problem_id
stringlengths 32
32
| link
stringlengths 75
84
| problem
stringlengths 14
5.33k
| solution
stringlengths 15
6.63k
| letter
stringclasses 5
values | answer
stringclasses 957
values |
---|---|---|---|---|---|
c9614b6913980d73802c6d63b24149b8 | https://artofproblemsolving.com/wiki/index.php/2023_AMC_8_Problems/Problem_24 | Isosceles $\triangle ABC$ has equal side lengths $AB$ and $BC$ . In the figure below, segments are drawn parallel to $\overline{AC}$ so that the shaded portions of $\triangle ABC$ have the same area. The heights of the two unshaded portions are 11 and 5 units, respectively. What is the height of $h$ of $\triangle ABC$
[asy] //Diagram by TheMathGuyd size(12cm); real h = 2.5; // height real g=4; //c2c space real s = 0.65; //Xcord of Hline real adj = 0.08; //adjust line diffs pair A,B,C; B=(0,h); C=(1,0); A=-conj(C); pair PONE=(s,h*(1-s)); //Endpoint of Hline ONE pair PTWO=(s+adj,h*(1-s-adj)); //Endpoint of Hline ONE path LONE=PONE--(-conj(PONE)); //Hline ONE path LTWO=PTWO--(-conj(PTWO)); path T=A--B--C--cycle; //Triangle fill (shift(g,0)*(LTWO--B--cycle),mediumgrey); fill (LONE--A--C--cycle,mediumgrey); draw(LONE); draw(T); label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); draw(shift(g,0)*LTWO); draw(shift(g,0)*T); label("$A$",shift(g,0)*A,SW); label("$B$",shift(g,0)*B,N); label("$C$",shift(g,0)*C,SE); draw(B--shift(g,0)*B,dashed); draw(C--shift(g,0)*A,dashed); draw((g/2,0)--(g/2,h),dashed); draw((0,h*(1-s))--B,dashed); draw((g,h*(1-s-adj))--(g,0),dashed); label("$5$", midpoint((g,h*(1-s-adj))--(g,0)),UnFill); label("$h$", midpoint((g/2,0)--(g/2,h)),UnFill); label("$11$", midpoint((0,h*(1-s))--B),UnFill); [/asy]
$\textbf{(A) } 14.6 \qquad \textbf{(B) } 14.8 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 15.2 \qquad \textbf{(E) } 15.4$ | First, we notice that the smaller isosceles triangles are similar to the larger isosceles triangles. We can find that the area of the gray area in the first triangle is $[ABC]\cdot\left(1-\left(\tfrac{11}{h}\right)^2\right)$ . Similarly, we can find that the area of the gray part in the second triangle is $[ABC]\cdot\left(\tfrac{h-5}{h}\right)^2$ . These areas are equal, so $1-\left(\frac{11}{h}\right)^2=\left(\frac{h-5}{h}\right)^2$ . Simplifying yields $10h=146$ so $h=\boxed{14.6}$ | A | 14.6 |
c9614b6913980d73802c6d63b24149b8 | https://artofproblemsolving.com/wiki/index.php/2023_AMC_8_Problems/Problem_24 | Isosceles $\triangle ABC$ has equal side lengths $AB$ and $BC$ . In the figure below, segments are drawn parallel to $\overline{AC}$ so that the shaded portions of $\triangle ABC$ have the same area. The heights of the two unshaded portions are 11 and 5 units, respectively. What is the height of $h$ of $\triangle ABC$
[asy] //Diagram by TheMathGuyd size(12cm); real h = 2.5; // height real g=4; //c2c space real s = 0.65; //Xcord of Hline real adj = 0.08; //adjust line diffs pair A,B,C; B=(0,h); C=(1,0); A=-conj(C); pair PONE=(s,h*(1-s)); //Endpoint of Hline ONE pair PTWO=(s+adj,h*(1-s-adj)); //Endpoint of Hline ONE path LONE=PONE--(-conj(PONE)); //Hline ONE path LTWO=PTWO--(-conj(PTWO)); path T=A--B--C--cycle; //Triangle fill (shift(g,0)*(LTWO--B--cycle),mediumgrey); fill (LONE--A--C--cycle,mediumgrey); draw(LONE); draw(T); label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); draw(shift(g,0)*LTWO); draw(shift(g,0)*T); label("$A$",shift(g,0)*A,SW); label("$B$",shift(g,0)*B,N); label("$C$",shift(g,0)*C,SE); draw(B--shift(g,0)*B,dashed); draw(C--shift(g,0)*A,dashed); draw((g/2,0)--(g/2,h),dashed); draw((0,h*(1-s))--B,dashed); draw((g,h*(1-s-adj))--(g,0),dashed); label("$5$", midpoint((g,h*(1-s-adj))--(g,0)),UnFill); label("$h$", midpoint((g/2,0)--(g/2,h)),UnFill); label("$11$", midpoint((0,h*(1-s))--B),UnFill); [/asy]
$\textbf{(A) } 14.6 \qquad \textbf{(B) } 14.8 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 15.2 \qquad \textbf{(E) } 15.4$ | We can call the length of AC as $x$ . Therefore, the length of the base of the triangle with height $11$ is $11/h = a/x$ . Therefore, the base of the smaller triangle is $11x/h$ . We find that the area of the trapezoid is $(hx)/2 - 11^2x/2h$
Using similar triangles once again, we find that the base of the shaded triangle is $(h-5)/h = b/x$ . Therefore, the area is $(h-5)(hx-5x)/h$
Since the areas are the same, we find that $(hx)/2 - 121x/2h = (h-5)(hx-5x)/h$ . Multiplying each side by $2h$ , we get $h^2x - 121x = h^2x - 5hx - 5hx + 25x$ . Therefore, we can subtract $25x + h^2x$ from both sides, and get $-146x = -10hx$ . Finally, we divide both sides by $-x$ and get $10h = 146$ $h$ is $\boxed{14.6}$ | A | 14.6 |
c9614b6913980d73802c6d63b24149b8 | https://artofproblemsolving.com/wiki/index.php/2023_AMC_8_Problems/Problem_24 | Isosceles $\triangle ABC$ has equal side lengths $AB$ and $BC$ . In the figure below, segments are drawn parallel to $\overline{AC}$ so that the shaded portions of $\triangle ABC$ have the same area. The heights of the two unshaded portions are 11 and 5 units, respectively. What is the height of $h$ of $\triangle ABC$
[asy] //Diagram by TheMathGuyd size(12cm); real h = 2.5; // height real g=4; //c2c space real s = 0.65; //Xcord of Hline real adj = 0.08; //adjust line diffs pair A,B,C; B=(0,h); C=(1,0); A=-conj(C); pair PONE=(s,h*(1-s)); //Endpoint of Hline ONE pair PTWO=(s+adj,h*(1-s-adj)); //Endpoint of Hline ONE path LONE=PONE--(-conj(PONE)); //Hline ONE path LTWO=PTWO--(-conj(PTWO)); path T=A--B--C--cycle; //Triangle fill (shift(g,0)*(LTWO--B--cycle),mediumgrey); fill (LONE--A--C--cycle,mediumgrey); draw(LONE); draw(T); label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); draw(shift(g,0)*LTWO); draw(shift(g,0)*T); label("$A$",shift(g,0)*A,SW); label("$B$",shift(g,0)*B,N); label("$C$",shift(g,0)*C,SE); draw(B--shift(g,0)*B,dashed); draw(C--shift(g,0)*A,dashed); draw((g/2,0)--(g/2,h),dashed); draw((0,h*(1-s))--B,dashed); draw((g,h*(1-s-adj))--(g,0),dashed); label("$5$", midpoint((g,h*(1-s-adj))--(g,0)),UnFill); label("$h$", midpoint((g/2,0)--(g/2,h)),UnFill); label("$11$", midpoint((0,h*(1-s))--B),UnFill); [/asy]
$\textbf{(A) } 14.6 \qquad \textbf{(B) } 14.8 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 15.2 \qquad \textbf{(E) } 15.4$ | Since the length of AC does not matter, we can assume the base of triangle ABC is $h$ . Therefore, the area of the trapezoid in the first diagram is $h^2/2 - \frac{11^2}{2}$
The area of the triangle in the second diagram is now $\frac{(h-5)^2}{2}$
Therefore, $\frac{h^2 - 11^2}{2} = \frac{(h-5)^2}{2}$ . Multiplying both sides by $2$ , we get $h^2 - 121 = h^2 - 10h + 25$ . Subtracting $h^2 + 25$ from both sides, we get $-146 = -10h$ and $h$ is $\boxed{14.6}$ | A | 14.6 |
c9614b6913980d73802c6d63b24149b8 | https://artofproblemsolving.com/wiki/index.php/2023_AMC_8_Problems/Problem_24 | Isosceles $\triangle ABC$ has equal side lengths $AB$ and $BC$ . In the figure below, segments are drawn parallel to $\overline{AC}$ so that the shaded portions of $\triangle ABC$ have the same area. The heights of the two unshaded portions are 11 and 5 units, respectively. What is the height of $h$ of $\triangle ABC$
[asy] //Diagram by TheMathGuyd size(12cm); real h = 2.5; // height real g=4; //c2c space real s = 0.65; //Xcord of Hline real adj = 0.08; //adjust line diffs pair A,B,C; B=(0,h); C=(1,0); A=-conj(C); pair PONE=(s,h*(1-s)); //Endpoint of Hline ONE pair PTWO=(s+adj,h*(1-s-adj)); //Endpoint of Hline ONE path LONE=PONE--(-conj(PONE)); //Hline ONE path LTWO=PTWO--(-conj(PTWO)); path T=A--B--C--cycle; //Triangle fill (shift(g,0)*(LTWO--B--cycle),mediumgrey); fill (LONE--A--C--cycle,mediumgrey); draw(LONE); draw(T); label("$A$",A,SW); label("$B$",B,N); label("$C$",C,SE); draw(shift(g,0)*LTWO); draw(shift(g,0)*T); label("$A$",shift(g,0)*A,SW); label("$B$",shift(g,0)*B,N); label("$C$",shift(g,0)*C,SE); draw(B--shift(g,0)*B,dashed); draw(C--shift(g,0)*A,dashed); draw((g/2,0)--(g/2,h),dashed); draw((0,h*(1-s))--B,dashed); draw((g,h*(1-s-adj))--(g,0),dashed); label("$5$", midpoint((g,h*(1-s-adj))--(g,0)),UnFill); label("$h$", midpoint((g/2,0)--(g/2,h)),UnFill); label("$11$", midpoint((0,h*(1-s))--B),UnFill); [/asy]
$\textbf{(A) } 14.6 \qquad \textbf{(B) } 14.8 \qquad \textbf{(C) } 15 \qquad \textbf{(D) } 15.2 \qquad \textbf{(E) } 15.4$ | The answers are there on the bottom, so start with the middle one, ${\textbf{(C)}15}$ . After calculating, we find that we need a shorter length, so try ${\textbf{(B)}14.8}$ . Still, we need a shorter answer, so we simply choose $\boxed{14.6}$ without trying it out. | A | 14.6 |
aad3ac2bba915811d335c7315c6013a2 | https://artofproblemsolving.com/wiki/index.php/2023_AMC_8_Problems/Problem_25 | Fifteen integers $a_1, a_2, a_3, \dots, a_{15}$ are arranged in order on a number line. The integers are equally spaced and have the property that \[1 \le a_1 \le 10, \thickspace 13 \le a_2 \le 20, \thickspace \text{ and } \thickspace 241 \le a_{15}\le 250.\] What is the sum of digits of $a_{14}?$
$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 11 \qquad \textbf{(E)}\ 12$ | We can find the possible values of the common difference by finding the numbers which satisfy the conditions. To do this, we find the minimum of the last two: $241-20=221$ , and the maximum– $250-13=237$ . There is a difference of $13$ between them, so only $17$ and $18$ work, as $17\cdot13=221$ , so $17$ satisfies $221\leq 13x\leq237$ . The number $18$ is similarly found. $19$ , however, is too much.
Now, we check with the first and last equations using the same method. We know $241-10\leq 14x\leq250-1$ . Therefore, $231\leq 14x\leq249$ . We test both values we just got, and we can realize that $18$ is too large to satisfy this inequality. On the other hand, we can now find that the difference will be $17$ , which satisfies this inequality.
The last step is to find the first term. We know that the first term can only be from $1$ to $3$ since any larger value would render the second inequality invalid. Testing these three, we find that only $a_1=3$ will satisfy all the inequalities. Therefore, $a_{14}=13\cdot17+3=224$ . The sum of the digits is therefore $\boxed{8}$ | A | 8 |
aad3ac2bba915811d335c7315c6013a2 | https://artofproblemsolving.com/wiki/index.php/2023_AMC_8_Problems/Problem_25 | Fifteen integers $a_1, a_2, a_3, \dots, a_{15}$ are arranged in order on a number line. The integers are equally spaced and have the property that \[1 \le a_1 \le 10, \thickspace 13 \le a_2 \le 20, \thickspace \text{ and } \thickspace 241 \le a_{15}\le 250.\] What is the sum of digits of $a_{14}?$
$\textbf{(A)}\ 8 \qquad \textbf{(B)}\ 9 \qquad \textbf{(C)}\ 10 \qquad \textbf{(D)}\ 11 \qquad \textbf{(E)}\ 12$ | Let the common difference between consecutive $a_i$ be $d$ .
Since $a_{15} - a_1 = 14d$ , we find from the first and last inequalities that $231 \le 14d \le 249$ . As $d$ must be an integer, this means $d = 17$ . Substituting this into all of the given inequalities so we may extract information about $a_1$ gives \[1 \le a_1 \le 10, \thickspace 13 \le a_1 + 17 \le 20, \thickspace 241 \le a_1 + 238 \le 250.\] The second inequality tells us that $1 \le a_1 \le 3$ while the last inequality tells us $3 \le a_1 \le 12$ , so we must have $a_1 = 3$ . Finally, to solve for $a_{14}$ , we simply have $a_{14} = a_1 + 13d = 3 + 13(17) = 3 + 221 = 224$ , so our answer is $2 + 2 + 4 = \boxed{8}$ | A | 8 |
dcaa034b0bf2f88fb2af30742e8c32cc | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_1 | The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
[asy] defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); [/asy]
$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$ | Draw the following four lines as shown: [asy] usepackage("mathptmx"); defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); draw((3,4)--(4,3), red); draw((4,3)--(3,2), red); draw((3,2)--(2,3), red); draw((2,3)--(3,4), red); [/asy]
We see these lines split the figure into five squares with side length $\sqrt2$ . Thus, the area is $5\cdot\left(\sqrt2\right)^2=5\cdot 2 = \boxed{10}$ | A | 10 |
dcaa034b0bf2f88fb2af30742e8c32cc | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_1 | The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
[asy] defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); [/asy]
$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$ | There are $5$ lattice points in the interior of the logo and $12$ lattice points on the boundary of the logo. Because of Pick's Theorem, the area of the logo is $5+\frac{12}{2}-1=\boxed{10}$ | A | 10 |
dcaa034b0bf2f88fb2af30742e8c32cc | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_1 | The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
[asy] defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); [/asy]
$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$ | Notice that the area of the figure is equal to the area of the $4 \times 4$ square subtracted by the $12$ triangles that are half the area of each square, which is $1$ . The total area of the triangles not in the figure is $12 \cdot \frac{1}{2} = 6$ , so the answer is $16-6 = \boxed{10}$ | A | 10 |
dcaa034b0bf2f88fb2af30742e8c32cc | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_1 | The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
[asy] defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); [/asy]
$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$ | Draw the following four lines as shown:
[asy] usepackage("mathptmx"); defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); draw((2,4)--(4,4), red); draw((4,4)--(4,2), red); draw((4,2)--(2,2), red); draw((2,2)--(2,4), red); [/asy]
The area of the big square is $4$ , and the area of each triangle is $0.5$ . There are $12$ of these triangles, so the total area of all the triangles is $0.5\cdot12=6$ . Therefore, the area of the entire figure is $4+6=\boxed{10}$ | A | 10 |
dcaa034b0bf2f88fb2af30742e8c32cc | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_1 | The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
[asy] defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); [/asy]
$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$ | The coordinates are $(1,2), (2,1), (3,2), (4,1), (5,2), (4,3), (5,4), (4,5), (3,4), (2,5), (1,4), (2,3)$ Use the Shoelace Theorem to get $\boxed{10}$ | A | 10 |
dcaa034b0bf2f88fb2af30742e8c32cc | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_1 | The Math Team designed a logo shaped like a multiplication symbol, shown below on a grid of 1-inch squares. What is the area of the logo in square inches?
