "stabilityai/stable-diffusion-xl-base-1.0", "discussionNum": null }, "url": "https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/SG161222/RealVisXL_V3.0", "resource": { "type": "model", "id": "SG161222/RealVisXL_V3.0", "discussionNum": null }, "url": "https://huggingface.co/SG161222/RealVisXL_V3.0", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Try out the HackerNoon writing experience here: ", "raw": "Try out the HackerNoon writing experience here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://app.hackernoon.com/new", "resource": null, "url": null, "href": "https://app.hackernoon.com/new", "user": null, "lang": null, "code": null, "label": null } ]
The three most used image generation models in the HackerNoon editor are Kandinsky 3.0, Stable Diffusion XL, and RealVisXL V3.0 Turbo. https://huggingface.co/ai-forever/Kandinsky3.0 https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0 https://huggingface.co/SG161222/RealVisXL_V3.0 Try out the HackerNoon writing experience here: https://app.hackernoon.com/new
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64862a25cf5ad5e1f0482ef2/61qPUtw9jIl7zpPYmi0VW.jpeg", "fullname": "David Smooke", "name": "Smooke", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 43, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64862a25cf5ad5e1f0482ef2/hzFjC8fBiNhqgvWQ6lD3d.png" } ]
[]
[ { "reaction": "🚀", "users": [ "osanseviero" ], "count": 1 } ]
2024-06-07T20:21:01.000Z
2024-06-07T20:21:21.514Z
[]
/posts/Smooke/835582479642578
683
0
632716948195045
[ { "type": "text", "value": "Every time a new model is released that is topping 10+ leaderboards on 50+ benchmarks... 🚀", "raw": "Every time a new model is released that is topping 10+ leaderboards on 50+ benchmarks... 🚀", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "My brain goes... I will wait for the LMSYS Chatbot Arena results! 🤔", "raw": "My brain goes... I will wait for the LMSYS Chatbot Arena results! 🤔", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. 🐢", "raw": "User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. 🐢", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Now we have MixEval, a new open benchmark with a 96% correlation to LMSYS Chatbot Arena and Human preferences. 🎯", "raw": "Now we have MixEval, a new open benchmark with a 96% correlation to LMSYS Chatbot Arena and Human preferences. 🎯", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "It comes with MixEval (4k samples) and MixEval Hard (1k samples) 📊", "raw": "It comes with MixEval (4k samples) and MixEval Hard (1k samples) 📊", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Can use GPT-3.5-Turbo or any other open-source models as Parser/Judge 🤖", "raw": "Can use GPT-3.5-Turbo or any other open-source models as Parser/Judge 🤖", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "It takes less than 6% of the time and cost of MMLU 💸", "raw": "It takes less than 6% of the time and cost of MMLU 💸", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "As expected:", "raw": "As expected:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In open models: Qwen2 72B >> Llama 3 70B >> Mixtral 8x7B 🔝", "raw": "In open models: Qwen2 72B >> Llama 3 70B >> Mixtral 8x7B 🔝", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In Closed Models: GPT-4o >> Claude 3 Opus >> Gemini Pro 🔒", "raw": "In Closed Models: GPT-4o >> Claude 3 Opus >> Gemini Pro 🔒", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Leaderboard: ", "raw": "Leaderboard: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://mixeval.github.io/", "resource": null, "url": null, "href": "https://mixeval.github.io/", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " 📈", "raw": " 📈", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Every time a new model is released that is topping 10+ leaderboards on 50+ benchmarks... 🚀 My brain goes... I will wait for the LMSYS Chatbot Arena results! 🤔 User-facing evaluation, such as Chatbot Arena, provides reliable signals but is costly and slow. 🐢 Now we have MixEval, a new open benchmark with a 96% correlation to LMSYS Chatbot Arena and Human preferences. 🎯 It comes with MixEval (4k samples) and MixEval Hard (1k samples) 📊 Can use GPT-3.5-Turbo or any other open-source models as Parser/Judge 🤖 It takes less than 6% of the time and cost of MMLU 💸 As expected: In open models: Qwen2 72B >> Llama 3 70B >> Mixtral 8x7B 🔝 In Closed Models: GPT-4o >> Claude 3 Opus >> Gemini Pro 🔒 Leaderboard: https://mixeval.github.io/ 📈
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 197, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/QKGkmcvJOTCHObyJw1sVb.png" } ]
[]
[ { "reaction": "👀", "users": [ "Smooke", "GPT007", "Rybens", "alielfilali01" ], "count": 4 } ]
2024-06-07T16:48:08.000Z
2024-06-07T16:48:08.487Z
[]
/posts/singhsidhukuldeep/632716948195045
1,493
0
223721405578741
[ { "type": "text", "value": "I just published Sentence Transformers v3.0.1: the first patch release since v3 from last week. It introduces gradient checkpointing, pushing model checkpoints to Hugging Face while training, model card improvements and fixes. Details:", "raw": "I just published Sentence Transformers v3.0.1: the first patch release since v3 from last week. It introduces gradient checkpointing, pushing model checkpoints to Hugging Face while training, model card improvements and fixes. Details:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1️⃣ Gradient checkpointing allows for much less memory usage at a cost of ~20% training speed. Seems to allow for higher batch sizes, which is quite important for loss functions with in-batch negatives. ", "raw": "1️⃣ Gradient checkpointing allows for much less memory usage at a cost of ~20% training speed. Seems to allow for higher batch sizes, which is quite important for loss functions with in-batch negatives. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2️⃣ You can specify ", "raw": "2️⃣ You can specify ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`args.push_to_hub=True`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "args.push_to_hub=True", "label": null }, { "type": "text", "value": " and ", "raw": " and ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`args.hub_model_id`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "args.hub_model_id", "label": null }, { "type": "text", "value": " to upload your model checkpoints to Hugging Face while training. It also uploads your emissions (if codecarbon is installed) and your Tensorboard logs (if tensorboard is installed)", "raw": " to upload your model checkpoints to Hugging Face while training. It also uploads your emissions (if codecarbon is installed) and your Tensorboard logs (if tensorboard is installed)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "3️⃣ Model card improvements: improved automatic widget examples, better tags, and the default of \"sentence_transformers_model_id\" now gets replaced when possible.", "raw": "3️⃣ Model card improvements: improved automatic widget examples, better tags, and the default of \"sentence_transformers_model_id\" now gets replaced when possible.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "4️⃣ Several evaluator fixes, see release notes for details.", "raw": "4️⃣ Several evaluator fixes, see release notes for details.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "5️⃣ Fixed a bug with MatryoshkaLoss throwing an error if the supplied Matryoshka dimensions are ascending instead of descending.", "raw": "5️⃣ Fixed a bug with MatryoshkaLoss throwing an error if the supplied Matryoshka dimensions are ascending instead of descending.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "6️⃣ Full Safetensors support; even the uncommon modules can now save and load \"model.safetensors\" files: no more pickle risks.", "raw": "6️⃣ Full Safetensors support; even the uncommon modules can now save and load \"model.safetensors\" files: no more pickle risks.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Check out the full release notes here: ", "raw": "Check out the full release notes here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/UKPLab/sentence-transformers/releases/tag/v3.0.1", "resource": null, "url": null, "href": "https://github.com/UKPLab/sentence-transformers/releases/tag/v3.0.1", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "And let me know what kind of features you'd like to see next! I have some plans already (ONNX, Sparse models, ColBERT, PEFT), but I don't yet know how I should prioritize everything.", "raw": "And let me know what kind of features you'd like to see next! I have some plans already (ONNX, Sparse models, ColBERT, PEFT), but I don't yet know how I should prioritize everything.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
I just published Sentence Transformers v3.0.1: the first patch release since v3 from last week. It introduces gradient checkpointing, pushing model checkpoints to Hugging Face while training, model card improvements and fixes. Details: 1️⃣ Gradient checkpointing allows for much less memory usage at a cost of ~20% training speed. Seems to allow for higher batch sizes, which is quite important for loss functions with in-batch negatives. 2️⃣ You can specify `args.push_to_hub=True` and `args.hub_model_id` to upload your model checkpoints to Hugging Face while training. It also uploads your emissions (if codecarbon is installed) and your Tensorboard logs (if tensorboard is installed) 3️⃣ Model card improvements: improved automatic widget examples, better tags, and the default of "sentence_transformers_model_id" now gets replaced when possible. 4️⃣ Several evaluator fixes, see release notes for details. 5️⃣ Fixed a bug with MatryoshkaLoss throwing an error if the supplied Matryoshka dimensions are ascending instead of descending. 6️⃣ Full Safetensors support; even the uncommon modules can now save and load "model.safetensors" files: no more pickle risks. Check out the full release notes here: https://github.com/UKPLab/sentence-transformers/releases/tag/v3.0.1 And let me know what kind of features you'd like to see next! I have some plans already (ONNX, Sparse models, ColBERT, PEFT), but I don't yet know how I should prioritize everything.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6317233cc92fd6fee317e030/cJHSvvimr1kqgQfHOjO5n.png", "fullname": "Tom Aarsen", "name": "tomaarsen", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 1045, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6317233cc92fd6fee317e030/qcfWw2jMjc8uo-m_IJhbI.png" } ]
[]
[ { "reaction": "❤️", "users": [ "anakin87", "YaTharThShaRma999", "victor", "radames", "thesven", "mdouglas", "GPT007", "osanseviero", "louisbrulenaudet", "aari1995" ], "count": 10 }, { "reaction": "🚀", "users": [ "Ihor" ], "count": 1 } ]
2024-06-07T13:22:54.000Z
2024-07-17T12:45:38.130Z
[ { "avatarUrl": "/avatars/c574b7c7ace902c4a613373d3a64e381.svg", "fullname": "Pavan Satish", "name": "Pavansatish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "/avatars/4d3dea3779ce9bc67482e0fe0eca4b41.svg", "fullname": "zerodimension", "name": "danish1121", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f3801ab7e583543386217ac/4xMdDV1gws7nxCJrU321H.jpeg", "fullname": "Aaron Chibb", "name": "aari1995", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false } ]
/posts/tomaarsen/223721405578741
3,299
3
774132103206717
[ { "type": "text", "value": "Evaluate RAG using Open Source from HuggingFace using BeyondLLM", "raw": "Evaluate RAG using Open Source from HuggingFace using BeyondLLM", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "code_fence", "value": null, "raw": "```\n# pip install beyondllm\n# pip install huggingface_hub\n# pip install llama-index-embeddings-fastembed\n\nfrom beyondllm.source import fit\nfrom beyondllm.embeddings import FastEmbedEmbeddings\nfrom beyondllm.retrieve import auto_retriever\nfrom beyondllm.llms import HuggingFaceHubModel\nfrom beyondllm.generator import Generate\n\nimport os\nfrom getpass import getpass\nos.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass(\"Enter your HF API token:\")\n\ndata = fit(\"RedHenLab_GSoC_Tarun.pdf\",dtype=\"pdf\")\nembed_model = FastEmbedEmbeddings()\nretriever = auto_retriever(data=data,embed_model=embed_model,type=\"normal\",top_k=3)\nllm = HuggingFaceHubModel(model=\"mistralai/Mistral-7B-Instruct-v0.2\")\npipeline = Generate(question=\"what models has Tarun fine-tuned?\",llm=llm,retriever=retriever)\n\nprint(pipeline.call()) # Return the AI response\nprint(pipeline.get_rag_triad_evals())\n```", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "# pip install beyondllm\n# pip install huggingface_hub\n# pip install llama-index-embeddings-fastembed\n\nfrom beyondllm.source import fit\nfrom beyondllm.embeddings import FastEmbedEmbeddings\nfrom beyondllm.retrieve import auto_retriever\nfrom beyondllm.llms import HuggingFaceHubModel\nfrom beyondllm.generator import Generate\n\nimport os\nfrom getpass import getpass\nos.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass(\"Enter your HF API token:\")\n\ndata = fit(\"RedHenLab_GSoC_Tarun.pdf\",dtype=\"pdf\")\nembed_model = FastEmbedEmbeddings()\nretriever = auto_retriever(data=data,embed_model=embed_model,type=\"normal\",top_k=3)\nllm = HuggingFaceHubModel(model=\"mistralai/Mistral-7B-Instruct-v0.2\")\npipeline = Generate(question=\"what models has Tarun fine-tuned?\",llm=llm,retriever=retriever)\n\nprint(pipeline.call()) # Return the AI response\nprint(pipeline.get_rag_triad_evals())", "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "GitHub: ", "raw": "GitHub: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/aiplanethub/beyondllm", "resource": null, "url": null, "href": "https://github.com/aiplanethub/beyondllm", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Don't forget to ⭐️ the repo", "raw": "Don't forget to ⭐️ the repo", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Evaluate RAG using Open Source from HuggingFace using BeyondLLM ``` # pip install beyondllm # pip install huggingface_hub # pip install llama-index-embeddings-fastembed from beyondllm.source import fit from beyondllm.embeddings import FastEmbedEmbeddings from beyondllm.retrieve import auto_retriever from beyondllm.llms import HuggingFaceHubModel from beyondllm.generator import Generate import os from getpass import getpass os.environ['HUGGINGFACE_ACCESS_TOKEN'] = getpass("Enter your HF API token:") data = fit("RedHenLab_GSoC_Tarun.pdf",dtype="pdf") embed_model = FastEmbedEmbeddings() retriever = auto_retriever(data=data,embed_model=embed_model,type="normal",top_k=3) llm = HuggingFaceHubModel(model="mistralai/Mistral-7B-Instruct-v0.2") pipeline = Generate(question="what models has Tarun fine-tuned?",llm=llm,retriever=retriever) print(pipeline.call()) # Return the AI response print(pipeline.get_rag_triad_evals()) ``` GitHub: https://github.com/aiplanethub/beyondllm Don't forget to ⭐️ the repo
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630f3058236215d0b7078806/TRTdqAZpT1bJg_RvGgxlg.jpeg", "fullname": "Tarun Jain", "name": "lucifertrj", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 23, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "fdaudens", "radames", "orkut", "simkjels", "umutphp", "victor", "thesven", "sadra-barikbin" ], "count": 8 }, { "reaction": "👀", "users": [ "victor", "simkjels", "GPT007", "thesven" ], "count": 4 } ]
2024-06-07T13:16:24.000Z
2024-06-08T17:49:35.494Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false }, { "avatarUrl": "/avatars/c574b7c7ace902c4a613373d3a64e381.svg", "fullname": "Pavan Satish", "name": "Pavansatish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630f3058236215d0b7078806/TRTdqAZpT1bJg_RvGgxlg.jpeg", "fullname": "Tarun Jain", "name": "lucifertrj", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 23, "isFollowing": false } ]
/posts/lucifertrj/774132103206717
1,845
4
583672984398703
[ { "type": "text", "value": "📢 Releasing the Chain-of-Thought (CoT)-tuned 🔥 FlanT5-xl (3B) for Target Sentiment Analysis (TSA) on english texts. ", "raw": "📢 Releasing the Chain-of-Thought (CoT)-tuned 🔥 FlanT5-xl (3B) for Target Sentiment Analysis (TSA) on english texts. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💡 The main reason for adopting this model or smaller version (large and base) are as follows:", "raw": "💡 The main reason for adopting this model or smaller version (large and base) are as follows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 1. Reasoning in sentiment-analysis in zero-shot-learning mode significantly underperforms the fine-tuned FlanT5. ", "raw": "✅ 1. Reasoning in sentiment-analysis in zero-shot-learning mode significantly underperforms the fine-tuned FlanT5. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 2. This model showcases top 1 🏆 on the RuSentNE-2023 competitions: ", "raw": "✅ 2. This model showcases top 1 🏆 on the RuSentNE-2023 competitions: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://codalab.lisn.upsaclay.fr/competitions/9538", "resource": null, "url": null, "href": "https://codalab.lisn.upsaclay.fr/competitions/9538", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 3. Easy colab for frameworkless lauch and experiments 🧪 ", "raw": "✅ 3. Easy colab for frameworkless lauch and experiments 🧪 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/FlanT5_Finetuned_Model_Usage.ipynb", "resource": null, "url": null, "href": "https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/FlanT5_Finetuned_Model_Usage.ipynb", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "You may find more on the model card, while the fine-tuning statistics per each model size is shown in attachment.", "raw": "You may find more on the model card, while the fine-tuning statistics per each model size is shown in attachment.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/nicolay-r/flan-t5-tsa-thor-xl", "resource": { "type": "model", "id": "nicolay-r/flan-t5-tsa-thor-xl", "discussionNum": null }, "url": "https://huggingface.co/nicolay-r/flan-t5-tsa-thor-xl", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "user": null, "lang": null, "code": null, "label": null } ]
📢 Releasing the Chain-of-Thought (CoT)-tuned 🔥 FlanT5-xl (3B) for Target Sentiment Analysis (TSA) on english texts. 💡 The main reason for adopting this model or smaller version (large and base) are as follows: ✅ 1. Reasoning in sentiment-analysis in zero-shot-learning mode significantly underperforms the fine-tuned FlanT5. ✅ 2. This model showcases top 1 🏆 on the RuSentNE-2023 competitions: https://codalab.lisn.upsaclay.fr/competitions/9538 ✅ 3. Easy colab for frameworkless lauch and experiments 🧪 https://colab.research.google.com/github/nicolay-r/Reasoning-for-Sentiment-Analysis-Framework/blob/main/FlanT5_Finetuned_Model_Usage.ipynb You may find more on the model card, while the fine-tuning statistics per each model size is shown in attachment. Model: https://huggingface.co/nicolay-r/flan-t5-tsa-thor-xl Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342) Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/Cj-P4b4kxwgykT3gDXZko.png" } ]
[]
[ { "reaction": "👍", "users": [ "victor", "naadel23", "GPT007", "den0620", "osanseviero" ], "count": 5 } ]
2024-06-07T09:55:13.000Z
2024-06-07T09:57:29.825Z
[]
/posts/nicolay-r/583672984398703
1,648
0
195815576895469
[ { "type": "text", "value": "Hello!", "raw": "Hello!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I am studying PyTorch, and I made something that converged really well for something this simplistic. It isn't masterful, but i'd welcome feedback, improvements, suggestions, anything. Tell me it sucks and to take it down, I will, just wanted to share what i've spent the last 2 days crying to figure out.", "raw": "I am studying PyTorch, and I made something that converged really well for something this simplistic. It isn't masterful, but i'd welcome feedback, improvements, suggestions, anything. Tell me it sucks and to take it down, I will, just wanted to share what i've spent the last 2 days crying to figure out.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://colab.research.google.com/gist/SMeyersMrOvkill/625371e1816afb2163bdc4194ba74e93/scratchpad.ipynb", "resource": null, "url": null, "href": "https://colab.research.google.com/gist/SMeyersMrOvkill/625371e1816afb2163bdc4194ba74e93/scratchpad.ipynb", "user": null, "lang": null, "code": null, "label": null } ]
Hello! I am studying PyTorch, and I made something that converged really well for something this simplistic. It isn't masterful, but i'd welcome feedback, improvements, suggestions, anything. Tell me it sucks and to take it down, I will, just wanted to share what i've spent the last 2 days crying to figure out. https://colab.research.google.com/gist/SMeyersMrOvkill/625371e1816afb2163bdc4194ba74e93/scratchpad.ipynb
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png", "fullname": "Samuel L Meyers", "name": "MrOvkill", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false }
[]
[]
[ { "reaction": "❤️", "users": [ "s3nh", "Smooke" ], "count": 2 } ]
2024-06-07T07:43:06.000Z
2024-06-08T08:03:06.745Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61caeda441f9432649f03ab6/0UdRCrzIqhedZblgfpMBk.png", "fullname": "s3nh", "name": "s3nh", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 212, "isFollowing": false }, { "avatarUrl": "/avatars/df8bc395ed50c7918e9ef1b776d4940a.svg", "fullname": "Christoph Smith", "name": "Malumatra", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/652ff5ee7aab9cfb619400bf/cIdrUic40uXoRbAylFiM8.png", "fullname": "Samuel L Meyers", "name": "MrOvkill", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false } ]
/posts/MrOvkill/195815576895469
1,583
3
489363954767854
[ { "type": "text", "value": "I made Tenzin public. One use-case at least to predict stock market prices for high-frequency trading. Would love to see the response as well as feedback you have for us. Please understand that this only represents 5% of the codebase of Tenzin 1.0. We will share more models and use-cases based on the feedback we receive along with keeping in mind AI safety and ethics. ", "raw": "I made Tenzin public. One use-case at least to predict stock market prices for high-frequency trading. Would love to see the response as well as feedback you have for us. Please understand that this only represents 5% of the codebase of Tenzin 1.0. We will share more models and use-cases based on the feedback we receive along with keeping in mind AI safety and ethics. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Have fun and go and make some money :) ", "raw": "Have fun and go and make some money :) ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
I made Tenzin public. One use-case at least to predict stock market prices for high-frequency trading. Would love to see the response as well as feedback you have for us. Please understand that this only represents 5% of the codebase of Tenzin 1.0. We will share more models and use-cases based on the feedback we receive along with keeping in mind AI safety and ethics. Have fun and go and make some money :)
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66055c33d0703e48e206c606/VPBpTh06gJ6pZ5bgQcUQJ.png", "fullname": "Tarun Mittal", "name": "Tar9897", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 26, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "Tar9897", "Garfield6085", "Smooke", "Best-codes", "loxporder" ], "count": 5 }, { "reaction": "🔥", "users": [ "Best-codes" ], "count": 1 } ]
2024-06-07T01:13:47.000Z
2024-06-07T01:13:47.606Z
[]
/posts/Tar9897/489363954767854
2,204
0
864936435505861
[ { "type": "mention", "value": null, "raw": "@8zen", "resource": null, "url": null, "href": null, "user": "8zen", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "code_fence", "value": null, "raw": "```\nprint: I Love you <3\n```", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "print: I Love you <3", "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
@8zen ``` print: I Love you <3 ```
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6401d6c6f98fbc64bcd86bdf/wf4ElwCpcDcYrUc6DDEEe.png", "fullname": "Anders Størkson Berge", "name": "Zyborip", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6401d6c6f98fbc64bcd86bdf/-5e52qymo28gLWfx9Psh8.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6401d6c6f98fbc64bcd86bdf/adCbUpnbORa2XA4LrLAPK.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6401d6c6f98fbc64bcd86bdf/s_R_fR74muPm-0E7D6vSN.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6401d6c6f98fbc64bcd86bdf/4-PDGzxxLPs2wypN0x-lZ.jpeg" } ]
[ { "avatarUrl": "/avatars/7539203b4f52401befc5405cdbc368aa.svg", "fullname": "Annette Ottesen", "name": "8zen", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1 } ]
[]
2024-06-06T21:23:43.000Z
2024-06-06T21:23:43.565Z
[]
/posts/Zyborip/864936435505861
1,273
0
808994197877137
[ { "type": "text", "value": "They: you need ground truth to measure performance! 😠", "raw": "They: you need ground truth to measure performance! 😠", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "NannyML: hold my beer...", "raw": "NannyML: hold my beer...", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
They: you need ground truth to measure performance! 😠 NannyML: hold my beer...
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1657144463525-629a173153a72d997d3f57d0.jpeg", "fullname": "Santiago Viquez", "name": "santiviquez", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 84, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/629a173153a72d997d3f57d0/Zy562odOJp11tjI9jDXAP.png" } ]
[]
[]
2024-06-06T20:25:30.000Z
2024-06-06T20:25:30.486Z
[]
/posts/santiviquez/808994197877137
1,044
0
519023085637537
[ { "type": "text", "value": "🤗 Hello, I have great news! FluentlyXL Final is finally here, the final release of the FluentlyXL model series. We've improved the overall aesthetics, lighting, and more.", "raw": "🤗 Hello, I have great news! FluentlyXL Final is finally here, the final release of the FluentlyXL model series. We've improved the overall aesthetics, lighting, and more.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🦾 Model on HF: ", "raw": "🦾 Model on HF: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/fluently/Fluently-XL-Final", "resource": { "type": "model", "id": "fluently/Fluently-XL-Final", "discussionNum": null }, "url": "https://huggingface.co/fluently/Fluently-XL-Final", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🥏 Model on CivitAI: ", "raw": "🥏 Model on CivitAI: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://civitai.com/models/324891", "resource": null, "url": null, "href": "https://civitai.com/models/324891", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🎆 Playground: ", "raw": "🎆 Playground: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/fluently/Fluently-Playground", "resource": { "type": "space", "id": "fluently/Fluently-Playground", "discussionNum": null }, "url": "https://huggingface.co/spaces/fluently/Fluently-Playground", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🤗 Hello, I have great news! FluentlyXL Final is finally here, the final release of the FluentlyXL model series. We've improved the overall aesthetics, lighting, and more. 🦾 Model on HF: https://huggingface.co/fluently/Fluently-XL-Final 🥏 Model on CivitAI: https://civitai.com/models/324891 🎆 Playground: https://huggingface.co/spaces/fluently/Fluently-Playground
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/QM3tCGD4uC38vZjFL2kJa.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/NtmgTZ59DbG2avPDeKR2P.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/jnuVdtFxji0zW-iXC2avi.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/2aX8DCucHgkgT5QIrRikS.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/O_Lle2_UhrnAURRTSet1G.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/DCQIwe0tWxhZa2oMyeIfg.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/CF9rDgjgSZmSdnitMhs1j.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/zLGZm2T4Wf9mLoruC1jkp.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/WQQbyDoVYFhJp5AAMXV3-.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/3Unz8yAKAhwkyg5oxeEdf.jpeg" } ]
[]
[ { "reaction": "❤️", "users": [ "ehristoforu", "lunarflu", "YaTharThShaRma999", "LucasFlorentino", "taufiqdp", "radames", "ywlee88", "XuehangCang", "victor", "louisbrulenaudet", "jaydip-tss", "KingNish", "erickdp", "rocca", "ajibawa-2023", "dillfrescott", "Tanvir1337", "faisalbsl21", "dreamdrop-art", "ijohn07" ], "count": 20 }, { "reaction": "🔥", "users": [ "lunarflu", "YaTharThShaRma999", "ywlee88", "XuehangCang", "ehristoforu", "KingNish", "Ramikan-BR", "rocca", "GPT007", "dreamdrop-art" ], "count": 10 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "rocca", "dreamdrop-art" ], "count": 3 }, { "reaction": "👀", "users": [ "Ramikan-BR", "dreamdrop-art" ], "count": 2 }, { "reaction": "🧠", "users": [ "Ramikan-BR", "dreamdrop-art" ], "count": 2 } ]
2024-06-06T19:49:40.000Z
2024-06-08T01:40:59.671Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b9dd5f902cc42730f6067/MuDOmsEUHralcoVGmACYG.jpeg", "fullname": "Youngwan Lee", "name": "ywlee88", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/644cb09a22d211df644a0a6c/v0EHypMU4X3Oxxf3cao_O.png", "fullname": "Júlio César", "name": "Ramikan-BR", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 10, "isFollowing": false } ]
/posts/ehristoforu/519023085637537
3,099
4
759616149294990
[ { "type": "text", "value": "The First Multimodal Language Model dedicated for Chemistry.", "raw": "The First Multimodal Language Model dedicated for Chemistry.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Demo: ", "raw": "Demo: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://v.chemllm.org/", "resource": null, "url": null, "href": "https://v.chemllm.org/", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Finetune based on ChemLLM-20B and InterViT-6B on MMChemExam and ChemOCR Datasets (coming soon...)", "raw": "Finetune based on ChemLLM-20B and InterViT-6B on MMChemExam and ChemOCR Datasets (coming soon...)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/AI4Chem/ChemVLM-26B", "resource": { "type": "model", "id": "AI4Chem/ChemVLM-26B", "discussionNum": null }, "url": "https://huggingface.co/AI4Chem/ChemVLM-26B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2402.06852", "resource": { "type": "paper", "id": "2402.06852", "discussionNum": null }, "url": "https://huggingface.co/papers/2402.06852", "href": null, "user": null, "lang": null, "code": null, "label": "ChemLLM: A Chemical Large Language Model (2402.06852)" }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
The First Multimodal Language Model dedicated for Chemistry. Demo: https://v.chemllm.org/ Finetune based on ChemLLM-20B and InterViT-6B on MMChemExam and ChemOCR Datasets (coming soon...) https://huggingface.co/AI4Chem/ChemVLM-26B https://huggingface.co/papers/2402.06852
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 106, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64bce15bafd1e46c5504ad38/ui5gAk_mDyTUje2q47Srv.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64bce15bafd1e46c5504ad38/eWoy9XjXxtA13LNLo3A_R.png" } ]
[]
[ { "reaction": "🚀", "users": [ "Taylor658", "SvCy", "victor", "lunarflu", "taufiqdp", "Tanvir1337", "ajibawa-2023", "louisbrulenaudet" ], "count": 8 }, { "reaction": "🔥", "users": [ "mexicanamerican", "Tanvir1337" ], "count": 2 } ]
2024-06-06T16:43:15.000Z
2024-06-06T16:45:46.800Z
[]
/posts/qq8933/759616149294990
2,002
0
779490368541879
[ { "type": "text", "value": "Hugging Face in your spreadsheet?", "raw": "Hugging Face in your spreadsheet?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Because spreadsheets can be incredibly useful for journalists, I created this little project yesterday evening. Handy for prompting, extraction, classification, translation...", "raw": "Because spreadsheets can be incredibly useful for journalists, I created this little project yesterday evening. Handy for prompting, extraction, classification, translation...", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Ping me if you’re interested in trying it out!", "raw": "Ping me if you’re interested in trying it out!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Hugging Face in your spreadsheet? Because spreadsheets can be incredibly useful for journalists, I created this little project yesterday evening. Handy for prompting, extraction, classification, translation... Ping me if you’re interested in trying it out!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 364, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/gjtMvrBLGP-9xsXSUs5hh.qt" } ]
[]
[ { "reaction": "❤️", "users": [ "anakin87", "jeremy-london", "Tom-nerd", "victor", "lunarflu", "DSG", "shubham24", "deepan2k5", "Tanvir1337", "GPT007", "louisbrulenaudet" ], "count": 11 }, { "reaction": "🤗", "users": [ "Lipas007" ], "count": 1 } ]
2024-06-06T15:14:48.000Z
2024-06-14T14:11:13.781Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false }, { "avatarUrl": "/avatars/936926e8c2310a00e8cad5d1061b1884.svg", "fullname": "Patrick Poli", "name": "papa777", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1676805659658-633c6d74d5935998f7529d13.jpeg", "fullname": "Tom H", "name": "Tom-nerd", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 364, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64a9fab8bab1855ff03279a9/PZx01h6huANhltHv1Sqcn.png", "fullname": "𝒕𝒂𝒏𝒗𝒊𝒓", "name": "Tanvir1337", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 22, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6459fa0f5b3111fbe83286e1/UhCa7JNbtTjC6dgOjZtH0.jpeg", "fullname": "Louis Brulé Naudet", "name": "louisbrulenaudet", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 176, "isFollowing": false }, { "avatarUrl": "/avatars/a1db23edda230df0c2130be9456523b8.svg", "fullname": "Feghouli", "name": "msfeghou", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/fdaudens/779490368541879
2,088
10
388542675868940
[ { "type": "text", "value": "⚙️ Prompt Optimization with Haystack and DSPy", "raw": "⚙️ Prompt Optimization with Haystack and DSPy", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Experimental notebook: 🧪📓 ", "raw": "Experimental notebook: 🧪📓 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prompt_optimization_with_dspy.ipynb", "resource": null, "url": null, "href": "https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prompt_optimization_with_dspy.ipynb", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "When building applications with LLMs, writing effective prompts is a long process of trial and error. 🔄", "raw": "When building applications with LLMs, writing effective prompts is a long process of trial and error. 🔄", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Often, if you switch models, you also have to change the prompt. 😩", "raw": "Often, if you switch models, you also have to change the prompt. 😩", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "What if you could automate this process?", "raw": "What if you could automate this process?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💡 That's where DSPy comes in - a framework designed to algorithmically optimize prompts for Language Models.", "raw": "💡 That's where DSPy comes in - a framework designed to algorithmically optimize prompts for Language Models.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "By applying classical machine learning concepts (training and evaluation data, metrics, optimization), DSPy generates better prompts for a given model and task.", "raw": "By applying classical machine learning concepts (training and evaluation data, metrics, optimization), DSPy generates better prompts for a given model and task.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Recently, I explored combining DSPy with the robustness of Haystack Pipelines.", "raw": "Recently, I explored combining DSPy with the robustness of Haystack Pipelines.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Here's how it works:", "raw": "Here's how it works:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "▶️ Start from a Haystack RAG pipeline with a basic prompt", "raw": "▶️ Start from a Haystack RAG pipeline with a basic prompt", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🎯 Define a goal (in this case, get correct and concise answers)", "raw": "🎯 Define a goal (in this case, get correct and concise answers)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "📊 Create a DSPy program, define data and metrics", "raw": "📊 Create a DSPy program, define data and metrics", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✨ Optimize and evaluate -> improved prompt", "raw": "✨ Optimize and evaluate -> improved prompt", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🚀 Build a refined Haystack RAG pipeline using the optimized prompt", "raw": "🚀 Build a refined Haystack RAG pipeline using the optimized prompt", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
