Datasets:
Tasks:
Token Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
named-entity-recognition
Languages:
Tagalog
Size:
1K - 10K
ArXiv:
DOI:
License:
Convert dataset to Parquet
#3
by
ljvmiranda921
- opened
- .gitignore +0 -4
- README.md +58 -20
- corpus/iob/dev.iob → data/test-00000-of-00001.parquet +2 -2
- corpus/iob/test.iob → data/train-00000-of-00001.parquet +2 -2
- corpus/iob/train.iob → data/validation-00000-of-00001.parquet +2 -2
- project.yml +0 -87
- requirements.txt +0 -5
- spacy_to_iob.py +0 -50
- tlunified-ner.py +0 -95
.gitignore
DELETED
@@ -1,4 +0,0 @@
|
|
1 |
-
assets
|
2 |
-
corpus/spacy
|
3 |
-
__pycache__/
|
4 |
-
project.lock
|
|
|
|
|
|
|
|
|
|
README.md
CHANGED
@@ -1,34 +1,72 @@
|
|
1 |
---
|
|
|
|
|
|
|
|
|
2 |
license: gpl-3.0
|
|
|
|
|
|
|
|
|
3 |
task_categories:
|
4 |
- token-classification
|
5 |
task_ids:
|
6 |
- named-entity-recognition
|
7 |
-
language:
|
8 |
-
- tl
|
9 |
-
size_categories:
|
10 |
-
- 1K<n<10K
|
11 |
pretty_name: TLUnified-NER
|
12 |
tags:
|
13 |
- low-resource
|
14 |
- named-entity-recognition
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
19 |
train-eval-index:
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
|
32 |
---
|
33 |
|
34 |
<!-- SPACY PROJECT: AUTO-GENERATED DOCS START (do not remove) -->
|
|
|
1 |
---
|
2 |
+
annotations_creators:
|
3 |
+
- expert-generated
|
4 |
+
language:
|
5 |
+
- tl
|
6 |
license: gpl-3.0
|
7 |
+
multilinguality:
|
8 |
+
- monolingual
|
9 |
+
size_categories:
|
10 |
+
- 1K<n<10K
|
11 |
task_categories:
|
12 |
- token-classification
|
13 |
task_ids:
|
14 |
- named-entity-recognition
|
|
|
|
|
|
|
|
|
15 |
pretty_name: TLUnified-NER
|
16 |
tags:
|
17 |
- low-resource
|
18 |
- named-entity-recognition
|
19 |
+
dataset_info:
|
20 |
+
features:
|
21 |
+
- name: id
|
22 |
+
dtype: string
|
23 |
+
- name: tokens
|
24 |
+
sequence: string
|
25 |
+
- name: ner_tags
|
26 |
+
sequence:
|
27 |
+
class_label:
|
28 |
+
names:
|
29 |
+
'0': O
|
30 |
+
'1': B-PER
|
31 |
+
'2': I-PER
|
32 |
+
'3': B-ORG
|
33 |
+
'4': I-ORG
|
34 |
+
'5': B-LOC
|
35 |
+
'6': I-LOC
|
36 |
+
splits:
|
37 |
+
- name: train
|
38 |
+
num_bytes: 3380392
|
39 |
+
num_examples: 6252
|
40 |
+
- name: validation
|
41 |
+
num_bytes: 427069
|
42 |
+
num_examples: 782
|
43 |
+
- name: test
|
44 |
+
num_bytes: 426247
|
45 |
+
num_examples: 782
|
46 |
+
download_size: 971039
|
47 |
+
dataset_size: 4233708
|
48 |
+
configs:
|
49 |
+
- config_name: default
|
50 |
+
data_files:
|
51 |
+
- split: train
|
52 |
+
path: data/train-*
|
53 |
+
- split: validation
|
54 |
+
path: data/validation-*
|
55 |
+
- split: test
|
56 |
+
path: data/test-*
|
57 |
train-eval-index:
|
58 |
+
- config: conllpp
|
59 |
+
task: token-classification
|
60 |
+
task_id: entity_extraction
|
61 |
+
splits:
|
62 |
+
train_split: train
|
63 |
+
eval_split: test
|
64 |
+
col_mapping:
|
65 |
+
tokens: tokens
|
66 |
+
ner_tags: tags
|
67 |
+
metrics:
|
68 |
+
- type: seqeval
|
69 |
+
name: seqeval
|
70 |
---
|
71 |
|
72 |
<!-- SPACY PROJECT: AUTO-GENERATED DOCS START (do not remove) -->
|
corpus/iob/dev.iob → data/test-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:50602b8a71d436d297398adeeb4209b2306df63f54fccfbcfac1cd502c654252
|
3 |
+
size 101856
|
corpus/iob/test.iob → data/train-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f64e43b6019ae35b4055371b89c12b180510152893155975427d6946d6678a61
