ID
stringlengths
8
13
SMILES
stringlengths
14
227
Y
class label
2 classes
CHEMBL1780101
Cc1cccc(CNC(=O)[C@H]2C[C@H](c3nnc(C)o3)CN(Cc3nc(-c4ccccc4)oc3C)C2)n1
11
CHEMBL392432
NC1CN(c2cc(-c3ccsc3)ncn2)CC1c1ccc(Cl)cc1Cl
0no label
CHEMBL3598104
CCC(F)(F)C(=O)N1CCC(O[C@H]2CC[C@H](Oc3cnc(S(C)(=O)=O)cn3)CC2)CC1
0no label
CHEMBL1673016
CC(C)N1C(=O)C(=O)N=C1NC(=NCC(C)(C)C)Nc1ccc(Cl)c(Cl)c1
0no label
CHEMBL4172804
CNC(=O)[C@@H](NC(=O)c1ccc(-c2ccc(CSc3nc(O)c4c(n3)CCC4)c(F)c2)o1)C(C)(C)O
0no label
CHEMBL272114
Cn1cnc2cc(C#N)c(-c3ccccc3Cl)c(CN)c21
0no label
CHEMBL3633360
COc1cc(-c2nccc3[nH]c(-c4cccc5[nH]ccc45)nc23)cc(OC)c1OC
0no label
CHEMBL4445911
CCN(c1cc2oc(-c3ccc(F)cc3)c(C(=O)NC)c2cc1-c1ccc(OC)c(C(=O)NC2(c3ncccn3)CC2)c1)S(C)(=O)=O
0no label
CHEMBL2385104
COc1ccc(-c2cc(C3=Nc4c(C(C)(C)C)nn(CCO)c4C(=O)NC3)ccc2OC)c(OC)c1
0no label
CHEMBL3408940
CN1CCN(c2ccc(C=Cc3[nH]nc4cc([C@@H]5C[C@@]56C(=O)N(C)c5ccccc56)ccc34)cn2)CC1
11
CHEMBL179621
Cc1ccsc1-c1ccc(F)nc1
0no label
CHEMBL1922128
COc1cccc(CNC(=O)c2cn(CCCO)c3cc(-c4cn[nH]c4)ccc23)c1
11
CHEMBL3287179
CCC(=O)N1CCc2cc(-c3cncc4ccccc34)ccc21
11
CHEMBL257409
CC(C)CCn1nc(-c2cccs2)c(O)c(C2=NS(=O)(=O)c3cc(NS(=O)(=O)C4CC4)ccc3N2)c1=O
0no label
CHEMBL2181300
COc1ccc(-c2cc(-c3ccc4nccn4c3)cnc2N)cn1
0no label
CHEMBL1774632
CC[C@H]1OC(=O)[C@H](C)[C@@H](O[C@H]2C[C@@](C)(OC)[C@@H](O)[C@H](C)O2)[C@H](C)[C@@H](O[C@@H]2O[C@H](C)C[C@H](N(C)C)[C@H]2O)[C@](C)(O)C[C@@H](C)CN(CCNC(=S)Nc2ccccc2)[C@H](C)[C@@H](O)[C@]1(C)O
0no label
CHEMBL3759378
CCN(C)S(=O)(=O)NC(=O)c1ccc2c(C3CCCCC3)c3n(c2c1)CC1(C(=O)N2C4CCC2CN(C)C4)CC1c1cc(OC)ccc1-3
11
CHEMBL514038
Cc1cc(Nc2cccc(F)c2)n2ncnc2n1
0no label
CHEMBL1650439
Cn1c(=O)cc(N2CCC[C@@H](N)C2)n(Cc2ccccc2Br)c1=O
0no label
CHEMBL1630772
CC1CCC(N(C)c2ncnc3[nH]ccc23)CC1
11
CHEMBL3752066
COC(=O)Nc1ccc(C(=O)N[C@@H](Cc2ccccc2)C(=O)NCCc2cc(Cl)ccc2-n2cnnn2)cc1
11
CHEMBL3577868
CC(C)NC(=O)N[C@H]1CC[C@H](Nc2ncc3ccc(=O)n(C(C)C)c3n2)CC1
0no label
