Datasets:
lmqg
/

Modalities:
Text
Languages:
Korean
ArXiv:
Libraries:
Datasets
License:
qg_koquad / README.md
asahi417's picture
update
bfd9fce
|
raw
history blame
8.79 kB
metadata
license: cc-by-4-0
pretty_name: KorQuAD for question generation
languages: ko
multilinguality: monolingual
size_categories: 10K<n<100K
source_datasets: squad_es
task_categories: question-generation
task_ids: question-generation

Dataset Card for "qg_korquad"

Table of Contents

Dataset Description

Dataset Summary

Modified version of KorQuAD for question generation (QG) task. Since the original dataset only contains training/validation set, we manually sample test set from training set, which has no overlap in terms of the paragraph with the training set.

Supported Tasks and Leaderboards

  • question-generation: The dataset can be used to train a model for question generation. Success on this task is typically measured by achieving a high BLEU4/METEOR/ROUGE-L score.

Languages

Korean (ko)

Dataset Structure

Data Instances

plain_text

An example of 'train' looks as follows.

{
  "question": "ν•¨μˆ˜ν•΄μ„ν•™μ΄ μ£Όλͺ©ν•˜λŠ” νƒκ΅¬λŠ”?",
  "paragraph": "변화에 λŒ€ν•œ 이해와 λ¬˜μ‚¬λŠ” μžμ—°κ³Όν•™μ— μžˆμ–΄μ„œ 일반적인 주제이며, 미적뢄학은 λ³€ν™”λ₯Ό νƒκ΅¬ν•˜λŠ” κ°•λ ₯ν•œ λ„κ΅¬λ‘œμ„œ λ°œμ „λ˜μ—ˆλ‹€. ν•¨μˆ˜λŠ” λ³€ν™”ν•˜λŠ” 양을 λ¬˜μ‚¬ν•¨μ— μžˆμ–΄μ„œ 쀑좔적인 κ°œλ…μœΌλ‘œμ¨ λ– μ˜€λ₯΄κ²Œ λœλ‹€. μ‹€μˆ˜μ™€ μ‹€λ³€μˆ˜λ‘œ κ΅¬μ„±λœ ν•¨μˆ˜μ˜ μ—„λ°€ν•œ 탐ꡬ가 μ‹€ν•΄μ„ν•™μ΄λΌλŠ” λΆ„μ•Όλ‘œ μ•Œλ €μ§€κ²Œ λ˜μ—ˆκ³ , λ³΅μ†Œμˆ˜μ— λŒ€ν•œ 이와 같은 νƒκ΅¬λΆ„μ•ΌλŠ” λ³΅μ†Œν•΄μ„ν•™μ΄λΌκ³  ν•œλ‹€. ν•¨μˆ˜ν•΄μ„ν•™μ€ ν•¨μˆ˜μ˜ 곡간(특히 λ¬΄ν•œμ°¨μ›)의 탐ꡬ에 μ£Όλͺ©ν•œλ‹€. ν•¨μˆ˜ν•΄μ„ν•™μ˜ λ§Žμ€ μ‘μš©λΆ„μ•Ό 쀑 ν•˜λ‚˜κ°€ μ–‘μžμ—­ν•™μ΄λ‹€. λ§Žμ€ λ¬Έμ œλ“€μ΄ μžμ—°μŠ€λŸ½κ²Œ μ–‘κ³Ό κ·Έ μ–‘μ˜ λ³€ν™”μœ¨μ˜ κ΄€κ³„λ‘œ κ·€μ°©λ˜κ³ , μ΄λŸ¬ν•œ λ¬Έμ œλ“€μ΄ λ―ΈλΆ„λ°©μ •μ‹μœΌλ‘œ 닀루어진닀. μžμ—°μ˜ λ§Žμ€ ν˜„μƒλ“€μ΄ λ™μ—­ν•™κ³„λ‘œ 기술될 수 μžˆλ‹€. 혼돈 이둠은 μ΄λŸ¬ν•œ 예츑 λΆˆκ°€λŠ₯ν•œ ν˜„μƒμ„ νƒκ΅¬ν•˜λŠ” 데 μƒλ‹Ήν•œ κΈ°μ—¬λ₯Ό ν•œλ‹€.",