[asy] defaultpen(linewidth(0.5)); size(5cm); defaultpen(fontsize(14pt)); label("$\textbf{Math}$", (2.1,3.7)--(3.9,3.7)); label("$\textbf{Team}$", (2.1,3)--(3.9,3)); filldraw((1,2)--(2,1)--(3,2)--(4,1)--(5,2)--(4,3)--(5,4)--(4,5)--(3,4)--(2,5)--(1,4)--(2,3)--(1,2)--cycle, mediumgray*0.5 + lightgray*0.5); draw((0,0)--(6,0), gray); draw((0,1)--(6,1), gray); draw((0,2)--(6,2), gray); draw((0,3)--(6,3), gray); draw((0,4)--(6,4), gray); draw((0,5)--(6,5), gray); draw((0,6)--(6,6), gray); draw((0,0)--(0,6), gray); draw((1,0)--(1,6), gray); draw((2,0)--(2,6), gray); draw((3,0)--(3,6), gray); draw((4,0)--(4,6), gray); draw((5,0)--(5,6), gray); draw((6,0)--(6,6), gray); [/asy]
$\textbf{(A) } 10 \qquad \textbf{(B) } 12 \qquad \textbf{(C) } 13 \qquad \textbf{(D) } 14 \qquad \textbf{(E) } 15$ | If the triangles are rearranged such that the gaps are filled, there would be a $4$ by $2$ rectangle, and two $1$ by $1$ squares are present. Thus, the answer is $\boxed{10}$ | A | 10 |
f5a2930556b34ef57bc7dfef1024f1b3 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_2 | Consider these two operations: \begin{align*} a \, \blacklozenge \, b &= a^2 - b^2\\ a \, \bigstar \, b &= (a - b)^2 \end{align*} What is the output of $(5 \, \blacklozenge \, 3) \, \bigstar \, 6?$
$\textbf{(A) } {-}20 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 16 \qquad \textbf{(D) } 100 \qquad \textbf{(E) } 220$ | We can substitute $5$ $3$ , and $6$ into the functions' definitions: \begin{align*} (5 \, \blacklozenge \, 3) \, \bigstar \, 6 &= \left(5^2-3^2\right) \, \bigstar \, 6 \\ (5 \, \blacklozenge \, 3) \, \bigstar \, 6 &= \left(25-9\right) \, \bigstar \, 6 \\ &= 16 \, \bigstar \, 6 \\ &= (16-6)^2 \\ &= \boxed{100} ~pog ~MathFun1000 (Minor Edits) | D | 100 |
443d8834e113d46d25f334097ce0931d | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_3 | When three positive integers $a$ $b$ , and $c$ are multiplied together, their product is $100$ . Suppose $a < b < c$ . In how many ways can the numbers be chosen?
$\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4$ | The positive divisors of $100$ are \[1,2,4,5,10,20,25,50,100.\] It is clear that $10\leq c\leq50,$ so we apply casework to $c:$
Together, the numbers $a,b,$ and $c$ can be chosen in $\boxed{4}$ ways. | E | 4 |
443d8834e113d46d25f334097ce0931d | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_3 | When three positive integers $a$ $b$ , and $c$ are multiplied together, their product is $100$ . Suppose $a < b < c$ . In how many ways can the numbers be chosen?
$\textbf{(A) } 0 \qquad \textbf{(B) } 1\qquad\textbf{(C) } 2\qquad\textbf{(D) } 3\qquad\textbf{(E) } 4$ | The positive divisors of $100$ are \[1,2,4,5,10,20,25,50,100.\] We apply casework to $a$
If $a=1$ , then there are $3$ cases:
If $a=2$ , then there is only $1$ case:
In total, there are $3+1=\boxed{4}$ ways to choose distinct positive integer values of $a,b,c$ | E | 4 |
caf502d71847dfc7453032584c0a7882 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_5 | Anna and Bella are celebrating their birthdays together. Five years ago, when Bella turned $6$ years old, she received a newborn kitten as a birthday present. Today the sum of the ages of the two children and the kitten is $30$ years. How many years older than Bella is Anna?
$\textbf{(A) } 1 \qquad \textbf{(B) } 2 \qquad \textbf{(C) } 3 \qquad \textbf{(D) } 4 \qquad \textbf{(E) } ~5$ | Five years ago, Bella was $6$ years old, and the kitten was $0$ years old.
Today, Bella is $11$ years old, and the kitten is $5$ years old. It follows that Anna is $30-11-5=14$ years old.
Therefore, Anna is $14-11=\boxed{3}$ years older than Bella. | C | 3 |
c4fc086c5d6207dc123bd84de929c42b | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_6 | Three positive integers are equally spaced on a number line. The middle number is $15,$ and the largest number is $4$ times the smallest number. What is the smallest of these three numbers?
$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$ | Let the smallest number be $x.$ It follows that the largest number is $4x.$
Since $x,15,$ and $4x$ are equally spaced on a number line, we have \begin{align*} 4x-15 &= 15-x \\ 5x &= 30 \\ x &= \boxed{6} ~MRENTHUSIASM | C | 6 |
c4fc086c5d6207dc123bd84de929c42b | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_6 | Three positive integers are equally spaced on a number line. The middle number is $15,$ and the largest number is $4$ times the smallest number. What is the smallest of these three numbers?
$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$ | Let the common difference of the arithmetic sequence be $d$ . Consequently, the smallest number is $15-d$ and the largest number is $15+d$ . As the largest number is $4$ times the smallest number, $15+d=60-4d\implies d=9$ . Finally, we find that the smallest number is $15-9=\boxed{6}$ | C | 6 |
c4fc086c5d6207dc123bd84de929c42b | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_6 | Three positive integers are equally spaced on a number line. The middle number is $15,$ and the largest number is $4$ times the smallest number. What is the smallest of these three numbers?
$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$ | Let the smallest number be $x$ . Since the integers are equally spaced, and there are three of them, the middle number ( $15$ ) is the arithmetic mean of the other two numbers ( $x$ and $4x$ ). Thus, we set up the equation $(4x + x)/3 = 15$ , and, solving for $x$ , get $x = 6$ . Since $6$ is the smallest number out of the list $6, 15, 24$ $24$ because it equals $4x$ ), the answer is $\boxed{6}$ | C | 6 |
c4fc086c5d6207dc123bd84de929c42b | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_6 | Three positive integers are equally spaced on a number line. The middle number is $15,$ and the largest number is $4$ times the smallest number. What is the smallest of these three numbers?
$\textbf{(A) } 4 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 7 \qquad \textbf{(E) } 8$ | Let the smallest number be $x$ . Because $x$ and $4x$ are equally spaced from $15$ $15$ must be the average. By adding $x$ and $4x$ and dividing by $2$ , we get that the mean is also $2.5x$ . We get that $2.5x=15$ , and solving gets $x=\boxed{6}$ | C | 6 |
2569d8831452af98ac921c7165d8298f | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_7 | When the World Wide Web first became popular in the $1990$ s, download speeds reached a maximum of about $56$ kilobits per second. Approximately how many minutes would the download of a $4.2$ -megabyte song have taken at that speed? (Note that there are $8000$ kilobits in a megabyte.)
$\textbf{(A) } 0.6 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 1800 \qquad \textbf{(D) } 7200 \qquad \textbf{(E) } 36000$ | Notice that the number of kilobits in this song is $4.2 \cdot 8000 = 8 \cdot 7 \cdot 6 \cdot 100.$
We must divide this by $56$ in order to find out how many seconds this song would take to download: $\frac{\cancel{8}\cdot\cancel{7}\cdot6\cdot100}{\cancel{56}} = 600.$
Finally, we divide this number by $60$ because this is the number of seconds to get the answer $\frac{600}{60}=\boxed{10}.$ | B | 10 |
2569d8831452af98ac921c7165d8298f | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_7 | When the World Wide Web first became popular in the $1990$ s, download speeds reached a maximum of about $56$ kilobits per second. Approximately how many minutes would the download of a $4.2$ -megabyte song have taken at that speed? (Note that there are $8000$ kilobits in a megabyte.)
$\textbf{(A) } 0.6 \qquad \textbf{(B) } 10 \qquad \textbf{(C) } 1800 \qquad \textbf{(D) } 7200 \qquad \textbf{(E) } 36000$ | We seek a value of $x$ that makes the following equation true, since every other quantity equals $1$
\[\frac{x\ \text{min}}{4.2\ \text{mb}} \cdot \frac{56\ \text{kb}}{1\ \text{sec}} \cdot \frac{1\ \text{mb}}{8000\ \text{kb}} \cdot \frac{60\ \text{sec}}{1\ \text{min}} = 1.\] Solving yields $x=\boxed{10}$ | B | 10 |
7f5b2ceee58b2c69e3bbf03b54cfaf68 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_9 | A cup of boiling water ( $212^{\circ}\text{F}$ ) is placed to cool in a room whose temperature remains constant at $68^{\circ}\text{F}$ . Suppose the difference between the water temperature and the room temperature is halved every $5$ minutes. What is the water temperature, in degrees Fahrenheit, after $15$ minutes?
$\textbf{(A) } 77 \qquad \textbf{(B) } 86 \qquad \textbf{(C) } 92 \qquad \textbf{(D) } 98 \qquad \textbf{(E) } 104$ | Initially, the difference between the water temperature and the room temperature is $212-68=144$ degrees Fahrenheit.
After $5$ minutes, the difference between the temperatures is $144\div2=72$ degrees Fahrenheit.
After $10$ minutes, the difference between the temperatures is $72\div2=36$ degrees Fahrenheit.
After $15$ minutes, the difference between the temperatures is $36\div2=18$ degrees Fahrenheit. At this point, the water temperature is $68+18=\boxed{86}$ degrees Fahrenheit. | B | 86 |
6c94adfb918975f0c18cd8a9036e544b | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_11 | Henry the donkey has a very long piece of pasta. He takes a number of bites of pasta, each time eating $3$ inches of pasta from the middle of one piece. In the end, he has $10$ pieces of pasta whose total length is $17$ inches. How long, in inches, was the piece of pasta he started with?
$\textbf{(A) } 34\qquad\textbf{(B) } 38\qquad\textbf{(C) } 41\qquad\textbf{(D) } 44\qquad\textbf{(E) } 47$ | If there are $10$ pieces of pasta, Henry took $10-1=9$ bites. Each of these $9$ bites took $3$ inches of pasta out, and thus his bites in total took away $9\cdot 3 = 27$ inches of pasta. Thus, the original piece of pasta was $27+17=\boxed{44}$ inches long. | D | 44 |
e44247bc94190fdaa650b0e77e875dec | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_13 | How many positive integers can fill the blank in the sentence below?
“One positive integer is _____ more than twice another, and the sum of the two numbers is $28$ .”
$\textbf{(A) } 6 \qquad \textbf{(B) } 7 \qquad \textbf{(C) } 8 \qquad \textbf{(D) } 9 \qquad \textbf{(E) } 10$ | Let $m$ and $n$ be positive integers such that $m>n$ and $m+n=28.$ It follows that $m=2n+d$ for some positive integer $d.$ We wish to find the number of possible values for $d.$
By substitution, we have $(2n+d)+n=28,$ from which $d=28-3n.$ Note that $n=1,2,3,\ldots,9$ each generate a positive integer for $d,$ so there are $\boxed{9}$ possible values for $d.$ | D | 9 |
c9c1bfde64dd08019d5ead2e3834e536 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_14 | In how many ways can the letters in $\textbf{BEEKEEPER}$ be rearranged so that two or more $\textbf{E}$ s do not appear together?
$\textbf{(A) } 1 \qquad \textbf{(B) } 4 \qquad \textbf{(C) } 12 \qquad \textbf{(D) } 24 \qquad \textbf{(E) } 120$ | All valid arrangements of the letters must be of the form \[\textbf{E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E\underline{\hspace{3mm}}E}.\] The problem is equivalent to counting the arrangements of $\textbf{B},\textbf{K},\textbf{P},$ and $\textbf{R}$ into the four blanks, in which there are $4!=\boxed{24}$ ways. | D | 24 |
849d4729175498880d5f4f368246cc39 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_15 | Laszlo went online to shop for black pepper and found thirty different black pepper options varying in weight and price, shown in the scatter plot below. In ounces, what is the weight of the pepper that offers the lowest price per ounce?
[asy] //diagram by pog size(5.5cm); usepackage("mathptmx"); defaultpen(mediumgray*0.5+gray*0.5+linewidth(0.63)); add(grid(6,6)); label(scale(0.7)*"$1$", (1,-0.3), black); label(scale(0.7)*"$2$", (2,-0.3), black); label(scale(0.7)*"$3$", (3,-0.3), black); label(scale(0.7)*"$4$", (4,-0.3), black); label(scale(0.7)*"$5$", (5,-0.3), black); label(scale(0.7)*"$1$", (-0.3,1), black); label(scale(0.7)*"$2$", (-0.3,2), black); label(scale(0.7)*"$3$", (-0.3,3), black); label(scale(0.7)*"$4$", (-0.3,4), black); label(scale(0.7)*"$5$", (-0.3,5), black); label(scale(0.8)*rotate(90)*"Price (dollars)", (-1,3.2), black); label(scale(0.8)*"Weight (ounces)", (3.2,-1), black); dot((1,1.2),black); dot((1,1.7),black); dot((1,2),black); dot((1,2.8),black); dot((1.5,2.1),black); dot((1.5,3),black); dot((1.5,3.3),black); dot((1.5,3.75),black); dot((2,2),black); dot((2,2.9),black); dot((2,3),black); dot((2,4),black); dot((2,4.35),black); dot((2,4.8),black); dot((2.5,2.7),black); dot((2.5,3.7),black); dot((2.5,4.2),black); dot((2.5,4.4),black); dot((3,2.5),black); dot((3,3.4),black); dot((3,4.2),black); dot((3.5,3.8),black); dot((3.5,4.5),black); dot((3.5,4.8),black); dot((4,3.9),black); dot((4,5.1),black); dot((4.5,4.75),black); dot((4.5,5),black); dot((5,4.5),black); dot((5,5),black); [/asy]
$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }5$ | [asy] //diagram by pog size(5.5cm); usepackage("mathptmx"); defaultpen(mediumgray*0.5+gray*0.5+linewidth(0.63)); add(grid(6,6)); label(scale(0.7)*"$1$", (1,-0.3), black); label(scale(0.7)*"$2$", (2,-0.3), black); label(scale(0.7)*"$3$", (3,-0.3), black); label(scale(0.7)*"$4$", (4,-0.3), black); label(scale(0.7)*"$5$", (5,-0.3), black); label(scale(0.7)*"$1$", (-0.3,1), black); label(scale(0.7)*"$2$", (-0.3,2), black); label(scale(0.7)*"$3$", (-0.3,3), black); label(scale(0.7)*"$4$", (-0.3,4), black); label(scale(0.7)*"$5$", (-0.3,5), black); label(scale(0.8)*rotate(90)*"Price (dollars)", (-1,3.2), black); label(scale(0.8)*"Weight (ounces)", (3.2,-1), black); draw((0,0)--(6,5),red); dot((1,1.2),black); dot((1,1.7),black); dot((1,2),black); dot((1,2.8),black); dot((1.5,2.1),black); dot((1.5,3),black); dot((1.5,3.3),black); dot((1.5,3.75),black); dot((2,2),black); dot((2,2.9),black); dot((2,3),black); dot((2,4),black); dot((2,4.35),black); dot((2,4.8),black); dot((2.5,2.7),black); dot((2.5,3.7),black); dot((2.5,4.2),black); dot((2.5,4.4),black); dot((3,2.5),blue); dot((3,3.4),black); dot((3,4.2),black); dot((3.5,3.8),black); dot((3.5,4.5),black); dot((3.5,4.8),black); dot((4,3.9),black); dot((4,5.1),black); dot((4.5,4.75),black); dot((4.5,5),black); dot((5,4.5),black); dot((5,5),black); [/asy]
We are looking for a black point, that when connected to the origin, yields the lowest slope. The slope represents the price per ounce. We can visually find that the point with the lowest slope is the blue point. Furthermore, it is the only one with a price per ounce significantly less than $1$ . Finally, we see that the blue point is in the category with a weight of $\boxed{3}$ ounces. | C | 3 |
849d4729175498880d5f4f368246cc39 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_15 | Laszlo went online to shop for black pepper and found thirty different black pepper options varying in weight and price, shown in the scatter plot below. In ounces, what is the weight of the pepper that offers the lowest price per ounce?