CHEMBL3753740
O=C(O)CCNc1nc(N2CCc3ccccc3CC2)cc(-n2nccn2)n1
0no label
CHEMBL1778483
Cn1c(-c2ccccn2)c(C2CCCCC2)c2ccc(C(=O)NC3(C(=O)Nc4ccc(C=CC(=O)O)cc4)CCCCC3)cc21
0no label
CHEMBL4638463
CCP(=O)(OC)c1ccc2oc(-c3ccc(Cl)cc3)nc2c1
0no label
CHEMBL4638463
C[C@H](NC(=O)c1cc2c(=O)n3ccccc3nc2n(Cc2ccccc2)c1=N)c1ccccc1
11
CHEMBL4448442
NS(=O)(=O)CC(=O)NCCSc1nonc1C(=NO)Nc1ccc(F)c(Br)c1
0no label
CHEMBL4473864
CC(C)(C(=O)NCCOc1ccccc1)S(=O)(=O)c1ccc(C(F)(F)F)cn1
11
CHEMBL482351
COc1ccc2c(c1)CC(C(=O)Nc1ccc(-c3cn[nH]c3)cc1OC)CO2
11
CHEMBL2313117
O=C(Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1)c1cc(Br)ccc1O
0no label
CHEMBL4205613
Oc1c(CN2CCCC2)cc(Cn2ccc3cc(F)ccc32)c2cccnc12
0no label
CHEMBL464384
O=C1COc2ccc(NC(=O)C3CCN(c4cccc(F)c4Br)CC3)cc2N1
11
CHEMBL252399
NC(=O)COc1ccc2c(c1)S(=O)(=O)NC(c1c(O)c(-c3cccs3)nn(CC3CCCC3)c1=O)=N2
11
CHEMBL4287425
CCC(CC)O[C@@H]1C=C(C(=O)O)C[C@H](NCc2ccc(Sc3ccccc3)cc2)[C@H]1NC(C)=O
0no label
CHEMBL3353881
CC(C)(C)c1cc(NC(=O)[C@@H]2CCC(=O)N2c2ccc(C(F)(F)F)cc2)on1
0no label
CHEMBL4279732
CCCCCOC(=O)[C@H](CC(C)C)NP1(=O)COC(Cn2cnc3c(N)ncnc32)CO1
11
CHEMBL607090
COc1ccc(Oc2cccc(-c3c(C)cnc4c(C(F)(F)F)cccc34)c2)cc1S(C)(=O)=O
0no label
CHEMBL3126927
COc1ccc2c(c1)N(C)C(=O)CN2c1nc(C)nc2ccccc12
11
CHEMBL4632610
COc1cc2nc3ccc(Nc4ccc(OC(F)(F)F)cc4)cc3c(O)c2cc1F
0no label
CHEMBL389156
N#CCCCn1c(Cn2c(=O)n(CC3CC3)c3ccncc32)nc2ccccc21
11
CHEMBL4099754
CS(=N)(=O)c1ccc(C(F)(F)F)cc1
0no label
CHEMBL4241842
COc1ccc(COC(=O)[C@@H]2CCC3=Nc4ccccc4CN32)cc1
11
CHEMBL4473491
FC(F)(F)CC(c1ccccc1)c1c(-c2ccccc2)[nH]c2ccccc12
0no label
CHEMBL4591440
COc1ccc2[nH]cc(C3CCN(CCCCN4C(=O)CC(c5c[nH]c6ccc(OC)cc56)C4=O)CC3)c2c1
11
CHEMBL3215861
CCCCc1nc2cc(/C=C/C(=O)NO)ccc2n1CCN(CC)CC
0no label
CHEMBL4634571
C[C@H](NS(=O)(=O)c1ccc(-c2sc(C(=O)NCC(C)(C)O)nc2C(=O)N2CCCC[C@@H]2C)c(Cl)c1Cl)C(F)(F)F
0no label
CHEMBL1778603
Cn1c(-c2ccccn2)c(C2CCCCC2)c2ccc(C(=O)NC3(C(=O)Nc4ccc(S(N)(=O)=O)cc4)CCC3)cc21