⚙️ Prompt Optimization with Haystack and DSPy Experimental notebook: 🧪📓 https://github.com/deepset-ai/haystack-cookbook/blob/main/notebooks/prompt_optimization_with_dspy.ipynb When building applications with LLMs, writing effective prompts is a long process of trial and error. 🔄 Often, if you switch models, you also have to change the prompt. 😩 What if you could automate this process? 💡 That's where DSPy comes in - a framework designed to algorithmically optimize prompts for Language Models. By applying classical machine learning concepts (training and evaluation data, metrics, optimization), DSPy generates better prompts for a given model and task. Recently, I explored combining DSPy with the robustness of Haystack Pipelines. Here's how it works: ▶️ Start from a Haystack RAG pipeline with a basic prompt 🎯 Define a goal (in this case, get correct and concise answers) 📊 Create a DSPy program, define data and metrics ✨ Optimize and evaluate -> improved prompt 🚀 Build a refined Haystack RAG pipeline using the optimized prompt
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626505d493e0b04d75710566/9rfJc9ORXU9J5a42Ev3v6.png", "fullname": "Stefano Fiorucci", "name": "anakin87", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 66, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/626505d493e0b04d75710566/6lmV29ylRDsCwmtcd8OA-.png" } ]
[]
[ { "reaction": "👍", "users": [ "victor", "Jofthomas", "lunarflu", "aplrat", "ijohn07", "ajibawa-2023", "oneiroid" ], "count": 7 }, { "reaction": "🔥", "users": [ "Jofthomas", "lunarflu", "mathiasn1", "GPT007" ], "count": 4 }, { "reaction": "👀", "users": [ "victor", "Jofthomas", "lunarflu" ], "count": 3 }, { "reaction": "😎", "users": [ "aplrat", "GPT007" ], "count": 2 } ]
2024-06-06T14:19:17.000Z
2024-06-06T15:26:33.942Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64257c616d0f0f5f1dc6aa2a/WNXC2PcyDn-jt9ZY5Rbka.jpeg", "fullname": "Joffrey THOMAS", "name": "Jofthomas", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 83, "isFollowing": false } ]
/posts/anakin87/388542675868940
2,098
1
967501479049087
[ { "type": "text", "value": "The application of Phi-3-small-8k-instruct for reasoning in Target Sentiment Analysis (TSA), in a zero-shot-learning mode. Comparing with the other 7B vendors, the key takeaways are as follows:", "raw": "The application of Phi-3-small-8k-instruct for reasoning in Target Sentiment Analysis (TSA), in a zero-shot-learning mode. Comparing with the other 7B vendors, the key takeaways are as follows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 1. At the moment this model on the top 🎉 of the 7B sized versions for texts translated in English (🇺🇸) by surpassing Mistral-7B-v0.3 and LLaMA-3-8B 🔥 (Figure 1)", "raw": "✅ 1. At the moment this model on the top 🎉 of the 7B sized versions for texts translated in English (🇺🇸) by surpassing Mistral-7B-v0.3 and LLaMA-3-8B 🔥 (Figure 1)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 2. It remains similar to 7B alternatives in original non-english texts (🇷🇺), however show confidence in sentiment presence among other 7B alternatives (checkout F1(PN0) results in Figure 2)", "raw": "✅ 2. It remains similar to 7B alternatives in original non-english texts (🇷🇺), however show confidence in sentiment presence among other 7B alternatives (checkout F1(PN0) results in Figure 2)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In comparison with its mini (3B) brother Phi-3-mini, the small (7B) version showcases a huge step in reasoning capabilities 🔥", "raw": "In comparison with its mini (3B) brother Phi-3-mini, the small (7B) version showcases a huge step in reasoning capabilities 🔥", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/microsoft/Phi-3-small-8k-instruct", "resource": { "type": "model", "id": "microsoft/Phi-3-small-8k-instruct", "discussionNum": null }, "url": "https://huggingface.co/microsoft/Phi-3-small-8k-instruct", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
The application of Phi-3-small-8k-instruct for reasoning in Target Sentiment Analysis (TSA), in a zero-shot-learning mode. Comparing with the other 7B vendors, the key takeaways are as follows: ✅ 1. At the moment this model on the top 🎉 of the 7B sized versions for texts translated in English (🇺🇸) by surpassing Mistral-7B-v0.3 and LLaMA-3-8B 🔥 (Figure 1) ✅ 2. It remains similar to 7B alternatives in original non-english texts (🇷🇺), however show confidence in sentiment presence among other 7B alternatives (checkout F1(PN0) results in Figure 2) In comparison with its mini (3B) brother Phi-3-mini, the small (7B) version showcases a huge step in reasoning capabilities 🔥 Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Model: https://huggingface.co/microsoft/Phi-3-small-8k-instruct Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342) Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/GBiZXD6Qoe_wELcgYEyGw.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/2ftyz0Bum9UchDq9kwEDR.jpeg" } ]
[]
[ { "reaction": "👍", "users": [ "Norod78", "MaziyarPanahi", "lunarflu", "jyoung105" ], "count": 4 }, { "reaction": "👀", "users": [ "victor", "lunarflu" ], "count": 2 } ]
2024-06-06T09:49:43.000Z
2024-06-07T17:58:51.902Z
[ { "avatarUrl": "/avatars/c574b7c7ace902c4a613373d3a64e381.svg", "fullname": "Pavan Satish", "name": "Pavansatish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false } ]
/posts/nicolay-r/967501479049087
2,116
6
692032777050317
[ { "type": "text", "value": "🔬 This paper introduces Fusion Intelligence (FI), a novel approach integrating the adaptive behaviors of natural organisms 🐝(Bees!)🐝 with AI's computational power.", "raw": "🔬 This paper introduces Fusion Intelligence (FI), a novel approach integrating the adaptive behaviors of natural organisms 🐝(Bees!)🐝 with AI's computational power.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Paper:", "raw": "Paper:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Fusion Intelligence: Confluence of Natural and Artificial Intelligence for Enhanced Problem-Solving Efficiency (2405.09763)", "raw": "Fusion Intelligence: Confluence of Natural and Artificial Intelligence for Enhanced Problem-Solving Efficiency (2405.09763)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/pdf/2405.09763", "resource": null, "url": null, "href": "https://arxiv.org/pdf/2405.09763", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Key Takeaways:", "raw": "Key Takeaways:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Fusion Intelligence (FI): Combines natural organism efficiency with AI's power. 🌟", "raw": "* Fusion Intelligence (FI): Combines natural organism efficiency with AI's power. 🌟", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Hybrid Approach: Integrates natural abilities with AI for better problem-solving. 🧠🤖", "raw": "* Hybrid Approach: Integrates natural abilities with AI for better problem-solving. 🧠🤖", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Agricultural Applications: Shows a 50% improvement in pollination efficiency. 🐝🌼", "raw": "* Agricultural Applications: Shows a 50% improvement in pollination efficiency. 🐝🌼", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Energy Efficiency: Consumes only 29.5-50.2 mW per bee, much lower than traditional methods. ⚡", "raw": "* Energy Efficiency: Consumes only 29.5-50.2 mW per bee, much lower than traditional methods. ⚡", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Scalability: Applicable to fields like environmental monitoring and search and rescue. 🌍🔍", "raw": "* Scalability: Applicable to fields like environmental monitoring and search and rescue. 🌍🔍", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Non-Invasive: Eliminates the need for invasive modifications to biological entities. 🌱", "raw": "* Non-Invasive: Eliminates the need for invasive modifications to biological entities. 🌱", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This research offers a new approach for those interested in sustainable AI solutions. By merging biology with AI, (FI) aims to create solutions for a variety of challenges.", "raw": "This research offers a new approach for those interested in sustainable AI solutions. By merging biology with AI, (FI) aims to create solutions for a variety of challenges.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🔬 This paper introduces Fusion Intelligence (FI), a novel approach integrating the adaptive behaviors of natural organisms 🐝(Bees!)🐝 with AI's computational power. Paper: Fusion Intelligence: Confluence of Natural and Artificial Intelligence for Enhanced Problem-Solving Efficiency (2405.09763) https://arxiv.org/pdf/2405.09763 Key Takeaways: * Fusion Intelligence (FI): Combines natural organism efficiency with AI's power. 🌟 * Hybrid Approach: Integrates natural abilities with AI for better problem-solving. 🧠🤖 * Agricultural Applications: Shows a 50% improvement in pollination efficiency. 🐝🌼 * Energy Efficiency: Consumes only 29.5-50.2 mW per bee, much lower than traditional methods. ⚡ * Scalability: Applicable to fields like environmental monitoring and search and rescue. 🌍🔍 * Non-Invasive: Eliminates the need for invasive modifications to biological entities. 🌱 This research offers a new approach for those interested in sustainable AI solutions. By merging biology with AI, (FI) aims to create solutions for a variety of challenges.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/uAFZjnCcoh1HjxELHUM8W.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/641b754d1911d3be6745cce9/GUDoNaNZhnEeVw6GkkBw7.jpeg" } ]
[]
[ { "reaction": "👍", "users": [ "rbgo", "umutphp", "Moibe", "ajibawa-2023", "seanthw" ], "count": 5 }, { "reaction": "🤝", "users": [ "pduf" ], "count": 1 } ]
2024-06-06T04:54:14.000Z
2024-06-08T11:35:08.863Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64aea8ff67511bd3d965697b/Jxn52EmDF5RApJh8antxn.jpeg", "fullname": "Feynman Innovations", "name": "ajibawa-2023", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 137, "isFollowing": false }, { "avatarUrl": "/avatars/cf2607a4ab6f041f2009aaafbc1dbe71.svg", "fullname": "haxor", "name": "haxorbroken", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/Taylor658/692032777050317
2,158
2
120126659383142
[ { "type": "text", "value": "V-Express: 1-Click AI Avatar Talking Heads Video Animation Generator - D-ID Alike - Free Open Source", "raw": "V-Express: 1-Click AI Avatar Talking Heads Video Animation Generator - D-ID Alike - Free Open Source", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Full Windows YouTube Tutorial : ", "raw": "Full Windows YouTube Tutorial : ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://youtu.be/xLqDTVWUSec", "resource": null, "url": null, "href": "https://youtu.be/xLqDTVWUSec", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Ever wished your static images could talk like magic? Meet V-Express, the groundbreaking open-source and free tool that breathes life into your photos! Whether you have an audio clip or a video, V-Express animates your images to create stunning talking avatars. Just like the acclaimed D-ID Avatar, Wav2Lip, and Avatarify, V-Express turns your still photos into dynamic, speaking personas, but with a twist—it's completely open-source and free to use! With seamless audio integration and the ability to mimic video expressions, V-Express offers an unparalleled experience without any cost or restrictions. Experience the future of digital avatars today—let's dive into how you can get started with V-Express and watch your images come alive!", "raw": "Ever wished your static images could talk like magic? Meet V-Express, the groundbreaking open-source and free tool that breathes life into your photos! Whether you have an audio clip or a video, V-Express animates your images to create stunning talking avatars. Just like the acclaimed D-ID Avatar, Wav2Lip, and Avatarify, V-Express turns your still photos into dynamic, speaking personas, but with a twist—it's completely open-source and free to use! With seamless audio integration and the ability to mimic video expressions, V-Express offers an unparalleled experience without any cost or restrictions. Experience the future of digital avatars today—let's dive into how you can get started with V-Express and watch your images come alive!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1-Click V-Express Installers Scripts ⤵️", "raw": "1-Click V-Express Installers Scripts ⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://www.patreon.com/posts/105251204", "resource": null, "url": null, "href": "https://www.patreon.com/posts/105251204", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Requirements Step by Step Tutorial ⤵️", "raw": "Requirements Step by Step Tutorial ⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://youtu.be/-NjNy7afOQ0", "resource": null, "url": null, "href": "https://youtu.be/-NjNy7afOQ0", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Official Rope GitHub Repository Free To Install and Use ⤵️", "raw": "Official Rope GitHub Repository Free To Install and Use ⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/tencent-ailab/V-Express", "resource": null, "url": null, "href": "https://github.com/tencent-ailab/V-Express", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "SECourses Discord Channel to Get Full Support ⤵️", "raw": "SECourses Discord Channel to Get Full Support ⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://discord.com/servers/software-engineering-courses-secourses-772774097734074388", "resource": null, "url": null, "href": "https://discord.com/servers/software-engineering-courses-secourses-772774097734074388", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
V-Express: 1-Click AI Avatar Talking Heads Video Animation Generator - D-ID Alike - Free Open Source Full Windows YouTube Tutorial : https://youtu.be/xLqDTVWUSec Ever wished your static images could talk like magic? Meet V-Express, the groundbreaking open-source and free tool that breathes life into your photos! Whether you have an audio clip or a video, V-Express animates your images to create stunning talking avatars. Just like the acclaimed D-ID Avatar, Wav2Lip, and Avatarify, V-Express turns your still photos into dynamic, speaking personas, but with a twist—it's completely open-source and free to use! With seamless audio integration and the ability to mimic video expressions, V-Express offers an unparalleled experience without any cost or restrictions. Experience the future of digital avatars today—let's dive into how you can get started with V-Express and watch your images come alive! 1-Click V-Express Installers Scripts ⤵️ https://www.patreon.com/posts/105251204 Requirements Step by Step Tutorial ⤵️ https://youtu.be/-NjNy7afOQ0 Official Rope GitHub Repository Free To Install and Use ⤵️ https://github.com/tencent-ailab/V-Express SECourses Discord Channel to Get Full Support ⤵️ https://discord.com/servers/software-engineering-courses-secourses-772774097734074388
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png", "fullname": "Furkan Gözükara", "name": "MonsterMMORPG", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 368, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "MonsterMMORPG", "zephyrwang", "AdinaY", "umair894", "Jason233" ], "count": 5 }, { "reaction": "🚀", "users": [ "MonsterMMORPG", "zephyrwang", "AdinaY" ], "count": 3 }, { "reaction": "👀", "users": [ "MonsterMMORPG", "zephyrwang", "TravelingMan" ], "count": 3 }, { "reaction": "❤️", "users": [ "MonsterMMORPG", "odysonn" ], "count": 2 }, { "reaction": "🤗", "users": [ "MonsterMMORPG" ], "count": 1 }, { "reaction": "😎", "users": [ "MonsterMMORPG" ], "count": 1 }, { "reaction": "➕", "users": [ "MonsterMMORPG" ], "count": 1 }, { "reaction": "🧠", "users": [ "MonsterMMORPG" ], "count": 1 }, { "reaction": "👍", "users": [ "MonsterMMORPG" ], "count": 1 }, { "reaction": "🤝", "users": [ "MonsterMMORPG" ], "count": 1 }, { "reaction": "🤯", "users": [ "MonsterMMORPG" ], "count": 1 } ]
2024-06-06T00:48:45.000Z
2024-06-06T00:48:45.170Z
[]
/posts/MonsterMMORPG/120126659383142
2,960
0
870025460089676
[ { "type": "text", "value": "The Coachella of Computer Vision, CVPR, is right around the corner. In anticipation of the conference, I curated a dataset of the papers. ", "raw": "The Coachella of Computer Vision, CVPR, is right around the corner. In anticipation of the conference, I curated a dataset of the papers. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I'll have a technical blog post out tomorrow doing some analysis on the dataset, but I'm so hyped that I wanted to get it out to the community ASAP.", "raw": "I'll have a technical blog post out tomorrow doing some analysis on the dataset, but I'm so hyped that I wanted to get it out to the community ASAP.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The dataset consists of the following fields:", "raw": "The dataset consists of the following fields:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - An image of the first page of the paper", "raw": " - An image of the first page of the paper", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`title`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "title", "label": null }, { "type": "text", "value": ": The title of the paper", "raw": ": The title of the paper", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`authors_list`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "authors_list", "label": null }, { "type": "text", "value": ": The list of authors", "raw": ": The list of authors", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`abstract`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "abstract", "label": null }, { "type": "text", "value": ": The abstract of the paper", "raw": ": The abstract of the paper", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`arxiv_link`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "arxiv_link", "label": null }, { "type": "text", "value": ": Link to the paper on arXiv", "raw": ": Link to the paper on arXiv", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`other_link`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "other_link", "label": null }, { "type": "text", "value": ": Link to the project page, if found", "raw": ": Link to the project page, if found", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`category_name`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "category_name", "label": null }, { "type": "text", "value": ": The primary category this paper according to [arXiv taxonomy](", "raw": ": The primary category this paper according to [arXiv taxonomy](", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://arxiv.org/category_taxonomy", "resource": null, "url": null, "href": "https://arxiv.org/category_taxonomy", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ")", "raw": ")", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`all_categories`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "all_categories", "label": null }, { "type": "text", "value": ": All categories this paper falls into, according to arXiv taxonomy", "raw": ": All categories this paper falls into, according to arXiv taxonomy", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " - ", "raw": " - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "inline_code", "value": null, "raw": "`keywords`", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "keywords", "label": null }, { "type": "text", "value": ": Extracted using GPT-4o", "raw": ": Extracted using GPT-4o", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Here's how I created the dataset 👇🏼", "raw": "Here's how I created the dataset 👇🏼", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Generic code for building this dataset can be found [here](", "raw": "Generic code for building this dataset can be found [here](", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/harpreetsahota204/CVPR-2024-Papers", "resource": null, "url": null, "href": "https://github.com/harpreetsahota204/CVPR-2024-Papers", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ").", "raw": ").", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This dataset was built using the following steps:", "raw": "This dataset was built using the following steps:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Scrape the CVPR 2024 website for accepted papers", "raw": "- Scrape the CVPR 2024 website for accepted papers", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Use DuckDuckGo to search for a link to the paper's abstract on arXiv", "raw": "- Use DuckDuckGo to search for a link to the paper's abstract on arXiv", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Use arXiv.py (python wrapper for the arXiv API) to extract the abstract and categories, and download the pdf for each paper", "raw": "- Use arXiv.py (python wrapper for the arXiv API) to extract the abstract and categories, and download the pdf for each paper", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Use pdf2image to save the image of paper's first page", "raw": "- Use pdf2image to save the image of paper's first page", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Use GPT-4o to extract keywords from the abstract", "raw": "- Use GPT-4o to extract keywords from the abstract", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/Voxel51/CVPR_2024_Papers", "resource": { "type": "dataset", "id": "Voxel51/CVPR_2024_Papers", "discussionNum": null }, "url": "https://huggingface.co/datasets/Voxel51/CVPR_2024_Papers", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
The Coachella of Computer Vision, CVPR, is right around the corner. In anticipation of the conference, I curated a dataset of the papers. I'll have a technical blog post out tomorrow doing some analysis on the dataset, but I'm so hyped that I wanted to get it out to the community ASAP. The dataset consists of the following fields: - An image of the first page of the paper - `title`: The title of the paper - `authors_list`: The list of authors - `abstract`: The abstract of the paper - `arxiv_link`: Link to the paper on arXiv - `other_link`: Link to the project page, if found - `category_name`: The primary category this paper according to [arXiv taxonomy](https://arxiv.org/category_taxonomy) - `all_categories`: All categories this paper falls into, according to arXiv taxonomy - `keywords`: Extracted using GPT-4o Here's how I created the dataset 👇🏼 Generic code for building this dataset can be found [here](https://github.com/harpreetsahota204/CVPR-2024-Papers). This dataset was built using the following steps: - Scrape the CVPR 2024 website for accepted papers - Use DuckDuckGo to search for a link to the paper's abstract on arXiv - Use arXiv.py (python wrapper for the arXiv API) to extract the abstract and categories, and download the pdf for each paper - Use pdf2image to save the image of paper's first page - Use GPT-4o to extract keywords from the abstract https://huggingface.co/datasets/Voxel51/CVPR_2024_Papers
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630904f2c038bf42d56d9d11/S8mYgFpPSHYOiifBnNfwG.jpeg", "fullname": "Harpreet Sahota", "name": "harpreetsahota", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 51, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/630904f2c038bf42d56d9d11/eAogxMSfS8eoIreSoURQQ.png" } ]
[]
[ { "reaction": "🔥", "users": [ "jamarks", "harpreetsahota", "Tanvir1337", "orkut", "jetsadaporn87", "ajibawa-2023" ], "count": 6 }, { "reaction": "🚀", "users": [ "harpreetsahota" ], "count": 1 }, { "reaction": "👍", "users": [ "fffiloni" ], "count": 1 } ]
2024-06-05T23:54:03.000Z
2024-06-05T23:54:03.520Z
[]
/posts/harpreetsahota/870025460089676
2,078
0
387352788347389
[ { "type": "text", "value": "🌍 As we all know, Planet Earth is undergoing an unprecedented climate crisis, almost totally due to human activities: we haven't got much time left before it's too late to take action, and one of the key fields where we need to urgently operate are climate-aware financial investments...", "raw": "🌍 As we all know, Planet Earth is undergoing an unprecedented climate crisis, almost totally due to human activities: we haven't got much time left before it's too late to take action, and one of the key fields where we need to urgently operate are climate-aware financial investments...", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤖 ... And that's where AI comes into the play: we can indeed try to leverage, tweak and expand its knowledge in the field to extract valuable climate-aware solutions. ", "raw": "🤖 ... And that's where AI comes into the play: we can indeed try to leverage, tweak and expand its knowledge in the field to extract valuable climate-aware solutions. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤗 I tried to make something alike: exploiting ", "raw": "🤗 I tried to make something alike: exploiting ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/climatebert/tcfd_recommendations", "resource": { "type": "dataset", "id": "climatebert/tcfd_recommendations", "discussionNum": null }, "url": "https://huggingface.co/datasets/climatebert/tcfd_recommendations", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " as knowledge base, Qdrant Cloud as vector store service and ", "raw": " as knowledge base, Qdrant Cloud as vector store service and ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct", "resource": { "type": "model", "id": "microsoft/Phi-3-mini-128k-instruct", "discussionNum": null }, "url": "https://huggingface.co/microsoft/Phi-3-mini-128k-instruct", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " as LLM (provided via API from ", "raw": " as LLM (provided via API from ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/eswardivi/Phi-3-mini-128k-instruct", "resource": { "type": "space", "id": "eswardivi/Phi-3-mini-128k-instruct", "discussionNum": null }, "url": "https://huggingface.co/spaces/eswardivi/Phi-3-mini-128k-instruct", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " by ", "raw": " by ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@eswardivi", "resource": null, "url": null, "href": null, "user": "eswardivi", "lang": null, "code": null, "label": null }, { "type": "text", "value": "), I built an AI assistant to help you find climate-oriented solutions for your investments, companies, or simply for your everyday life🎒.", "raw": "), I built an AI assistant to help you find climate-oriented solutions for your investments, companies, or simply for your everyday life🎒.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Find it here: ", "raw": "Find it here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/as-cle-bert/cLLiMateChat", "resource": { "type": "space", "id": "as-cle-bert/cLLiMateChat", "discussionNum": null }, "url": "https://huggingface.co/spaces/as-cle-bert/cLLiMateChat", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "GitHub: ", "raw": "GitHub: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/AstraBert/qdrant-ai-chat", "resource": null, "url": null, "href": "https://github.com/AstraBert/qdrant-ai-chat", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Website: ", "raw": "Website: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://astrabert.github.io/qdrant-ai-chat/", "resource": null, "url": null, "href": "https://astrabert.github.io/qdrant-ai-chat/", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Be kind to our Planet, we only got one💚", "raw": "Be kind to our Planet, we only got one💚", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "(Shout-outs to ", "raw": "(Shout-outs to ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@JohnSmith9982", "resource": null, "url": null, "href": null, "user": "JohnSmith9982", "lang": null, "code": null, "label": null }, { "type": "text", "value": " whose ", "raw": " whose ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/JohnSmith9982/small_and_pretty", "resource": { "type": "space", "id": "JohnSmith9982/small_and_pretty", "discussionNum": null }, "url": "https://huggingface.co/spaces/JohnSmith9982/small_and_pretty", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " Gradio theme was used to build my application🚀)", "raw": " Gradio theme was used to build my application🚀)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "PS: 🌱Curious of knowing what is your carbon footprint? Head over to this ML-backed HF Space I built to discover it: ", "raw": "PS: 🌱Curious of knowing what is your carbon footprint? Head over to this ML-backed HF Space I built to discover it: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/as-cle-bert/carbon-footprint-predictor", "resource": { "type": "space", "id": "as-cle-bert/carbon-footprint-predictor", "discussionNum": null }, "url": "https://huggingface.co/spaces/as-cle-bert/carbon-footprint-predictor", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🌍 As we all know, Planet Earth is undergoing an unprecedented climate crisis, almost totally due to human activities: we haven't got much time left before it's too late to take action, and one of the key fields where we need to urgently operate are climate-aware financial investments... 🤖 ... And that's where AI comes into the play: we can indeed try to leverage, tweak and expand its knowledge in the field to extract valuable climate-aware solutions. 🤗 I tried to make something alike: exploiting https://huggingface.co/datasets/climatebert/tcfd_recommendations as knowledge base, Qdrant Cloud as vector store service and https://huggingface.co/microsoft/Phi-3-mini-128k-instruct as LLM (provided via API from https://huggingface.co/spaces/eswardivi/Phi-3-mini-128k-instruct by @eswardivi), I built an AI assistant to help you find climate-oriented solutions for your investments, companies, or simply for your everyday life🎒. Find it here: https://huggingface.co/spaces/as-cle-bert/cLLiMateChat GitHub: https://github.com/AstraBert/qdrant-ai-chat Website: https://astrabert.github.io/qdrant-ai-chat/ Be kind to our Planet, we only got one💚 (Shout-outs to @JohnSmith9982 whose https://huggingface.co/spaces/JohnSmith9982/small_and_pretty Gradio theme was used to build my application🚀) PS: 🌱Curious of knowing what is your carbon footprint? Head over to this ML-backed HF Space I built to discover it: https://huggingface.co/spaces/as-cle-bert/carbon-footprint-predictor
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e330e7edc2f7306e252448/ucpk9c8x0UafGM4mXTrRy.jpeg", "fullname": "Astra Clelia Bertelli", "name": "as-cle-bert", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 639, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630bc25d4c0945d20b880e9a/CjDLfmCGcCkOS4E1t756M.jpeg", "fullname": "Divi Eswar Chowdary", "name": "eswardivi", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 19 }, { "avatarUrl": "/avatars/ed6996a557141e18f2be161e4e72caae.svg", "fullname": "John Smith", "name": "JohnSmith9982", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 29 } ]
[ { "reaction": "👍", "users": [ "Taylor658", "lunarflu", "neovalle", "LucasFlorentino", "Severian", "Ramikan-BR", "louisbrulenaudet" ], "count": 7 }, { "reaction": "❤️", "users": [ "lunarflu", "LucasFlorentino", "Ramikan-BR" ], "count": 3 }, { "reaction": "🤗", "users": [ "lunarflu", "Ramikan-BR" ], "count": 2 } ]
2024-06-05T21:08:21.000Z
2024-06-08T09:33:08.805Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/630cf5d14ca0a22768bbe10c/R6qfkfeKCNdiSl5clsorr.png", "fullname": "Aaron Day", "name": "aaronday3", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 19, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e330e7edc2f7306e252448/ucpk9c8x0UafGM4mXTrRy.jpeg", "fullname": "Astra Clelia Bertelli", "name": "as-cle-bert", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 639, "isFollowing": false } ]
/posts/as-cle-bert/387352788347389
1,461
2
859744242518946
[ { "type": "text", "value": "THUDM has released GLM-4V-9B and it's.. chatty! 😂 ", "raw": "THUDM has released GLM-4V-9B and it's.. chatty! 😂 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I asked it to describe my favorite Howl's Moving Castle scene and here's how it went 👇🏻", "raw": "I asked it to describe my favorite Howl's Moving Castle scene and here's how it went 👇🏻", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "joke aside it seems to outperform the previous VLMs. however the license isn't open-source 📈 ", "raw": "joke aside it seems to outperform the previous VLMs. however the license isn't open-source 📈 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "model repo: ", "raw": "model repo: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/THUDM/glm-4v-9b", "resource": { "type": "model", "id": "THUDM/glm-4v-9b", "discussionNum": null }, "url": "https://huggingface.co/THUDM/glm-4v-9b", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "a community member has built a demo: ", "raw": "a community member has built a demo: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/vilarin/VL-Chatbox", "resource": { "type": "space", "id": "vilarin/VL-Chatbox", "discussionNum": null }, "url": "https://huggingface.co/spaces/vilarin/VL-Chatbox", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
THUDM has released GLM-4V-9B and it's.. chatty! 😂 I asked it to describe my favorite Howl's Moving Castle scene and here's how it went 👇🏻 joke aside it seems to outperform the previous VLMs. however the license isn't open-source 📈 model repo: https://huggingface.co/THUDM/glm-4v-9b a community member has built a demo: https://huggingface.co/spaces/vilarin/VL-Chatbox
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5520, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/aZSoa0GcqslNz4ODPQy-4.jpeg" } ]
[]
[ { "reaction": "👍", "users": [ "orrinin", "ranork", "lunarflu", "Timilla" ], "count": 4 }, { "reaction": "❤️", "users": [ "vilarin", "lunarflu" ], "count": 2 } ]
2024-06-05T19:59:48.000Z
2024-06-06T04:35:17.154Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/642827944fe87caede802784/a7s3Ub9Cy6-PuuaX8wwXm.png", "fullname": "VILARIN", "name": "vilarin", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 68, "isFollowing": false } ]
/posts/merve/859744242518946
2,736
1
760542103453473
[ { "type": "text", "value": "I decided to play around with FluentlyXL v4 😉", "raw": "I decided to play around with FluentlyXL v4 😉", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "👉 Model: ", "raw": "👉 Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/fluently/Fluently-XL-v4", "resource": { "type": "model", "id": "fluently/Fluently-XL-v4", "discussionNum": null }, "url": "https://huggingface.co/fluently/Fluently-XL-v4", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✨ Playground: ", "raw": "✨ Playground: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/fluently/Fluently-Playground", "resource": { "type": "space", "id": "fluently/Fluently-Playground", "discussionNum": null }, "url": "https://huggingface.co/spaces/fluently/Fluently-Playground", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
I decided to play around with FluentlyXL v4 😉 👉 Model: https://huggingface.co/fluently/Fluently-XL-v4 ✨ Playground: https://huggingface.co/spaces/fluently/Fluently-Playground
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/WXzFAsT65FNP6St76x7CL.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/JcRajapdya6sE--6NnL0E.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/0xkUod7T5y3Dnz39AtU_7.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/HByXycKb-HV9i6xCk5R_e.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/xUHw8VN5c0NUv4I8s73uZ.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/gN8sarNOO18lLMNV5JH4N.png" } ]
[]
[ { "reaction": "👍", "users": [ "ehristoforu", "dreamdrop-art", "S1m0neAI", "lunarflu", "LucasFlorentino", "TravelingMan", "s3nh", "victor", "Ramikan-BR", "cbensimon", "louisbrulenaudet", "ifmain" ], "count": 12 }, { "reaction": "🔥", "users": [ "lunarflu", "Ramikan-BR", "cbensimon", "Westis", "dreamdrop-art" ], "count": 5 }, { "reaction": "👀", "users": [ "Ramikan-BR", "GPT007", "dreamdrop-art" ], "count": 3 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "dreamdrop-art" ], "count": 2 }, { "reaction": "❤️", "users": [ "Ramikan-BR", "dreamdrop-art" ], "count": 2 } ]
2024-06-05T19:40:37.000Z
2024-06-05T19:40:37.970Z
[]
/posts/ehristoforu/760542103453473
1,906
0
588142490319312