[asy] //diagram by pog size(5.5cm); usepackage("mathptmx"); defaultpen(mediumgray*0.5+gray*0.5+linewidth(0.63)); add(grid(6,6)); label(scale(0.7)*"$1$", (1,-0.3), black); label(scale(0.7)*"$2$", (2,-0.3), black); label(scale(0.7)*"$3$", (3,-0.3), black); label(scale(0.7)*"$4$", (4,-0.3), black); label(scale(0.7)*"$5$", (5,-0.3), black); label(scale(0.7)*"$1$", (-0.3,1), black); label(scale(0.7)*"$2$", (-0.3,2), black); label(scale(0.7)*"$3$", (-0.3,3), black); label(scale(0.7)*"$4$", (-0.3,4), black); label(scale(0.7)*"$5$", (-0.3,5), black); label(scale(0.8)*rotate(90)*"Price (dollars)", (-1,3.2), black); label(scale(0.8)*"Weight (ounces)", (3.2,-1), black); dot((1,1.2),black); dot((1,1.7),black); dot((1,2),black); dot((1,2.8),black); dot((1.5,2.1),black); dot((1.5,3),black); dot((1.5,3.3),black); dot((1.5,3.75),black); dot((2,2),black); dot((2,2.9),black); dot((2,3),black); dot((2,4),black); dot((2,4.35),black); dot((2,4.8),black); dot((2.5,2.7),black); dot((2.5,3.7),black); dot((2.5,4.2),black); dot((2.5,4.4),black); dot((3,2.5),black); dot((3,3.4),black); dot((3,4.2),black); dot((3.5,3.8),black); dot((3.5,4.5),black); dot((3.5,4.8),black); dot((4,3.9),black); dot((4,5.1),black); dot((4.5,4.75),black); dot((4.5,5),black); dot((5,4.5),black); dot((5,5),black); [/asy]
$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }5$ | By the answer choices, we can disregard the points that do not have integer weights. As a result, we obtain the following diagram:
[asy] //diagram by pog size(5.5cm); usepackage("mathptmx"); defaultpen(mediumgray*0.5+gray*0.5+linewidth(0.63)); add(grid(6,6)); label(scale(0.7)*"$1$", (1,-0.3), black); label(scale(0.7)*"$2$", (2,-0.3), black); label(scale(0.7)*"$3$", (3,-0.3), black); label(scale(0.7)*"$4$", (4,-0.3), black); label(scale(0.7)*"$5$", (5,-0.3), black); label(scale(0.7)*"$1$", (-0.3,1), black); label(scale(0.7)*"$2$", (-0.3,2), black); label(scale(0.7)*"$3$", (-0.3,3), black); label(scale(0.7)*"$4$", (-0.3,4), black); label(scale(0.7)*"$5$", (-0.3,5), black); label(scale(0.8)*rotate(90)*"Price (dollars)", (-1,3.2), black); label(scale(0.8)*"Weight (ounces)", (3.2,-1), black); dot((1,1.2),black); dot((1,1.7),black); dot((1,2),black); dot((1,2.8),black); dot((2,2),black); dot((2,2.9),black); dot((2,3),black); dot((2,4),black); dot((2,4.35),black); dot((2,4.8),black); dot((3,2.5),blue); dot((3,3.4),black); dot((3,4.2),black); dot((4,3.9),black); dot((4,5.1),black); dot((5,4.5),black); dot((5,5),black); [/asy]
We then proceed in the same way that we had done in Solution 1. Following the steps, we figure out the blue dot that yields the lowest slope, along with passing the origin. We then can look at the x-axis(in this situation, the weight) and figure out it has $\boxed{3}$ ounces. | C | 3 |
849d4729175498880d5f4f368246cc39 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_15 | Laszlo went online to shop for black pepper and found thirty different black pepper options varying in weight and price, shown in the scatter plot below. In ounces, what is the weight of the pepper that offers the lowest price per ounce?
[asy] //diagram by pog size(5.5cm); usepackage("mathptmx"); defaultpen(mediumgray*0.5+gray*0.5+linewidth(0.63)); add(grid(6,6)); label(scale(0.7)*"$1$", (1,-0.3), black); label(scale(0.7)*"$2$", (2,-0.3), black); label(scale(0.7)*"$3$", (3,-0.3), black); label(scale(0.7)*"$4$", (4,-0.3), black); label(scale(0.7)*"$5$", (5,-0.3), black); label(scale(0.7)*"$1$", (-0.3,1), black); label(scale(0.7)*"$2$", (-0.3,2), black); label(scale(0.7)*"$3$", (-0.3,3), black); label(scale(0.7)*"$4$", (-0.3,4), black); label(scale(0.7)*"$5$", (-0.3,5), black); label(scale(0.8)*rotate(90)*"Price (dollars)", (-1,3.2), black); label(scale(0.8)*"Weight (ounces)", (3.2,-1), black); dot((1,1.2),black); dot((1,1.7),black); dot((1,2),black); dot((1,2.8),black); dot((1.5,2.1),black); dot((1.5,3),black); dot((1.5,3.3),black); dot((1.5,3.75),black); dot((2,2),black); dot((2,2.9),black); dot((2,3),black); dot((2,4),black); dot((2,4.35),black); dot((2,4.8),black); dot((2.5,2.7),black); dot((2.5,3.7),black); dot((2.5,4.2),black); dot((2.5,4.4),black); dot((3,2.5),black); dot((3,3.4),black); dot((3,4.2),black); dot((3.5,3.8),black); dot((3.5,4.5),black); dot((3.5,4.8),black); dot((4,3.9),black); dot((4,5.1),black); dot((4.5,4.75),black); dot((4.5,5),black); dot((5,4.5),black); dot((5,5),black); [/asy]
$\textbf{(A) }1\qquad\textbf{(B) }2\qquad\textbf{(C) }3\qquad\textbf{(D) }4\qquad\textbf{(E) }5$ | We can find the lowest point in each line ( $1$ $2$ $3$ $4$ , or $5$ ) and find the price per pound. (Note that we don't need to find the points higher than the points below since we are finding the lowest price per pound.)
[asy] //diagram by pog size(5.5cm); usepackage("mathptmx"); defaultpen(mediumgray*0.5+gray*0.5+linewidth(0.63)); add(grid(6,6)); label(scale(0.7)*"$1$", (1,-0.3), black); label(scale(0.7)*"$2$", (2,-0.3), black); label(scale(0.7)*"$3$", (3,-0.3), black); label(scale(0.7)*"$4$", (4,-0.3), black); label(scale(0.7)*"$5$", (5,-0.3), black); label(scale(0.7)*"$1$", (-0.3,1), black); label(scale(0.7)*"$2$", (-0.3,2), black); label(scale(0.7)*"$3$", (-0.3,3), black); label(scale(0.7)*"$4$", (-0.3,4), black); label(scale(0.7)*"$5$", (-0.3,5), black); label(scale(0.8)*rotate(90)*"Price (dollars)", (-1,3.2), black); label(scale(0.8)*"Weight (ounces)", (3.2,-1), black); dot((1,1.2),red); dot((1,1.7),black); dot((1,2),black); dot((1,2.8),black); dot((2,2),green); dot((2,2.9),black); dot((2,3),black); dot((2,4),black); dot((2,4.35),black); dot((2,4.8),black); dot((3,2.5),blue); dot((3,3.4),black); dot((3,4.2),black); dot((4,3.9),orange); dot((4,5.1),black); dot((5,4.5),purple); dot((5,5),black); [/asy]
The red dot has a price per pound of something that is larger than $1$ . The green dot has a price per pound of $1$ . The blue dot has a price per pound of something like $\frac{2.5}{3}$ . The orange dot has a price per pound that is less than $1$ , but is very close to it. The purple dot has a price per pound of something like $\frac{4.5}{5}$ . We see that choices $\textbf{(A)}$ $\textbf{(B)}$ ,and $\textbf{(D)}$ are eliminated. Also, $\frac{4.5}{5} > \frac{2.5}{3}$ thus the answer is $\boxed{3}$ | C | 3 |
533d6a318769e6044f336615a28da965 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_16 | Four numbers are written in a row. The average of the first two is $21,$ the average of the middle two is $26,$ and the average of the last two is $30.$ What is the average of the first and last of the numbers?
$\textbf{(A) } 24 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 26 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 28$ | Note that the sum of the first two numbers is $21\cdot2=42,$ the sum of the middle two numbers is $26\cdot2=52,$ and the sum of the last two numbers is $30\cdot2=60.$
It follows that the sum of the four numbers is $42+60=102,$ so the sum of the first and last numbers is $102-52=50.$ Therefore, the average of the first and last numbers is $50\div2=\boxed{25}.$ | B | 25 |
533d6a318769e6044f336615a28da965 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_16 | Four numbers are written in a row. The average of the first two is $21,$ the average of the middle two is $26,$ and the average of the last two is $30.$ What is the average of the first and last of the numbers?
$\textbf{(A) } 24 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 26 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 28$ | Let $a,b,c,$ and $d$ be the four numbers in that order. We are given that \begin{align*} \frac{a+b}{2} &= 21, &(1) \\ \frac{b+c}{2} &= 26, &(2) \\ \frac{c+d}{2} &= 30, &(3) \end{align*} and we wish to find $\frac{a+d}{2}.$
We add $(1)$ and $(3),$ then subtract $(2)$ from the result: \[\frac{a+d}{2}=21+30-26=\boxed{25}.\] ~MRENTHUSIASM | B | 25 |
533d6a318769e6044f336615a28da965 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_16 | Four numbers are written in a row. The average of the first two is $21,$ the average of the middle two is $26,$ and the average of the last two is $30.$ What is the average of the first and last of the numbers?
$\textbf{(A) } 24 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 26 \qquad \textbf{(D) } 27 \qquad \textbf{(E) } 28$ | We can just assume some of the numbers. For example, let the first two numbers both be $21.$ It follows that the third number is $31,$ and the fourth number is $29.$ Therefore, the average of the first and last numbers is $\dfrac{21+29}2=\dfrac{50}2=\boxed{25}.$ | B | 25 |
3e4b464dd3f10c44ed34a1ac38483e57 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_17 | If $n$ is an even positive integer, the $\emph{double factorial}$ notation $n!!$ represents the product of all the even integers from $2$ to $n$ . For example, $8!! = 2 \cdot 4 \cdot 6 \cdot 8$ . What is the units digit of the following sum? \[2!! + 4!! + 6!! + \cdots + 2018!! + 2020!! + 2022!!\]
$\textbf{(A) } 0\qquad\textbf{(B) } 2\qquad\textbf{(C) } 4\qquad\textbf{(D) } 6\qquad\textbf{(E) } 8$ | Notice that once $n>8,$ the units digit of $n!!$ will be $0$ because there will be a factor of $10.$ Thus, we only need to calculate the units digit of \[2!!+4!!+6!!+8!! = 2+8+48+48\cdot8.\] We only care about units digits, so we have $2+8+8+8\cdot8,$ which has the same units digit as $2+8+8+4.$ The answer is $\boxed{2}.$ | B | 2 |
ca4dc60e852a9eff0d8c494765f6c938 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_18 | The midpoints of the four sides of a rectangle are $(-3,0), (2,0), (5,4),$ and $(0,4).$ What is the
area of the rectangle?
$\textbf{(A) } 20 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 40 \qquad \textbf{(D) } 50 \qquad \textbf{(E) } 80$ | The midpoints of the four sides of every rectangle are the vertices of a rhombus whose area is half the area of the rectangle: Note that the diagonals of the rhombus have the same lengths as the sides of the rectangle.
Let $A=(-3,0), B=(2,0), C=(5,4),$ and $D=(0,4).$ Note that $A,B,C,$ and $D$ are the vertices of a rhombus whose diagonals have lengths $AC=4\sqrt{5}$ and $BD=2\sqrt{5}.$ It follows that the dimensions of the rectangle are $4\sqrt{5}$ and $2\sqrt{5},$ so the area of the rectangle is $4\sqrt{5}\cdot2\sqrt{5}=\boxed{40}.$ | C | 40 |
ca4dc60e852a9eff0d8c494765f6c938 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_18 | The midpoints of the four sides of a rectangle are $(-3,0), (2,0), (5,4),$ and $(0,4).$ What is the
area of the rectangle?
$\textbf{(A) } 20 \qquad \textbf{(B) } 25 \qquad \textbf{(C) } 40 \qquad \textbf{(D) } 50 \qquad \textbf{(E) } 80$ | If a rectangle has area $K,$ then the area of the quadrilateral formed by its midpoints is $\frac{K}{2}.$
Define points $A,B,C,$ and $D$ as Solution 1 does. Since $A,B,C,$ and $D$ are the midpoints of the rectangle, the rectangle's area is $2[ABCD].$ Now, note that $ABCD$ is a parallelogram since $AB=CD$ and $\overline{AB}\parallel\overline{CD}.$ As the parallelogram's height from $D$ to $\overline{AB}$ is $4$ and $AB=5,$ its area is $4\cdot5=20.$ Therefore, the area of the rectangle is $20\cdot2=\boxed{40}.$ ~Fruitz | C | 40 |
3411ecc20c66c7104fe881ee2fbc011a | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_19 | Mr. Ramos gave a test to his class of $20$ students. The dot plot below shows the distribution of test scores. [asy] //diagram by pog . give me 1,000,000,000 dollars for this diagram size(5cm); defaultpen(0.7); dot((0.5,1)); dot((0.5,1.5)); dot((1.5,1)); dot((1.5,1.5)); dot((2.5,1)); dot((2.5,1.5)); dot((2.5,2)); dot((2.5,2.5)); dot((3.5,1)); dot((3.5,1.5)); dot((3.5,2)); dot((3.5,2.5)); dot((3.5,3)); dot((4.5,1)); dot((4.5,1.5)); dot((5.5,1)); dot((5.5,1.5)); dot((5.5,2)); dot((6.5,1)); dot((7.5,1)); draw((0,0.5)--(8,0.5),linewidth(0.7)); defaultpen(fontsize(10.5pt)); label("$65$", (0.5,-0.1)); label("$70$", (1.5,-0.1)); label("$75$", (2.5,-0.1)); label("$80$", (3.5,-0.1)); label("$85$", (4.5,-0.1)); label("$90$", (5.5,-0.1)); label("$95$", (6.5,-0.1)); label("$100$", (7.5,-0.1)); [/asy]
Later Mr. Ramos discovered that there was a scoring error on one of the questions. He regraded the tests, awarding some of the students $5$ extra points, which increased the median test score to $85$ . What is the minimum number of students who received extra points?
