Dataset Preview
Full Screen
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed
Error code:   DatasetGenerationError
Exception:    TypeError
Message:      Couldn't cast array of type
struct<Ios16.add: int64, Ios16.cast: int64, Ios16.gather: int64, Ios16.gatherNd: int64, Ios16.gelu: int64, Ios16.layerNorm: int64, Ios16.linear: int64, Ios16.matmul: int64, Ios16.mul: int64, Ios16.reduceArgmax: int64, Ios16.reshape: int64, Ios16.softmax: int64, Stack: int64, Transpose: int64>
to
{'Ios16.add': Value(dtype='int64', id=None), 'Ios16.cast': Value(dtype='int64', id=None), 'Ios16.gather': Value(dtype='int64', id=None), 'Ios16.gatherNd': Value(dtype='int64', id=None), 'Ios16.layerNorm': Value(dtype='int64', id=None), 'Ios16.linear': Value(dtype='int64', id=None), 'Ios16.matmul': Value(dtype='int64', id=None), 'Ios16.mul': Value(dtype='int64', id=None), 'Ios16.reduceArgmax': Value(dtype='int64', id=None), 'Ios16.reshape': Value(dtype='int64', id=None), 'Ios16.sigmoid': Value(dtype='int64', id=None), 'Ios16.softmax': Value(dtype='int64', id=None), 'Stack': Value(dtype='int64', id=None), 'Transpose': Value(dtype='int64', id=None)}
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2011, in _prepare_split_single
                  writer.write_table(table)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/arrow_writer.py", line 585, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2302, in table_cast
                  return cast_table_to_schema(table, schema)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in cast_table_to_schema
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2261, in <listcomp>
                  arrays = [cast_array_to_feature(table[name], feature) for name, feature in features.items()]
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in wrapper
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 1802, in <listcomp>
                  return pa.chunked_array([func(chunk, *args, **kwargs) for chunk in array.chunks])
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/table.py", line 2122, in cast_array_to_feature
                  raise TypeError(f"Couldn't cast array of type\n{_short_str(array.type)}\nto\n{_short_str(feature)}")
              TypeError: Couldn't cast array of type
              struct<Ios16.add: int64, Ios16.cast: int64, Ios16.gather: int64, Ios16.gatherNd: int64, Ios16.gelu: int64, Ios16.layerNorm: int64, Ios16.linear: int64, Ios16.matmul: int64, Ios16.mul: int64, Ios16.reduceArgmax: int64, Ios16.reshape: int64, Ios16.softmax: int64, Stack: int64, Transpose: int64>
              to
              {'Ios16.add': Value(dtype='int64', id=None), 'Ios16.cast': Value(dtype='int64', id=None), 'Ios16.gather': Value(dtype='int64', id=None), 'Ios16.gatherNd': Value(dtype='int64', id=None), 'Ios16.layerNorm': Value(dtype='int64', id=None), 'Ios16.linear': Value(dtype='int64', id=None), 'Ios16.matmul': Value(dtype='int64', id=None), 'Ios16.mul': Value(dtype='int64', id=None), 'Ios16.reduceArgmax': Value(dtype='int64', id=None), 'Ios16.reshape': Value(dtype='int64', id=None), 'Ios16.sigmoid': Value(dtype='int64', id=None), 'Ios16.softmax': Value(dtype='int64', id=None), 'Stack': Value(dtype='int64', id=None), 'Transpose': Value(dtype='int64', id=None)}
              
              The above exception was the direct cause of the following exception:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1529, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1154, in convert_to_parquet
                  builder.download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1027, in download_and_prepare
                  self._download_and_prepare(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1122, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 1882, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                File "/src/services/worker/.venv/lib/python3.9/site-packages/datasets/builder.py", line 2038, in _prepare_split_single
                  raise DatasetGenerationError("An error occurred while generating the dataset") from e
              datasets.exceptions.DatasetGenerationError: An error occurred while generating the dataset