[ { "type": "text", "value": "📢 The most recent Mistral-7B-Instruct-v0.3 release showcases more robust advances in zero-shot-mode mode on Target Sentiment Analysis.", "raw": "📢 The most recent Mistral-7B-Instruct-v0.3 release showcases more robust advances in zero-shot-mode mode on Target Sentiment Analysis.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🧪 We experiment with the original texts (🇷🇺 ) and their translated version into English (🇺🇸).", "raw": "🧪 We experiment with the original texts (🇷🇺 ) and their translated version into English (🇺🇸).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💡 The key takeaways on the expectation from this model are as follows:", "raw": "💡 The key takeaways on the expectation from this model are as follows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✔️ 1. On translated texts into English (🇺🇸), it surpasses LLaMA-3 and and nearly touches MOE Mixtral 8x7B versions being quite precise by F1 across all the classes by F1(PN)", "raw": "✔️ 1. On translated texts into English (🇺🇸), it surpasses LLaMA-3 and and nearly touches MOE Mixtral 8x7B versions being quite precise by F1 across all the classes by F1(PN)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✔️2. On orignal texts (🇷🇺) It slightly surpasses LLaMA-3 by F1(PN) by being less tolerant in neutral (F1(PN0)). Using larger versions (Mixtral) are still preferable choice for reasoning 🧠 in non-eng texts.", "raw": "✔️2. On orignal texts (🇷🇺) It slightly surpasses LLaMA-3 by F1(PN) by being less tolerant in neutral (F1(PN0)). Using larger versions (Mixtral) are still preferable choice for reasoning 🧠 in non-eng texts.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✔️3. You can clearly see the difference between 7B version and MOE (figure 3) by F1(PN0)", "raw": "✔️3. You can clearly see the difference between 7B version and MOE (figure 3) by F1(PN0)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3", "resource": { "type": "model", "id": "mistralai/Mistral-7B-Instruct-v0.3", "discussionNum": null }, "url": "https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "user": null, "lang": null, "code": null, "label": null } ]
📢 The most recent Mistral-7B-Instruct-v0.3 release showcases more robust advances in zero-shot-mode mode on Target Sentiment Analysis. 🧪 We experiment with the original texts (🇷🇺 ) and their translated version into English (🇺🇸). 💡 The key takeaways on the expectation from this model are as follows: ✔️ 1. On translated texts into English (🇺🇸), it surpasses LLaMA-3 and and nearly touches MOE Mixtral 8x7B versions being quite precise by F1 across all the classes by F1(PN) ✔️2. On orignal texts (🇷🇺) It slightly surpasses LLaMA-3 by F1(PN) by being less tolerant in neutral (F1(PN0)). Using larger versions (Mixtral) are still preferable choice for reasoning 🧠 in non-eng texts. ✔️3. You can clearly see the difference between 7B version and MOE (figure 3) by F1(PN0) Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Model: https://huggingface.co/mistralai/Mistral-7B-Instruct-v0.3 Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342) Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/8fiDZNwz8ThjLIpoIxC4W.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/zoifR0J2-cEVNfTvQ9N4E.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/XUuG7ExiT2ZwVSAWxdxst.png" } ]
[]
[ { "reaction": "👍", "users": [ "victor", "kristaller486", "osanseviero", "lunarflu" ], "count": 4 } ]
2024-06-05T09:23:29.000Z
2024-06-05T09:30:07.493Z
[]
/posts/nicolay-r/588142490319312
2,410
0
612249613019261
[ { "type": "text", "value": "A great vision language benchmark: MM-UPD evaluates how model responds to unsolvable problems 🤓 ", "raw": "A great vision language benchmark: MM-UPD evaluates how model responds to unsolvable problems 🤓 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "LLaVA 1.6 is outperforming proprietary VLMs, making it a very robust choice for production!", "raw": "LLaVA 1.6 is outperforming proprietary VLMs, making it a very robust choice for production!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "It is now hosted as a leaderboard ", "raw": "It is now hosted as a leaderboard ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/MM-UPD/MM-UPD_Leaderboard", "resource": { "type": "space", "id": "MM-UPD/MM-UPD_Leaderboard", "discussionNum": null }, "url": "https://huggingface.co/spaces/MM-UPD/MM-UPD_Leaderboard", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " 🏆💕", "raw": " 🏆💕", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
A great vision language benchmark: MM-UPD evaluates how model responds to unsolvable problems 🤓 LLaVA 1.6 is outperforming proprietary VLMs, making it a very robust choice for production! It is now hosted as a leaderboard https://huggingface.co/spaces/MM-UPD/MM-UPD_Leaderboard 🏆💕
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5520, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/9A9gU8C6oQFdkZ9zwMFNh.png" } ]
[]
[ { "reaction": "🚀", "users": [ "victor", "Ramikan-BR", "osanseviero", "aryansinghtech", "jeremy-london", "lunarflu", "taufiqdp", "AtsuMiyai" ], "count": 8 } ]
2024-06-05T08:57:30.000Z
2024-06-05T08:57:30.329Z
[]
/posts/merve/612249613019261
2,686
0
295094188881098
[ { "type": "text", "value": "Hello, Vision World!", "raw": "Hello, Vision World!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/AI4Chem/ChemLLM-20B-Chat-DPO", "resource": { "type": "model", "id": "AI4Chem/ChemLLM-20B-Chat-DPO", "discussionNum": null }, "url": "https://huggingface.co/AI4Chem/ChemLLM-20B-Chat-DPO", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2402.06852", "resource": { "type": "paper", "id": "2402.06852", "discussionNum": null }, "url": "https://huggingface.co/papers/2402.06852", "href": null, "user": null, "lang": null, "code": null, "label": "ChemLLM: A Chemical Large Language Model (2402.06852)" }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Hello, Vision World! https://huggingface.co/AI4Chem/ChemLLM-20B-Chat-DPO https://huggingface.co/papers/2402.06852
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 106, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64bce15bafd1e46c5504ad38/0Qo4MtdIlfQdr5tef1XiC.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64bce15bafd1e46c5504ad38/tRFOtI0pXiLO8VCLSXPL-.png" } ]
[]
[ { "reaction": "🤗", "users": [ "qq8933", "victor", "KingNish", "osanseviero", "Taylor658", "louisbrulenaudet", "abdesBen", "lunarflu" ], "count": 8 }, { "reaction": "🚀", "users": [ "victor", "lunarflu" ], "count": 2 }, { "reaction": "👍", "users": [ "abdesBen", "lunarflu" ], "count": 2 } ]
2024-06-05T07:39:10.000Z
2024-06-06T09:58:18.842Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662621c10e31d65ecc604512/SIh9DBJT447wsZ7a6dKL0.jpeg", "fullname": "CAI", "name": "Ruoqi7", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 106, "isFollowing": false } ]
/posts/qq8933/295094188881098
2,059
3
207378507585859
[ { "type": "text", "value": "Can anyone see my post on🤗?", "raw": "Can anyone see my post on🤗?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Reply with 🤗", "raw": "Reply with 🤗", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Can anyone see my post on🤗? Reply with 🤗
{ "avatarUrl": "/avatars/b2b1fe9fbcca6889d6d4aaff24613b2f.svg", "fullname": "Turi Abu", "name": "turiabu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 12, "isFollowing": false }
[]
[]
[ { "reaction": "🤗", "users": [ "turiabu", "wang-mei-nuan", "dani-garcia", "CookieMaster", "qq8933", "zzffss", "victor", "Abru", "BoredApeYachtClub", "KingNish", "Hev832", "sa8", "Clausss", "GPT007", "osanseviero", "sergiopaniego", "EnesCMLK", "thesven", "Snail921", "taewan2002", "Noclou", "qhduan", "takeraparterer", "s3nh", "actuallyastarfish", "nicoboss", "shtefarn", "Rybens", "Samoed", "urchade", "EveryPizza", "mrdbourke", "leafspark", "qnixsynapse", "giodeleo" ], "count": 35 } ]
2024-06-05T06:35:07.000Z
2024-06-07T11:19:47.661Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63fb7edfa3c067e6289097c8/7M2NnBsvc60X7BP5v0iCj.jpeg", "fullname": "XuehangCang", "name": "XuehangCang", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "/avatars/08bf9559d8046f18f608960dd08b6e8d.svg", "fullname": "Roger C", "name": "allknowingroger", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 53, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6456271e4095c967f9a93ec1/HE3FPqI5bBtGxvHs5D40z.png", "fullname": "Rico", "name": "Hev832", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false }, { "avatarUrl": "/avatars/579554987ce388f47f65bce9fc820324.svg", "fullname": "alan.zeng", "name": "alan45x", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false } ]
/posts/turiabu/207378507585859
2,097
4
872883586159602
[ { "type": "text", "value": "🧠 Have you ever heard of neurons running as a computer?", "raw": "🧠 Have you ever heard of neurons running as a computer?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💻 If you are curious about the so-called \"brainoware\", a hardware built upon a brain organoid and used for AI and ML tasks, you may want to read my latest 🤗 article: ", "raw": "💻 If you are curious about the so-called \"brainoware\", a hardware built upon a brain organoid and used for AI and ML tasks, you may want to read my latest 🤗 article: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/as-cle-bert/brain-next-generation-neurons", "resource": null, "url": null, "href": "https://huggingface.co/blog/as-cle-bert/brain-next-generation-neurons", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💡Enjoy!", "raw": "💡Enjoy!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🧠 Have you ever heard of neurons running as a computer? 💻 If you are curious about the so-called "brainoware", a hardware built upon a brain organoid and used for AI and ML tasks, you may want to read my latest 🤗 article: https://huggingface.co/blog/as-cle-bert/brain-next-generation-neurons 💡Enjoy!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e330e7edc2f7306e252448/ucpk9c8x0UafGM4mXTrRy.jpeg", "fullname": "Astra Clelia Bertelli", "name": "as-cle-bert", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 639, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "Taylor658", "not-lain", "victor", "osanseviero", "lunarflu" ], "count": 5 }, { "reaction": "🔥", "users": [ "Joseph717171", "louisbrulenaudet", "KingNish", "adamelliotfields", "lunarflu" ], "count": 5 }, { "reaction": "🚀", "users": [ "Joseph717171", "lunarflu" ], "count": 2 }, { "reaction": "🧠", "users": [ "adamelliotfields", "lunarflu" ], "count": 2 } ]
2024-06-04T20:39:32.000Z
2024-06-06T03:49:02.953Z
[ { "avatarUrl": "/avatars/f02bcc65238b9b0c9dafdc9edcbf1062.svg", "fullname": "kirill", "name": "kvmelnikov", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6569216f9c96f1a47bf45788/mCLqmAs4dOjKdxNQVAp1w.png", "fullname": "Sica Rius", "name": "SicariusSicariiStuff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 132, "isFollowing": false } ]
/posts/as-cle-bert/872883586159602
2,490
2
654448211400768
[ { "type": "text", "value": "Remember when ", "raw": "Remember when ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@Microsoft", "resource": null, "url": null, "href": null, "user": "Microsoft", "lang": null, "code": null, "label": null }, { "type": "text", "value": " released Phi-3 models... 🤔", "raw": " released Phi-3 models... 🤔", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Yup, the ones that had 🦙Llama 3 8B beat on MMLU using 3.8B parameters! 🏆", "raw": "Yup, the ones that had 🦙Llama 3 8B beat on MMLU using 3.8B parameters! 🏆", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Now they are on the LMSYS Chatbot Arena Leaderboard! 📊📈", "raw": "Now they are on the LMSYS Chatbot Arena Leaderboard! 📊📈", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Medium(14B) ranks near GPT-3.5-Turbo-0613, but behind Llama 3 8B. 📉", "raw": "Medium(14B) ranks near GPT-3.5-Turbo-0613, but behind Llama 3 8B. 📉", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Phi-3 Small(7B) is close to Llama-2-70B, and Mistral fine-tunes. 📊", "raw": "Phi-3 Small(7B) is close to Llama-2-70B, and Mistral fine-tunes. 📊", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "What about the Phi-3 Mini(3.8B), that was giving Llama 3 8B a run for its money on MMLU? It gets an arena score of 1037 (#73) against 1153 (#22) of Llama 3 8B 🤼", "raw": "What about the Phi-3 Mini(3.8B), that was giving Llama 3 8B a run for its money on MMLU? It gets an arena score of 1037 (#73) against 1153 (#22) of Llama 3 8B 🤼", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Looks like there is a struggle here between perplexity and inherent knowledge! 🤔", "raw": "Looks like there is a struggle here between perplexity and inherent knowledge! 🤔", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "And Microsoft picked knowledge with high perplexity 🧠", "raw": "And Microsoft picked knowledge with high perplexity 🧠", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Now I am even more intrigued: what is ", "raw": "Now I am even more intrigued: what is ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@Meta", "resource": null, "url": null, "href": null, "user": "Meta", "lang": null, "code": null, "label": null }, { "type": "text", "value": " feeding its 🦙 Llamas?🌾", "raw": " feeding its 🦙 Llamas?🌾", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🏆 Leaderboard: ", "raw": "🏆 Leaderboard: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://chat.lmsys.org/?leaderboard", "resource": null, "url": null, "href": "https://chat.lmsys.org/?leaderboard", "user": null, "lang": null, "code": null, "label": null } ]
Remember when @Microsoft released Phi-3 models... 🤔 Yup, the ones that had 🦙Llama 3 8B beat on MMLU using 3.8B parameters! 🏆 Now they are on the LMSYS Chatbot Arena Leaderboard! 📊📈 Medium(14B) ranks near GPT-3.5-Turbo-0613, but behind Llama 3 8B. 📉 Phi-3 Small(7B) is close to Llama-2-70B, and Mistral fine-tunes. 📊 What about the Phi-3 Mini(3.8B), that was giving Llama 3 8B a run for its money on MMLU? It gets an arena score of 1037 (#73) against 1153 (#22) of Llama 3 8B 🤼 Looks like there is a struggle here between perplexity and inherent knowledge! 🤔 And Microsoft picked knowledge with high perplexity 🧠 Now I am even more intrigued: what is @Meta feeding its 🦙 Llamas?🌾 🏆 Leaderboard: https://chat.lmsys.org/?leaderboard
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 197, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/7AFodvtzXiDeJiiXlyJuc.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61e8c67cee1e1440121f0240/9sb__WsO5mwmdHHa6xKNc.jpeg", "fullname": "Meta World Peace", "name": "Meta", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5 } ]
[ { "reaction": "🚀", "users": [ "lunarflu" ], "count": 1 } ]
2024-06-04T18:36:24.000Z
2024-06-04T18:36:24.525Z
[]
/posts/singhsidhukuldeep/654448211400768
1,592
0
135453923650058
[ { "type": "text", "value": "One shot evaluations is hard. That is honestly what I learnt throughout the last couple of weeks trying to make imgsys.org data more and more relevant. There is just so much diversity in these models that saying one is better than other one even at a particular domain is impossible. ", "raw": "One shot evaluations is hard. That is honestly what I learnt throughout the last couple of weeks trying to make imgsys.org data more and more relevant. There is just so much diversity in these models that saying one is better than other one even at a particular domain is impossible. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "If you have any suggestions on how we can make the testing easier for one shot, single question image model testing; please give your suggestions under this thread so we can provide a more meaningful data point to the community!", "raw": "If you have any suggestions on how we can make the testing easier for one shot, single question image model testing; please give your suggestions under this thread so we can provide a more meaningful data point to the community!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
One shot evaluations is hard. That is honestly what I learnt throughout the last couple of weeks trying to make imgsys.org data more and more relevant. There is just so much diversity in these models that saying one is better than other one even at a particular domain is impossible. If you have any suggestions on how we can make the testing easier for one shot, single question image model testing; please give your suggestions under this thread so we can provide a more meaningful data point to the community!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6380ebb8471a4550ff255c62/-5tqR0SqLU53cOsXA-4ON.jpeg", "fullname": "Batuhan", "name": "isidentical", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 80, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "lunarflu" ], "count": 1 }, { "reaction": "🧠", "users": [ "lunarflu" ], "count": 1 } ]
2024-06-04T17:55:00.000Z
2024-06-04T17:55:00.766Z
[]
/posts/isidentical/135453923650058
1,245
0
449913250763619
[ { "type": "text", "value": "> We introduced a new model designed for the Code generation task. Its test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).", "raw": "> We introduced a new model designed for the Code generation task. Its test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@Bin12345", "resource": null, "url": null, "href": null, "user": "Bin12345", "lang": null, "code": null, "label": null }, { "type": "text", "value": " interested in a ZeroGPU Spaces for ", "raw": " interested in a ZeroGPU Spaces for ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Bin12345/AutoCoder", "resource": { "type": "model", "id": "Bin12345/AutoCoder", "discussionNum": null }, "url": "https://huggingface.co/Bin12345/AutoCoder", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
> We introduced a new model designed for the Code generation task. Its test accuracy on the HumanEval base dataset surpasses that of GPT-4 Turbo (April 2024). (90.9% vs 90.2%). @Bin12345 interested in a ZeroGPU Spaces for https://huggingface.co/Bin12345/AutoCoder
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false }
[]
[ { "avatarUrl": "/avatars/83b918ddd7e2130a1c72ae74606068dc.svg", "fullname": "Bin Lei", "name": "Bin12345", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 18 } ]
[ { "reaction": "❤️", "users": [ "Bin12345", "osanseviero", "lunarflu", "leoernica" ], "count": 4 }, { "reaction": "👍", "users": [ "dillfrescott", "lunarflu" ], "count": 2 } ]
2024-06-04T15:42:26.000Z
2024-06-04T17:05:13.813Z
[ { "avatarUrl": "/avatars/83b918ddd7e2130a1c72ae74606068dc.svg", "fullname": "Bin Lei", "name": "Bin12345", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 18, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false } ]
/posts/victor/449913250763619
1,856
6
369065526977408
[ { "type": "text", "value": "hf-daily-paper-newsletter-chinese,Using glm-4 agents, interpret hugging face's daily papers in simplified Chinese", "raw": "hf-daily-paper-newsletter-chinese,Using glm-4 agents, interpret hugging face's daily papers in simplified Chinese", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/2404589803/hf-daily-paper-newsletter-chinese", "resource": null, "url": null, "href": "https://github.com/2404589803/hf-daily-paper-newsletter-chinese", "user": null, "lang": null, "code": null, "label": null } ]
hf-daily-paper-newsletter-chinese,Using glm-4 agents, interpret hugging face's daily papers in simplified Chinese https://github.com/2404589803/hf-daily-paper-newsletter-chinese
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/i8Xmex143RtZ2GJTasUxa.jpeg", "fullname": "tom", "name": "roseking", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 4, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/649e263c402ad391e613ab3d/z75GFfyEBXmrR1DV3IKHI.png" } ]
[]
[ { "reaction": "🤝", "users": [ "victor", "lunarflu", "roseking" ], "count": 3 } ]
2024-06-04T15:39:25.000Z
2024-06-04T15:39:25.758Z
[]
/posts/roseking/369065526977408
1,109
0
604608285816489
[ { "type": "text", "value": "Crazy to see that my GroundingDino contribution to the transformers library got roughly 600k downloads combined in the checkpoints in the last month 🤯 ", "raw": "Crazy to see that my GroundingDino contribution to the transformers library got roughly 600k downloads combined in the checkpoints in the last month 🤯 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The tiny checkpoint got almost 500k alone ", "raw": "The tiny checkpoint got almost 500k alone ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/IDEA-Research/grounding-dino-tiny", "resource": { "type": "model", "id": "IDEA-Research/grounding-dino-tiny", "discussionNum": null }, "url": "https://huggingface.co/IDEA-Research/grounding-dino-tiny", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Crazy to see that my GroundingDino contribution to the transformers library got roughly 600k downloads combined in the checkpoints in the last month 🤯 The tiny checkpoint got almost 500k alone https://huggingface.co/IDEA-Research/grounding-dino-tiny
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1660748386833-noauth.jpeg", "fullname": "Eduardo Pacheco", "name": "EduardoPacheco", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 24, "isFollowing": false }
[]
[]
[ { "reaction": "🤯", "users": [ "victor", "osanseviero", "lunarflu" ], "count": 3 }, { "reaction": "👍", "users": [ "ABDELBAR", "lunarflu" ], "count": 2 } ]
2024-06-04T15:27:26.000Z
2024-06-04T15:27:26.211Z
[]
/posts/EduardoPacheco/604608285816489
1,650
0
741982385517695
[ { "type": "text", "value": "🙂 Hello! FluentlyXL is now on Venice.ai, you can try the model there right now.", "raw": "🙂 Hello! FluentlyXL is now on Venice.ai, you can try the model there right now.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "👉 Venice.ai: ", "raw": "👉 Venice.ai: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://venice.ai", "resource": null, "url": null, "href": "https://venice.ai", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✨️ FluentlyXL v4: ", "raw": "✨️ FluentlyXL v4: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/fluently/Fluently-XL-v4", "resource": { "type": "model", "id": "fluently/Fluently-XL-v4", "discussionNum": null }, "url": "https://huggingface.co/fluently/Fluently-XL-v4", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🙂 Hello! FluentlyXL is now on Venice.ai, you can try the model there right now. 👉 Venice.ai: https://venice.ai ✨️ FluentlyXL v4: https://huggingface.co/fluently/Fluently-XL-v4
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/P5QTATUvT_prAUnjRExk9.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "ehristoforu", "osanseviero", "julien-c", "Ramikan-BR", "lunarflu", "dreamdrop-art" ], "count": 6 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "lunarflu", "dreamdrop-art", "louisbrulenaudet" ], "count": 4 }, { "reaction": "👀", "users": [ "Ramikan-BR", "louisbrulenaudet", "lunarflu", "dreamdrop-art" ], "count": 4 }, { "reaction": "❤️", "users": [ "Ramikan-BR", "lunarflu", "dreamdrop-art" ], "count": 3 } ]
2024-06-04T13:33:26.000Z
2024-06-05T17:07:25.128Z
[ { "avatarUrl": "/avatars/6086a227be13069e5e3a50aafd307548.svg", "fullname": "Chloe Li", "name": "Chloeee-leee", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5dd96eb166059660ed1ee413/NQtzmrDdbG0H8qkZvRyGk.jpeg", "fullname": "Julien Chaumond", "name": "julien-c", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 1568, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/644cb09a22d211df644a0a6c/v0EHypMU4X3Oxxf3cao_O.png", "fullname": "Júlio César", "name": "Ramikan-BR", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 10, "isFollowing": false } ]
/posts/ehristoforu/741982385517695
1,514
3
866788930457283
[ { "type": "text", "value": "✂️ Uncensor any LLM with abliteration", "raw": "✂️ Uncensor any LLM with abliteration", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I wrote an article about abliteration and how NeuralDaredevil-8B was created. Beyond removing alignment, I believe it's an interesting technique with a lot of potential. It's basically fine-tuning without retraining.", "raw": "I wrote an article about abliteration and how NeuralDaredevil-8B was created. Beyond removing alignment, I believe it's an interesting technique with a lot of potential. It's basically fine-tuning without retraining.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In this article, we see how it works, implement it in Google Colab, and heal the abliterated model to recover the performance drop due to this technique. The final model is an uncensored and high-quality model with the highest MMLU score on the Open LLM Leaderboard (8B category).", "raw": "In this article, we see how it works, implement it in Google Colab, and heal the abliterated model to recover the performance drop due to this technique. The final model is an uncensored and high-quality model with the highest MMLU score on the Open LLM Leaderboard (8B category).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/mlabonne/abliteration", "resource": null, "url": null, "href": "https://huggingface.co/blog/mlabonne/abliteration", "user": null, "lang": null, "code": null, "label": null } ]
✂️ Uncensor any LLM with abliteration I wrote an article about abliteration and how NeuralDaredevil-8B was created. Beyond removing alignment, I believe it's an interesting technique with a lot of potential. It's basically fine-tuning without retraining. In this article, we see how it works, implement it in Google Colab, and heal the abliterated model to recover the performance drop due to this technique. The final model is an uncensored and high-quality model with the highest MMLU score on the Open LLM Leaderboard (8B category). https://huggingface.co/blog/mlabonne/abliteration
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61b8e2ba285851687028d395/JtUGAwVh_4cDEsjNcfpye.png", "fullname": "Maxime Labonne", "name": "mlabonne", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 3452, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/Y2eFMtY1s0MmOejj7Pw0q.png" } ]
[]
[ { "reaction": "🔥", "users": [ "fs-tom", "victor", "Ramikan-BR", "VlSav", "xi0v", "osanseviero", "AkimfromParis", "path-dev", "zzffss", "marksverdhei", "lunarflu", "carlosbaraza", "SixOpen", "Winnougan", "Joseph717171", "Borcherding", "adolfo-ab", "ZeroCollabs", "nvhf", "shafire", "Goekdeniz-Guelmez", "John6666", "nicoism", "AtAndDev", "marcushobbs" ], "count": 25 }, { "reaction": "❤️", "users": [ "ijohn07", "tariqamankhan", "jpacifico", "Borcherding", "Axmr", "koolhug", "AtAndDev", "marcushobbs" ], "count": 8 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "lunarflu", "Winnougan", "Joseph717171", "Borcherding", "Goekdeniz-Guelmez", "AtAndDev" ], "count": 7 }, { "reaction": "👀", "users": [ "Ramikan-BR", "Joseph717171", "lunarflu", "Winnougan", "Borcherding", "AtAndDev" ], "count": 6 }, { "reaction": "😎", "users": [ "mhollomey", "Joseph717171", "lunarflu", "Winnougan", "Borcherding", "AtAndDev" ], "count": 6 }, { "reaction": "👍", "users": [ "path-dev", "lunarflu", "Winnougan", "snakeying", "Borcherding", "AtAndDev" ], "count": 6 }, { "reaction": "🧠", "users": [ "Winnougan", "Borcherding", "bmorphism", "AtAndDev" ], "count": 4 }, { "reaction": "🤝", "users": [ "Winnougan", "Borcherding", "AtAndDev", "draeli" ], "count": 4 }, { "reaction": "🤯", "users": [ "Winnougan", "Borcherding", "AtAndDev" ], "count": 3 }, { "reaction": "😔", "users": [ "Winnougan", "Borcherding", "AtAndDev" ], "count": 3 } ]
2024-06-04T13:30:39.000Z
2024-10-24T14:44:02.450Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/aopubPTvZb2r_wKuqm2kt.png", "fullname": "Marc Hollomey", "name": "mhollomey", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61b8e2ba285851687028d395/JtUGAwVh_4cDEsjNcfpye.png", "fullname": "Maxime Labonne", "name": "mlabonne", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 3452, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61092092898a4822a5340a6f/fHHmoU2FOIbiIpVMNM8SU.jpeg", "fullname": "Rahul D Shetty", "name": "rahuldshetty", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 11, "isFollowing": false }, { "avatarUrl": "/avatars/fdcb9cea5b4b7b611f7cafa07ed61f64.svg", "fullname": "Ganxo SA", "name": "adolfo-ab", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "/avatars/25069413df9aa83b5acd7528d70af495.svg", "fullname": "Zero Collabs", "name": "ZeroCollabs", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false }, { "avatarUrl": "/avatars/7caf95df544df23193cce2165a86d574.svg", "fullname": "Woohyeuk Lee", "name": "kweel", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6617589592abaae4ecc0a272/kz5CJg8gfQTnXchGQe-NV.png", "fullname": "fs", "name": "failspy", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 387, "isFollowing": false }, { "avatarUrl": "/avatars/0c2378a034649dc92fbaa868e326cebb.svg", "fullname": "gghf", "name": "gghfez", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 12, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65995c45539c808e84c38bf1/k0y3ULloWQEMvosQwHgrE.png", "fullname": "Juk Armstrong", "name": "jukofyork", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 60, "isFollowing": false }, { "avatarUrl": "/avatars/dbf88a8d59a97513a7653be3178ede18.svg", "fullname": "Fashion Italia", "name": "Fashion-Italia", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/e8a081099e6d560e1b9016666568584e.svg", "fullname": "Blair Sadewitz", "name": "tachyphylaxis", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 6, "isFollowing": false } ]
/posts/mlabonne/866788930457283
15,888
24
417417709655682
[ { "type": "text", "value": "It is with great pleasure I inform you that huggingface's ModelHubMixin reached 200+ models on the hub 🥳", "raw": "It is with great pleasure I inform you that huggingface's ModelHubMixin reached 200+ models on the hub 🥳", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "ModelHubMixin is a class developed by HF to integrate AI models with the hub with ease and it comes with 3 methods :", "raw": "ModelHubMixin is a class developed by HF to integrate AI models with the hub with ease and it comes with 3 methods :", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* save_pretrained ", "raw": "* save_pretrained ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* from_pretrained", "raw": "* from_pretrained", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* push_to_hub", "raw": "* push_to_hub", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Shoutout to ", "raw": "Shoutout to ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@nielsr", "resource": null, "url": null, "href": null, "user": "nielsr", "lang": null, "code": null, "label": null }, { "type": "text", "value": " , ", "raw": " , ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@Wauplin", "resource": null, "url": null, "href": null, "user": "Wauplin", "lang": null, "code": null, "label": null }, { "type": "text", "value": " and everyone else on HF for their awesome work 🤗", "raw": " and everyone else on HF for their awesome work 🤗", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "If you are not familiar with ModelHubMixin and you are looking for extra resources you might consider : ", "raw": "If you are not familiar with ModelHubMixin and you are looking for extra resources you might consider : ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* docs: ", "raw": "* docs: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/docs/huggingface_hub/main/en/package_reference/mixins", "resource": null, "url": null, "href": "https://huggingface.co/docs/huggingface_hub/main/en/package_reference/mixins", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗blog about training models with the trainer API and using ModelHubMixin: ", "raw": "🔗blog about training models with the trainer API and using ModelHubMixin: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/not-lain/trainer-api-and-mixin-classes", "resource": null, "url": null, "href": "https://huggingface.co/blog/not-lain/trainer-api-and-mixin-classes", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗GitHub repo with pip integration: ", "raw": "🔗GitHub repo with pip integration: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/not-lain/PyTorchModelHubMixin-template", "resource": null, "url": null, "href": "https://github.com/not-lain/PyTorchModelHubMixin-template", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗basic guide: ", "raw": "🔗basic guide: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/posts/not-lain/884273241241808", "resource": null, "url": null, "href": "https://huggingface.co/posts/not-lain/884273241241808", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
It is with great pleasure I inform you that huggingface's ModelHubMixin reached 200+ models on the hub 🥳 ModelHubMixin is a class developed by HF to integrate AI models with the hub with ease and it comes with 3 methods : * save_pretrained * from_pretrained * push_to_hub Shoutout to @nielsr , @Wauplin and everyone else on HF for their awesome work 🤗 If you are not familiar with ModelHubMixin and you are looking for extra resources you might consider : * docs: https://huggingface.co/docs/huggingface_hub/main/en/package_reference/mixins 🔗blog about training models with the trainer API and using ModelHubMixin: https://huggingface.co/blog/not-lain/trainer-api-and-mixin-classes 🔗GitHub repo with pip integration: https://github.com/not-lain/PyTorchModelHubMixin-template 🔗basic guide: https://huggingface.co/posts/not-lain/884273241241808
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 919, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6527e89a8808d80ccff88b7a/DsEuZcSdgTQaCQMiyu-qm.jpeg" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1608042047613-5f1158120c833276f61f1a84.jpeg", "fullname": "Niels Rogge", "name": "nielsr", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 669 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1659336880158-6273f303f6d63a28483fde12.png", "fullname": "Lucain Pouget", "name": "Wauplin", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 156 } ]
[ { "reaction": "🔥", "users": [ "Wauplin", "Ramikan-BR", "victor", "nielsr", "Hev832", "sanbo1200", "GPT007", "osanseviero", "qgallouedec", "lunarflu", "beta3", "louisbrulenaudet", "msheykhmousa" ], "count": 13 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "lunarflu" ], "count": 2 }, { "reaction": "👀", "users": [ "Ramikan-BR", "lunarflu" ], "count": 2 } ]
2024-06-04T12:52:02.000Z
2024-06-04T12:52:02.764Z
[]
/posts/not-lain/417417709655682
2,062
0
183035058595618
[ { "type": "mention", "value": null, "raw": "@victor", "resource": null, "url": null, "href": null, "user": "victor", "lang": null, "code": null, "label": null }, { "type": "text", "value": " unprompted feature request: I'd love to have a toggle for a HF collection to control whether new items are added to the top or to the bottom. At the moment everything gets added at the bottom, but it would be great to have newer elements on top to make fresh content easily accessible without having to scroll all the way! ", "raw": " unprompted feature request: I'd love to have a toggle for a HF collection to control whether new items are added to the top or to the bottom. At the moment everything gets added at the bottom, but it would be great to have newer elements on top to make fresh content easily accessible without having to scroll all the way! ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
@victor unprompted feature request: I'd love to have a toggle for a HF collection to control whether new items are added to the top or to the bottom. At the moment everything gets added at the bottom, but it would be great to have newer elements on top to make fresh content easily accessible without having to scroll all the way!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1670231290373-5e7749883d77a72421292d07.jpeg", "fullname": "Gabriele Sarti", "name": "gsarti", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 204, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578 } ]
[]
2024-06-04T09:51:00.000Z
2024-10-28T10:18:34.806Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1670231290373-5e7749883d77a72421292d07.jpeg", "fullname": "Gabriele Sarti", "name": "gsarti", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 204, "isFollowing": false } ]
/posts/gsarti/183035058595618
1,516
3
615386996098522
[ { "type": "text", "value": "New research model out ! I uploaded a new Branchy model based on Phi-2 for faster inference using Early Exit. Check it out : ", "raw": "New research model out ! I uploaded a new Branchy model based on Phi-2 for faster inference using Early Exit. Check it out : ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/valcore/Branchy-Phi-2", "resource": { "type": "model", "id": "valcore/Branchy-Phi-2", "discussionNum": null }, "url": "https://huggingface.co/valcore/Branchy-Phi-2", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ". ", "raw": ". ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I also uploaded a Hugging Face Space to try it out : ", "raw": "I also uploaded a Hugging Face Space to try it out : ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/valcore/Branchy-phi-2", "resource": { "type": "space", "id": "valcore/Branchy-phi-2", "discussionNum": null }, "url": "https://huggingface.co/spaces/valcore/Branchy-phi-2", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", unfortunately inference is very slow on free tier. Let me know what you are thinking about it !", "raw": ", unfortunately inference is very slow on free tier. Let me know what you are thinking about it !", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
New research model out ! I uploaded a new Branchy model based on Phi-2 for faster inference using Early Exit. Check it out : https://huggingface.co/valcore/Branchy-Phi-2. I also uploaded a Hugging Face Space to try it out : https://huggingface.co/spaces/valcore/Branchy-phi-2, unfortunately inference is very slow on free tier. Let me know what you are thinking about it !