(Note that the median test score equals the average of the $2$ scores in the middle if the $20$ test scores are arranged in increasing order.)
$\textbf{(A)} ~2\qquad\textbf{(B)} ~3\qquad\textbf{(C)} ~4\qquad\textbf{(D)} ~5\qquad\textbf{(E)} ~6\qquad$ | We set up our cases as solution 1 showed, realizing that only the second case is possible.
We notice that $13$ students have scores under $85$ currently and only $5$ have scores over $85$ . We find the median of these two numbers, getting:
\[13-5=8\] \[\frac{8}{2}=4\] \[13-4=9\]
Thus, we realize that $4$ students must have their score increased by $5$
So, the correct answer is $\boxed{4}$ | C | 4 |
9d96716d08bb4871032feccc9df4bf79 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_20 | The grid below is to be filled with integers in such a way that the sum of the numbers in each row and the sum of the numbers in each column are the same. Four numbers are missing. The number $x$ in the lower left corner is larger than the other three missing numbers. What is the smallest possible value of $x$ [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); [/asy] $\textbf{(A) } -1 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9 \qquad$ | The sum of the numbers in each row is $12$ . Consider the second row. In order for the sum of the numbers in this row to equal $12$ , the two shaded numbers must add up to $13$ [asy] unitsize(0.5cm); fill((-3,1)--(1,1)--(1,-1)--(-3,-1)--cycle,mediumgray); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); [/asy] If two numbers add up to $13$ , one of them must be at least $7$ : If both shaded numbers are no more than $6$ , their sum can be at most $12$ . Therefore, for $x$ to be larger than the three missing numbers, $x$ must be at least $8$ . We can construct a working scenario where $x=8$ [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$8$"); label((0,-2),"$-4$"); label((-2,0),"$6$"); label((0,0),"$7$"); [/asy] So, our answer is $\boxed{8}$ | D | 8 |
9d96716d08bb4871032feccc9df4bf79 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_20 | The grid below is to be filled with integers in such a way that the sum of the numbers in each row and the sum of the numbers in each column are the same. Four numbers are missing. The number $x$ in the lower left corner is larger than the other three missing numbers. What is the smallest possible value of $x$ [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); [/asy] $\textbf{(A) } -1 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9 \qquad$ | The sum of the numbers in each row is $-2+9+5=12,$ and the sum of the numbers in each column is $5+(-1)+8=12.$
Let $y$ be the number in the lower middle. It follows that $x+y+8=12,$ or $x+y=4.$
We express the other two missing numbers in terms of $x$ and $y,$ as shown below: [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); label((0,-2),"$y$",red+fontsize(11)); label((-2,0),"$y{+}10$",red+fontsize(11)); label((0,0),"$x{-}1$",red+fontsize(11)); [/asy] We have $x>x-1, x>y+10,$ and $x>y.$ Note that the first inequality is true for all values of $x.$ We only need to solve the second inequality so that the third inequality is true for all values of $x.$ By substitution, we get $x>(4-x)+10,$ from which $x>7.$
Therefore, the smallest possible value of $x$ is $\boxed{8}.$ | D | 8 |
9d96716d08bb4871032feccc9df4bf79 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_20 | The grid below is to be filled with integers in such a way that the sum of the numbers in each row and the sum of the numbers in each column are the same. Four numbers are missing. The number $x$ in the lower left corner is larger than the other three missing numbers. What is the smallest possible value of $x$ [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); [/asy] $\textbf{(A) } -1 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9 \qquad$ | This is based on the Solution 2 above and it is perhaps a little simpler than that.
Let $y$ be the number in the lower middle. Applying summation to first two columns yields the following.
[asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); label((0,-2),"$y$",red+fontsize(11)); label((-2,0),"$14{-}x$",red+fontsize(11)); label((0,0),"$3{-}y$",red+fontsize(11)); [/asy]
Since $x$ is greater than the other three, we have $x>14-x,$ or $x>7.$
Therefore, the smallest possible value of $x$ is $\boxed{8}.$ | D | 8 |
9d96716d08bb4871032feccc9df4bf79 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_20 | The grid below is to be filled with integers in such a way that the sum of the numbers in each row and the sum of the numbers in each column are the same. Four numbers are missing. The number $x$ in the lower left corner is larger than the other three missing numbers. What is the smallest possible value of $x$ [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); [/asy] $\textbf{(A) } -1 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9 \qquad$ | Note that the sum of the rows and columns must be $8+5-1=12$ . We proceed to test the answer choices.
Testing $\textbf{(A)}$ , when $x = -1$ , the number above $x$ must be $15$ , which contradicts the precondition that the numbers surrounding $x$ is less than $x$
Testing $\textbf{(B)}$ , the number above $x$ is $9$ , which does not work.
Testing $\textbf{(C)}$ , the number above $x$ is $8$ , which does not work.
Testing $\textbf{(D)}$ , the number above $x$ is $6$ , which does work. Hence, the answer is $\boxed{8}$ | D | 8 |
9d96716d08bb4871032feccc9df4bf79 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_20 | The grid below is to be filled with integers in such a way that the sum of the numbers in each row and the sum of the numbers in each column are the same. Four numbers are missing. The number $x$ in the lower left corner is larger than the other three missing numbers. What is the smallest possible value of $x$ [asy] unitsize(0.5cm); draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); [/asy] $\textbf{(A) } -1 \qquad \textbf{(B) } 5 \qquad \textbf{(C) } 6 \qquad \textbf{(D) } 8 \qquad \textbf{(E) } 9 \qquad$ | The sum of the numbers in each column and row should be $5+(-1)+8=12$ . If we look at the $1^{\text{st}}$ column, the gray squares (shown below) sum to $12-(-2)=14$
[asy] draw((3,3)--(-3,3)); draw((3,1)--(-3,1)); draw((3,-3)--(-3,-3)); draw((3,-1)--(-3,-1)); draw((3,3)--(3,-3)); draw((1,3)--(1,-3)); draw((-3,3)--(-3,-3)); draw((-1,3)--(-1,-3)); label((-2,2),"$-2$"); label((0,2),"$9$"); label((2,2),"$5$"); label((2,0),"$-1$"); label((2,-2),"$8$"); label((-2,-2),"$x$"); filldraw((-3,-3)--(-1,-3)--(-1,-1)--(-3,-1)--cycle, lightgray, black+linewidth(1)); filldraw((-1,-1)--(-3,-1)--(-3,1)--(-1,1)--cycle, lightgray, black+linewidth(1)); label(scale(1)*"All credits for original unedited asymptote for the problem go to whoever made the asymptote in the 'Problem' section.", (-0,-5), S); [/asy]
If square $x$ has to be greater than or equal to the three blank squares, then the least $x$ can be is half the sum of the value of the gray squares, which is $14\div2=7$ . But square $x$ has to be greater than and not greater than or equal to the three blank squares, so the least $x$ can be is $7+1=8$ . Testing for the other rows and columns (it might be smaller than the other two squares!), we find that the smallest $x$ can be is indeed $8$ ; the other two squares are less than $8$ . Therefore, the answer is $\boxed{8}$ | D | 8 |
2aa7758f7737912b480a34eb0bcbe2d6 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_21 | Steph scored $15$ baskets out of $20$ attempts in the first half of a game, and $10$ baskets out of $10$ attempts in the second half. Candace took $12$ attempts in the first half and $18$ attempts in the second. In each half, Steph scored a higher percentage of baskets than Candace. Surprisingly they ended with the same overall percentage of baskets scored. How many more baskets did Candace score in the second half than in the first? [asy] size(7cm); draw((-8,27)--(72,27)); draw((16,0)--(16,35)); draw((40,0)--(40,35)); label("12", (28,3)); draw((25,6.5)--(25,12)--(31,12)--(31,6.5)--cycle); draw((25,5.5)--(31,5.5)); label("18", (56,3)); draw((53,6.5)--(53,12)--(59,12)--(59,6.5)--cycle); draw((53,5.5)--(59,5.5)); draw((53,5.5)--(59,5.5)); label("20", (28,18)); label("15", (28,24)); draw((25,21)--(31,21)); label("10", (56,18)); label("10", (56,24)); draw((53,21)--(59,21)); label("First Half", (28,31)); label("Second Half", (56,31)); label("Candace", (2.35,6)); label("Steph", (0,21)); [/asy] $\textbf{(A) } 7\qquad\textbf{(B) } 8\qquad\textbf{(C) } 9\qquad\textbf{(D) } 10\qquad\textbf{(E) } 11$ | Let $x$ be the number of shots that Candace made in the first half, and let $y$ be the number of shots Candace made in the second half. Since Candace and Steph took the same number of attempts, with an equal percentage of baskets scored, we have $x+y=10+15=25.$ In addition, we have the following inequalities: \[\frac{x}{12}<\frac{15}{20} \implies x<9,\] and \[\frac{y}{18}<\frac{10}{10} \implies y<18.\] Pairing this up with $x+y=25$ we see the only possible solution is $(x,y)=(8,17),$ for an answer of $17-8 = \boxed{9}.$ | C | 9 |
2aa7758f7737912b480a34eb0bcbe2d6 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_21 | Steph scored $15$ baskets out of $20$ attempts in the first half of a game, and $10$ baskets out of $10$ attempts in the second half. Candace took $12$ attempts in the first half and $18$ attempts in the second. In each half, Steph scored a higher percentage of baskets than Candace. Surprisingly they ended with the same overall percentage of baskets scored. How many more baskets did Candace score in the second half than in the first? [asy] size(7cm); draw((-8,27)--(72,27)); draw((16,0)--(16,35)); draw((40,0)--(40,35)); label("12", (28,3)); draw((25,6.5)--(25,12)--(31,12)--(31,6.5)--cycle); draw((25,5.5)--(31,5.5)); label("18", (56,3)); draw((53,6.5)--(53,12)--(59,12)--(59,6.5)--cycle); draw((53,5.5)--(59,5.5)); draw((53,5.5)--(59,5.5)); label("20", (28,18)); label("15", (28,24)); draw((25,21)--(31,21)); label("10", (56,18)); label("10", (56,24)); draw((53,21)--(59,21)); label("First Half", (28,31)); label("Second Half", (56,31)); label("Candace", (2.35,6)); label("Steph", (0,21)); [/asy] $\textbf{(A) } 7\qquad\textbf{(B) } 8\qquad\textbf{(C) } 9\qquad\textbf{(D) } 10\qquad\textbf{(E) } 11$ | Clearly, Steph made $15 + 10 = 25$ shots in total. Also, due to parity reasons, the difference between the amount of shots Candace made in the first and second half must be odd. Thus, we can just test 7, 9, and 11, and after doing so we find that the answer is $\boxed{9}.$ | C | 9 |
2aa7758f7737912b480a34eb0bcbe2d6 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_21 | Steph scored $15$ baskets out of $20$ attempts in the first half of a game, and $10$ baskets out of $10$ attempts in the second half. Candace took $12$ attempts in the first half and $18$ attempts in the second. In each half, Steph scored a higher percentage of baskets than Candace. Surprisingly they ended with the same overall percentage of baskets scored. How many more baskets did Candace score in the second half than in the first? [asy] size(7cm); draw((-8,27)--(72,27)); draw((16,0)--(16,35)); draw((40,0)--(40,35)); label("12", (28,3)); draw((25,6.5)--(25,12)--(31,12)--(31,6.5)--cycle); draw((25,5.5)--(31,5.5)); label("18", (56,3)); draw((53,6.5)--(53,12)--(59,12)--(59,6.5)--cycle); draw((53,5.5)--(59,5.5)); draw((53,5.5)--(59,5.5)); label("20", (28,18)); label("15", (28,24)); draw((25,21)--(31,21)); label("10", (56,18)); label("10", (56,24)); draw((53,21)--(59,21)); label("First Half", (28,31)); label("Second Half", (56,31)); label("Candace", (2.35,6)); label("Steph", (0,21)); [/asy] $\textbf{(A) } 7\qquad\textbf{(B) } 8\qquad\textbf{(C) } 9\qquad\textbf{(D) } 10\qquad\textbf{(E) } 11$ | Steph made 75 percent of his shots in the first half. He makes all of his shots in the second half. The most baskets Candace could have made in the first half is 8 baskets. The most she could have made in the second half is 17 baskets. Steph makes 25 and misses 5 baskets and the only way for Candace to make 25 shots is to make 8 in the first half and 17 in the second. Thus, $17 - 8 = \boxed{9}.$ | C | 9 |
0c727a7b347f9092e5ff13fed3444cea | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_22 | A bus takes $2$ minutes to drive from one stop to the next, and waits $1$ minute at each stop to let passengers board. Zia takes $5$ minutes to walk from one bus stop to the next. As Zia reaches a bus stop, if the bus is at the previous stop or has already left the previous stop, then she will wait for the bus. Otherwise she will start walking toward the next stop. Suppose the bus and Zia start at the same time toward the library, with the bus $3$ stops behind. After how many minutes will Zia board the bus?
$\textbf{(A) } 17 \qquad \textbf{(B) } 19 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 23$ | Initially, suppose that the bus is at Stop $0$ (starting point) and Zia is at Stop $3.$
We construct the following table of $5$ -minute intervals: \[\begin{array}{c||c|c} & & \\ [-2.5ex] \textbf{Time} & \textbf{Bus's Location} & \textbf{Zia's Location} \\ [0.5ex] \hline & & \\ [-2ex] \boldsymbol{5} \ \textbf{Minutes} & \text{Stop} \ 2 \ \text{(Waiting)} & \text{Stop} \ 4 \\ \boldsymbol{10} \ \textbf{Minutes} & \text{Midpoint of Stops} \ 3 \ \text{and} \ 4 & \text{Stop} \ 5 \\ \boldsymbol{15} \ \textbf{Minutes} & \text{Stop} \ 5 \ \text{(Leaving)} & \text{Stop} \ 6 \end{array}\] Note that Zia will wait for the bus after $15$ minutes, and the bus will arrive $2$ minutes later.
Therefore, the answer is $15+2=\boxed{17}.$ | A | 17 |
0c727a7b347f9092e5ff13fed3444cea | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_22 | A bus takes $2$ minutes to drive from one stop to the next, and waits $1$ minute at each stop to let passengers board. Zia takes $5$ minutes to walk from one bus stop to the next. As Zia reaches a bus stop, if the bus is at the previous stop or has already left the previous stop, then she will wait for the bus. Otherwise she will start walking toward the next stop. Suppose the bus and Zia start at the same time toward the library, with the bus $3$ stops behind. After how many minutes will Zia board the bus?