11
CHEMBL1834422
Nc1ccc(Oc2ccc(S(=O)(=O)CC3CS3)cc2)cc1
0no label
CHEMBL4163870
Cc1nc2c(c(Nc3c[nH]nc3C(=O)Nc3ccc(N4CCNCC4)cc3)n1)CCC2
0no label
CHEMBL3828065
CC(O)(CS(=O)(=O)c1ccccc1OC(F)(F)F)C(=O)Nc1cc(C(F)(F)F)cc(C(F)(F)F)c1
0no label
CHEMBL4483554
COc1ccc2[nH]cc(C3CC(=O)N(CCCCN4CCC(c5c[nH]c6ccccc56)CC4)C3=O)c2c1
11
CHEMBL2346737
Cc1nc(C(=O)Nc2ccnc(Cl)n2)c(C)n1-c1ccc(F)cc1
0no label
CHEMBL518254
O=C(c1cccc2ccccc12)N(CCc1ccc(Cl)cc1)[C@H]1CC[C@H](O)CC1
11
CHEMBL2147093
O=[N+]([O-])c1ccc(C2=NOC(c3ccc(N4CCOCC4)cc3)C2)o1
0no label
CHEMBL2349545
Cc1cccc(NC(=O)c2nn(C)c(-c3ccncc3)c2C)n1
0no label
CHEMBL566048
CNS(=O)(=O)c1ccc(CNC(=O)c2ccc(OCCC(F)(F)F)nc2)c(Cl)c1
0no label
CHEMBL583465
COc1ccc(CCN2C(=O)N(NS(C)(=O)=O)CC2c2ccc(Cl)cc2)cc1
11
CHEMBL4638504
O=P1(c2ccc(C(F)(F)F)cc2)OCCCO1
0no label
CHEMBL1084309
Fc1ccccc1C(Cc1ccccc1OC(F)F)N1CCNCC1
0no label
CHEMBL175767
O=C(CN1CCC(N2C(=O)OCc3ccccc32)CC1)Nc1ccc(C2CCCCC2)cc1
11
CHEMBL4574111
Nc1cccc(-c2ccc3nc(-c4cccnc4N)n(-c4ccc(C5(N)CCC5)cc4)c3n2)c1
0no label
CHEMBL4205429
Cc1ccc(-n2ccc(C(F)(F)F)c2COc2c(F)cc(CCC(=O)O)cc2F)cc1
11
CHEMBL477374
CC(C)C(=O)N(Cc1ccc(Cl)c(Cl)c1Cl)[C@H]1CCNC1
0no label
CHEMBL535
CCN(CC)CCNC(=O)c1c(C)[nH]c(C=C2C(=O)Nc3ccc(F)cc32)c1C
0no label
CHEMBL574694
Cc1nn(CCO)c(C)c1Cc1cc(Cl)cc(Cl)c1
0no label
CHEMBL4572794
COc1ccc(N2CCN(C(=O)Oc3cccc(N4CCOCC4)c3)[C@H](C)C2)cc1
11
CHEMBL4476813
Cc1ccc2c(C(C[N+](=O)[O-])c3cccs3)c(-c3ccc(Cl)cc3)[nH]c2c1
11
CHEMBL3354545
CC(C)(C)c1cc(NC(=O)[C@@H]2CCCCN2C(=O)CC2CCOCC2)no1
0no label
CHEMBL2035651
O=C(NCCN1CCOCC1)c1ccc(-c2nccc3ccccc23)cc1
0no label
CHEMBL494207
CNC(=O)[C@@H](NC(=O)n1c(=O)n(CCN2CCOCC2)c2ccccc21)C(C)(C)C
11
CHEMBL4646062
Nc1ncnc2c1c(Oc1cccc(Cl)c1)nn2[C@H]1C[C@H](F)C1
11
CHEMBL3580759
CN1CCN(C(=O)C[C@H](NC(=O)C=Cc2cc(Cl)ccc2-n2cnnn2)c2nc(Cl)c(-c3ccc4nc(O)cc(O)c4c3)[nH]2)CC1
0no label
CHEMBL2325500
CS(=O)(=O)c1ccc(-c2nnc(SCc3nnc(-c4ccc(Cl)cc4)o3)n2-c2ccccc2Cl)nc1
11