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63107ddd5b3b6488bd94e70f/CcLSvzXa48XfZDepL1IH0.png", "fullname": "Florian Valade", "name": "valcore", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }
[]
[]
[]
2024-06-04T09:34:59.000Z
2024-06-04T09:34:59.695Z
[]
/posts/valcore/615386996098522
816
0
892134435688447
[ { "type": "text", "value": "We are super happy to contribute to the GLiNER ecosystem by optimizing training code and releasing a multi-task, prompt-tunable model.", "raw": "We are super happy to contribute to the GLiNER ecosystem by optimizing training code and releasing a multi-task, prompt-tunable model.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The model can be used for the following tasks:", "raw": "The model can be used for the following tasks:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Named entity recognition (NER);", "raw": "* Named entity recognition (NER);", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Open information extraction;", "raw": "* Open information extraction;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Question answering;", "raw": "* Question answering;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Relation extraction;", "raw": "* Relation extraction;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Summarization;", "raw": "* Summarization;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/knowledgator/gliner-multitask-large-v0.5", "resource": { "type": "model", "id": "knowledgator/gliner-multitask-large-v0.5", "discussionNum": null }, "url": "https://huggingface.co/knowledgator/gliner-multitask-large-v0.5", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Demo: ", "raw": "Demo: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab", "resource": { "type": "space", "id": "knowledgator/GLiNER_HandyLab", "discussionNum": null }, "url": "https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Repo: 👨‍💻 ", "raw": "Repo: 👨‍💻 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/urchade/GLiNER", "resource": null, "url": null, "href": "https://github.com/urchade/GLiNER", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "**How to use**", "raw": "**How to use**", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "First of all, install gliner package.", "raw": "First of all, install gliner package.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "code_fence", "value": null, "raw": "```bash\npip install gliner\n```", "resource": null, "url": null, "href": null, "user": null, "lang": "bash", "code": "pip install gliner", "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Then try the following code:", "raw": "Then try the following code:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "code_fence", "value": null, "raw": "```python\nfrom gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"knowledgator/gliner_small-v2.1\")\n\nprompt = \"\"\"Find all positive aspects about the product:\\n\"\"\"\ntext = \"\"\"\nI recently purchased the Sony WH-1000XM4 Wireless Noise-Canceling Headphones from Amazon and I must say, I'm thoroughly impressed. The package arrived in New York within 2 days, thanks to Amazon Prime's expedited shipping.\n\nThe headphones themselves are remarkable. The noise-canceling feature works like a charm in the bustling city environment, and the 30-hour battery life means I don't have to charge them every day. Connecting them to my Samsung Galaxy S21 was a breeze, and the sound quality is second to none.\nI also appreciated the customer service from Amazon when I had a question about the warranty. They responded within an hour and provided all the information I needed.\nHowever, the headphones did not come with a hard case, which was listed in the product description. I contacted Amazon, and they offered a 10% discount on my next purchase as an apology.\nOverall, I'd give these headphones a 4.5/5 rating and highly recommend them to anyone looking for top-notch quality in both product and service.\n\"\"\"\ninput_ = prompt+text\n\nlabels = [\"match\"]\n\nmatches = model.predict_entities(input_, labels)\n\nfor match in matches:\n print(match[\"text\"], \"=>\", match[\"score\"])\n```", "resource": null, "url": null, "href": null, "user": null, "lang": "python", "code": "from gliner import GLiNER\n\nmodel = GLiNER.from_pretrained(\"knowledgator/gliner_small-v2.1\")\n\nprompt = \"\"\"Find all positive aspects about the product:\\n\"\"\"\ntext = \"\"\"\nI recently purchased the Sony WH-1000XM4 Wireless Noise-Canceling Headphones from Amazon and I must say, I'm thoroughly impressed. The package arrived in New York within 2 days, thanks to Amazon Prime's expedited shipping.\n\nThe headphones themselves are remarkable. The noise-canceling feature works like a charm in the bustling city environment, and the 30-hour battery life means I don't have to charge them every day. Connecting them to my Samsung Galaxy S21 was a breeze, and the sound quality is second to none.\nI also appreciated the customer service from Amazon when I had a question about the warranty. They responded within an hour and provided all the information I needed.\nHowever, the headphones did not come with a hard case, which was listed in the product description. I contacted Amazon, and they offered a 10% discount on my next purchase as an apology.\nOverall, I'd give these headphones a 4.5/5 rating and highly recommend them to anyone looking for top-notch quality in both product and service.\n\"\"\"\ninput_ = prompt+text\n\nlabels = [\"match\"]\n\nmatches = model.predict_entities(input_, labels)\n\nfor match in matches:\n print(match[\"text\"], \"=>\", match[\"score\"])", "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
We are super happy to contribute to the GLiNER ecosystem by optimizing training code and releasing a multi-task, prompt-tunable model. The model can be used for the following tasks: * Named entity recognition (NER); * Open information extraction; * Question answering; * Relation extraction; * Summarization; Model: https://huggingface.co/knowledgator/gliner-multitask-large-v0.5 Demo: https://huggingface.co/spaces/knowledgator/GLiNER_HandyLab Repo: 👨‍💻 https://github.com/urchade/GLiNER **How to use** First of all, install gliner package. ```bash pip install gliner ``` Then try the following code: ```python from gliner import GLiNER model = GLiNER.from_pretrained("knowledgator/gliner_small-v2.1") prompt = """Find all positive aspects about the product:\n""" text = """ I recently purchased the Sony WH-1000XM4 Wireless Noise-Canceling Headphones from Amazon and I must say, I'm thoroughly impressed. The package arrived in New York within 2 days, thanks to Amazon Prime's expedited shipping. The headphones themselves are remarkable. The noise-canceling feature works like a charm in the bustling city environment, and the 30-hour battery life means I don't have to charge them every day. Connecting them to my Samsung Galaxy S21 was a breeze, and the sound quality is second to none. I also appreciated the customer service from Amazon when I had a question about the warranty. They responded within an hour and provided all the information I needed. However, the headphones did not come with a hard case, which was listed in the product description. I contacted Amazon, and they offered a 10% discount on my next purchase as an apology. Overall, I'd give these headphones a 4.5/5 rating and highly recommend them to anyone looking for top-notch quality in both product and service. """ input_ = prompt+text labels = ["match"] matches = model.predict_entities(input_, labels) for match in matches: print(match["text"], "=>", match["score"]) ```
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658166666371-noauth.png", "fullname": "Stepanov", "name": "Ihor", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 15, "isFollowing": false }
[]
[]
[]
2024-06-04T09:19:09.000Z
2024-06-04T09:29:59.857Z
[]
/posts/Ihor/892134435688447
796
0
379847066413347
[ { "type": "text", "value": "my 🤗huggingface activity for 2024 so far ...", "raw": "my 🤗huggingface activity for 2024 so far ...", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "dont tell my boss... ", "raw": "dont tell my boss... ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "check yours too now, it's fun 🤗", "raw": "check yours too now, it's fun 🤗", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
my 🤗huggingface activity for 2024 so far ... dont tell my boss... check yours too now, it's fun 🤗
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 310, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/62a3bb1cd0d8c2c2169f0b88/Y9Ju92C2gxr7wk7vHKDx7.png" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "cjerzak", "TurnKeyLabs", "victor", "Hev832", "Taylor658", "cnmoro", "thifalnak" ], "count": 8 }, { "reaction": "👀", "users": [ "osanseviero", "lunarflu" ], "count": 2 }, { "reaction": "🤯", "users": [ "osanseviero", "lunarflu" ], "count": 2 } ]
2024-06-04T07:59:24.000Z
2024-06-04T13:50:55.105Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2846, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg", "fullname": "Adam Molnar", "name": "lunarflu", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 334, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6622a5780c0331c077a9a7fb/A1qGPt1oBwwhysfTpeHhQ.jpeg", "fullname": "Offshore Staffing Firm", "name": "TurnKeyLabs", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false } ]
/posts/Tonic/379847066413347
1,938
3
280895787141155
[ { "type": "text", "value": "I’ve been working on a crazy theory for my first solo paper and I would appreciate some advice from leading researchers here:)", "raw": "I’ve been working on a crazy theory for my first solo paper and I would appreciate some advice from leading researchers here:)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "\"Theory of Adaptive Learning\"", "raw": "\"Theory of Adaptive Learning\"", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Of all the deep learning algorithms at least to my knowledge, there’s none that fully covers the adaptive nature of intelligence. I believe it is a fundamental missing component of current AI governing laws.", "raw": "Of all the deep learning algorithms at least to my knowledge, there’s none that fully covers the adaptive nature of intelligence. I believe it is a fundamental missing component of current AI governing laws.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "I define it as a kind of learning wherein one person (say a student) adapts their framework of understanding to better suit that of what is being taught or said by another person/model (say a teacher). If we could measure the nature of this transfer learning. I believe it could help improve planning and reasoning capabilities of AI systems. If we look back at the theory evolution, adaptation is a fundamental component of human evolution. Today's so-called groundbreaking architectures or models, specifically large language models tend to have static parameters with constraints that are almost impossible to change or update in real-time after training. This fundamentally hinders their ability to reason, plan and accomplish objective-driven tasks as we humans do. Intelligence is dynamic.", "raw": "I define it as a kind of learning wherein one person (say a student) adapts their framework of understanding to better suit that of what is being taught or said by another person/model (say a teacher). If we could measure the nature of this transfer learning. I believe it could help improve planning and reasoning capabilities of AI systems. If we look back at the theory evolution, adaptation is a fundamental component of human evolution. Today's so-called groundbreaking architectures or models, specifically large language models tend to have static parameters with constraints that are almost impossible to change or update in real-time after training. This fundamentally hinders their ability to reason, plan and accomplish objective-driven tasks as we humans do. Intelligence is dynamic.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Now this cannot be done with current autoregressive llms as their parameters are fixed with static constraints, even though RAG do help in updating model parameters in real-time but its basically cheating and doesn’t count as intelligence. There’s a pressing need for a natively adaptive architecture - The Goal of This Paper", "raw": "Now this cannot be done with current autoregressive llms as their parameters are fixed with static constraints, even though RAG do help in updating model parameters in real-time but its basically cheating and doesn’t count as intelligence. There’s a pressing need for a natively adaptive architecture - The Goal of This Paper", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
I’ve been working on a crazy theory for my first solo paper and I would appreciate some advice from leading researchers here:) "Theory of Adaptive Learning" Of all the deep learning algorithms at least to my knowledge, there’s none that fully covers the adaptive nature of intelligence. I believe it is a fundamental missing component of current AI governing laws. I define it as a kind of learning wherein one person (say a student) adapts their framework of understanding to better suit that of what is being taught or said by another person/model (say a teacher). If we could measure the nature of this transfer learning. I believe it could help improve planning and reasoning capabilities of AI systems. If we look back at the theory evolution, adaptation is a fundamental component of human evolution. Today's so-called groundbreaking architectures or models, specifically large language models tend to have static parameters with constraints that are almost impossible to change or update in real-time after training. This fundamentally hinders their ability to reason, plan and accomplish objective-driven tasks as we humans do. Intelligence is dynamic. Now this cannot be done with current autoregressive llms as their parameters are fixed with static constraints, even though RAG do help in updating model parameters in real-time but its basically cheating and doesn’t count as intelligence. There’s a pressing need for a natively adaptive architecture - The Goal of This Paper
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/DxBKJLUnfXkJ1vVlxA70Z.png" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "TurnKeyLabs" ], "count": 2 }, { "reaction": "🧠", "users": [ "lunarflu" ], "count": 1 } ]
2024-06-04T04:01:32.000Z
2024-06-20T06:16:05.283Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg", "fullname": "Adam Molnar", "name": "lunarflu", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 334, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false }, { "avatarUrl": "/avatars/81394702c4f7f45bece19cc1206b65ed.svg", "fullname": "maychen", "name": "Allqqq", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/Jaward/280895787141155
1,665
3
435428954049091
[ { "type": "text", "value": "hello everyone, I've finished making a project for RVC Dataset Maker if you want to try the project you can try it below:", "raw": "hello everyone, I've finished making a project for RVC Dataset Maker if you want to try the project you can try it below:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/Hev832/RVC-Dataset-Maker", "resource": { "type": "space", "id": "Hev832/RVC-Dataset-Maker", "discussionNum": null }, "url": "https://huggingface.co/spaces/Hev832/RVC-Dataset-Maker", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "if you find any erors you can create New discussion 👀 ", "raw": "if you find any erors you can create New discussion 👀 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
hello everyone, I've finished making a project for RVC Dataset Maker if you want to try the project you can try it below: https://huggingface.co/spaces/Hev832/RVC-Dataset-Maker if you find any erors you can create New discussion 👀
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6456271e4095c967f9a93ec1/HE3FPqI5bBtGxvHs5D40z.png", "fullname": "Rico", "name": "Hev832", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 31, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6456271e4095c967f9a93ec1/J_tZxuVYuMpzhwDoMd_IQ.png" } ]
[]
[ { "reaction": "🚀", "users": [ "ASPPIBRA-DAO", "lunarflu", "luyulong", "TurnKeyLabs", "nevreal" ], "count": 5 } ]
2024-06-03T22:09:32.000Z
2024-06-04T00:11:40.739Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/54i1VzEx-BGzHLTgQ1Sd5.png", "fullname": "Sandro A.A.A", "name": "ASPPIBRA-DAO", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/Hev832/435428954049091
2,429
1
185154926901932
[ { "type": "text", "value": "Hi ", "raw": "Hi ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@coyotte508", "resource": null, "url": null, "href": null, "user": "coyotte508", "lang": null, "code": null, "label": null }, { "type": "text", "value": " , if you've got a minute, could you take a look at this huggingface.js discussion?", "raw": " , if you've got a minute, could you take a look at this huggingface.js discussion?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/huggingface/huggingface.js/discussions/735", "resource": null, "url": null, "href": "https://github.com/huggingface/huggingface.js/discussions/735", "user": null, "lang": null, "code": null, "label": null } ]
Hi @coyotte508 , if you've got a minute, could you take a look at this huggingface.js discussion? https://github.com/huggingface/huggingface.js/discussions/735
{ "avatarUrl": "/avatars/5404286b29845f0d868e0ab5690a3a4b.svg", "fullname": "H S", "name": "hideosnes", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61d2f90c3c2083e1c08af22d/jn21aKijwBnopk7aUJUkq.png", "fullname": "Eliott Coyac", "name": "coyotte508", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 47 } ]
[]
2024-06-03T20:34:33.000Z
2024-06-03T20:34:33.568Z
[]
/posts/hideosnes/185154926901932
1,088
0
288725162572472
[ { "type": "text", "value": "Just published a new article 😊", "raw": "Just published a new article 😊", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/santiviquez/data-drift-estimate-model-performance", "resource": null, "url": null, "href": "https://huggingface.co/blog/santiviquez/data-drift-estimate-model-performance", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Just published a new article 😊 https://huggingface.co/blog/santiviquez/data-drift-estimate-model-performance
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1657144463525-629a173153a72d997d3f57d0.jpeg", "fullname": "Santiago Viquez", "name": "santiviquez", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 84, "isFollowing": false }
[]
[]
[ { "reaction": "❤️", "users": [ "lunarflu" ], "count": 1 } ]
2024-06-03T20:14:27.000Z
2024-06-03T20:14:27.465Z
[]
/posts/santiviquez/288725162572472
949
0
207134733299562
[ { "type": "text", "value": "📢 Impressed with the application of the microsoft/Phi-3-mini-4k-instruct (3B) performance in zero-shot-learning (ZSL) mode reasoning 🧠 on Target Sentiment Analysis (TSA) problem. ", "raw": "📢 Impressed with the application of the microsoft/Phi-3-mini-4k-instruct (3B) performance in zero-shot-learning (ZSL) mode reasoning 🧠 on Target Sentiment Analysis (TSA) problem. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💡 There are three major takeaways out of this experiment 🧪 and they are as follows:", "raw": "💡 There are three major takeaways out of this experiment 🧪 and they are as follows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 1. Phi-3 slightly outperforms Mistral-7B (official Mistral API, v0.1 or v0.2) on texts written in English", "raw": "✅ 1. Phi-3 slightly outperforms Mistral-7B (official Mistral API, v0.1 or v0.2) on texts written in English", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "✅ 2. Performs similar to LLaMA-3-8B-Instruct on texts translated in English 🔥 ", "raw": "✅ 2. Performs similar to LLaMA-3-8B-Instruct on texts translated in English 🔥 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "☑️ 3. Reasoning in non-english language (🇷🇺) is pretty decent but underperforms to the similar 7B sized models.", "raw": "☑️ 3. Reasoning in non-english language (🇷🇺) is pretty decent but underperforms to the similar 7B sized models.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This is a huge step forward since release of Phi-2, especially because the predecessor (microsoft/phi-2) was not capable for performing reasoning in non-english texts (🇷🇺) at all!", "raw": "This is a huge step forward since release of Phi-2, especially because the predecessor (microsoft/phi-2) was not capable for performing reasoning in non-english texts (🇷🇺) at all!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", "resource": { "type": "model", "id": "microsoft/Phi-3-mini-4k-instruct", "discussionNum": null }, "url": "https://huggingface.co/microsoft/Phi-3-mini-4k-instruct", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "raw": "Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
📢 Impressed with the application of the microsoft/Phi-3-mini-4k-instruct (3B) performance in zero-shot-learning (ZSL) mode reasoning 🧠 on Target Sentiment Analysis (TSA) problem. 💡 There are three major takeaways out of this experiment 🧪 and they are as follows: ✅ 1. Phi-3 slightly outperforms Mistral-7B (official Mistral API, v0.1 or v0.2) on texts written in English ✅ 2. Performs similar to LLaMA-3-8B-Instruct on texts translated in English 🔥 ☑️ 3. Reasoning in non-english language (🇷🇺) is pretty decent but underperforms to the similar 7B sized models. This is a huge step forward since release of Phi-2, especially because the predecessor (microsoft/phi-2) was not capable for performing reasoning in non-english texts (🇷🇺) at all! Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Model: https://huggingface.co/microsoft/Phi-3-mini-4k-instruct Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: Large Language Models in Targeted Sentiment Analysis (2404.12342) Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/1R7M3YxejB04fMIKd_ELa.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "victor", "Taylor658", "ithonestman", "kristaller486", "lunarflu", "hiauiarau" ], "count": 6 }, { "reaction": "👀", "users": [ "osanseviero", "ithonestman", "lunarflu" ], "count": 3 } ]
2024-06-03T19:17:21.000Z
2024-06-04T13:26:32.506Z
[ { "avatarUrl": "/avatars/7fa9de162694d34a214ccd8ecb02fa0a.svg", "fullname": "Sergey Zubrilin", "name": "hiauiarau", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false } ]
/posts/nicolay-r/207134733299562
1,671
3
239147617114976
[ { "type": "text", "value": "By popular demand, HF activity tracker v1.0 is here! 📊 let's build it together!🤗", "raw": "By popular demand, HF activity tracker v1.0 is here! 📊 let's build it together!🤗", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Lots of things to improve, feel free to open PRs in the community tab!", "raw": "Lots of things to improve, feel free to open PRs in the community tab!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "good PR ideas:", "raw": "good PR ideas:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- track more types of actions that include date+time", "raw": "- track more types of actions that include date+time", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- bigger plot", "raw": "- bigger plot", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- track discord activity too 🤯", "raw": "- track discord activity too 🤯", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- link github? ⚡", "raw": "- link github? ⚡", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/spaces/huggingface-projects/LevelBot", "resource": null, "url": null, "href": "https://huggingface.co/spaces/huggingface-projects/LevelBot", "user": null, "lang": null, "code": null, "label": null } ]
By popular demand, HF activity tracker v1.0 is here! 📊 let's build it together!🤗 Lots of things to improve, feel free to open PRs in the community tab! good PR ideas: - track more types of actions that include date+time - bigger plot - track discord activity too 🤯 - link github? ⚡ https://huggingface.co/spaces/huggingface-projects/LevelBot
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg", "fullname": "Adam Molnar", "name": "lunarflu", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 334, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6340651b388c3fa40f9a5bc0/y5Q_hrMvArxrAiXTTuIUy.png" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "not-lain", "osanseviero", "santiviquez", "victor", "Taylor658", "KingNish", "MatrixIA", "Goekdeniz-Guelmez", "MaziyarPanahi", "Hev832", "damerajee", "Nymbo" ], "count": 13 }, { "reaction": "❤️", "users": [ "lunarflu", "osanseviero", "KingNish", "Goekdeniz-Guelmez", "MaziyarPanahi", "damerajee", "Nymbo" ], "count": 7 }, { "reaction": "➕", "users": [ "lunarflu" ], "count": 1 } ]
2024-06-03T19:08:20.000Z
2024-06-04T07:57:01.633Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg", "fullname": "Adam Molnar", "name": "lunarflu", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 334, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 310, "isFollowing": false } ]
/posts/lunarflu/239147617114976
2,309
2
176796779268748
[ { "type": "text", "value": "\"Hold your pixels\" 🚦... SD3 is here 🌟", "raw": "\"Hold your pixels\" 🚦... SD3 is here 🌟", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🚀 Performance Enhancements: Stable Diffusion 3 surpasses other text-to-image models like DALL·E 3 in typography and prompt adherence.", "raw": "🚀 Performance Enhancements: Stable Diffusion 3 surpasses other text-to-image models like DALL·E 3 in typography and prompt adherence.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🏗️ New Architecture: Introduces the Multimodal Diffusion Transformer (MMDiT) that separately processes image and language data, enhancing text understanding and spelling.", "raw": "🏗️ New Architecture: Introduces the Multimodal Diffusion Transformer (MMDiT) that separately processes image and language data, enhancing text understanding and spelling.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "⚡ Efficiency Improvements: Features a rectified flow formulation for more efficient image generation, fitting within the memory constraints of common GPUs.", "raw": "⚡ Efficiency Improvements: Features a rectified flow formulation for more efficient image generation, fitting within the memory constraints of common GPUs.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "📈 Scalability: Demonstrates scaling capabilities with models ranging up to 8 billion parameters, showing improvements in model performance without saturation.", "raw": "📈 Scalability: Demonstrates scaling capabilities with models ranging up to 8 billion parameters, showing improvements in model performance without saturation.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔧 Flexible Text Encoders: Offers a flexible approach to text encoding, maintaining performance even when the largest T5 text encoder is removed for less memory-intensive operations.", "raw": "🔧 Flexible Text Encoders: Offers a flexible approach to text encoding, maintaining performance even when the largest T5 text encoder is removed for less memory-intensive operations.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "While they discuss experiments on 2B and 8B parameter models, no word on open weights 🤐", "raw": "While they discuss experiments on 2B and 8B parameter models, no word on open weights 🤐", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2403.03206", "resource": { "type": "paper", "id": "2403.03206", "discussionNum": null }, "url": "https://huggingface.co/papers/2403.03206", "href": null, "user": null, "lang": null, "code": null, "label": "Scaling Rectified Flow Transformers for High-Resolution Image Synthesis (2403.03206)" }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@StabilityAI", "resource": null, "url": null, "href": null, "user": "StabilityAI", "lang": null, "code": null, "label": null } ]
"Hold your pixels" 🚦... SD3 is here 🌟 🚀 Performance Enhancements: Stable Diffusion 3 surpasses other text-to-image models like DALL·E 3 in typography and prompt adherence. 🏗️ New Architecture: Introduces the Multimodal Diffusion Transformer (MMDiT) that separately processes image and language data, enhancing text understanding and spelling. ⚡ Efficiency Improvements: Features a rectified flow formulation for more efficient image generation, fitting within the memory constraints of common GPUs. 📈 Scalability: Demonstrates scaling capabilities with models ranging up to 8 billion parameters, showing improvements in model performance without saturation. 🔧 Flexible Text Encoders: Offers a flexible approach to text encoding, maintaining performance even when the largest T5 text encoder is removed for less memory-intensive operations. While they discuss experiments on 2B and 8B parameter models, no word on open weights 🤐 Paper: https://huggingface.co/papers/2403.03206 @StabilityAI
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 197, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/hfIl7HCwfLq4YmOVolHr3.png" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "KingNish", "GPT007" ], "count": 3 } ]
2024-06-03T18:32:55.000Z
2024-06-03T18:32:55.162Z
[]
/posts/singhsidhukuldeep/176796779268748
880
0
228654410120093
[ { "type": "text", "value": "Impressed by the work of ", "raw": "Impressed by the work of ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@guipenedo", "resource": null, "url": null, "href": null, "user": "guipenedo", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@hynky", "resource": null, "url": null, "href": null, "user": "hynky", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@loubnabnl", "resource": null, "url": null, "href": null, "user": "loubnabnl", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@anton-l", "resource": null, "url": null, "href": null, "user": "anton-l", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@craffel", "resource": null, "url": null, "href": null, "user": "craffel", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@lvwerra", "resource": null, "url": null, "href": null, "user": "lvwerra", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@thomwolf", "resource": null, "url": null, "href": null, "user": "thomwolf", "lang": null, "code": null, "label": null }, { "type": "text", "value": " on FineWeb.", "raw": " on FineWeb.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "LLMs are only as good as the data they have been trained on, but the crucial aspect of pretraining data remains obscure. Our approach lifts the veil on building high-quality pretraining datasets by sharing every detail about this process to enable a wider community to build on top of it.", "raw": "LLMs are only as good as the data they have been trained on, but the crucial aspect of pretraining data remains obscure. Our approach lifts the veil on building high-quality pretraining datasets by sharing every detail about this process to enable a wider community to build on top of it.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- The FineWeb-Edu dataset, which outperforms all openly accessible web datasets in a number of educational benchmarks. We built it by developing a quality classifier using annotations generated by an LLM.", "raw": "- The FineWeb-Edu dataset, which outperforms all openly accessible web datasets in a number of educational benchmarks. We built it by developing a quality classifier using annotations generated by an LLM.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- A new technical report explaining in detail how to create a large and high-quality web-scale dataset for LLM pretraining such as FineWeb", "raw": "- A new technical report explaining in detail how to create a large and high-quality web-scale dataset for LLM pretraining such as FineWeb", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "👉 ", "raw": "👉 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1", "resource": { "type": "space", "id": "HuggingFaceFW/blogpost-fineweb-v1", "discussionNum": null }, "url": "https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Impressed by the work of @guipenedo @hynky @loubnabnl @anton-l @craffel @lvwerra @thomwolf on FineWeb. LLMs are only as good as the data they have been trained on, but the crucial aspect of pretraining data remains obscure. Our approach lifts the veil on building high-quality pretraining datasets by sharing every detail about this process to enable a wider community to build on top of it. - The FineWeb-Edu dataset, which outperforms all openly accessible web datasets in a number of educational benchmarks. We built it by developing a quality classifier using annotations generated by an LLM. - A new technical report explaining in detail how to create a large and high-quality web-scale dataset for LLM pretraining such as FineWeb 👉 https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 364, "isFollowing": false }
[]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1613655355830-noauth.png", "fullname": "Anton Lozhkov", "name": "anton-l", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 122 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1618592397610-noauth.jpeg", "fullname": "Colin Raffel", "name": "craffel", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 51 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62596f9e1c0a084224b93e00/X2aLkJ0ofhkXwAg7lXvxD.jpeg", "fullname": "Guilherme Penedo", "name": "guipenedo", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 615 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/626ede24d2fa9e7d598c8709/JKS8-Y2Jw87EgNQZBRswq.jpeg", "fullname": "Hynek Kydlicek", "name": "hynky", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 26 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61c141342aac764ce1654e43/81AwoT5IQ_Xdw0OVw7TKu.jpeg", "fullname": "Loubna Ben Allal", "name": "loubnabnl", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 2315 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5e48005437cb5b49818287a5/4uCXGGui-9QifAT4qelxU.png", "fullname": "Leandro von Werra", "name": "lvwerra", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 230 }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857746553-5df7e9e5da6d0311fd3d53f9.jpeg", "fullname": "Thomas Wolf", "name": "thomwolf", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 678 } ]
[ { "reaction": "🔥", "users": [ "osanseviero", "lunarflu", "YannisTevissen", "ZennyKenny" ], "count": 4 }, { "reaction": "➕", "users": [ "osanseviero", "lunarflu" ], "count": 2 } ]
2024-06-03T15:28:07.000Z
2024-06-03T15:28:07.288Z
[]
/posts/fdaudens/228654410120093
1,399
0
649401989400810
[ { "type": "text", "value": "OpenGPT 4o now features WEB SEARCH", "raw": "OpenGPT 4o now features WEB SEARCH", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This feature enhances the capabilities of OpenGPT 4o, allowing it to fetch and integrate the latest information from the web directly into its responses.", "raw": "This feature enhances the capabilities of OpenGPT 4o, allowing it to fetch and integrate the latest information from the web directly into its responses.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Try Now: ", "raw": "Try Now: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/KingNish/OpenGPT-4o", "resource": { "type": "space", "id": "KingNish/OpenGPT-4o", "discussionNum": null }, "url": "https://huggingface.co/spaces/KingNish/OpenGPT-4o", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "With WEB SEARCH, OpenGPT 4o becomes an even more versatile and dynamic AI, ready to assist with up-to-date data retrieval and analysis.", "raw": "With WEB SEARCH, OpenGPT 4o becomes an even more versatile and dynamic AI, ready to assist with up-to-date data retrieval and analysis.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
OpenGPT 4o now features WEB SEARCH This feature enhances the capabilities of OpenGPT 4o, allowing it to fetch and integrate the latest information from the web directly into its responses. Try Now: https://huggingface.co/spaces/KingNish/OpenGPT-4o With WEB SEARCH, OpenGPT 4o becomes an even more versatile and dynamic AI, ready to assist with up-to-date data retrieval and analysis.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg", "fullname": "Nishith Jain", "name": "KingNish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1072, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "dreamdrop-art", "Taylor658", "Yusufssss", "pabloce", "osanseviero", "victor", "KingNish", "elcrei", "lunarflu", "ubali", "UttamPanasala", "saadasif19", "jackpesso", "Shreyas94", "jordivcb", "RayBernard", "jiweiwuita", "abaasia", "SasniyParen", "OfferL", "1ucky1uke", "louisbrulenaudet", "ConAim", "arunk7033" ], "count": 24 }, { "reaction": "🔥", "users": [ "tonyhsu32", "ConAim", "rdoon", "arunk7033", "oluwasetemi" ], "count": 5 }, { "reaction": "😎", "users": [ "cloud77", "arunk7033" ], "count": 2 }, { "reaction": "➕", "users": [ "anton-nano-sudor" ], "count": 1 } ]
2024-06-03T14:38:24.000Z
2024-07-19T02:48:33.559Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/AXnwP_G2WkJ0gkBepd_t7.png", "fullname": "Marc Kovka", "name": "GPT007", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 7, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5f17f0a0925b9863e28ad517/X7QKoiXbUtEZSG9jyvfk3.jpeg", "fullname": "Victor Mustar", "name": "victor", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 2578, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg", "fullname": "Nishith Jain", "name": "KingNish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1072, "isFollowing": false }, { "avatarUrl": "/avatars/3243da07bc96330749103c184d2e7199.svg", "fullname": "xyz", "name": "sanbo1200", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "/avatars/03c352f797cfd332abbd1ec251dc19cf.svg", "fullname": "Boyspot", "name": "Spot120", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "/avatars/eefe5a5f2232392949532e555a944f48.svg", "fullname": "Dhruv Naidu Alti", "name": "dnaoblivion", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "/avatars/501c90b5730b28ba251b6a16845c969a.svg", "fullname": "Shreyas Desai", "name": "Shreyas94", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "/avatars/40da1b0de39e5731a023c4f340692d70.svg", "fullname": "Franz Jayrama", "name": "Xzyl", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/c97e7de884e4ae7413a6ff1ec61f5551.svg", "fullname": "ghost", "name": "ghost-414", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/663689eda5243c9638332c33/U8IfxRtpW8rvF7K73ZFv4.png", "fullname": "Alireza porsafa", "name": "BlackDiamondSoul", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false } ]
/posts/KingNish/649401989400810
15,115
29
363683591554720
[ { "type": "text", "value": "Wikimedia and Hugging Face seem kind of naturally complementary: Both are community-centred, value openness and consent. That's why I'd love to see more Wikipedia and other Wikimedia projects' datasets on Hugging Face to advance machine learning with diverse, community-curated data! See my new article on the Hugging Face hub for why and how to create more Wikimedia datasets on Hugging Face: ", "raw": "Wikimedia and Hugging Face seem kind of naturally complementary: Both are community-centred, value openness and consent. That's why I'd love to see more Wikipedia and other Wikimedia projects' datasets on Hugging Face to advance machine learning with diverse, community-curated data! See my new article on the Hugging Face hub for why and how to create more Wikimedia datasets on Hugging Face: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/frimelle/wikipedias-treasure-trove-ml-data", "resource": null, "url": null, "href": "https://huggingface.co/blog/frimelle/wikipedias-treasure-trove-ml-data", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Wikimedia and Hugging Face seem kind of naturally complementary: Both are community-centred, value openness and consent. That's why I'd love to see more Wikipedia and other Wikimedia projects' datasets on Hugging Face to advance machine learning with diverse, community-curated data! See my new article on the Hugging Face hub for why and how to create more Wikimedia datasets on Hugging Face: https://huggingface.co/blog/frimelle/wikipedias-treasure-trove-ml-data
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/ux7NRFAbgnlIVNh-Cbv9s.png", "fullname": "Lucie-Aimée Kaffee", "name": "frimelle", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 28, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6531310497d7f1b4a083de7b/4Z04qrltKibLj8ouMzBI4.png" } ]
[]
[ { "reaction": "🤗", "users": [ "yjernite", "fdaudens", "Taylor658", "clem", "osanseviero", "not-lain", "thomwolf", "lunarflu", "Felladrin", "adorkin" ], "count": 10 }, { "reaction": "❤️", "users": [ "yjernite", "clem", "not-lain", "louisbrulenaudet", "thomwolf", "hynky", "lunarflu", "cpetrillo" ], "count": 8 }, { "reaction": "👍", "users": [ "Norod78" ], "count": 1 } ]
2024-06-03T13:53:56.000Z
2024-06-03T13:53:56.583Z
[]
/posts/frimelle/363683591554720
1,839
0
530868300006432
[ { "type": "text", "value": "Another great week in open ML! ", "raw": "Another great week in open ML! ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Here's a small recap 🫰🏻", "raw": "Here's a small recap 🫰🏻", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model releases", "raw": "Model releases", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "⏯️ Video Language Models", "raw": "⏯️ Video Language Models", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "AI at Meta released ", "raw": "AI at Meta released ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Vision-CAIR/LongVU_Qwen2_7B", "resource": { "type": "model", "id": "Vision-CAIR/LongVU_Qwen2_7B", "discussionNum": null }, "url": "https://huggingface.co/Vision-CAIR/LongVU_Qwen2_7B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", a new state-of-the-art long video LM model based on DINOv2, SigLIP, Qwen2 and Llama 3.2", "raw": ", a new state-of-the-art long video LM model based on DINOv2, SigLIP, Qwen2 and Llama 3.2", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "💬 Small language models ", "raw": "💬 Small language models ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Hugging Face released ", "raw": "Hugging Face released ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B", "resource": { "type": "model", "id": "HuggingFaceTB/SmolLM2-1.7B", "discussionNum": null }, "url": "https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", a family of new smol language models with Apache 2.0 license that come in sizes 135M, 360M and 1.7B, along with datasets. ", "raw": ", a family of new smol language models with Apache 2.0 license that come in sizes 135M, 360M and 1.7B, along with datasets. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Meta released ", "raw": "Meta released ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/facebook/MobileLLM-1B", "resource": { "type": "model", "id": "facebook/MobileLLM-1B", "discussionNum": null }, "url": "https://huggingface.co/facebook/MobileLLM-1B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", a new family of on-device LLMs of sizes 125M, 350M and 600M ", "raw": ", a new family of on-device LLMs of sizes 125M, 350M and 600M ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🖼️ Image Generation", "raw": "🖼️ Image Generation", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Stability AI released ", "raw": "Stability AI released ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/stabilityai/stable-diffusion-3.5-medium", "resource": { "type": "model", "id": "stabilityai/stable-diffusion-3.5-medium", "discussionNum": null }, "url": "https://huggingface.co/stabilityai/stable-diffusion-3.5-medium", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", a 2B model with commercially permissive license", "raw": ", a 2B model with commercially permissive license", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🖼️💬Any-to-Any", "raw": "🖼️💬Any-to-Any", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/gpt-omni/mini-omni2", "resource": { "type": "model", "id": "gpt-omni/mini-omni2", "discussionNum": null }, "url": "https://huggingface.co/gpt-omni/mini-omni2", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " is closest reproduction to GPT-4o, a new LLM that can take image-text-audio input and output speech is released!", "raw": " is closest reproduction to GPT-4o, a new LLM that can take image-text-audio input and output speech is released!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset releases", "raw": "Dataset releases", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🖼️ ", "raw": "🖼️ ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/Spawning/PD12M", "resource": { "type": "dataset", "id": "Spawning/PD12M", "discussionNum": null }, "url": "https://huggingface.co/datasets/Spawning/PD12M", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", a new captioning dataset of 12.4 million examples generated using Florence-2", "raw": ", a new captioning dataset of 12.4 million examples generated using Florence-2", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Another great week in open ML! Here's a small recap 🫰🏻 Model releases ⏯️ Video Language Models AI at Meta released https://huggingface.co/Vision-CAIR/LongVU_Qwen2_7B, a new state-of-the-art long video LM model based on DINOv2, SigLIP, Qwen2 and Llama 3.2 💬 Small language models Hugging Face released https://huggingface.co/HuggingFaceTB/SmolLM2-1.7B, a family of new smol language models with Apache 2.0 license that come in sizes 135M, 360M and 1.7B, along with datasets. Meta released https://huggingface.co/facebook/MobileLLM-1B, a new family of on-device LLMs of sizes 125M, 350M and 600M 🖼️ Image Generation Stability AI released https://huggingface.co/stabilityai/stable-diffusion-3.5-medium, a 2B model with commercially permissive license 🖼️💬Any-to-Any https://huggingface.co/gpt-omni/mini-omni2 is closest reproduction to GPT-4o, a new LLM that can take image-text-audio input and output speech is released! Dataset releases 🖼️ https://huggingface.co/datasets/Spawning/PD12M, a new captioning dataset of 12.4 million examples generated using Florence-2
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5520, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "mrdbourke", "prithivMLmods", "Felladrin", "adorkin", "dmaniss", "nofl", "ucsahin", "mohammedbriman", "YaTharThShaRma999", "not-lain", "KingNish", "afondiel", "Ercin", "clem", "dnlserrano", "michelgi" ], "count": 16 }, { "reaction": "❤️", "users": [ "Ayaan-Sharif", "not-lain", "Ercin", "cchristophe", "clem" ], "count": 5 }, { "reaction": "👍", "users": [ "chethan62", "John6666", "Ercin", "clem", "michelgi" ], "count": 5 } ]
2024-10-31T19:07:13.000Z
2024-10-31T19:07:13.608Z
[]
/posts/merve/530868300006432
5,317
0
917767905105714
[ { "type": "text", "value": "wdym you can't pickle", "raw": "wdym you can't pickle", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "code_fence", "value": null, "raw": "```\n_io.TextIOWrapper\n```", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "_io.TextIOWrapper", "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "~!??", "raw": "~!??", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
wdym you can't pickle ``` _io.TextIOWrapper ``` ~!??