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

computePrecision
string
isUpdatable
string
availability
dict
inputSchema
list
version
string
specificationVersion
int64
method
string
modelParameters
sequence
license
string
modelType
dict
author
string
userDefinedMetadata
dict
generatedClassName
string
outputSchema
list
storagePrecision
string
metadataOutputVersion
string
shortDescription
string
mlProgramOperationTypeHistogram
dict
Mixed (Float16, Float32, Int32)
0
{ "iOS": "16.0", "macCatalyst": "16.0", "macOS": "13.0", "tvOS": "16.0", "watchOS": "9.0" }
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32 1 × 77)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "input_ids", "shape": "[1, 77]", "shortDescription": "The token ids that represent the input text", "type": "MultiArray" } ]
diffusers/stable-diffusion-xl-base-1.0
7
predict
[]
OpenRAIL (https://huggingface.co/spaces/CompVis/stable-diffusion-license)
{ "name": "MLModelType_mlProgram" }
Please refer to the Model Card available at huggingface.co/diffusers/stable-diffusion-xl-base-1.0
{ "com.github.apple.coremltools.source": "torch==2.0.1+cu117", "com.github.apple.coremltools.version": "7.0b1" }
Stable_Diffusion_version_diffusers_stable_diffusion_xl_base_1_0_text_encoder
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "hidden_embeds", "shape": "[]", "shortDescription": "Hidden states after the encoder layers", "type": "MultiArray" }, { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "pooled_outputs", "shape": "[]", "shortDescription": "The version of the `last_hidden_state` output after pooling", "type": "MultiArray" } ]
Float16
3.0
Stable Diffusion generates images conditioned on text and/or other images as input through the diffusion process. Please refer to https://arxiv.org/abs/2112.10752 for details.
{ "Ios16.add": 37, "Ios16.cast": 3, "Ios16.gather": 1, "Ios16.gatherNd": 1, "Ios16.layerNorm": 25, "Ios16.linear": 72, "Ios16.matmul": 24, "Ios16.mul": 36, "Ios16.reduceArgmax": 1, "Ios16.reshape": 120, "Ios16.sigmoid": 12, "Ios16.softmax": 12, "Stack": 1, "Transpose": 60 }
Mixed (Float16, Float32, Int32)
0
{ "iOS": "16.0", "macCatalyst": "16.0", "macOS": "13.0", "tvOS": "16.0", "watchOS": "9.0" }
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32 1 × 77)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "input_ids", "shape": "[1, 77]", "shortDescription": "The token ids that represent the input text", "type": "MultiArray" } ]
diffusers/stable-diffusion-xl-base-1.0
7
predict
[]
OpenRAIL (https://huggingface.co/spaces/CompVis/stable-diffusion-license)
{ "name": "MLModelType_mlProgram" }
Please refer to the Model Card available at huggingface.co/diffusers/stable-diffusion-xl-base-1.0
{ "com.github.apple.coremltools.source": "torch==2.0.1+cu117", "com.github.apple.coremltools.version": "7.0b1" }
Stable_Diffusion_version_diffusers_stable_diffusion_xl_base_1_0_text_encoder_2
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "hidden_embeds", "shape": "[]", "shortDescription": "Hidden states after the encoder layers", "type": "MultiArray" }, { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "pooled_outputs", "shape": "[]", "shortDescription": "The version of the `last_hidden_state` output after pooling", "type": "MultiArray" } ]
Float16
3.0
Stable Diffusion generates images conditioned on text and/or other images as input through the diffusion process. Please refer to https://arxiv.org/abs/2112.10752 for details.
{ "Ios16.add": 97, "Ios16.cast": 3, "Ios16.gather": 1, "Ios16.gatherNd": 1, "Ios16.gelu": 32, "Ios16.layerNorm": 65, "Ios16.linear": 193, "Ios16.matmul": 64, "Ios16.mul": 32, "Ios16.reduceArgmax": 1, "Ios16.reshape": 320, "Ios16.softmax": 32, "Stack": 1, "Transpose": 160 }
Mixed (Float16, Float32, Int32)
0
{ "iOS": "16.0", "macCatalyst": "16.0", "macOS": "13.0", "tvOS": "16.0", "visionOS": "1.0", "watchOS": "9.0" }
[ { "dataType": "Float16", "formattedType": "MultiArray (Float16 2 × 4 × 128 × 128)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "sample", "shape": "[2, 4, 128, 128]", "shortDescription": "The low resolution latent feature maps being denoised through reverse diffusion", "type": "MultiArray" }, { "dataType": "Float16", "formattedType": "MultiArray (Float16 2)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "timestep", "shape": "[2]", "shortDescription": "A value emitted by the associated scheduler object to condition the model on a given noise schedule", "type": "MultiArray" }, { "dataType": "Float16", "formattedType": "MultiArray (Float16 2 × 2048 × 1 × 77)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "encoder_hidden_states", "shape": "[2, 2048, 1, 77]", "shortDescription": "Output embeddings from the associated text_encoder model to condition to generated image on text. A maximum of 77 tokens (~40 words) are allowed. Longer text is truncated. Shorter text does not reduce computation.", "type": "MultiArray" }, { "dataType": "Float16", "formattedType": "MultiArray (Float16 12)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "time_ids", "shape": "[12]", "shortDescription": "", "type": "MultiArray" }, { "dataType": "Float16", "formattedType": "MultiArray (Float16 2 × 1280)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "text_embeds", "shape": "[2, 1280]", "shortDescription": "", "type": "MultiArray" } ]