CHEMBL1683887
CNCC1(c2cccc(Cl)c2)CCCCC1
0no label
CHEMBL4636934
N#Cc1ccnc(Oc2nn(C3CC3)c3ncnc(N)c23)c1
0no label
CHEMBL3799598
O=C(NCCc1nc(-c2ccccc2)cs1)N1CCCC1
11
CHEMBL4287294
CC(=O)NC[C@H]1CN(c2ccc(-c3ccc(/C=N/N4CCN(C(=O)CO)CC4)cc3)c(F)c2)C(=O)O1
0no label
CHEMBL214784
SCc1ccc(-c2cccnc2)o1
0no label
CHEMBL3126760
COc1ccc2c(c1)CCCCN2c1nc(C)nc2ccccc12
11
CHEMBL4647401
CC1(NC(=O)COc2cccc(-c3nc4c(c(Nc5ccc(-c6cn[nH]c6)cc5)n3)CN(C3CCC3)CC4)c2)CC1
0no label
CHEMBL451887
CC(C)C[C@H](NC(=O)[C@H](CCc1ccccc1)NC(=O)CN1CCOCC1)C(=O)N[C@@H](Cc1ccccc1)C(=O)N[C@@H](CC(C)C)C(=O)[C@@]1(C)CO1
11
CHEMBL560538
O=C(NCCCc1ccccc1)c1cccnc1
0no label
CHEMBL3421829
CC(=NCCCCN1CCCCC1)Nc1ccnc2cc(Cl)ccc12
0no label
CHEMBL4288803
CNC(=O)c1c(-c2ccc(F)cc2)oc2nc(NCC(F)(F)F)c(-c3cccc(C(=O)NC(C)(C)C)c3)cc12
0no label
CHEMBL3759763
CC(CNCCC12CC3CC(CC(C3)C1)C2)Nc1ccnc2cc(Cl)ccc12
0no label
CHEMBL2385149
CCN1C(=O)C(c2cc(-c3cnn(C)c3)ccc2O)C(=O)N(c2ccccc2)c2cc(C(F)(F)F)ccc21
0no label
CHEMBL3421830
CC(=NCCCN1CCOCC1)Nc1ccnc2cc(Cl)ccc12
11
CHEMBL520103
COc1cc(-c2cn[nH]c2)ccc1NC(=O)C1COc2ccc(F)cc2C1
11
CHEMBL2179485
CCc1cc(CC)nc(OCCCn2c3c(c4cc(-c5nc(C)no5)ccc42)C(=O)CCC3)n1
11
CHEMBL1780085
COC[C@@H]1C[C@@H](C(=O)NCC2CCOCC2)CN(Cc2nc(-c3ccccc3)oc2C)C1
11
CHEMBL385008
NCc1cc(-c2cccnc2)[nH]n1
0no label
CHEMBL214990
CSCc1ccc(-c2cccnc2)o1
0no label
CHEMBL2179509
Cc1noc(-c2ccc3c(c2)c2c(n3CCCOc3ccc(F)c(F)c3)CCCC2)n1
11
CHEMBL566829
N[C@@H](CC(=O)N1CCC[C@H]1c1nc(-c2ncc(F)cc2F)no1)Cc1cc(F)c(F)cc1F
0no label
CHEMBL4634018
Nc1ncnc2c1c(Oc1cc(C(F)(F)F)ccn1)nn2[C@H]1CC[C@H](O)CC1
0no label
CHEMBL2069642
CS(=O)(=O)c1ccc(CNC(=O)c2ccc(OCC(F)(F)F)nc2)c(Cl)c1
0no label
CHEMBL2152424
COC(=O)N[C@@H]1CC[C@@H](n2cnc3cnc4[nH]ccc4c32)C1
0no label
CHEMBL1289626
Oc1ccc2c(c1)CCN(CCCCc1ccccc1)CC2O
11
CHEMBL1630791
C[C@@H]1CCN(C(=O)CO)C[C@@H]1N(C)c1ncnc2[nH]ccc12
0no label
CHEMBL2035812
C=CC(=O)NCc1coc(-c2c(N)ncnc2Nc2ccc(OCc3ccccn3)c(F)c2)n1
11