  "answer": "ν•¨μˆ˜μ˜ 곡간(특히 λ¬΄ν•œμ°¨μ›)의 탐ꡬ",
  "sentence": "ν•¨μˆ˜ν•΄μ„ν•™μ€ ν•¨μˆ˜μ˜ 곡간(특히 λ¬΄ν•œμ°¨μ›)의 탐ꡬ 에 μ£Όλͺ©ν•œλ‹€.",
  "paragraph_sentence": '변화에 λŒ€ν•œ 이해와 λ¬˜μ‚¬λŠ” μžμ—°κ³Όν•™μ— μžˆμ–΄μ„œ 일반적인 주제이며, 미적뢄학은 λ³€ν™”λ₯Ό νƒκ΅¬ν•˜λŠ” κ°•λ ₯ν•œ λ„κ΅¬λ‘œμ„œ λ°œμ „λ˜μ—ˆλ‹€. ν•¨μˆ˜λŠ” λ³€ν™”ν•˜λŠ” 양을 λ¬˜μ‚¬ν•¨μ— μžˆμ–΄μ„œ 쀑좔적인 κ°œλ…μœΌλ‘œμ¨ λ– μ˜€λ₯΄κ²Œ λœλ‹€. μ‹€μˆ˜μ™€ μ‹€λ³€μˆ˜λ‘œ κ΅¬μ„±λœ ν•¨μˆ˜μ˜ μ—„λ°€ν•œ 탐ꡬ가 μ‹€ν•΄μ„ν•™μ΄λΌλŠ” λΆ„μ•Όλ‘œ μ•Œλ €μ§€κ²Œ λ˜μ—ˆκ³ , λ³΅μ†Œμˆ˜μ— λŒ€ν•œ 이와 같은 탐ꡬ λΆ„μ•ΌλŠ” λ³΅μ†Œν•΄μ„ν•™μ΄λΌκ³  ν•œλ‹€. <hl> ν•¨μˆ˜ν•΄μ„ν•™μ€ ν•¨μˆ˜μ˜ 곡간(특히 λ¬΄ν•œμ°¨μ›)의 탐ꡬ 에 μ£Όλͺ©ν•œλ‹€. <hl> ν•¨μˆ˜ν•΄μ„ν•™μ˜ λ§Žμ€ μ‘μš©λΆ„μ•Ό 쀑 ν•˜λ‚˜κ°€ μ–‘μžμ—­ν•™μ΄λ‹€. λ§Žμ€ λ¬Έμ œλ“€μ΄ μžμ—°μŠ€λŸ½κ²Œ μ–‘κ³Ό κ·Έ μ–‘μ˜ λ³€ν™”μœ¨μ˜ κ΄€κ³„λ‘œ κ·€μ°©λ˜κ³ , μ΄λŸ¬ν•œ λ¬Έμ œλ“€μ΄ λ―ΈλΆ„λ°©μ •μ‹μœΌλ‘œ 닀루어진닀. μžμ—°μ˜ λ§Žμ€ ν˜„μƒλ“€μ΄ λ™μ—­ν•™κ³„λ‘œ 기술될 수 μžˆλ‹€. 혼돈 이둠은 μ΄λŸ¬ν•œ 예츑 λΆˆκ°€λŠ₯ν•œ ν˜„μƒμ„ νƒκ΅¬ν•˜λŠ” 데 μƒλ‹Ήν•œ κΈ°μ—¬λ₯Ό ν•œλ‹€.',
  "paragraph_answer": '변화에 λŒ€ν•œ 이해와 λ¬˜μ‚¬λŠ” μžμ—°κ³Όν•™μ— μžˆμ–΄μ„œ 일반적인 주제이며, 미적뢄학은 λ³€ν™”λ₯Ό νƒκ΅¬ν•˜λŠ” κ°•λ ₯ν•œ λ„κ΅¬λ‘œμ„œ λ°œμ „λ˜μ—ˆλ‹€. ν•¨μˆ˜λŠ” λ³€ν™”ν•˜λŠ” 양을 λ¬˜μ‚¬ν•¨μ— μžˆμ–΄μ„œ 쀑좔적인 κ°œλ…μœΌλ‘œμ¨ λ– μ˜€λ₯΄κ²Œ λœλ‹€. μ‹€μˆ˜μ™€ μ‹€λ³€μˆ˜λ‘œ κ΅¬μ„±λœ ν•¨μˆ˜μ˜ μ—„λ°€ν•œ 탐ꡬ가 μ‹€ν•΄μ„ν•™μ΄λΌλŠ” λΆ„μ•Όλ‘œ μ•Œλ €μ§€κ²Œ λ˜μ—ˆκ³ , λ³΅μ†Œμˆ˜μ— λŒ€ν•œ 이와 같은 탐ꡬ λΆ„μ•ΌλŠ” λ³΅μ†Œν•΄μ„ν•™μ΄λΌκ³  ν•œλ‹€. ν•¨μˆ˜ν•΄μ„ν•™μ€ <hl> ν•¨μˆ˜μ˜ 곡간(특히 λ¬΄ν•œμ°¨μ›)의 탐ꡬ <hl>에 μ£Όλͺ©ν•œλ‹€. ν•¨μˆ˜ν•΄μ„ν•™μ˜ λ§Žμ€ μ‘μš©λΆ„μ•Ό 쀑 ν•˜λ‚˜κ°€ μ–‘μžμ—­ν•™μ΄λ‹€. λ§Žμ€ λ¬Έμ œλ“€μ΄ μžμ—°μŠ€λŸ½κ²Œ μ–‘κ³Ό κ·Έ μ–‘μ˜ λ³€ν™”μœ¨μ˜ κ΄€κ³„λ‘œ κ·€μ°©λ˜κ³ , μ΄λŸ¬ν•œ λ¬Έμ œλ“€μ΄ λ―ΈλΆ„λ°©μ •μ‹μœΌλ‘œ 닀루어진닀. μžμ—°μ˜ λ§Žμ€ ν˜„μƒλ“€μ΄ λ™μ—­ν•™κ³„λ‘œ 기술될 수 μžˆλ‹€. 혼돈 이둠은 μ΄λŸ¬ν•œ 예츑 λΆˆκ°€λŠ₯ν•œ ν˜„μƒμ„ νƒκ΅¬ν•˜λŠ” 데 μƒλ‹Ήν•œ κΈ°μ—¬λ₯Ό ν•œλ‹€.',
  "sentence_answer": "ν•¨μˆ˜ν•΄μ„ν•™μ€ <hl> ν•¨μˆ˜μ˜ 곡간(특히 λ¬΄ν•œμ°¨μ›)의 탐ꡬ <hl> 에 μ£Όλͺ©ν•œλ‹€."
}