$\textbf{(A) } 17 \qquad \textbf{(B) } 19 \qquad \textbf{(C) } 20 \qquad \textbf{(D) } 21 \qquad \textbf{(E) } 23$ | Since Zia will wait for the bus if the bus is at the previous stop, we can create an equation to solve for when the bus is at the previous stop. The bus travels $\frac{1}{3}$ of a stop per minute, and Zia travels $\frac{1}{5}$ of a stop per minute. Now we create the equation, $\frac{1}{3}m = \frac{1}{5}m + 3 - 1$ (the $-1$ accounts for us wanting to find when the bus reaches the stop before Zia's). Solving, we find that $m=15.$ Now Zia has to wait $2$ minutes for the bus to reach her, so our answer is $15+2=\boxed{17}.$ | A | 17 |
565b6de5d24de6c9bafd9a37feecd8e4 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_23 | $\triangle$ or $\bigcirc$ is placed in each of the nine squares in a $3$ -by- $3$ grid. Shown below is a sample configuration with three $\triangle$ s in a line. [asy] //diagram size(5cm); defaultpen(linewidth(1.5)); real r = 0.37; path equi = r * dir(-30) -- (r+0.03) * dir(90) -- r * dir(210) -- cycle; draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,1)--(3,1)--(3,2)--(0,2)--cycle); draw((1,0)--(1,3)--(2,3)--(2,0)--cycle); draw(circle((3/2,5/2),1/3)); draw(circle((5/2,1/2),1/3)); draw(circle((3/2,3/2),1/3)); draw(shift(0.5,0.38) * equi); draw(shift(1.5,0.38) * equi); draw(shift(0.5,1.38) * equi); draw(shift(2.5,1.38) * equi); draw(shift(0.5,2.38) * equi); draw(shift(2.5,2.38) * equi); [/asy] How many configurations will have three $\triangle$ s in a line and three $\bigcirc$ s in a line?
$\textbf{(A) } 39 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 78 \qquad \textbf{(D) } 84 \qquad \textbf{(E) } 96$ | Notice that diagonals and a vertical-horizontal pair can never work, so the only possibilities are if all lines are vertical or if all lines are horizontal. These are essentially the same, so we'll count up how many work with all lines of shapes vertical, and then multiply by 2 at the end.
We take casework:
Case 1: 3 lines :
In this case, the lines would need to be $2$ of one shape and $1$ of another, so there are $\frac{3!}{2} = 3$ ways to arrange the lines and $2$ ways to pick which shape has only one line. In total, this is $3\cdot 2 = 6.$
Case 2: 2 lines :
In this case, the lines would be one line of triangles, one line of circles, and the last one can be anything that includes both shapes. There are $3! = 6$ ways to arrange the lines and $2^3-2 = 6$ ways to choose the last line. (We subtract $2$ from the last line because one arrangement of the last line is all triangles and the other arrangement of the last line is all circles, which causes Case 2 to overlap with Case 1 and further complicating the solution.) In total, this is $6\cdot 6 = 36.$
Finally, we add and multiply: $2(36+6)=2(42)=\boxed{84}$ | D | 84 |
565b6de5d24de6c9bafd9a37feecd8e4 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_23 | $\triangle$ or $\bigcirc$ is placed in each of the nine squares in a $3$ -by- $3$ grid. Shown below is a sample configuration with three $\triangle$ s in a line. [asy] //diagram size(5cm); defaultpen(linewidth(1.5)); real r = 0.37; path equi = r * dir(-30) -- (r+0.03) * dir(90) -- r * dir(210) -- cycle; draw((0,0)--(0,3)--(3,3)--(3,0)--cycle); draw((0,1)--(3,1)--(3,2)--(0,2)--cycle); draw((1,0)--(1,3)--(2,3)--(2,0)--cycle); draw(circle((3/2,5/2),1/3)); draw(circle((5/2,1/2),1/3)); draw(circle((3/2,3/2),1/3)); draw(shift(0.5,0.38) * equi); draw(shift(1.5,0.38) * equi); draw(shift(0.5,1.38) * equi); draw(shift(2.5,1.38) * equi); draw(shift(0.5,2.38) * equi); draw(shift(2.5,2.38) * equi); [/asy] How many configurations will have three $\triangle$ s in a line and three $\bigcirc$ s in a line?
$\textbf{(A) } 39 \qquad \textbf{(B) } 42 \qquad \textbf{(C) } 78 \qquad \textbf{(D) } 84 \qquad \textbf{(E) } 96$ | We will only consider cases where the three identical symbols are the same column, but at the end we shall double our answer as the same holds true for rows. There are $3$ ways to choose a column with all $\bigcirc$ 's and $2$ ways to choose a column with all $\triangle$ 's. The third column can be filled in $2^3=8$ ways. Therefore, we have a total of $3\cdot2\cdot8=48$ cases. However, we overcounted the cases with $2$ complete columns of with one symbol and $1$ complete column with another symbol. This happens in $2\cdot3=6$ cases. $48-6=42$ . However, we have to remember to double our answer, giving us $\boxed{84}$ ways to complete the grid. | D | 84 |
dd741c514d8ee0ccbf0bbd4dc0dfe360 | https://artofproblemsolving.com/wiki/index.php/2022_AMC_8_Problems/Problem_24 | The figure below shows a polygon $ABCDEFGH$ , consisting of rectangles and right triangles. When cut out and folded on the dotted lines, the polygon forms a triangular prism. Suppose that $AH = EF = 8$ and $GH = 14$ . What is the volume of the prism?
[asy] usepackage("mathptmx"); size(275); defaultpen(linewidth(0.8)); real r = 2, s = 2.5, theta = 14; pair G = (0,0), F = (r,0), C = (r,s), B = (0,s), M = (C+F)/2, I = M + s/2 * dir(-theta); pair N = (B+G)/2, J = N + s/2 * dir(180+theta); pair E = F + r * dir(- 45 - theta/2), D = I+E-F; pair H = J + r * dir(135 + theta/2), A = B+H-J; draw(A--B--C--I--D--E--F--G--J--H--cycle^^rightanglemark(F,I,C)^^rightanglemark(G,J,B)); draw(J--B--G^^C--F--I,linetype ("4 4")); dot("$A$",A,N); dot("$B$",B,1.2*N); dot("$C$",C,N); dot("$D$",D,dir(0)); dot("$E$",E,S); dot("$F$",F,1.5*dir(-100)); dot("$G$",G,S); dot("$H$",H,W); dot("$I$",I,NE); dot("$J$",J,1.5*S); [/asy]
$\textbf{(A)} ~112\qquad\textbf{(B)} ~128\qquad\textbf{(C)} ~192\qquad\textbf{(D)} ~240\qquad\textbf{(E)} ~288$ | While imagining the folding, $\overline{AB}$ goes on $\overline{BC},$ $\overline{AH}$ goes on $\overline{CI},$ and $\overline{EF}$ goes on $\overline{FG}.$ So, $BJ=CI=8$ and $FG=BC=8.$ Also, $\overline{HJ}$ becomes an edge parallel to $\overline{FG},$ so that means $HJ=8.$
Since $GH=14,$ then $JG=14-8=6.$ So, the area of $\triangle BJG$ is $\frac{8\cdot6}{2}=24.$ If we let $\triangle BJG$ be the base, then the height is $FG=8.$ So, the volume is $24\cdot8=\boxed{192}.$ | C | 192 |
b911f4f6218991b2b9b5b808d6d6029a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_1 | Luka is making lemonade to sell at a school fundraiser. His recipe requires $4$ times as much water as sugar and twice as much sugar as lemon juice. He uses $3$ cups of lemon juice. How many cups of water does he need?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | We have $\text{water} : \text{sugar} : \text{lemon juice} = 4\cdot 2 : 2 : 1 = 8 : 2 : 1,$ so Luka needs $3 \cdot 8 = \boxed{24}$ cups. | E | 24 |
b911f4f6218991b2b9b5b808d6d6029a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_1 | Luka is making lemonade to sell at a school fundraiser. His recipe requires $4$ times as much water as sugar and twice as much sugar as lemon juice. He uses $3$ cups of lemon juice. How many cups of water does he need?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | Since the amount of sugar is twice the amount of lemon juice, Luka uses $3\cdot2=6$ cups of sugar.
Since the amount of water is $4$ times the amount of sugar, he uses $6\cdot4=\boxed{24}$ cups of water. | E | 24 |
b911f4f6218991b2b9b5b808d6d6029a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_1 | Luka is making lemonade to sell at a school fundraiser. His recipe requires $4$ times as much water as sugar and twice as much sugar as lemon juice. He uses $3$ cups of lemon juice. How many cups of water does he need?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | The ratio is $\text{Water}:\text{Sugar}:\text{Lemon Juice},$ or $8:2:1.$ Since we know that Luka used 3 cups of lemon juice, he needs $3\cdot2=6$ cups of sugar. Because the amount of water is $4$ times the amount of sugar Luka needs, he will need $6\cdot4=\boxed{24}$ cups of water. | E | 24 |
79e4ea64a269320b08715b6e5eb4751f | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_2 | Four friends do yardwork for their neighbors over the weekend, earning $$15, $20, $25,$ and $$40,$ respectively. They decide to split their earnings equally among themselves. In total, how much will the friend who earned $$40$ give to the others?
$\textbf{(A) }$5 \qquad \textbf{(B) }$10 \qquad \textbf{(C) }$15 \qquad \textbf{(D) }$20 \qquad \textbf{(E) }$25$ | The friends earn $$\left(15+20+25+40\right)=$100$ in total. Since they decided to split their earnings equally, it follows that each person will get $$\left(\frac{100}{4}\right)=$25$ . Since the friend who earned $$40$ will need to leave with $$25$ , he will have to give $$\left(40-25\right)=\boxed{15}$ to the others. | C | 15 |
4888e09eb151f913d36b00881364aa3d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_3 | Carrie has a rectangular garden that measures $6$ feet by $8$ feet. She plants the entire garden with strawberry plants. Carrie is able to plant $4$ strawberry plants per square foot, and she harvests an average of $10$ strawberries per plant. How many strawberries can she expect to harvest?
$\textbf{(A) }560 \qquad \textbf{(B) }960 \qquad \textbf{(C) }1120 \qquad \textbf{(D) }1920 \qquad \textbf{(E) }3840$ | Note that the unit of the answer is strawberries , which is the product of
By conversion factors, we have \[\left(6 \ \color{red}\cancel{\mathrm{ft}}\color{black}\cdot8 \ \color{red}\cancel{\mathrm{ft}}\color{black}\right)\cdot\left(4 \ \frac{\color{green}\cancel{\mathrm{plants}}}{\color{red}\cancel{\mathrm{ft}^2}}\right)\cdot\left(10 \ \frac{\mathrm{strawberries}}{\color{green}\cancel{\mathrm{plant}}}\right)=6\cdot8\cdot4\cdot10 \ \mathrm{strawberries}=\boxed{1920}.\] | D | 1920 |
4888e09eb151f913d36b00881364aa3d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_3 | Carrie has a rectangular garden that measures $6$ feet by $8$ feet. She plants the entire garden with strawberry plants. Carrie is able to plant $4$ strawberry plants per square foot, and she harvests an average of $10$ strawberries per plant. How many strawberries can she expect to harvest?
$\textbf{(A) }560 \qquad \textbf{(B) }960 \qquad \textbf{(C) }1120 \qquad \textbf{(D) }1920 \qquad \textbf{(E) }3840$ | The area of the garden is $6 \cdot 8 = 48$ square feet. Since Carrie plants $4$ strawberry plants per square foot, there are a total of $48 \cdot 4=192$ strawberry plants, each of which produces $10$ strawberries on average. Accordingly, she can expect to harvest $192 \cdot 10 = \boxed{1920}$ strawberries. | D | 1920 |
acb25a3031a50594a799e4fda6aba6e4 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_4 | Three hexagons of increasing size are shown below. Suppose the dot pattern continues so that each successive hexagon contains one more band of dots. How many dots are in the next hexagon?
[asy] // diagram by SirCalcsALot, edited by MRENTHUSIASM size(250); path p = scale(0.8)*unitcircle; pair[] A; pen grey1 = rgb(100/256, 100/256, 100/256); pen grey2 = rgb(183/256, 183/256, 183/256); for (int i=0; i<7; ++i) { A[i] = rotate(60*i)*(1,0);} path hex = A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--cycle; fill(p,grey1); draw(scale(1.25)*hex,black+linewidth(1.25)); pair S = 6A[0]+2A[1]; fill(shift(S)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(S+2*A[i])*p,grey2);} draw(shift(S)*scale(3.25)*hex,black+linewidth(1.25)); pair T = 16A[0]+4A[1]; fill(shift(T)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(T+2*A[i])*p,grey2); fill(shift(T+4*A[i])*p,grey1); fill(shift(T+2*A[i]+2*A[i+1])*p,grey1); } draw(shift(T)*scale(5.25)*hex,black+linewidth(1.25)); [/asy]
$\textbf{(A) }35 \qquad \textbf{(B) }37 \qquad \textbf{(C) }39 \qquad \textbf{(D) }43 \qquad \textbf{(E) }49$ | Looking at the rows of each hexagon, we see that the first hexagon has $1$ dot, the second has $2+3+2$ dots, and the third has $3+4+5+4+3$ dots. Given the way the hexagons are constructed, it is clear that this pattern continues. Hence, the fourth hexagon has $4+5+6+7+6+5+4=\boxed{37}$ dots. | B | 37 |
acb25a3031a50594a799e4fda6aba6e4 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_4 | Three hexagons of increasing size are shown below. Suppose the dot pattern continues so that each successive hexagon contains one more band of dots. How many dots are in the next hexagon?
[asy] // diagram by SirCalcsALot, edited by MRENTHUSIASM size(250); path p = scale(0.8)*unitcircle; pair[] A; pen grey1 = rgb(100/256, 100/256, 100/256); pen grey2 = rgb(183/256, 183/256, 183/256); for (int i=0; i<7; ++i) { A[i] = rotate(60*i)*(1,0);} path hex = A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--cycle; fill(p,grey1); draw(scale(1.25)*hex,black+linewidth(1.25)); pair S = 6A[0]+2A[1]; fill(shift(S)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(S+2*A[i])*p,grey2);} draw(shift(S)*scale(3.25)*hex,black+linewidth(1.25)); pair T = 16A[0]+4A[1]; fill(shift(T)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(T+2*A[i])*p,grey2); fill(shift(T+4*A[i])*p,grey1); fill(shift(T+2*A[i]+2*A[i+1])*p,grey1); } draw(shift(T)*scale(5.25)*hex,black+linewidth(1.25)); [/asy]
$\textbf{(A) }35 \qquad \textbf{(B) }37 \qquad \textbf{(C) }39 \qquad \textbf{(D) }43 \qquad \textbf{(E) }49$ | The dots in the next hexagon have four bands. From innermost to outermost:
Together, the answer is $1+6+12+18=\boxed{37}.$ | B | 37 |
acb25a3031a50594a799e4fda6aba6e4 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_4 | Three hexagons of increasing size are shown below. Suppose the dot pattern continues so that each successive hexagon contains one more band of dots. How many dots are in the next hexagon?
