Search is not available for this dataset
psnr
float64
10.8
30.9
average_vgg
float64
0.04
0.28
lpips_alex
float64
0.04
0.34
masked_lpips_vgg
float64
0.02
0.29
ssim
float64
0.49
0.94
masked_psnr
float64
12.1
29.7
masked_ssim
float64
0.58
0.97
masked_average_vgg
float64
0.02
0.21
lpips_vgg
float64
0.11
0.38
masked_average_alex
float64
0.01
0.2
average_alex
float64
0.03
0.27
masked_lpips_alex
float64
0.01
0.21
15.612605
0.182912
0.250766
0.110639
0.647386
19.720907
0.844382
0.091308
0.349011
0.083099
0.164105
0.079593
23.136719
0.089039
0.237383
0.116084
0.827529
21.450104
0.906795
0.065839
0.328666
0.067094
0.079956
0.123028
26.953545
0.061328
0.147889
0.064454
0.855635
25.483364
0.906916
0.041913
0.246764
0.037565
0.051993
0.045019
13.42104
0.232605
0.281022
0.292008
0.485001
14.469901
0.577335
0.189938
0.381917
0.170937
0.209752
0.213411
20.332878
0.090468
0.114014
0.030439
0.888065
23.640903
0.956012
0.031614
0.178288
0.027801
0.078152
0.020702
15.832437
0.156163
0.171201
0.147175
0.695472
17.465902
0.76982
0.110531
0.245631
0.096954
0.138636
0.099359
17.168257
0.133136
0.162101
0.101384
0.751055
23.259663
0.831322
0.059638
0.227315
0.050964
0.119059
0.063112
16.05372
0.155693
0.164555
0.18322
0.684855
18.277168
0.755703
0.112182
0.253515
0.096716
0.134952
0.117107
14.607919
0.177269
0.224431
0.148699
0.663664
18.956442
0.763475
0.100532
0.248887
0.096491
0.171504
0.130384
17.286722
0.124715
0.146373
0.1074
0.778992
22.024189
0.84892
0.0672
0.207764
0.060776
0.111043
0.078853
10.782827
0.282848
0.34057
0.222224
0.527205
12.067881
0.673081
0.207727
0.376662
0.199453
0.273651
0.196358
26.00028
0.072439
0.182626
0.046619
0.778757
26.335566
0.931163
0.034106
0.282038
0.031497
0.062867
0.035525
20.721743
0.080817
0.100333
0.034019
0.887107
22.658798
0.941635
0.036364
0.162234
0.033724
0.068766
0.026959
19.087677
0.105109
0.119125
0.094617
0.786322
22.366161
0.847124
0.063304
0.18924
0.055618
0.090138
0.062936
18.605896
0.106482
0.158349
0.041696
0.854243
20.099861
0.929528
0.049473
0.197407
0.046761
0.098808
0.035428
21.054716
0.09939
0.140906
0.060436
0.785014
27.103441
0.915542
0.033921
0.249205
0.026554
0.082291
0.028559
25.612026
0.063554
0.148581
0.064783
0.869743
23.89645
0.935976
0.043517
0.2346
0.044266
0.054655
0.067813
27.471127
0.053152
0.103209
0.053083
0.864302
26.920633
0.9171
0.035283
0.190299
0.031339
0.043577
0.03537
16.743391
0.144037
0.158867
0.171084
0.677456
17.66081
0.731082
0.118028
0.231358
0.104542
0.12749
0.118222
25.522343
0.046451
0.05167
0.027167
0.929437
26.165056
0.960814
0.02588
0.134786
0.021705
0.034399
0.0159
17.752598
0.115163
0.115291
0.097736
0.77778
21.171738
0.83991
0.06976
0.180864
0.059167
0.099873
0.059163
22.086767
0.077259
0.093023
0.083733
0.845673
24.96306
0.879685
0.047236
0.167984
0.040218
0.064136
0.051194
18.210844
0.118349
0.127605
0.139301
0.761475
19.401304
0.808443
0.093361
0.198977
0.081856
0.102465
0.093513
17.597433
0.118843
0.154948
0.114638
0.790134
19.841152
0.841538
0.081607
0.196178
0.077975
0.110439
0.099185
23.41309
0.063362
0.076208
0.073158
0.869683
25.410969
0.899182
0.045388
0.140009
0.039713
0.052644
0.047994
16.915365
0.117634
0.109895
0.080209
0.804557
20.234909
0.86625
0.068283
0.161282
0.060208
0.105264
0.054518
29.438812
0.050774
0.110009
0.031058
0.837293
28.244579
0.943626
0.026617
0.21047
0.024296
0.041571
0.02253
25.627495
0.045361
0.051938
0.026855
0.924561
25.480103
0.956219
0.026121
0.123718
0.023517
0.034439
0.019493
22.56492
0.071248
0.073708
0.07185
0.837402
25.058378
0.878737
0.048758
0.148793
0.041458
0.057079
0.042113
25.626848
0.045479
0.056164
0.026323
0.928316
24.396992
0.956843
0.028243
0.125018
0.024645
0.034923
0.017655
26.410034
0.060401
0.095297
0.049022
0.846149
29.095221
0.932106
0.026092
0.226345
0.019701
0.045443
0.020847
29.450077
0.039386
0.086091
0.053405
0.920402
26.204363
0.955126
0.030649
0.183023
0.029983
0.030647
0.049967
30.5319
0.03656
0.078075
0.048557
0.906829
28.347792
0.935646
0.027262
0.167928
0.023551
0.028301
0.031199
18.659431
0.110866
0.122441
0.141959
0.743151
19.224331
0.782055
0.092943
0.194633
0.080352
0.09519
0.091708
25.845377
0.046457
0.047954
0.021472
0.940632
28.711506
0.972658
0.017356
0.130252
0.013222
0.033608
0.009471
21.673559
0.073949
0.07089
0.07521
0.843405
23.050653
0.876575
0.051866
0.13965
0.042564
0.059429
0.041376
24.568323
0.054584
0.060801
0.061452
0.891342
27.120859
0.911278
0.033603
0.133057
0.027695
0.042453
0.033869
21.772087
0.073561
0.073703
0.092905
0.847974
23.258148
0.882287
0.054619
0.141073
0.044463
0.059724
0.049437
20.398712
0.089413
0.114969
0.089242
0.838152
22.643755
0.880764
0.056164
0.159939
0.051098
0.080691
0.066323
25.883759
0.044234
0.050278
0.056916
0.9106
27.849375
0.929649
0.029853
0.114235
0.024807
0.033921
0.032889
21.301495
0.068154
0.065986
0.064017
0.875362
22.729145
0.89857
0.048232
0.120095
0.041211
0.05591
0.040804
30.918505
0.037406
0.070411
0.024552
0.878878
29.683823
0.961235
0.01852
0.165441
0.016265
0.02844
0.01625
25.91861
0.043211
0.045749
0.021703
0.938527
27.002739
0.967375
0.020198
0.116586
0.017476
0.031759
0.013938
25.26935
0.051299
0.052994
0.055248
0.881623
28.48703
0.914924
0.029411
0.125082
0.022747
0.038771
0.025084
26.47788
0.040547
0.044629
0.019798
0.938763
27.061953
0.96517
0.020027
0.112714
0.016492
0.029942
0.011231
YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