Data Fields

The data fields are the same among all splits.

plain_text

  • question: a string feature.
  • paragraph: a string feature.
  • answer: a string feature.
  • sentence: a string feature.
  • paragraph_answer: a string feature, which is same as the paragraph but the answer is highlighted by a special token <hl>.
  • paragraph_sentence: a string feature, which is same as the paragraph but a sentence containing the answer is highlighted by a special token <hl>.
  • sentence_answer: a string feature, which is same as the sentence but the answer is highlighted by a special token <hl>.

Each of paragraph_answer, paragraph_sentence, and sentence_answer feature is assumed to be used to train a question generation model, but with different information. The paragraph_answer and sentence_answer features are for answer-aware question generation and paragraph_sentence feature is for sentence-aware question generation.

Data Splits

name train validation test
plain_text 18500 2000 2000

Dataset Creation

Curation Rationale

More Information Needed

Source Data

Initial Data Collection and Normalization

More Information Needed

Who are the source language producers?

More Information Needed

Annotations

Annotation process

More Information Needed

Who are the annotators?

More Information Needed

Personal and Sensitive Information

More Information Needed

Considerations for Using the Data

Social Impact of Dataset

More Information Needed

Discussion of Biases

More Information Needed

Other Known Limitations

More Information Needed

Additional Information

Dataset Curators

More Information Needed

Licensing Information

More Information Needed

Citation Information

More Information Needed