[asy] // diagram by SirCalcsALot, edited by MRENTHUSIASM size(250); path p = scale(0.8)*unitcircle; pair[] A; pen grey1 = rgb(100/256, 100/256, 100/256); pen grey2 = rgb(183/256, 183/256, 183/256); for (int i=0; i<7; ++i) { A[i] = rotate(60*i)*(1,0);} path hex = A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--cycle; fill(p,grey1); draw(scale(1.25)*hex,black+linewidth(1.25)); pair S = 6A[0]+2A[1]; fill(shift(S)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(S+2*A[i])*p,grey2);} draw(shift(S)*scale(3.25)*hex,black+linewidth(1.25)); pair T = 16A[0]+4A[1]; fill(shift(T)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(T+2*A[i])*p,grey2); fill(shift(T+4*A[i])*p,grey1); fill(shift(T+2*A[i]+2*A[i+1])*p,grey1); } draw(shift(T)*scale(5.25)*hex,black+linewidth(1.25)); [/asy]
$\textbf{(A) }35 \qquad \textbf{(B) }37 \qquad \textbf{(C) }39 \qquad \textbf{(D) }43 \qquad \textbf{(E) }49$ | The first hexagon has $1$ dot, the second hexagon has $1+6$ dots, the third hexagon has $1+6+12$ dots, and so on. The pattern continues since to go from hexagon $n$ to hexagon $(n+1),$ we add a new band of dots around the outside of the existing ones, with each side of the band having side length $(n+1).$ Thus, the number of dots added is $6(n+1)-6 = 6n$ (we subtract $6$ as each of the corner hexagons in the band is counted as part of two sides.). We therefore predict that the fourth hexagon has $1+6+12+18=\boxed{37}$ dots. | B | 37 |
acb25a3031a50594a799e4fda6aba6e4 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_4 | Three hexagons of increasing size are shown below. Suppose the dot pattern continues so that each successive hexagon contains one more band of dots. How many dots are in the next hexagon?
[asy] // diagram by SirCalcsALot, edited by MRENTHUSIASM size(250); path p = scale(0.8)*unitcircle; pair[] A; pen grey1 = rgb(100/256, 100/256, 100/256); pen grey2 = rgb(183/256, 183/256, 183/256); for (int i=0; i<7; ++i) { A[i] = rotate(60*i)*(1,0);} path hex = A[0]--A[1]--A[2]--A[3]--A[4]--A[5]--cycle; fill(p,grey1); draw(scale(1.25)*hex,black+linewidth(1.25)); pair S = 6A[0]+2A[1]; fill(shift(S)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(S+2*A[i])*p,grey2);} draw(shift(S)*scale(3.25)*hex,black+linewidth(1.25)); pair T = 16A[0]+4A[1]; fill(shift(T)*p,grey1); for (int i=0; i<6; ++i) { fill(shift(T+2*A[i])*p,grey2); fill(shift(T+4*A[i])*p,grey1); fill(shift(T+2*A[i]+2*A[i+1])*p,grey1); } draw(shift(T)*scale(5.25)*hex,black+linewidth(1.25)); [/asy]
$\textbf{(A) }35 \qquad \textbf{(B) }37 \qquad \textbf{(C) }39 \qquad \textbf{(D) }43 \qquad \textbf{(E) }49$ | From the full diagram below, the answer is $\boxed{37} draw(shift(R)*scale(7.25)*hex,black+linewidth(1.25)); [/asy] ~MRENTHUSIASM | B | 37 |
a5ae8fde3653142a8d1c34e82ba0cb28 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_5 | Three fourths of a pitcher is filled with pineapple juice. The pitcher is emptied by pouring an equal amount of juice into each of $5$ cups. What percent of the total capacity of the pitcher did each cup receive?
$\textbf{(A) }5 \qquad \textbf{(B) }10 \qquad \textbf{(C) }15 \qquad \textbf{(D) }20 \qquad \textbf{(E) }25$ | Each cup is filled with $\frac{3}{4} \cdot \frac{1}{5} = /frac{3}{20}$ of the amount of juice in the pitcher, so the percentage is $\frac{3}{20} \cdot 100 = \boxed{15}$ | C | 15 |
a5ae8fde3653142a8d1c34e82ba0cb28 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_5 | Three fourths of a pitcher is filled with pineapple juice. The pitcher is emptied by pouring an equal amount of juice into each of $5$ cups. What percent of the total capacity of the pitcher did each cup receive?
$\textbf{(A) }5 \qquad \textbf{(B) }10 \qquad \textbf{(C) }15 \qquad \textbf{(D) }20 \qquad \textbf{(E) }25$ | The pitcher is $\frac{3}{4}$ full, i.e. $75\%$ full. Therefore each cup receives $\frac{75}{5}=\boxed{15}$ percent of the total capacity. | C | 15 |
a5ae8fde3653142a8d1c34e82ba0cb28 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_5 | Three fourths of a pitcher is filled with pineapple juice. The pitcher is emptied by pouring an equal amount of juice into each of $5$ cups. What percent of the total capacity of the pitcher did each cup receive?
$\textbf{(A) }5 \qquad \textbf{(B) }10 \qquad \textbf{(C) }15 \qquad \textbf{(D) }20 \qquad \textbf{(E) }25$ | Assume that the pitcher has a total capacity of $100$ ounces. Since it is filled three fourths with pineapple juice, it contains $75$ ounces of pineapple juice, which means that each cup will contain $\frac{75}{5}=15$ ounces of pineapple juice. Since the total capacity of the pitcher was $100$ ounces, it follows that each cup received $15\%$ of the total capacity of the pitcher, yielding $\boxed{15}$ as the answer. | C | 15 |
dbbe134836f8714e604c81204030fa7d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_7 | How many integers between $2020$ and $2400$ have four distinct digits arranged in increasing order? (For example, $2347$ is one integer.)
$\textbf{(A) }\text{9} \qquad \textbf{(B) }\text{10} \qquad \textbf{(C) }\text{15} \qquad \textbf{(D) }\text{21}\qquad \textbf{(E) }\text{28}$ | Firstly, observe that the second digit of such a number cannot be $1$ or $2$ , because the digits must be distinct and increasing. The second digit also cannot be $4$ as the number must be less than $2400$ , so it must be $3$ . It remains to choose the latter two digits, which must be $2$ distinct digits from $\left\{4,5,6,7,8,9\right\}$ . That can be done in $\binom{6}{2} = \frac{6 \cdot 5}{2 \cdot 1} = 15$ ways; there is then only $1$ way to order the digits, namely in increasing order. This means the answer is $\boxed{15}$ | C | 15 |
dbbe134836f8714e604c81204030fa7d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_7 | How many integers between $2020$ and $2400$ have four distinct digits arranged in increasing order? (For example, $2347$ is one integer.)
$\textbf{(A) }\text{9} \qquad \textbf{(B) }\text{10} \qquad \textbf{(C) }\text{15} \qquad \textbf{(D) }\text{21}\qquad \textbf{(E) }\text{28}$ | As in Solution 1, we find that the first two digits must be $23$ , and the third digit must be at least $4$ . If it is $4$ , then there are $5$ choices for the last digit, namely $5$ $6$ $7$ $8$ , or $9$ . Similarly, if the third digit is $5$ , there are $4$ choices for the last digit, namely $6$ $7$ $8$ , and $9$ ; if $6$ , there are $3$ choices; if $7$ , there are $2$ choices; and if $8$ , there is $1$ choice. It follows that the total number of such integers is $5+4+3+2+1=\boxed{15}$ | C | 15 |
8811840ae549f42110db27dc8236b6de | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_8 | Ricardo has $2020$ coins, some of which are pennies ( $1$ -cent coins) and the rest of which are nickels ( $5$ -cent coins). He has at least one penny and at least one nickel. What is the difference in cents between the greatest possible and least amounts of money that Ricardo can have?
$\textbf{(A) }\text{806} \qquad \textbf{(B) }\text{8068} \qquad \textbf{(C) }\text{8072} \qquad \textbf{(D) }\text{8076}\qquad \textbf{(E) }\text{8082}$ | Clearly, the amount of money Ricardo has will be maximized when he has the maximum number of nickels. Since he must have at least one penny, the greatest number of nickels he can have is $2019$ , giving a total of $(2019\cdot 5 + 1)$ cents. Analogously, the amount of money he has will be least when he has the greatest number of pennies; as he must have at least one nickel, the greatest number of pennies he can have is also $2019$ , giving him a total of $(2019\cdot 1 + 5)$ cents. Hence the required difference is \[(2019\cdot 5 + 1)-(2019\cdot 1 + 5)=2019\cdot 4-4=4\cdot 2018=\boxed{8072}\] | C | 8072 |
8811840ae549f42110db27dc8236b6de | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_8 | Ricardo has $2020$ coins, some of which are pennies ( $1$ -cent coins) and the rest of which are nickels ( $5$ -cent coins). He has at least one penny and at least one nickel. What is the difference in cents between the greatest possible and least amounts of money that Ricardo can have?
$\textbf{(A) }\text{806} \qquad \textbf{(B) }\text{8068} \qquad \textbf{(C) }\text{8072} \qquad \textbf{(D) }\text{8076}\qquad \textbf{(E) }\text{8082}$ | Suppose Ricardo has $p$ pennies, so then he has $(2020-p)$ nickels. In order to have at least one penny and at least one nickel, we require $p \geq 1$ and $2020 - p \geq 1$ , i.e. $1 \leq p \leq 2019$ . The number of cents he has is $p+5(2020-p) = 10100-4p$ , so the maximum is $10100-4 \cdot 1$ and the minimum is $10100 - 4 \cdot 2019$ , and the difference is therefore \[(10100 - 4\cdot 1) - (10100 - 4\cdot 2019) = 4\cdot 2019 - 4 = 4\cdot 2018 = \boxed{8072}\] | C | 8072 |
f550ac11126d7e92b03135b958094a19 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_10 | Zara has a collection of $4$ marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | Let the Aggie, Bumblebee, Steelie, and Tiger, be referred to by $A,B,S,$ and $T$ , respectively. If we ignore the constraint that $S$ and $T$ cannot be next to each other, we get a total of $4!=24$ ways to arrange the 4 marbles. We now simply have to subtract out the number of ways that $S$ and $T$ can be next to each other. If we place $S$ and $T$ next to each other in that order, then there are three places that we can place them, namely in the first two slots, in the second two slots, or in the last two slots (i.e. $ST\square\square, \square ST\square, \square\square ST$ ). However, we could also have placed $S$ and $T$ in the opposite order (i.e. $TS\square\square, \square TS\square, \square\square TS$ ). Thus there are 6 ways of placing $S$ and $T$ directly next to each other. Next, notice that for each of these placements, we have two open slots for placing $A$ and $B$ . Specifically, we can place $A$ in the first open slot and $B$ in the second open slot or switch their order and place $B$ in the first open slot and $A$ in the second open slot. This gives us a total of $6\times 2=12$ ways to place $S$ and $T$ next to each other. Subtracting this from the total number of arrangements gives us $24-12=12$ total arrangements $\implies\boxed{12}$ | C | 12 |
f550ac11126d7e92b03135b958094a19 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_10 | Zara has a collection of $4$ marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | Let's try complementary counting. There $4!$ ways to arrange the 4 marbles. However, there are $2\cdot3!$ arrangements where Steelie and Tiger are next to each other. (Think about permutations of the element ST, A, and B or TS, A, and B). Thus, \[4!-2\cdot3!=\boxed{12}\] | C | 12 |
f550ac11126d7e92b03135b958094a19 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_10 | Zara has a collection of $4$ marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | We use complementary counting: we will count the numbers of ways where Steelie and Tiger are together and subtract that from the total count. Treat the Steelie and the Tiger as a "super marble." There are $2!$ ways to arrange Steelie and Tiger within this "super marble." Then there are $3!$ ways to arrange the "super marble" and Zara's two other marbles in a row. Since there are $4!$ ways to arrange the marbles without any restrictions, the answer is given by $4!-2!\cdot 3!=\boxed{12}$ | C | 12 |
f550ac11126d7e92b03135b958094a19 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_10 | Zara has a collection of $4$ marbles: an Aggie, a Bumblebee, a Steelie, and a Tiger. She wants to display them in a row on a shelf, but does not want to put the Steelie and the Tiger next to one another. In how many ways can she do this?
$\textbf{(A) }6 \qquad \textbf{(B) }8 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | We will use the following
$\textbf{Georgeooga-Harryooga Theorem:}$ The Georgeooga-Harryooga Theorem states that if you have $a$ distinguishable objects and $b$ of them cannot be together, then there are $\frac{(a-b)!(a-b+1)!}{b!}$ ways to arrange the objects.
$\textit{Proof. (Created by AoPS user RedFireTruck)}$
Let our group of $a$ objects be represented like so $1$ $2$ $3$ , ..., $a-1$ $a$ . Let the last $b$ objects be the ones we can't have together.
Then we can organize our objects like so $\square1\square2\square3\square...\square a-b-1\square a-b\square$
We have $(a-b)!$ ways to arrange the objects in that list.
Now we have $a-b+1$ blanks and $b$ other objects so we have $_{a-b+1}P_{b}=\frac{(a-b+1)!}{(a-2b+1)!}$ ways to arrange the objects we can't put together.
By fundamental counting principle our answer is $\frac{(a-b)!(a-b+1)!}{(a-2b+1)!}$
Proof by RedFireTruck talk ) 12:09, 1 February 2021 (EST)
Back to the problem. By the Georgeooga-Harryooga Theorem , our answer is $\frac{(4-2)!(4-2+1)!}{(4-2\cdot2+1)!}=\boxed{12}$ | C | 12 |
0198b8fb1a229b2c172b52650826695c | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_11 | After school, Maya and Naomi headed to the beach, $6$ miles away. Maya decided to bike while Naomi took a bus. The graph below shows their journeys, indicating the time and distance traveled. What was the difference, in miles per hour, between Naomi's and Maya's average speeds?
[asy] unitsize(1.25cm); dotfactor = 10; pen shortdashed=linetype(new real[] {2.7,2.7}); for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { draw((i,0)--(i,6), grey); draw((0,j)--(6,j), grey); } } for (int i = 1; i <= 6; ++i) { draw((-0.1,i)--(0.1,i),linewidth(1.25)); draw((i,-0.1)--(i,0.1),linewidth(1.25)); label(string(5*i), (i,0), 2*S); label(string(i), (0, i), 2*W); } draw((0,0)--(0,6)--(6,6)--(6,0)--(0,0)--cycle,linewidth(1.25)); label(rotate(90) * "Distance (miles)", (-0.5,3), W); label("Time (minutes)", (3,-0.5), S); dot("Naomi", (2,6), 3*dir(305)); dot((6,6)); label("Maya", (4.45,3.5)); draw((0,0)--(1.15,1.3)--(1.55,1.3)--(3.15,3.2)--(3.65,3.2)--(5.2,5.2)--(5.4,5.2)--(6,6),linewidth(1.35)); draw((0,0)--(0.4,0.1)--(1.15,3.7)--(1.6,3.7)--(2,6),linewidth(1.35)+shortdashed); [/asy]
$\textbf{(A) }6 \qquad \textbf{(B) }12 \qquad \textbf{(C) }18 \qquad \textbf{(D) }20 \qquad \textbf{(E) }24$ | Naomi travels $6$ miles in a time of $10$ minutes, which is equivalent to $\dfrac{1}{6}$ of an hour. Since $\text{speed} = \frac{\text{distance}}{\text{time}}$ , her speed is $\frac{6}{\left(\frac{1}{6}\right)} = 36$ mph. By a similar calculation, Maya's speed is $12$ mph, so the answer is $36-12 = \boxed{24}$ | E | 24 |
0198b8fb1a229b2c172b52650826695c | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_11 | After school, Maya and Naomi headed to the beach, $6$ miles away. Maya decided to bike while Naomi took a bus. The graph below shows their journeys, indicating the time and distance traveled. What was the difference, in miles per hour, between Naomi's and Maya's average speeds?