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png", "fullname": "Noa Roggendorff", "name": "nroggendorff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 138, "isFollowing": false }
[]
[]
[ { "reaction": "🤗", "users": [ "MultiTrickFox", "John6666" ], "count": 2 } ]
2024-10-31T17:18:30.000Z
2024-10-31T17:18:30.963Z
[]
/posts/nroggendorff/917767905105714
1,185
0
215635847171433
[ { "type": "text", "value": "First AI Journalism Lab cohort just wrapped - endless inspiration for newsrooms:", "raw": "First AI Journalism Lab cohort just wrapped - endless inspiration for newsrooms:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Ludwig Siegele built an AI style checker for The Economist", "raw": "- Ludwig Siegele built an AI style checker for The Economist", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Rodney Gibbs created a tool helping small newsrooms analyze stories through user needs", "raw": "- Rodney Gibbs created a tool helping small newsrooms analyze stories through user needs", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Monsur Hussain developed AI trend monitoring system for fact-checking WhatsApp claims", "raw": "- Monsur Hussain developed AI trend monitoring system for fact-checking WhatsApp claims", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- David Cohn built a system for analyzing audience engagement", "raw": "- David Cohn built a system for analyzing audience engagement", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Clare Spencer crafted video personas with AI", "raw": "- Clare Spencer crafted video personas with AI", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The insights on adoption during the discussion were fascinating - their approach really resonated with me. Instead of forcing AI tools onto teams, they emphasized getting skeptics involved early in testing and creating safe spaces for open discussion. Start small with enthusiastic participants, build a community of internal AI champions, and focus on solving specific problems rather than pushing for adoption.", "raw": "The insights on adoption during the discussion were fascinating - their approach really resonated with me. Instead of forcing AI tools onto teams, they emphasized getting skeptics involved early in testing and creating safe spaces for open discussion. Start small with enthusiastic participants, build a community of internal AI champions, and focus on solving specific problems rather than pushing for adoption.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "As a coach, I also learned a lot. My 5 key takeaways:", "raw": "As a coach, I also learned a lot. My 5 key takeaways:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Newsrooms are bursting with AI x journalism innovation", "raw": "- Newsrooms are bursting with AI x journalism innovation", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Internal alignment > technical challenges. Strong dev/PM relationships = magic", "raw": "- Internal alignment > technical challenges. Strong dev/PM relationships = magic", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Early prototyping + user involvement = better adoption. Set realistic expectations & embrace feedback", "raw": "- Early prototyping + user involvement = better adoption. Set realistic expectations & embrace feedback", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Cross-newsroom collaboration supercharges innovation", "raw": "- Cross-newsroom collaboration supercharges innovation", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Great products can emerge in weeks with proper scoping", "raw": "- Great products can emerge in weeks with proper scoping", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "See the projects: ", "raw": "See the projects: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://www.youtube.com/watch?v=5PMxMDfDI_0&", "resource": null, "url": null, "href": "https://www.youtube.com/watch?v=5PMxMDfDI_0&", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Kudos to Kyle Plantz, Nikita Roy, Craig Newmark Graduate School of Journalism at CUNY for making it happen!", "raw": "Kudos to Kyle Plantz, Nikita Roy, Craig Newmark Graduate School of Journalism at CUNY for making it happen!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
First AI Journalism Lab cohort just wrapped - endless inspiration for newsrooms: - Ludwig Siegele built an AI style checker for The Economist - Rodney Gibbs created a tool helping small newsrooms analyze stories through user needs - Monsur Hussain developed AI trend monitoring system for fact-checking WhatsApp claims - David Cohn built a system for analyzing audience engagement - Clare Spencer crafted video personas with AI The insights on adoption during the discussion were fascinating - their approach really resonated with me. Instead of forcing AI tools onto teams, they emphasized getting skeptics involved early in testing and creating safe spaces for open discussion. Start small with enthusiastic participants, build a community of internal AI champions, and focus on solving specific problems rather than pushing for adoption. As a coach, I also learned a lot. My 5 key takeaways: - Newsrooms are bursting with AI x journalism innovation - Internal alignment > technical challenges. Strong dev/PM relationships = magic - Early prototyping + user involvement = better adoption. Set realistic expectations & embrace feedback - Cross-newsroom collaboration supercharges innovation - Great products can emerge in weeks with proper scoping See the projects: https://www.youtube.com/watch?v=5PMxMDfDI_0& Kudos to Kyle Plantz, Nikita Roy, Craig Newmark Graduate School of Journalism at CUNY for making it happen!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/647f36a8454af0237bd49574/jshkqBUTY-GZL8As8y6Aq.jpeg", "fullname": "Florent Daudens", "name": "fdaudens", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 364, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/647f36a8454af0237bd49574/0_ai25a9fwkap8JPG_prJ.png" } ]
[]
[ { "reaction": "👀", "users": [ "John6666", "ayouba", "Panzer333" ], "count": 3 }, { "reaction": "➕", "users": [ "Jaroch" ], "count": 1 } ]
2024-10-31T15:49:52.000Z
2024-10-31T21:46:41.749Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/iMcH6S69qDyX5iwBF5xD_.png", "fullname": "ROBERT M MCCALL", "name": "robertnz", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/fdaudens/215635847171433
2,341
1
383663659812321
[ { "type": "text", "value": "The most upvoted papers from the Chinese community on the Daily Papers - October🔥", "raw": "The most upvoted papers from the Chinese community on the Daily Papers - October🔥", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/zh-ai-community/trending-papers-october-6723995e5d93f8e480928b8c", "resource": { "type": "collection", "id": "zh-ai-community/trending-papers-october-6723995e5d93f8e480928b8c", "discussionNum": null }, "url": "https://huggingface.co/collections/zh-ai-community/trending-papers-october-6723995e5d93f8e480928b8c", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
The most upvoted papers from the Chinese community on the Daily Papers - October🔥 https://huggingface.co/collections/zh-ai-community/trending-papers-october-6723995e5d93f8e480928b8c
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63a369d98c0c89dcae3b8329/6OUJ7Hc9T1jXynYH3FGaf.png", "fullname": "Adina Yakefu", "name": "AdinaY", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 224, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63a369d98c0c89dcae3b8329/lkTGxMJkbrAwxRvSVT3Y_.jpeg" } ]
[]
[ { "reaction": "👀", "users": [ "John6666" ], "count": 1 } ]
2024-10-31T15:17:38.000Z
2024-10-31T15:17:38.629Z
[]
/posts/AdinaY/383663659812321
670
0
204931151034093
[ { "type": "text", "value": "xLLM: New Generation of Large Language Models for Enterprise", "raw": "xLLM: New Generation of Large Language Models for Enterprise", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Read full article at ", "raw": "Read full article at ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://mltblog.com/4ftTko9", "resource": null, "url": null, "href": "https://mltblog.com/4ftTko9", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In this article, you will find my PowerPoint presentation describing the most recent features of xLLM, a CPU-based, full context, secure multi-LLM with real-time fine-tuning & explainable AI. It includes several new diagrams describing the innovative architecture, upcoming developments, new features and different use cases.", "raw": "In this article, you will find my PowerPoint presentation describing the most recent features of xLLM, a CPU-based, full context, secure multi-LLM with real-time fine-tuning & explainable AI. It includes several new diagrams describing the innovative architecture, upcoming developments, new features and different use cases.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Content", "raw": "Content", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Enterprise use case: corporate corpus of a Fortune 100 company.", "raw": "➡️Enterprise use case: corporate corpus of a Fortune 100 company.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Original version dealing with large websites such as Wolfram and Wikipedia. Comparison with OpenAI.", "raw": "➡️Original version dealing with large websites such as Wolfram and Wikipedia. Comparison with OpenAI.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️xLLM for clustering and predictive analytics. Use case: unstructured text (articles) from a media company.", "raw": "➡️xLLM for clustering and predictive analytics. Use case: unstructured text (articles) from a media company.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Integration of our game-changing NoGAN tabular data synthesizer, and state-of-the-art model evaluation technology.", "raw": "➡️Integration of our game-changing NoGAN tabular data synthesizer, and state-of-the-art model evaluation technology.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Integration of external tools, for instance to solve math problems.", "raw": "➡️Integration of external tools, for instance to solve math problems.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Upcoming version for auto-indexing and cataloging large repositories.", "raw": "➡️Upcoming version for auto-indexing and cataloging large repositories.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Demo: enterprise xLLM in action, featuring the modern user interface (full web API, not just a prompt box) with command menu and numerous options not found in other LLMs, including debugging, suggested prompts, choice of agents, and fine-tuning in real time.", "raw": "➡️Demo: enterprise xLLM in action, featuring the modern user interface (full web API, not just a prompt box) with command menu and numerous options not found in other LLMs, including debugging, suggested prompts, choice of agents, and fine-tuning in real time.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️Relevancy score displayed to the user, for each returned item. I call it the new PageRank for RAG/LLM, using a technology radically different from Google search. See picture.", "raw": "➡️Relevancy score displayed to the user, for each returned item. I call it the new PageRank for RAG/LLM, using a technology radically different from Google search. See picture.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "New startup coming soon! ", "raw": "New startup coming soon! ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "We will be launching soon (January) a new startup focusing on GenAI at scale for Enterprises; xLLM will be part of the offer with exclusive features. We are looking for early adopters to partner with us on the Journey. The co-founder and CEO, to be announced soon, is Senior Director of GenAI at a Fortune 100 company, where the first version of Enterprise xLLM was implemented. More to come!", "raw": "We will be launching soon (January) a new startup focusing on GenAI at scale for Enterprises; xLLM will be part of the offer with exclusive features. We are looking for early adopters to partner with us on the Journey. The co-founder and CEO, to be announced soon, is Senior Director of GenAI at a Fortune 100 company, where the first version of Enterprise xLLM was implemented. More to come!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Read more, and access the PPT, at ", "raw": "Read more, and access the PPT, at ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://mltblog.com/4ftTko9", "resource": null, "url": null, "href": "https://mltblog.com/4ftTko9", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
xLLM: New Generation of Large Language Models for Enterprise Read full article at https://mltblog.com/4ftTko9 In this article, you will find my PowerPoint presentation describing the most recent features of xLLM, a CPU-based, full context, secure multi-LLM with real-time fine-tuning & explainable AI. It includes several new diagrams describing the innovative architecture, upcoming developments, new features and different use cases. Content ➡️Enterprise use case: corporate corpus of a Fortune 100 company. ➡️Original version dealing with large websites such as Wolfram and Wikipedia. Comparison with OpenAI. ➡️xLLM for clustering and predictive analytics. Use case: unstructured text (articles) from a media company. ➡️Integration of our game-changing NoGAN tabular data synthesizer, and state-of-the-art model evaluation technology. ➡️Integration of external tools, for instance to solve math problems. ➡️Upcoming version for auto-indexing and cataloging large repositories. ➡️Demo: enterprise xLLM in action, featuring the modern user interface (full web API, not just a prompt box) with command menu and numerous options not found in other LLMs, including debugging, suggested prompts, choice of agents, and fine-tuning in real time. ➡️Relevancy score displayed to the user, for each returned item. I call it the new PageRank for RAG/LLM, using a technology radically different from Google search. See picture. New startup coming soon! We will be launching soon (January) a new startup focusing on GenAI at scale for Enterprises; xLLM will be part of the offer with exclusive features. We are looking for early adopters to partner with us on the Journey. The co-founder and CEO, to be announced soon, is Senior Director of GenAI at a Fortune 100 company, where the first version of Enterprise xLLM was implemented. More to come! Read more, and access the PPT, at https://mltblog.com/4ftTko9
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/669c89e98f2dbc203f9e74ab/higvnXEHeo_Ig2bgTpn47.png", "fullname": "Vincent Granville", "name": "vincentg64", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 17, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/669c89e98f2dbc203f9e74ab/2VE_oFuFQJ2Lnc6v3BhFf.png" } ]
[]
[ { "reaction": "👀", "users": [ "John6666", "chethan62", "AtAndDev", "sugatoray" ], "count": 4 }, { "reaction": "👍", "users": [ "chethan62", "AtAndDev" ], "count": 2 } ]
2024-10-31T08:44:52.000Z
2024-10-31T08:44:52.565Z
[]
/posts/vincentg64/204931151034093
1,512
0
630623844011592
[ { "type": "text", "value": "🎓 Introducing PPT4Web Educational Materials Dataset - ", "raw": "🎓 Introducing PPT4Web Educational Materials Dataset - ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/nyuuzyou/ppt4web", "resource": { "type": "dataset", "id": "nyuuzyou/ppt4web", "discussionNum": null }, "url": "https://huggingface.co/datasets/nyuuzyou/ppt4web", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset highlights:", "raw": "Dataset highlights:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- 182,405 presentations from ppt4web.ru, a platform for storing and viewing presentations covering a wide range of educational materials", "raw": "- 182,405 presentations from ppt4web.ru, a platform for storing and viewing presentations covering a wide range of educational materials", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Primarily in Russian, with content in English, Kazakh, Ukrainian, and Belarusian", "raw": "- Primarily in Russian, with content in English, Kazakh, Ukrainian, and Belarusian", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Each entry includes: URL, title, download URL, and filepath", "raw": "- Each entry includes: URL, title, download URL, and filepath", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Contains original PPTX files (converted from PPT for consistency) in addition to metadata", "raw": "- Contains original PPTX files (converted from PPT for consistency) in addition to metadata", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Data covers a broad spectrum of educational topics and subjects", "raw": "- Data covers a broad spectrum of educational topics and subjects", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- Dedicated to the public domain under Creative Commons Zero (CC0) license", "raw": "- Dedicated to the public domain under Creative Commons Zero (CC0) license", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The dataset can be used for analyzing educational presentation content across various subjects in multiple languages, text classification tasks, and information retrieval systems. It's particularly valuable for examining trends in education, teaching methodologies, and presentation materials used across different academic disciplines. The inclusion of original files allows for in-depth analysis of presentation formats and structures commonly used in educational settings, providing insights into the diverse range of subjects and teaching approaches.", "raw": "The dataset can be used for analyzing educational presentation content across various subjects in multiple languages, text classification tasks, and information retrieval systems. It's particularly valuable for examining trends in education, teaching methodologies, and presentation materials used across different academic disciplines. The inclusion of original files allows for in-depth analysis of presentation formats and structures commonly used in educational settings, providing insights into the diverse range of subjects and teaching approaches.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🎓 Introducing PPT4Web Educational Materials Dataset - https://huggingface.co/datasets/nyuuzyou/ppt4web Dataset highlights: - 182,405 presentations from ppt4web.ru, a platform for storing and viewing presentations covering a wide range of educational materials - Primarily in Russian, with content in English, Kazakh, Ukrainian, and Belarusian - Each entry includes: URL, title, download URL, and filepath - Contains original PPTX files (converted from PPT for consistency) in addition to metadata - Data covers a broad spectrum of educational topics and subjects - Dedicated to the public domain under Creative Commons Zero (CC0) license The dataset can be used for analyzing educational presentation content across various subjects in multiple languages, text classification tasks, and information retrieval systems. It's particularly valuable for examining trends in education, teaching methodologies, and presentation materials used across different academic disciplines. The inclusion of original files allows for in-depth analysis of presentation formats and structures commonly used in educational settings, providing insights into the diverse range of subjects and teaching approaches.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/643ac5d2e2b979ae6144d68c/Z7PCNopn4cQeAYnVJDoqG.png", "fullname": "nyuuzyou", "name": "nyuuzyou", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 58, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "John6666", "djuna", "Panzer333" ], "count": 3 }, { "reaction": "👍", "users": [ "kristaller486", "Humblewiz1" ], "count": 2 } ]
2024-10-30T21:14:50.000Z
2024-10-30T21:14:50.275Z
[]
/posts/nyuuzyou/630623844011592
2,733
0
181505778678885
[ { "type": "text", "value": "Amazing workshop! Let's go!!", "raw": "Amazing workshop! Let's go!!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Amazing workshop! Let's go!!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/no-auth/jH4VWKMpA9OSnRtWQ7AVu.png", "fullname": "David Aparicio", "name": "davidaparicio", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "John6666" ], "count": 1 } ]
2024-10-30T16:30:42.000Z
2024-10-30T16:30:42.165Z
[]
/posts/davidaparicio/181505778678885
1,095
0
157270177483127
[ { "type": "link", "value": null, "raw": "https://huggingface.co/organizations/nerdyface/share/xvWxWxYmYpCLqZlvNJEZbJHFsDITAicJAT", "resource": null, "url": null, "href": "https://huggingface.co/organizations/nerdyface/share/xvWxWxYmYpCLqZlvNJEZbJHFsDITAicJAT", "user": null, "lang": null, "code": null, "label": null } ]
https://huggingface.co/organizations/nerdyface/share/xvWxWxYmYpCLqZlvNJEZbJHFsDITAicJAT
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1639773384591-5f353bb37e58354338621655.jpeg", "fullname": "Nicholas Broad", "name": "nbroad", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 91, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "prithivMLmods", "John6666", "alpmeadow" ], "count": 3 } ]
2024-10-30T16:30:00.000Z
2024-10-30T16:30:00.510Z
[]
/posts/nbroad/157270177483127
2,347
0
724803000569515
[ { "type": "text", "value": "remember boys and girls, always keep all your data, its never a waste of time!", "raw": "remember boys and girls, always keep all your data, its never a waste of time!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
remember boys and girls, always keep all your data, its never a waste of time!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6436279eaaef013d1af225c9/31yjIFpqfdvn_n9igumIU.png", "fullname": "Alignment Lab AI", "name": "Alignment-Lab-AI", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 131, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "John6666", "m36" ], "count": 2 }, { "reaction": "🧠", "users": [ "Smorty100" ], "count": 1 }, { "reaction": "👍", "users": [ "PNutz" ], "count": 1 } ]
2024-10-30T16:18:16.000Z
2024-10-30T16:18:16.663Z
[]
/posts/Alignment-Lab-AI/724803000569515
905
0
733237597572564
[ { "type": "text", "value": "hi florent and livestream!", "raw": "hi florent and livestream!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
hi florent and livestream!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1639773384591-5f353bb37e58354338621655.jpeg", "fullname": "Nicholas Broad", "name": "nbroad", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 91, "isFollowing": false }
[]
[]
[ { "reaction": "🤗", "users": [ "allanctan-ai", "YoelRidgway", "prithivMLmods", "John6666", "Haleshot", "davidaparicio", "AtAndDev", "clem" ], "count": 8 } ]
2024-10-30T16:15:22.000Z
2024-10-30T16:19:46.876Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 310, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/67225abd03877f45cd46ffdf/-sL5CdPn0oCA1D8iiNThz.jpeg", "fullname": "Rolando Manuel Gonzales Martinez", "name": "Rolando666", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65e5fd212faa026716fd27bf/P53XOb-uuJKCqkMsTy8b7.png", "fullname": "Firoj Paudel", "name": "Firoj112", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "/avatars/0f9f2001c6ba1805e6c54937a5ad3f48.svg", "fullname": "kulbinder singh dio", "name": "kulbinderdio", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62e469312a8df5b22ff352ec/aq0VvYABsAXT5jZYrZDK7.jpeg", "fullname": "Mr. Stack", "name": "Hatman", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false } ]
/posts/nbroad/733237597572564
3,476
5
481360321028594
[ { "type": "text", "value": "Hey Guys !! 🧋", "raw": "Hey Guys !! 🧋", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This is the time to Share the Collection of Prompts which have high parametric details to produce the most detailed flawless images.", "raw": "This is the time to Share the Collection of Prompts which have high parametric details to produce the most detailed flawless images.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗You can watch out the Collection on: ", "raw": "🔗You can watch out the Collection on: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection", "resource": { "type": "space", "id": "prithivMLmods/Top-Prompt-Collection", "discussionNum": null }, "url": "https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔢More than 200+ High Detailed prompts have been used in the Spaces.", "raw": "🔢More than 200+ High Detailed prompts have been used in the Spaces.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@prithivMLmods", "resource": null, "url": null, "href": null, "user": "prithivMLmods", "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Thank you for the read. !!", "raw": "Thank you for the read. !!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Hey Guys !! 🧋 This is the time to Share the Collection of Prompts which have high parametric details to produce the most detailed flawless images. 🔗You can watch out the Collection on: https://huggingface.co/spaces/prithivMLmods/Top-Prompt-Collection 🔢More than 200+ High Detailed prompts have been used in the Spaces. @prithivMLmods Thank you for the read. !!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg", "fullname": "Prithiv Sakthi", "name": "prithivMLmods", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 342, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65bb837dbfb878f46c77de4c/4ZYSleYjeyh-yw1oRCh5e.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg", "fullname": "Prithiv Sakthi", "name": "prithivMLmods", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 342 } ]
[ { "reaction": "🔥", "users": [ "KingNish", "Katiyar48", "RanthonyB", "Ramikan-BR", "UltraMarkoRJ" ], "count": 5 }, { "reaction": "➕", "users": [ "prithivMLmods", "RanthonyB", "Ramikan-BR" ], "count": 3 }, { "reaction": "👀", "users": [ "osanseviero", "Ramikan-BR" ], "count": 2 } ]
2024-06-03T12:38:55.000Z
2024-07-25T10:50:24.755Z
[ { "avatarUrl": "/avatars/ab73e02668aeb662d6460a2fe5418b91.svg", "fullname": "Yasir hamid", "name": "Yasirkh", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg", "fullname": "Prithiv Sakthi", "name": "prithivMLmods", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 342, "isFollowing": false }, { "avatarUrl": "/avatars/723d56fc40eb5da593bcf00159a4543f.svg", "fullname": "Manoj K Chauhan", "name": "mk230580", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 5, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/zj7F6u7u833FFCyS3Aap7.jpeg", "fullname": "Aleks Pokd", "name": "AleksPokd", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/prithivMLmods/481360321028594
4,758
13
254622891883218
[ { "type": "text", "value": "Fluently XL v4 took 4th place in the arena leaderboard imgsys.org, yay!", "raw": "Fluently XL v4 took 4th place in the arena leaderboard imgsys.org, yay!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/fluently/Fluently-XL-v4", "resource": { "type": "model", "id": "fluently/Fluently-XL-v4", "discussionNum": null }, "url": "https://huggingface.co/fluently/Fluently-XL-v4", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Playground with this model: ", "raw": "Playground with this model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/fluently/Fluently-Playground", "resource": { "type": "space", "id": "fluently/Fluently-Playground", "discussionNum": null }, "url": "https://huggingface.co/spaces/fluently/Fluently-Playground", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Fluently XL v4 took 4th place in the arena leaderboard imgsys.org, yay! Model: https://huggingface.co/fluently/Fluently-XL-v4 Playground with this model: https://huggingface.co/spaces/fluently/Fluently-Playground
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/65a3d8d58448f47df24c041a/kHE3zfyqfQGcAwU8NWNmp.png" } ]
[]
[ { "reaction": "🔥", "users": [ "ehristoforu", "dreamdrop-art", "osanseviero", "KingNish", "Arakinas", "isidentical", "lunarflu", "Tonic", "louisbrulenaudet", "julien-c" ], "count": 10 } ]
2024-06-03T12:26:11.000Z
2024-06-04T19:59:22.880Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641caf6c043963b1c0a27256/CD7ktICDsldVJlpiND5kl.png", "fullname": "PseudoTerminal X", "name": "bghira", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 100, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/o-5N9QyjHgmSMk69e3O55.png", "fullname": "Evgeniy Hristoforu", "name": "ehristoforu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 235, "isFollowing": false }, { "avatarUrl": "/avatars/6086a227be13069e5e3a50aafd307548.svg", "fullname": "Chloe Li", "name": "Chloeee-leee", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3, "isFollowing": false } ]
/posts/ehristoforu/254622891883218
1,817
10
720713976502005
[ { "type": "text", "value": "Grand Thief Auto style", "raw": "Grand Thief Auto style", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://reface.ai/unboring/restyle-image", "resource": null, "url": null, "href": "https://reface.ai/unboring/restyle-image", "user": null, "lang": null, "code": null, "label": null } ]
Grand Thief Auto style https://reface.ai/unboring/restyle-image
{ "avatarUrl": "/avatars/efc6a9cb98a6b485f7bcb11e5b7b143f.svg", "fullname": "Grace Smith", "name": "BoredApeYachtClub", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6617efcf0ca79090cd6b21e3/TxUdRGTplVbNEHSH3rpCv.jpeg" } ]
[]
[]
2024-06-03T12:10:53.000Z
2024-06-03T12:10:53.366Z
[]
/posts/BoredApeYachtClub/720713976502005
495
0
784727901595208
[ { "type": "text", "value": "we are very proud to introduce ", "raw": "we are very proud to introduce ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/jinaai/jina-clip-v1", "resource": { "type": "model", "id": "jinaai/jina-clip-v1", "discussionNum": null }, "url": "https://huggingface.co/jinaai/jina-clip-v1", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", aka \"jina-embeddings-multimodal\".", "raw": ", aka \"jina-embeddings-multimodal\".", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The OpenAI CLIP ", "raw": "The OpenAI CLIP ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/openai/clip-vit-base-patch32", "resource": { "type": "model", "id": "openai/clip-vit-base-patch32", "discussionNum": null }, "url": "https://huggingface.co/openai/clip-vit-base-patch32", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " have nice performance to align text and image modality, that user can perform cross-modal text image retrieval or image classification on top of it. However, due to the training data and recipe, it can not:", "raw": " have nice performance to align text and image modality, that user can perform cross-modal text image retrieval or image classification on top of it. However, due to the training data and recipe, it can not:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1. model longer sequence of text inputs (77 token constraint).", "raw": "1. model longer sequence of text inputs (77 token constraint).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2. align text representations (CLIP Text Tower is weak for text search).", "raw": "2. align text representations (CLIP Text Tower is weak for text search).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In our latest publication, ", "raw": "In our latest publication, ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2405.20204", "resource": { "type": "paper", "id": "2405.20204", "discussionNum": null }, "url": "https://huggingface.co/papers/2405.20204", "href": null, "user": null, "lang": null, "code": null, "label": "Jina CLIP: Your CLIP Model Is Also Your Text Retriever (2405.20204)" }, { "type": "text", "value": " , we proposed a multi-task, multi-objective learning scheme. The produced CLIP model shows:", "raw": " , we proposed a multi-task, multi-objective learning scheme. The produced CLIP model shows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1. Stronger cross-modal performance against OpenAI sets, 2% and 6% improvement on cross-modal retrieval recall@5.", "raw": "1. Stronger cross-modal performance against OpenAI sets, 2% and 6% improvement on cross-modal retrieval recall@5.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2. Text tower of the JinaCLIP is a strong text encoder, reach the same performance as ", "raw": "2. Text tower of the JinaCLIP is a strong text encoder, reach the same performance as ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", "resource": { "type": "model", "id": "jinaai/jina-embeddings-v2-base-en", "discussionNum": null }, "url": "https://huggingface.co/jinaai/jina-embeddings-v2-base-en", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ", 165% improvement on MTEB[BEIR] recall@5.", "raw": ", 165% improvement on MTEB[BEIR] recall@5.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "3. Image tower of the JinaCLIP also shows strong performance in image-image search (CBIR), 12% recall improvement on Cifar100 test set.", "raw": "3. Image tower of the JinaCLIP also shows strong performance in image-image search (CBIR), 12% recall improvement on Cifar100 test set.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "If you are working on MuRAG (multimodal-retrieval argumented generation), try it out!", "raw": "If you are working on MuRAG (multimodal-retrieval argumented generation), try it out!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
we are very proud to introduce https://huggingface.co/jinaai/jina-clip-v1, aka "jina-embeddings-multimodal". The OpenAI CLIP https://huggingface.co/openai/clip-vit-base-patch32 have nice performance to align text and image modality, that user can perform cross-modal text image retrieval or image classification on top of it. However, due to the training data and recipe, it can not: 1. model longer sequence of text inputs (77 token constraint). 2. align text representations (CLIP Text Tower is weak for text search). In our latest publication, https://huggingface.co/papers/2405.20204 , we proposed a multi-task, multi-objective learning scheme. The produced CLIP model shows: 1. Stronger cross-modal performance against OpenAI sets, 2% and 6% improvement on cross-modal retrieval recall@5. 2. Text tower of the JinaCLIP is a strong text encoder, reach the same performance as https://huggingface.co/jinaai/jina-embeddings-v2-base-en, 165% improvement on MTEB[BEIR] recall@5. 3. Image tower of the JinaCLIP also shows strong performance in image-image search (CBIR), 12% recall improvement on Cifar100 test set. If you are working on MuRAG (multimodal-retrieval argumented generation), try it out!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63491dc83d8dc83a55cb749c/IoqJrOIaEnYO_S7si4KGp.jpeg", "fullname": "Bo Wang", "name": "bwang0911", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1803, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/63491dc83d8dc83a55cb749c/2qYyyGy5PGHeA2ldYIRHJ.png" } ]
[]
[ { "reaction": "🚀", "users": [ "florianhoenicke", "florian-hoenicke", "zhenwang23", "mwerk", "numb3r3", "alaeddineabdessalem", "osanseviero", "alexcg2", "nan", "den0620", "capricareloaded", "Jofthomas" ], "count": 12 }, { "reaction": "❤️", "users": [ "florianhoenicke", "florian-hoenicke", "zhenwang23", "alaeddineabdessalem", "osanseviero", "alexcg2", "nan", "capricareloaded", "Jofthomas" ], "count": 9 }, { "reaction": "🔥", "users": [ "florianhoenicke", "florian-hoenicke", "alaeddineabdessalem", "osanseviero", "alexcg2", "nan", "capricareloaded", "jaisanrobert" ], "count": 8 }, { "reaction": "👍", "users": [ "zhenwang23", "alaeddineabdessalem", "osanseviero", "alexcg2", "sbarman25", "nan", "capricareloaded", "florianhoenicke" ], "count": 8 } ]
2024-06-03T11:14:23.000Z
2024-06-03T11:14:23.343Z
[]
/posts/bwang0911/784727901595208
2,417
0
763927026759580
[ { "type": "text", "value": "Proof that ablative educational dataset significantly enhances model capabilities (independent of model parameters or architecture) 🤩", "raw": "Proof that ablative educational dataset significantly enhances model capabilities (independent of model parameters or architecture) 🤩", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Yesterday, FineWeb’s technical report was published. FYI FineWeb (by 🤗) is currently the best opensource text dataset that can scale up model performance up to that of GPT-3 level. ", "raw": "Yesterday, FineWeb’s technical report was published. FYI FineWeb (by 🤗) is currently the best opensource text dataset that can scale up model performance up to that of GPT-3 level. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "While proprietary datasets used in training models like GPT-4/Claude/LlaMA are crawled internally and never released, FineWeb builds on CommonCrawl (an open repo for crawled web data). They preprocessed the data using their custom built data preprocessing library datatrove (which they also opensourced), and then evaluate the data quality on lighteval by training small sized models “ablation models” using nanotron (a library for pretraining transformer models).", "raw": "While proprietary datasets used in training models like GPT-4/Claude/LlaMA are crawled internally and never released, FineWeb builds on CommonCrawl (an open repo for crawled web data). They preprocessed the data using their custom built data preprocessing library datatrove (which they also opensourced), and then evaluate the data quality on lighteval by training small sized models “ablation models” using nanotron (a library for pretraining transformer models).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Of all versions of FineWeb, FineWeb-Edu outperforms all other subsets. This is thanks to a new filtering technique wherein they used synthetic data to develop classifiers for identifying educational contents.", "raw": "Of all versions of FineWeb, FineWeb-Edu outperforms all other subsets. This is thanks to a new filtering technique wherein they used synthetic data to develop classifiers for identifying educational contents.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Turned out “Education is All You Need”:)", "raw": "Turned out “Education is All You Need”:)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Proof that ablative educational dataset significantly enhances model capabilities (independent of model parameters or architecture) 🤩 Yesterday, FineWeb’s technical report was published. FYI FineWeb (by 🤗) is currently the best opensource text dataset that can scale up model performance up to that of GPT-3 level. While proprietary datasets used in training models like GPT-4/Claude/LlaMA are crawled internally and never released, FineWeb builds on CommonCrawl (an open repo for crawled web data). They preprocessed the data using their custom built data preprocessing library datatrove (which they also opensourced), and then evaluate the data quality on lighteval by training small sized models “ablation models” using nanotron (a library for pretraining transformer models). Of all versions of FineWeb, FineWeb-Edu outperforms all other subsets. This is thanks to a new filtering technique wherein they used synthetic data to develop classifiers for identifying educational contents. Turned out “Education is All You Need”:)