|
3 |
+
size 767881
|
corpus/iob/train.iob → data/validation-00000-of-00001.parquet
RENAMED
@@ -1,3 +1,3 @@
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
-
oid sha256:
|
3 |
-
size
|
|
|
1 |
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ea9bb253e5e6b9827b7e47dfb31edb27d5eafec223cecc3decd13ae2017576c6
|
3 |
+
size 101302
|
project.yml
DELETED
@@ -1,87 +0,0 @@
|
|
1 |
-
title: "TLUnified-NER Corpus"
|
2 |
-
description: |
|
3 |
-
|
4 |
-
- **Homepage:** [Github](https://github.com/ljvmiranda921/calamanCy)
|
5 |
-
- **Repository:** [Github](https://github.com/ljvmiranda921/calamanCy)
|
6 |
-
- **Point of Contact:** [email protected]
|
7 |
-
|
8 |
-
### Dataset Summary
|
9 |
-
|
10 |
-
This dataset contains the annotated TLUnified corpora from Cruz and Cheng
|
11 |
-
(2021). It is a curated sample of around 7,000 documents for the
|
12 |
-
named entity recognition (NER) task. The majority of the corpus are news
|
13 |
-
reports in Tagalog, resembling the domain of the original ConLL 2003. There
|
14 |
-
are three entity types: Person (PER), Organization (ORG), and Location (LOC).
|
15 |
-
|
16 |
-
| Dataset | Examples | PER | ORG | LOC |
|
17 |
-
|-------------|----------|------|------|------|
|
18 |
-
| Train | 6252 | 6418 | 3121 | 3296 |
|
19 |
-
| Development | 782 | 793 | 392 | 409 |
|
20 |
-
| Test | 782 | 818 | 423 | 438 |
|
21 |
-
|
22 |
-
### Data Fields
|
23 |
-
|
24 |
-
The data fields are the same among all splits:
|
25 |
-
- `id`: a `string` feature
|
26 |
-
- `tokens`: a `list` of `string` features.
|
27 |
-
- `ner_tags`: a `list` of classification labels, with possible values including `O` (0), `B-PER` (1), `I-PER` (2), `B-ORG` (3), `I-ORG` (4), `B-LOC` (5), `I-LOC` (6)
|
28 |
-
|
29 |
-
### Annotation process
|
30 |
-
|
31 |
-
The author, together with two more annotators, labeled curated portions of
|
32 |
-
TLUnified in the course of four months. All annotators are native speakers of
|
33 |
-
Tagalog. For each annotation round, the annotators resolved disagreements,
|
34 |
-
updated the annotation guidelines, and corrected past annotations. They
|
35 |
-
followed the process prescribed by [Reiters
|
36 |
-
(2017)](https://nilsreiter.de/blog/2017/howto-annotation).
|
37 |
-
|
38 |
-
They also measured the inter-annotator agreement (IAA) by computing pairwise
|
39 |
-
comparisons and averaging the results:
|
40 |
-
- Cohen's Kappa (all tokens): 0.81
|
41 |
-
- Cohen's Kappa (annotated tokens only): 0.65
|
42 |
-
- F1-score: 0.91
|
43 |
-
|
44 |
-
### About this repository
|
45 |
-
|
46 |
-
This repository is a [spaCy project](https://spacy.io/usage/projects) for
|
47 |
-
converting the annotated spaCy files into IOB. The process goes like this: we
|
48 |
-
download the raw corpus from Google Cloud Storage (GCS), convert the spaCy
|
49 |
-
files into a readable IOB format, and parse that using our loading script
|
50 |
-
(i.e., `tlunified-ner.py`). We're also shipping the IOB file so that it's
|
51 |
-
easier to access.
|
52 |
-
|
53 |
-
directories: ["assets", "corpus/spacy", "corpus/iob"]
|
54 |
-
|
55 |
-
vars:
|
56 |
-
version: 1.0
|
57 |
-
|
58 |
-
assets:
|
59 |
-
- dest: assets/corpus.tar.gz
|
60 |
-
description: "Annotated TLUnified corpora in spaCy format with train, dev, and test splits."