[asy] unitsize(1.25cm); dotfactor = 10; pen shortdashed=linetype(new real[] {2.7,2.7}); for (int i = 0; i < 6; ++i) { for (int j = 0; j < 6; ++j) { draw((i,0)--(i,6), grey); draw((0,j)--(6,j), grey); } } for (int i = 1; i <= 6; ++i) { draw((-0.1,i)--(0.1,i),linewidth(1.25)); draw((i,-0.1)--(i,0.1),linewidth(1.25)); label(string(5*i), (i,0), 2*S); label(string(i), (0, i), 2*W); } draw((0,0)--(0,6)--(6,6)--(6,0)--(0,0)--cycle,linewidth(1.25)); label(rotate(90) * "Distance (miles)", (-0.5,3), W); label("Time (minutes)", (3,-0.5), S); dot("Naomi", (2,6), 3*dir(305)); dot((6,6)); label("Maya", (4.45,3.5)); draw((0,0)--(1.15,1.3)--(1.55,1.3)--(3.15,3.2)--(3.65,3.2)--(5.2,5.2)--(5.4,5.2)--(6,6),linewidth(1.35)); draw((0,0)--(0.4,0.1)--(1.15,3.7)--(1.6,3.7)--(2,6),linewidth(1.35)+shortdashed); [/asy]
$\textbf{(A) }6 \qquad \textbf{(B) }12 \qquad \textbf{(C) }18 \qquad \textbf{(D) }20 \qquad \textbf{(E) }24$ | Naomi's speed of $6$ miles in $10$ minutes is equivalent to $6 \cdot 6 = 36$ miles per hour, while Maya's speed of $6$ miles in $30$ minutes (i.e. half an hour) is equivalent to $6 \cdot 2 = 12$ miles per hour. The difference is consequently $36-12=\boxed{24}$ | E | 24 |
64b4e5991b0af939fc08f77bfed9ae2d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_12 | For a positive integer $n$ , the factorial notation $n!$ represents the product of the integers from $n$ to $1$ . What value of $N$ satisfies the following equation? \[5!\cdot 9!=12\cdot N!\]
$\textbf{(A) }10\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }14\qquad$ | We have $5! = 2 \cdot 3 \cdot 4 \cdot 5$ , and $2 \cdot 5 \cdot 9! = 10 \cdot 9! = 10!$ . Therefore, the equation becomes $3 \cdot 4 \cdot 10! = 12 \cdot N!$ , and so $12 \cdot 10! = 12 \cdot N!$ . Cancelling the $12$ s, it is clear that $N=\boxed{10}$ | A | 10 |
64b4e5991b0af939fc08f77bfed9ae2d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_12 | For a positive integer $n$ , the factorial notation $n!$ represents the product of the integers from $n$ to $1$ . What value of $N$ satisfies the following equation? \[5!\cdot 9!=12\cdot N!\]
$\textbf{(A) }10\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }14\qquad$ | Since $5! = 120$ , we obtain $120\cdot 9!=12\cdot N!$ , which becomes $12\cdot 10\cdot 9!=12\cdot N!$ and thus $12 \cdot 10!=12\cdot N!$ . We therefore deduce $N=\boxed{10}$ | A | 10 |
64b4e5991b0af939fc08f77bfed9ae2d | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_12 | For a positive integer $n$ , the factorial notation $n!$ represents the product of the integers from $n$ to $1$ . What value of $N$ satisfies the following equation? \[5!\cdot 9!=12\cdot N!\]
$\textbf{(A) }10\qquad\textbf{(B) }11\qquad\textbf{(C) }12\qquad\textbf{(D) }13\qquad\textbf{(E) }14\qquad$ | We notice that $5! \cdot 9! = (5!)^2 \cdot (9 \cdot 8 \cdot 7 \cdot 6).$
We know that $5! = 120,$ so we have $120(5! \cdot 9 \cdot 8 \cdot 7 \cdot 6) = 12 \cdot N!$
Isolating $N!$ we have $N! = 10 \cdot 5! \cdot 9 \cdot 8 \cdot 7 \cdot 6 \Rightarrow N! = 10! \Rightarrow N = \boxed{10}.$ | A | 10 |
cfe7516ac1250a0d2de8319415859a1e | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_13 | Jamal has a drawer containing $6$ green socks, $18$ purple socks, and $12$ orange socks. After adding more purple socks, Jamal noticed that there is now a $60\%$ chance that a sock randomly selected from the drawer is purple. How many purple socks did Jamal add?
$\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | After Jamal adds $x$ purple socks, he has $(18+x)$ purple socks and $6+18+12+x=(36+x)$ total socks. This means the probability of drawing a purple sock is $\frac{18+x}{36+x}$ , so we obtain \[\frac{18+x}{36+x}=\frac{3}{5}\] Since $\frac{18+9}{36+9}=\frac{27}{45}=\frac{3}{5}$ , the answer is $\boxed{9}$ | B | 9 |
cfe7516ac1250a0d2de8319415859a1e | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_13 | Jamal has a drawer containing $6$ green socks, $18$ purple socks, and $12$ orange socks. After adding more purple socks, Jamal noticed that there is now a $60\%$ chance that a sock randomly selected from the drawer is purple. How many purple socks did Jamal add?
$\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | As in Solution 1, we have the equation $\frac{18+x}{36+x}=\frac{3}{5}$ . Cross-multiplying yields $90+5x=108+3x \Rightarrow 2x=18 \Rightarrow x=9$ . Thus, Jamal added $\boxed{9}$ purple socks. | B | 9 |
cfe7516ac1250a0d2de8319415859a1e | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_13 | Jamal has a drawer containing $6$ green socks, $18$ purple socks, and $12$ orange socks. After adding more purple socks, Jamal noticed that there is now a $60\%$ chance that a sock randomly selected from the drawer is purple. How many purple socks did Jamal add?
$\textbf{(A) }6 \qquad \textbf{(B) }9 \qquad \textbf{(C) }12 \qquad \textbf{(D) }18 \qquad \textbf{(E) }24$ | $6$ green socks and $12$ orange socks together should be $100\%-60\% = 40\%$ of the new total number of socks, so that new total must be $\frac{6+12}{0.4}= 45$ . Therefore, $45-6-18-12=\boxed{9}$ purple socks were added. | B | 9 |
78319c29f0e646bee09e421742aa9127 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_14 | There are $20$ cities in the County of Newton. Their populations are shown in the bar chart below. The average population of all the cities is indicated by the horizontal dashed line. Which of the following is closest to the total population of all $20$ cities?
[asy] // made by SirCalcsALot size(300); pen shortdashed=linetype(new real[] {6,6}); for (int i = 2000; i < 9000; i = i + 2000) { draw((0,i)--(11550,i), linewidth(0.5)+1.5*grey); label(string(i), (0,i), W); } for (int i = 500; i < 9300; i=i+500) { draw((0,i)--(150,i),linewidth(1.25)); if (i % 2000 == 0) { draw((0,i)--(250,i),linewidth(1.25)); } } int[] data = {8750, 3800, 5000, 2900, 6400, 7500, 4100, 1400, 2600, 1470, 2600, 7100, 4070, 7500, 7000, 8100, 1900, 1600, 5850, 5750}; int data_length = 20; int r = 550; for (int i = 0; i < data_length; ++i) { fill(((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+2)*r-100, data[i])--((i+2)*r-100,0)--cycle, 1.5*grey); draw(((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+1)*r,0)--((i+1)*r, data[i])--((i+2)*r-100, data[i])--((i+2)*r-100,0)); } draw((0,4750)--(11450,4750),shortdashed); label("Cities", (11450*0.5,0), S); label(rotate(90)*"Population", (0,9000*0.5), 10*W); // axis draw((0,0)--(0,9300), linewidth(1.25)); draw((0,0)--(11550,0), linewidth(1.25)); [/asy]
$\textbf{(A) }65000 \qquad \textbf{(B) }75000 \qquad \textbf{(C) }85000 \qquad \textbf{(D) }95000 \qquad \textbf{(E) }105000$ | We can see that the dotted line is exactly halfway between $4500$ and $5000$ , so it is at $4750$ . As this is the average population of all $20$ cities, the total population is simply $4750 \cdot 20 = \boxed{95000}$ | D | 95000 |
3b27f4e5862f67c58bfa53a3b8b90a63 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_15 | Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$
$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$ | Since $20\% = \frac{1}{5}$ , multiplying the given condition by $5$ shows that $y$ is $15 \cdot 5 = \boxed{75}$ percent of $x$ | C | 75 |
3b27f4e5862f67c58bfa53a3b8b90a63 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_15 | Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$
$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$ | Letting $x=100$ (without loss of generality), the condition becomes $0.15\cdot 100 = 0.2\cdot y \Rightarrow 15 = \frac{y}{5} \Rightarrow y=75$ . Clearly, it follows that $y$ is $75\%$ of $x$ , so the answer is $\boxed{75}$ | C | 75 |
3b27f4e5862f67c58bfa53a3b8b90a63 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_15 | Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$
$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$ | We have $15\%=\frac{3}{20}$ and $20\%=\frac{1}{5}$ , so $\frac{3}{20}x=\frac{1}{5}y$ . Solving for $y$ , we multiply by $5$ to give $y = \frac{15}{20}x = \frac{3}{4}x$ , so the answer is $\boxed{75}$ | C | 75 |
3b27f4e5862f67c58bfa53a3b8b90a63 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_15 | Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$
$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$ | We are given $0.15x = 0.20y$ , so we may assume without loss of generality that $x=20$ and $y=15$ . This means $\frac{y}{x}=\frac{15}{20}=\frac{75}{100}$ , and thus the answer is $\boxed{75}$ | C | 75 |
3b27f4e5862f67c58bfa53a3b8b90a63 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_15 | Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$
$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$ | $15\%$ of $x$ is $0.15x$ , and $20\%$ of $y$ is $0.20y$ . We put $0.15x$ and $0.20y$ into an equation, creating $0.15x = 0.20y$ because $0.15x$ equals $0.20y$ . Solving for $y$ , dividing $0.2$ to both sides, we get $y = \frac{15}{20}x = \frac{3}{4}x$ , so the answer is $\boxed{75}$ | C | 75 |
3b27f4e5862f67c58bfa53a3b8b90a63 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_15 | Suppose $15\%$ of $x$ equals $20\%$ of $y.$ What percentage of $x$ is $y?$
$\textbf{(A) }5 \qquad \textbf{(B) }35 \qquad \textbf{(C) }75 \qquad \textbf{(D) }133 \frac13 \qquad \textbf{(E) }300$ | $15\%$ of $x$ can be written as $\frac{15}{100}x$ , or $\frac{15x}{100}$ $20\%$ of $y$ can similarly be written as $\frac{20}{100}y$ , or $\frac{20y}{100}$ . So now, $\frac{15x}{100} = \frac{20y}{100}$ . Using cross-multiplication, we can simplify the equation as: $1500x = 2000y$ . Dividing both sides by $500$ , we get: $3x = 4y$ $\frac{3}{4}$ is the same thing as $75\%$ , so the answer is $\boxed{75}$ | C | 75 |
c5664966ee8689960c48494c7e756ab6 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_16 | Each of the points $A,B,C,D,E,$ and $F$ in the figure below represents a different digit from $1$ to $6.$ Each of the five lines shown passes through some of these points. The digits along each line are added to produce five sums, one for each line. The total of the five sums is $47.$ What is the digit represented by $B?$
[asy] size(200); dotfactor = 10; pair p1 = (-28,0); pair p2 = (-111,213); draw(p1--p2,linewidth(1)); pair p3 = (-160,0); pair p4 = (-244,213); draw(p3--p4,linewidth(1)); pair p5 = (-316,0); pair p6 = (-67,213); draw(p5--p6,linewidth(1)); pair p7 = (0, 68); pair p8 = (-350,10); draw(p7--p8,linewidth(1)); pair p9 = (0, 150); pair p10 = (-350, 62); draw(p9--p10,linewidth(1)); pair A = intersectionpoint(p1--p2, p5--p6); dot("$A$", A, 2*W); pair B = intersectionpoint(p5--p6, p3--p4); dot("$B$", B, 2*WNW); pair C = intersectionpoint(p7--p8, p5--p6); dot("$C$", C, 1.5*NW); pair D = intersectionpoint(p3--p4, p7--p8); dot("$D$", D, 2*NNE); pair EE = intersectionpoint(p1--p2, p7--p8); dot("$E$", EE, 2*NNE); pair F = intersectionpoint(p1--p2, p9--p10); dot("$F$", F, 2*NNE); [/asy]
$\textbf{(A) }1 \qquad \textbf{(B) }2 \qquad \textbf{(C) }3 \qquad \textbf{(D) }4 \qquad \textbf{(E) }5$ | We can form the following expressions for the sum along each line: \[\begin{dcases}A+B+C\\A+E+F\\C+D+E\\B+D\\B+F\end{dcases}\] Adding these together, we must have $2A+3B+2C+2D+2E+2F=47$ , i.e. $2(A+B+C+D+E+F)+B=47$ . Since $A,B,C,D,E,F$ are unique integers between $1$ and $6$ , we obtain $A+B+C+D+E+F=1+2+3+4+5+6=21$ (where the order doesn't matter as addition is commutative), so our equation simplifies to $42 + B = 47$ . This means $B = \boxed{5}$ .