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/Db9qUx-DLEYYPaaCivcd5.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/gnH8vIDTXysWAmOQhVGEz.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/dgYR7AwqzaurC_Izrk28P.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/yA6QiDNwYYN0h68HXKhLx.jpeg" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/Vt_E2zcJPI7EPYb8hYLrz.jpeg" } ]
[]
[ { "reaction": "🚀", "users": [ "Taylor658", "osanseviero", "valentimarco", "Vlansu", "Hev832", "neuralink", "hynky", "GPT007", "victor", "Ramikan-BR", "jlzhou" ], "count": 11 }, { "reaction": "🧠", "users": [ "neuralink", "Ramikan-BR" ], "count": 2 }, { "reaction": "👍", "users": [ "dashfunnydashdash", "Ramikan-BR" ], "count": 2 }, { "reaction": "🔥", "users": [ "Ramikan-BR" ], "count": 1 }, { "reaction": "👀", "users": [ "Ramikan-BR" ], "count": 1 }, { "reaction": "❤️", "users": [ "Ramikan-BR" ], "count": 1 } ]
2024-06-03T03:41:09.000Z
2024-06-03T06:50:49.103Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false } ]
/posts/Jaward/763927026759580
2,122
1
284480771019814
[ { "type": "text", "value": "Rope is the newest 1-Click, most easy to use, most advanced open source Deep Fake application. It has been just published few days ago. In below tutorials I show how to use Rope Pearl DeepFake application both on Windows and on a cloud machine (Massed Compute). Rope is way better than Roop, Roop Unleashed and FaceFusion. It supports multi-face Face Swapping and making amazing DeepFake videos so easily with 1-Click. Select video, select faces and generate your DeepFake 4K ultra-HD video.", "raw": "Rope is the newest 1-Click, most easy to use, most advanced open source Deep Fake application. It has been just published few days ago. In below tutorials I show how to use Rope Pearl DeepFake application both on Windows and on a cloud machine (Massed Compute). Rope is way better than Roop, Roop Unleashed and FaceFusion. It supports multi-face Face Swapping and making amazing DeepFake videos so easily with 1-Click. Select video, select faces and generate your DeepFake 4K ultra-HD video.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1-Click Rope Installers Scripts (contains both Windows into an isolated Python VENV and Massed Compute — Cloud — No GPU)⤵️", "raw": "1-Click Rope Installers Scripts (contains both Windows into an isolated Python VENV and Massed Compute — Cloud — No GPU)⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://www.patreon.com/posts/most-advanced-1-105123768", "resource": null, "url": null, "href": "https://www.patreon.com/posts/most-advanced-1-105123768", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Tutorials are made only for educational purposes. On cloud Massed Compute machine, you can run with staggering 20 threads and can FaceSwap entire movies. Fully supports face tracking and multiple face changes.", "raw": "Tutorials are made only for educational purposes. On cloud Massed Compute machine, you can run with staggering 20 threads and can FaceSwap entire movies. Fully supports face tracking and multiple face changes.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Mind-Blowing Deepfake Tutorial: Turn Anyone into Your Fav Movie Star! Better than Roop & Face Fusion ⤵️", "raw": "Mind-Blowing Deepfake Tutorial: Turn Anyone into Your Fav Movie Star! Better than Roop & Face Fusion ⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://youtu.be/RdWKOUlenaY", "resource": null, "url": null, "href": "https://youtu.be/RdWKOUlenaY", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Best Deepfake Open Source App ROPE — So Easy To Use Full HD Feceswap DeepFace, No GPU Required Cloud ⤵️", "raw": "Best Deepfake Open Source App ROPE — So Easy To Use Full HD Feceswap DeepFace, No GPU Required Cloud ⤵️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://youtu.be/HLWLSszHwEc", "resource": null, "url": null, "href": "https://youtu.be/HLWLSszHwEc", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Rope is the newest 1-Click, most easy to use, most advanced open source Deep Fake application. It has been just published few days ago. In below tutorials I show how to use Rope Pearl DeepFake application both on Windows and on a cloud machine (Massed Compute). Rope is way better than Roop, Roop Unleashed and FaceFusion. It supports multi-face Face Swapping and making amazing DeepFake videos so easily with 1-Click. Select video, select faces and generate your DeepFake 4K ultra-HD video. 1-Click Rope Installers Scripts (contains both Windows into an isolated Python VENV and Massed Compute — Cloud — No GPU)⤵️ https://www.patreon.com/posts/most-advanced-1-105123768 Tutorials are made only for educational purposes. On cloud Massed Compute machine, you can run with staggering 20 threads and can FaceSwap entire movies. Fully supports face tracking and multiple face changes. Mind-Blowing Deepfake Tutorial: Turn Anyone into Your Fav Movie Star! Better than Roop & Face Fusion ⤵️ https://youtu.be/RdWKOUlenaY Best Deepfake Open Source App ROPE — So Easy To Use Full HD Feceswap DeepFace, No GPU Required Cloud ⤵️ https://youtu.be/HLWLSszHwEc
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png", "fullname": "Furkan Gözükara", "name": "MonsterMMORPG", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 368, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/cNMHGSAu_xZoIMUX0kRVq.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/_krn6d7JkMxAeD9Pil5UZ.png" }, { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/6345bd89fe134dfd7a0dba40/0T8mz4-TuKHmx8MRez-q5.mp4" } ]
[]
[]
2024-06-02T23:26:48.000Z
2024-06-03T21:25:54.875Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 310, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1672531901326-6345bd89fe134dfd7a0dba40.png", "fullname": "Furkan Gözükara", "name": "MonsterMMORPG", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 368, "isFollowing": false }, { "avatarUrl": "/avatars/059e206517bc4a1da8d57c401c88e762.svg", "fullname": "Tom Paris", "name": "TomParis", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/MonsterMMORPG/284480771019814
2,152
5
282027283037959
[ { "type": "text", "value": "huggingface, SakanaAILabs and @arcee_ai are sponsoring a Model Merging Competition with really sweet 💰cash prizes💰 at the 2024 NeurIPSConf! (", "raw": "huggingface, SakanaAILabs and @arcee_ai are sponsoring a Model Merging Competition with really sweet 💰cash prizes💰 at the 2024 NeurIPSConf! (", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://neurips.cc", "resource": null, "url": null, "href": "https://neurips.cc", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ") 🎉 ", "raw": ") 🎉 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Submissions are now open and will remain open until September 2024. 🚀", "raw": "Submissions are now open and will remain open until September 2024. 🚀", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗 Register here: ", "raw": "🔗 Register here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://llm-merging.github.io/", "resource": null, "url": null, "href": "https://llm-merging.github.io/", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🗣️ Join the Discord discussion: ", "raw": "🗣️ Join the Discord discussion: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://discord.com/invite/dPBHEVnV", "resource": null, "url": null, "href": "https://discord.com/invite/dPBHEVnV", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
huggingface, SakanaAILabs and @arcee_ai are sponsoring a Model Merging Competition with really sweet 💰cash prizes💰 at the 2024 NeurIPSConf! (https://neurips.cc) 🎉 Submissions are now open and will remain open until September 2024. 🚀 🔗 Register here: https://llm-merging.github.io/ 🗣️ Join the Discord discussion: https://discord.com/invite/dPBHEVnV
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false }
[]
[]
[ { "reaction": "🤗", "users": [ "Artples", "Tonic", "osanseviero", "KingNish", "mervenoyan", "taewan2002", "not-lain" ], "count": 7 } ]
2024-06-02T20:33:23.000Z
2024-06-03T13:09:46.266Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2846, "isFollowing": false } ]
/posts/Taylor658/282027283037959
2,021
1
442618830446702
[ { "type": "text", "value": "hi everyone!", "raw": "hi everyone!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "i wanted to share an experiment i did with upcycling phi-3 mini into an moe recently.", "raw": "i wanted to share an experiment i did with upcycling phi-3 mini into an moe recently.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "while benchmarks are definitely within a margin of error and they performed similarly, i think it's an interesting base to try and see if you can improve phi's performance! (maybe looking into ", "raw": "while benchmarks are definitely within a margin of error and they performed similarly, i think it's an interesting base to try and see if you can improve phi's performance! (maybe looking into ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu", "resource": { "type": "dataset", "id": "HuggingFaceFW/fineweb-edu", "discussionNum": null }, "url": "https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " could be interesting, i also left some other notes if anyone with more compute access wants to try it themselves)", "raw": " could be interesting, i also left some other notes if anyone with more compute access wants to try it themselves)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "check it out! ", "raw": "check it out! ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/Fizzarolli/phi3-4x4b-v1", "resource": { "type": "model", "id": "Fizzarolli/phi3-4x4b-v1", "discussionNum": null }, "url": "https://huggingface.co/Fizzarolli/phi3-4x4b-v1", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
hi everyone! i wanted to share an experiment i did with upcycling phi-3 mini into an moe recently. while benchmarks are definitely within a margin of error and they performed similarly, i think it's an interesting base to try and see if you can improve phi's performance! (maybe looking into https://huggingface.co/datasets/HuggingFaceFW/fineweb-edu could be interesting, i also left some other notes if anyone with more compute access wants to try it themselves) check it out! https://huggingface.co/Fizzarolli/phi3-4x4b-v1
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/634262af8d8089ebaefd410e/pr6KcEebXTo5V2XAlpQNw.png", "fullname": "Fizz 🏳️‍⚧️", "name": "Fizzarolli", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 47, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "Hastagaras" ], "count": 1 } ]
2024-06-02T19:55:23.000Z
2024-06-02T19:55:23.310Z
[]
/posts/Fizzarolli/442618830446702
1,788
0
241544801704544
[ { "type": "text", "value": "Haloooo, continue experimenting with a checkpoint version of Ghost Beta (small version) during training in stage 1 (trained progress: 41%). ", "raw": "Haloooo, continue experimenting with a checkpoint version of Ghost Beta (small version) during training in stage 1 (trained progress: 41%). ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Supported languages: 🇺🇸 English, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇨🇳 Chinese, and !?", "raw": "Supported languages: 🇺🇸 English, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇨🇳 Chinese, and !?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Note that this is not a conclusion, this is just a sharing of the state of the model. If you find it interesting, please follow the project at:", "raw": "Note that this is not a conclusion, this is just a sharing of the state of the model. If you find it interesting, please follow the project at:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ", "raw": "* ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://x.com/ghostx_ai", "resource": null, "url": null, "href": "https://x.com/ghostx_ai", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ", "raw": "* ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://ghost-x.org/", "resource": null, "url": null, "href": "https://ghost-x.org/", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ", "raw": "* ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/ghost-x", "resource": null, "url": null, "href": "https://huggingface.co/ghost-x", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Ghost X is currently very open to invitations to cooperate, share and support. ", "raw": "Ghost X is currently very open to invitations to cooperate, share and support. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤯👇", "raw": "🤯👇", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Haloooo, continue experimenting with a checkpoint version of Ghost Beta (small version) during training in stage 1 (trained progress: 41%). Supported languages: 🇺🇸 English, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇨🇳 Chinese, and !? Note that this is not a conclusion, this is just a sharing of the state of the model. If you find it interesting, please follow the project at: * https://x.com/ghostx_ai * https://ghost-x.org/ * https://huggingface.co/ghost-x Ghost X is currently very open to invitations to cooperate, share and support. 🤯👇
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/600ae38cc92b79f54efd4556/cSqRIslYl5L3I4WK3a31f.png", "fullname": "Hieu Lam", "name": "lamhieu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/o7VBwWZO-TbZgCkfWQtOm.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/duQ1JMPgF16QvPFBvCccN.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/5TJuZby32Q-auBwDTtMSS.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/d0abHRWoOY6igY8774HW5.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/evSZ8IGuo_HJV22jAwdW5.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/ELgMCi7RB3ZjrdyzafXM6.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/tZqcZsx7FTowQtvUwEr1O.png" } ]
[]
[ { "reaction": "🚀", "users": [ "Taylor658" ], "count": 1 } ]
2024-06-02T10:40:31.000Z
2024-06-02T11:03:42.870Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/600ae38cc92b79f54efd4556/cSqRIslYl5L3I4WK3a31f.png", "fullname": "Hieu Lam", "name": "lamhieu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false } ]
/posts/lamhieu/241544801704544
1,344
1
634384490754714
[ { "type": "text", "value": "🍷 FineWeb technical report is out and so is 📚 FineWeb-Edu, a 1.3 trillion tokens dataset that outperforms all other open web datasets, with remarkable improvements on educational benchmarks such as MMLU, ARC, and OpenBookQA.", "raw": "🍷 FineWeb technical report is out and so is 📚 FineWeb-Edu, a 1.3 trillion tokens dataset that outperforms all other open web datasets, with remarkable improvements on educational benchmarks such as MMLU, ARC, and OpenBookQA.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Technical report: ", "raw": "Technical report: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://hf.co/spaces/HuggingFaceFW/blogpost-fineweb-v1", "resource": { "type": "space", "id": "HuggingFaceFW/blogpost-fineweb-v1", "discussionNum": null }, "url": "https://hf.co/spaces/HuggingFaceFW/blogpost-fineweb-v1", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://hf.co/datasets/HuggingFaceFW/fineweb-edu", "resource": { "type": "dataset", "id": "HuggingFaceFW/fineweb-edu", "discussionNum": null }, "url": "https://hf.co/datasets/HuggingFaceFW/fineweb-edu", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "We used Llama 3 generations to train an educational quality classifier, filtering the 15 trillion tokens of FineWeb to select only those with high educational value (an approach also used in Llama 3 and Phi-3 training datasets). We're releasing both FineWeb-Edu and the classifier, along with a larger, less heavily filtered version containing 5.4 trillion tokens. ", "raw": "We used Llama 3 generations to train an educational quality classifier, filtering the 15 trillion tokens of FineWeb to select only those with high educational value (an approach also used in Llama 3 and Phi-3 training datasets). We're releasing both FineWeb-Edu and the classifier, along with a larger, less heavily filtered version containing 5.4 trillion tokens. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "You can find more details about the dataset and the experiments we ran in the FineWeb technical report, It's a 45-minute read but it contains all the secret sauce for building high quality web datasets.", "raw": "You can find more details about the dataset and the experiments we ran in the FineWeb technical report, It's a 45-minute read but it contains all the secret sauce for building high quality web datasets.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Enjoy!", "raw": "Enjoy!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🍷 FineWeb technical report is out and so is 📚 FineWeb-Edu, a 1.3 trillion tokens dataset that outperforms all other open web datasets, with remarkable improvements on educational benchmarks such as MMLU, ARC, and OpenBookQA. Technical report: https://hf.co/spaces/HuggingFaceFW/blogpost-fineweb-v1 Dataset: https://hf.co/datasets/HuggingFaceFW/fineweb-edu We used Llama 3 generations to train an educational quality classifier, filtering the 15 trillion tokens of FineWeb to select only those with high educational value (an approach also used in Llama 3 and Phi-3 training datasets). We're releasing both FineWeb-Edu and the classifier, along with a larger, less heavily filtered version containing 5.4 trillion tokens. You can find more details about the dataset and the experiments we ran in the FineWeb technical report, It's a 45-minute read but it contains all the secret sauce for building high quality web datasets. Enjoy!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61c141342aac764ce1654e43/81AwoT5IQ_Xdw0OVw7TKu.jpeg", "fullname": "Loubna Ben Allal", "name": "loubnabnl", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 2315, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/61c141342aac764ce1654e43/zlFOO3Gh5zPpJ-vjvSMEs.png" } ]
[]
[ { "reaction": "🔥", "users": [ "mmhamdy", "alielfilali01", "GPT007", "arjunguha", "hiauiarau", "nicolay-r", "privategeek24", "Ariel323", "maywell", "guipenedo", "neuralink", "asaduzzaman319" ], "count": 12 }, { "reaction": "👍", "users": [ "dillfrescott", "guipenedo", "neuralink" ], "count": 3 }, { "reaction": "🧠", "users": [ "neuralink", "louisbrulenaudet" ], "count": 2 } ]
2024-06-02T08:15:54.000Z
2024-06-02T08:16:14.466Z
[]
/posts/loubnabnl/634384490754714
4,875
0
559950404175482
[ { "type": "text", "value": "[New crazy blog post alert] We are releasing an extensive blog post on the science of creating high quality web-scale datasets, detailing all the steps and learnings that came in our recent 15 trillion tokens 🍷FineWeb release", "raw": "[New crazy blog post alert] We are releasing an extensive blog post on the science of creating high quality web-scale datasets, detailing all the steps and learnings that came in our recent 15 trillion tokens 🍷FineWeb release", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Inspired by the distill.pub interactive graphics papers, we settled to write the most extensive, enjoyable and in-depth tech report we could draft on so prepare for a 45-mmin read with interactive graphics and all.", "raw": "Inspired by the distill.pub interactive graphics papers, we settled to write the most extensive, enjoyable and in-depth tech report we could draft on so prepare for a 45-mmin read with interactive graphics and all.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "And it's not all, in this article we also introduce 📚FineWeb-Edu a filtered subset of Common Crawl with 1.3T tokens containing only web pages with very high educational content. Up to our knowledge, FineWeb-Edu out-performs all openly release web-scale datasets by a significant margin on knowledge- and reasoning-intensive benchmarks like MMLU, ARC, and OpenBookQA", "raw": "And it's not all, in this article we also introduce 📚FineWeb-Edu a filtered subset of Common Crawl with 1.3T tokens containing only web pages with very high educational content. Up to our knowledge, FineWeb-Edu out-performs all openly release web-scale datasets by a significant margin on knowledge- and reasoning-intensive benchmarks like MMLU, ARC, and OpenBookQA", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "We also make a number of surprising observations on the \"quality\" of the internet it-self which may challenge some of the general assumptions on web data (not saying more, I'll let you draw your conclusions ;)", "raw": "We also make a number of surprising observations on the \"quality\" of the internet it-self which may challenge some of the general assumptions on web data (not saying more, I'll let you draw your conclusions ;)", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1", "resource": { "type": "space", "id": "HuggingFaceFW/blogpost-fineweb-v1", "discussionNum": null }, "url": "https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
[New crazy blog post alert] We are releasing an extensive blog post on the science of creating high quality web-scale datasets, detailing all the steps and learnings that came in our recent 15 trillion tokens 🍷FineWeb release Inspired by the distill.pub interactive graphics papers, we settled to write the most extensive, enjoyable and in-depth tech report we could draft on so prepare for a 45-mmin read with interactive graphics and all. And it's not all, in this article we also introduce 📚FineWeb-Edu a filtered subset of Common Crawl with 1.3T tokens containing only web pages with very high educational content. Up to our knowledge, FineWeb-Edu out-performs all openly release web-scale datasets by a significant margin on knowledge- and reasoning-intensive benchmarks like MMLU, ARC, and OpenBookQA We also make a number of surprising observations on the "quality" of the internet it-self which may challenge some of the general assumptions on web data (not saying more, I'll let you draw your conclusions ;) https://huggingface.co/spaces/HuggingFaceFW/blogpost-fineweb-v1
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857746553-5df7e9e5da6d0311fd3d53f9.jpeg", "fullname": "Thomas Wolf", "name": "thomwolf", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 678, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "loubnabnl", "mmhamdy", "leonardlin", "KingNish", "KonradSzafer", "SixOpen", "Joseph717171", "dingo-actual", "fffiloni", "louisbrulenaudet", "ngxson", "SaylorTwift", "clem", "adamelliotfields", "titan087", "adhisetiawan", "ahmadele", "dadaddy", "p20p" ], "count": 19 }, { "reaction": "🚀", "users": [ "loubnabnl", "mmhamdy", "mmoy", "KonradSzafer", "rreed-pha", "Joseph717171", "SaylorTwift", "clem" ], "count": 8 }, { "reaction": "❤️", "users": [ "afrideva", "Joseph717171", "medmekk", "clem", "dadaddy" ], "count": 5 }, { "reaction": "🤗", "users": [ "mmhamdy", "Joseph717171", "clem", "OmbelineM" ], "count": 4 } ]
2024-06-02T08:13:58.000Z
2024-06-03T16:39:36.389Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1583857146757-5e67bdd61009063689407479.jpeg", "fullname": "Clem 🤗", "name": "clem", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 1734, "isFollowing": false } ]
/posts/thomwolf/559950404175482
4,494
1
306257030253629
[ { "type": "text", "value": "🔥 77.2% on MMLU with 3.7B parameters 🚀", "raw": "🔥 77.2% on MMLU with 3.7B parameters 🚀", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "... 3.7B active parameters, 40B in total parameters 📊", "raw": "... 3.7B active parameters, 40B in total parameters 📊", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "7.4 GFlops forward computation per token, 1/19 of Llama3-70B 📉", "raw": "7.4 GFlops forward computation per token, 1/19 of Llama3-70B 📉", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Exciting enough? 😲", "raw": "Exciting enough? 😲", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "That's Yuan2-M32 for you, released by IEIT-Yuan.", "raw": "That's Yuan2-M32 for you, released by IEIT-Yuan.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "A new 40B Mixture of Experts using a new Attention Router mechanism 🧠", "raw": "A new 40B Mixture of Experts using a new Attention Router mechanism 🧠", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "32 experts with 2 active in generation ✌️", "raw": "32 experts with 2 active in generation ✌️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "8,192 context length 📝", "raw": "8,192 context length 📝", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Trained on 2T tokens, using 9.25% of the compute required by the dense models 🛠️.", "raw": "Trained on 2T tokens, using 9.25% of the compute required by the dense models 🛠️.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Yuan 2.0-M32 employs fine-tuning techniques to adjust to longer sequence lengths, utilizing a modified base value in the Rotary Position Embedding to maintain performance over extended contexts 🔄.", "raw": "Yuan 2.0-M32 employs fine-tuning techniques to adjust to longer sequence lengths, utilizing a modified base value in the Rotary Position Embedding to maintain performance over extended contexts 🔄.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Open-source - Apache 2.0 📜", "raw": "Open-source - Apache 2.0 📜", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Vocabulary size of 135,040 🗣️", "raw": "Vocabulary size of 135,040 🗣️", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Outperforms Mixtral 8x7B (47B total parameters, 12.9B active parameters) on all benchmarks and almost gives Llama 3 70B run for its money 💸", "raw": "Outperforms Mixtral 8x7B (47B total parameters, 12.9B active parameters) on all benchmarks and almost gives Llama 3 70B run for its money 💸", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Models: ", "raw": "Models: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/IEITYuan", "resource": null, "url": null, "href": "https://huggingface.co/IEITYuan", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " 🌐", "raw": " 🌐", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2405.17976", "resource": { "type": "paper", "id": "2405.17976", "discussionNum": null }, "url": "https://huggingface.co/papers/2405.17976", "href": null, "user": null, "lang": null, "code": null, "label": "Yuan 2.0-M32: Mixture of Experts with Attention Router (2405.17976)" }, { "type": "text", "value": " 📄", "raw": " 📄", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🔥 77.2% on MMLU with 3.7B parameters 🚀 ... 3.7B active parameters, 40B in total parameters 📊 7.4 GFlops forward computation per token, 1/19 of Llama3-70B 📉 Exciting enough? 😲 That's Yuan2-M32 for you, released by IEIT-Yuan. A new 40B Mixture of Experts using a new Attention Router mechanism 🧠 32 experts with 2 active in generation ✌️ 8,192 context length 📝 Trained on 2T tokens, using 9.25% of the compute required by the dense models 🛠️. Yuan 2.0-M32 employs fine-tuning techniques to adjust to longer sequence lengths, utilizing a modified base value in the Rotary Position Embedding to maintain performance over extended contexts 🔄. Open-source - Apache 2.0 📜 Vocabulary size of 135,040 🗣️ Outperforms Mixtral 8x7B (47B total parameters, 12.9B active parameters) on all benchmarks and almost gives Llama 3 70B run for its money 💸 Models: https://huggingface.co/IEITYuan 🌐 Paper: https://huggingface.co/papers/2405.17976 📄
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 197, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/hCklsQSz_YBLmhBIn8rGM.jpeg" } ]
[]
[]
2024-06-02T07:25:29.000Z
2024-06-02T07:25:29.790Z
[]
/posts/singhsidhukuldeep/306257030253629
704
0
821055432295961
[ { "type": "text", "value": "The most recent LLaMA-3-70B Instruct showcases the beast performance in zero-shot-learning mode in Target-Sentiment-Analsys (TSA) 🔥🚀 In particular we experiment with sentence-level analysis, with sentences fetched from the WikiArticles that were formed into RuSentNE-2023 dataset. ", "raw": "The most recent LLaMA-3-70B Instruct showcases the beast performance in zero-shot-learning mode in Target-Sentiment-Analsys (TSA) 🔥🚀 In particular we experiment with sentence-level analysis, with sentences fetched from the WikiArticles that were formed into RuSentNE-2023 dataset. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The key takeaways out of LLaMA-3-70B performance on original (🇷🇺) texts and translated into English are as follows:", "raw": "The key takeaways out of LLaMA-3-70B performance on original (🇷🇺) texts and translated into English are as follows:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1. Outperforms all ChatGPT-4 and all predecessors on non-english-texts (🇷🇺) ", "raw": "1. Outperforms all ChatGPT-4 and all predecessors on non-english-texts (🇷🇺) ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2. Surpasses all ChatGPT-3.5 / nearly performs as good as ChatGPT-4 on english texts 🥳", "raw": "2. Surpasses all ChatGPT-3.5 / nearly performs as good as ChatGPT-4 on english texts 🥳", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Benchmark: ", "raw": "Benchmark: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "resource": null, "url": null, "href": "https://github.com/nicolay-r/RuSentNE-LLM-Benchmark", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct", "resource": { "type": "model", "id": "meta-llama/Meta-Llama-3-70B-Instruct", "discussionNum": null }, "url": "https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dataset: ", "raw": "Dataset: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "resource": null, "url": null, "href": "https://github.com/dialogue-evaluation/RuSentNE-evaluation", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Related paper: ", "raw": "Related paper: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2404.12342", "resource": { "type": "paper", "id": "2404.12342", "discussionNum": null }, "url": "https://huggingface.co/papers/2404.12342", "href": null, "user": null, "lang": null, "code": null, "label": "Large Language Models in Targeted Sentiment Analysis (2404.12342)" }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Collection: ", "raw": "Collection: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "resource": null, "url": null, "href": "https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101", "user": null, "lang": null, "code": null, "label": null } ]
The most recent LLaMA-3-70B Instruct showcases the beast performance in zero-shot-learning mode in Target-Sentiment-Analsys (TSA) 🔥🚀 In particular we experiment with sentence-level analysis, with sentences fetched from the WikiArticles that were formed into RuSentNE-2023 dataset. The key takeaways out of LLaMA-3-70B performance on original (🇷🇺) texts and translated into English are as follows: 1. Outperforms all ChatGPT-4 and all predecessors on non-english-texts (🇷🇺) 2. Surpasses all ChatGPT-3.5 / nearly performs as good as ChatGPT-4 on english texts 🥳 Benchmark: https://github.com/nicolay-r/RuSentNE-LLM-Benchmark Model: https://huggingface.co/meta-llama/Meta-Llama-3-70B-Instruct Dataset: https://github.com/dialogue-evaluation/RuSentNE-evaluation Related paper: https://huggingface.co/papers/2404.12342 Collection: https://huggingface.co/collections/nicolay-r/sentiment-analysis-665ba391e0eba729021ea101
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64e62d11d27a8292c3637f86/aptDeBHpCJxcREj6KPLN1.jpeg", "fullname": "Nicolay Rusnachenko", "name": "nicolay-r", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 49, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/64e62d11d27a8292c3637f86/Ck1OQzKjMl2Ku2mCMj7P6.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "victor-huang", "kristaller486", "Taylor658", "Kirkalish", "Tanvir1337", "osanseviero", "Rohith04", "den0620" ], "count": 8 } ]
2024-06-01T22:35:09.000Z
2024-06-04T12:57:09.202Z
[]
/posts/nicolay-r/821055432295961
2,183
0
807913106530125
[ { "type": "resource", "value": null, "raw": "https://huggingface.co/microsoft/DialoGPT-large", "resource": { "type": "model", "id": "microsoft/DialoGPT-large", "discussionNum": null }, "url": "https://huggingface.co/microsoft/DialoGPT-large", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " is fire.", "raw": " is fire.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
https://huggingface.co/microsoft/DialoGPT-large is fire.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png", "fullname": "Noa Roggendorff", "name": "nroggendorff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 138, "isFollowing": false }
[]
[]
[]
2024-06-01T22:22:32.000Z
2024-06-01T22:24:21.066Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/659f000b83abded48e190901/BnXL_XYbVX6PHngfQLECW.png", "fullname": "Noa Roggendorff", "name": "nroggendorff", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 138, "isFollowing": false } ]
/posts/nroggendorff/807913106530125
1,026
1
157970277021609
[ { "type": "text", "value": "all these GPU bourgeois tryna act cool like the GPU poor kids... ", "raw": "all these GPU bourgeois tryna act cool like the GPU poor kids... ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- what's your number for real ? ", "raw": "- what's your number for real ? ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "+ and did it work at parties for you ? ", "raw": "+ and did it work at parties for you ? ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
all these GPU bourgeois tryna act cool like the GPU poor kids... - what's your number for real ? + and did it work at parties for you ?
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 310, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/62a3bb1cd0d8c2c2169f0b88/QrcFx9MSNVtLYPEWWTC9I.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/62a3bb1cd0d8c2c2169f0b88/b61Tb46FWtdieRnHZcOG0.jpeg" } ]
[]
[]
2024-06-01T21:04:08.000Z
2024-06-01T21:04:08.311Z
[]
/posts/Tonic/157970277021609
855
0
921759656788505
[ { "type": "text", "value": "Get your hands on the new, best, most-performant tiny model on huggingface. With 32k context window, you can fine-tune it on larger datasets or your preferred rag functionality.", "raw": "Get your hands on the new, best, most-performant tiny model on huggingface. With 32k context window, you can fine-tune it on larger datasets or your preferred rag functionality.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/appvoid/palmer-004", "resource": { "type": "model", "id": "appvoid/palmer-004", "discussionNum": null }, "url": "https://huggingface.co/appvoid/palmer-004", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Get your hands on the new, best, most-performant tiny model on huggingface. With 32k context window, you can fine-tune it on larger datasets or your preferred rag functionality. https://huggingface.co/appvoid/palmer-004
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a813dedbb9e28866a91b27/zs-RWFuXs17IfPUhxQaei.jpeg", "fullname": "appvoid", "name": "appvoid", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 35, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/62a813dedbb9e28866a91b27/OtFo5Tlyu0uqu6eeut4OZ.jpeg" } ]
[]
[ { "reaction": "👀", "users": [ "Tonic" ], "count": 1 } ]
2024-06-01T20:27:39.000Z
2024-06-02T23:15:35.215Z
[ { "avatarUrl": "/avatars/ffd0ff33e1db714cbcee7e254eb68828.svg", "fullname": "bh4", "name": "bh4", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a813dedbb9e28866a91b27/zs-RWFuXs17IfPUhxQaei.jpeg", "fullname": "appvoid", "name": "appvoid", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 35, "isFollowing": false } ]
/posts/appvoid/921759656788505
860
2
236711741382850
[ { "type": "text", "value": "Introducing GlotCC: a new 2TB corpus based on an early 2024 CommonCrawl snapshot with data for 1000+ languages.", "raw": "Introducing GlotCC: a new 2TB corpus based on an early 2024 CommonCrawl snapshot with data for 1000+ languages.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤗 corpus v1: ", "raw": "🤗 corpus v1: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/datasets/cis-lmu/GlotCC-V1", "resource": { "type": "dataset", "id": "cis-lmu/GlotCC-V1", "discussionNum": null }, "url": "https://huggingface.co/datasets/cis-lmu/GlotCC-V1", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🐱 pipeline v3: ", "raw": "🐱 pipeline v3: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/cisnlp/GlotCC", "resource": null, "url": null, "href": "https://github.com/cisnlp/GlotCC", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "More details? Stay tuned for our upcoming paper.", "raw": "More details? Stay tuned for our upcoming paper.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "More data? In the next version, we plan to include additional snapshots of CommonCrawl.", "raw": "More data? In the next version, we plan to include additional snapshots of CommonCrawl.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Limitation: Due to the lower frequency of low-resource languages compared to others, there are sometimes only a few sentences available for very low-resource languages. However, the data volume for English in this version stands at 750GB, and the top 200 languages still have a strong presence in our data (see plot attached; we write the index for every 20 languages, meaning the 10th index is the 200th language).", "raw": "Limitation: Due to the lower frequency of low-resource languages compared to others, there are sometimes only a few sentences available for very low-resource languages. However, the data volume for English in this version stands at 750GB, and the top 200 languages still have a strong presence in our data (see plot attached; we write the index for every 20 languages, meaning the 10th index is the 200th language).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Introducing GlotCC: a new 2TB corpus based on an early 2024 CommonCrawl snapshot with data for 1000+ languages. 🤗 corpus v1: https://huggingface.co/datasets/cis-lmu/GlotCC-V1 🐱 pipeline v3: https://github.com/cisnlp/GlotCC More details? Stay tuned for our upcoming paper. More data? In the next version, we plan to include additional snapshots of CommonCrawl. Limitation: Due to the lower frequency of low-resource languages compared to others, there are sometimes only a few sentences available for very low-resource languages. However, the data volume for English in this version stands at 750GB, and the top 200 languages still have a strong presence in our data (see plot attached; we write the index for every 20 languages, meaning the 10th index is the 200th language).