|
61 |
-
url: "https://storage.googleapis.com/ljvmiranda/calamanCy/tl_tlunified_gold/v${vars.version}/corpus.tar.gz"
|
62 |
-
|
63 |
-
workflows:
|
64 |
-
all:
|
65 |
-
- "setup-data"
|
66 |
-
- "upload-to-hf"
|
67 |
-
|
68 |
-
commands:
|
69 |
-
- name: "setup-data"
|
70 |
-
help: "Prepare the Tagalog corpora used for training various spaCy components"
|
71 |
-
script:
|
72 |
-
- mkdir -p corpus/spacy
|
73 |
-
- tar -xzvf assets/corpus.tar.gz -C corpus/spacy
|
74 |
-
- python -m spacy_to_iob corpus/spacy/ corpus/iob/
|
75 |
-
outputs:
|
76 |
-
- corpus/iob/train.iob
|
77 |
-
- corpus/iob/dev.iob
|
78 |
-
- corpus/iob/test.iob
|
79 |
-
|
80 |
-
- name: "upload-to-hf"
|
81 |
-
help: "Upload dataset to HuggingFace Hub"
|
82 |
-
script:
|
83 |
-
- git push
|
84 |
-
deps:
|
85 |
-
- corpus/iob/train.iob
|
86 |
-
- corpus/iob/dev.iob
|
87 |
-
- corpus/iob/test.iob
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
requirements.txt
DELETED
@@ -1,5 +0,0 @@
|
|
1 |
-
spacy
|
2 |
-
typer
|
3 |
-
datasets
|
4 |
-
huggingface_hub
|
5 |
-
wasabi
|
|
|
|
|
|
|
|
|
|
|
|
spacy_to_iob.py
DELETED
@@ -1,50 +0,0 @@
|
|
1 |
-
from pathlib import Path
|
2 |
-
|
3 |
-
import spacy
|
4 |
-
import typer
|
5 |
-
from spacy.tokens import DocBin
|
6 |
-
from wasabi import msg
|
7 |
-
|
8 |
-
DELIMITER = "-DOCSTART- -X- O O"
|
9 |
-
|
10 |
-
|
11 |
-
def spacy_to_iob(
|
12 |
-
# fmt: off
|
13 |
-
spacy_indir: Path = typer.Argument(..., help="Path to the directory containing the spaCy files."),
|
14 |
-
iob_outdir: Path = typer.Argument(..., help="Path to the directory to save the IOB files."),
|
15 |
-
lang: str = typer.Option("tl", "-l", "--lang", help="Language code for the spaCy vocab."),
|
16 |
-
verbose: bool = typer.Option(False, "-v", "--verbose", help="Print additional information."),
|
17 |
-
delimiter: str = typer.Option(DELIMITER, "-d", "--delimiter", help="Delimiter between examples.")
|
18 |
-
# fmt: on
|
19 |
-
):
|
20 |
-
"""Convert spaCy files into IOB-formatted files."""
|
21 |
-
nlp = spacy.blank(lang)
|
22 |
-
for spacy_file in spacy_indir.glob(f"*.spacy"):
|
23 |
-
msg.text(f"Converting {str(spacy_file)}", show=verbose)
|
24 |
-
doc_bin = DocBin().from_disk(spacy_file)
|
25 |
-
docs = doc_bin.get_docs(nlp.vocab)
|
26 |
-
|
27 |
-
lines = [] # container for the IOB lines later on
|
28 |
-
for doc in docs:
|
29 |
-
lines.append(delimiter)
|
30 |
-
lines.append("\n\n")
|
31 |
-
for token in doc:
|
32 |
-
label = (
|
33 |
-
f"{token.ent_iob_}-{token.ent_type_}"
|
34 |
-
if token.ent_iob_ != "O"
|
35 |
-
else "O"
|
36 |
-
)
|
37 |
-
line = f"{token.text}\t{label}"
|
38 |
-
lines.append(line)
|
39 |
-
lines.append("\n")
|
40 |
-
lines.append("\n")
|
41 |
-
|
42 |
-
iob_file = iob_outdir / f"{spacy_file.stem}.iob"
|
43 |
-
with open(iob_file, "w", encoding="utf-8") as f:
|
44 |
-
f.writelines(lines)
|
45 |
-
|
46 |
-
msg.good(f"Saved to {iob_file}")
|
47 |
-
|
48 |
-
|
49 |
-
if __name__ == "__main__":
|
50 |
-
typer.run(spacy_to_iob)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tlunified-ner.py
DELETED
@@ -1,95 +0,0 @@
|
|
1 |
-
from typing import List
|
2 |
-
|
3 |
-
import datasets
|
4 |
-
|
5 |
-
logger = datasets.logging.get_logger(__name__)
|
6 |
-
|
7 |
-
_DESCRIPTION = """
|
8 |
-
This dataset contains the annotated TLUnified corpora from Cruz and Cheng
|
9 |
-
(2021). It is a curated sample of around 7,000 documents for the
|
10 |
-
named entity recognition (NER) task. The majority of the corpus are news
|
11 |
-
reports in Tagalog, resembling the domain of the original ConLL 2003. There
|
12 |
-
are three entity types: Person (PER), Organization (ORG), and Location (LOC).