SparseCraft

[ECCV'24] SparseCraft: Few-Shot Neural Reconstruction through Stereopsis Guided Geometric Linearization

Project

DTU Dataset

We provide preprocessed DTU data and results for the tasks of novel view synthesis and surface reconstruction.

It contains the following directories:

sparsecraft_data
├── nvs # Novel View Synthesis task data and results
│   └── mvs_data
│       ├── scan103
│       ├── ...
│   └── results # Results for training using 3, 6, and 9 views
│       ├── 3v
│       │   ├── scan103
│       │   ├── ...
│       ├── 6v
│       │   ├── scan103
│       │   ├── ...
│       └── 9v
│           ├── scan103
│           ├── ...
└── reconstruction # Surface Reconstruction task data and results
    └── mvs_data # Surface reconstruction data uses a different set of scans and views than the novel view synthesis task
        ├── set0
        │   ├── scan105
        │   ├── ...
        └── set1
            ├── scan105
            ├── ...
    └── results
        ├── set0
        │   ├── scan105
        │   ├── ...
        └── set1
            ├── scan105

Note

The DTU dataset was preprocessed as follows:

  • The original data is from the NeuS Project. We use the same camera poses and intrinsics as the original data.
  • To obtain MVS data, we used the Colmap initialized with the original camera poses and intrinsics.
  • We provide a script that achieves this in scripts that you can run using the following command. Note that you will need to have Colmap installed on your machine:
Downloads last month
10
Edit dataset card