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/61bf84c8ca59d6d196a1b4e8/L_NvUwlMYcye9X35z6f7e.jpeg", "fullname": "Amir Hossein Kargaran", "name": "kargaranamir", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 36, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/61bf84c8ca59d6d196a1b4e8/czI1nI2D3_S03yK3eMcdS.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/61bf84c8ca59d6d196a1b4e8/-Pegk25kv1xHpsNQOTocf.jpeg" } ]
[]
[ { "reaction": "👍", "users": [ "kargaranamir", "osanseviero", "eliebak", "yjernite", "ayymen" ], "count": 5 } ]
2024-06-01T18:53:22.000Z
2024-06-01T18:53:22.222Z
[]
/posts/kargaranamir/236711741382850
1,124
0
832731542304549
[ { "type": "text", "value": "The InstructGPT paper mentions that they insert 10% pretraining data during SFT, which they find improves the effect of PPO (IIUC). Has anyone else done later ablations on this? I've only seen the inverse suggested, mixing in SFT data during pretraining.", "raw": "The InstructGPT paper mentions that they insert 10% pretraining data during SFT, which they find improves the effect of PPO (IIUC). Has anyone else done later ablations on this? I've only seen the inverse suggested, mixing in SFT data during pretraining.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
The InstructGPT paper mentions that they insert 10% pretraining data during SFT, which they find improves the effect of PPO (IIUC). Has anyone else done later ablations on this? I've only seen the inverse suggested, mixing in SFT data during pretraining.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594192845975-5e1e17b6fcf41d740b6996a8.jpeg", "fullname": "Bram Vanroy", "name": "BramVanroy", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 172, "isFollowing": false }
[]
[]
[ { "reaction": "👀", "users": [ "Tonic", "osanseviero", "mootje" ], "count": 3 } ]
2024-06-01T17:59:22.000Z
2024-06-03T18:49:15.013Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6032802e1f993496bc14d9e3/w6hr-DEQot4VVkoyRIBiy.png", "fullname": "Omar Sanseviero", "name": "osanseviero", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2846, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1594651707950-noauth.jpeg", "fullname": "Lewis Tunstall", "name": "lewtun", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 675, "isFollowing": false } ]
/posts/BramVanroy/832731542304549
1,529
2
845263544496775
[ { "type": "text", "value": "📺 Introducing the YouTube-Commons Dataset 📺", "raw": "📺 Introducing the YouTube-Commons Dataset 📺", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🌐 Overview: The YouTube Commons Dataset is a comprehensive collection of 30 billion words from 15,112,121 original and automatically translated transcripts, drawn from 2,063,066 videos on YouTube.", "raw": "🌐 Overview: The YouTube Commons Dataset is a comprehensive collection of 30 billion words from 15,112,121 original and automatically translated transcripts, drawn from 2,063,066 videos on YouTube.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗 License: All videos are shared under the CC-BY license, with the majority (71%) in English.", "raw": "🔗 License: All videos are shared under the CC-BY license, with the majority (71%) in English.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤖 Applications: This dataset is ideal for training powerful AI models for converting speech to text (ASR) and translation models.", "raw": "🤖 Applications: This dataset is ideal for training powerful AI models for converting speech to text (ASR) and translation models.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "📊 Utilization: The text can be used for model training and is republishable for reproducibility purposes.", "raw": "📊 Utilization: The text can be used for model training and is republishable for reproducibility purposes.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤝 Collaboration: This dataset is the result of a collaboration between state start-up LANGU:IA, the French Ministry of Culture, and DINUM. It will be expanded in the coming months.", "raw": "🤝 Collaboration: This dataset is the result of a collaboration between state start-up LANGU:IA, the French Ministry of Culture, and DINUM. It will be expanded in the coming months.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗 Explore the dataset here: ", "raw": "🔗 Explore the dataset here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://lnkd.in/d_paWKFE", "resource": null, "url": null, "href": "https://lnkd.in/d_paWKFE", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "#YouTubeCommons #AIResearch #MachineLearning #OpenData #ArtificialIntelligence #NLP #Dataset #TechCollaboration #Innovation #DigitalTransformation", "raw": "#YouTubeCommons #AIResearch #MachineLearning #OpenData #ArtificialIntelligence #NLP #Dataset #TechCollaboration #Innovation #DigitalTransformation", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
📺 Introducing the YouTube-Commons Dataset 📺 🌐 Overview: The YouTube Commons Dataset is a comprehensive collection of 30 billion words from 15,112,121 original and automatically translated transcripts, drawn from 2,063,066 videos on YouTube. 🔗 License: All videos are shared under the CC-BY license, with the majority (71%) in English. 🤖 Applications: This dataset is ideal for training powerful AI models for converting speech to text (ASR) and translation models. 📊 Utilization: The text can be used for model training and is republishable for reproducibility purposes. 🤝 Collaboration: This dataset is the result of a collaboration between state start-up LANGU:IA, the French Ministry of Culture, and DINUM. It will be expanded in the coming months. 🔗 Explore the dataset here: https://lnkd.in/d_paWKFE #YouTubeCommons #AIResearch #MachineLearning #OpenData #ArtificialIntelligence #NLP #Dataset #TechCollaboration #Innovation #DigitalTransformation
{ "avatarUrl": "/avatars/fadf0d7169222c94b635859a196c38ef.svg", "fullname": "Mohamed Salama", "name": "Salama1429", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 33, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/62f50684ea5bd6b1abc2096a/XZ9DP6md0B6BT9dWY8mD6.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "Salama1429", "Ramikan-BR", "KingNish", "NHLOCAL", "Tonic", "jshuadvd", "Vladuzz", "rreed-pha", "KIRNEILL", "thomwolf", "hiauiarau", "dingo-actual" ], "count": 12 }, { "reaction": "🚀", "users": [ "Salama1429", "Ramikan-BR", "Tonic", "thesven", "jshuadvd", "GPT007", "thomwolf" ], "count": 7 }, { "reaction": "❤️", "users": [ "Salama1429", "Ramikan-BR", "Tonic", "thesven", "jshuadvd", "dillfrescott", "thomwolf" ], "count": 7 }, { "reaction": "😎", "users": [ "Salama1429", "Ramikan-BR", "Tonic", "jshuadvd", "GPT007", "thomwolf" ], "count": 6 }, { "reaction": "🧠", "users": [ "Salama1429", "Ramikan-BR", "Tonic", "jshuadvd", "nataliaElv" ], "count": 5 }, { "reaction": "🤗", "users": [ "Salama1429", "Ramikan-BR", "Tonic" ], "count": 3 }, { "reaction": "👍", "users": [ "Salama1429", "Tonic" ], "count": 2 }, { "reaction": "🤝", "users": [ "Salama1429", "Tonic" ], "count": 2 }, { "reaction": "👀", "users": [ "Salama1429", "Tonic" ], "count": 2 } ]
2024-06-01T13:11:43.000Z
2024-06-01T13:13:14.865Z
[]
/posts/Salama1429/845263544496775
2,425
0
862353567134059
[ { "type": "text", "value": "Introducing UNA-ThePitbull Series", "raw": "Introducing UNA-ThePitbull Series", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "We are happy to announce the release of our latest model UNA-ThePitbull, the most powerful model below 70B in the industry. In this new generation, inspired on our previous Beagle series we curated a model that balance nicely EQ and IQ. It was trained with some of the latest datasets including:", "raw": "We are happy to announce the release of our latest model UNA-ThePitbull, the most powerful model below 70B in the industry. In this new generation, inspired on our previous Beagle series we curated a model that balance nicely EQ and IQ. It was trained with some of the latest datasets including:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Replete-AI/code_bagel_hermes-2.5", "raw": "* Replete-AI/code_bagel_hermes-2.5", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* mlabonne/orpo-dpo-mix-40k", "raw": "* mlabonne/orpo-dpo-mix-40k", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* jondurbin/py-dpo-v0.1", "raw": "* jondurbin/py-dpo-v0.1", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Available in the hub ", "raw": "Available in the hub ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/fblgit/UNA-ThePitbull-21.4B-v2", "resource": { "type": "model", "id": "fblgit/UNA-ThePitbull-21.4B-v2", "discussionNum": null }, "url": "https://huggingface.co/fblgit/UNA-ThePitbull-21.4B-v2", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " and you can grab Quant versions sponsored by ", "raw": " and you can grab Quant versions sponsored by ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@bartowski", "resource": null, "url": null, "href": null, "user": "bartowski", "lang": null, "code": null, "label": null }, { "type": "text", "value": " at ", "raw": " at ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/bartowski/UNA-ThePitbull-21.4B-v2-GGUF", "resource": { "type": "model", "id": "bartowski/UNA-ThePitbull-21.4B-v2-GGUF", "discussionNum": null }, "url": "https://huggingface.co/bartowski/UNA-ThePitbull-21.4B-v2-GGUF", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " fully compatible with Ollama, llama.cpp, etc.", "raw": " fully compatible with Ollama, llama.cpp, etc.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "UNA", "raw": "UNA", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In this case we tried something new by alternating uniformity across layers of both MLP & Attention reducing computational requirements while keep a high performant result.", "raw": "In this case we tried something new by alternating uniformity across layers of both MLP & Attention reducing computational requirements while keep a high performant result.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "We trained him under these terms:", "raw": "We trained him under these terms:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ThePitbull-v1 as base: SFT maxLR 1e-4 minLR 5e-5 for 1 Epoch", "raw": "* ThePitbull-v1 as base: SFT maxLR 1e-4 minLR 5e-5 for 1 Epoch", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* DPO maxLR 1e-4 minLR 5e-5 for 1 Epoch", "raw": "* DPO maxLR 1e-4 minLR 5e-5 for 1 Epoch", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "You can continue the training by merely using 5e-5 maxLR and 0 warmup steps, it should minimize catastrophic forgetting of the model.", "raw": "You can continue the training by merely using 5e-5 maxLR and 0 warmup steps, it should minimize catastrophic forgetting of the model.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Remember if you do so, please include a Pitbull picture on your model and cite :) Have fun!", "raw": "Remember if you do so, please include a Pitbull picture on your model and cite :) Have fun!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Introducing UNA-ThePitbull Series We are happy to announce the release of our latest model UNA-ThePitbull, the most powerful model below 70B in the industry. In this new generation, inspired on our previous Beagle series we curated a model that balance nicely EQ and IQ. It was trained with some of the latest datasets including: * Replete-AI/code_bagel_hermes-2.5 * mlabonne/orpo-dpo-mix-40k * jondurbin/py-dpo-v0.1 Available in the hub https://huggingface.co/fblgit/UNA-ThePitbull-21.4B-v2 and you can grab Quant versions sponsored by @bartowski at https://huggingface.co/bartowski/UNA-ThePitbull-21.4B-v2-GGUF fully compatible with Ollama, llama.cpp, etc. UNA In this case we tried something new by alternating uniformity across layers of both MLP & Attention reducing computational requirements while keep a high performant result. We trained him under these terms: * ThePitbull-v1 as base: SFT maxLR 1e-4 minLR 5e-5 for 1 Epoch * DPO maxLR 1e-4 minLR 5e-5 for 1 Epoch You can continue the training by merely using 5e-5 maxLR and 0 warmup steps, it should minimize catastrophic forgetting of the model. Remember if you do so, please include a Pitbull picture on your model and cite :) Have fun!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6401c8c9f98fbc64bcd7dca1/MOSgc_mPbfUZ-354osy1v.png", "fullname": "FBL", "name": "fblgit", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 229, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6401c8c9f98fbc64bcd7dca1/VNV9edpvMYm00Y3aA_pdu.png" } ]
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6435718aaaef013d1aec3b8b/XKf-8MA47tjVAM6SCX0MP.jpeg", "fullname": "Bartowski", "name": "bartowski", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 2735 } ]
[ { "reaction": "🔥", "users": [ "bartowski", "Tonic", "Yhyu13" ], "count": 3 }, { "reaction": "🚀", "users": [ "thesven" ], "count": 1 } ]
2024-06-01T12:52:55.000Z
2024-06-01T12:52:55.094Z
[]
/posts/fblgit/862353567134059
2,596
0
372309956389715
[ { "type": "text", "value": "ChemLLM Multi-Modal version will coming soon!", "raw": "ChemLLM Multi-Modal version will coming soon!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Also Weights and Datasets!", "raw": "Also Weights and Datasets!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
ChemLLM Multi-Modal version will coming soon! Also Weights and Datasets!
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64bce15bafd1e46c5504ad38/bQFX1iFbXEBXcQvUNL811.png", "fullname": "Di Zhang", "name": "qq8933", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 106, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "YaTharThShaRma999", "osanseviero", "Ramikan-BR", "taufiqdp", "whitebill", "Tonic", "Hev832", "mrmuminov", "Yhyu13", "louisbrulenaudet" ], "count": 10 }, { "reaction": "🚀", "users": [ "Ramikan-BR", "Tonic", "Yhyu13", "eljanmahammadli" ], "count": 4 }, { "reaction": "👀", "users": [ "Ramikan-BR", "Tonic", "Yhyu13" ], "count": 3 } ]
2024-06-01T10:06:38.000Z
2024-06-02T09:14:14.699Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/62a3bb1cd0d8c2c2169f0b88/eT2TS0IlQbZtz-F_zHLz9.jpeg", "fullname": "Joseph Pollack", "name": "Tonic", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 310, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/PKzQSYUHCgFFVYPeeNGYy.png", "fullname": "DynaTech Systems", "name": "DynaTechSystems", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false } ]
/posts/qq8933/372309956389715
2,075
2
375095993392947
[ { "type": "text", "value": "Remember Gemini, GPT-4o, all being true multimodal models 🌟.", "raw": "Remember Gemini, GPT-4o, all being true multimodal models 🌟.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Now we have a paper 📄 describing an architecture that might achieve that!", "raw": "Now we have a paper 📄 describing an architecture that might achieve that!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Uni-MoE: a native multimodal, Unified Mixture of Experts (MoE) architecture 🏗️.", "raw": "Uni-MoE: a native multimodal, Unified Mixture of Experts (MoE) architecture 🏗️.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Uni-MoE integrates various modalities (text 📝, image 🖼️, audio 🎵, video 📹, speech 🗣️) using modality-specific encoders and connectors for a cohesive multimodal understanding.", "raw": "Uni-MoE integrates various modalities (text 📝, image 🖼️, audio 🎵, video 📹, speech 🗣️) using modality-specific encoders and connectors for a cohesive multimodal understanding.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Training Strategy:", "raw": "Training Strategy:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1️⃣ Training cross-modality alignment with diverse connectors 🔄.", "raw": "1️⃣ Training cross-modality alignment with diverse connectors 🔄.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2️⃣ Training modality-specific experts using cross-modality instruction data 📊.", "raw": "2️⃣ Training modality-specific experts using cross-modality instruction data 📊.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "3️⃣Tuning the Uni-MoE framework with Low-Rank Adaptation (LoRA) on mixed multimodal data 🔧.", "raw": "3️⃣Tuning the Uni-MoE framework with Low-Rank Adaptation (LoRA) on mixed multimodal data 🔧.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Technical Details:", "raw": "Technical Details:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Modality-Specific Encoders: CLIP for images 🖼️, Whisper for speech 🗣️, BEATs for audio 🎵.", "raw": "Modality-Specific Encoders: CLIP for images 🖼️, Whisper for speech 🗣️, BEATs for audio 🎵.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "MoE-Based Blocks: Shared self-attention layers, feed-forward networks (FFN) based experts, and sparse routers for token-level expertise allocation 🚀.", "raw": "MoE-Based Blocks: Shared self-attention layers, feed-forward networks (FFN) based experts, and sparse routers for token-level expertise allocation 🚀.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Efficient Training: Utilizes LoRA for fine-tuning pre-trained experts and self-attention layers 🛠️.", "raw": "Efficient Training: Utilizes LoRA for fine-tuning pre-trained experts and self-attention layers 🛠️.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Uni-MoE outperforms traditional dense models on benchmarks like A-OKVQA, OK-VQA, VQAv2, MMBench, RACE-Audio, and English High School Listening Test 🏆.", "raw": "Uni-MoE outperforms traditional dense models on benchmarks like A-OKVQA, OK-VQA, VQAv2, MMBench, RACE-Audio, and English High School Listening Test 🏆.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The code is open-sourced as well: ", "raw": "The code is open-sourced as well: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs/tree/master/Uni_MoE_v2", "resource": null, "url": null, "href": "https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs/tree/master/Uni_MoE_v2", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Paper: ", "raw": "Paper: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2405.11273", "resource": { "type": "paper", "id": "2405.11273", "discussionNum": null }, "url": "https://huggingface.co/papers/2405.11273", "href": null, "user": null, "lang": null, "code": null, "label": "Uni-MoE: Scaling Unified Multimodal LLMs with Mixture of Experts (2405.11273)" } ]
Remember Gemini, GPT-4o, all being true multimodal models 🌟. Now we have a paper 📄 describing an architecture that might achieve that! Uni-MoE: a native multimodal, Unified Mixture of Experts (MoE) architecture 🏗️. Uni-MoE integrates various modalities (text 📝, image 🖼️, audio 🎵, video 📹, speech 🗣️) using modality-specific encoders and connectors for a cohesive multimodal understanding. Training Strategy: 1️⃣ Training cross-modality alignment with diverse connectors 🔄. 2️⃣ Training modality-specific experts using cross-modality instruction data 📊. 3️⃣Tuning the Uni-MoE framework with Low-Rank Adaptation (LoRA) on mixed multimodal data 🔧. Technical Details: Modality-Specific Encoders: CLIP for images 🖼️, Whisper for speech 🗣️, BEATs for audio 🎵. MoE-Based Blocks: Shared self-attention layers, feed-forward networks (FFN) based experts, and sparse routers for token-level expertise allocation 🚀. Efficient Training: Utilizes LoRA for fine-tuning pre-trained experts and self-attention layers 🛠️. Uni-MoE outperforms traditional dense models on benchmarks like A-OKVQA, OK-VQA, VQAv2, MMBench, RACE-Audio, and English High School Listening Test 🏆. The code is open-sourced as well: https://github.com/HITsz-TMG/UMOE-Scaling-Unified-Multimodal-LLMs/tree/master/Uni_MoE_v2 Paper: https://huggingface.co/papers/2405.11273
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 197, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/EdjQkmLpB8o0DRaVWb-k3.jpeg" } ]
[]
[ { "reaction": "🚀", "users": [ "osanseviero", "alielfilali01" ], "count": 2 }, { "reaction": "🤗", "users": [ "Lumpen1", "alielfilali01" ], "count": 2 }, { "reaction": "🧠", "users": [ "alielfilali01" ], "count": 1 } ]
2024-05-31T21:42:25.000Z
2024-05-31T21:42:25.714Z
[]
/posts/singhsidhukuldeep/375095993392947
1,515
0
733013042582862
[ { "type": "text", "value": "#Newer / Current Version", "raw": "#Newer / Current Version", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🚨Huggingface APK Update v0.0.4🚨", "raw": "🚨Huggingface APK Update v0.0.4🚨", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1. Fixed Pinch to Zoom Update .", "raw": "1. Fixed Pinch to Zoom Update .", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2. Swipe Gestures.", "raw": "2. Swipe Gestures.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "3. Fixed Auto Rotate.", "raw": "3. Fixed Auto Rotate.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "4. Updated app Indentifiers.", "raw": "4. Updated app Indentifiers.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Download the app now !!", "raw": "Download the app now !!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🚨Huggingface v0.0.4 Download,", "raw": "🚨Huggingface v0.0.4 Download,", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "⬇️Link : ", "raw": "⬇️Link : ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://drive.google.com/file/d/1xEiH7LMdP14fBG-xDuSqKje5TRLV1PuS/view?usp=sharing", "resource": null, "url": null, "href": "https://drive.google.com/file/d/1xEiH7LMdP14fBG-xDuSqKje5TRLV1PuS/view?usp=sharing", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Like 👍Share 🚀 Follow 🌠", "raw": "Like 👍Share 🚀 Follow 🌠", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
#Newer / Current Version 🚨Huggingface APK Update v0.0.4🚨 1. Fixed Pinch to Zoom Update . 2. Swipe Gestures. 3. Fixed Auto Rotate. 4. Updated app Indentifiers. Download the app now !! 🚨Huggingface v0.0.4 Download, ⬇️Link : https://drive.google.com/file/d/1xEiH7LMdP14fBG-xDuSqKje5TRLV1PuS/view?usp=sharing Like 👍Share 🚀 Follow 🌠
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65bb837dbfb878f46c77de4c/UVtVbF_3rdt0DC8xTkpL1.jpeg", "fullname": "Prithiv Sakthi", "name": "prithivMLmods", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 342, "isFollowing": false }
[]
[]
[ { "reaction": "➕", "users": [ "prithivMLmods", "Speedk4011" ], "count": 2 } ]
2024-05-31T17:30:06.000Z
2024-06-01T18:02:53.687Z
[]
/posts/prithivMLmods/733013042582862
3,365
0
786350827380996
[ { "type": "text", "value": "I am pleased to announce 2 amazing AI demos:", "raw": "I am pleased to announce 2 amazing AI demos:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1. Chat with Google Agent - This includes three AI models that allow you to converse with an AI, which provides answers by searching Google.", "raw": "1. Chat with Google Agent - This includes three AI models that allow you to converse with an AI, which provides answers by searching Google.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Demo Link: ", "raw": "Demo Link: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/poscye/google-go", "resource": { "type": "space", "id": "poscye/google-go", "discussionNum": null }, "url": "https://huggingface.co/spaces/poscye/google-go", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2. HelpingAI 9B - A model that surpassed all top AIs with the highest EQ benchmark score of 89.23. It specializes in understanding human emotions and responding in human style.", "raw": "2. HelpingAI 9B - A model that surpassed all top AIs with the highest EQ benchmark score of 89.23. It specializes in understanding human emotions and responding in human style.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Demo Link: ", "raw": "Demo Link: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/spaces/Abhaykoul/HelpingAI-9B", "resource": null, "url": null, "href": "https://huggingface.co/spaces/Abhaykoul/HelpingAI-9B", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model Link: ", "raw": "Model Link: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/OEvortex/HelpingAI-9B", "resource": { "type": "model", "id": "OEvortex/HelpingAI-9B", "discussionNum": null }, "url": "https://huggingface.co/OEvortex/HelpingAI-9B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Blog Link: ", "raw": "Blog Link: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/KingNish/helpingai-9b", "resource": null, "url": null, "href": "https://huggingface.co/blog/KingNish/helpingai-9b", "user": null, "lang": null, "code": null, "label": null } ]
I am pleased to announce 2 amazing AI demos: 1. Chat with Google Agent - This includes three AI models that allow you to converse with an AI, which provides answers by searching Google. Demo Link: https://huggingface.co/spaces/poscye/google-go 2. HelpingAI 9B - A model that surpassed all top AIs with the highest EQ benchmark score of 89.23. It specializes in understanding human emotions and responding in human style. Demo Link: https://huggingface.co/spaces/Abhaykoul/HelpingAI-9B Model Link: https://huggingface.co/OEvortex/HelpingAI-9B Blog Link: https://huggingface.co/blog/KingNish/helpingai-9b
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg", "fullname": "Nishith Jain", "name": "KingNish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1072, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "Lumpen1", "pabloce", "ijohn07", "Rusky1234", "osanseviero", "Hev832", "rreed-pha", "Lou-stic" ], "count": 8 }, { "reaction": "❤️", "users": [ "pabloce", "aceeee", "PifPaf", "louisbrulenaudet" ], "count": 4 }, { "reaction": "🚀", "users": [ "pabloce" ], "count": 1 }, { "reaction": "😎", "users": [ "pabloce" ], "count": 1 }, { "reaction": "🔥", "users": [ "pabloce" ], "count": 1 } ]
2024-05-31T15:32:43.000Z
2024-06-02T09:46:26.266Z
[ { "avatarUrl": "/avatars/1a2ca2ddd0b7b3c4fe93ccfc89f97752.svg", "fullname": "Shruti Dhange", "name": "shrutidhange", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg", "fullname": "Nishith Jain", "name": "KingNish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1072, "isFollowing": false } ]
/posts/KingNish/786350827380996
6,480
2
885684618092437
[ { "type": "text", "value": "We are pleased to announce the new line of universal token classification models 🔥", "raw": "We are pleased to announce the new line of universal token classification models 🔥", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/knowledgator/universal-token-classification-65a3a5d3f266d20b2e05c34d", "resource": { "type": "collection", "id": "knowledgator/universal-token-classification-65a3a5d3f266d20b2e05c34d", "discussionNum": null }, "url": "https://huggingface.co/collections/knowledgator/universal-token-classification-65a3a5d3f266d20b2e05c34d", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "It can perform various information extraction tasks by analysing input prompts and recognizing parts of texts that satisfy prompts. In comparison with the first version, the second one is more general and can be recognised as entities, whole sentences, and even paragraphs.", "raw": "It can perform various information extraction tasks by analysing input prompts and recognizing parts of texts that satisfy prompts. In comparison with the first version, the second one is more general and can be recognised as entities, whole sentences, and even paragraphs.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The model can be used for the following tasks:", "raw": "The model can be used for the following tasks:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Named entity recognition (NER);", "raw": "* Named entity recognition (NER);", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Open information extraction;", "raw": "* Open information extraction;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Question answering;", "raw": "* Question answering;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Relation extraction;", "raw": "* Relation extraction;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Coreference resolution;", "raw": "* Coreference resolution;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Text cleaning;", "raw": "* Text cleaning;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* Summarization;", "raw": "* Summarization;", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "How to use:", "raw": "How to use:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "code_fence", "value": null, "raw": "```\nfrom utca.core import (\n AddData,\n RenameAttribute,\n Flush\n)\nfrom utca.implementation.predictors import (\n TokenSearcherPredictor, TokenSearcherPredictorConfig\n)\nfrom utca.implementation.tasks import (\n TokenSearcherNER,\n TokenSearcherNERPostprocessor,\n)\npredictor = TokenSearcherPredictor(\n TokenSearcherPredictorConfig(\n device=\"cuda:0\",\n model=\"knowledgator/UTC-DeBERTa-base-v2\"\n )\n)\nner_task = TokenSearcherNER(\n predictor=predictor,\n postprocess=[TokenSearcherNERPostprocessor(\n threshold=0.5\n )]\n)\n\nner_task = TokenSearcherNER()\n\npipeline = ( \n AddData({\"labels\": [\"scientist\", \"university\", \"city\"]}) \n | ner_task\n | Flush(keys=[\"labels\"])\n | RenameAttribute(\"output\", \"entities\")\n)\nres = pipeline.run({\n \"text\": \"\"\"Dr. Paul Hammond, a renowned neurologist at Johns Hopkins University, has recently published a paper in the prestigious journal \"Nature Neuroscience\". \"\"\"\n})\n```", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": "from utca.core import (\n AddData,\n RenameAttribute,\n Flush\n)\nfrom utca.implementation.predictors import (\n TokenSearcherPredictor, TokenSearcherPredictorConfig\n)\nfrom utca.implementation.tasks import (\n TokenSearcherNER,\n TokenSearcherNERPostprocessor,\n)\npredictor = TokenSearcherPredictor(\n TokenSearcherPredictorConfig(\n device=\"cuda:0\",\n model=\"knowledgator/UTC-DeBERTa-base-v2\"\n )\n)\nner_task = TokenSearcherNER(\n predictor=predictor,\n postprocess=[TokenSearcherNERPostprocessor(\n threshold=0.5\n )]\n)\n\nner_task = TokenSearcherNER()\n\npipeline = ( \n AddData({\"labels\": [\"scientist\", \"university\", \"city\"]}) \n | ner_task\n | Flush(keys=[\"labels\"])\n | RenameAttribute(\"output\", \"entities\")\n)\nres = pipeline.run({\n \"text\": \"\"\"Dr. Paul Hammond, a renowned neurologist at Johns Hopkins University, has recently published a paper in the prestigious journal \"Nature Neuroscience\". \"\"\"\n})", "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
We are pleased to announce the new line of universal token classification models 🔥 https://huggingface.co/collections/knowledgator/universal-token-classification-65a3a5d3f266d20b2e05c34d It can perform various information extraction tasks by analysing input prompts and recognizing parts of texts that satisfy prompts. In comparison with the first version, the second one is more general and can be recognised as entities, whole sentences, and even paragraphs. The model can be used for the following tasks: * Named entity recognition (NER); * Open information extraction; * Question answering; * Relation extraction; * Coreference resolution; * Text cleaning; * Summarization; How to use: ``` from utca.core import ( AddData, RenameAttribute, Flush ) from utca.implementation.predictors import ( TokenSearcherPredictor, TokenSearcherPredictorConfig ) from utca.implementation.tasks import ( TokenSearcherNER, TokenSearcherNERPostprocessor, ) predictor = TokenSearcherPredictor( TokenSearcherPredictorConfig( device="cuda:0", model="knowledgator/UTC-DeBERTa-base-v2" ) ) ner_task = TokenSearcherNER( predictor=predictor, postprocess=[TokenSearcherNERPostprocessor( threshold=0.5 )] ) ner_task = TokenSearcherNER() pipeline = ( AddData({"labels": ["scientist", "university", "city"]}) | ner_task | Flush(keys=["labels"]) | RenameAttribute("output", "entities") ) res = pipeline.run({ "text": """Dr. Paul Hammond, a renowned neurologist at Johns Hopkins University, has recently published a paper in the prestigious journal "Nature Neuroscience". """ }) ```
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1658166666371-noauth.png", "fullname": "Stepanov", "name": "Ihor", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 15, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "KingNish", "GPT007", "la-min", "osanseviero", "Joseph717171", "Ramikan-BR", "a9i" ], "count": 7 }, { "reaction": "🔥", "users": [ "Citaman", "cansa", "Ihor", "Ramikan-BR" ], "count": 4 }, { "reaction": "👀", "users": [ "Ramikan-BR" ], "count": 1 } ]
2024-05-31T14:53:35.000Z
2024-05-31T14:54:15.915Z
[]
/posts/Ihor/885684618092437
1,896
0
505714323175985
[ { "type": "text", "value": "𝗛𝗼𝘄 𝗱𝗼𝗲𝘀 𝗮𝗻 𝗮𝗴𝗲𝗻𝘁𝗶𝗰 𝘄𝗼𝗿𝗸𝗳𝗹𝗼𝘄 𝘂𝘀𝗲 𝗶𝘁𝘀 𝗟𝗟𝗠 𝗲𝗻𝗴𝗶𝗻𝗲 𝘁𝗼 𝘀𝗼𝗹𝘃𝗲 𝘁𝗮𝘀𝗸𝘀?", "raw": "𝗛𝗼𝘄 𝗱𝗼𝗲𝘀 𝗮𝗻 𝗮𝗴𝗲𝗻𝘁𝗶𝗰 𝘄𝗼𝗿𝗸𝗳𝗹𝗼𝘄 𝘂𝘀𝗲 𝗶𝘁𝘀 𝗟𝗟𝗠 𝗲𝗻𝗴𝗶𝗻𝗲 𝘁𝗼 𝘀𝗼𝗹𝘃𝗲 𝘁𝗮𝘀𝗸𝘀?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "➡️ I made my first ever 𝘮𝘢𝘯𝘪𝘮 video to show just that:", "raw": "➡️ I made my first ever 𝘮𝘢𝘯𝘪𝘮 video to show just that:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "𝗪𝗮𝘁𝗰𝗵 𝗯𝗲𝗹𝗼𝘄 𝗵𝗼𝘄 𝗮 𝗥𝗲𝗮𝗰𝘁 𝗔𝗴𝗲𝗻𝘁 𝘀𝗼𝗹𝘃𝗲𝘀 𝗮 𝘀𝗶𝗺𝗽𝗹𝗲 𝘁𝗮𝘀𝗸, by leveraging its memory to iterate on previous actions! 🎬👇", "raw": "𝗪𝗮𝘁𝗰𝗵 𝗯𝗲𝗹𝗼𝘄 𝗵𝗼𝘄 𝗮 𝗥𝗲𝗮𝗰𝘁 𝗔𝗴𝗲𝗻𝘁 𝘀𝗼𝗹𝘃𝗲𝘀 𝗮 𝘀𝗶𝗺𝗽𝗹𝗲 𝘁𝗮𝘀𝗸, by leveraging its memory to iterate on previous actions! 🎬👇", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Read our blog post on Agents: ", "raw": "Read our blog post on Agents: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/agents", "resource": null, "url": null, "href": "https://huggingface.co/blog/agents", "user": null, "lang": null, "code": null, "label": null } ]
𝗛𝗼𝘄 𝗱𝗼𝗲𝘀 𝗮𝗻 𝗮𝗴𝗲𝗻𝘁𝗶𝗰 𝘄𝗼𝗿𝗸𝗳𝗹𝗼𝘄 𝘂𝘀𝗲 𝗶𝘁𝘀 𝗟𝗟𝗠 𝗲𝗻𝗴𝗶𝗻𝗲 𝘁𝗼 𝘀𝗼𝗹𝘃𝗲 𝘁𝗮𝘀𝗸𝘀? ➡️ I made my first ever 𝘮𝘢𝘯𝘪𝘮 video to show just that: 𝗪𝗮𝘁𝗰𝗵 𝗯𝗲𝗹𝗼𝘄 𝗵𝗼𝘄 𝗮 𝗥𝗲𝗮𝗰𝘁 𝗔𝗴𝗲𝗻𝘁 𝘀𝗼𝗹𝘃𝗲𝘀 𝗮 𝘀𝗶𝗺𝗽𝗹𝗲 𝘁𝗮𝘀𝗸, by leveraging its memory to iterate on previous actions! 🎬👇 Read our blog post on Agents: https://huggingface.co/blog/agents
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/63d10d4e8eaa4831005e92b5/7p7-OmWM6PqqCs7ZStPGD.jpeg", "fullname": "Aymeric Roucher", "name": "m-ric", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 476, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/63d10d4e8eaa4831005e92b5/i-F4wkBjgWQiei3WWvCJG.mp4" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "nbroad", "GPT007", "umair894", "Hev832", "not-lain" ], "count": 6 } ]
2024-05-31T12:59:31.000Z
2024-06-02T01:08:01.641Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 919, "isFollowing": false } ]
/posts/m-ric/505714323175985
1,843
1
854384239175296
[ { "type": "text", "value": "With the previous survey, Ghost Beta (small version) will support 9+ languages ​​fluently. It is revealed that the model will be designed for 3 stages of training, showing a checkpoint to try at stage 1 (trained progress: 29%). ", "raw": "With the previous survey, Ghost Beta (small version) will support 9+ languages ​​fluently. It is revealed that the model will be designed for 3 stages of training, showing a checkpoint to try at stage 1 (trained progress: 29%). ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Supported languages: 🇺🇸 English, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇨🇳 Chinese, and !? ", "raw": "Supported languages: 🇺🇸 English, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇨🇳 Chinese, and !? ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Note that this is not a conclusion, this is just a sharing of the state of the model. If you find it interesting, please follow the project at:", "raw": "Note that this is not a conclusion, this is just a sharing of the state of the model. If you find it interesting, please follow the project at:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ", "raw": "* ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://x.com/ghostx_ai", "resource": null, "url": null, "href": "https://x.com/ghostx_ai", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ", "raw": "* ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://ghost-x.org/", "resource": null, "url": null, "href": "https://ghost-x.org/", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "* ", "raw": "* ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/ghost-x", "resource": null, "url": null, "href": "https://huggingface.co/ghost-x", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🤯👇", "raw": "🤯👇", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
With the previous survey, Ghost Beta (small version) will support 9+ languages ​​fluently. It is revealed that the model will be designed for 3 stages of training, showing a checkpoint to try at stage 1 (trained progress: 29%). Supported languages: 🇺🇸 English, 🇪🇸 Spanish, 🇵🇹 Portuguese, 🇫🇷 French, 🇮🇹 Italian, 🇩🇪 German, 🇻🇳 Vietnamese, 🇰🇷 Korean, 🇨🇳 Chinese, and !? Note that this is not a conclusion, this is just a sharing of the state of the model. If you find it interesting, please follow the project at: * https://x.com/ghostx_ai * https://ghost-x.org/ * https://huggingface.co/ghost-x 🤯👇
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/600ae38cc92b79f54efd4556/cSqRIslYl5L3I4WK3a31f.png", "fullname": "Hieu Lam", "name": "lamhieu", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/Btn3jyPZdUIK0jB5uQuB2.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/riaW_TBPCUXo6SgBHekvu.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/0Q6xgYg5C1E89OhdBgSAx.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/qvacaQ4cSkUvN8wviYOeQ.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/wG5Pvficg7jTOzJ7z93Ne.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/o-IcRG6rS8pmqvCqpKm6v.png" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/600ae38cc92b79f54efd4556/DP-qBGNnHs2FFu52y8Xnk.png" } ]
[]
[ { "reaction": "👀", "users": [ "lunarflu" ], "count": 1 } ]
2024-05-31T10:15:06.000Z
2024-05-31T10:15:06.915Z
[]
/posts/lamhieu/854384239175296
857
0
323139388303135
[ { "type": "link", "value": null, "raw": "https://hf.co/chat/assistant/66591a605bfa3e96f8267a32", "resource": null, "url": null, "href": "https://hf.co/chat/assistant/66591a605bfa3e96f8267a32", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "AI perfect hashtag generator", "raw": "AI perfect hashtag generator", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Create advanced hashtags using our smart AI system.", "raw": "Create advanced hashtags using our smart AI system.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
https://hf.co/chat/assistant/66591a605bfa3e96f8267a32 AI perfect hashtag generator Create advanced hashtags using our smart AI system.