|
13 |
-
"""
|
14 |
-
_LICENSE = """GNU GPL v3.0"""
|
15 |
-
_URL = "https://huggingface.co/ljvmiranda921/tlunified-ner"
|
16 |
-
_CLASSES = ["O", "B-PER", "I-PER", "B-ORG", "I-ORG", "B-LOC", "I-LOC"]
|
17 |
-
_VERSION = "1.0.0"
|
18 |
-
|
19 |
-
|
20 |
-
class TLUnifiedNERConfig(datasets.BuilderConfig):
|
21 |
-
def __init__(self, **kwargs):
|
22 |
-
super(TLUnifiedNER, self).__init__(**kwargs)
|
23 |
-
|
24 |
-
|
25 |
-
class TLUnifiedNER(datasets.GeneratorBasedBuilder):
|
26 |
-
"""Contains an annotated version of the TLUnified dataset from Cruz and Cheng (2021)."""
|
27 |
-
|
28 |
-
VERSION = datasets.Version(_VERSION)
|
29 |
-
|
30 |
-
def _info(self) -> "datasets.DatasetInfo":
|
31 |
-
return datasets.DatasetInfo(
|
32 |
-
description=_DESCRIPTION,
|
33 |
-
features=datasets.Features(
|
34 |
-
{
|
35 |
-
"id": datasets.Value("string"),
|
36 |
-
"tokens": datasets.Sequence(datasets.Value("string")),
|
37 |
-
"ner_tags": datasets.Sequence(
|
38 |
-
datasets.features.ClassLabel(names=_CLASSES)
|
39 |
-
),
|
40 |
-
}
|
41 |
-
),
|
42 |
-
homepage=_URL,
|
43 |
-
supervised_keys=None,
|
44 |
-
)
|
45 |
-
|
46 |
-
def _split_generators(
|
47 |
-
self, dl_manager: "datasets.builder.DownloadManager"
|
48 |
-
) -> List["datasets.SplitGenerator"]:
|
49 |
-
"""Return a list of SplitGenerators that organizes the splits."""
|
50 |
-
# The file extracts into {train,dev,test}.spacy files. The _generate_examples function
|
51 |
-
# below will define how these files are parsed.
|
52 |
-
data_files = {
|
53 |
-
"train": dl_manager.download_and_extract("corpus/iob/train.iob"),
|
54 |
-
"dev": dl_manager.download_and_extract("corpus/iob/dev.iob"),
|
55 |
-
"test": dl_manager.download_and_extract("corpus/iob/test.iob"),
|
56 |
-
}
|
57 |
-
|
58 |
-
return [
|
59 |
-
# fmt: off
|
60 |
-
datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": data_files["train"]}),
|
61 |
-
datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": data_files["dev"]}),
|
62 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": data_files["test"]}),
|
63 |
-
# fmt: on
|
64 |
-
]
|
65 |
-
|
66 |
-
def _generate_examples(self, filepath: str):
|
67 |
-
"""Defines how examples are parsed from the IOB file."""
|
68 |
-
logger.info("⏳ Generating examples from = %s", filepath)
|
69 |
-
with open(filepath, encoding="utf-8") as f:
|
70 |
-
guid = 0
|
71 |
-
tokens = []
|
72 |
-
ner_tags = []
|
73 |
-
for line in f:
|
74 |
-
if line.startswith("-DOCSTART-") or line == "" or line == "\n":
|
75 |
-
if tokens:
|
76 |
-
yield guid, {
|
77 |
-
"id": str(guid),
|
78 |
-
"tokens": tokens,
|
79 |
-
"ner_tags": ner_tags,
|
80 |
-
}
|
81 |
-
guid += 1
|
82 |
-
tokens = []
|
83 |
-
ner_tags = []
|
84 |
-
else:
|
85 |
-
# TLUnified-NER iob are separated by \t
|
86 |
-
token, ner_tag = line.split("\t")
|
87 |
-
tokens.append(token)
|
88 |
-
ner_tags.append(ner_tag.rstrip())
|
89 |
-
# Last example
|
90 |
-
if tokens:
|
91 |
-
yield guid, {
|
92 |
-
"id": str(guid),
|
93 |
-
"tokens": tokens,
|
94 |
-
"ner_tags": ner_tags,
|
95 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|