~RJ5303707 | E | 5 |
c5664966ee8689960c48494c7e756ab6 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_16 | Each of the points $A,B,C,D,E,$ and $F$ in the figure below represents a different digit from $1$ to $6.$ Each of the five lines shown passes through some of these points. The digits along each line are added to produce five sums, one for each line. The total of the five sums is $47.$ What is the digit represented by $B?$
[asy] size(200); dotfactor = 10; pair p1 = (-28,0); pair p2 = (-111,213); draw(p1--p2,linewidth(1)); pair p3 = (-160,0); pair p4 = (-244,213); draw(p3--p4,linewidth(1)); pair p5 = (-316,0); pair p6 = (-67,213); draw(p5--p6,linewidth(1)); pair p7 = (0, 68); pair p8 = (-350,10); draw(p7--p8,linewidth(1)); pair p9 = (0, 150); pair p10 = (-350, 62); draw(p9--p10,linewidth(1)); pair A = intersectionpoint(p1--p2, p5--p6); dot("$A$", A, 2*W); pair B = intersectionpoint(p5--p6, p3--p4); dot("$B$", B, 2*WNW); pair C = intersectionpoint(p7--p8, p5--p6); dot("$C$", C, 1.5*NW); pair D = intersectionpoint(p3--p4, p7--p8); dot("$D$", D, 2*NNE); pair EE = intersectionpoint(p1--p2, p7--p8); dot("$E$", EE, 2*NNE); pair F = intersectionpoint(p1--p2, p9--p10); dot("$F$", F, 2*NNE); [/asy]
$\textbf{(A) }1 \qquad \textbf{(B) }2 \qquad \textbf{(C) }3 \qquad \textbf{(D) }4 \qquad \textbf{(E) }5$ | Following the first few steps of Solution 1, we have $2(A+C+D+E+F)+3B=47$ . Because an even number ( $2(A+C+D+E+F)$ ) subtracted from an odd number (47) is always odd, we know that $3B$ is odd, showing that $B$ is odd. Now we know that $B$ is either 1, 3, or 5. If we try $B=1$ , we get $43=47$ which is not true. Testing $B=3$ , we get $45=47$ , which is also not true. Therefore, we have $B = \boxed{5}$ | E | 5 |
33a3110a13b7b1100384be28275b57ff | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_17 | How many positive integer factors of $2020$ have more than $3$ factors? (As an example, $12$ has $6$ factors, namely $1,2,3,4,6,$ and $12.$
$\textbf{(A) }6 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8 \qquad \textbf{(D) }9 \qquad \textbf{(E) }10$ | Since $2020 = 2^2 \cdot 5 \cdot 101$ , we can simply list its factors: \[1, 2, 4, 5, 10, 20, 101, 202, 404, 505, 1010, 2020.\] There are $12$ factors; only $1, 2, 4, 5, 101$ don't have over $3$ factors, so the remaining $12-5 = \boxed{7}$ factors have more than $3$ factors. | B | 7 |
33a3110a13b7b1100384be28275b57ff | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_17 | How many positive integer factors of $2020$ have more than $3$ factors? (As an example, $12$ has $6$ factors, namely $1,2,3,4,6,$ and $12.$
$\textbf{(A) }6 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8 \qquad \textbf{(D) }9 \qquad \textbf{(E) }10$ | As in Solution 1, we prime factorize $2020$ as $2^2\cdot 5\cdot 101$ , and we recall the standard formula that the number of positive factors of an integer is found by adding $1$ to each exponent in its prime factorization, and then multiplying these. Thus $2020$ has $(2+1)(1+1)(1+1) = 12$ factors. The only number which has one factor is $1$ . For a number to have exactly two factors, it must be prime, and the only prime factors of $2020$ are $2$ $5$ , and $101$ . For a number to have three factors, it must be a square of a prime (this follows from the standard formula mentioned above), and from the prime factorization, the only square of a prime that is a factor of $2020$ is $4$ . Thus, there are $5$ factors of $2020$ which themselves have $1$ $2$ , or $3$ factors (namely $1$ $2$ $4$ $5$ , and $101$ ), so the number of factors of $2020$ that have more than $3$ factors is $12-5=\boxed{7}$ | B | 7 |
33a3110a13b7b1100384be28275b57ff | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_17 | How many positive integer factors of $2020$ have more than $3$ factors? (As an example, $12$ has $6$ factors, namely $1,2,3,4,6,$ and $12.$
$\textbf{(A) }6 \qquad \textbf{(B) }7 \qquad \textbf{(C) }8 \qquad \textbf{(D) }9 \qquad \textbf{(E) }10$ | Let $d(n)$ be the number of factors of n. We know by prime factorization that $d(2020) = 12$ . These $12$ numbers can be divided into unordered pairs ${a,b}$ where $ab = 2020$ . Since $d(2020) = d(a)d(b)$ , one of $d(a), d(b)$ has $3$ or less factors and the other has $4$ or more - in to total $6$ factors of $2020$ with more than $3$ factors. However, this argument has exceptions where $a$ and $b$ share a nontrivial common factor, which in this case can only be two. There are two cases - One in which $5$ and $101$ divide the same factor, WLOG assumed to be $a$ , so that $d(a) = 2^3 > 3$ and $d(b) = 2$ , as otherwise. In the other case, $a = 5\cdot2$ and $b = 101\cdot2$ , so that $d(a) = d(b) = 4$ . This adds one factor with more than $3$ factors, so the answer is $\boxed{7}$ | B | 7 |
dc5b7f0aa5f81ceaad824ac9900595cb | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_18 | Rectangle $ABCD$ is inscribed in a semicircle with diameter $\overline{FE},$ as shown in the figure. Let $DA=16,$ and let $FD=AE=9.$ What is the area of $ABCD?$
[asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); [/asy] $\textbf{(A) }240 \qquad \textbf{(B) }248 \qquad \textbf{(C) }256 \qquad \textbf{(D) }264 \qquad \textbf{(E) }272$ | [asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); dot("$O$", (0,0), 1.25*S); draw((0,0)--(-8,15));[/asy]
Let $O$ be the center of the semicircle. The diameter of the semicircle is $9+16+9=34$ , so $OC = 17$ . By symmetry, $O$ is the midpoint of $DA$ , so $OD=OA=\frac{16}{2}= 8$ . By the Pythagorean theorem in right-angled triangle $ODC$ (or $OBA$ ), we have that $CD$ (or $AB$ ) is $\sqrt{17^2-8^2}=15$ . Accordingly, the area of $ABCD$ is $16\cdot 15=\boxed{240}$ | A | 240 |
dc5b7f0aa5f81ceaad824ac9900595cb | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_18 | Rectangle $ABCD$ is inscribed in a semicircle with diameter $\overline{FE},$ as shown in the figure. Let $DA=16,$ and let $FD=AE=9.$ What is the area of $ABCD?$
[asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); [/asy] $\textbf{(A) }240 \qquad \textbf{(B) }248 \qquad \textbf{(C) }256 \qquad \textbf{(D) }264 \qquad \textbf{(E) }272$ | Let the midpoint of segment $FE$ be the origin. Evidently, point $D=(-8,0)$ and $A=(8,0)$ . Since points $C$ and $B$ share $x$ -coordinates with $D$ and $A$ respectively, it suffices to find the $y$ -coordinate of $B$ (which will be the height of the rectangle) and multiply this by $DA$ (which we know is $16$ ). The radius of the semicircle is $\frac{9+16+9}{2} = 17$ , so the whole circle has equation $x^2+y^2=289$ ; as already stated, $B$ has the same $x$ -coordinate as $A$ , i.e. $8$ , so substituting this into the equation shows that $y=\pm15$ . Since $y>0$ at $B$ , the y-coordinate of $B$ is $15$ . Therefore, the answer is $16\cdot 15 = \boxed{240}$ | A | 240 |
dc5b7f0aa5f81ceaad824ac9900595cb | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_18 | Rectangle $ABCD$ is inscribed in a semicircle with diameter $\overline{FE},$ as shown in the figure. Let $DA=16,$ and let $FD=AE=9.$ What is the area of $ABCD?$
[asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); [/asy] $\textbf{(A) }240 \qquad \textbf{(B) }248 \qquad \textbf{(C) }256 \qquad \textbf{(D) }264 \qquad \textbf{(E) }272$ | We can use a result from the Art of Problem Solving Introduction to Algebra book Sidenote: for a semicircle with diameter $(1+n)$ , such that the $1$ part is on one side and the $n$ part is on the other side, the height from the end of the $1$ side (or the start of the $n$ side) is $\sqrt{n}$ . To use this formula, we scale the figure down by $9$ ; this will give the height a length of $\sqrt{\frac{16+9}{9}} = \sqrt{\frac{25}{9}} = \frac{5}{3}$ . Now, scaling back up by $9$ , the height $DC$ is $9 \cdot \frac{5}{3} = 15$ . The answer is then $15 \cdot 16 = \boxed{240}$ .
- SweetMango77 | A | 240 |
dc5b7f0aa5f81ceaad824ac9900595cb | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_18 | Rectangle $ABCD$ is inscribed in a semicircle with diameter $\overline{FE},$ as shown in the figure. Let $DA=16,$ and let $FD=AE=9.$ What is the area of $ABCD?$
[asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); [/asy] $\textbf{(A) }240 \qquad \textbf{(B) }248 \qquad \textbf{(C) }256 \qquad \textbf{(D) }264 \qquad \textbf{(E) }272$ | Draw the other half of the circle as follows: [asy] draw(arc((0,0),17,360,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*SE); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*SW); dot("$E$",(17,0), 1.25*E); dot("$F$",(-17,0), 1.25*W); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); draw((-8,-15)--(-8,0)--(8,0)--(8,-15)--cycle); dot("$B'$",(8,-15), 1.25*S); dot("$C'$",(-8,-15), 1.25*S); [/asy] By the Power of a Point Theorem $FD\cdot DE = CD\cdot C'D$ . By symmetry, $CD = C'D$ . We see that $FD = 9$ and $DE = 16 + 9 = 25$ . Substituting in these values, $9\cdot 25 = CD^2$ , giving $CD^2 = 225$ and $CD = 15$ .
The area of the rectangle is therefore $15\cdot 16 = \boxed{240}$ | A | 240 |
dc5b7f0aa5f81ceaad824ac9900595cb | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_18 | Rectangle $ABCD$ is inscribed in a semicircle with diameter $\overline{FE},$ as shown in the figure. Let $DA=16,$ and let $FD=AE=9.$ What is the area of $ABCD?$
[asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),N); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); [/asy] $\textbf{(A) }240 \qquad \textbf{(B) }248 \qquad \textbf{(C) }256 \qquad \textbf{(D) }264 \qquad \textbf{(E) }272$ | [asy] draw(arc((0,0),17,180,0)); draw((-17,0)--(17,0)); fill((-8,0)--(-8,15)--(8,15)--(8,0)--cycle, 1.5*grey); draw((-8,0)--(-8,15)--(8,15)--(8,0)--cycle); dot("$A$",(8,0), 1.25*S); dot("$B$",(8,15), 1.25*N); dot("$C$",(-8,15), 1.25*N); dot("$D$",(-8,0), 1.25*S); dot("$E$",(17,0), 1.25*S); dot("$F$",(-17,0), 1.25*S); label("$16$",(0,0),S); label("$9$",(12.5,0),N); label("$9$",(-12.5,0),N); dot("$G$", (0,15), SE); dot("$O$", (0,0), NE); draw((0,0)--(0, 15)); draw((-7.5,15)--(0,0)); [/asy]
According to the Pythagorean Theorem and the Vertical Theorem, we can find out that $OG=\sqrt{\left(\frac{2\times9+16}{2}\right)^2 - \left(\frac{16}{2}\right)^2}=15$ . Therefore, the answer is $15\times16=\boxed{240}$ | A | 240 |
2e06cde8177c0e20f737f75264c2361a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_19 | A number is called flippy if its digits alternate between two distinct digits. For example, $2020$ and $37373$ are flippy, but $3883$ and $123123$ are not. How many five-digit flippy numbers are divisible by $15?$
$\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8$ | A number is divisible by $15$ precisely if it is divisible by $3$ and $5$ . The latter means the last digit must be either $5$ or $0$ , and the former means the sum of the digits must be divisible by $3$ . If the last digit is $0$ , the first digit would be $0$ (because the digits alternate), which is not possible. Hence the last digit must be $5$ , and the number is of the form $5\square 5\square 5$ . If the unknown digit is $x$ , we deduce $5+x+5+x+5 \equiv 0 \pmod{3} \Rightarrow 2x \equiv 0 \pmod{3}$ . We know $2^{-1}$ exists modulo $3$ because 2 is relatively prime to 3, so we conclude that $x$ (i.e. the second and fourth digit of the number) must be a multiple of $3$ . It can be $0$ $3$ $6$ , or $9$ , so there are $\boxed{4}$ options: $50505$ $53535$ $56565$ , and $59595$ | B | 4 |
2e06cde8177c0e20f737f75264c2361a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_19 | A number is called flippy if its digits alternate between two distinct digits. For example, $2020$ and $37373$ are flippy, but $3883$ and $123123$ are not. How many five-digit flippy numbers are divisible by $15?$
$\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8$ | As in Solution 1, we find that such numbers must start with $5$ and alternate with $5$ (i.e. must be of the form $5\square 5\square 5$ ), where the two digits between the $5$ s need to be the same. Call that digit $x$ . For the number to be divisible by $3$ , the sum of the digits must be divisible by $3$ ; since the sum of the three $5$ s is $15$ , which is already a multiple of $3$ , it must also be the case that $x+x=2x$ is a multiple of $3$ . Thus, the problem reduces to finding the number of digits from $0$ to $9$ for which $2x$ is a multiple of $3$ . This leads to $x=0$ $3$ $6$ , or $9$ , so there are $\boxed{4}$ possible numbers (namely $50505$ $53535$ $56565$ , and $59595$ ). | B | 4 |
2e06cde8177c0e20f737f75264c2361a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_19 | A number is called flippy if its digits alternate between two distinct digits. For example, $2020$ and $37373$ are flippy, but $3883$ and $123123$ are not. How many five-digit flippy numbers are divisible by $15?$
$\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8$ | After finding out that the last digit must be $5$ , the number is of the form $5\square 5\square 5$ . If the unknown digit is $x$ , we can find that one of the solutions to $x$ is $0$ , since $5+5+5$ is equal to $15$ , which is divisible by $3$ . After trying every one digit number, you'll notice that $x$ must be a multiple of $3$ , meaning that $x=0$ $3$ $6$ , or $9$ $50505$ $53535$ $56565$ , and $59595$ are the $\boxed{4}$ solutions to this question. | B | 4 |
2e06cde8177c0e20f737f75264c2361a | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_19 | A number is called flippy if its digits alternate between two distinct digits. For example, $2020$ and $37373$ are flippy, but $3883$ and $123123$ are not. How many five-digit flippy numbers are divisible by $15?$
$\textbf{(A) }3 \qquad \textbf{(B) }4 \qquad \textbf{(C) }5 \qquad \textbf{(D) }6 \qquad \textbf{(E) }8$ | assume the number is $ababa$ $10101a+1010b=0 (mod 15)\newline$ $6a+5b=0 (mod 15)\newline$ $a=0 (mod 5)\newline$ $5b=0 (mod 15)\newline$ $b=0 (mod 3)\newline$ Solutions: $(5,0),(5,3),(5,6),(5,9)\newline$ $\boxed{4}$ | null | 4 |
7c7d03eba309acae3722263567dc3012 | https://artofproblemsolving.com/wiki/index.php/2020_AMC_8_Problems/Problem_20 | A scientist walking through a forest recorded as integers the heights of $5$ trees standing in a row. She observed that each tree was either twice as tall or half as tall as the one to its right. Unfortunately some of her data was lost when rain fell on her notebook. Her notes are shown below, with blanks indicating the missing numbers. Based on her observations, the scientist was able to reconstruct the lost data. What was the average height of the trees, in meters?
\[\begingroup \setlength{\tabcolsep}{10pt} \renewcommand{\arraystretch}{1.5} \begin{tabular}{|c|c|} \hline Tree 1 & \rule{0.4cm}{0.15mm} meters \\ Tree 2 & 11 meters \\ Tree 3 & \rule{0.5cm}{0.15mm} meters \\ Tree 4 & \rule{0.5cm}{0.15mm} meters \\ Tree 5 & \rule{0.5cm}{0.15mm} meters \\ \hline Average height & \rule{0.5cm}{0.15mm}\text{ .}2 meters \\ \hline \end{tabular} \endgroup\] $\textbf{(A) }22.2 \qquad \textbf{(B) }24.2 \qquad \textbf{(C) }33.2 \qquad \textbf{(D) }35.2 \qquad \textbf{(E) }37.2$ | We will show that $22$ $11$ $22$ $44$ , and $22$ meters are the heights of the trees from left to right. We are given that all tree heights are integers, so since Tree 2 has height $11$ meters, we can deduce that Trees 1 and 3 both have a height of $22$ meters. There are now three possible cases for the heights of Trees 4 and 5 (in order for them to be integers), namely heights of $11$ and $22$ $44$ and $88$ , or $44$ and $22$ . Checking each of these, in the first case, the average is $17.6$ meters, which doesn't end in $.2$ as the problem requires. Therefore, we consider the other cases. With $44$ and $88$ , the average is $37.4$ meters, which again does not end in $.2$ , but with $44$ and $22$ , the average is $24.2$ meters, which does. Consequently, the answer is $\boxed{24.2}$ | B | 24.2 |