Human & Rat Liver Microsomal Stability

3345 RLM and 6420 HLM compounds were initially collected from the ChEMBL bioactivity database. (HLM ID: 613373, 2367379, and 612558; RLM ID: 613694, 2367428, and 612558) Finally, the RLM stability data set contains 3108 compounds, and the HLM stability data set contains 5902 compounds. For the RLM stability data set, 1542 (49.6%) compounds were classified as stable, and 1566 (50.4%) compounds were classified as unstable, among which the training and test sets contain 2512 and 596 compounds, respectively. The experimental data from the National Center for Advancing Translational Sciences (PubChem AID 1508591) were used as the RLM external set. For the HLM data set, 3799 (64%) compounds were classified as stable, and 2103 (36%) compounds were classified as unstable. In addition, an external set from Liu et al.12 was used to evaluate the predictive power of the HLM model.

The datasets uploaded to our Hugging Face repository are sanitized and reorganized versions. (We have sanitized the molecules from the original paper, using MolVS.)

Quickstart Usage

Load a dataset in python

Each subset can be loaded into python using the Huggingface datasets library. First, from the command line install the datasets library

$ pip install datasets

then, from within python load the datasets library

>>> import datasets

and load one of the HLM_RLM datasets, e.g.,

>>> HLM = datasets.load_dataset("maomlab/HLM_RLM", name = "HLM")
Downloading readme: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 6.93k/6.93k [00:00<00:00, 280kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 680k/680k [00:00<00:00, 946kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 925k/925k [00:01<00:00, 634kB/s]
Downloading data: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 39.7k/39.7k [00:00<00:00, 90.8kB/s]
Generating test split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 1131/1131 [00:00<00:00, 20405.98 examples/s]
Generating train split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 4771/4771 [00:00<00:00, 65495.46 examples/s]
Generating external split: 100%|β–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆβ–ˆ| 111/111 [00:00<00:00, 3651.94 examples/s]

and inspecting the loaded dataset

>>> HLM
HLM
DatasetDict({
  test: Dataset({
     features: ['ID','SMILES', 'Y'],
     num_rows: 1131
  })
  train: Dataset({
      features: ['ID','SMILES', 'Y'],
      num_rows: 4771
  }) 
  external: Dataset({
      features: ['ID','SMILES', 'Y'],
      num_rows: 111          
  })
})

Use a dataset to train a model

One way to use the dataset is through the MolFlux package developed by Exscientia. First, from the command line, install MolFlux library with catboost and rdkit support

pip install 'molflux[catboost,rdkit]'

then load, featurize, split, fit, and evaluate the a catboost model

import json
from datasets import load_dataset
from molflux.datasets import featurise_dataset
from molflux.features import load_from_dicts as load_representations_from_dicts
from molflux.splits import load_from_dict as load_split_from_dict
from molflux.modelzoo import load_from_dict as load_model_from_dict
from molflux.metrics import load_suite

split_dataset = load_dataset('maomlab/HLM_RLM', name = 'HLM')

split_featurised_dataset = featurise_dataset(
  split_dataset,
  column = "SMILES",
  representations = load_representations_from_dicts([{"name": "morgan"}, {"name": "maccs_rdkit"}]))

model = load_model_from_dict({
    "name": "cat_boost_classifier",
    "config": {
        "x_features": ['SMILES::morgan', 'SMILES::maccs_rdkit'],
        "y_features": ['Y'],
    }})
    
model.train(split_featurised_dataset["train"])
preds = model.predict(split_featurised_dataset["test"])

classification_suite = load_suite("classification")

scores = classification_suite.compute(
    references=split_featurised_dataset["test"]['Y'],
    predictions=preds["cat_boost_classifier::Y"])        

Citation

Chem. Res. Toxicol. 2022, 35, 9, 1614–1624 Publication Date:September 2, 2022 https://doi.org/10.1021/acs.chemrestox.2c00207

Downloads last month
68
Edit dataset card

Collection including maomlab/HLM_RLM