{ "avatarUrl": "/avatars/d773a7dd9b706759131fc482ab71ced7.svg", "fullname": "[email protected]", "name": "Taf2023", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "victor" ], "count": 1 } ]
2024-05-31T08:59:30.000Z
2024-05-31T09:04:31.361Z
[ { "avatarUrl": "/avatars/d773a7dd9b706759131fc482ab71ced7.svg", "fullname": "[email protected]", "name": "Taf2023", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 8, "isFollowing": false } ]
/posts/Taf2023/323139388303135
921
1
935912455364805
[ { "type": "text", "value": "Octave-X releases their proprietary model Tenzin. For now the access will be given to a select few and will gradually open up. Our model is different from other models in the way it learns. It is not fed heaps of information but starts learning exactly like a human by first studying grammar patterns, then learning then number system, then learning to synthesize words and then sentences and so on. Patience is key with Tenzin. It keeps learning 24/7 with/without user-input. We have decided to keep our model closed-source given the novel algorithms integrated into it along with our novel ideas. Please expect our datacard soon which will be followed by our research paper. You can check us out at ", "raw": "Octave-X releases their proprietary model Tenzin. For now the access will be given to a select few and will gradually open up. Our model is different from other models in the way it learns. It is not fed heaps of information but starts learning exactly like a human by first studying grammar patterns, then learning then number system, then learning to synthesize words and then sentences and so on. Patience is key with Tenzin. It keeps learning 24/7 with/without user-input. We have decided to keep our model closed-source given the novel algorithms integrated into it along with our novel ideas. Please expect our datacard soon which will be followed by our research paper. You can check us out at ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://octave-x.com/", "resource": null, "url": null, "href": "https://octave-x.com/", "user": null, "lang": null, "code": null, "label": null } ]
Octave-X releases their proprietary model Tenzin. For now the access will be given to a select few and will gradually open up. Our model is different from other models in the way it learns. It is not fed heaps of information but starts learning exactly like a human by first studying grammar patterns, then learning then number system, then learning to synthesize words and then sentences and so on. Patience is key with Tenzin. It keeps learning 24/7 with/without user-input. We have decided to keep our model closed-source given the novel algorithms integrated into it along with our novel ideas. Please expect our datacard soon which will be followed by our research paper. You can check us out at https://octave-x.com/
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/66055c33d0703e48e206c606/VPBpTh06gJ6pZ5bgQcUQJ.png", "fullname": "Tarun Mittal", "name": "Tar9897", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 26, "isFollowing": false }
[]
[]
[ { "reaction": "👍", "users": [ "Tar9897", "lunarflu", "Joseph717171", "Locutusque", "Ryukijano" ], "count": 5 }, { "reaction": "😎", "users": [ "Tar9897", "Ryukijano" ], "count": 2 }, { "reaction": "❤️", "users": [ "Tar9897", "Ryukijano" ], "count": 2 }, { "reaction": "🚀", "users": [ "Tar9897", "Ryukijano" ], "count": 2 }, { "reaction": "😔", "users": [ "adamo1139" ], "count": 1 } ]
2024-05-31T05:10:29.000Z
2024-05-31T05:10:29.872Z
[]
/posts/Tar9897/935912455364805
1,868
0
134000407232815
[ { "type": "text", "value": "My 1st post on 🤗 I would love to discuss topics related to bias in LLMs: ", "raw": "My 1st post on 🤗 I would love to discuss topics related to bias in LLMs: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "1) Are researchers and enterprises concerned about detecting and addressing social bias in the Gen AI applications? If so, what are the existing approaches?", "raw": "1) Are researchers and enterprises concerned about detecting and addressing social bias in the Gen AI applications? If so, what are the existing approaches?", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "2) Are there trusted and labeled datasets to evaluate bias in LLM generations? ", "raw": "2) Are there trusted and labeled datasets to evaluate bias in LLM generations? ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
My 1st post on 🤗 I would love to discuss topics related to bias in LLMs: 1) Are researchers and enterprises concerned about detecting and addressing social bias in the Gen AI applications? If so, what are the existing approaches? 2) Are there trusted and labeled datasets to evaluate bias in LLM generations?
{ "avatarUrl": "/avatars/3fe3be1d6609cbedd601d01ad6e39c8e.svg", "fullname": "Shivansh Chaudhary", "name": "Shivansh000", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 2, "isFollowing": false }
[]
[]
[ { "reaction": "🤗", "users": [ "lunarflu", "osanseviero", "egorvatulko", "Ryukijano", "Shivansh000" ], "count": 5 } ]
2024-05-30T22:26:43.000Z
2024-05-30T22:26:43.942Z
[]
/posts/Shivansh000/134000407232815
1,576
0
450962887111037
[ { "type": "text", "value": "🦅 Falcon has landed... again! ", "raw": "🦅 Falcon has landed... again! ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "And now it not just reads but sees as well 📖👀", "raw": "And now it not just reads but sees as well 📖👀", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Here is a summary of the Falcon-11B-VLM model:", "raw": "Here is a summary of the Falcon-11B-VLM model:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model Type: Causal decoder-only model 🔄.", "raw": "Model Type: Causal decoder-only model 🔄.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Parameters: 11 billion 🌌.", "raw": "Parameters: 11 billion 🌌.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Vision Integration: Uses the pretrained CLIP ViT-L/14 vision encoder with the recently released Falcon2-11B chat-finetuned model and trained with image-text data 🖼️📚.", "raw": "Vision Integration: Uses the pretrained CLIP ViT-L/14 vision encoder with the recently released Falcon2-11B chat-finetuned model and trained with image-text data 🖼️📚.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Training: Pretrained on over 5,000 billion tokens from RefinedWeb with curated corpora 📊.", "raw": "Training: Pretrained on over 5,000 billion tokens from RefinedWeb with curated corpora 📊.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Dynamic Encoding: Enhances perception of fine-grained details in images 🔍.", "raw": "Dynamic Encoding: Enhances perception of fine-grained details in images 🔍.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Training Hardware: 16 A100 80GB GPUs with ZeRO and Flash-Attention 2 🖥️.", "raw": "Training Hardware: 16 A100 80GB GPUs with ZeRO and Flash-Attention 2 🖥️.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Tokenizer: Falcon-7B/11B tokenizer 🧩.", "raw": "Tokenizer: Falcon-7B/11B tokenizer 🧩.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Languages Supported: 🌍 Primarily English, with capabilities in German 🇩🇪, Spanish 🇪🇸, French 🇫🇷, Italian 🇮🇹, Dutch 🇳🇱, Romanian 🇷🇴, Czech 🇨🇿, Swedish 🇸🇪, and more. 🗣️🌐.", "raw": "Languages Supported: 🌍 Primarily English, with capabilities in German 🇩🇪, Spanish 🇪🇸, French 🇫🇷, Italian 🇮🇹, Dutch 🇳🇱, Romanian 🇷🇴, Czech 🇨🇿, Swedish 🇸🇪, and more. 🗣️🌐.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "License: Open Source - TII Falcon License 2.0, based on Apache 2.0 📜.", "raw": "License: Open Source - TII Falcon License 2.0, based on Apache 2.0 📜.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Model: ", "raw": "Model: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/tiiuae/falcon-11B-vlm", "resource": { "type": "model", "id": "tiiuae/falcon-11B-vlm", "discussionNum": null }, "url": "https://huggingface.co/tiiuae/falcon-11B-vlm", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
🦅 Falcon has landed... again! And now it not just reads but sees as well 📖👀 Here is a summary of the Falcon-11B-VLM model: Model Type: Causal decoder-only model 🔄. Parameters: 11 billion 🌌. Vision Integration: Uses the pretrained CLIP ViT-L/14 vision encoder with the recently released Falcon2-11B chat-finetuned model and trained with image-text data 🖼️📚. Training: Pretrained on over 5,000 billion tokens from RefinedWeb with curated corpora 📊. Dynamic Encoding: Enhances perception of fine-grained details in images 🔍. Training Hardware: 16 A100 80GB GPUs with ZeRO and Flash-Attention 2 🖥️. Tokenizer: Falcon-7B/11B tokenizer 🧩. Languages Supported: 🌍 Primarily English, with capabilities in German 🇩🇪, Spanish 🇪🇸, French 🇫🇷, Italian 🇮🇹, Dutch 🇳🇱, Romanian 🇷🇴, Czech 🇨🇿, Swedish 🇸🇪, and more. 🗣️🌐. License: Open Source - TII Falcon License 2.0, based on Apache 2.0 📜. Model: https://huggingface.co/tiiuae/falcon-11B-vlm
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/662bf5bfe93bb73804ef9344/WXYLnjjJ4SROkoveIi7If.png", "fullname": "Kuldeep Singh Sidhu", "name": "singhsidhukuldeep", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 197, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/662bf5bfe93bb73804ef9344/v0JeqVOtzbTF-Hd7d8Lcd.webp" } ]
[]
[ { "reaction": "🔥", "users": [ "osanseviero", "KingNish", "louisbrulenaudet", "lunarflu" ], "count": 4 }, { "reaction": "👀", "users": [ "osanseviero", "lunarflu", "GPT007" ], "count": 3 } ]
2024-05-30T20:47:09.000Z
2024-05-30T20:47:09.155Z
[]
/posts/singhsidhukuldeep/450962887111037
1,877
0
938075119628356
[ { "type": "text", "value": "You can now train/finetune custom sentence transformer embedding models using AutoTrain. Read blog: ", "raw": "You can now train/finetune custom sentence transformer embedding models using AutoTrain. Read blog: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/blog/abhishek/finetune-custom-embeddings-autotrain", "resource": null, "url": null, "href": "https://huggingface.co/blog/abhishek/finetune-custom-embeddings-autotrain", "user": null, "lang": null, "code": null, "label": null } ]
You can now train/finetune custom sentence transformer embedding models using AutoTrain. Read blog: https://huggingface.co/blog/abhishek/finetune-custom-embeddings-autotrain
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fa19f4ba13e063b8b2b5e11/nGVHdTYX2udnt-K8mqY27.jpeg", "fullname": "Abhishek Thakur", "name": "abhishek", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 1379, "isFollowing": false }
[]
[]
[ { "reaction": "🚀", "users": [ "YaTharThShaRma999", "abhishek", "osanseviero", "lunarflu", "MexIvanov", "not-lain" ], "count": 6 } ]
2024-05-30T16:25:08.000Z
2024-06-04T08:47:53.678Z
[ { "avatarUrl": "/avatars/f062766e4b5290373136781a2db7ee97.svg", "fullname": "Javier Garcia-Samaniego", "name": "javiergsg", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/5fa19f4ba13e063b8b2b5e11/nGVHdTYX2udnt-K8mqY27.jpeg", "fullname": "Abhishek Thakur", "name": "abhishek", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 1379, "isFollowing": false } ]
/posts/abhishek/938075119628356
3,308
2
909649839818293
[ { "type": "text", "value": "ChatGPT made Custom GPTs Free for Everyone.", "raw": "ChatGPT made Custom GPTs Free for Everyone.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Yes, you can use them but...", "raw": "Yes, you can use them but...", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "with limitations like", "raw": "with limitations like", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "You can't use DallE 😥, ", "raw": "You can't use DallE 😥, ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "You can't make Custom GPTs ", "raw": "You can't make Custom GPTs ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "And chat limit also😥.", "raw": "And chat limit also😥.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "But...", "raw": "But...", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "We already have an open-source alternative like Hugging Chat, where you can create your custom assistant, generate, edit images, without any chat limit.", "raw": "We already have an open-source alternative like Hugging Chat, where you can create your custom assistant, generate, edit images, without any chat limit.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Try both of them from here:", "raw": "Try both of them from here:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://chatgpt.com/gpts", "resource": null, "url": null, "href": "https://chatgpt.com/gpts", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://huggingface.co/chat", "resource": null, "url": null, "href": "https://huggingface.co/chat", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "and don't forget to Give your review here 👇:", "raw": "and don't forget to Give your review here 👇:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
ChatGPT made Custom GPTs Free for Everyone. Yes, you can use them but... with limitations like You can't use DallE 😥, You can't make Custom GPTs And chat limit also😥. But... We already have an open-source alternative like Hugging Chat, where you can create your custom assistant, generate, edit images, without any chat limit. Try both of them from here: https://chatgpt.com/gpts https://huggingface.co/chat and don't forget to Give your review here 👇:
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6612aedf09f16e7347dfa7e1/bPYjBXCedY_1fSIPjoBTY.jpeg", "fullname": "Nishith Jain", "name": "KingNish", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1072, "isFollowing": false }
[]
[]
[ { "reaction": "🤗", "users": [ "pabloce", "GPT007", "KingNish", "NHLOCAL", "lunarflu", "Darkknight12", "nbroad" ], "count": 7 } ]
2024-05-30T15:12:05.000Z
2024-11-04T21:13:50.769Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/noauth/G-3uRdmjqq59bYmrKNc0B.jpeg", "fullname": "Dima (Dmytro) Korolov", "name": "Dimaa98", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": null, "isFollowing": false } ]
/posts/KingNish/909649839818293
3,239
2
630726145653856
[ { "type": "text", "value": "I ran 580 experiments (yes, 580 🤯) to check if we can quantify data drift's impact on model performance using only drift metrics.", "raw": "I ran 580 experiments (yes, 580 🤯) to check if we can quantify data drift's impact on model performance using only drift metrics.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "For these experiments, I built a technique that relies on drift signals to estimate model performance. I compared its results against the current SoTA performance estimation methods and checked which technique performs best.", "raw": "For these experiments, I built a technique that relies on drift signals to estimate model performance. I compared its results against the current SoTA performance estimation methods and checked which technique performs best.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The plot below summarizes the general results. It measures the quality of performance estimation versus the absolute performance change. (The lower, the better).", "raw": "The plot below summarizes the general results. It measures the quality of performance estimation versus the absolute performance change. (The lower, the better).", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Full experiment: ", "raw": "Full experiment: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://www.nannyml.com/blog/data-drift-estimate-model-performance", "resource": null, "url": null, "href": "https://www.nannyml.com/blog/data-drift-estimate-model-performance", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In it, I describe the setup, datasets, models, benchmarking methods, and the code used in the project.", "raw": "In it, I describe the setup, datasets, models, benchmarking methods, and the code used in the project.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
I ran 580 experiments (yes, 580 🤯) to check if we can quantify data drift's impact on model performance using only drift metrics. For these experiments, I built a technique that relies on drift signals to estimate model performance. I compared its results against the current SoTA performance estimation methods and checked which technique performs best. The plot below summarizes the general results. It measures the quality of performance estimation versus the absolute performance change. (The lower, the better). Full experiment: https://www.nannyml.com/blog/data-drift-estimate-model-performance In it, I describe the setup, datasets, models, benchmarking methods, and the code used in the project.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1657144463525-629a173153a72d997d3f57d0.jpeg", "fullname": "Santiago Viquez", "name": "santiviquez", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 84, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/629a173153a72d997d3f57d0/PfaE80dRTwrIPbtAL-ArL.jpeg" } ]
[]
[ { "reaction": "🔥", "users": [ "KingNish", "GPT007", "umuthopeyildirim", "lunarflu", "NePe" ], "count": 5 } ]
2024-05-30T15:05:48.000Z
2024-05-30T15:05:48.986Z
[]
/posts/santiviquez/630726145653856
1,567
0
281477644792175
[ { "type": "text", "value": "Jamba GGUF!", "raw": "Jamba GGUF!", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Finally, thanks to the awesome work of the brilliant mind of Github user compilade (", "raw": "Finally, thanks to the awesome work of the brilliant mind of Github user compilade (", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/compilade", "resource": null, "url": null, "href": "https://github.com/compilade", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ") Jamba is now beginning to be supported in llama.cpp (just CPU inference at the moment). So far there are a few different versions I have been able to convert, mainly the Jamba-Bagel, Jamba-Claude, 900M Jamba-Small and a 1B Jamba", "raw": ") Jamba is now beginning to be supported in llama.cpp (just CPU inference at the moment). So far there are a few different versions I have been able to convert, mainly the Jamba-Bagel, Jamba-Claude, 900M Jamba-Small and a 1B Jamba", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/Severian/jamba-gguf-665884eb2ceef24c1a0547e0", "resource": { "type": "collection", "id": "Severian/jamba-gguf-665884eb2ceef24c1a0547e0", "discussionNum": null }, "url": "https://huggingface.co/collections/Severian/jamba-gguf-665884eb2ceef24c1a0547e0", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Jamba GGUF! Finally, thanks to the awesome work of the brilliant mind of Github user compilade (https://github.com/compilade) Jamba is now beginning to be supported in llama.cpp (just CPU inference at the moment). So far there are a few different versions I have been able to convert, mainly the Jamba-Bagel, Jamba-Claude, 900M Jamba-Small and a 1B Jamba https://huggingface.co/collections/Severian/jamba-gguf-665884eb2ceef24c1a0547e0
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/64740cf7485a7c8e1bd51ac9/CXZCJm2x4ToT83pEIYyQR.png", "fullname": "Beckett Dillon", "name": "Severian", "type": "user", "isPro": true, "isHf": false, "isMod": false, "followerCount": 175, "isFollowing": false }
[]
[]
[ { "reaction": "🔥", "users": [ "SashimiSaketoro", "osanseviero", "JackCloudman", "lunarflu" ], "count": 4 } ]
2024-05-30T13:57:57.000Z
2024-05-30T13:57:57.143Z
[]
/posts/Severian/281477644792175
1,605
0
714627846790266
[ { "type": "text", "value": "We explore extremely low-weight merger as an alternative to fine-tuning; e.g., weight 1e-4. Merge formula details here:", "raw": "We explore extremely low-weight merger as an alternative to fine-tuning; e.g., weight 1e-4. Merge formula details here:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/grimjim/kukulemon-v3-soul_mix-32k-7B", "resource": { "type": "model", "id": "grimjim/kukulemon-v3-soul_mix-32k-7B", "discussionNum": null }, "url": "https://huggingface.co/grimjim/kukulemon-v3-soul_mix-32k-7B", "href": null, "user": null, "lang": null, "code": null, "label": null } ]
We explore extremely low-weight merger as an alternative to fine-tuning; e.g., weight 1e-4. Merge formula details here: https://huggingface.co/grimjim/kukulemon-v3-soul_mix-32k-7B
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/65c992424936ab38ecf706b0/aq7vuHFPO1S93fwJk0Cuq.jpeg", "fullname": "Jim Lai", "name": "grimjim", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 163, "isFollowing": false }
[]
[]
[ { "reaction": "➕", "users": [ "Aurangzeb746", "Lewdiculous", "osanseviero", "lunarflu" ], "count": 4 }, { "reaction": "👀", "users": [ "Lewdiculous", "lunarflu" ], "count": 2 }, { "reaction": "🚀", "users": [ "Lewdiculous", "lunarflu" ], "count": 2 } ]
2024-05-30T12:28:15.000Z
2024-06-25T04:06:55.700Z
[]
/posts/grimjim/714627846790266
2,184
0
337171791133693
[ { "type": "text", "value": "Started a new AI Session: The AI Paper Talk Show 🧠🤖💥", "raw": "Started a new AI Session: The AI Paper Talk Show 🧠🤖💥", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "In this episode we went through AnthropicAI's recent interpretability paper \"Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet\" in which they applied Sparse Dictionary Learning on a larger model (Claude 3 Sonnet) - wherein they match patterns of neuron activations (named Features) to human interpretable meanings. ", "raw": "In this episode we went through AnthropicAI's recent interpretability paper \"Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet\" in which they applied Sparse Dictionary Learning on a larger model (Claude 3 Sonnet) - wherein they match patterns of neuron activations (named Features) to human interpretable meanings. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Check full video here: ", "raw": "Check full video here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://youtu.be/uNz-Ww3_LrU?si=HUm2TWV-rSJ3X4UX", "resource": null, "url": null, "href": "https://youtu.be/uNz-Ww3_LrU?si=HUm2TWV-rSJ3X4UX", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Read More: ", "raw": "Read More: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://transformer-circuits.pub/2024/scaling-monosemanticity/", "resource": null, "url": null, "href": "https://transformer-circuits.pub/2024/scaling-monosemanticity/", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "You can also find me:", "raw": "You can also find me:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Twitter: ", "raw": "Twitter: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://x.com/jaykef_", "resource": null, "url": null, "href": "https://x.com/jaykef_", "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Github: ", "raw": "Github: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/Jaykef", "resource": null, "url": null, "href": "https://github.com/Jaykef", "user": null, "lang": null, "code": null, "label": null } ]
Started a new AI Session: The AI Paper Talk Show 🧠🤖💥 In this episode we went through AnthropicAI's recent interpretability paper "Scaling Monosemanticity: Extracting Interpretable Features from Claude 3 Sonnet" in which they applied Sparse Dictionary Learning on a larger model (Claude 3 Sonnet) - wherein they match patterns of neuron activations (named Features) to human interpretable meanings. Check full video here: https://youtu.be/uNz-Ww3_LrU?si=HUm2TWV-rSJ3X4UX Read More: https://transformer-circuits.pub/2024/scaling-monosemanticity/ You can also find me: Twitter: https://x.com/jaykef_ Github: https://github.com/Jaykef
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false }
[ { "type": "video", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/_x79MIQcR_-ZhAnf3gSWJ.mp4" }, { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6438a9027de34e8ea7e4b257/kykXYruZvGNxibqiOLuWT.png" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "thliang01" ], "count": 2 } ]
2024-05-30T12:20:03.000Z
2024-05-31T13:38:14.724Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6340651b388c3fa40f9a5bc0/av1C4_S7bHGxAzOu8lOmG.jpeg", "fullname": "Adam Molnar", "name": "lunarflu", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 334, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6438a9027de34e8ea7e4b257/vib8QSd1AWMr_bR9ig_xJ.jpeg", "fullname": "Jaward Sesay", "name": "Jaward", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 189, "isFollowing": false } ]
/posts/Jaward/337171791133693
1,127
2
684244223607541
[ { "type": "text", "value": "I will be delivering an introductory coding session this Sunday 7Pm gmt+1 time about huggingface, if you are new to HF and don't know where to begin, you are welcome to join us 🤗", "raw": "I will be delivering an introductory coding session this Sunday 7Pm gmt+1 time about huggingface, if you are new to HF and don't know where to begin, you are welcome to join us 🤗", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "📌Place: huggingface discord server ", "raw": "📌Place: huggingface discord server ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "🔗Link : ", "raw": "🔗Link : ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://discord.gg/hugging-face-879548962464493619?event=1245406127668203541", "resource": null, "url": null, "href": "https://discord.gg/hugging-face-879548962464493619?event=1245406127668203541", "user": null, "lang": null, "code": null, "label": null } ]
I will be delivering an introductory coding session this Sunday 7Pm gmt+1 time about huggingface, if you are new to HF and don't know where to begin, you are welcome to join us 🤗 📌Place: huggingface discord server 🔗Link : https://discord.gg/hugging-face-879548962464493619?event=1245406127668203541
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 919, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6527e89a8808d80ccff88b7a/TZNELevtzXDlxefNJNTFh.png" } ]
[]
[ { "reaction": "🔥", "users": [ "lunarflu", "victor", "Ramikan-BR", "KingNish", "osanseviero", "Abhinay45", "xianbao" ], "count": 7 }, { "reaction": "🚀", "users": [ "lunarflu", "victor", "Ramikan-BR" ], "count": 3 }, { "reaction": "🤗", "users": [ "lunarflu", "Ramikan-BR" ], "count": 2 }, { "reaction": "🧠", "users": [ "lunarflu", "Ramikan-BR" ], "count": 2 }, { "reaction": "👀", "users": [ "lunarflu", "Ramikan-BR" ], "count": 2 }, { "reaction": "👍", "users": [ "ajithprabhakar", "Sorour" ], "count": 2 } ]
2024-05-30T09:50:04.000Z
2024-05-30T17:17:00.627Z
[ { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/641b754d1911d3be6745cce9/GXN8mEmaq3rfITRrw7GeZ.jpeg", "fullname": "atayloraerospace", "name": "Taylor658", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 74, "isFollowing": false }, { "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/6527e89a8808d80ccff88b7a/BRKGVgk_dJO34ZOi3Slb_.jpeg", "fullname": "Lain", "name": "not-lain", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 919, "isFollowing": false } ]
/posts/not-lain/684244223607541
1,913
2
598209849882428
[ { "type": "text", "value": "Do you need a high-quality dataset to train a custom sentence transformer model? Look no further! I've developed a pipeline that leverages an LLM to create a synthetic dataset of negative and positive sentence pairs based on domain-specific anchors.", "raw": "Do you need a high-quality dataset to train a custom sentence transformer model? Look no further! I've developed a pipeline that leverages an LLM to create a synthetic dataset of negative and positive sentence pairs based on domain-specific anchors.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Here's what the pipeline offers:", "raw": "Here's what the pipeline offers:", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- **Dataset Generation**: Automatically create synthetic sentence pairs ", "raw": "- **Dataset Generation**: Automatically create synthetic sentence pairs ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- **Mine hard negatives**: Use an existing embedding model to mine hard negatives ", "raw": "- **Mine hard negatives**: Use an existing embedding model to mine hard negatives ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "- **Model Training**: Train a model using the latest release of Sentence Transformers.", "raw": "- **Model Training**: Train a model using the latest release of Sentence Transformers.", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Check out this collection (", "raw": "Check out this collection (", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/davanstrien/sentence-transformers-from-synthetic-data-66571a6133480d1b70066b70", "resource": { "type": "collection", "id": "davanstrien/sentence-transformers-from-synthetic-data-66571a6133480d1b70066b70", "discussionNum": null }, "url": "https://huggingface.co/collections/davanstrien/sentence-transformers-from-synthetic-data-66571a6133480d1b70066b70", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ") to see an example of what you can achieve with this pipeline. It features a sentence transformer model to detect coding prompt similarities in a ", "raw": ") to see an example of what you can achieve with this pipeline. It features a sentence transformer model to detect coding prompt similarities in a ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@bigcode", "resource": null, "url": null, "href": null, "user": "bigcode", "lang": null, "code": null, "label": null }, { "type": "text", "value": " dataset. ", "raw": " dataset. ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "Excited to get started? Find a tutorial here: ", "raw": "Excited to get started? Find a tutorial here: ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "link", "value": null, "raw": "https://github.com/davanstrien/awesome-synthetic-datasets/tree/main/examples/embedding-datasets", "resource": null, "url": null, "href": "https://github.com/davanstrien/awesome-synthetic-datasets/tree/main/examples/embedding-datasets", "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": ". ", "raw": ". ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Do you need a high-quality dataset to train a custom sentence transformer model? Look no further! I've developed a pipeline that leverages an LLM to create a synthetic dataset of negative and positive sentence pairs based on domain-specific anchors. Here's what the pipeline offers: - **Dataset Generation**: Automatically create synthetic sentence pairs - **Mine hard negatives**: Use an existing embedding model to mine hard negatives - **Model Training**: Train a model using the latest release of Sentence Transformers. Check out this collection (https://huggingface.co/collections/davanstrien/sentence-transformers-from-synthetic-data-66571a6133480d1b70066b70) to see an example of what you can achieve with this pipeline. It features a sentence transformer model to detect coding prompt similarities in a @bigcode dataset. Excited to get started? Find a tutorial here: https://github.com/davanstrien/awesome-synthetic-datasets/tree/main/examples/embedding-datasets.
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1627505688463-60107b385ac3e86b3ea4fc34.jpeg", "fullname": "Daniel van Strien", "name": "davanstrien", "type": "user", "isPro": true, "isHf": true, "isMod": false, "followerCount": 404, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/60107b385ac3e86b3ea4fc34/JwVhU6SfWfRTF1IydTY0h.png" } ]
[]
[ { "reaction": "🧠", "users": [ "lunarflu", "louisbrulenaudet", "nickprock", "KingNish", "GPT007", "osanseviero" ], "count": 6 }, { "reaction": "🔥", "users": [ "tomaarsen", "hiauiarau" ], "count": 2 } ]
2024-05-30T08:14:00.000Z
2024-05-30T11:11:21.861Z
[ { "avatarUrl": "/avatars/7f64d0458e67578b685206bcda220cbd.svg", "fullname": "Surendar Ganesan", "name": "Surendar0701", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 1, "isFollowing": false } ]
/posts/davanstrien/598209849882428
1,808
1
663415823502048
[ { "type": "text", "value": "Do we fully leverage ViT encoders in vision language models? ", "raw": "Do we fully leverage ViT encoders in vision language models? ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "A new paper (by ", "raw": "A new paper (by ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "mention", "value": null, "raw": "@HuanjinYao", "resource": null, "url": null, "href": null, "user": "HuanjinYao", "lang": null, "code": null, "label": null }, { "type": "text", "value": " et al) built a dense connector that does it better! ", "raw": " et al) built a dense connector that does it better! ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B", "resource": { "type": "space", "id": "HuanjinYao/DenseConnector-v1.5-8B", "discussionNum": null }, "url": "https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/collections/HuanjinYao/denseconnector-66500e173fc8c9f05dc98dea", "resource": { "type": "collection", "id": "HuanjinYao/denseconnector-66500e173fc8c9f05dc98dea", "discussionNum": null }, "url": "https://huggingface.co/collections/HuanjinYao/denseconnector-66500e173fc8c9f05dc98dea", "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": " ", "raw": " ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "VLMs consist of an image encoder block, a projection layer that projects image embeddings to text embedding space and then a text decoder sequentially connected 📖", "raw": "VLMs consist of an image encoder block, a projection layer that projects image embeddings to text embedding space and then a text decoder sequentially connected 📖", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "This paper explores using intermediate states of image encoder and not a single output 🤩", "raw": "This paper explores using intermediate states of image encoder and not a single output 🤩", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "The authors explore three different ways of instantiating dense connector: sparse token integration, sparse channel integration and dense channel integration. (see paper on how they do it ", "raw": "The authors explore three different ways of instantiating dense connector: sparse token integration, sparse channel integration and dense channel integration. (see paper on how they do it ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "resource", "value": null, "raw": "https://huggingface.co/papers/2405.13800", "resource": { "type": "paper", "id": "2405.13800", "discussionNum": null }, "url": "https://huggingface.co/papers/2405.13800", "href": null, "user": null, "lang": null, "code": null, "label": "Dense Connector for MLLMs (2405.13800)" }, { "type": "text", "value": ")", "raw": ")", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "text", "value": "They explore all three of them integrated to LLaVA 1.5 and found out each of the new models are superior to the original LLaVA 1.5 🥹 I tried the model and it seems to work very well. As part of the release, the authors have released various ckpts based on different decoders (Vicuna 7/13B and Llama 3-8B) that you can find in the collection 🤗 ", "raw": "They explore all three of them integrated to LLaVA 1.5 and found out each of the new models are superior to the original LLaVA 1.5 🥹 I tried the model and it seems to work very well. As part of the release, the authors have released various ckpts based on different decoders (Vicuna 7/13B and Llama 3-8B) that you can find in the collection 🤗 ", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null }, { "type": "new_line", "value": null, "raw": "\n", "resource": null, "url": null, "href": null, "user": null, "lang": null, "code": null, "label": null } ]
Do we fully leverage ViT encoders in vision language models? A new paper (by @HuanjinYao et al) built a dense connector that does it better! https://huggingface.co/spaces/HuanjinYao/DenseConnector-v1.5-8B https://huggingface.co/collections/HuanjinYao/denseconnector-66500e173fc8c9f05dc98dea VLMs consist of an image encoder block, a projection layer that projects image embeddings to text embedding space and then a text decoder sequentially connected 📖 This paper explores using intermediate states of image encoder and not a single output 🤩 The authors explore three different ways of instantiating dense connector: sparse token integration, sparse channel integration and dense channel integration. (see paper on how they do it https://huggingface.co/papers/2405.13800) They explore all three of them integrated to LLaVA 1.5 and found out each of the new models are superior to the original LLaVA 1.5 🥹 I tried the model and it seems to work very well. As part of the release, the authors have released various ckpts based on different decoders (Vicuna 7/13B and Llama 3-8B) that you can find in the collection 🤗
{ "avatarUrl": "https://cdn-avatars.huggingface.co/v1/production/uploads/1648113222875-6141a88b3a0ec78603c9e784.png", "fullname": "Merve Noyan", "name": "merve", "type": "user", "isPro": false, "isHf": true, "isMod": false, "followerCount": 5520, "isFollowing": false }
[ { "type": "image", "url": "https://cdn-uploads.huggingface.co/production/uploads/6141a88b3a0ec78603c9e784/7Fh0x2d2QLTQYCbrNyMru.png" } ]
[ { "avatarUrl": "/avatars/b2fbaaf444e1e53c5e914cd42a41389a.svg", "fullname": "Huanjin Yao", "name": "HuanjinYao", "type": "user", "isPro": false, "isHf": false, "isMod": false, "followerCount": 3 } ]
[ { "reaction": "👀", "users": [ "lunarflu", "HuanjinYao", "Norod78", "osanseviero", "Iheb404notfound", "Abhinay45", "arafat55", "luancloud" ], "count": 8 }, { "reaction": "🚀", "users": [ "ceofast" ], "count": 1 } ]
2024-05-30T08:11:18.000Z
2024-05-30T08:11:18.967Z
[]
/posts/merve/663415823502048
2,060
0