diffusers/stable-diffusion-xl-base-1.0
7
predict
[]
OpenRAIL (https://huggingface.co/spaces/CompVis/stable-diffusion-license)
{ "name": "MLModelType_mlProgram" }
Please refer to the Model Card available at huggingface.co/diffusers/stable-diffusion-xl-base-1.0
{ "com.github.apple.coremltools.source": "torch==2.0.1+cu117", "com.github.apple.coremltools.version": "7.0b1", "com.github.apple.ml-stable-diffusion.version": "1.0.0" }
recipe_4_50_bit_mixedpalette
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "noise_pred", "shape": "[]", "shortDescription": "Same shape and dtype as the `sample` input. The predicted noise to facilitate the reverse diffusion (denoising) process", "type": "MultiArray" } ]
Mixed (Float16, Palettized (1 bits), Palettized (2 bits), Palettized (4 bits), Palettized (6 bits), Palettized (8 bits))
3.0
Stable Diffusion generates images conditioned on text or other images as input through the diffusion process. Please refer to https://arxiv.org/abs/2112.10752 for details.
{ "Concat": 14, "ExpandDims": 6, "Ios16.add": 722, "Ios16.batchNorm": 46, "Ios16.cast": 1, "Ios16.constexprLutToDense": 775, "Ios16.conv": 794, "Ios16.cos": 2, "Ios16.gelu": 70, "Ios16.matmul": 280, "Ios16.mul": 842, "Ios16.realDiv": 46, "Ios16.reduceMean": 512, "Ios16.reshape": 675, "Ios16.rsqrt": 210, "Ios16.silu": 38, "Ios16.sin": 2, "Ios16.softmax": 140, "Ios16.sqrt": 46, "Ios16.square": 46, "Ios16.sub": 256, "SliceByIndex": 4, "Split": 70, "UpsampleNearestNeighbor": 2 }
Mixed (Float32, Int32)
0
{ "iOS": "16.0", "macCatalyst": "16.0", "macOS": "13.0", "tvOS": "16.0", "watchOS": "9.0" }
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32 1 × 4 × 128 × 128)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "z", "shape": "[1, 4, 128, 128]", "shortDescription": "The denoised latent embeddings from the unet model after the last step of reverse diffusion", "type": "MultiArray" } ]
diffusers/stable-diffusion-xl-base-1.0
7
predict
[]
OpenRAIL (https://huggingface.co/spaces/CompVis/stable-diffusion-license)
{ "name": "MLModelType_mlProgram" }
Please refer to the Model Card available at huggingface.co/diffusers/stable-diffusion-xl-base-1.0
{ "com.github.apple.coremltools.source": "torch==2.0.1", "com.github.apple.coremltools.version": "7.0b1" }
Stable_Diffusion_version_diffusers_stable_diffusion_xl_base_1_0_vae_decoder
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "image", "shape": "[]", "shortDescription": "Generated image normalized to range [-1, 1]", "type": "MultiArray" } ]
Float32
3.0
Stable Diffusion generates images conditioned on text and/or other images as input through the diffusion process. Please refer to https://arxiv.org/abs/2112.10752 for details.
{ "Ios16.add": 46, "Ios16.batchNorm": 29, "Ios16.conv": 36, "Ios16.linear": 4, "Ios16.matmul": 2, "Ios16.mul": 2, "Ios16.realDiv": 30, "Ios16.reduceMean": 60, "Ios16.reshape": 65, "Ios16.silu": 29, "Ios16.softmax": 1, "Ios16.sqrt": 30, "Ios16.square": 30, "Ios16.sub": 30, "Transpose": 6, "UpsampleNearestNeighbor": 3 }
Mixed (Float16, Float32, Int32)
0
{ "iOS": "16.0", "macCatalyst": "16.0", "macOS": "13.0", "tvOS": "16.0", "watchOS": "9.0" }
[ { "dataType": "Float16", "formattedType": "MultiArray (Float16 1 × 3 × 1024 × 1024)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "z", "shape": "[1, 3, 1024, 1024]", "shortDescription": "The input image to base the initial latents on normalized to range [-1, 1]", "type": "MultiArray" } ]
diffusers/stable-diffusion-xl-base-1.0
7
predict
[]
OpenRAIL (https://huggingface.co/spaces/CompVis/stable-diffusion-license)
{ "name": "MLModelType_mlProgram" }
Please refer to the Model Card available at huggingface.co/diffusers/stable-diffusion-xl-base-1.0
{ "com.github.apple.coremltools.source": "torch==2.0.1+cu117", "com.github.apple.coremltools.version": "7.0b1" }
Stable_Diffusion_version_diffusers_stable_diffusion_xl_base_1_0_vae_encoder
[ { "dataType": "Float32", "formattedType": "MultiArray (Float32)", "hasShapeFlexibility": "0", "isOptional": "0", "name": "latent", "shape": "[]", "shortDescription": "The latent embeddings from the unet model from the input image.", "type": "MultiArray" } ]
Float16
3.0
Stable Diffusion generates images conditioned on text and/or other images as input through the diffusion process. Please refer to https://arxiv.org/abs/2112.10752 for details.
{ "Ios16.add": 34, "Ios16.batchNorm": 21, "Ios16.cast": 1, "Ios16.conv": 28, "Ios16.linear": 4, "Ios16.matmul": 2, "Ios16.mul": 2, "Ios16.realDiv": 22, "Ios16.reduceMean": 44, "Ios16.reshape": 49, "Ios16.silu": 21, "Ios16.softmax": 1, "Ios16.sqrt": 22, "Ios16.square": 22, "Ios16.sub": 22, "Pad": 3, "Transpose": 6 }
null
null
null
null
null
null
null
null
null
null
14447
null
null
null
null
null
null
null

No dataset card yet

New: Create and edit this dataset card directly on the website!

Contribute a Dataset Card
Downloads last month
9